Sample records for opinion radiotherapy volume

  1. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  2. The role of PET in target localization for radiotherapy treatment planning.

    PubMed

    Rembielak, Agata; Price, Pat

    2008-02-01

    Positron emission tomography (PET) is currently accepted as an important tool in oncology, mostly for diagnosis, staging and restaging purposes. It provides a new type of information in radiotherapy, functional rather than anatomical. PET imaging can also be used for target volume definition in radiotherapy treatment planning. The need for very precise target volume delineation has arisen with the increasing use of sophisticated three-dimensional conformal radiotherapy techniques and intensity modulated radiation therapy. It is expected that better delineation of the target volume may lead to a significant reduction in the irradiated volume, thus lowering the risk of treatment complications (smaller safety margins). Better tumour visualisation also allows a higher dose of radiation to be applied to the tumour, which may lead to better tumour control. The aim of this article is to review the possible use of PET imaging in the radiotherapy of various cancers. We focus mainly on non-small cell lung cancer, lymphoma and oesophageal cancer, but also include current opinion on the use of PET-based planning in other tumours including brain, uterine cervix, rectum and prostate.

  3. Radiotherapy Dose-Volume Effects on Salivary Gland Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, Joseph O., E-mail: jdeasy@radonc.wustl.ed; Moiseenko, Vitali; Marks, Lawrence

    2010-03-01

    Publications relating parotid dose-volume characteristics to radiotherapy-induced salivary toxicity were reviewed. Late salivary dysfunction has been correlated to the mean parotid gland dose, with recovery occurring with time. Severe xerostomia (defined as long-term salivary function of <25% of baseline) is usually avoided if at least one parotid gland is spared to a mean dose of less than {approx}20 Gy or if both glands are spared to less than {approx}25 Gy (mean dose). For complex, partial-volume RT patterns (e.g., intensity-modulated radiotherapy), each parotid mean dose should be kept as low as possible, consistent with the desired clinical target volume coverage. Amore » lower parotid mean dose usually results in better function. Submandibular gland sparing also significantly decreases the risk of xerostomia. The currently available predictive models are imprecise, and additional study is required to identify more accurate models of xerostomia risk.« less

  4. Xerostomia, salivary characteristics and gland volumes following intensity-modulated radiotherapy for nasopharyngeal carcinoma: a two-year follow up.

    PubMed

    Sim, Cpc; Soong, Y L; Pang, Epp; Lim, C; Walker, G D; Manton, D J; Reynolds, E C; Wee, Jts

    2018-06-01

    To evaluate changes in xerostomia status, salivary characteristics and gland volumes 2 years following radiotherapy in nasopharyngeal carcinoma patients. Xerostomia scores, salivary flow rates, pH and buffering capacity were measured at pre-radiotherapy, mid-radiotherapy, 2 weeks, 3 months and 2 years post-radiotherapy. Salivary gland volumes and their correlation with radiation dose were also assessed. Mean radiation dose to oral cavity, parotid and submandibular glands (SMG) was 44.5, 65.0 and 38.6 Gy respectively. Parotid and SMG volumes decreased 33% at 3 months post-radiotherapy; volumes at 2 years post-radiotherapy were 84% and 51% of pre-radiotherapy levels, respectively. Correlations were observed between parotid gland volume per cent reduction and its radiation dose and between resting salivary flow rate reduction and post-radiotherapy/pre-radiotherapy SMG volume ratio. Salivary flow rates and resting saliva pH remained significantly low at 2 years post-radiotherapy (both flow rates, P = 0.001; resting saliva pH, P = 0.005). Similarly, xerostomia scores remained significantly higher compared with pre-radiotherapy levels. Submandibular gland volumetric shrinkage persisted 2 years after radiotherapy. Xerostomia scores remained significantly higher, and salivary flow rates and resting saliva pH remained significantly lower, suggesting that study participants were still at risk for hyposalivation-related oral diseases. © 2018 Australian Dental Association.

  5. Target volume motion during anal cancer image guided radiotherapy using cone-beam computed tomography.

    PubMed

    Brooks, Corrinne J; Bernier, Laurence; Hansen, Vibeke N; Tait, Diana M

    2018-05-01

    Literature regarding image-guidance and interfractional motion of the anal canal (AC) during anal cancer radiotherapy is sparse. This study investigates interfractional AC motion during anal cancer radiotherapy. Bone matched cone beam CT (CBCT) images were acquired for 20 patients receiving anal cancer radiotherapy allowing population systematic and random error calculations. 12 were selected to investigate interfractional AC motion. Primary anal gross tumour volume and clinical target volume (CTVa) were contoured on each CBCT. CBCT CTVa volumes were compared to planning CTVa. CBCT CTVa volumes were combined into a CBCT-CTVa envelope for each patient. Maximum distortion between each orthogonal border of the planning CTVa and CBCT-CTVa envelope was measured. Frequency, volume and location of CBCT-CTVa envelope beyond the planning target volume (PTVa) was analysed. Population systematic and random errors were 1 and 3 mm respectively. 112 CBCTs were analysed in the interfractional motion study. CTVa varied between each imaging session particularly T location patients of anorectal origin. CTVa border expansions ≥ 1 cm were seen inferiorly, anteriorly, posteriorly and left direction. The CBCT-CTVa envelope fell beyond the PTVa ≥ 50% imaging sessions (n = 5). Of these CBCT CTVa distortions beyond PTVa, 44% and 32% were in the upper and lower thirds of PTVa respectively. The AC is susceptible to volume changes and shape deformations. Care must be taken when calculating or considering reducing the PTV margin to the anus. Advances in knowledge: Within a limited field of research, this study provides further knowledge of how the AC deforms during anal cancer radiotherapy.

  6. Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data.

    PubMed

    Holyoake, Daniel L P; Aznar, Marianne; Mukherjee, Somnath; Partridge, Mike; Hawkins, Maria A

    2017-06-01

    Gastro-intestinal toxicity is dose-limiting in abdominal radiotherapy and correlated with duodenum dose-volume parameters. We aimed to derive updated NTCP model parameters using published data and prospective radiotherapy quality-assured cohort data. A systematic search identified publications providing duodenum dose-volume histogram (DVH) statistics for clinical studies of conventionally-fractionated radiotherapy. Values for the Lyman-Kutcher-Burman (LKB) NTCP model were derived through sum-squared-error minimisation and using leave-one-out cross-validation. Data were corrected for fraction size and weighted according to patient numbers, and the model refined using individual patient DVH data for two further cohorts from prospective clinical trials. Six studies with published DVH data were utilised, and with individual patient data included outcomes for 531 patients in total (median follow-up 16months). Observed gastro-intestinal toxicity rates ranged from 0% to 14% (median 8%). LKB parameter values for unconstrained fit to published data were: n=0.070, m=0.46, TD 50(1) [Gy]=183.8, while the values for the model incorporating the individual patient data were n=0.193, m=0.51, TD 50(1) [Gy]=299.1. LKB parameters derived using published data are shown to be consistent to those previously obtained using individual patient data, supporting a small volume-effect and dependence on exposure to high threshold dose. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer.

    PubMed

    Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S

    2018-05-02

    Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.

  8. Involved Node, Site, Field and Residual Volume Radiotherapy for Lymphoma: A Comparison of Organ at Risk Dosimetry and Second Malignancy Risks.

    PubMed

    Murray, L; Sethugavalar, B; Robertshaw, H; Bayman, E; Thomas, E; Gilson, D; Prestwich, R J D

    2015-07-01

    Recent radiotherapy guidelines for lymphoma have included involved site radiotherapy (ISRT), involved node radiotherapy (INRT) and irradiation of residual volume after full-course chemotherapy. In the absence of late toxicity data, we aim to compare organ at risk (OAR) dose-metrics and calculated second malignancy risks. Fifteen consecutive patients who had received mediastinal radiotherapy were included. Four radiotherapy plans were generated for each patient using a parallel pair photon technique: (i) involved field radiotherapy (IFRT), (ii) ISRT, (iii) INRT, (iv) residual post-chemotherapy volume. The radiotherapy dose was 30 Gy in 15 fractions. The OARs evaluated were: breasts, lungs, thyroid, heart, oesophagus. Relative and absolute second malignancy rates were estimated using the concept of organ equivalent dose. Significance was defined as P < 0.005. Compared with ISRT, IFRT significantly increased doses to lung, thyroid, heart and oesophagus, whereas INRT and residual volume techniques significantly reduced doses to all OARs. The relative risks of second cancers were significantly higher with IFRT compared with ISRT for lung, breast and thyroid; INRT and residual volume resulted in significantly lower relative risks compared with ISRT for lung, breast and thyroid. The median excess absolute risks of second cancers were consistently lowest for the residual technique and highest for IFRT in terms of thyroid, lung and breast cancers. The risk of oesophageal cancer was similar for all four techniques. Overall, the absolute risk of second cancers was very similar for ISRT and INRT. Decreasing treatment volumes from IFRT to ISRT, INRT or residual volume reduces radiation exposure to OARs. Second malignancy modelling suggests that this reduction in treatment volumes will lead to a reduction in absolute excess second malignancy. Little difference was observed in second malignancy risks between ISRT and INRT, supporting the use of ISRT in the absence of a pre

  9. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  10. [Clinical target volume delineation for radiotherapy of the esophagus].

    PubMed

    Lazarescu, I; Thureau, S; Nkhali, L; Pradier, O; Dubray, B

    2013-10-01

    The dense lymphatic network of the esophagus facilitates tumour spreading along the cephalo-caudal axis and to locoregional lymph nodes. A better understanding of microscopic invasion by tumour cells, based on histological analysis of surgical specimens and analysis of recurrence sites, has justified a reduction in radiotherapy target volumes. The delineation of the clinical target volume (CTV) depends on tumour characteristics (site, histology) and on its spread as assessed on endoscopic ultrasonography and ((18)F)-fluorodeoxyglucose positron-emission tomography (FDG-PET). We propose that positive and negative predictive values for FDG-PET should be used to adapt the CTV according to the risk of nodal involvement. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    PubMed Central

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  12. Dosimetric comparison between conventional and conformal radiotherapy for carcinoma cervix: Are we treating the right volumes?

    PubMed Central

    Goswami, Jyotirup; Patra, Niladri B.; Sarkar, Biplab; Basu, Ayan; Pal, Santanu

    2013-01-01

    Background and Purpose: Conventional portals, based on bony anatomy, for external beam radiotherapy for cervical cancer have been repeatedly demonstrated as inadequate. Conversely, with image-based conformal radiotherapy, better target coverage may be offset by the greater toxicities and poorer compliance associated with treating larger volumes. This study was meant to dosimetrically compare conformal and conventional radiotherapy. Materials and Methods: Five patients of carcinoma cervix underwent planning CT scan with IV contrast and targets, and organs at risk (OAR) were contoured. Two sets of plans-conventional and conformal were generated for each patient. Field sizes were recorded, and dose volume histograms of both sets of plans were generated and compared on the basis of target coverage and OAR sparing. Results: Target coverage was significantly improved with conformal plans though field sizes required were significantly larger. On the other hand, dose homogeneity was not significantly improved. Doses to the OARs (rectum, urinary bladder, and small bowel) were not significantly different across the 2 arms. Conclusion: Three-dimensional conformal radiotherapy gives significantly better target coverage, which may translate into better local control and survival. On the other hand, it also requires significantly larger field sizes though doses to the OARs are not significantly increased. PMID:24455584

  13. [Volume changes to the neck lymph node metastases in head-neck tumors. The evaluation of radiotherapeutic treatment success].

    PubMed

    Liszka, G; Thalacker, U; Somogyi, A; Németh, G

    1997-08-01

    This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.

  14. Conformal radiotherapy, reduced boost volume, hyperfractionated radiotherapy, and online quality control in standard-risk medulloblastoma without chemotherapy: Results of the French M-SFOP 98 protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrie, Christian; Muracciole, Xavier; Gomez, Frederic

    2005-11-01

    Purpose: Between December 1998 and October 2001, patients <19 years old were treated for standard-risk medulloblastoma according to the Medulloblastome-Societe Francaise d'Oncologie Pediatrique 1998 (M-SFOP 98) protocol. Patients received hyperfractionated radiotherapy (36 Gy in 36 fractions) to the craniospinal axis, a boost with conformal therapy restricted to the tumor bed (to a total dose of 68 Gy in 68 fractions), and no chemotherapy. Records of craniospinal irradiation were reviewed before treatment start. Results: A total of 48 patients were considered assessable. With a median follow-up of 45.7 months, the overall survival and progression-free survival rate at 3 years was 89%more » and 81%, respectively. Fourteen major deviations were detected and eight were corrected. No relapses occurred in the frontal region and none occurred in the posterior fossa outside the boost volume. Nine patients were available for volume calculation without reduction of the volume irradiated. We observed a reduction in the subtentorial volume irradiated to >60 Gy, but a slight increase in the volume irradiated to 40 Gy. No decrease in intelligence was observed in the 22 children tested during the first 2 years. Conclusion: This hyperfractionated radiotherapy protocol with a reduced boost volume and without chemotherapy was not associated with early relapses in children. Moreover, intellectual function seemed to be preserved. These results are promising.« less

  15. Using injectable hydrogel markers to assess resimulation for boost target volume definition in a patient undergoing whole-breast radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Henal; Goyal, Sharad; Kim, Leonard, E-mail: kimlh@rutgers.edu

    Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3 cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end ofmore » whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.« less

  16. Clinical outcomes using carbon-ion radiotherapy and dose-volume histogram comparison between carbon-ion radiotherapy and photon therapy for T2b-4N0M0 non-small cell lung cancer-A pilot study.

    PubMed

    Shirai, Katsuyuki; Kawashima, Motohiro; Saitoh, Jun-Ichi; Abe, Takanori; Fukata, Kyohei; Shigeta, Yuka; Irie, Daisuke; Shiba, Shintaro; Okano, Naoko; Ohno, Tatsuya; Nakano, Takashi

    2017-01-01

    The safety and efficacy of carbon-ion radiotherapy for advanced non-small cell lung cancer have not been established. We evaluated the clinical outcomes and dose-volume histogram parameters of carbon-ion radiotherapy compared with photon therapy in T2b-4N0M0 non-small cell lung cancer. Twenty-three patients were treated with carbon-ion radiotherapy between May 2011 and December 2015. Seven, 14, and 2 patients had T2b, T3, and T4, respectively. The median age was 78 (range, 53-91) years, with 22 male patients. There were 12 adenocarcinomas, 8 squamous cell carcinomas, 1 non-small cell lung carcinoma, and 2 clinically diagnosed lung cancers. Eleven patients were operable, and 12 patients were inoperable. Most patients (91%) were treated with carbon-ion radiotherapy of 60.0 Gy relative biological effectiveness (RBE) in 4 fractions or 64.0 Gy (RBE) in 16 fractions. Local control and overall survival rates were calculated. Dose-volume histogram parameters of normal lung and tumor coverages were compared between carbon-ion radiotherapy and photon therapies, including three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT). The median follow-up of surviving patients was 25 months. Three patients experienced local recurrence, and the 2-year local control rate was 81%. During follow-up, 5 patients died of lung cancer, and 1 died of intercurrent disease. The 2-year overall survival rate was 70%. Operable patients had a better overall survival rate compared with inoperable patients (100% vs. 43%; P = 0.04). There was no grade ≥2 radiation pneumonitis. In dose-volume histogram analysis, carbon-ion radiotherapy had a significantly lower dose to normal lung and greater tumor coverage compared with photon therapies. Carbon-ion radiotherapy was effectively and safely performed for T2b-4N0M0 non-small cell lung cancer, and the dose distribution was superior compared with those for photon therapies. A Japanese multi-institutional study is

  17. Bladder filling variation during conformal radiotherapy for rectal cancer

    NASA Astrophysics Data System (ADS)

    Sithamparam, S.; Ahmad, R.; Sabarudin, A.; Othman, Z.; Ismail, M.

    2017-05-01

    Conformal radiotherapy for rectal cancer is associated with small bowel toxicity mainly diarrhea. Treating patients with a full bladder is one of the practical solutions to reduce small bowel toxicity. Previous studies on prostate and cervix cancer patients revealed that maintaining consistent bladder volume throughout radiotherapy treatment is challenging. The aim of this study was to measure bladder volume variation throughout radiotherapy treatment. This study also measured the association between bladder volume changes and diarrhea. Twenty two rectal cancer patients were recruited prospectively. Patients were planned for treatment with full bladder following departmental bladder filling protocol and the planning bladder volume was measured during CT-simulation. During radiotherapy, the bladder volume was measured weekly using cone-beam computed tomography (CBCT) and compared to planning bladder volume. Incidence and severity of diarrhea were recorded during the weekly patient review. There was a negative time trend for bladder volume throughout five weeks treatment. The mean bladder volume decreased 18 % from 123 mL (SD 54 mL) during CT-simulation to 101 mL (SD 71 mL) on the 5th week of radiotherapy, but the decrease is not statistically significant. However, there was a large variation of bladder volume within each patient during treatment. This study showed an association between changes of bladder volume and diarrhea (P = 0.045). In conclusion bladder volume reduced throughout radiotherapy treatment for conformal radiotherapy for rectal cancer and there was a large variation of bladder volume within patients.

  18. Radiotherapy for gastric lymphoma: a planning study of 3D conformal radiotherapy, the half-beam method, and intensity-modulated radiotherapy.

    PubMed

    Inaba, Koji; Okamoto, Hiroyuki; Wakita, Akihisa; Nakamura, Satoshi; Kobayashi, Kazuma; Harada, Ken; Kitaguchi, Mayuka; Sekii, Shuhei; Takahashi, Kana; Yoshio, Kotaro; Murakami, Naoya; Morota, Madoka; Ito, Yoshinori; Sumi, Minako; Uno, Takashi; Itami, Jun

    2014-11-01

    During radiotherapy for gastric lymphoma, it is difficult to protect the liver and kidneys in cases where there is considerable overlap between these organs and the target volume. This study was conducted to compare the three radiotherapy planning techniques of four-fields 3D conformal radiotherapy (3DCRT), half-field radiotherapy (the half-beam method) and intensity-modulated radiotherapy (IMRT) used to treat primary gastric lymphoma in which the planning target volume (PTV) had a large overlap with the left kidney. A total of 17 patients with gastric diffuse large B-cell lymphoma (DLBCL) were included. In DLBCL, immunochemotherapy (Rituximab + CHOP) was followed by radiotherapy of 40 Gy to the whole stomach and peri-gastric lymph nodes. 3DCRT, the half-field method, and IMRT were compared with respect to the dose-volume histogram (DVH) parameters and generalized equivalent uniform dose (gEUD) to the kidneys, liver and PTV. The mean dose and gEUD for 3DCRT was higher than for IMRT and the half-beam method in the left kidney and both kidneys. The mean dose and gEUD of the left kidney was 2117 cGy and 2224 cGy for 3DCRT, 1520 cGy and 1637 cGy for IMRT, and 1100 cGy and 1357 cGy for the half-beam method, respectively. The mean dose and gEUD of both kidneys was 1335 cGy and 1559 cGy for 3DCRT, 1184 cGy and 1311 cGy for IMRT, and 700 cGy and 937 cGy for the half-beam method, respectively. Dose-volume histograms (DVHs) of the liver revealed a larger volume was irradiated in the dose range <25 Gy with 3DCRT, while the half-beam method irradiated a larger volume of liver with the higher dose range (>25 Gy). IMRT and the half-beam method had the advantages of dose reduction for the kidneys and liver. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  19. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Lorraine; Cox, Jennifer; Faculty of Health Sciences, University of Sydney, Sydney, New South Wales

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 daysmore » post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.« less

  20. Effect of androgen deprivation therapy on intraprostatic tumour volume identified on 18F choline PET/CT for prostate dose painting radiotherapy.

    PubMed

    Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel

    2017-03-01

    Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV

  1. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights

  2. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    PubMed

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance.

    PubMed

    Hoffmann, Christian; Distel, Luitpold; Knippen, Stefan; Gryc, Thomas; Schmidt, Manuel Alexander; Fietkau, Rainer; Putz, Florian

    2018-01-22

    Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. Copyright © 2013. Published by Elsevier SAS.

  5. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    PubMed

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. PET imaging in adaptive radiotherapy of gastrointestinal tumours.

    PubMed

    Bulens, Philippe; Thomas, Melissa; Deroose, Christophe M; Haustermans, Karin

    2018-06-04

    Radiotherapy is the standard of care in the multimodality treatment of a variety of gastrointestinal (GI) tumours, such as oesophageal cancer, gastric cancer, rectal cancer and anal cancer. Additionally, radiotherapy has served as an alternative for surgery in patients with liver cancer, cancer of the biliary tract and pancreatic cancer. Positron-emission tomography (PET), generally in combination with computed tomography (CT), has an established role in the diagnosis, response assessment and (re-)staging of several GI tumours. However, the additional value of PET in adaptive radiotherapy, i.e. during the radiation treatment course and in the delineation process, is still unclear. When performed during radiotherapy, PET aims at assessing treatment-induced variations in functional tumour volumes to reduce the radiation target volume. Moreover, in the radiation treatment planning, tumour delineation could be more accurate by incorporating PET to identify the metabolic tumour volume. This review focuses on the additional value of PET for adaptive radiotherapy protocols as well as for the target volume adaptation for individualised treatment strategies in oesophageal, gastric, pancreatic, liver, biliary tract, rectal and anal neoplasms.

  7. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langenberg, Rick van de, E-mail: rickvandelangenberg@hotmail.com; Dohmen, Amy J.C.; Bondt, Bert J. de

    2012-10-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention aftermore » radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.« less

  8. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William; Filion, Edith; Roberge, David

    2007-09-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less

  9. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    PubMed

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  10. ESTRO ACROP guidelines for target volume definition in the treatment of locally advanced non-small cell lung cancer.

    PubMed

    Nestle, Ursula; De Ruysscher, Dirk; Ricardi, Umberto; Geets, Xavier; Belderbos, Jose; Pöttgen, Christoph; Dziadiuszko, Rafal; Peeters, Stephanie; Lievens, Yolande; Hurkmans, Coen; Slotman, Ben; Ramella, Sara; Faivre-Finn, Corinne; McDonald, Fiona; Manapov, Farkhad; Putora, Paul Martin; LePéchoux, Cécile; Van Houtte, Paul

    2018-04-01

    Radiotherapy (RT) plays a major role in the curative treatment of locally advanced non-small cell lung cancer (NSCLC). Therefore, the ACROP committee was asked by the ESTRO to provide recommendations on target volume delineation for standard clinical scenarios in definitive (chemo)radiotherapy (RT) and adjuvant RT for locally advanced NSCLC. The guidelines given here are a result of the evaluation of a structured questionnaire followed by a consensus discussion, voting and writing procedure within the committee. Hence, we provide advice for methods and time-points of diagnostics and imaging before the start of treatment planning and for the mandatory and optional imaging to be used for planning itself. Concerning target volumes, recommendations are given for GTV delineation of primary tumour and lymph nodes followed by issues related to the delineation of CTVs for definitive and adjuvant radiotherapy. In the context of PTV delineation, recommendations about the management of geometric uncertainties and target motion are given. We further provide our opinions on normal tissue delineation and organisational and responsibility questions in the process of target volume delineation. This guideline intends to contribute to the standardisation and optimisation of the process of RT treatment planning for clinical practice and prospective studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    PubMed

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  12. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect?

    PubMed

    Siker, Malika L; Tomé, Wolfgang A; Mehta, Minesh P

    2006-09-01

    Adaptive radiotherapy allows treatment plan modification based on data obtained during treatment. Assessing volume changes during treatment is now possible with intratreatment imaging capabilities on radiotherapy devices. This study assesses non-small-cell lung cancer (NSCLC) volume changes during treatment with conformal intensity-modulated radiotherapy by evaluating serial megavoltage computed tomography (MVCT) scans, with a specific emphasis on the frequency, reliability, and meaningfulness of these changes. Megavoltage CTs were retrospectively reviewed for 25 patients treated with the TomoTherapy Hi-Art system at the University of Wisconsin. Twenty-one patients received definitive radiotherapy, 4 with extracranial stereotactic radioablation (60 Gy in five fractions) and 17 on a dose-per-fraction escalation protocol (57-80.5 Gy in 25 fractions). Four patients were treated palliatively (22-30 Gy in 8 to 10 fractions). Gross tumor volumes were contoured on serial MVCTs at weekly intervals. Each patient had 4 to 25 scans, including at least one at the beginning, midway, and one at the end of treatment. At completion of treatment, no patient demonstrated a complete response. Partial response occurred in 3 (12%) and marginal response was noted in 5 (20%). The remaining 17 patients (68%) showed stable disease. The minimum "scorable threshold" for volume discrepancy between scans to account for interscan assessment variability was set at >25% volume change; 10 patients (40%) had >25% tumor regression. None of the patients treated ablatively or palliatively showed tumor regression during treatment. Although gross tumor regression during treatment may be objectively measured using MVCTs, substantial volumetric decrease occurs only in a minority. The clinical significance of this regression is questionable, because there is no way to document histologic tumor clearance, and therefore field reductions during radiotherapy cannot be recommended.

  13. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Don, E-mail: dony@ualberta.c; Parliament, Matthew; Rathee, Satyapal

    2010-03-15

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm).more » The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (+- standard deviation [SD]) outside the planning CT counterpart was 29.24 cm{sup 3} (SD, 29.71 cm{sup 3}). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm{sup 3} (SD, 21.64 cm{sup 3}). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm{sup 3} (SD, 36.51 cm{sup 3}). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm{sup 3} (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm{sup 3} (SD, 3.97 cm{sup 3}). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.« less

  14. Contribution of FDOPA PET to radiotherapy planning for advanced glioma

    NASA Astrophysics Data System (ADS)

    Dowson, Nicholas; Fay, Michael; Thomas, Paul; Jeffree, Rosalind; McDowall, Robert; Winter, Craig; Coulthard, Alan; Smith, Jye; Gal, Yaniv; Bourgeat, Pierrick; Salvado, Olivier; Crozier, Stuart; Rose, Stephen

    2014-03-01

    Despite radical treatment with surgery, radiotherapy and chemotherapy, advanced gliomas recur within months. Geographic misses in radiotherapy planning may play a role in this seemingly ineluctable recurrence. Planning is typically performed on post-contrast MRIs, which are known to underreport tumour volume relative to FDOPA PET scans. FDOPA PET fused with contrast enhanced MRI has demonstrated greater sensitivity and specificity than MRI alone. One sign of potential misses would be differences between gross target volumes (GTVs) defined using MRI alone and when fused with PET. This work examined whether such a discrepancy may occur. Materials and Methods: For six patients, a 75 minute PET scan using 3,4-dihydroxy-6-18F-fluoro-L-phynel-alanine (18F-FDOPA) was taken within 2 days of gadolinium enhanced MRI scans. In addition to standard radiotherapy planning by an experienced radiotherapy oncologist, a second gross target volume (GTV) was defined by an experienced nuclear medicine specialist for fused PET and MRI, while blinded to the radiotherapy plans. The volumes from standard radiotherapy planning were compared to the PET defined GTV. Results: The comparison indicated radiotherapy planning would change in several cases if FDOPA PET data was available. PET-defined contours were external to 95% prescribed dose for several patients. However, due to the radiotherapy margins, the discrepancies were relatively small in size and all received a dose of 50 Gray or more. Conclusions: Given the limited size of the discrepancies it is uncertain that geographic misses played a major role in patient outcome. Even so, the existence of discrepancies indicates that FDOPA PET could assist in better defining margins when planning radiotherapy for advanced glioma, which could be important for highly conformal radiotherapy plans.

  15. SU-E-J-79: Evaluation of Prostate Volume Changes During Radiotherapy Using Implanted Markers and On-Board Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ispir, B; Akdeniz, Y; Ugurluer, G

    2015-06-15

    Purpose: To evaluate prostate volume changes during radiation therapy using implanted gold markers and on-board imaging. Methods: Twenty-five patients were included who underwent an implantation of three gold markers. Cartesian coordinates of markers were assessed in kV-images. The coordinates of centers of two markers were measured on kV-images from the center of the marker at the apex which was reference. The distances between the markers were extrapolated from the coordinates using the Euclid formula. The radius of the sphere through markers was calculated using sinus theorem. The prostate volume for the first and last fraction was substituted with a spheremore » model and was calculated for each patient. The t-test was used for analysis. Results: The mean prostate volume for first and last fraction was 24.65 and 20.87 cc, respectively (p≤0.05). The prostate volume was smaller for 23 patients, whereas there was an expansion for 2 patients. Fifteen patients had androgen deprivation during radiotherapy (H group) and ten did not (NH group). The mean prostate volume for the first and last fraction for the NH group was 30.73 cc and 24.89 cc and for the H group 20.84 cc and 18.19 cc, respectively. There was a 15.8% volume change during treatment for the NH group and 12.2% for the H group, but the difference was not statistically significant. The radius difference of the theoretical sphere for the first and last fraction was 0.98 mm (range, 0.09–2.95 mm) and remained below 2 mm in 88% of measurements. Conclusion: There was a significant volume change during prostate radiotherapy. The difference between H group and NH group was not significant. The radius changes did not exceed 3 mm and it was below adaptive treatment requirements. Our results indicate that prostate volume changes during treatment should be taken into account during contouring and treatment planning.« less

  16. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  17. Accurate tracking of tumor volume change during radiotherapy by CT-CBCT registration with intensity correction

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Robinson, Adam; Quon, Harry; Kiess, Ana P.; Shen, Colette; Wong, John; Plishker, William; Shekhar, Raj; Lee, Junghoon

    2016-03-01

    In this paper, we propose a CT-CBCT registration method to accurately predict the tumor volume change based on daily cone-beam CTs (CBCTs) during radiotherapy. CBCT is commonly used to reduce patient setup error during radiotherapy, but its poor image quality impedes accurate monitoring of anatomical changes. Although physician's contours drawn on the planning CT can be automatically propagated to daily CBCTs by deformable image registration (DIR), artifacts in CBCT often cause undesirable errors. To improve the accuracy of the registration-based segmentation, we developed a DIR method that iteratively corrects CBCT intensities by local histogram matching. Three popular DIR algorithms (B-spline, demons, and optical flow) with the intensity correction were implemented on a graphics processing unit for efficient computation. We evaluated their performances on six head and neck (HN) cancer cases. For each case, four trained scientists manually contoured the nodal gross tumor volume (GTV) on the planning CT and every other fraction CBCTs to which the propagated GTV contours by DIR were compared. The performance was also compared with commercial image registration software based on conventional mutual information (MI), VelocityAI (Varian Medical Systems Inc.). The volume differences (mean±std in cc) between the average of the manual segmentations and automatic segmentations are 3.70+/-2.30 (B-spline), 1.25+/-1.78 (demons), 0.93+/-1.14 (optical flow), and 4.39+/-3.86 (VelocityAI). The proposed method significantly reduced the estimation error by 9% (B-spline), 38% (demons), and 51% (optical flow) over the results using VelocityAI. Although demonstrated only on HN nodal GTVs, the results imply that the proposed method can produce improved segmentation of other critical structures over conventional methods.

  18. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation.

    PubMed

    Djan, Igor; Petrović, Borislava; Erak, Marko; Nikolić, Ivan; Lucić, Silvija

    2013-08-01

    Development of imaging techniques, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), made great impact on radiotherapy treatment planning by improving the localization of target volumes. Improved localization allows better local control of tumor volumes, but also minimizes geographical misses. Mutual information is obtained by registration and fusion of images achieved manually or automatically. The aim of this study was to validate the CT-MRI image fusion method and compare delineation obtained by CT versus CT-MRI image fusion. The image fusion software (XIO CMS 4.50.0) was applied to delineate 16 patients. The patients were scanned on CT and MRI in the treatment position within an immobilization device before the initial treatment. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated on CT alone and on CT+MRI images consecutively and image fusion was obtained. Image fusion showed that CTV delineated on a CT image study set is mainly inadequate for treatment planning, in comparison with CTV delineated on CT-MRI fused image study set. Fusion of different modalities enables the most accurate target volume delineation. This study shows that registration and image fusion allows precise target localization in terms of GTV and CTV and local disease control.

  19. The impact of PET/CT scanning on the size of target volumes, radiation exposure of organs at risk, TCP and NTCP, in the radiotherapy planning of non-small cell lung cancer.

    PubMed

    Vojtíšek, Radovan; Mužík, Jan; Slampa, Pavel; Budíková, Marie; Hejsek, Jaroslav; Smolák, Petr; Ferda, Jiří; Fínek, Jindřich

    2014-05-01

    To compare radiotherapy plans made according to CT and PET/CT and to investigate the impact of changes in target volumes on tumour control probability (TCP), normal tissue complication probability (NTCP) and the impact of PET/CT on the staging and treatment strategy. Contemporary studies have proven that PET/CT attains higher sensitivity and specificity in the diagnosis of lung cancer and also leads to higher accuracy than CT alone in the process of target volume delineation in NSCLC. Between October 2009 and March 2012, 31 patients with locally advanced NSCLC, who had been referred to radical radiotherapy were involved in our study. They all underwent planning PET/CT examination. Then we carried out two separate delineations of target volumes and two radiotherapy plans and we compared the following parameters of those plans: staging, treatment purpose, the size of GTV and PTV and the exposure of organs at risk (OAR). TCP and NTCP were also compared. PET/CT information led to a significant decrease in the sizes of target volumes, which had the impact on the radiation exposure of OARs. The reduction of target volume sizes was not reflected in the significant increase of the TCP value. We found that there is a very strong direct linear relationship between all evaluated dosimetric parameters and NTCP values of all evaluated OARs. Our study found that the use of planning PET/CT in the radiotherapy planning of NSCLC has a crucial impact on the precise determination of target volumes, more precise staging of the disease and thus also on possible changes of treatment strategy.

  20. Water-filled balloon in the postoperative resection cavity improves dose distribution to target volumes in radiotherapy of maxillary sinus carcinoma.

    PubMed

    Zhang, Qun; Lin, Shi-Rong; He, Fang; Kang, De-Hua; Chen, Guo-Zhang; Luo, Wei

    2011-11-01

    Postoperative radiotherapy is a major treatment for patients with maxillary sinus carcinoma. However, the irregular resection cavity poses a technical difficulty for this treatment, causing uneven dose distribution to target volumes. In this study, we evaluated the dose distribution to target volumes and normal tissues in postoperative intensity-modulated radiotherapy (IMRT) after placing a water-filled balloon into the resection cavity. Three postoperative patients with advanced maxillary sinus carcinoma were selected in this trial. Water-filled balloons and supporting dental stents were fabricated according to the size of the maxillary resection cavity. Simulation CT scans were performed with or without water-filled balloons, IMRT treatment plans were established, and dose distribution to target volumes and organs at risk were evaluated. Compared to those in the treatment plan without balloons, the dose (D98) delivered to 98% of the gross tumor volume (GTV) increased by 2.1 Gy (P = 0.009), homogeneity index (HI) improved by 2.3% (P = 0.001), and target volume conformity index (TCI) of 68 Gy increased by 18.5% (P = 0.011) in the plan with balloons. Dosimetry endpoints of normal tissues around target regions in both plans were not significantly different (P > 0.05) except for the optic chiasm. In the plan without balloons, 68 Gy high-dose regions did not entirely cover target volumes in the ethmoid sinus, posteromedial wall of the maxillary sinus, or surgical margin of the hard palate. In contrast, 68 Gy high-dose regions entirely covered the GTV in the plan with balloons. These results suggest that placing a water-filled balloon in the resection cavity for postoperative IMRT of maxillary sinus carcinoma can reduce low-dose regions and markedly and simultaneously increase dose homogeneity and conformity of target volumes.

  1. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    PubMed

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  2. Reirradiation of Large-Volume Recurrent Glioma With Pulsed Reduced-Dose-Rate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkison, Jarrod B.; Tome, Wolfgang; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI

    2011-03-01

    Purpose: Pulsed reduced-dose-rate radiotherapy (PRDR) is a reirradiation technique that reduces the effective dose rate and increases the treatment time, allowing sublethal damage repair during irradiation. Patients and Methods: A total of 103 patients with recurrent glioma underwent reirradiation using PRDR (86 considered to have Grade 4 at PRDR). PRDR was delivered using a series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median dose of 50 Gy (range, 20-60) delivered in 1.8-2.0-Gy fractions. The mean treatment volume was 403.5 {+-} 189.4 cm{sup 3} according to T{sub 2}-weighted magnetic resonance imaging andmore » a 2-cm margin. Results: For the initial or upgraded Grade 4 cohort (n = 86), the median interval from the first irradiation to PRDR was 14 months. Patients undergoing PRDR within 14 months of the first irradiation (n = 43) had a median survival of 21 weeks. Those treated {>=}14 months after radiotherapy had a median survival of 28 weeks (n = 43; p = 0.004 and HR = 1.82 with a 95% CI ranging from 1.25 to 3.10). These data compared favorably to historical data sets, because only 16% of the patients were treated at first relapse (with 46% treated at the second relapse, 32% at the third or fourth relapse, and 4% at the fourth or fifth relapse). The median survival since diagnosis and retreatment was 6.3 years and 11.4 months for low-grade, 4.1 years and 5.6 months for Grade 3, and 1.6 years and 5.1 months for Grade 4 tumors, respectively, according to the initial histologic findings. Multivariate analysis revealed age at the initial diagnosis, initial low-grade disease, and Karnofsky performance score of {>=}80 to be significant predictors of survival after initiation of PRDR. Conclusion: PRDR allowed for safe retreatment of larger volumes to high doses with palliative benefit.« less

  3. Mathematical modelling of tumour volume dynamics in response to stereotactic ablative radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Tariq, Imran; Humbert-Vidan, Laia; Chen, Tao; South, Christopher P.; Ezhil, Veni; Kirkby, Norman F.; Jena, Rajesh; Nisbet, Andrew

    2015-05-01

    This paper reports a modelling study of tumour volume dynamics in response to stereotactic ablative radiotherapy (SABR). The main objective was to develop a model that is adequate to describe tumour volume change measured during SABR, and at the same time is not excessively complex as lacking support from clinical data. To this end, various modelling options were explored, and a rigorous statistical method, the Akaike information criterion, was used to help determine a trade-off between model accuracy and complexity. The models were calibrated to the data from 11 non-small cell lung cancer patients treated with SABR. The results showed that it is feasible to model the tumour volume dynamics during SABR, opening up the potential for using such models in a clinical environment in the future.

  4. Recommendations for the use of radiotherapy in nodal lymphoma.

    PubMed

    Hoskin, P J; Díez, P; Williams, M; Lucraft, H; Bayne, M

    2013-01-01

    These guidelines have been developed to define the use of radiotherapy for lymphoma in the current era of combined modality treatment taking into account increasing concern over the late side-effects associated with previous radiotherapy. The role of reduced volume and reduced doses is addressed, integrating modern imaging with three-dimensional planning and advanced techniques of treatment delivery. Both wide-field and involved-field techniques have now been supplanted by the use of defined volumes based on node involvement shown on computed tomography (CT) and positron emission tomography (PET) imaging and applying the International Commission on Radiation Units and Measurements concepts of gross tumour volume (GTV), clinical target volume (CTV) and planning target volume (PTV). The planning of lymphoma patients for radical radiotherapy should now be based upon contrast enhanced 3 mm contiguous CT with three-dimensional definition of volumes using the convention of GTV, CTV and PTV. The involved-site radiotherapy concept defines the CTV based on the PET-defined pre-chemotherapy sites of involvement with an expansion in the cranio-caudal direction of lymphatic spread by 1.5 cm, constrained to tissue planes such as bone, muscle and air cavities. The margin allows for uncertainties in PET resolution, image registration and changes in patient positioning and shape. There is increasing evidence in both Hodgkin and non-Hodgkin lymphoma that traditional doses are higher than necessary for disease control and related to the incidence of late effects. No more than 30 Gy for Hodgkin and aggressive non-Hodgkin lymphoma and 24 Gy for indolent lymphomas is recommended; lower doses of 20 Gy in combination therapy for early-stage low-risk Hodgkin lymphoma may be sufficient. As yet there are no large datasets validating the use of involved-site radiotherapy; these will emerge from the current generation of clinical trials. Radiotherapy remains the most effective single

  5. Protons and more: state of the art in radiotherapy.

    PubMed

    Hoskin, Peter J; Bhattacharya, Indrani S

    2014-12-01

    The purpose of modern radiotherapy is to deliver a precise high dose of radiation which will result in reproductive death of the cells. Radiation should transverse within the tumour volume whilst minimising damage to surrounding normal tissue. Overall 40% of cancers which are cured will have received radiotherapy. Current state of the art treatment will incorporate cross-sectional imaging and multiple high energy X-ray beams in processes called intensity modulated radiotherapy and image guided radiotherapy. Brachytherapy enables very high radiation doses to be delivered by the direct passage of a radiation source through or within the tumour volume and similar results can be achieved using rotational stereotactic X-ray beam techniques. Protons have the characteristics of particle beams which deposit their energy in a finite fixed peak at depth in tissue with no dose beyond this point - the Bragg peak. This has advantages in certain sites such as the spine adjacent to the spinal cord and particularly in children when the overall volume of tissue receiving radiation can be minimised. © 2014 Royal College of Physicians.

  6. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer

    PubMed Central

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT. PMID:26929651

  7. Delineation of clinical target volume for postoperative radiotherapy in stage IIIA-pN2 non-small-cell lung cancer.

    PubMed

    Jing, Xuquan; Meng, Xue; Sun, Xindong; Yu, Jinming

    2016-01-01

    With the high locoregional relapse rate and the improvement of radiation technology, postoperative radiotherapy (PORT) has been widely used in the treatment of completely resected stage IIIA-pN2 non-small-cell lung cancer (NSCLC). However, there is still no definitive consensus on clinical target volume for the pN2 subgroup. This review will discuss how to delineate the clinical target volume (CTV) for pN2 subgroups of IIIA-N2 NSCLC based on the published literature and to investigate the optimal PORT CTV in this cohort of patients. Besides overall survival (OS), locoregional recurrence (LR), and radiotherapy-related toxicity of this subset of the population in the modern PORT era, selection of proper patients will also be considered in this review. In summary, it is appropriate to include involved lymph node stations and uninvolved stations at high risk in PORT CTV for patients with pN2 disease when PORT is administered. PORT can reduce LR and has the potential to improve OS. In the current era of modern radiation technology, PORT can be administered safely with well-tolerated toxicity. Clinicopathological characteristics may be helpful in selecting proper candidates for PORT.

  8. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy.

    PubMed

    Baek, Jihye; Huh, Jangyoung; Kim, Myungsoo; Hyun An, So; Oh, Yoonjin; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-01

    To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Volume measurement, using 3D US, shows a 2.8 ± 1.5% error, 4.4 ± 3.0% error for CT, and 3.1 ± 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  9. Comparison study of portable bladder scanner versus cone-beam CT scan for measuring bladder volumes in post-prostatectomy patients undergoing radiotherapy.

    PubMed

    Ung, K A; White, R; Mathlum, M; Mak-Hau, V; Lynch, R

    2014-01-01

    In post-prostatectomy radiotherapy to the prostatic bed, consistent bladder volume is essential to maintain the position of treatment target volume. We assessed the differences between bladder volume readings from a portable bladder scanner (BS-V) and those obtained from planning CT (CT-V) or cone-beam CT (CBCT-V). Interfraction bladder volume variation was also determined. BS-V was recorded before and after planning CT or CBCT. The percentage differences between the readings using the two imaging modalities, standard deviations and 95% confidence intervals were determined. Data were analysed for the whole patient cohort and separately for the older BladderScan™ BVI3000 and newer BVI9400 model. Interfraction bladder volume variation was determined from the percentage difference between the CT-V and CBCT-V. Treatment duration, incorporating the time needed for BS and CBCT, was recorded. Fourteen patients were enrolled, producing 133 data sets for analysis. BS-V was taken using the BVI9400 in four patients (43 data sets). The mean BS-V was 253.2 mL, and the mean CT-V or CBCT-V was 199 cm(3). The mean percentage difference between the two modalities was 19.7% (SD 42.2; 95%CI 12.4 to 26.9). The BVI9400 model produced more consistent readings, with a mean percentage difference of -6.2% (SD 27.8; 95% CI -14.7 to -2.4%). The mean percentage difference between CT-V and CBCT-V was 31.3% (range -48% to 199.4%). Treatment duration from time of first BS reading to CBCT was, on average, 12 min (range 6-27). The BS produces bladder volume readings of an average 19.7% difference from CT-V or CBCT-V and can potentially be used to screen for large interfraction bladder volume variations in radiotherapy to prostatic bed. The observed interfraction bladder volume variation suggests the need to improve bladder volume consistency. Incorporating the BS into practice is feasible. © 2014 The Royal Australian and New Zealand College of Radiologists.

  10. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  11. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    PubMed

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p < 0.001), maximum cardiac dose from 51.1 +/- 1.4 to 48.5 +/- 6.8 Gy (p = 0.005) and cardiac V25Gy from 8.5 +/- 4.2 to 3.2 +/- 2.5% (p < 0.001). Heart volumes receiving low (10-20 Gy) and high (30-50 Gy) doses were also significantly reduced. Mean dose to the left anterior coronary artery was 23.0 (+/- 6.7) Gy and 14.8 (+/- 7.6) Gy on FB and V-DIBH, respectively (p < 0.001). Differences between FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors

  12. Dose-volume histogram analysis of brainstem necrosis in head and neck tumors treated using carbon-ion radiotherapy.

    PubMed

    Shirai, Katsuyuki; Fukata, Kyohei; Adachi, Akiko; Saitoh, Jun-Ichi; Musha, Atsushi; Abe, Takanori; Kanai, Tatsuaki; Kobayashi, Daijiro; Shigeta, Yuka; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi

    2017-10-01

    We aimed to evaluate the relationship between brainstem necrosis and dose-volume histograms in patients with head and neck tumors after carbon-ion radiotherapy. We evaluated 85 patients with head and neck tumors who underwent carbon-ion radiotherapy and were followed-up for ≥12months. Brainstem necrosis was evaluated using the Common Terminology Criteria for Adverse Events (version 4.0). The median follow-up was 24months, and four patients developed grade 1 brainstem necrosis, with 2-year and 3-year cumulative rates of 2.8% and 6.5%, respectively. Receiver operating characteristic curve analysis revealed the following significant cut-off values: a maximum brainstem dose of 48Gy (relative biological effectiveness [RBE]), D1cm 3 of 27Gy (RBE), V40Gy (RBE) of 0.1cm 3 , V30Gy (RBE) of 0.7cm 3 , and V20Gy (RBE) of 1.4cm 3 . Multivariate analysis revealed that V30Gy (RBE) was most significantly associated with brainstem necrosis. The 2-year cumulative rates were 33% and 0% for V30Gy (RBE) of ≥0.7cm 3 and <0.7cm 3 , respectively (p<0.001). The present study indicated that the dose constraints might help minimize brainstem necrosis after carbon-ion radiotherapy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Automated delineation of radiotherapy volumes: are we going in the right direction?

    PubMed Central

    Whitfield, G A; Price, P; Price, G J; Moore, C J

    2013-01-01

    ABSTRACT. Rapid and accurate delineation of target volumes and multiple organs at risk, within the enduring International Commission on Radiation Units and Measurement framework, is now hugely important in radiotherapy, owing to the rapid proliferation of intensity-modulated radiotherapy and the advent of four-dimensional image-guided adaption. Nevertheless, delineation is still generally clinically performed with little if any machine assistance, even though it is both time-consuming and prone to interobserver variation. Currently available segmentation tools include those based on image greyscale interrogation, statistical shape modelling and body atlas-based methods. However, all too often these are not able to match the accuracy of the expert clinician, which remains the universally acknowledged gold standard. In this article we suggest that current methods are fundamentally limited by their lack of ability to incorporate essential human clinical decision-making into the underlying models. Hybrid techniques that utilise prior knowledge, make sophisticated use of greyscale information and allow clinical expertise to be integrated are needed. This may require a change in focus from automated segmentation to machine-assisted delineation. Similarly, new metrics of image quality reflecting fitness for purpose would be extremely valuable. We conclude that methods need to be developed to take account of the clinician's expertise and honed visual processing capabilities as much as the underlying, clinically meaningful information content of the image data being interrogated. We illustrate our observations and suggestions through our own experiences with two software tools developed as part of research council-funded projects. PMID:23239689

  14. [Radiotherapy in cancers of the oesophagus, the gastric cardia and the stomach].

    PubMed

    Créhange, G; Huguet, F; Quero, L; N'Guyen, T V; Mirabel, X; Lacornerie, T

    2016-09-01

    Localized oesophageal and gastric cancers have a poor prognosis. In oesophageal cancer, external radiotherapy combined with concomitant chemotherapy is accepted as part of the therapeutic armamentarium in a curative intent in the preoperative setting for resectable tumours; or without surgery in inoperable patients or non-resectable tumours due to wide local and/or regional extension. Data from the literature show conflicting results with no clinical evidence in favour of either a unique dose protocol or consensual target volume definition in the setting of exclusive chemoradiation. In the preoperative setting, chemoradiotherapy has become the standard in oesophageal cancer, even though there is no evidence that surgery may be beneficial in locally advanced tumours that respond to radiotherapy and chemotherapy. The main cause of failure after exclusive chemoradiotherapy in oesophageal cancer is locoregional relapse suggesting that doses and volumes usually considered may be inadequate. In gastric cancer, radiotherapy may be indicated postoperatively in patients with resected tumours that include less than D2 lymph node dissection or in the absence of perioperative chemotherapy. Preoperative chemoradiotherapy in gastric cancers is still under investigation. The evolving techniques of external radiotherapy, such as image-guided radiotherapy (IMRT) and volumetric modulated arctherapy (VMAT) have reduced the volume of lung and heart exposed to radiation, which seems to have diminished radiotherapy-related morbi-mortality rates. Given this, quality assurance for radiotherapy and protocols for radiotherapy delivery must be better standardized. This article on the indications for radiotherapy and the techniques used in oesophageal and gastric cancers is included in a special issue dedicated to national recommendations from the French society of radiation oncology (SFRO) on radiotherapy indications, planning, dose prescription, and techniques of radiotherapy delivery

  15. Risk-adaptive radiotherapy

    NASA Astrophysics Data System (ADS)

    Kim, Yusung

    Currently, there is great interest in integrating biological information into intensity-modulated radiotherapy (IMRT) treatment planning with the aim of boosting high-risk tumor subvolumes. Selective boosting of tumor subvolumes can be accomplished without violating normal tissue complication constraints using information from functional imaging. In this work we have developed a risk-adaptive optimization-framework that utilizes a nonlinear biological objective function. Employing risk-adaptive radiotherapy for prostate cancer, it is possible to increase the equivalent uniform dose (EUD) by up to 35.4 Gy in tumor subvolumes having the highest risk classification without increasing normal tissue complications. Subsequently, we have studied the impact of functional imaging accuracy, and found on the one hand that loss in sensitivity had a large impact on expected local tumor control, which was maximal when a low-risk classification for the remaining low risk PTV was chosen. While on the other hand loss in specificity appeared to have a minimal impact on normal tissue sparing. Therefore, it appears that in order to improve the therapeutic ratio a functional imaging technique with a high sensitivity, rather than specificity, is needed. Last but not least a comparison study between selective boosting IMRT strategies and uniform-boosting IMRT strategies yielding the same EUD to the overall PTV was carried out, and found that selective boosting IMRT considerably improves expected TCP compared to uniform-boosting IMRT, especially when lack of control of the high-risk tumor subvolumes is the cause of expected therapy failure. Furthermore, while selective boosting IMRT, using physical dose-volume objectives, did yield similar rectal and bladder sparing when compared its equivalent uniform-boosting IMRT plan, risk-adaptive radiotherapy, utilizing biological objective functions, did yield a 5.3% reduction in NTCP for the rectum. Hence, in risk-adaptive radiotherapy the

  16. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.

    PubMed

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-07-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.

  17. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    PubMed

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p<0.001) with higher conformity index value of 0.81±0.07 compared to both the 3D-CRT plans. The doses to the liver and bowel reduced significantly (p<0.001) with IMRT plans compared to other 3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  18. Toward semi-automated assessment of target volume delineation in radiotherapy trials: the SCOPE 1 pretrial test case.

    PubMed

    Gwynne, Sarah; Spezi, Emiliano; Wills, Lucy; Nixon, Lisette; Hurt, Chris; Joseph, George; Evans, Mererid; Griffiths, Gareth; Crosby, Tom; Staffurth, John

    2012-11-15

    To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynne, Sarah, E-mail: Sarah.Gwynne2@wales.nhs.uk; Spezi, Emiliano; Wills, Lucy

    2012-11-15

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that weremore » sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.« less

  20. Cell Death, Inflammation, Tumor Burden, and Proliferation Blood Biomarkers Predict Lung Cancer Radiotherapy Response and Correlate With Tumor Volume and Proliferation Imaging.

    PubMed

    Salem, Ahmed; Mistry, Hitesh; Backen, Alison; Hodgson, Clare; Koh, Pek; Dean, Emma; Priest, Lynsey; Haslett, Kate; Trigonis, Ioannis; Jackson, Alan; Asselin, Marie-Claude; Dive, Caroline; Renehan, Andrew; Faivre-Finn, Corinne; Blackhall, Fiona

    2018-05-01

    There is an unmet need to develop noninvasive biomarkers to stratify patients in drug-radiotherapy trials. In this pilot study we investigated lung cancer radiotherapy response and toxicity blood biomarkers and correlated findings with tumor volume and proliferation imaging. Blood samples were collected before and during (day 21) radiotherapy. Twenty-six cell-death, hypoxia, angiogenesis, inflammation, proliferation, invasion, and tumor-burden biomarkers were evaluated. Clinical and laboratory data were collected. Univariate analysis was performed on small-cell and non-small-cell lung cancer (NSCLC) whereas multivariate analysis focused on NSCLC. Blood samples from 78 patients were analyzed. Sixty-one (78.2%) harbored NSCLC, 48 (61.5%) received sequential chemoradiotherapy. Of tested baseline biomarkers, undetectable interleukin (IL)-1b (hazard ratio [HR], 4.02; 95% confidence interval [CI], 2.04-7.93; P < .001) was the only significant survival covariate. Of routinely collected laboratory tests, high baseline neutrophil count was a significant survival covariate (HR, 1.07; 95% CI, 1.02-1.11; P = .017). Baseline IL-1b and neutrophil count were prognostic for survival in a multivariate model. The addition of day-21 cytokeratin-19 antigen modestly improved this model's survival prediction (concordance probability, 0.75-0.78). Chemotherapy (P < .001) and baseline keratinocyte growth factor (P = .019) predicted acute esophagitis, but only chemotherapy remained significant after Bonferroni correction. Baseline angioprotein-1 and hepatocyte growth factor showed a direct correlation with tumor volume whereas changes in vascular cell adhesion molecule 1 showed significant correlations with 18F-fluorothymidine (FLT) positron emission tomography (PET). Select biomarkers are prognostic after radiotherapy in this lung cancer series. The correlation between circulating biomarkers and 18F-FLT PET is shown, to our knowledge for the first time, highlighting their potential

  1. The influence of bone density on the radiotherapy of cervix cancer

    NASA Astrophysics Data System (ADS)

    Soares, M. R.; Souza, D. N.

    2011-10-01

    Until the 1970s the irradiated region of a patient undergoing external beam radiotherapy was considered a homogeneous volume and a regular surface, with physical characteristics similar to water. With the improvement of medical imaging equipment, it has become possible to conduct planning in radiotherapy treatment that considers the heterogeneities and irregularities of a patient's anatomy. Consequently, such technological resources have brought greater accuracy to radiotherapy. In this study, we determined the variation in the average amount of absorbed dose on the target volume and at the point of prescription treatment by comparing the doses which were calculated in a planning system considering the patient both as a homogeneous, and as a heterogeneous medium. The results showed that when we take into account the volume of the upper vagina and cervix, and consider the pelvis as a heterogeneous medium, the calculated dose was under-estimated at some points in the studied volume with respect to the dose when this region was considered homogeneous.

  2. Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Stephanie T.H.; Lebesque, Joos V.; Heemsbergen, Wilma D.

    2006-03-15

    Purpose: To identify dosimetric parameters derived from anorectal, rectal, and anal wall dose distributions that correlate with different late gastrointestinal (GI) complications after three-dimensional conformal radiotherapy for prostate cancer. Methods and Materials: In this analysis, 641 patients from a randomized trial (68 Gy vs. 78 Gy) were included. Toxicity was scored with adapted Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer (RTOG/EORTC) criteria and five specific complications. The variables derived from dose-volume histogram of anorectal, rectal, and anal wall were as follows: % receiving {>=}5-70 Gy (V5-V70), maximum dose (D{sub max}), and mean dose (D{sub mean}).more » The anus was defined as the most caudal 3 cm of the anorectum. Statistics were done with multivariate Cox regression models. Median follow-up was 44 months. Results: Anal dosimetric variables were associated with RTOG/EORTC Grade {>=}2 (V5-V40, D{sub mean}) and incontinence (V5-V70, D{sub mean}). Bleeding correlated most strongly with anorectal V55-V65, and stool frequency with anorectal V40 and D{sub mean}. Use of steroids was weakly related to anal variables. No volume effect was seen for RTOG/EORTC Grade {>=}3 and pain/cramps/tenesmus. Conclusion: Different volume effects were found for various late GI complications. Therefore, to evaluate the risk of late GI toxicity, not only intermediate and high doses to the anorectal wall volume should be taken into account, but also the dose to the anal wall.« less

  3. Clinical Implications of the Tumor Volume Reduction Rate in Head-and-Neck Cancer During Definitive Intensity-Modulated Radiotherapy for Organ Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shih-Neng; Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Liao, Chih-Ying

    2011-03-15

    Purpose: To investigate the prognostic value of the volume reduction rate (VRR) in patients with head-and-neck cancer treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Seventy-six patients with oropharyngeal cancer (OPC) and another 76 with hypopharyngeal cancer (HPC) were enrolled in volumetric analysis. All patients received allocated radiotherapy courses. Adaptive computed tomography was done 4 to 5 weeks after the start of IMRT. Primary tumor volume measurement was derived using separate images for the pretreatment gross tumor volume (pGTV) and the interval gross tumor volume. Results: In the OPC group, the pGTV ranged from 6.6 to 242.6 mL (mean, 49.9more » mL), whereas the value of the VRR ranged from 0.014 to 0.74 (mean, 0.43). In HPC patients, the pGTV ranged from 4.1 to 152.4 mL (mean, 35.6 mL), whereas the VRR ranged from -1.15 to 0.79 (mean, 0.33). Multivariate analysis of the primary tumor relapse-free survival for OPC revealed three prognostic factors: T4 tumor (p = 0.0001, hazard ratio 7.38), pGTV {>=}20 mL (p = 0.01, hazard ratio 10.61), and VRR <0.5 (p = 0.001, hazard ratio 6.49). Multivariate analysis of the primary tumor relapse-free survival for HPC showed two prognostic factors: pGTV {>=}30 mL (p = 0.001, hazard ratio 2.87) and VRR <0.5 (p = 0.03, hazard ratio 2.25). Conclusion: The VRR is an outcome predictor for local control in OPC and HPC patients treated with IMRT. Those with large tumor volumes or a VRR <0.5 should be considered for a salvage operation or a dose-escalation scheme.« less

  4. A new brain positron emission tomography scanner with semiconductor detectors for target volume delineation and radiotherapy treatment planning in patients with nasopharyngeal carcinoma.

    PubMed

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET(CONV)WB) versus the new brain (BR) PET system using semiconductor detectors (PET(NEW)BR). Twelve patients with NPC were enrolled in this study. [(18)F]Fluorodeoxyglucose-PET images were acquired using both the PET(NEW)BR and the PET(CONV)WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET(CONV)WB and PET(NEW)BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET(CONV)WB (GTV(CONV)) images or PET(NEW)BR (GTV(NEW)) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. The average absolute volume (±standard deviation [SD]) of GTV(NEW) was 15.7 ml (±9.9) ml, and that of GTV(CONV) was 34.0 (±20.5) ml. The average GTV(NEW) was significantly smaller than that of GTV(CONV) (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN(NEW)) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy treatment planning. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol.

    PubMed

    Leonard, Charles E; Tallhamer, Michael; Johnson, Tim; Hunter, Kari; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L

    2010-02-01

    To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Dose constraints for moderate hypofractionated radiotherapy for prostate cancer: The French genito-urinary group (GETUG) recommendations.

    PubMed

    Langrand-Escure, J; de Crevoisier, R; Llagostera, C; Créhange, G; Delaroche, G; Lafond, C; Bonin, C; Bideault, F; Sargos, P; Belhomme, S; Pasquier, D; Latorzeff, I; Supiot, S; Hennequin, C

    2018-04-01

    Considering recent phase III trials results, moderate hypofractionated radiotherapy can be considered as a standard treatment for low and intermediate risk prostate cancer management. This assessment call for a framework allowing homogeneous and reproducible practices in the different centers using this radiotherapy schedule. The French Genito-Urinary Group (GETUG) provides here recommendations for daily practice of moderate hypofractionated radiotherapy for prostate cancer, with indications, dose, fractionation, pre-treatment planning, volume of interest delineation (target volume and organs at risk) and margins, dose constraints and radiotherapy techniques. Copyright © 2018. Published by Elsevier SAS.

  7. A longitudinal study on the radiation-induced thyroid gland changes after external beam radiotherapy of nasopharyngeal carcinoma.

    PubMed

    Lin, Zhixiong; Wu, Vincent Wing-Cheung; Lin, Jing; Feng, Huiting; Chen, Longhua

    2011-01-01

    Radiation-induced thyroid disorders have been reported in radiotherapy of head and neck cancers. This study evaluated the radiation-induced damages to thyroid gland in patients with nasopharyngeal carcinoma (NPC). Forty-five patients with NPC treated by radiotherapy underwent baseline thyroid hormones (free triiodothyronine, free thyroxine [fT4], and thyrotropin [TSH]) examination and CT scan before radiotherapy. The volume of the thyroid gland was calculated by delineating the structure in the corresponding CT slices using the radiotherapy treatment planning system. The thyroid doses were estimated using the treatment planning system. Subsequent CT scans were conducted at 6, 12, and 18 months after radiotherapy, whereas the hormone levels were assessed at 3, 6, 12, and 18 months after radiotherapy. Trend lines of the volume and hormone level changes against time were plotted. The relationship between the dose and the change of thyroid volume and hormone levels were evaluated using the Pearson correlation test. An average of 20% thyroid volume reduction in the first 6 months and a further 8% shrinkage at 12 months after radiotherapy were observed. The volume reduction was dependent on the mean thyroid doses at 6, 12, and 18 months after radiotherapy (r = -0.399, -0.472, and -0.417, respectively). Serum free triiodothyronine and fT4 levels showed mild changes of <2.5% at 6 months, started to drop by 8.8% and 11.3%, respectively, at 12 months, and became stable at 18 months. The mean serum TSH level increased mildly at 6 months after radiotherapy and more steeply after 18 months. At 18 months after radiotherapy, 12 patients had primary hypothyroidism with an elevated serum TSH, in which 4 of them also presented with low serum fT4. There was a significant difference (p = 0.014) in the mean thyroid doses between patients with hypothyroidism and normal thyroid function. Radiotherapy for patients with NPC caused radiation-induced changes of the thyroid gland. The

  8. New Language and Old Problems in Breast Cancer Radiotherapy.

    PubMed

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  9. Radiotherapy in Prostate Cancer Patients With Pelvic Lymphocele After Surgery: Clinical and Dosimetric Data of 30 Patients.

    PubMed

    Jereczek-Fossa, Barbara Alicja; Colangione, Sarah Pia; Fodor, Cristiana; Russo, Stefania; Cambria, Raffaella; Zerini, Dario; Bonora, Maria; Cecconi, Agnese; Vischioni, Barbara; Vavassori, Andrea; Matei, Deliu Victor; Bottero, Danilo; Brescia, Antonio; Musi, Gennaro; Mazzoleni, Federica; Orsi, Franco; Bonomo, Guido; De Cobelli, Ottavio; Orecchia, Roberto

    2015-08-01

    The purpose of the study was to evaluate the feasibility of irradiation after prostatectomy in the presence of asymptomatic pelvic lymphocele. The inclusion criteria for this study were: (1) patients referred for postoperative (adjuvant or salvage) intensity modulated radiotherapy (IMRT; 66-69 Gy in 30 fractions); (2) detection of postoperative pelvic lymphocele at the simulation computed tomography [CT] scan; (3) no clinical symptoms; and (4) written informed consent. Radiotherapy toxicity and occurrence of symptoms or complications of lymphocele were analyzed. Dosimetric data (IMRT plans) and the modification of lymphocele volume during radiotherapy (cone beam CT [CBCT] scan) were evaluated. Between January 2011 and July 2013, in 30 of 308 patients (10%) treated with radiotherapy after prostatectomy, pelvic lymphocele was detected on the simulation CT. The median lymphocele volume was 47 cm(3) (range, 6-467.3 cm(3)). Lymphocele was not included in planning target volume (PTV) in 8 cases (27%). Maximum dose to lymphocele was 57 Gy (range, 5.7-73.3 Gy). Radiotherapy was well tolerated. In all but 2 patients, lymphoceles remained asymptomatic. Lymphocele drainage-because of symptom occurrence-had to be performed in 2 patients during IMRT and in one patient, 7 weeks after IMRT. CBCT at the end of IMRT showed reduction in lymphocele volume and position compared with the initial data (median reduction of 37%), more pronounced in lymphoceles included in PTV. Radiotherapy after prostatectomy in the presence of pelvic asymptomatic lymphocele is feasible with acceptable acute and late toxicity. The volume of lymphoceles decreased during radiotherapy and this phenomenon might require intermediate radiotherapy plan evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Intra-fraction motion of larynx radiotherapy

    NASA Astrophysics Data System (ADS)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  11. Accurate Analysis of the Change in Volume, Location, and Shape of Metastatic Cervical Lymph Nodes During Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin, E-mail: takao@mech-me.eng.hokudai.ac.jp; Tadano, Shigeru; Taguchi, Hiroshi

    2011-11-01

    Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy. Methods and Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis. Six metastatic cervical lymph nodes, 3.5 to 55.1 cm{sup 3} before treatment, in 6 patients with head and neck carcinomas were analyzed inmore » this study. Three fiducial markers implanted in mouthpieces were used for the fusion of CT images. Changes in the location of the lymph nodes were measured on the basis of these fiducial markers. Results: The surface geometry maps showed convex regions in red and concave regions in blue to ensure that the characteristics of the 3D tumor geometries are simply understood visually. After the irradiation of 66 to 70 Gy in 2 Gy daily doses, the patterns of the colors had not changed significantly, and the maps before and during treatment were strongly correlated (average correlation coefficient was 0.808), suggesting that the tumors shrank uniformly, maintaining the original characteristics of the shapes in all 6 patients. The movement of the gravitational center of the lymph nodes during the treatment period was everywhere less than {+-}5 mm except in 1 patient, in whom the change reached nearly 10 mm. Conclusions: The surface geometry map was useful for an accurate evaluation of the changes in volume and 3D shapes of metastatic lymph nodes. The fusion of the initial and follow-up CT images based on fiducial markers enabled an analysis of changes in the location of the targets. Metastatic cervical lymph nodes in patients were suggested to decrease in size without significant changes in the 3D shape during radiotherapy. The

  12. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, K.M.; Doyle, B.L.

    1996-08-20

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue. 25 figs.

  13. Ion-induced nuclear radiotherapy

    DOEpatents

    Horn, Kevin M.; Doyle, Barney L.

    1996-01-01

    Ion-induced Nuclear Radiotherapy (INRT) is a technique for conducting radiosurgery and radiotherapy with a very high degree of control over the spatial extent of the irradiated volume and the delivered dose. Based upon the concept that low energy, ion induced atomic and nuclear reactions can be used to produce highly energetic reaction products at the site of a tumor, the INRT technique is implemented through the use of a conduit-needle or tube which conducts a low energy ion beam to a position above or within the intended treatment area. At the end of the conduit-needle or tube is a specially fabricated target which, only when struck by the ion beam, acts as a source of energetic radiation products. The inherent limitations in the energy, and therefore range, of the resulting reaction products limits the spatial extent of irradiation to a pre-defined volume about the point of reaction. Furthermore, since no damage is done to tissue outside this irradiated volume, the delivered dose may be made arbitrarily large. INRT may be used both as a point-source of radiation at the site of a small tumor, or as a topical bath of radiation to broad areas of diseased tissue.

  14. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer.

    PubMed

    James, Nicholas D; Hussain, Syed A; Hall, Emma; Jenkins, Peter; Tremlett, Jean; Rawlings, Christine; Crundwell, Malcolm; Sizer, Bruce; Sreenivasan, Thiagarajan; Hendron, Carey; Lewis, Rebecca; Waters, Rachel; Huddart, Robert A

    2012-04-19

    Radiotherapy is an alternative to cystectomy in patients with muscle-invasive bladder cancer. In other disease sites, synchronous chemoradiotherapy has been associated with increased local control and improved survival, as compared with radiotherapy alone. In this multicenter, phase 3 trial, we randomly assigned 360 patients with muscle-invasive bladder cancer to undergo radiotherapy with or without synchronous chemotherapy. The regimen consisted of fluorouracil (500 mg per square meter of body-surface area per day) during fractions 1 to 5 and 16 to 20 of radiotherapy and mitomycin C (12 mg per square meter) on day 1. Patients were also randomly assigned to undergo either whole-bladder radiotherapy or modified-volume radiotherapy (in which the volume of bladder receiving full-dose radiotherapy was reduced) in a partial 2-by-2 factorial design (results not reported here). The primary end point was survival free of locoregional disease. Secondary end points included overall survival and toxic effects. At 2 years, rates of locoregional disease-free survival were 67% (95% confidence interval [CI], 59 to 74) in the chemoradiotherapy group and 54% (95% CI, 46 to 62) in the radiotherapy group. With a median follow-up of 69.9 months, the hazard ratio in the chemoradiotherapy group was 0.68 (95% CI, 0.48 to 0.96; P=0.03). Five-year rates of overall survival were 48% (95% CI, 40 to 55) in the chemoradiotherapy group and 35% (95% CI, 28 to 43) in the radiotherapy group (hazard ratio, 0.82; 95% CI, 0.63 to 1.09; P=0.16). Grade 3 or 4 adverse events were slightly more common in the chemoradiotherapy group than in the radiotherapy group during treatment (36.0% vs. 27.5%, P=0.07) but not during follow-up (8.3% vs. 15.7%, P=0.07). Synchronous chemotherapy with fluorouracil and mitomycin C combined with radiotherapy significantly improved locoregional control of bladder cancer, as compared with radiotherapy alone, with no significant increase in adverse events. (Funded by Cancer

  15. 18-Fluorodeoxy-Glucose Positron Emission Tomography- Computed Tomography (18-FDG-PET/CT) for Gross Tumor Volume (GTV) Delineation in Gastric Cancer Radiotherapy

    PubMed

    Dębiec, Kinga; Wydmański, Jerzy; Gorczewska, Izabela; Leszczyńska, Paulina; Gorczewski, Kamil; Leszczyński, Wojciech; d’Amico, Andrea; Kalemba, Michał

    2017-11-26

    Purpose: Evaluation of the 18-fluorodeoxy-glucose positron emission tomography-computed tomography (18-FDGPET/ CT) for gross tumor volume (GTV) delineation in gastric cancer patients undergoing radiotherapy. Methods: In this study, 29 gastric cancer patients (17 unresectable and 7 inoperable) were initially enrolled for radical chemoradiotherapy (45Gy/25 fractions + chemotherapy based on 5 fluorouracil) or radiotherapy alone (45Gy/25 fractions) with planning based on the 18-FDG-PET/CT images. Five patients were excluded due to excess blood glucose levels (1), false-negative positron emission tomography (1) and distant metastases revealed by 18-FDG-PET/CT (3). The analysis involved measurement of metabolic tumor volumes (MTVs) performed on PET/CT workstations. Different threshold levels of the standardized uptake value (SUV) and liver uptake were set to obtain MTVs. Secondly, GTVPET values were derived manually using the positron emission tomography (PET) dataset blinded to the computed tomography (CT) data. Subsequently, GTVCT values were delineated using a radiotherapy planning system based on the CT scans blinded to the PET data. The referenced GTVCT values were correlated with the GTVPET and were compared with a conformality index (CI). Results: The mean CI was 0.52 (range, 0.12-0.85). In 13/24 patients (54%), the GTVPET was larger than GTVCT, and in the remainder, GTVPET was smaller. Moreover, the cranio-caudal diameter of GTVPET in 16 cases (64%) was larger than that of GTVCT, smaller in 7 cases (29%), and unchanged in one case. Manual PET delineation (GTVPET) achieved the best correlation with GTVCT (Pearson correlation = 0.76, p <0.0001). Among the analyzed MTVs, a statistically significant correlation with GTVCT was revealed for MTV10%SUVmax (r = 0.63; p = 0.0014), MTVliv (r = 0.60; p = 0.0021), MTVSUV2.5 (r = 0.54; p = 0.0063); MTV20%SUVmax (r = 0.44; p = 0.0344); MTV30%SUVmax (r = 0.44; p = 0.0373). Conclusion: 18-FDG-PET/CT in gastric cancer radiotherapy

  16. NOTE Thyroid volume measurement in external beam radiotherapy patients using CT imaging: correlation with clinical and anthropometric characteristics

    NASA Astrophysics Data System (ADS)

    Veres, C.; Garsi, J. P.; Rubino, C.; Pouzoulet, F.; Bidault, F.; Chavaudra, J.; Bridier, A.; Ricard, M.; Ferreira, I.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2010-11-01

    The aim of this study is to define criteria for accurate representation of the thyroid in human models used to represent external beam radiotherapy (EBRT) patients and evaluate the relationship between the volume of this organ and clinical and anthropometric characteristics. From CT images, we segmented the thyroid gland and calculated its volume for a population of 188 EBRT patients of both sexes, with ages ranging from 1 to 89 years. To evaluate uncertainties linked to measured volumes, experimental studies on the Livermore anthropomorphic phantom were performed. For our population of EBRT patients, we observed that in children, thyroid volume increased rapidly with age, from about 3 cm3 at 2 years to about 16 cm3 at 20. In adults, the mean thyroid gland volume was 23.5 ± 9 cm3 for males and 17.5 ± 8 cm3 for females. According to anthropometric parameters, the best fit for children was obtained by modeling the log of thyroid volume as a linear function of body surface area (BSA) (p < 0.0001) and age (p = 0.04) and for adults, as a linear function of BSA (p < 0.0001) and gender (p = 0.01). This work enabled us to demonstrate that BSA was the best indicator of thyroid volume for both males and females. These results should be taken into account when modeling the volume of the thyroid in human models used to represent EBRT patients for dosimetry in retrospective studies of the relationship between the estimated dose to the thyroid and long-term follow-up data on EBRT patients.

  17. Predicting Rectal and Bladder Overdose During the Course of Prostate Radiotherapy Using Dose-Volume Data From Initial Treatment Fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, Vedang, E-mail: vmurthy@actrec.gov.in; Shukla, Pragya; Adurkar, Pranjal

    2012-09-01

    Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose-volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving {>=}100% and {>=}70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction formore » which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (D{sub max}) was {>=}1% for the rectum and bladder, the fraction was considered a dose failure. Each patient's first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., {>=}20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received {>=}100% and {>=}70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV{sub 100}, RV{sub 70}, BV{sub 100}, BV{sub 70}, RD{sub max}, and BD{sub max}, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV{sub 70}, BV{sub 100}, and RV{sub 100}), 90% (BV{sub 70}), and 100% (RD{sub max} and BD{sub max}) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of

  18. Quality assurance of the SCOPE 1 trial in oesophageal radiotherapy.

    PubMed

    Wills, Lucy; Maggs, Rhydian; Lewis, Geraint; Jones, Gareth; Nixon, Lisette; Staffurth, John; Crosby, Tom

    2017-11-15

    SCOPE 1 was the first UK based multi-centre trial involving radiotherapy of the oesophagus. A comprehensive radiotherapy trials quality assurance programme was launched with two main aims: 1. To assist centres, where needed, to adapt their radiotherapy techniques in order to achieve protocol compliance and thereby enable their participation in the trial. 2. To support the trial's clinical outcomes by ensuring the consistent planning and delivery of radiotherapy across all participating centres. A detailed information package was provided and centres were required to complete a benchmark case in which the delineated target volumes and organs at risk, dose distribution and completion of a plan assessment form were assessed prior to recruiting patients into the trial. Upon recruiting, the quality assurance (QA) programme continued to monitor the outlining and planning of radiotherapy treatments. Completion of a questionnaire was requested in order to gather information about each centre's equipment and techniques relating to their trial participation and to assess the impact of the trial nationally on standard practice for radiotherapy of the oesophagus. During the trial, advice was available for individual planning issues, and was circulated amongst the SCOPE 1 community in response to common areas of concern using bulletins. 36 centres were supported through QA processes to enable their participation in SCOPE1. We discuss the issues which have arisen throughout this process and present details of the benchmark case solutions, centre questionnaires and on-trial protocol compliance. The range of submitted benchmark case GTV volumes was 29.8-67.8cm 3 ; and PTV volumes 221.9-513.3 cm 3 . For the dose distributions associated with these volumes, the percentage volume of the lungs receiving 20Gy (V20Gy) ranged from 20.4 to 33.5%. Similarly, heart V40Gy ranged from 16.1 to 33.0%. Incidence of incorrect outlining of OAR volumes increased from 50% of centres at benchmark

  19. Tumor-volume simulation during radiotherapy for head-and-neck cancer using a four-level cell population model.

    PubMed

    Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J

    2009-10-01

    To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  20. Projected Improvements in Accelerated Partial Breast Irradiation Using a Novel Breast Stereotactic Radiotherapy Device: A Dosimetric Analysis.

    PubMed

    Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J

    2017-01-01

    Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.

  1. Target volume definition for post prostatectomy radiotherapy: Do the consensus guidelines correctly define the inferior border of the CTV?

    PubMed

    Manji, Mo; Crook, Juanita; Schmid, Matt; Rajapakshe, Rasika

    2016-01-01

    We compare urethrogram delineation of the caudal aspect of the anastomosis to the recommended guidelines of post prostatectomy radiotherapy. Level one evidence has established the indications for, and importance of, adjuvant radiotherapy following radical prostatectomy. Several guidelines have recently addressed delineation of the prostate bed target volume including identification of the vesico-urethral anastomosis, taken as the first CT slice caudal to visible urine in the bladder neck. The inferior border of clinical target volume is then variably defined 5-12 mm below this anastomosis or 15 mm cranial to the penile bulb. Thirty-three patients who received adjuvant radiotherapy following radical prostatectomy were reviewed. All underwent planning CT with urethrogram. The authors (MM, JC) independently identified the CT slice caudal to the last slice showing urine in the bladder neck (called the CT Reference Slice), and measured the distance between this and the tip of the urethrogram cone. Five patients also had a diagnostic MRI at the time of CT planning to better visualize the anatomy. Sixty-six readings were obtained. The mean distance between the Bladder CT Reference Slice and the most cranial urethrogram contrast slice was 16.1 mm (MM 16.4 mm, JC 15.8 mm), range: 6.8-34.2 mm. The mean distance between the urethrogram tip and the ischial tuberosities was 19.9 mm (range 12.5-29.8 mm). The mean distance between the CT Reference Slice and the ischial tuberosities was 36.9 mm (range 28.3-52.4 mm). Guidelines for prostate bed radiation post prostatectomy have been developed after publication of the trials proving benefit of such treatment, and are thus untested. The anastomosis is a frequent site of local relapse but is variably defined by the existing guidelines, none of which take into account anatomic patient variation and all of which are at variance with urethrogram data. We recommend the use of planning urethrogram to better delineate the vesico

  2. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer.

    PubMed

    Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A

    2012-08-01

    To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this

  3. Explaining opinion polarisation with opinion copulas.

    PubMed

    Askitas, Nikolaos

    2017-01-01

    An empirically founded and widely established driving force in opinion dynamics is homophily i.e. the tendency of "birds of a feather" to "flock together". The closer our opinions are the more likely it is that we will interact and converge. Models using these assumptions are called bounded confidence models (BCM) as they assume a tolerance threshold after which interaction is unlikely. They are known to produce one or more clusters, depending on the size of the bound, with more than one cluster being possible only in the deterministic case. Introducing noise, as is likely to happen in a stochastic world, causes BCM to produce consensus which leaves us with the open problem of explaining the emergence and sustainance of opinion clusters and polarisation. We investigate the role of heterogeneous priors in opinion formation, introduce the concept of opinion copulas, argue that it is well supported by findings in Social Psychology and use it to show that the stochastic BCM does indeed produce opinion clustering without the need for extra assumptions.

  4. Explaining opinion polarisation with opinion copulas

    PubMed Central

    2017-01-01

    An empirically founded and widely established driving force in opinion dynamics is homophily i.e. the tendency of “birds of a feather” to “flock together”. The closer our opinions are the more likely it is that we will interact and converge. Models using these assumptions are called bounded confidence models (BCM) as they assume a tolerance threshold after which interaction is unlikely. They are known to produce one or more clusters, depending on the size of the bound, with more than one cluster being possible only in the deterministic case. Introducing noise, as is likely to happen in a stochastic world, causes BCM to produce consensus which leaves us with the open problem of explaining the emergence and sustainance of opinion clusters and polarisation. We investigate the role of heterogeneous priors in opinion formation, introduce the concept of opinion copulas, argue that it is well supported by findings in Social Psychology and use it to show that the stochastic BCM does indeed produce opinion clustering without the need for extra assumptions. PMID:28829802

  5. Intensity-Modulated Radiotherapy Might Increase Pneumonitis Risk Relative to Three-Dimensional Conformal Radiotherapy in Patients Receiving Combined Chemotherapy and Radiotherapy: A Modeling Study of Dose Dumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet

    2011-07-01

    Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less

  6. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor

  7. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    PubMed

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  8. Percentage of Cancer Volume in Biopsy Cores Is Prognostic for Prostate Cancer Death and Overall Survival in Patients Treated With Dose-Escalated External Beam Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vance, Sean M.; Stenmark, Matthew H.; Blas, Kevin

    2012-07-01

    Purpose: To investigate the prognostic utility of the percentage of cancer volume (PCV) in needle biopsy specimens for prostate cancer patients treated with dose-escalated external beam radiotherapy. Methods and Materials: The outcomes were analyzed for 599 men treated for localized prostate cancer with external beam radiotherapy to a minimal planning target volume dose of 75 Gy (range, 75-79.2). We assessed the effect of PCV and the pretreatment and treatment-related factors on the freedom from biochemical failure, freedom from metastasis, cause-specific survival, and overall survival. Results: The median number of biopsy cores was 7 (interquartile range, 6-12), median PCV was 10%more » (interquartile range, 2.5-25%), and median follow-up was 62 months. The PCV correlated with the National Comprehensive Cancer Network risk group and individual risk features, including T stage, prostate-specific antigen level, Gleason score, and percentage of positive biopsy cores. On log-rank analysis, the PCV stratified by quartile was prognostic for all endpoints, including overall survival. In addition, the PCV was a stronger prognostic factor than the percentage of positive biopsy cores when the two metrics were analyzed together. On multivariate analysis, the PCV predicted a worse outcome for all endpoints, including freedom from biochemical failure, (hazard ratio, 1.9; p = .0035), freedom from metastasis (hazard ratio, 1.7, p = .09), cause-specific survival (hazard ratio, 3.9, p = .014), and overall survival (hazard ratio, 1.8, p = .02). Conclusions: For patients treated with dose-escalated external beam radiotherapy, the volume of cancer in the biopsy specimen adds prognostic value for clinically relevant endpoints, particularly in intermediate- and high-risk patients. Although the PCV determination is more arduous than the percentage of positive biopsy cores, it provides superior risk stratification.« less

  9. Postoperative Intensity-Modulated Radiotherapy in Low-Risk Endometrial Cancers: Final Results of a Phase I Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.i; Cilla, Savino M.P.; Ferrandina, Gabriella

    2010-04-15

    Purpose: To determine the maximum tolerated dose of short-course radiotherapy (intensity-modulated radiotherapy technique) to the upper two thirds of the vagina in endometrial cancers with low risk of local recurrence. Patients and Methods: A Phase I clinical trial was performed. Eligible patients had low-risk resected primary endometrial adenocarcinomas. Radiotherapy was delivered in 5 fractions over 1 week. The planning target volume was the clinical target volume plus 5 mm. The clinical target volume was defined as the upper two thirds of the vagina as evidenced at CT simulation by a vaginal radio-opaque device. The planning target volume was irradiated bymore » a seven-field intensity-modulated radiotherapy technique, planned by the Plato Sunrise inverse planning system. A first cohort of 6 patients received 25 Gy (5-Gy fractions), and a subsequent cohort received 30 Gy (6-Gy fractions). The Common Toxicity Criteria scale, version 3.0, was used to score toxicity. Results: Twelve patients with endometrial cancer were enrolled. Median age was 58 years (range, 49-74 years). Pathologic stage was IB (83.3%) and IC (16.7%). Median tumor size was 30 mm (range, 15-50 mm). All patients completed the prescribed radiotherapy. No patient experienced a dose-limiting toxicity at the first level, and the radiotherapy dose was escalated from 25 to 30 Gy. No patients at the second dose level experienced dose-limiting toxicity. The most common Grade 2 toxicity was gastrointestinal, which was tolerable and manageable. Conclusions: The maximum tolerated dose of short-course radiotherapy was 30 Gy at 6 Gy per fraction. On the basis of this result, we are conducting a Phase II study with radiotherapy delivered at 30 Gy.« less

  10. Adaptive Radiotherapy Planning on Decreasing Gross Tumor Volumes as Seen on Megavoltage Computed Tomography Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodford, Curtis; Yartsev, Slav; Dar, A. Rashid

    2007-11-15

    Purpose: To evaluate gross tumor volume (GTV) changes for patients with non-small-cell lung cancer by using daily megavoltage (MV) computed tomography (CT) studies acquired before each treatment fraction on helical tomotherapy and to relate the potential benefit of adaptive image-guided radiotherapy to changes in GTV. Methods and Materials: Seventeen patients were prescribed 30 fractions of radiotherapy on helical tomotherapy for non-small-cell lung cancer at London Regional Cancer Program from Dec 2005 to March 2007. The GTV was contoured on the daily MVCT studies of each patient. Adapted plans were created using merged MVCT-kilovoltage CT image sets to investigate the advantagesmore » of replanning for patients with differing GTV regression characteristics. Results: Average GTV change observed over 30 fractions was -38%, ranging from -12 to -87%. No significant correlation was observed between GTV change and patient's physical or tumor features. Patterns of GTV changes in the 17 patients could be divided broadly into three groups with distinctive potential for benefit from adaptive planning. Conclusions: Changes in GTV are difficult to predict quantitatively based on patient or tumor characteristics. If changes occur, there are points in time during the treatment course when it may be appropriate to adapt the plan to improve sparing of normal tissues. If GTV decreases by greater than 30% at any point in the first 20 fractions of treatment, adaptive planning is appropriate to further improve the therapeutic ratio.« less

  11. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  12. Metabolic Tumor Volume and Total Lesion Glycolysis in Oropharyngeal Cancer Treated With Definitive Radiotherapy: Which Threshold Is the Best Predictor of Local Control?

    PubMed

    Castelli, Joël; Depeursinge, Adrien; de Bari, Berardino; Devillers, Anne; de Crevoisier, Renaud; Bourhis, Jean; Prior, John O

    2017-06-01

    In the context of oropharyngeal cancer treated with definitive radiotherapy, the aim of this retrospective study was to identify the best threshold value to compute metabolic tumor volume (MTV) and/or total lesion glycolysis to predict local-regional control (LRC) and disease-free survival. One hundred twenty patients with a locally advanced oropharyngeal cancer from 2 different institutions treated with definitive radiotherapy underwent FDG PET/CT before treatment. Various MTVs and total lesion glycolysis were defined based on 2 segmentation methods: (i) an absolute threshold of SUV (0-20 g/mL) or (ii) a relative threshold for SUVmax (0%-100%). The parameters' predictive capabilities for disease-free survival and LRC were assessed using the Harrell C-index and Cox regression model. Relative thresholds between 40% and 68% and absolute threshold between 5.5 and 7 had a similar predictive value for LRC (C-index = 0.65 and 0.64, respectively). Metabolic tumor volume had a higher predictive value than gross tumor volume (C-index = 0.61) and SUVmax (C-index = 0.54). Metabolic tumor volume computed with a relative threshold of 51% of SUVmax was the best predictor of disease-free survival (hazard ratio, 1.23 [per 10 mL], P = 0.009) and LRC (hazard ratio: 1.22 [per 10 mL], P = 0.02). The use of different thresholds within a reasonable range (between 5.5 and 7 for an absolute threshold and between 40% and 68% for a relative threshold) seems to have no major impact on the predictive value of MTV. This parameter may be used to identify patient with a high risk of recurrence and who may benefit from treatment intensification.

  13. Applying the technique of volume-modulated arc radiotherapy to upper esophageal carcinoma.

    PubMed

    Ma, Pan; Wang, Xiaozhen; Xu, Yingjie; Dai, Jianrong; Wang, Luhua

    2014-05-08

    This study aims to evaluate the possibility of using the technique of volume-modulated arc therapy (VMAT) to combine the advantages of simplified intensity-modulated radiation therapy (sIMRT) with that of regular intensity-modulated radiation therapy (IMRT) in upper esophageal cancer. Ten patients with upper esophageal carcinoma were randomly chosen in this retrospective study. sIMRT, IMRT, and VMAT plans were generated to deliver 60 Gy in 30 fractions to the planning target volume (PTV). For each patient, with the same clinical requirements (target dose prescription, and dose/dose-volume constraints to organs at risk (OARs)), three plans were designed for sIMRT (five equispaced coplanar beams), IMRT (seven equispaced coplanar beams), and VMAT (two complete arcs). Comparisons were performed for dosimetric parameters of PTV and of OARs (lungs, spinal cord PRV, heart and normal tissue (NT)). All the plans were delivered to a phantom to evaluate the treatment time. The Wilcoxon matched-pairs, signed-rank test was used for intragroup comparison. For all patients, compared to sIMRT plans, VMAT plans statistically provide: a) significant improvement in HI and CI for PTV; b) significant decrease in delivery time, lung V20, MLD, heart V30 and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in lung V5, V10, and heart MD. For all patients, compared to IMRT plans, VMAT plans statistically provide: a) significant improvement in CI for PTV; b) significant decrease in delivery time, lung V20, MLD, NT and spinal cord PRV D1cc; c) significant increase in NT V5; and d) no significant reduction in HI for PTV, lung V5, V10, heart V30 and heart MD. For patients with upper esophageal carcinoma, using VMAT significantly reduces the delivery time and the dose to the lungs compared with IMRT, and consequently saves as much treatment time as sIMRT. Considering those significant advantages, compared to sIMRT and IMRT, VMAT is the first choice of

  14. Opinion strength influences the spatial dynamics of opinion formation

    PubMed Central

    Baumgaertner, Bert O.; Tyson, Rebecca T.; Krone, Stephen M.

    2016-01-01

    Opinions are rarely binary; they can be held with different degrees of conviction, and this expanded attitude spectrum can affect the influence one opinion has on others. Our goal is to understand how different aspects of influence lead to recognizable spatio-temporal patterns of opinions and their strengths. To do this, we introduce a stochastic spatial agent-based model of opinion dynamics that includes a spectrum of opinion strengths and various possible rules for how the opinion strength of one individual affects the influence that this individual has on others. Through simulations, we find that even a small amount of amplification of opinion strength through interaction with like-minded neighbors can tip the scales in favor of polarization and deadlock. PMID:28529381

  15. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    PubMed

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  16. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    PubMed Central

    Uysal, Bora; Beyzadeoğlu, Murat; Sager, Ömer; Dinçoğlan, Ferrat; Demiral, Selçuk; Gamsız, Hakan; Sürenkök, Serdar; Oysul, Kaan

    2013-01-01

    Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT) and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy) and rectal V40 (the volume receiving 40 Gy) and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles. PMID:25207069

  17. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All

  18. Modelling the public opinion transmission on social networks under opinion leaders

    NASA Astrophysics Data System (ADS)

    Li, Zuozhi; Li, Meng; Ji, Wanwan

    2017-06-01

    In this paper, based on Social Network Analysis (SNA), the social network model of opinion leaders influencing the public opinion transmission is explored. The hot event, A Female Driver Was Beaten Due To Lane Change, has characteristics of individual short-term and non-government intervention, which is used to data extraction, and formed of the network structure on opinion leaders influencing the public opinion transmission. And the evolution mechanism are analyzed in the three evolutionary situations. Opinion leaders influence micro-blogging public opinion on social network evolution model shows that this type of network public opinion transmission is largely constrained by opinion leaders, so the opinion leaders behavior supervising on the spread of this public opinion is pivotal, and which has a guiding significance.

  19. Palliative Radiotherapy for Bone Metastases: An ASTRO Evidence-Based Guideline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, Stephen, E-mail: slutz@bvha.or; Berk, Lawrence; Chang, Eric

    2011-03-15

    Purpose: To present guidance for patients and physicians regarding the use of radiotherapy in the treatment of bone metastases according to current published evidence and complemented by expert opinion. Methods and Materials: A systematic search of the National Library of Medicine's PubMed database between 1998 and 2009 yielded 4,287 candidate original research articles potentially applicable to radiotherapy for bone metastases. A Task Force composed of all authors synthesized the published evidence and reached a consensus regarding the recommendations contained herein. Results: The Task Force concluded that external beam radiotherapy continues to be the mainstay for the treatment of pain and/ormore » prevention of the morbidity caused by bone metastases. Various fractionation schedules can provide significant palliation of symptoms and/or prevent the morbidity of bone metastases. The evidence for the safety and efficacy of repeat treatment to previously irradiated areas of peripheral bone metastases for pain was derived from both prospective studies and retrospective data, and it can be safe and effective. The use of stereotactic body radiotherapy holds theoretical promise in the treatment of new or recurrent spine lesions, although the Task Force recommended that its use be limited to highly selected patients and preferably within a prospective trial. Surgical decompression and postoperative radiotherapy is recommended for spinal cord compression or spinal instability in highly selected patients with sufficient performance status and life expectancy. The use of bisphosphonates, radionuclides, vertebroplasty, and kyphoplasty for the treatment or prevention of cancer-related symptoms does not obviate the need for external beam radiotherapy in appropriate patients. Conclusions: Radiotherapy is a successful and time efficient method by which to palliate pain and/or prevent the morbidity of bone metastases. This Guideline reviews the available data to define its

  20. [Description of latest generation equipment in external radiotherapy].

    PubMed

    Pellejero, S; Lozares, S; Mañeru, F

    2009-01-01

    Both the planning systems and the form of administering radiotherapy have changed radically since the introduction of 3D planning. At present treatment planning based on computerised axial tomography (CAT) images is standard practice in radiotherapy services. In recent years lineal accelerators for medical use have incorporated technology capable of administering intensity modulated radiation beams (IMRT). With this mode distributions of conformed doses are generated that adjust to the three dimensional form of the white volume, providing appropriate coverage and a lower dose to nearby risk organs. The use of IMRT is rapidly spreading amongst radiotherapy centres throughout the world. This growing use of IMRT has focused attention on the need for greater control of the geometric uncertainties in positioning the patient and control of internal movements. To this end, both flat and volumetric image systems have been incorporated into the treatment equipment, making image-guided radiotherapy (IGRT) possible. This article offers a brief description of the latest advances included in the planning and administration of radiotherapy treatment.

  1. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. A low-field MRI study.

    PubMed

    Schmid, M P; Mansmann, B; Federico, M; Dimopoulous, J C A; Georg, P; Fidarova, E; Dörr, W; Pötter, R

    2013-03-01

    Grey zones, which are defined as tissue with intermediate signal intensity in the area of primary hyperintense tumour extension, can be seen during radiation with or without chemotherapy on the T2-weighted MRI in patients with cervical cancer. The purpose of this study was to systematically measure the tumour volume at the time of diagnosis and the residual tumour volume at the time of brachytherapy without and with consideration of the grey zones and to estimate tumour regression during external beam radiotherapy (EBRT). T2-weighted MRI datasets of 175 patients with locally advanced cervical cancer (FIGO stage IB-IVA), who underwent combined external beam radiotherapy and brachytherapy with or without concomitant chemotherapy were available for this study. The gross tumour volume at the time of diagnosis (GTV(init)) and at the time of first brachytherapy without (GTV(res)) and with (GTV(res)+ GZ) consideration of grey zones were measured for each patient. A descriptive statistical analysis was performed and tumour regression rates without (R) and with consideration of grey zones (R(GZ)) were calculated. Further, the role of prognostic factors on GTV(init), GTV(res), GTV(res)+ GZ and tumour regression rates was investigated. The median GTV(init), GTV(res), GTV(res)+ GZ in all patients were 44.4 cm(3), 8.2 cm(3), 20.3 cm(3), respectively. The median R was 78.5% and the median R(GZ) was 50.1%. The histology and FIGO staging showed a significant impact on GTV(init), GTV(res) and GTV(res)+ GZ. Grey zones represent a substantial proportion of the residual tumour volume at the time of brachytherapy. Differentiation of high signal intensity mass and surrounding intermediate signal intensity grey zones may be reasonable.

  2. Radiotherapy Improvements by Using Au Nanoparticles.

    PubMed

    Torrisi, Lorenzo

    2015-01-01

    Au nanoparticles can be prepared inside biological solutions and incorporated in special molecules for their transport through blood, drugs and proteins up to the tumour sites or directly injected in their volume when it is possible. The Au nanoparticles are biocompatible and can be accepted locally in the organism also at relatively high concentrations. The use of Au nanoparticles injected in the tumour site enhances significantly the effective atomic number of the medium, depending on the used concentration, and consequently the proton and electron energy loss and the X-ray absorption coefficient determining an increment of the local absorbed dose during radiotherapy. Traditional radiotherapy using electrons, X-rays and gamma rays, and innovative protontherapy can benefit the increment of the effective atomic number of the tissue in the presence of Au-nanoparticles embedded in the tumour volume with an adaptive up-take procedure. This method decreases the dose released to the healthy tissues permitting a better cantering of the irradiated targets and shielding the healthy tissue placed behind the tumour. The presented theoretical study approach permits to evaluate an enhancement of the radiotherapy dose of the order of 1 % using 60 MeV protons, of the order of 10% using 6 MeV electrons and of the order of 100 % using 100 keV X-ray photons. Here, we also disccused for patents relaed to the topic.

  3. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition.

    PubMed

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru; Ueda, Takashi; Kohno, Ryosuke; Nishio, Teiji; Arahira, Satoko; Motegi, Atsushi; Zenda, Sadamoto; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2013-12-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n = 21) and/or N2/3 (n = 24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer.

  4. A mathematical approach towards simulating a realistic tissue activity curve of 64Cu-ATSM for the purpose of sub-target volume delineation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dalah, E.; Bradley, D.; Nisbet, A.

    2010-07-01

    One unique feature of positron emission tomography (PET) is that it allows measurements of regional tracer concentration in hypoxic tumour-bearing tissue, supporting the need for accurate radiotherapy treatment planning. Generally the data are taken over multiple time frames, in the form of tissue activity curves (TACs), providing an indication of the presence of hypoxia, the degree of oxygen perfusion, vascular geometry and hypoxia fraction. In order to understand such a complicated phenomenon a number of theoretical studies have attempted to describe tracer uptake in tissue cells. More recently, a novel computerized reaction diffusion equation method developed by Kelly and Brady has allowed simulation of the realistic TACs of 18F-FMISO, with representation of physiological oxygen heterogeneity and tracer kinetics. We present a refinement to the work of Kelly and Brady, with a particular interest in simulating TACs of the most promising hypoxia selective tracer, 64Cu-ATSM, demonstrating its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the high contrast of imaging using ATSM, with a tumour to blood ratio ranging 2.24-4.1. Similarly, results of tumour sub-volumes generated using three different thresholding methods were all well correlated.

  5. A Kindler syndrome-associated squamous cell carcinoma treated with radiotherapy.

    PubMed

    Caldeira, Ademar; Trinca, William Correia; Flores, Thais Pires; Costa, Andrea Barleze; Brito, Claudio de Sá; Weigert, Karen Loureiro; Matos, Maryana Schwartzhaupt; Nicolini, Carmela; Obst, Fernando Mariano

    2016-01-01

    Kindler syndrome1, 2 is a genetic disorder mainly characterized by increased skin fragility and photosensitivity,3, 4 making the use of treatments based on radiation difficult or even prohibited. Thus, cases reporting Kindler syndrome patients treated with radiotherapy are rare. In this study, we report clinical outcomes and care provided for a rare case of a Kindler syndrome patient submitted to radiotherapy. Diagnosed with squamous cell carcinoma involving the buccal mucosa, the patient was exclusively treated with radiotherapy, with 70 Gy delivered on the PTV with the Volumetric Modulated Arc technique. The patient's reaction regarding control of the lesion is relevant compared to patients not affected by the syndrome. We noticed acute reactions of the skin and buccal mucosa after few radiotherapy sessions, followed by a fast reduction in the tumor volume. The efficacy of radiotherapy along with multidisciplinary actions allowed treatment continuity, leading to a complete control of the lesion and life quality improvement and showed that the use of radiotherapy on Kindler syndrome patients is possible.

  6. A comparative study of the target volume definition in radiotherapy with «Slow CT Scan» vs. 4D PET/CT Scan in early stages non-small cell lung cancer.

    PubMed

    Molla, M; Anducas, N; Simó, M; Seoane, A; Ramos, M; Cuberas-Borros, G; Beltran, M; Castell, J; Giralt, J

    To evaluate the use of 4D PET/CT to quantify tumor respiratory motion compared to the «Slow»-CT (CTs) in the radiotherapy planning process. A total of 25 patients with inoperable early stage non small cell lung cancer (NSCLC) were included in the study. Each patient was imaged with a CTs (4s/slice) and 4D PET/CT. The adequacy of each technique for respiratory motion capture was evaluated using the volume definition for each of the following: Internal target volume (ITV) 4D and ITVslow in relation with the volume defined by the encompassing volume of 4D PET/CT and CTs (ITVtotal). The maximum distance between the edges of the volume defined by each technique to that of the total volume was measured in orthogonal beam's eye view. The ITV4D showed less differences in relation with the ITVtotal in both the cranio-caudal and the antero-posterior axis compared to the ITVslow. The maximum differences were 0.36mm in 4D PET/CTand 0.57mm in CTs in the antero-posterior axis. 4D PET/CT resulted in the definition of more accurate (ITV4D/ITVtotal 0.78 vs. ITVs/ITVtotal 0.63), and larger ITVs (19.9 cc vs. 16.3 cc) than those obtained with CTs. Planning with 4D PET/CT in comparison with CTs, allows incorporating tumor respiratory motion and improving planning radiotherapy of patients in early stages of lung cancer. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  7. Late temporal lobe necrosis after conventional radiotherapy for carcinoma of maxillary sinus.

    PubMed

    Kanakamedala, Madhava R; Mahta, Ali; Liu, Jianlin; Kesari, Santosh

    2012-12-01

    Cerebral radiation necrosis is a serious late complication after conventional radiotherapy that can present with focal neurologic deficits or with more generalized signs and symptoms of increased intracranial pressure, depending on the location. The incidence and severity of radionecrosis are dose-volume dependent. We report a case of cerebral radiation necrosis 5 years after radiotherapy for a maxillary sinus carcinoma.

  8. How to use PET/CT in the evaluation of response to radiotherapy.

    PubMed

    Decazes, Pierre; Thureau, Sébastien; Dubray, Bernard; Vera, Pierre

    2018-06-01

    Radiotherapy is a major treatment modality for many cancers. Tumor response after radiotherapy determines the subsequent steps of the patient's management (surveillance, adjuvant or salvage treatment and palliative care). Tumor response assessed during radiotherapy offers a promising opportunity to adapt the treatment plan to reduced or increased target volume, to specifically target sub-volumes with relevant biological characteristics (metabolism, hypoxia, proliferation, etc.) and to further spare the organs at risk. In addition to its role in the diagnosis and the initial staging, Positron Emission Tomography combined with a Computed Tomography (PET/CT) provides functional information and is therefore attractive to evaluate tumor response. The aim of this paper is to review the published data addressing PET/CT as an evaluation tool in irradiated tumors. Reports on PET/CT acquired at various times (during radiotherapy, after initial (chemo-) radiotherapy, after definitive radiotherapy and during posttreatment follow-up) in solid tumors (lung, head-and-neck, cervix, esophagus, prostate and rectum) were collected and reviewed. Various tracers and technical aspects are also discussed. 18F-FDG PET/CT has a well-established role in clinical routine after definitive chemo-radiotherapy for locally advanced head-and-neck cancers. 18F-choline PET/CT is indicated in prostate cancer patients with biochemical failure. 18F-FDG PET/CT is optional in many other circumstances and the clinical benefits of assessing tumor response with PET/CT remain a field of very active research. The combination of PET with Magnetic Resonance Imaging (PET/MRI) may prove to be valuable in irradiated rectal and cervix cancers. Tumor response can be evaluated by PET/CT with clinical consequences in multiple situations, notably in head and neck and prostate cancers, after radiotherapy. Further clinical evaluation for most cancers is still needed, possibly in association to MRI.

  9. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy in Postoperative Treatment of Endometrial and Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, William; Mell, Loren K.; Anderson, Penny

    2008-06-01

    Purpose: To develop an atlas of the clinical target volume (CTV) definitions for postoperative radiotherapy of endometrial and cervical cancer to be used for planning pelvic intensity-modulated radiotherapy. Methods and Materials: The Radiation Therapy Oncology Group led an international collaberation of cooperative groups in the development of the atlas. The groups included the Radiation Therapy Oncology Group, Gynecologic Oncology Group, National Cancer Institute of Canada, European Society of Therapeutic Radiology and Oncology, and American College of Radiology Imaging Network. The members of the group were asked by questionnaire to define the areas that were to be included in the CTVmore » and to outline theses areas on individual computed tomography images. The initial formulation of the group began in late 2004 and culminated with a formal consensus conference in June 2005. Results: The committee achieved a consensus CTV definition for postoperative therapy for endometrial and cervical cancer. The CTV should include the common, external, and internal iliac lymph node regions. The upper 3.0 cm of the vagina and paravaginal soft tissue lateral to the vagina should also be included. For patients with cervical cancer, or endometrial cancer with cervical stromal invasion, it is also recommended that the CTV include the presacral lymph node region. Conclusion: This report serves as an international template for the definition of the CTV for postoperative intensity-modulated radiotherapy for endometrial and cervical cancer.« less

  10. Big Data Analytics for Prostate Radiotherapy.

    PubMed

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.

  11. Big Data Analytics for Prostate Radiotherapy

    PubMed Central

    Coates, James; Souhami, Luis; El Naqa, Issam

    2016-01-01

    Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211

  12. Simulation of tissue activity curves of 64Cu-ATSM for sub-target volume delineation in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dalah, E.; Bradley, D.; Nisbet, A.

    2010-02-01

    There is much interest in positron emission tomography (PET) for measurements of regional tracer concentration in hypoxic tumour-bearing tissue, focusing on the need for accurate radiotherapy treatment planning. Generally, relevant data are taken over multiple time frames in the form of tissue activity curves (TACs), thus providing an indication of vasculature structure and geometry. This is a potential key in providing information on cellular perfusion and limited diffusion. A number of theoretical studies have attempted to describe tracer uptake in tissue cells in an effort to understand such complicated behaviour of cellular uptake and the mechanism of washout. More recently, a novel computerized reaction diffusion equation method was developed by Kelly and Brady (2006 A model to simulate tumour oxygenation and dynamic [18F]-FMISO PET data Phys. Med. Biol. 51 5859-73), where they managed to simulate the realistic dynamic TACs of 18F-FMISO. The model was developed over a multi-step process. Here we present a refinement to the work of Kelly and Brady, such that the model allows simulation of a realistic tissue activity curve (TAC) of any hypoxia selective PET tracer, in a single step process. In this work we show particular interest in simulating the TAC of perhaps the most promising hypoxia selective tracer, 64Cu-ATSM. In addition, we demonstrate its potential role in tumour sub-volume delineation for radiotherapy treatment planning. Simulation results have demonstrated the significant high contrast of imaging using ATSM, with a tumour to blood ratio ranging from 2.24 to 4.1.

  13. SU-E-J-238: Monitoring Lymph Node Volumes During Radiotherapy Using Semi-Automatic Segmentation of MRI Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeraraghavan, H; Tyagi, N; Riaz, N

    2014-06-01

    Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less

  14. Evaluation of radiotherapy techniques for radical treatment of lateralised oropharyngeal cancers : Dosimetry and NTCP.

    PubMed

    McQuaid, D; Dunlop, A; Nill, S; Franzese, C; Nutting, C M; Harrington, K J; Newbold, K L; Bhide, S A

    2016-08-01

    The aim of this study was to investigate potential advantages and disadvantages of three-dimensional conformal radiotherapy (3DCRT), multiple fixed-field intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) in terms of dose to the planning target volume (PTV), organs at risk (OARs) and normal tissue complication probability (NTCP) for delivering ipsilateral radiotherapy. 3DCRT, IMRT and VMAT were compared in patients with well-lateralised primary tonsillar cancers who underwent primary radical ipsilateral radiotherapy. The following parameters were compared: conformity index (CI); homogeneity index (HI); dose-volume histograms (DVHs) of PTVs and OARs; NTCP, risk of radiation-induced cancer and dose accumulation during treatment. IMRT and VMAT were superior to 3DCRT in terms of CI, HI and dose to the target volumes, as well as mandible and dose accumulation robustness. The techniques were equivalent in terms of dose and NTCP for the contralateral oral cavity, contralateral submandibular gland and mandible, when specific dose constraint objectives were used on the oral cavity volume. Although the volume of normal tissue exposed to low-dose radiation was significantly higher with IMRT and VMAT, the risk of radiation-induced secondary malignancy was dependant on the mathematical model used. This study demonstrates the superiority of IMRT/VMAT techniques over 3DCRT in terms of dose homogeneity, conformity and consistent dose delivery to the PTV throughout the course of treatment in patients with lateralised oropharyngeal cancers. Dosimetry and NTCP calculations show that these techniques are equivalent to 3DCRT with regard to the risk of acute mucositis when specific dose constraint objectives were used on the contralateral oral cavity OAR.

  15. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I., E-mail: dirosenthal@mdanderson.or; Fuller, Clifton D.; Barker, Jerry L.

    2010-06-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapymore » consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.« less

  16. Involved-node radiotherapy in early-stage Hodgkin's lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG).

    PubMed

    Eich, Hans Theodor; Müller, Rolf-Peter; Engenhart-Cabillic, Rita; Lukas, Peter; Schmidberger, Heinz; Staar, Susanne; Willich, Normann

    2008-08-01

    Radiotherapy of Hodgkin's Lymphoma has evolved from extended-field to involved-field (IF) radiotherapy reducing toxicity whilst maintaining high cure rates. Recent publications recommend further reduction in the radiation field to involved-node (IN) radiotherapy; however, this concept has never been tested in a randomized trial. The German Hodgkin Study Group aims to compare it with standard IF radiotherapy in their future HD17 trial. ALL patients must be examined by the radiation oncologist before the start of chemotherapy. At that time, patients must have complete staging CT scans. For patients with IN radiotherapy, a radiation planning CT before and after chemotherapy with patients in the treatment position is recommended. Fusion techniques, allowing the overlapping of the pre- and postchemotherapy CT scans, should be used. Usage of PET-CT scans with patients in the treatment position is recommended, whenever possible. The clinical target volume encompasses the initial volume of the Lymph node(s) before chemotherapy and incorporates the initial Location and extent of the disease taking the displacement of the normal tissues into account. The margin of the planning target volume should be 2 cm in axial and 3 cm in craniocaudal direction. If necessary, it can be reduced to 1-1.5 cm. To minimize Lung and cardiac toxicity, the target definition in the mediastinum is different. The concept of IN radiotherapy has been proposed as a means to further improve the therapeutic ratio by reducing the risk of radiation-induced toxicity, including second malignancies. Field sizes wiLL further decrease compared to IF radiotherapy.

  17. Biological PET-guided adaptive radiotherapy for dose escalation in head and neck cancer: a systematic review.

    PubMed

    Hamming-Vrieze, Olga; Navran, Arash; Al-Mamgani, Abrahim; Vogel, Wouter V

    2018-06-04

    In recent years, the possibility of adapting radiotherapy to changes in biological tissue parameters has emerged. It is hypothesized that early identification of radio-resistant parts of the tumor during treatment provides the possibility to adjust the radiotherapy plan to improve outcome. The aim of this systematic literature review was to evaluate the current state of the art of biological PET-guided adaptive radiotherapy, focusing on dose escalation to radio-resistant tumor. A structured literature search was done to select clinical trials including patients with head and neck cancer of the oral cavity, oropharynx, hypopharynx or larynx, with a PET performed during treatment used to develop biological adaptive radiotherapy by i) delineation of sub-volumes suitable for adaptive re-planning, ii) in silico adaptive treatment planning or iii) treatment of patients with PET based dose escalated adaptive radiotherapy. Nineteen articles were selected, 12 articles analyzing molecular imaging signal during treatment and 7 articles focused on biological adaptive treatment planning, of which two were clinical trials. Studied biological pathways include metabolism (FDG), hypoxia (MISO, FAZA and HX4) and proliferation (FLT). In the development of biological dose adaptation in radiotherapy for head-neck tumors, many aspects of the procedure remain ambiguous. Patient selection, tracer selection for detection of the radio-resistant sub-volumes, timing of adaptive radiotherapy, workflow and treatment planning aspects are discussed in a clinical context.

  18. Utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer and atelectasis.

    PubMed

    Yin, Li-Jie; Yu, Xiao-Bin; Ren, Yan-Gang; Gu, Guang-Hai; Ding, Tian-Gui; Lu, Zhi

    2013-03-18

    To investigate the utilization of PET-CT in target volume delineation for three-dimensional conformal radiotherapy in patients with non-small cell lung cancer (NSCLC) and atelectasis. Thirty NSCLC patients who underwent radical radiotherapy from August 2010 to March 2012 were included in this study. All patients were pathologically confirmed to have atelectasis by imaging examination. PET-CT scanning was performed in these patients. According to the PET-CT scan results, the gross tumor volume (GTV) and organs at risk (OARs, including the lungs, heart, esophagus and spinal cord) were delineated separately both on CT and PET-CT images. The clinical target volume (CTV) was defined as the GTV plus a margin of 6-8 mm, and the planning target volume (PTV) as the GTV plus a margin of 10-15mm. An experienced physician was responsible for designing treatment plans PlanCT and PlanPET-CT on CT image sets. 95% of the PTV was encompassed by the 90% isodose curve, and the two treatment plans kept the same beam direction, beam number, gantry angle, and position of the multi-leaf collimator as much as possible. The GTV was compared using a target delineation system, and doses distributions to OARs were compared on the basis of dose-volume histogram (DVH) parameters. The GTVCT and GTVPET-CT had varying degrees of change in all 30 patients, and the changes in the GTVCT and GTVPET-CT exceeded 25% in 12 (40%) patients. The GTVPET-CT decreased in varying degrees compared to the GTVCT in 22 patients. Their median GTVPET-CT and median GTVPET-CT were 111.4 cm3 (range, 37.8 cm3-188.7 cm3) and 155.1 cm3 (range, 76.2 cm3-301.0 cm3), respectively, and the former was 43.7 cm3 (28.2%) less than the latter. The GTVPET-CT increased in varying degrees compared to the GTVCT in 8 patients. Their median GTVPET-CT and median GTVPET-CT were 144.7 cm3 (range, 125.4 cm3-178.7 cm3) and 125.8 cm3 (range, 105.6 cm3-153.5 cm3), respectively, and the former was 18.9 cm3 (15.0%) greater than the latter

  19. Dose masking feature for BNCT radiotherapy planning

    DOEpatents

    Cook, Jeremy L.; Wessol, Daniel E.; Wheeler, Floyd J.

    2000-01-01

    A system for displaying an accurate model of isodoses to be used in radiotherapy so that appropriate planning can be performed prior to actual treatment on a patient. The nature of the simulation of the radiotherapy planning for BNCT and Fast Neutron Therapy, etc., requires that the doses be computed in the entire volume. The "entire volume" includes the patient and beam geometries as well as the air spaces in between. Isodoses derived from the computed doses will therefore extend into the air regions between the patient and beam geometries and thus depict the unrealistic possibility that radiation deposition occurs in regions containing no physical media. This problem is solved by computing the doses for the entire geometry and then masking the physical and air regions along with the isodose contours superimposed over the patient image at the corresponding plane. The user is thus able to mask out (remove) the contour lines from the unwanted areas of the image by selecting the appropriate contour masking region from the raster image.

  20. Distributed volume rendering and stereoscopic display for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hancock, David J.

    The thesis describes attempts to use direct volume rendering techniques to produce visualisations useful in the preparation of radiotherapy treatment plans. The selected algorithms allow the generation of data-rich images which can be used to assist the radiologist in comprehending complicated three-dimensional phenomena. The treatment plans are formulated using a three dimensional model which combines patient data acquired from CT scanning and the results of a simulation of the radiation delivery. Multiple intersecting beams with shaped profiles are used and the region of intersection is designed to closely match the position and shape of the targeted tumour region. The proposed treatment must be evaluated as to how well the target region is enveloped by the high dose occurring where the beams intersect, and also as to whether the treatment is likely to expose non-tumour regions to unacceptably high levels of radiation. Conventionally the plans are reviewed by examining CT images overlaid with contours indicating dose levels. Volume visualisation offers a possible saving in time by presenting the data in three dimensional form thereby removing the need to examine a set of slices. The most difficult aspect is to depict unambiguously the relationships between the different data. For example, if a particular beam configuration results in unintended irradiation of a sensitive organ, then it is essential to ensure that this is clearly displayed, and that the 3D relationships between the beams and other data can be readily perceived in order to decide how to correct the problem. The user interface has been designed to present a unified view of the different techniques available for identifying features of interest within the data. The system differs from those previously reported in that complex visualisations can be constructed incrementally, and several different combinations of features can be viewed simultaneously. To maximise the quantity of relevant data presented

  1. A new methodological approach for PET implementation in radiotherapy treatment planning.

    PubMed

    Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello

    2012-05-01

    In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.

  2. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study.

    PubMed

    Chung, Seung Yeun; Chang, Jong Hee; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang-Ok

    2017-06-01

    To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option.

  3. Optimal dose and volume for postoperative radiotherapy in brain oligometastases from lung cancer: a retrospective study

    PubMed Central

    Chung, Seung Yeun; Chang, Jong Hee; Kim, Hye Ryun; Cho, Byoung Chul; Lee, Chang Geol; Suh, Chang-Ok

    2017-01-01

    Purpose To evaluate intracranial control after surgical resection according to the adjuvant treatment received in order to assess the optimal radiotherapy (RT) dose and volume. Materials and Methods Between 2003 and 2015, a total of 53 patients with brain oligometastases from non-small cell lung cancer (NSCLC) underwent metastasectomy. The patients were divided into three groups according to the adjuvant treatment received: whole brain radiotherapy (WBRT) ± boost (WBRT ± boost group, n = 26), local RT/Gamma Knife surgery (local RT group, n = 14), and the observation group (n = 13). The most commonly used dose schedule was WBRT (25 Gy in 10 fractions, equivalent dose in 2 Gy fractions [EQD2] 26.04 Gy) with tumor bed boost (15 Gy in 5 fractions, EQD2 16.25 Gy). Results The WBRT ± boost group showed the lowest 1-year intracranial recurrence rate of 30.4%, followed by the local RT and observation groups, at 66.7%, and 76.9%, respectively (p = 0.006). In the WBRT ± boost group, there was no significant increase in the 1-year new site recurrence rate of patients receiving a lower dose of WBRT (EQD2) <27 Gy compared to that in patients receiving a higher WBRT dose (p = 0.553). The 1-year initial tumor site recurrence rate was lower in patients receiving tumor bed dose (EQD2) of ≥42.3 Gy compared to those receiving <42.3 Gy, although the difference was not significant (p = 0.347). conclusions Adding WBRT after resection of brain oligometastases from NSCLC seems to enhance intracranial control. Furthermore, combining lower-dose WBRT with a tumor bed boost may be an attractive option. PMID:28712276

  4. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study

    PubMed Central

    Tosteson, Anna NA; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-01-01

    Objective To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology. Design Simulation study. Setting 12 different strategies for acquiring independent second opinions. Participants Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus. Main outcome measures Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists’ clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice. Results Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for

  5. Quality of radiotherapy reporting in randomized controlled trials of prostate cancer.

    PubMed

    Soon, Yu Yang; Chen, Desiree; Tan, Teng Hwee; Tey, Jeremy

    2018-06-07

    Good radiotherapy reporting in clinical trials of prostate radiotherapy is important because it will allow accurate reproducibility of radiotherapy treatment and minimize treatment variations that can affect patient outcomes. The aim of our study is to assess the quality of prostate radiotherapy (RT) treatment reporting in randomized controlled trials in prostate cancer. We searched MEDLINE for randomized trials of prostate cancer, published from 1996 to 2016 and included prostate RT as one of the intervention arms. We assessed if the investigators reported the ten criteria adequately in the trial reports: RT dose prescription method; RT dose-planning procedures; organs at risk (OAR) dose constraints; target volume definition, simulation procedures; treatment verification procedures; total RT dose; fractionation schedule; conduct of quality assurance (QA) as well as presence or absence of deviations in RT treatment planning and delivery. We performed multivariate logistic regression to determine the factors that may influence the quality of reporting. We found 59 eligible trials. There was significant variability in the quality of reporting. Target volume definition, total RT dose and fractionation schedule were reported adequately in 97% of included trials. OAR constraints, simulation procedures and presence or absence of deviations in RT treatment planning and delivery were reported adequately in 30% of included trials. Twenty-four trials (40%) reported seven criteria or more adequately. Multivariable logistic analysis showed that trials that published their quality assurance results and cooperative group trials were more likely to have adequate quality in reporting in at least seven criteria. There is significant variability in the quality of reporting on prostate radiotherapy treatment in randomized trials of prostate cancer. We need to have consensus guidelines to standardize the reporting of radiotherapy treatment in randomized trials.

  6. Neurovascular bundle–sparing radiotherapy for prostate cancer using MRI-CT registration: A dosimetric feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.

    Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less

  7. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications.

    PubMed

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2018-02-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV, allowing the combination of 3D and 4D planned patient cohorts for modelling. Expert delineations in 40 non-small cell lung cancer patients were used to develop linear fit and erosion methods to synthesise the GTV volume and shape. Quality was assessed using Dice Similarity Coefficients (DSC) and closest point measurements; by calculating dosimetric features; and by assessing the quality of random forest models built on patient populations with and without synthetic GTVs. Volume estimates were within the magnitudes of inter-observer delineation variability. Shape comparisons produced mean DSCs of 0.8817 and 0.8584 for upper and lower lobe cases, respectively. A model trained on combined true and synthetic data performed significantly better than models trained on GTV alone, or combined GTV and iGTV data. Accurate synthesis of GTV size from the iGTV permits the combination of lung cancer patient cohorts, facilitating machine learning applications in thoracic radiotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Santam, E-mail: drsantam@gmail.com; Ghoshal, Sushmita; Patil, Vijay Maruti

    2011-08-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptivemore » analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm{sup 3}), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.« less

  9. Political opinion formation: Initial opinion distribution and individual heterogeneity of tolerance

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Li, Yifu; Jin, Xiaogang

    2017-02-01

    Opinion dynamics on networks have received serious attention for its profound prospects in social behaviours and self-organized systems. However, political opinion formation, as one typical and significant case, remains lacking in discussion. Previous agent-based simulations propose various models that are based on different mechanisms like the coevolution between network topology and status transition. Nonetheless, even under the same network topology and with the same simple mechanism, forming opinions can still be uncertain. In this work, we propose two features, the initial distribution of opinions and the individual heterogeneity of tolerances on opinion changing, in political opinion formation. These two features are imbedded in the network construction phase of a classical model. By comparing multi simple-party systems, along with a detailed analysis on the two-party system, we capture the critical phenomenon of fragmentation, polarization and consensus both in the persistent stable stage and in-process. We further introduce the average ratio of nearest neighbours to characterize the stage of opinion formation. The results show that the initial distribution of opinions leads to different evolution results on similar random networks. In addition, the existence of stubborn nodes plays a special role: only nodes that are extremely stubborn can cause the change of final opinion distribution while in other cases they only delay the time to reach stability. If stubborn nodes are small in number, their effects are confined within a small range. This theoretical work goes deeper on an existing model, it is an early exploration on qualitative and quantitative simulation of party competition.

  10. Leader's opinion priority bounded confidence model for network opinion evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    Aiming at the weight of trust someone given to participate in the interaction in Hegselmann-Krause's type consensus model is the same and virtual social networks among individuals with different level of education, personal influence, etc. For differences between agents, a novelty bounded confidence model was proposed with leader's opinion considered priority. Interaction neighbors can be divided into two kinds. The first kind is made up of "opinion leaders" group, another kind is made up of ordinary people. For different groups to give different weights of trust. We also analyzed the related characteristics of the new model under the symmetrical bounded confidence parameters and combined with the classical HK model were analyzed. Simulation experiment results show that no matter the network size and initial view is subject to uniform distribution or discrete distribution. We can control the "opinion-leader" good change the number of views and values, and even improve the convergence speed. Experiment also found that the choice of "opinion leaders" is not the more the better, the model well explain how the "opinion leader" in the process of the evolution of the public opinion play the role of the leader.

  11. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dekker, Chris; Wierzbicki, Marcin

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITVmore » dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.« less

  12. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    PubMed Central

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  13. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  14. Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study.

    PubMed

    Elmore, Joann G; Tosteson, Anna Na; Pepe, Margaret S; Longton, Gary M; Nelson, Heidi D; Geller, Berta; Carney, Patricia A; Onega, Tracy; Allison, Kimberly H; Jackson, Sara L; Weaver, Donald L

    2016-06-22

     To evaluate the potential effect of second opinions on improving the accuracy of diagnostic interpretation of breast histopathology.  Simulation study.  12 different strategies for acquiring independent second opinions.  Interpretations of 240 breast biopsy specimens by 115 pathologists, one slide for each case, compared with reference diagnoses derived by expert consensus.  Misclassification rates for individual pathologists and for 12 simulated strategies for second opinions. Simulations compared accuracy of diagnoses from single pathologists with that of diagnoses based on pairing interpretations from first and second independent pathologists, where resolution of disagreements was by an independent third pathologist. 12 strategies were evaluated in which acquisition of second opinions depended on initial diagnoses, assessment of case difficulty or borderline characteristics, pathologists' clinical volumes, or whether a second opinion was required by policy or desired by the pathologists. The 240 cases included benign without atypia (10% non-proliferative, 20% proliferative without atypia), atypia (30%), ductal carcinoma in situ (DCIS, 30%), and invasive cancer (10%). Overall misclassification rates and agreement statistics depended on the composition of the test set, which included a higher prevalence of difficult cases than in typical practice.  Misclassification rates significantly decreased (P<0.001) with all second opinion strategies except for the strategy limiting second opinions only to cases of invasive cancer. The overall misclassification rate decreased from 24.7% to 18.1% when all cases received second opinions (P<0.001). Obtaining both first and second opinions from pathologists with a high volume (≥10 breast biopsy specimens weekly) resulted in the lowest misclassification rate in this test set (14.3%, 95% confidence interval 10.9% to 18.0%). Obtaining second opinions only for cases with initial interpretations of atypia, DCIS, or invasive

  15. Survival of extreme opinions

    NASA Astrophysics Data System (ADS)

    Hsu, Jiann-wien; Huang, Ding-wei

    2009-12-01

    We study the survival of extreme opinions in various processes of consensus formation. All the opinions are treated equally and subjected to the same rules of changing. We investigate three typical models to reach a consensus in each case: (A) personal influence, (B) influence from surroundings, and (C) influence to surroundings. Starting with uniformly distributed random opinions, our calculated results show that the extreme opinions can survive in both models (A) and (B), but not in model (C). We obtain a conclusion that both personal influence and passive adaptation to the environment are not sufficient enough to eradicate all the extreme opinions. Only the active persuasion to change the surroundings eliminates the extreme opinions completely.

  16. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study

    NASA Astrophysics Data System (ADS)

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-01

    Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g-1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current

  17. Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: a preclinical study.

    PubMed

    Hao, Yao; Yasmin-Karim, Sayeda; Moreau, Michele; Sinha, Neeharika; Sajo, Erno; Ngwa, Wilfred

    2016-12-21

    Studies show that radiotherapy of a primary tumor in combination with immunoadjuvants (IA) can result in increased survival or immune-mediated regression of metastasis outside the radiation field, a phenomenon known as abscopal effect. However, toxicities due to repeated systematic administration of IA have been shown to be a major obstacle in clinical trials. To minimize the toxicities and prime a more potent immune response, Ngwa et al have proposed that inert radiotherapy biomaterials such as fiducials could be upgraded to multifunctional ones loaded with IA for in situ delivery directly into the tumor sub-volume at no additional inconvenience to patients. In this preliminary study, the potential of such an approach is investigated for lung cancer using anti-CD40 antibody. First the benefit of using the anti-CD40 delivered in situ to enhance radiotherapy was tested in mice with subcutaneous tumors generated with the Lewis Lung cancer cell line LL/2 (LLC-1). The tumors were implanted on both flanks of the mice to simulate metastasis. Tumors on one flank were treated with and without anti-CD40 and the survival benefits compared. An experimentally determined in vivo diffusion coefficient for nanoparticles was then employed to estimate the time for achieving intratumoral distribution of the needed minimal concentrations of anti-CD40 nanoparticles if released from a multifuntional radiotherapy biomaterials. The studies show that the use of anti-CD40 significantly enhanced radiotherapy effect, slowing the growth of the treated and untreated tumors, and increasing survival. Meanwhile our calculations indicate that for a 2-4 cm tumor and 7 mg g -1 IA concentrations, it would take 4.4-17.4 d, respectively, following burst release, for the required concentration of IA nanoparticles to accumulate throughout the tumor during image-guided radiotherapy. The distribution of IA could be customized as a function of loading concentrations or nanoparticle size to fit current

  18. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy.

    PubMed

    Clements, N; Kron, T; Franich, R; Dunn, L; Roxby, P; Aarons, Y; Chesson, B; Siva, S; Duplan, D; Ball, D

    2013-02-01

    Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs. Breathing patterns with a

  19. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, N.; Kron, T.; Roxby, P.

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of thismore » work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  20. Stereotactic fractionated radiotherapy for the treatment of benign meningiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candish, Charles; McKenzie, Michael; Clark, Brenda G.

    Purpose: To assess the use of stereotactic fractionated radiotherapy (SRT) for the treatment of meningiomas. Methods and Materials: Between April 1999 and October 2004, 38 patients underwent SRT. Of 34 patients (36 tumors) assessed, the median age was 53 years. The indication was primary treatment in 26 cases (no histology) and postoperative in 10 cases. The most common sites were cavernous sinus (17), optic nerve (6), and cerebellopontine angle (5). The median gross target volume and planning target volume were 8.9 cm{sup 3} and 18.9 cm{sup 3}, respectively. Stereotactic treatment was delivered with 6-MV photons with static conformal fields (custom-mademore » blocks, 9 patients, and micromultileaf collimator, 25 patients). Median number of fields was six. The median dose prescribed was 50 Gy (range, 45-50.4 Gy) in 28 fractions. The median homogeneity and conformality indices were 1.1 and 1.79, respectively. Results: Treatment was well tolerated. Median follow-up was 26 months with 100% progression-free survival. One patient developed an area of possible radionecrosis related to previous radiotherapy, and 2 men developed mild hypogonadism necessitating testosterone replacement. The vision of 5 of 6 patients with optic pathway meningiomas improved or remained static. Conclusions: Stereotactic fractionated radiotherapy for the treatment of meningiomas is practical, and with early follow-up, seems to be effective.« less

  1. Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer.

    PubMed

    Xi, Mian; Lin, Steven H

    2017-07-01

    Radiotherapy is an important component of the standard of care for esophageal cancer. In the past decades, significant improvements in the planning and delivery of radiation techniques have led to better dose conformity to the target volume and improved normal tissue sparing. Areas covered: This review focuses on the advances in radiotherapy techniques and summarizes the availably dosimetric and clinical outcomes of intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy, proton therapy, and four-dimensional radiotherapy for esophageal cancer, and discusses the challenges and future development of proton therapy. Expert commentary: Although three-dimensional conformal radiotherapy is the standard radiotherapy technique in esophageal cancer, the retrospectively comparative studies strongly suggest that the dosimetric advantage of IMRT over three-dimensional conformal radiotherapy can translate into improved clinical outcomes, despite the lack of prospective randomized evidence. As a novel form of conventional IMRT technique, volumetric modulated arc therapy can produce equivalent or superior dosimetric quality with significantly higher treatment efficiency in esophageal cancer. Compared with photon therapy, proton therapy has the potential to achieve further clinical improvement due to their physical properties; however, prospective clinical data, long-term results, and cost-effectiveness are needed.

  2. Phase II Study to Assess the Efficacy of Hypofractionated Stereotactic Radiotherapy in Patients With Large Cavernous Sinus Hemangiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xin; Liu Xiaoxia; Mei Guanghai

    Purpose: Cavernous sinus hemangioma is a rare vascular tumor. The direct microsurgical approach usually results in massive hemorrhage. Although radiosurgery plays an important role in managing cavernous sinus hemangiomas as a treatment alternative to microsurgery, the potential for increased toxicity with single-session treatment of large tumors is a concern. The purpose of this study was to assess the efficacy of hypofractionated stereotactic radiotherapy in patients with large cavernous sinus hemangiomas. Methods: Fourteen patients with large (volume >20 cm{sup 3}) cavernous sinus hemangiomas were enrolled in a prospective Phase II study between December 2007 and December 2010. The hypofractionated stereotactic radiotherapymore » dose was 21 Gy delivered in 3 fractions. Results: After a mean follow-up of 15 months (range, 6-36 months), the magnetic resonance images showed a mean of 77% tumor volume reduction (range, 44-99%). Among the 6 patients with cranial nerve impairments before hypofractionated stereotactic radiotherapy, 1 achieved symptomatic complete resolution and 5 had improvement. No radiotherapy-related complications were observed during follow-up. Conclusion: Our current experience, though preliminary, substantiates the role of hypofractionated stereotactic radiotherapy for large cavernous sinus hemangiomas. Although a longer and more extensive follow-up is needed, hypofractionated stereotactic radiotherapy of 21 Gy delivered in 3 fractions is effective in reducing the tumor volume without causing any new deficits and can be considered as a treatment modality for large cavernous sinus hemangiomas.« less

  3. Does a too risk-averse approach to the implementation of new radiotherapy technologies delay their clinical use?

    PubMed

    Garcia, R; Nyström, H; Fiorino, C; Thwaites, D

    2015-07-01

    Radiotherapy is a generally safe treatment modality in practice; nevertheless, recent well-reported accidents also confirm its potential risks. However, this may obstruct or delay the introduction of new technologies and treatment strategies/techniques into clinical practice. Risks must be addressed and judged in a realistic context: risks must be assessed realistically. Introducing new technology may introduce new possibilities of errors. However, delaying the introduction of such new technology therefore means that patients are denied the potentially better treatment opportunities. Despite the difficulty in quantitatively assessing the risks on both sides of the possible choice of actions, including the "lost opportunity", the best estimates should be included in the overall risk-benefit and cost-benefit analysis. Radiotherapy requires a sufficiently high level of support for the safety, precision and accuracy required: radiotherapy development and implementation is exciting. However, it has been anxious with a constant awareness of the consequences of mistakes or misunderstandings. Recent history can be used to show that for introduction of advanced radiotherapy, the risk-averse medical physicist can act as an electrical fuse in a complex circuit. The lack of sufficient medical physics resource or expertise can short out this fuse and leave systems unsafe. Future technological developments will continue to present further safety and risk challenges. The important evolution of radiotherapy brings different management opinions and strategies. Advanced radiotherapy technologies can and should be safely implemented in as timely a manner as possible for the patient groups where clinical benefit is indicated.

  4. Estimation of Risk of Normal-tissue Toxicity Following Gastric Cancer Radiotherapy with Photon- or Scanned Proton-beams.

    PubMed

    Mondlane, Gracinda; Ureba, Ana; Gubanski, Michael; Lind, Pehr A; Siegbahn, Albert

    2018-05-01

    Gastric cancer (GC) radiotherapy involves irradiation of large tumour volumes located in the proximities of critical structures. The advantageous dose distributions produced by scanned-proton beams could reduce the irradiated volumes of the organs at risk (OARs). However, treatment-induced side-effects may still appear. The aim of this study was to estimate the normal tissue complication probability (NTCP) following proton therapy of GC, compared to photon radiotherapy. Eight GC patients, previously treated with volumetric-modulated arc therapy (VMAT), were retrospectively planned with scanned proton beams carried out with the single-field uniform-dose (SFUD) method. A beam-specific planning target volume was used for spot positioning and a clinical target volume (CTV) based robust optimisation was performed considering setup- and range-uncertainties. The dosimetric and NTCP values obtained with the VMAT and SFUD plans were compared. With SFUD, lower or similar dose-volume values were obtained for OARs, compared to VMAT. NTCP values of 0% were determined with the VMAT and SFUD plans for all OARs (p>0.05), except for the left kidney (p<0.05), for which lower toxicity was estimated with SFUD. The NTCP reduction, determined for the left kidney with SFUD, can be of clinical relevance for preserving renal function after radiotherapy of GC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Liu, Tian X.; Liu, Arthur K.

    2014-10-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy includingmore » Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed

  6. [Single-dose palliative radiotherapy in inoperable non-small-cell lung carcinoma].

    PubMed

    Scolaro, T; Bacigalupo, A; Giudici, S; Guenzi, M; Vitale, V

    1995-12-01

    The treatment of choice for advanced inoperable non-small cell lung cancer (NSCLC) is radiation therapy. Palliative radiotherapy schedules vary considerably in different centers, but a 30-Gy dose given in ten fractions over two weeks is a typical standard schedule. Our study was aimed at investigating whether a shorter course of only one 10-Gy fraction allows good palliation in the treatment of inoperable NSCLC patients whose main symptoms are related to an intrathoracic lesion. Patients of both sexes and any age, untreated with radiotherapy, with inoperable and histologically or cytologically proved NSCLC were examined. Seventeen patients, too advanced for radical "curative" radiotherapy and whose main symptoms were related to primary intrathoracic lesions, entered the study even though they had metastases. On admission, 76% (13/17) of patients had cough 76% (13/17) dyspnea, 70.7% (12/17) chest pain and 23.6% (4/17) hemoptysis. They received a single dose of 10 Gy, delivered with an 18-Mv linear accelerator via anteroposteriorly opposing portals without spinal cord shielding. Treatment volume usually included the macroscopically detected lesion identified with a CT simulator. Palliation of symptoms was achieved in high rates of patients: 46% for cough, 69% for dyspnea, 83% for pain and 75% for hemoptysis. These results were obtained within one month of treatment. Unfortunately, palliation of symptoms did not last long, decreasing to 42% within two months of the end of treatment and to 32% at three months. Four patients were retreated, one patient three months and three patients two months after the end of radiotherapy. Ten Gy to the target volume were administered as retreatment with spinal cord shielding. Side-effects were mild: nausea in 3 patients (17%), vomiting in one patient (5%) and grade-II dysphagia in two patients were observed and classified according to WHO criteria. Pain increased 24 hours after radiotherapy in five patients. We can conclude that

  7. Limitations of the planning organ at risk volume (PRV) concept.

    PubMed

    Stroom, Joep C; Heijmen, Ben J M

    2006-09-01

    Previously, we determined a planning target volume (PTV) margin recipe for geometrical errors in radiotherapy equal to M(T) = 2 Sigma + 0.7 sigma, with Sigma and sigma standard deviations describing systematic and random errors, respectively. In this paper, we investigated margins for organs at risk (OAR), yielding the so-called planning organ at risk volume (PRV). For critical organs with a maximum dose (D(max)) constraint, we calculated margins such that D(max) in the PRV is equal to the motion averaged D(max) in the (moving) clinical target volume (CTV). We studied margins for the spinal cord in 10 head-and-neck cases and 10 lung cases, each with two different clinical plans. For critical organs with a dose-volume constraint, we also investigated whether a margin recipe was feasible. For the 20 spinal cords considered, the average margin recipe found was: M(R) = 1.6 Sigma + 0.2 sigma with variations for systematic and random errors of 1.2 Sigma to 1.8 Sigma and -0.2 sigma to 0.6 sigma, respectively. The variations were due to differences in shape and position of the dose distributions with respect to the cords. The recipe also depended significantly on the volume definition of D(max). For critical organs with a dose-volume constraint, the PRV concept appears even less useful because a margin around, e.g., the rectum changes the volume in such a manner that dose-volume constraints stop making sense. The concept of PRV for planning of radiotherapy is of limited use. Therefore, alternative ways should be developed to include geometric uncertainties of OARs in radiotherapy planning.

  8. Quantifying discrepancies in opinion spectra from online and offline networks.

    PubMed

    Lee, Deokjae; Hahn, Kyu S; Yook, Soon-Hyung; Park, Juyong

    2015-01-01

    Online social media such as Twitter are widely used for mining public opinions and sentiments on various issues and topics. The sheer volume of the data generated and the eager adoption by the online-savvy public are helping to raise the profile of online media as a convenient source of news and public opinions on social and political issues as well. Due to the uncontrollable biases in the population who heavily use the media, however, it is often difficult to measure how accurately the online sphere reflects the offline world at large, undermining the usefulness of online media. One way of identifying and overcoming the online-offline discrepancies is to apply a common analytical and modeling framework to comparable data sets from online and offline sources and cross-analyzing the patterns found therein. In this paper we study the political spectra constructed from Twitter and from legislators' voting records as an example to demonstrate the potential limits of online media as the source for accurate public opinion mining, and how to overcome the limits by using offline data simultaneously.

  9. Quantifying Discrepancies in Opinion Spectra from Online and Offline Networks

    PubMed Central

    Lee, Deokjae; Hahn, Kyu S.; Yook, Soon-Hyung; Park, Juyong

    2015-01-01

    Online social media such as Twitter are widely used for mining public opinions and sentiments on various issues and topics. The sheer volume of the data generated and the eager adoption by the online-savvy public are helping to raise the profile of online media as a convenient source of news and public opinions on social and political issues as well. Due to the uncontrollable biases in the population who heavily use the media, however, it is often difficult to measure how accurately the online sphere reflects the offline world at large, undermining the usefulness of online media. One way of identifying and overcoming the online–offline discrepancies is to apply a common analytical and modeling framework to comparable data sets from online and offline sources and cross-analyzing the patterns found therein. In this paper we study the political spectra constructed from Twitter and from legislators' voting records as an example to demonstrate the potential limits of online media as the source for accurate public opinion mining, and how to overcome the limits by using offline data simultaneously. PMID:25915931

  10. External Beam Radiotherapy for Prostate Cancer Patients on Anticoagulation Therapy: How Significant is the Bleeding Toxicity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choe, Kevin S.; Jani, Ashesh B.; Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.ed

    Purpose: To characterize the bleeding toxicity associated with external beam radiotherapy for prostate cancer patients receiving anticoagulation (AC) therapy. Methods and Materials: The study cohort consisted of 568 patients with adenocarcinoma of the prostate who were treated with definitive external beam radiotherapy. Of these men, 79 were receiving AC therapy with either warfarin or clopidogrel. All patients were treated with three-dimensional conformal radiotherapy or intensity-modulated radiotherapy. Bleeding complications were recorded during treatment and subsequent follow-up visits. Results: With a median follow-up of 48 months, the 4-year actuarial risk of Grade 3 or worse bleeding toxicity was 15.5% for those receivingmore » AC therapy compared with 3.6% among those not receiving AC (p < .0001). On multivariate analysis, AC therapy was the only significant factor associated with Grade 3 or worse bleeding (p < .0001). For patients taking AC therapy, the crude rate of bleeding was 39.2%. Multivariate analysis within the AC group demonstrated that a higher radiotherapy dose (p = .0408), intensity-modulated radiotherapy (p = 0.0136), and previous transurethral resection of the prostate (p = .0001) were associated with Grade 2 or worse bleeding toxicity. Androgen deprivation therapy was protective against bleeding, with borderline significance (p = 0.0599). Dose-volume histogram analysis revealed that Grade 3 or worse bleeding was minimized if the percentage of the rectum receiving >=70 Gy was <10% or the rectum receiving >=50 Gy was <50%. Conclusion: Patients taking AC therapy have a substantial risk of bleeding toxicity from external beam radiotherapy. In this setting, dose escalation or intensity-modulated radiotherapy should be used judiciously. With adherence to strict dose-volume histogram criteria and minimizing hotspots, the risk of severe bleeding might be reduced.« less

  11. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    PubMed

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  12. Dosimetric comparison of intensity modulated radiotherapy and three-dimensional conformal radiotherapy in patients with gynecologic malignancies: a systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540

  13. Variation in the Gross Tumor Volume and Clinical Target Volume for Preoperative Radiotherapy of Primary Large High-Grade Soft Tissue Sarcoma of the Extremity Among RTOG Sarcoma Radiation Oncologists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.

    Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less

  14. Evaluation of Thyroid Disorders During Head-and-Neck Radiotherapy by Using Functional Analysis and Ultrasonography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhshandeh, Mohsen; Hashemi, Bijan, E-mail: bhashemi@modares.ac.ir; Mahdavi, Seyed Rabie

    2012-05-01

    Purpose: To evaluate thyroid function and vascular changes during radiotherapy for patients with head and neck cancer. Methods and Materials: Fifty patients treated with primary or postoperative radiotherapy for various cancers in the head and neck region were prospectively evaluated. The serum samples (triiodothyronine [T3], thyroxine [T4], thyroid-stimulating hormone [TSH], free triiodothyronine [FT3], and free thyroxine [FT4]), the echo level of the thyroid gland, and color Doppler ultrasonography (CDU) parameters of the right inferior thyroid artery (RITA) of the patients were measured before and at regular intervals during radiotherapy. The thyroid gland dose-volume histograms of the patients were derived frommore » their computed tomography-based treatment plans. Results: There was a significant fall in TSH level (p < 0.0001) but an increase in FT4 (p < 0.0001) and T4 (p < 0.022) levels during the radiotherapy course. The threshold dose required to produce significant changes was 12 Gy (Biologically Effective Dose in 2-Gy fractions, BED{sub 2}). There were significant rises in the patients' pulsatility index, resistive index, peak systolic velocity, blood volume flow levels, and RITA diameter (p < 0.0001), as detected by CDU during radiotherapy, compared to those parameters measured before the treatment. Hypoechogenicity and irregular echo patterns (p < 0.0001) were seen during radiotherapy compared to those before treatment. There was significant Pearson's correlation between the CDU parameters and T4, FT4, and TSH levels. Conclusions: Radiation-induced thyroiditis is regarded as primary damage to the thyroid gland. Thyroiditis can subsequently result in hypothyroidism or hyperthyroidism. Our results demonstrated that changes in thyroid vessels occur during radiotherapy delivered to patients. Vessel changes also can be attributed to the late effect of radiation on the thyroid gland. The hypoechogenicity and irregular echo patterns observed in patients may

  15. Risk factors for neovascular glaucoma after carbon ion radiotherapy of choroidal melanoma using dose-volume histogram analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasawa, Naoki; Tsuji, Hiroshi; Ishikawa, Hitoshi

    2007-02-01

    Purpose: To determine the risk factors for neovascular glaucoma (NVG) after carbon ion radiotherapy (C-ion RT) of choroidal melanoma. Methods and Materials: A total of 55 patients with choroidal melanoma were treated between 2001 and 2005 with C-ion RT based on computed tomography treatment planning. All patients had a tumor of large size or one located close to the optic disk. Univariate and multivariate analyses were performed to identify the risk factors of NVG for the following parameters; gender, age, dose-volumes of the iris-ciliary body and the wall of eyeball, and irradiation of the optic disk (ODI). Results: Neovascular glaucomamore » occurred in 23 patients and the 3-year cumulative NVG rate was 42.6 {+-} 6.8% (standard error), but enucleation from NVG was performed in only three eyes. Multivariate analysis revealed that the significant risk factors for NVG were V50{sub IC} (volume irradiated {>=}50 GyE to iris-ciliary body) (p = 0.002) and ODI (p = 0.036). The 3-year NVG rate for patients with V50{sub IC} {>=}0.127 mL and those with V50{sub IC} <0.127 mL were 71.4 {+-} 8.5% and 11.5 {+-} 6.3%, respectively. The corresponding rate for the patients with and without ODI were 62.9 {+-} 10.4% and 28.4 {+-} 8.0%, respectively. Conclusion: Dose-volume histogram analysis with computed tomography indicated that V50{sub IC} and ODI were independent risk factors for NVG. An irradiation system that can reduce the dose to both the anterior segment and the optic disk might be worth adopting to investigate whether or not incidence of NVG can be decreased with it.« less

  16. Opinion dynamics in activity-driven networks

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Han, Dun; Ma, Jing; Sun, Mei; Tian, Lixin; Khouw, Timothy; Stanley, H. Eugene

    2017-10-01

    Social interaction between individuals constantly affects the development of their personal opinions. Previous models such as the Deffuant model and the Hegselmann-Krause (HK) model have assumed that individuals only update their opinions after interacting with neighbors whose opinions are similar to their own. However, people are capable of communicating widely with all of their neighbors to gather their ideas and opinions, even if they encounter a number of opposing attitudes. We propose a model in which agents listen to the opinions of all their neighbors. Continuous opinion dynamics are investigated in activity-driven networks with a tolerance threshold. We study how the initial opinion distribution, tolerance threshold, opinion-updating speed, and activity rate affect the evolution of opinion. We find that when the initial fraction of positive opinion is small, all opinions become negative by the end of the simulation. As the initial fraction of positive opinions rises above a certain value —about 0.45— the final fraction of positive opinions sharply increases and eventually equals 1. Increased tolerance threshold δ is found to lead to a more varied final opinion distribution. We also find that if the negative opinion has an initial advantage, the final fraction of negative opinion increases and reaches its peak as the updating speed λ approaches 0.5. Finally we show that the lower the activity rate of individuals, the greater the fluctuation range of their opinions.

  17. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less

  18. Public Opinion as Collective Coorientation.

    ERIC Educational Resources Information Center

    Tipton, Leonard; And Others

    To conceptualize public opinion as something other than "mere aggregation" of individual opinions requires systemic models that identify component parts of public opinion and their structural/functional relationships. Operationalization requires asking respondents not only their individual opinion, but also their perception of public…

  19. A Dosimetric Comparison of Breast Radiotherapy Techniques to Treat Locoregional Lymph Nodes Including the Internal Mammary Chain.

    PubMed

    Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A

    2018-06-01

    Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P < 0.0001) and VMAT (P < 0.0001) techniques. There was no advantage in target volume coverage or OAR doses for PBT(vDIBH) compared with PBT(FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT

  20. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.

    2008-08-11

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  1. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    NASA Astrophysics Data System (ADS)

    Barón-Aznar, C.; Moreno-Jiménez, S.; Celis, M. A.; Lárraga-Gutiérrez, J. M.; Ballesteros-Zebadúa, P.

    2008-08-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScansoftware, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed.

  2. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis

  3. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registeredmore » with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.« less

  4. Perspectives: A Journal of Research and Opinion about Educational Service Agencies, 1995-1998.

    ERIC Educational Resources Information Center

    Keane, William G., Ed.

    1998-01-01

    This document consists of the first four volumes of the annual serial publication "Perspectives: A Journal of Research and Opinion about Educational Service Agencies." Educational service agencies (ESAs) have various names and characteristics across states, but all provide services to local education agencies in a specific geographic region. ESAs…

  5. A new approach to delineating lymph node target volumes for post-operative radiotherapy in gastric cancer: A phase II trial.

    PubMed

    Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong

    2015-08-01

    In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Opinion evolution influenced by informed agents

    NASA Astrophysics Data System (ADS)

    Fan, Kangqi; Pedrycz, Witold

    2016-11-01

    Guiding public opinions toward a pre-set target by informed agents can be a strategy adopted in some practical applications. The informed agents are common agents who are employed or chosen to spread the pre-set opinion. In this work, we propose a social judgment based opinion (SJBO) dynamics model to explore the opinion evolution under the influence of informed agents. The SJBO model distinguishes between inner opinions and observable choices, and incorporates both the compromise between similar opinions and the repulsion between dissimilar opinions. Three choices (support, opposition, and remaining undecided) are considered in the SJBO model. Using the SJBO model, both the inner opinions and the observable choices can be tracked during the opinion evolution process. The simulation results indicate that if the exchanges of inner opinions among agents are not available, the effect of informed agents is mainly dependent on the characteristics of regular agents, including the assimilation threshold, decay threshold, and initial opinions. Increasing the assimilation threshold and decay threshold can improve the guiding effectiveness of informed agents. Moreover, if the initial opinions of regular agents are close to null, the full and unanimous consensus at the pre-set opinion can be realized, indicating that, to maximize the influence of informed agents, the guidance should be started when regular agents have little knowledge about a subject under consideration. If the regular agents have had clear opinions, the full and unanimous consensus at the pre-set opinion cannot be achieved. However, the introduction of informed agents can make the majority of agents choose the pre-set opinion.

  7. A consensus-based dynamics for market volumes

    NASA Astrophysics Data System (ADS)

    Sabatelli, Lorenzo; Richmond, Peter

    2004-12-01

    We develop a model of trading orders based on opinion dynamics. The agents may be thought as the share holders of a major mutual fund rather than as direct traders. The balance between their buy and sell orders determines the size of the fund order (volume) and has an impact on prices and indexes. We assume agents interact simultaneously to each other through a Sznajd-like interaction. Their degree of connection is determined by the probability of changing opinion independently of what their neighbours are doing. We assume that such a probability may change randomly, after each transaction, of an amount proportional to the relative difference between the volatility then measured and a benchmark that we assume to be an exponential moving average of the past volume values. We show how this simple model is compatible with some of the main statistical features observed for the asset volumes in financial markets.

  8. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  9. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in

  10. Cine Computed Tomography Without Respiratory Surrogate in Planning Stereotactic Radiotherapy for Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegel, Adam C. B.A.; Chang, Joe Y.; Vedam, Sastry S.

    2009-02-01

    Purpose: To determine whether cine computed tomography (CT) can serve as an alternative to four-dimensional (4D)-CT by providing tumor motion information and producing equivalent target volumes when used to contour in radiotherapy planning without a respiratory surrogate. Methods and Materials: Cine CT images from a commercial CT scanner were used to form maximum intensity projection and respiratory-averaged CT image sets. These image sets then were used together to define the targets for radiotherapy. Phantoms oscillating under irregular motion were used to assess the differences between contouring using cine CT and 4D-CT. We also retrospectively reviewed the image sets for 26more » patients (27 lesions) at our institution who had undergone stereotactic radiotherapy for Stage I non-small-cell lung cancer. The patients were included if the tumor motion was >1 cm. The lesions were first contoured using maximum intensity projection and respiratory-averaged CT image sets processed from cine CT and then with 4D-CT maximum intensity projection and 10-phase image sets. The mean ratios of the volume magnitude were compared with intraobserver variation, the mean centroid shifts were calculated, and the volume overlap was assessed with the normalized Dice similarity coefficient index. Results: The phantom studies demonstrated that cine CT captured a greater extent of irregular tumor motion than did 4D-CT, producing a larger tumor volume. The patient studies demonstrated that the gross tumor defined using cine CT imaging was similar to, or slightly larger than, that defined using 4D-CT. Conclusion: The results of our study have shown that cine CT is a promising alternative to 4D-CT for stereotactic radiotherapy planning.« less

  11. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy.

    PubMed

    Liu, Han; Wu, Qiuwen

    2011-08-07

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed

  12. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less

  13. Opinion Integration and Summarization

    ERIC Educational Resources Information Center

    Lu, Yue

    2011-01-01

    As Web 2.0 applications become increasingly popular, more and more people express their opinions on the Web in various ways in real time. Such wide coverage of topics and abundance of users make the Web an extremely valuable source for mining people's opinions about all kinds of topics. However, since the opinions are usually expressed as…

  14. Epithelioid hemangioendothelioma of the spine treated with RapidArc volumetric-modulated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Jean-Baptiste; Trone, Jane-Chloé; Chargari, Cyrus

    2014-10-01

    Radiotherapy for epithelioid hemangioendothelioma (EHE) using volumetric intensity-modulated arc radiotherapy (VMAT). A 48-year-old woman was referred for curative irradiation of a vertebral EHE after failure of surgery. A comparison between VMAT and conventional conformal tridimensional (3D) dosimetry was performed and potential advantage of VMAT for sparing critical organs from irradiation's side effects was discussed. The total delivered dose on the planning target volume was 54 Gy in 27 fractions. The patient was finally treated with VMAT. The tolerance was excellent. There was no acute toxicity, including no increase in pain. With a follow-up of 18 months, no delayed toxicity wasmore » reported. The clinical response consisted of a decrease in the dorsal pain. The D{sub max} for the spinal cord was reduced from 55 Gy (3D-radiotherapy [RT]) (which would be an unacceptable dose to the spine because of the risk of myelopathy) to 42.8 Gy (VMAT), which remains below the recommended dose threshold (45 Gy). The dose delivered to 20% of organ volume (D{sub 20}) was reduced from 47 Gy (3D-RT) to 3 Gy (VMAT) for the spinal cord. The study shows that VMAT allows the delivery of curative treatment for vertebral EHEs because of critical organ sparing.« less

  15. SU-F-T-119: Development of Heart Prediction Model to Increase Accuracy of Dose Reconstruction for Radiotherapy Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, E; Choi, M; Lee, C

    Purpose: To assess individual variation in heart volume and location in order to develop a prediction model of the heart. This heart prediction model will be used to calculate individualized heart doses for radiotherapy patients in epidemiological studies. Methods: Chest CT images for 30 adult male and 30 adult female patients were obtained from NIH Clinical Center. Image-analysis computer programs were used to segment the whole heart and 8 sub-regions and to measure the volume of each sub- region and the dimension of the whole heart. An analytical dosimetry method was used for the 30 adult female patients to estimatemore » mean heart dose during conventional left breast radiotherapy. Results: The average volumes of the whole heart were 803.37 cm{sup 3} (COV 18.8%) and 570.19 cm{sup 3} (COV 18.8%) for adult male and female patients, respectively, which are comparable with the international reference volumes of 807.69 cm{sup 3} for males and 596.15 cm{sup 3} for females. Some patient characteristics were strongly correlated (R{sup 2}>0.5) with heart volume and heart dimensions (e.g., Body Mass Index vs. heart depth in males: R{sup 2}=0.54; weight vs. heart width in the adult females: R{sup 2}=0.63). We found that the mean heart dose 3.805 Gy (assuming prescribed dose of 50 Gy) in the breast radiotherapy simulations of the 30 adult females could be an underestimate (up to 1.6-fold) or overestimate (up to 1.8-fold) of the patient-specific heart dose. Conclusion: The study showed the significant variation in patient heart volumes and dimensions, resulting in substantial dose errors when a single average heart model is used for retrospective dose reconstruction. We are completing a multivariate analysis to develop a prediction model of the heart. This model will increase accuracy in dose reconstruction for radiotherapy patients and allow us to individualize heart dose calculations for patients whose CT images are not available.« less

  16. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy.

    PubMed

    Qi, X Sharon; Liu, Tian X; Liu, Arthur K; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0)Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2)Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed-field radiotherapy

  17. Single-Fraction Intraoperative Radiotherapy for Breast Cancer: Early Cosmetic Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beal, Kathryn; McCormick, Beryl; Zelefsky, Michael J.

    2007-09-01

    Purpose: To evaluate the cosmetic outcome of patients treated with wide local excision and intraoperative radiotherapy for early-stage breast cancer. Methods and Materials: A total of 50 women were treated on a pilot study to evaluate the feasibility of intraoperative radiotherapy at wide local excision. The eligibility criteria included age >60, tumor size {<=}2.0 cm, clinically negative lymph nodes, and biopsy-established diagnosis. After wide local excision, a custom breast applicator was placed in the excision cavity, and a dose of 20 Gy was prescribed to a depth of 1 cm. After 18 patients were treated, the dose was constrained laterallymore » to 18 Gy. The cosmetic outcome was evaluated by photographs at baseline and at 6 and 12 months postoperatively. Four examiners graded the photographs for symmetry, edema, discoloration, contour, and scarring. The grades were evaluated in relationship to the volume of irradiated tissue, tumor location, and dose at the lateral aspects of the cavity. Results: The median volume of tissue receiving 100% of the prescription dose was 47 cm{sup 3} (range, 20-97 cm{sup 3}). Patients with {<=}47 cm{sup 3} of treated tissue had better cosmetic outcomes than did the women who had >47 cm{sup 3} of treated tissue. Women who had received 18 Gy at the lateral aspects of their cavities had better cosmetic outcomes than did women who had received 20 Gy at the lateral aspects. When comparing the 6- and 12-month results, the scores remained stable for 63%, improved for 17%, and worsened for 20%. Conclusion: Intraoperative radiotherapy appears feasible for selected patients. A favorable cosmetic outcome appears to be related to a smaller treatment volume. The cosmetic outcome is acceptable, although additional follow-up is necessary.« less

  18. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-07

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  19. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  20. Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy.

    PubMed

    Vali, Faisal S; Nagda, Suneel; Hall, William; Sinacore, James; Gao, Mingcheng; Lee, Steven H; Hong, Robert; Shoup, Margaret; Emami, Bahman

    2010-11-15

    To study various standardized uptake value (SUV)-based approaches to ascertain the best strategy for delineating metabolic tumor volumes (MTV). Twenty-two consecutive previously treated esophageal cancer patients with positron emission tomography (PET) imaging and computed tomography (CT)-based radiotherapy plans were studied. At the level of the tumor epicenter, MTVs were delineated at 11 different thresholds: SUV ≥2, ≥2.5, ≥3, ≥3.5 (SUV(n)); ≥40%, ≥45%, and ≥50% of the maximum (SUV(n%)); and mean liver SUV + 1, 2, 3, and 4 standard deviations (SUV(Lnσ)). The volume ratio and conformality index were determined between MTVs, and the corresponding CT/endoscopic ultrasound-based gross tumor volume (GTV) at the epicenter. Means were analyzed by one-way analysis of variance for repeated measures and further compared using a paired t test for repeated measures. The mean conformality indices ranged from 0.33 to 0.48, being significantly (p < 0.05) closest to 1 at SUV(2.5) (0.47 ± 0.03) and SUV(L4σ) (0.48 ± 0.03). The mean volume ratios ranged from 0.39 to 2.82, being significantly closest to 1 at SUV(2.5) (1.18 ± 0.36) and SUV(L4σ) (1.09 ± 0.15). The mean value of the SUVs calculated using the SUV(L4σ) approach was 2.4. Regardless of the SUV thresholding method used (i.e., absolute or relative to liver mean), a threshold of approximately 2.5 yields the highest conformality index and best approximates the CT-based GTV at the epicenter. These findings may ultimately aid radiation oncologists in the delineation of the entire GTV in esophageal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Retroperitoneal sarcoma (RPS) high risk gross tumor volume boost (HR GTV boost) contour delineation agreement among NRG sarcoma radiation and surgical oncologists.

    PubMed

    Baldini, Elizabeth H; Bosch, Walter; Kane, John M; Abrams, Ross A; Salerno, Kilian E; Deville, Curtiland; Raut, Chandrajit P; Petersen, Ivy A; Chen, Yen-Lin; Mullen, John T; Millikan, Keith W; Karakousis, Giorgos; Kendrick, Michael L; DeLaney, Thomas F; Wang, Dian

    2015-09-01

    Curative intent management of retroperitoneal sarcoma (RPS) requires gross total resection. Preoperative radiotherapy (RT) often is used as an adjuvant to surgery, but recurrence rates remain high. To enhance RT efficacy with acceptable tolerance, there is interest in delivering "boost doses" of RT to high-risk areas of gross tumor volume (HR GTV) judged to be at risk for positive resection margins. We sought to evaluate variability in HR GTV boost target volume delineation among collaborating sarcoma radiation and surgical oncologist teams. Radiation planning CT scans for three cases of RPS were distributed to seven paired radiation and surgical oncologist teams at six institutions. Teams contoured HR GTV boost volumes for each case. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. HRGTV boost volume contour agreement between the seven teams was "substantial" or "moderate" for all cases. Agreement was best on the torso wall posteriorly (abutting posterior chest abdominal wall) and medially (abutting ipsilateral para-vertebral space and great vessels). Contours varied more significantly abutting visceral organs due to differing surgical opinions regarding planned partial organ resection. Agreement of RPS HRGTV boost volumes between sarcoma radiation and surgical oncologist teams was substantial to moderate. Differences were most striking in regions abutting visceral organs, highlighting the importance of collaboration between the radiation and surgical oncologist for "individualized" target delineation on the basis of areas deemed at risk and planned resection.

  2. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    PubMed

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  3. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, J; Okuda, T; Sakaino, S

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determinemore » the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable

  4. Postoperative Radiotherapy Patterns of Care and Survival Implications for Medulloblastoma in Young Children.

    PubMed

    Kann, Benjamin H; Park, Henry S; Lester-Coll, Nataniel H; Yeboa, Debra N; Benitez, Viviana; Khan, Atif J; Bindra, Ranjit S; Marks, Asher M; Roberts, Kenneth B

    2016-12-01

    postoperative radiotherapy deferred (5-year OS: 82.0% vs 63.4%; P < .001). On multivariable analysis, variables associated with poorer OS were postoperative radiotherapy deferral (hazards ratio [HR], 1.95; 95% CI, 1.15-3.31); stage M1-3 disease (HR, 1.86; 95% CI, 1.10-3.16), and low facility volume (HR, 1.75; 95% CI, 1.04-2.94). Our national database analysis reveals a higher-than-expected and increasing rate of postoperative radiotherapy deferral in children with medulloblastoma ages 3 to 8 years. The analysis suggests that postoperative radiotherapy deferral is associated with worse survival in this age group, even in the modern era of chemotherapy.

  5. Environmental Projects. Volume 17; Biological Assessment, Opinion, and New 34-Meter Beam-Waveguide Antenna (DSS 24) at Apollo Site

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irving

    1996-01-01

    This report deals with the Biological Assessment, Biological Opinion and Final Report on the construction of a high- efficiency 34-meter, multifrequency beam-waveguide antenna at the Apollo Site of the Goldstone Deep Space Communications Complex, operated by JPL. According to the Endangered Species Act of 1973, a Biological Assessment must be conducted and a Biological Opinion, with terms and conditions, rendered (the Opinion by the U.S. Department of the Interior) before construction of any federal project that may affect endangered or threatened flora or fauna. After construction, a final report is filed with the Department. The desert tortoise, designated "threatened" by the U.S. Fish and Wildlife Service, and the Mojave ground squirrel and the Lane Mountain milk vetch, both designated "candidate threatened," required the reporting specified by the Act. The Assessment found no significant danger to the animal species if workers are educated about them. No stands of the plant species were observed in the surveyed construction area. The Department issued a Biological Opinion to safeguard the two animal species. The Service and the California Department of Fish and Game both issued a Biological Concurrence that JPL had satisfied all environmental criteria for preserving threatened species.

  6. Radiobiological concepts for treatment planning of schemes that combines external beam radiotherapy and systemic targeted radiotherapy

    NASA Astrophysics Data System (ADS)

    Fabián Calderón Marín, Carlos; González González, Joaquín Jorge; Laguardia, Rodolfo Alfonso

    2017-09-01

    The combination of radiotherapy modalities with external bundles and systemic radiotherapy (CIERT) could be a reliable alternative for patients with multiple lesions or those where treatment planning maybe difficult because organ(s)-at-risk (OARs) constraints. Radiobiological models should have the capacity for predicting the biological irradiation response considering the differences in the temporal pattern of dose delivering in both modalities. Two CIERT scenarios were studied: sequential combination in which one modality is executed following the other one and concurrent combination when both modalities are running simultaneously. Expressions are provided for calculation of the dose-response magnitudes Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP). General results on radiobiological modeling using the linear-quadratic (LQ) model are also discussed. Inter-subject variation of radiosensitivity and volume irradiation effect in CIERT are studied. OARs should be under control during the planning in concurrent CIERT treatment as the administered activity is increased. The formulation presented here may be used for biological evaluation of prescriptions and biological treatment planning of CIERT schemes in clinical situation.

  7. Radiation-induced complications in prostate cancer patients treated with radiotherapy

    NASA Astrophysics Data System (ADS)

    Azuddin, A. Yusof; Rahman, I. Abdul; Siah, N. J.; Mohamed, F.; Saadc, M.; Ismail, F.

    2014-09-01

    The purpose of the study is to determine the relationship between radiation-induced complications with dosimetric and radiobiological parameters for prostate cancer patients that underwent the conformal radiotherapy treatment. 17 prostate cancer patients that have been treated with conformal radiotherapy were retrospectively analysed. The dosimetric data was retrieved in the form of dose-volume histogram (DVH) from Radiotherapy Treatment Planning System. The DVH was utilised to derived Normal Tissue Complication Probability (NTCP) in radiobiological data. Follow-up data from medical records were used to grade the occurrence of acute gastrointestinal (GI) and genitourinary (GU) complications using Radiation Therapy Oncology Group (RTOG) scoring system. The chi-square test was used to determine the relationship between radiation-induced complication with dosimetric and radiobiological parameters. 8 (47%) and 7 (41%) patients were having acute GI and GU complications respectively. The acute GI complication can be associated with V60rectum, rectal mean dose and NTCPrectum with p-value of 0.016, 0.038 and 0.049 respectively. There are no significant relationships of acute GU complication with dosimetric and radiobiological variables. Further study can be done by increase the sample size and follow up duration for deeper understanding of the factors that effecting the GU and GI complication in prostate cancer radiotherapy.

  8. Expert opinion vs. empirical evidence

    PubMed Central

    Herman, Rod A; Raybould, Alan

    2014-01-01

    Expert opinion is often sought by government regulatory agencies when there is insufficient empirical evidence to judge the safety implications of a course of action. However, it can be reckless to continue following expert opinion when a preponderance of evidence is amassed that conflicts with this opinion. Factual evidence should always trump opinion in prioritizing the information that is used to guide regulatory policy. Evidence-based medicine has seen a dramatic upturn in recent years spurred by examples where evidence indicated that certain treatments recommended by expert opinions increased death rates. We suggest that scientific evidence should also take priority over expert opinion in the regulation of genetically modified crops (GM). Examples of regulatory data requirements that are not justified based on the mass of evidence are described, and it is suggested that expertise in risk assessment should guide evidence-based regulation of GM crops. PMID:24637724

  9. Decreasing Temporal Lobe Dose With Five-Field Intensity-Modulated Radiotherapy for Treatment of Pituitary Macroadenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda

    2010-10-01

    Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less

  10. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    PubMed

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  11. Trend in and Correlates of Undergoing Radiotherapy in Taiwanese Cancer Patients' Last Month of Life.

    PubMed

    Hung, Yen-Ni; Cheng, Skye Hung-Chun; Liu, Tsang-Wu; Chang, Wen-Cheng; Chen, Jen-Shi; Tang, Siew Tzuh

    2016-09-01

    A significant proportion of cancer patients at end of life (EOL) undergo radiotherapy, but this evidence is not from nationwide population-based studies. The aims of this population-based study were to investigate the trend in undergoing radiotherapy among Taiwanese cancer patients' last month of life (EOL radiotherapy) in 2001-2010 and to identify factors associated with EOL radiotherapy. This was a population-based retrospective cohort study analyzing data from Taiwan's national death registry, cancer registry, and National Health Insurance claims for EOL radiotherapy using multilevel generalized linear mixed modeling. Participants were Taiwanese cancer patients (N = 339,546) who died in 2001-2010. Overall, 8.59% (7.97%-9.85%) of patients underwent EOL radiotherapy with a decreasing trend over time. Correlates of EOL radiotherapy included male gender, younger age, residing in less urbanized areas, diagnosis of lung cancer, metastatic disease, death within two years of diagnosis, and without comorbidities. Cancer patients were more likely to undergo EOL radiotherapy if they received primary care from medical oncologists and pediatricians, in a nonprofit, teaching hospital with a larger case volume of terminally ill cancer patients, and greater EOL care intensity. Approximately one-tenth of Taiwanese cancer patients underwent EOL radiotherapy with a decreasing trend over time. Undergoing EOL radiotherapy was associated with demographics, disease characteristics, physician specialty, and primary hospital's characteristics and EOL care practice patterns. Clinical and financial interventions should target hospitals/physicians that tend to aggressively treat at-risk cancer patients at EOL to carefully evaluate the appropriateness and effectiveness of using EOL radiotherapy. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  12. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression.

    PubMed

    Han, Chunhui; Sampath, Sagus; Schultheisss, Timothy E; Wong, Jeffrey Y C

    2017-01-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non-small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  13. Feasibility of Adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of Lung Tumors

    PubMed Central

    Simpson, Garrett N; Llorente, Ricardo; Samuels, Michael A; Dogan, Nesrin

    2018-01-01

    Online adaptive radiotherapy (ART) with frequent imaging has the potential to improve dosimetric accuracy by accounting for anatomical and functional changes during the course of radiotherapy. Presented are three interesting cases that provide an assessment of online adaptive magnetic resonance-guided radiotherapy (MRgRT) for lung stereotactic body radiotherapy (SBRT). The study includes three lung SBRT cases, treated on an MRgRT system where MR images were acquired for planning and prior to each treatment fraction. Prescription dose ranged from 48 to 50 Gy in four to five fractions, normalized to where 95% of the planning target volume (PTV) was covered by 100% of the prescription dose. The process begins with the gross tumor volume (GTV), PTV, spinal cord, lungs, heart, and esophagus being delineated on the planning MRI. The treatment plan was then generated using a step-and-shoot intensity modulated radiotherapy (IMRT) technique, which utilized a Monte Carlo dose calculation. Next, the target and organs at risk (OAR) contours from the planning MRI were deformably propagated to the daily setup MRIs. These deformed contours were reviewed and modified by the physician. To determine the efficacy of ART, two different strategies were explored: 1) Calculating the plan created for the planning MR on each fraction setup MR dataset (Non-Adapt) and 2) creating a new optimized IMRT plan on the fraction setup MR dataset (FxAdapt). The treatment plans from both strategies were compared using the clinical dose-volume constraints. PTV coverage constraints were not met for 33% Non-Adapt fractions; all FxAdapt fractions met this constraint. Eighty-eight percent of all OAR constraints studied were better on FxAdapt plans, while 12% of OAR constraints were superior on Non-Adapt fractions. The OAR that garnered the largest benefit would be the uninvolved lung, with superior sparing in 92% of the FxAdapt studied. Similar, but less pronounced, benefits from adaptive planning were

  14. Is Adaptive Treatment Planning Required for Stereotactic Radiotherapy of Stage I Non-Small-Cell Lung Cancer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasbeek, Cornelis J.A.; Lagerwaard, Frank J.; Cuijpers, Johan P.

    2007-04-01

    Purpose: Changes in position or size of target volumes have been observed during radiotherapy for lung cancer. The need for adaptive treatment planning during stereotactic radiotherapy of Stage I tumors was retrospectively analyzed using repeat four-dimensional computed tomography (4DCT) scans. Methods and Materials: A planning study was performed for 60 tumors in 59 patients using 4DCT scans repeated after two or more treatment fractions. Planning target volumes (PTV) encompassed all tumor mobility, and dose distributions from the initial plan were projected onto PTVs derived from the repeat 4DCT. A dosimetric and volumetric analysis was performed. Results: The repeat 4DCT scansmore » were performed at a mean of 6.6 days (range, 2-12 days) after the first fraction of stereotactic radiotherapy. In 25% of cases the repeat PTV was larger, but the difference exceeded 1 mL in 5 patients only. The mean 3D displacement between the center of mass of both PTVs was 2.0 mm. The initial 80% prescription isodose ensured a mean coverage of 98% of repeat PTVs, and this isodose fully encompassed the repeat internal target volumes in all but 1 tumor. 'Inadequate' coverage in the latter was caused by a new area of atelectasis adjacent to the tumor on the repeat 4DCT. Conclusions: Limited 'time trends' were observed in PTVs generated by repeated uncoached 4DCT scans, and the dosimetric consequences proved to be minimal. Treatment based only on the initial PTV would not have resulted in major tumor underdosage, indicating that adaptive treatment planning is of limited value for fractionated stereotactic radiotherapy.« less

  15. Enraged about radiotherapy.

    PubMed Central

    Sikora, K.

    1994-01-01

    The use of radiotherapy in treating breast cancer has meant that many women are able to avoid mastectomy, which is both physically and psychologically damaging. The side effects of radiotherapy, however, are given little attention. Many women have developed brachial plexus injury after radiotherapy for breast cancer, often resulting in severe pain and loss of use of the arm. There is no effective treatment for this injury and little help can be offered. In addition, many of the women did not require radiotherapy of nodal areas. A pressure group has been formed to support these women, to establish the right to compensation, and to ensure that radiotherapy regimens given to future patients will not damage the brachial plexus. Images p188-a PMID:8312773

  16. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    PubMed Central

    Liu, Han; Wu, Qiuwen

    2011-01-01

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can be further reduced by 1–2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such hybrid strategy on the target and organs at risk (OARs). A total of 420 repeated helical computed tomography (HCT) scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass (COM) shift of prostate only and prostate plus SV, were performed for IRP. The intensity modulated radiotherapy (IMRT) was used in the simulation. Criteria on both cumulative dose and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0 mm to 1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRP and 3–4 for IRP in a hypofractionation protocol. A new

  17. Dosimetric comparison of carbon ion and X-ray radiotherapy for Stage IIIA non-small cell lung cancer.

    PubMed

    Kubo, Nobuteru; Saitoh, Jun-Ichi; Shimada, Hirofumi; Shirai, Katsuyuki; Kawamura, Hidemasa; Ohno, Tatsuya; Nakano, Takashi

    2016-09-01

    The present study compared the dose-volume histograms of patients with Stage IIIA non-small cell lung cancer (NSCLC) treated with carbon ion radiotherapy with those of patients treated with X-ray radiotherapy. Patients with Stage IIIA NSCLC (n = 10 patients for each approach) were enrolled. Both radiotherapy plans were calculated with the same targets and organs at risk on the same CT. The treatment plan for the prophylactic lymph node and primary tumor (PTV1) delivered 40 Gy for X-ray radiotherapy and 40 Gy (relative biological effectiveness; RBE) for carbon ion radiotherapy. The total doses for the primary tumor and clinically positive lymph nodes (PTV2) were 60 Gy for X-ray radiotherapy and 60 Gy (RBE) for carbon ion radiotherapy. The homogeneity indexes for PTV1 and PTV2 were superior for carbon ion radiotherapy in comparison with X-ray radiotherapy (PTV1, 0.57 vs 0.65, P = 0.009; PTV2, 0.07 vs 0.16, P = 0.005). The normal lung mean dose, V5, V10 and V20 for carbon ion radiotherapy were 7.7 Gy (RBE), 21.4%, 19.7% and 17.0%, respectively, whereas the corresponding doses for X-ray radiotherapy were 11.9 Gy, 34.9%, 26.6% and 20.8%, respectively. Maximum spinal cord dose, esophageal maximum dose and V50, and bone V10, V30 and V50 were lower with carbon ion radiotherapy than with X-ray radiotherapy. The present study indicates that carbon ion radiotherapy provides a more homogeneous target dose and a lower dose to organs at risk than X-ray radiotherapy for Stage IIIA non-small cell lung cancer. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donovan, E. M.; James, H.; Bonora, M.

    2012-10-15

    Purpose: To compare organ specific cancer incidence risks for standard and complex external beam radiotherapy (including cone beam CT verification) following breast conservation surgery for early breast cancer.Method: Doses from breast radiotherapy and kilovoltage cone beam CT (CBCT) exposures were obtained from thermoluminescent dosimeter measurements in an anthropomorphic phantom in which the positions of radiosensitive organs were delineated. Five treatment deliveries were investigated: (i) conventional tangential field whole breast radiotherapy (WBRT), (ii) noncoplanar conformal delivery applicable to accelerated partial beast irradiation (APBI), (iii) two-volume simultaneous integrated boost (SIB) treatment, (iv) forward planned three-volume SIB, and (v) inverse-planned three volume SIB.more » Conformal and intensity modulated radiotherapy methods were used to plan the complex treatments. Techniques spanned the range from simple methods appropriate for patient cohorts with a low cancer recurrence risk to complex plans relevant to cohorts with high recurrence risk. Delineated organs at risk included brain, salivary glands, thyroid, contralateral breast, left and right lung, esophagus, stomach, liver, colon, and bladder. Biological Effects of Ionizing Radiation (BEIR) VII cancer incidence models were applied to the measured mean organ doses to determine lifetime attributable risk (LAR) for ages at exposure from 35 to 80 yr according to radiotherapy techniques, and included dose from the CBCT imaging. Results: All LAR decreased with age at exposure and were lowest for brain, thyroid, liver, and bladder (<0.1%). There was little dependence of LAR on radiotherapy technique for these organs and for colon and stomach. LAR values for the lungs for the three SIB techniques were two to three times those from WBRT and APBI. Uncertainties in the LAR models outweigh any differences in lung LAR between the SIB methods. Constraints in the planning of the SIB methods

  19. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    PubMed

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  20. Competing opinion diffusion on social networks.

    PubMed

    Hu, Haibo

    2017-11-01

    Opinion competition is a common phenomenon in real life, such as with opinions on controversial issues or political candidates; however, modelling this competition remains largely unexplored. To bridge this gap, we propose a model of competing opinion diffusion on social networks taking into account degree-dependent fitness or persuasiveness. We study the combined influence of social networks, individual fitnesses and attributes, as well as mass media on people's opinions, and find that both social networks and mass media act as amplifiers in opinion diffusion, the amplifying effect of which can be quantitatively characterized. We analytically obtain the probability that each opinion will ultimately pervade the whole society when there are no committed people in networks, and the final proportion of each opinion at the steady state when there are committed people in networks. The results of numerical simulations show good agreement with those obtained through an analytical approach. This study provides insight into the collective influence of individual attributes, local social networks and global media on opinion diffusion, and contributes to a comprehensive understanding of competing diffusion behaviours in the real world.

  1. Opinion competition dynamics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Amato, R.; Kouvaris, N. E.; San Miguel, M.; Díaz-Guilera, A.

    2017-12-01

    Multilayer and multiplex networks represent a good proxy for the description of social phenomena where social structure is important and can have different origins. Here, we propose a model of opinion competition where individuals are organized according to two different structures in two layers. Agents exchange opinions according to the Abrams-Strogatz model in each layer separately and opinions can be copied across layers by the same individual. In each layer a different opinion is dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only possible stable solution because of the interaction between the two layers. A new mean field solution has been found where both opinions coexist. In a finite system there is a long transient time for the dynamical coexistence of both opinions. However, the system ends in a consensus state due to finite size effects. We analyze sparse topologies in the two layers and the existence of positive correlations between them, which enables the coexistence of inter-layer groups of agents sharing the same opinion.

  2. Non-consensus Opinion Models on Complex Networks

    NASA Astrophysics Data System (ADS)

    Li, Qian; Braunstein, Lidia A.; Wang, Huijuan; Shao, Jia; Stanley, H. Eugene; Havlin, Shlomo

    2013-04-01

    Social dynamic opinion models have been widely studied to understand how interactions among individuals cause opinions to evolve. Most opinion models that utilize spin interaction models usually produce a consensus steady state in which only one opinion exists. Because in reality different opinions usually coexist, we focus on non-consensus opinion models in which above a certain threshold two opinions coexist in a stable relationship. We revisit and extend the non-consensus opinion (NCO) model introduced by Shao et al. (Phys. Rev. Lett. 103:01870, 2009). The NCO model in random networks displays a second order phase transition that belongs to regular mean field percolation and is characterized by the appearance (above a certain threshold) of a large spanning cluster of the minority opinion. We generalize the NCO model by adding a weight factor W to each individual's original opinion when determining their future opinion (NCO W model). We find that as W increases the minority opinion holders tend to form stable clusters with a smaller initial minority fraction than in the NCO model. We also revisit another non-consensus opinion model based on the NCO model, the inflexible contrarian opinion (ICO) model (Li et al. in Phys. Rev. E 84:066101, 2011), which introduces inflexible contrarians to model the competition between two opinions in a steady state. Inflexible contrarians are individuals that never change their original opinion but may influence the opinions of others. To place the inflexible contrarians in the ICO model we use two different strategies, random placement and one in which high-degree nodes are targeted. The inflexible contrarians effectively decrease the size of the largest rival-opinion cluster in both strategies, but the effect is more pronounced under the targeted method. All of the above models have previously been explored in terms of a single network, but human communities are usually interconnected, not isolated. Because opinions propagate not

  3. Radiotherapy of rectal cancer in elderly patients: Real-world data assessment in a decade.

    PubMed

    Diao, Peng; Langrand-Escure, Julien; Garcia, Max-Adrien; Espenel, Sophie; Rehailia-Blanchard, Amel; de Lavigerie, Blandine; Vial, Nicolas; de Laroche, Guy; Vallard, Alexis; Magné, Nicolas

    2018-06-01

    There is paucity of data on the efficacy and toxicity of radiotherapy in rectal cancer (RC) elderly patients. The objective was to identify management strategies and resulting outcomes in RC patients ≥70 years undergoing radiotherapy. A retrospective study included consecutive RC patients ≥70 years undergoing rectal radiotherapy. From 2004-2015, 340 RC patients underwent pre-operative (n = 238; 70%), post-operative (n = 41, 12%), or exclusive (n = 61, 18%) radiotherapy, with a median age of 78.5 years old (range: 70-96). Radiotherapy protocols were tailored, with 54 different radiotherapy programs (alteration of the total dose, and/or fractionation, and/or volume). Median follow-up was 27.1 months. Acute and late grade 3-4 radio-induced toxicities were reported in 3.5% and 0.9% of patients. Metastatic setting (OR = 6.60, CI95% 1.47-46.03, p = 0.02), exclusive radiotherapy (OR = 5.08, CI95% 1.48-18.21, p = 0.009), and intensity-modulated radiotherapy (OR = 6.42, CI95% 1.31-24.73, p = 0.01) were associated with grade ≥3 acute toxicities in univariate analysis. Exclusive radiotherapy (OR = 9.79, CI95% 2.49-43.18, p = 0.001) and intensity-modulated radiotherapy (OR = 12.62, CI95% 2.05-71.26, p = 0.003) were independent predictive factors of grade ≥3 acute toxicities in multivariate analysis. A complete pathological response was achieved in 12 out of 221 pre-operative patients (5.4%). Age, tumor stage, and surgery were independent predictive factors of survival in multivariate analysis. At end of follow-up, 7.1% of patients experienced local relapse. Radiotherapy for RC in elderly patients appeared safe and manageable, perhaps due to the tailoring of radiotherapy protocols. Tailored management resulted in acceptable rate of local tumor control. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Dose-volume effects for pelvic bone marrow in predicting hematological toxicity in prostate cancer radiotherapy with pelvic node irradiation.

    PubMed

    Sini, Carla; Fiorino, Claudio; Perna, Lucia; Noris Chiorda, Barbara; Deantoni, Chiara Lucrezia; Bianchi, Marco; Sacco, Vincenzo; Briganti, Alberto; Montorsi, Francesco; Calandrino, Riccardo; Di Muzio, Nadia; Cozzarini, Cesare

    2016-01-01

    To prospectively identify clinical/dosimetric predictors of acute/late hematologic toxicity (HT) in chemo-naÏve patients treated with whole-pelvis radiotherapy (WPRT) for prostate cancer. Data of 121 patients treated with adjuvant/salvage WPRT were analyzed (static-field IMRT n=19; VMAT/Rapidarc n=57; Tomotherapy n=45). Pelvic bone marrow (BM) was delineated as ilium (IL), lumbosacral, lower and whole pelvis (WP), and the relative DVHs were calculated. HT was graded both according to CTCAE v4.03 and as variation in percentage relative to baseline. Logistic regression was used to analyze association between HT and clinical/DVHs factors. Significant differences (p<0.005) in the DVH of BM volumes between different techniques were found: Tomotherapy was associated with larger volumes receiving low doses (3-20 Gy) and smaller receiving 40-50 Gy. Lower baseline absolute values of WBC, neutrophils and lymphocytes (ALC) predicted acute/late HT (p ⩽ 0.001). Higher BM V40 was associated with higher risk of acute Grade3 (OR=1.018) or late Grade2 lymphopenia (OR=1.005). Two models predicting lymphopenia were developed, both including baseline ALC, and BM WP-V40 (AUC=0.73) and IL-V40+smoking (AUC=0.904) for acute/late respectively. Specific regions of pelvic BM predicting acute/late lymphopenia, a risk factor for viral infections, were identified. The 2-variable models including specific constraints to BM may help reduce HT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Cardiac Exposure in the Dynamic Conformal Arc Therapy, Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy of Lung Cancer

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Huan; Zhang, Ying; Zhou, Li; Deng, Jun

    2015-01-01

    Purpose To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years. Methods and Materials A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated. Results The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance. Conclusions Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy. PMID:26630566

  6. Factors Influencing Neurocognitive Outcomes in Young Patients With Benign and Low-Grade Brain Tumors Treated With Stereotactic Conformal Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalali, Rakesh, E-mail: rjalali@tmc.gov.i; Mallick, Indranil; Dutta, Debnarayan

    2010-07-15

    Purpose: To present the effect of radiotherapy doses to different volumes of normal structures on neurocognitive outcomes in young patients with benign and low-grade brain tumors treated prospectively with stereotactic conformal radiotherapy (SCRT). Methods and Materials: Twenty-eight patients (median age, 13 years) with residual/progressive brain tumors (10 craniopharyngioma, 8 cerebellar astrocytoma, 6 optic pathway glioma and 4 cerebral low-grade glioma) were treated with SCRT to a dose of 54 Gy in 30 fractions over 6 weeks. Prospective neuropsychological assessments were done at baseline before RT and at subsequent follow-up examinations. The change in intelligence quotient (IQ) scores was correlated withmore » various factors, including dose-volume to normal structures. Results: Although the overall mean full-scale IQ (FSIQ) at baseline before RT remained unchanged at 2-year follow-up after SCRT, one third of patients did show a >10% decline in FSIQ as compared with baseline. Logistic regression analysis demonstrated that patients aged <15 years had a significantly higher chance of developing a >10% drop in FSIQ than older patients (53% vs. 10%, p = 0.03). Dosimetric comparison in patients showing a >10% decline vs. patients showing a <10% decline in IQ revealed that patients receiving >43.2 Gy to >13% of volume of the left temporal lobe were the ones to show a significant drop in FSIQ (p = 0.048). Radiotherapy doses to other normal structures, including supratentorial brain, right temporal lobe, and frontal lobes, did not reveal any significant correlation. Conclusion: Our prospectively collected dosimetric data show younger age and radiotherapy doses to left temporal lobe to be predictors of neurocognitive decline, and may well be used as possible dose constraints for high-precision radiotherapy planning.« less

  7. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  8. Microvascular transplants in head and neck reconstruction: 3D evaluation of volume loss.

    PubMed

    Bittermann, Gido; Thönissen, Philipp; Poxleitner, Philipp; Zimmerer, Ruediger; Vach, Kirstin; Metzger, Marc C

    2015-10-01

    Despite oversized latissimus dorsi free flap reconstruction in the head and neck area, esthetic and functional problems continue to exist due to the well-known occurrence of transplant shrinkage. The purpose of this study was to acquire an estimation of the volume and time of the shrinkage process. The assessment of volume loss was performed using a 3D evaluation of two postoperative CT scans. A retrospective review was conducted on all latissimus dorsi free flap reconstructions performed between 2004 and 2013. Inclusion criteria for the assessment were: resection of an oral carcinoma and microsurgical defect coverage with latissimus dorsi free flap; a first postoperative CT (CT1) performed between 3 weeks and a maximum of 3 months after reconstruction surgery; and an additional CT scan (CT2) performed at least one year postoperatively. The exclusion criterion was surgical intervention in the local area between the acquisition of CT1 and CT2. The effect of adjuvant radiation therapy was considered. Volume determination of the transplant was carried out in CT1 and CT2 by manual segmentation of the graft. Fifteen patients were recruited. 3D evaluation showed an average volume loss of 34.4%. In the consideration of postoperative radiotherapy the volume reduction was 39.2% in patients with radiotherapy and 31.3% in patients without radiotherapy. The reconstruction flap volume required for overcorrection of the surgical defect was investigated. This study indicates that a volume loss of more than 30% could be expected one or more years after latissimus dorsi free flap reconstruction. Clinical trial number DRKS00007534. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Three-dimensional conformal simultaneously integrated boost technique for breast-conserving radiotherapy.

    PubMed

    van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A

    2007-07-15

    To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.

  10. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    PubMed

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  11. Development of deformable moving lung phantom to simulate respiratory motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jina; Lee, Youngkyu; Shin, Hunjoo

    Radiation treatment requires high accuracy to protect healthy organs and destroy the tumor. However, tumors located near the diaphragm constantly move during treatment. Respiration-gated radiotherapy has significant potential for the improvement of the irradiation of tumor sites affected by respiratory motion, such as lung and liver tumors. To measure and minimize the effects of respiratory motion, a realistic deformable phantom is required for use as a gold standard. The purpose of this study was to develop and study the characteristics of a deformable moving lung (DML) phantom, such as simulation, tissue equivalence, and rate of deformation. The rate of changemore » of the lung volume, target deformation, and respiratory signals were measured in this study; they were accurately measured using a realistic deformable phantom. The measured volume difference was 31%, which closely corresponds to the average difference in human respiration, and the target movement was − 30 to + 32 mm. The measured signals accurately described human respiratory signals. This DML phantom would be useful for the estimation of deformable image registration and in respiration-gated radiotherapy. This study shows that the developed DML phantom can exactly simulate the patient's respiratory signal and it acts as a deformable 4-dimensional simulation of a patient's lung with sufficient volume change.« less

  12. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  13. Competing opinion diffusion on social networks

    PubMed Central

    2017-01-01

    Opinion competition is a common phenomenon in real life, such as with opinions on controversial issues or political candidates; however, modelling this competition remains largely unexplored. To bridge this gap, we propose a model of competing opinion diffusion on social networks taking into account degree-dependent fitness or persuasiveness. We study the combined influence of social networks, individual fitnesses and attributes, as well as mass media on people’s opinions, and find that both social networks and mass media act as amplifiers in opinion diffusion, the amplifying effect of which can be quantitatively characterized. We analytically obtain the probability that each opinion will ultimately pervade the whole society when there are no committed people in networks, and the final proportion of each opinion at the steady state when there are committed people in networks. The results of numerical simulations show good agreement with those obtained through an analytical approach. This study provides insight into the collective influence of individual attributes, local social networks and global media on opinion diffusion, and contributes to a comprehensive understanding of competing diffusion behaviours in the real world. PMID:29291101

  14. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution.

    PubMed

    Chen, Yi-Jen; Liu, An; Han, Chunhui; Tsai, Peter T; Schultheiss, Timothy E; Pezner, Richard D; Vora, Nilesh; Lim, Dean; Shibata, Stephen; Kernstine, Kemp H; Wong, Jeffrey Y C

    2007-01-01

    We compare different radiotherapy techniques-helical tomotherapy (tomotherapy), step-and-shoot IMRT (IMRT), and 3-dimensional conformal radiotherapy (3DCRT)-for patients with mid-distal esophageal carcinoma on the basis of dosimetric analysis. Six patients with locally advanced mid-distal esophageal carcinoma were treated with neoadjuvant chemoradiation followed by surgery. Radiotherapy included 50 Gy to gross planning target volume (PTV) and 45 Gy to elective PTV in 25 fractions. Tomotherapy, IMRT, and 3DCRT plans were generated. Dose-volume histograms (DVHs), homogeneity index (HI), volumes of lung receiving more than 10, 15, or 20 Gy (V(10), V(15), V(20)), and volumes of heart receiving more than 30 or 45 Gy (V(30), V(45)) were determined. Statistical analysis was performed by paired t-tests. By isodose distributions and DVHs, tomotherapy plans showed sharper dose gradients, more conformal coverage, and better HI for both gross and elective PTVs compared with IMRT or 3DCRT plans. Mean V(20) of lung was significantly reduced in tomotherapy plans. However, tomotherapy and IMRT plans resulted in larger V(10) of lung compared to 3DCRT plans. The heart was significantly spared in tomotherapy and IMRT plans compared to 3DCRT plans in terms of V(30) and V(45). We conclude that tomotherapy plans are superior in terms of target conformity, dose homogeneity, and V(20) of lung.

  15. SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, S; Cao, Y; Jolly, S

    2014-06-15

    Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01

  16. A Review of Update Clinical Results of Carbon Ion Radiotherapy

    PubMed Central

    Tsujii, Hirohiko; Kamada, Tadashi

    2012-01-01

    Among various types of ion species, carbon ions are considered to have the most balanced, optimal properties in terms of possessing physically and biologically effective dose localization in the body. This is due to the fact that when compared with photon beams, carbon ion beams offer improved dose distribution, leading to the concentration of the sufficient dose within a target volume while minimizing the dose in the surrounding normal tissues. In addition, carbon ions, being heavier than protons, provide a higher biological effectiveness, which increases with depth, reaching the maximum at the end of the beam's range. This is practically an ideal property from the standpoint of cancer radiotherapy. Clinical studies have been carried out in the world to confirm the efficacy of carbon ions against a variety of tumors as well as to develop effective techniques for delivering an efficient dose to the tumor. Through clinical experiences of carbon ion radiotherapy at the National Institute of Radiological Sciences and Gesellschaft für Schwerionenforschung, a significant reduction in the overall treatment time with acceptable toxicities has been obtained in almost all types of tumors. This means that carbon ion radiotherapy has meanwhile achieved for itself a solid place in general practice. This review describes clinical results of carbon ion radiotherapy together with physical, biological and technological aspects of carbon ions. PMID:22798685

  17. Long-term stability of radiotherapy dosimeters calibrated at the Polish Secondary Standard Dosimetry Laboratory.

    PubMed

    Ulkowski, Piotr; Bulski, Wojciech; Chełmiński, Krzysztof

    2015-10-01

    Unidos 10001, Unidos E (10008/10009) and Dose 1 electrometers from 14 radiotherapy centres were calibrated 3-4 times over a long period of time, together with Farmer type (PTW 30001, 30013, Nuclear Enterprises 2571 and Scanditronix-Wellhofer FC65G) cylindrical ionization chambers and plane-parallel type chambers (PTW Markus 23343 and Scanditronix-Wellhofer PPC05). On the basis of the long period of repetitive establishing of calibration coefficients for the same electrometers and ionization chambers, the accuracy of electrometers and the long-term stability of ionization chambers were examined. All measurements were carried out at the same laboratory, by the same staff, according to the same IAEA recommendations. A good accuracy and long-term stability of the dosimeters used in Polish radiotherapy centres was observed. These values were within 0.1% for electrometers and 0.2% for the chambers with electrometers. Furthermore, these values were not observed to vary over time. The observations confirm the opinion that the requirement of calibration of the dosimeters more often than every 2 years is not justified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The influence of pretreatment characteristics and radiotherapy parameters on time interval to development of radiation-associated meningioma.

    PubMed

    Paulino, Arnold C; Ahmed, Irfan M; Mai, Wei Y; Teh, Bin S

    2009-12-01

    To identify pretreatment characteristics and radiotherapy parameters which may influence time interval to development of radiation-associated meningioma (RAM). A Medline/PUBMED search of articles dealing with RAM yielded 66 studies between 1981 and 2006. Factors analyzed included patient age and gender, type of initial tumor treated, radiotherapy (RT) dose and volume, and time interval from RT to development of RAM. A total of 143 patients with a median age at RT of 12 years form the basis of this report. The most common initial tumors or conditions treated with RT were medulloblastoma (n = 27), pituitary adenoma (n = 20), acute lymphoblastic leukemia (n = 20), low-grade astrocytoma (n = 19), and tinea capitis (n = 14). In the 116 patients whose RT fields were known, 55 (47.4%) had a portion of the brain treated, whereas 32 (27.6%) and 29 (25.0%) had craniospinal and whole-brain fields. The median time from RT to develop a RAM or latent time (LT) was 19 years (range, 1-63 years). Male gender (p = 0.001), initial diagnosis of leukemia (p = 0.001), and use of whole brain or craniospinal field (p radiotherapy volume, and radiotherapy dose.

  19. Combined Proton and Photon Conformal Radiotherapy for Intracranial Atypical and Malignant Meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boskos, Christos; 251 General Hospital of Airforce, Athens; Feuvret, Loic

    2009-10-01

    Purpose: To evaluate retrospectively the efficacy of conformal fractionated radiotherapy combining proton and photon beams after primary surgery for treatment of atypical and malignant meningiomas. Patients and Methods: Between September 1999 and October 2006, 24 patients (12 male, 12 female) with histopathologically proven meningioma (atypical 19, malignant 5) received postoperative combined radiotherapy with a 201-MeV proton beam at the Centre Protontherapie d'Orsay and a high-energy photon beam. Six patients underwent gross total resection and 18 a subtotal resection. Median gross tumor volume and clinical target volume were 44.7 cm{sup 3} and 153.3 cm{sup 3}, respectively. Mean total irradiation dose wasmore » 65.01 CGE (cobalt gray equivalent), with a mean proton total dose of 34.05 CGE and a mean photon total dose 30.96 CGE. Results: The median (range) follow-up interval was 32.2 (1-72) months. The overall mean local relapse-free interval was 27.2 (10-50) months, 28.3 (10-50) months for atypical meningioma and 23 (13-33) months for malignant meningioma. Ten tumors recurred locally. One-, 2-, 3-, 4-, 5-, and 8- year local control rates for the entire group of patients were 82.9% {+-} 7.8%, 82.9% {+-} 7.8%, 61.3% {+-} 11%, 61.3% {+-} 11%, 46.7% {+-} 12.3%, and 46.7% {+-} 12.3%, respectively. One-, 2-, 3-, 4-, 5-, and 8- year overall survival rates were 100%, 95.5% {+-} 4.4%, 80.4% {+-} 8.8%, 65.3% {+-} 10.6%, 53.2% {+-} 11.6%, and 42.6% {+-} 13%, respectively. Survival was significantly associated with total dose. There was no acute morbidity of radiotherapy. One patient developed radiation necrosis 16 months after treatment. Conclusions: Postoperative combination of conformal radiotherapy with protons and photons for atypical and malignant meningiomas is a well-tolerated treatment producing long-term tumor stabilization.« less

  20. Breast Radiotherapy with Mixed Energy Photons; a Model for Optimal Beam Weighting.

    PubMed

    Birgani, Mohammadjavad Tahmasebi; Fatahiasl, Jafar; Hosseini, Seyed Mohammad; Bagheri, Ali; Behrooz, Mohammad Ali; Zabiehzadeh, Mansour; Meskani, Reza; Gomari, Maryam Talaei

    2015-01-01

    Utilization of high energy photons (>10 MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6 MV photons and then these calculations were repeated ten times with incorporating 18 MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV (Dmax) and the volume of CTV which covered with 95% Isodose line (VCTV, 95%IDL) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18 MV photons was defined as the intersection point of Dmax and VCTV, 95%IDL graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18 MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.

  1. Interobserver delineation variation in lung tumour stereotactic body radiotherapy

    PubMed Central

    Persson, G F; Nygaard, D E; Hollensen, C; Munck af Rosenschöld, P; Mouritsen, L S; Due, A K; Berthelsen, A K; Nyman, J; Markova, E; Roed, A P; Roed, H; Korreman, S; Specht, L

    2012-01-01

    Objectives In radiotherapy, delineation uncertainties are important as they contribute to systematic errors and can lead to geographical miss of the target. For margin computation, standard deviations (SDs) of all uncertainties must be included as SDs. The aim of this study was to quantify the interobserver delineation variation for stereotactic body radiotherapy (SBRT) of peripheral lung tumours using a cross-sectional study design. Methods 22 consecutive patients with 26 tumours were included. Positron emission tomography/CT scans were acquired for planning of SBRT. Three oncologists and three radiologists independently delineated the gross tumour volume. The interobserver variation was calculated as a mean of multiple SDs of distances to a reference contour, and calculated for the transversal plane (SDtrans) and craniocaudal (CC) direction (SDcc) separately. Concordance indexes and volume deviations were also calculated. Results Median tumour volume was 13.0 cm3, ranging from 0.3 to 60.4 cm3. The mean SDtrans was 0.15 cm (SD 0.08 cm) and the overall mean SDcc was 0.26 cm (SD 0.15 cm). Tumours with pleural contact had a significantly larger SDtrans than tumours surrounded by lung tissue. Conclusions The interobserver delineation variation was very small in this systematic cross-sectional analysis, although significantly larger in the CC direction than in the transversal plane, stressing that anisotropic margins should be applied. This study is the first to make a systematic cross-sectional analysis of delineation variation for peripheral lung tumours referred for SBRT, establishing the evidence that interobserver variation is very small for these tumours. PMID:22919015

  2. The anal canal as a risk organ in cervical cancer patients with hemorrhoids undergoing whole pelvic radiotherapy.

    PubMed

    Jang, Hyunsoo; Baek, Jong Geun; Jo, Sunmi

    2015-01-01

    Tolerance of the anal canal tends to be ignored in patients with cervical cancer undergoing whole pelvic radiotherapy. However, patients with hemorrhoids may be troubled with low radiation dose. We tried to analyze the dose-volume statistics of the anal canal in patients undergoing whole pelvic radiotherapy. The records of 31 patients with cervical cancer who received definite or postoperative radiotherapy at one institution were reviewed. Acute anal symptoms, such as anal pain and bleeding, were evaluated from radiotherapy start to 1 month after radiotherapy completion. Various clinical and dosimetric factors were analyzed to characterize relations with acute anal complications. The anal verge was located an average of 1.2 cm (range -0.6~3.9) below the lower border of the ischial tuberosity and an average of 2.7 cm (range -0.6~5.7) behind the sacral promontory level. The presence of hemorrhoids before radiotherapy was found to be significantly associated with acute radiation-induced anal symptoms (p = 0.001), and the mean induction dose for anal symptoms was 36.9 Gy. No patient without hemorrhoids developed an anal symptom during radiotherapy. Dosimetric analyses of V30 and V40 showed marginal correlations with anal symptoms (p = 0.07). The present study suggests a relation between acute anal symptoms following radiotherapy and acute hemorrhoid aggravation. Furthermore, the location of the anal verge was found to be variable, and consequently doses administered to the anal canal also varied substantially. Our results caution careful radiation treatment planning for whole pelvic radiotherapy, and that proper clinical management be afforded patients with hemorrhoids during radiotherapy.

  3. Quantification of gross tumour volume changes between simulation and first day of radiotherapy for patients with locally advanced malignancies of the lung and head/neck.

    PubMed

    Kishan, Amar U; Cui, Jing; Wang, Pin-Chieh; Daly, Megan E; Purdy, James A; Chen, Allen M

    2014-10-01

    To quantify changes in gross tumour volume (GTV) between simulation and initiation of radiotherapy in patients with locally advanced malignancies of the lung and head/neck. Initial cone beam computed tomography (CT) scans from 12 patients with lung cancer and 12 with head/neck cancer (head and neck squamous cell carcinoma (HNSCC)) treated with intensity-modulated radiotherapy with image guidance were rigidly registered to the simulation CT scans. The GTV was demarcated on both scans. The relationship between percent GTV change and variables including time interval between simulation and start, tumour (T) stage, and absolute weight change was assessed. For lung cancer patients, the GTV increased a median of 35.06% (range, -16.63% to 229.97%) over a median interval of 13 days (range, 7-43), while for HNSCC patients, the median GTV increase was 16.04% (range, -8.03% to 47.41%) over 13 days (range, 7-40). These observed changes are statistically significant. The magnitude of this change was inversely associated with the size of the tumour on the simulation scan for lung cancer patients (P < 0.05). However, the observed changes in GTV did not correlate with the duration of the interval for either disease site. Similarly, T stage, absolute weight change and histologic type (the latter for lung cancer cases) did not correlate with degree of GTV change (P > 0.1). While the observed changes in GTV were moderate from the time of simulation to start of radiotherapy, these findings underscore the importance of image guidance for target localisation and verification, particularly for smaller tumours. Minimising the delay between simulation and treatment initiation may also be beneficial. © 2014 The Royal Australian and New Zealand College of Radiologists.

  4. Dosimetric advantages of generalised equivalent uniform dose-based optimisation on dose–volume objectives in intensity-modulated radiotherapy planning for bilateral breast cancer

    PubMed Central

    Lee, T-F; Ting, H-M; Chao, P-J; Wang, H-Y; Shieh, C-S; Horng, M-F; Wu, J-M; Yeh, S-A; Cho, M-Y; Huang, E-Y; Huang, Y-J; Chen, H-C; Fang, F-M

    2012-01-01

    Objective We compared and evaluated the differences between two models for treating bilateral breast cancer (BBC): (i) dose–volume-based intensity-modulated radiation treatment (DV plan), and (ii) dose–volume-based intensity-modulated radiotherapy with generalised equivalent uniform dose-based optimisation (DV-gEUD plan). Methods The quality and performance of the DV plan and DV-gEUD plan using the Pinnacle3® system (Philips, Fitchburg, WI) were evaluated and compared in 10 patients with stage T2–T4 BBC. The plans were delivered on a Varian 21EX linear accelerator (Varian Medical Systems, Milpitas, CA) equipped with a Millennium 120 leaf multileaf collimator (Varian Medical Systems). The parameters analysed included the conformity index, homogeneity index, tumour control probability of the planning target volume (PTV), the volumes V20 Gy and V30 Gy of the organs at risk (OAR, including the heart and lungs), mean dose and the normal tissue complication probability. Results Both plans met the requirements for the coverage of PTV with similar conformity and homogeneity indices. However, the DV-gEUD plan had the advantage of dose sparing for OAR: the mean doses of the heart and lungs, lung V20 Gy, and heart V30 Gy in the DV-gEUD plan were lower than those in the DV plan (p<0.05). Conclusions A better result can be obtained by starting with a DV-generated plan and then improving it by adding gEUD-based improvements to reduce the number of iterations and to improve the optimum dose distribution. Advances to knowledge The DV-gEUD plan provided superior dosimetric results for treating BBC in terms of PTV coverage and OAR sparing than the DV plan, without sacrificing the homogeneity of dose distribution in the PTV. PMID:23091290

  5. Oesophagus side effects related to the treatment of oesophageal cancer or radiotherapy of other thoracic malignancies.

    PubMed

    Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Brunner, Thomas B

    2016-08-01

    The oesophagus as a serial organ located in the central chest is frequent subject to "incidental" dose application in radiotherapy for several thoracic malignancies including oesophageal cancer itself. Especially due to the radiosensitive mucosa severe radiotherapy induced sequelae can occur, acute oesophagitis and strictures as late toxicity being the most frequent side-effects. In this review we focus on oesophageal side effects derived from treatment of gastrointestinal cancer and secondly provide an overview on oesophageal toxicity from conventional and stereotactic fractionated radiotherapy to the thoracic area in general. Available data on pathogenesis, frequency, onset, and severity of oesophageal side effects are summarized. Whereas for conventional radiotherapy the associations of applied doses to certain volumes of the oesophagus are well described, the tolerance dose to the mediastinal structures for hypofractionated therapy is unknown. The review provides available attempts to predict the risk of oesophageal side effects from dosimetric parameters of SBRT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Technique of complex mammary irradiation: Mono-isocentric 3D conformational radiotherapy and helical tomotherapy].

    PubMed

    Vandendorpe, B; Guilbert, P; Champagne, C; Antoni, T; Nguyen, T D; Gaillot-Petit, N; Servagi Vernat, S

    2017-12-01

    To evaluate the dosimetric contribution of helical tomotherapy for breast cancers compared with conformal radiotherapy in mono-isocentric technique. For 23 patients, the dosimetric results in mono-isocentric 3D conformational radiotherapy did not satisfy the constraints either of target volumes nor organs at risk. A prospective dosimetric comparison between mono-isocentric 3D conformational radiotherapy and helical tomotherapy was therefore carried out. The use of helical tomotherapy showed a benefit in these 23 patients, with either an improvement in the conformity index or homogeneity, but with an increase in low doses. Of the 23 patients, two had pectus excavatum, five had past thoracic irradiation and two required bilateral irradiation. The other 14 patients had a combination of morphology and/or indication of lymph node irradiation. For these patients, helical tomotherapy was therefore preferred to mono-isocentric 3D conformational radiotherapy. Tomotherapy appears to provide better homogeneity and tumour coverage. This technique of irradiation may be justified in the case of morphological situations such as pectus exavatum and in complex clinical situations. In other cases, conformal radiotherapy in mono-isocentric technique remains to be favoured. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  7. 5 CFR 2638.313 - Agency opinions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....313 Administrative Personnel OFFICE OF GOVERNMENT ETHICS GOVERNMENT ETHICS OFFICE OF GOVERNMENT ETHICS AND EXECUTIVE AGENCY ETHICS PROGRAM RESPONSIBILITIES Formal Advisory Opinion Service § 2638.313 Agency opinions. If the designated agency ethics official issues a written opinion concerning the application of...

  8. Tumor Shrinkage Assessed by Volumetric MRI in Long-Term Follow-Up After Fractionated Stereotactic Radiotherapy of Nonfunctioning Pituitary Adenoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Christine, E-mail: Christine.Kopp@lrz.tu-muenchen.de; Theodorou, Marilena; Poullos, Nektarios

    2012-03-01

    Purpose: To evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent nonfunctioning pituitary adenomas (NFPAs). Methods and Materials: We assessed exact tumor volume shrinkage in 16 patients with NFPA after FSRT. All patients had previously undergone surgery. Gross tumor volume (GTV) was outlined on contrast-enhanced magnetic resonance imaging (MRI) before and median 63 months (range, 28-100 months) after FSRT. MRI was performed as an axial three-dimensional gradient echo T1-weighted sequence at 1.6-mm slice thickness without gap (3D MRI). Results: Mean tumor size of all 16 pituitary adenomas before treatment wasmore » 7.4 mL (3.3-18.9 mL). We found shrinkage of the treated pituitary adenoma in all patients. Within a median follow-up of 63 months (28-100 months) an absolute mean volume reduction of 3.8 mL (0.9-12.4 mL) was seen. The mean relative size reduction compared with the volume before radiotherapy was 51% (22%-95%). Shrinkage measured by 3D MRI was greater at longer time intervals after radiotherapy. A strong negative correlation between the initial tumor volume and the absolute volume reduction after FSRT was found. There was no correlation between tumor size reduction and patient age, sex, or number of previous surgeries. Conclusions: By using 3D MRI in all patients undergoing FSRT of an NFPA, tumor shrinkage is detected. Our data demonstrate that volumetric assessment based on 3D MRI adds additional information to routinely used radiological response measurements. After FSRT a mean relative size reduction of 51% can be expected within 5 years.« less

  9. Low-Dose and Limited-Volume Radiotherapy Alone for Primary Dural Marginal Zone Lymphoma: Treatment Approach and Review of Published Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Dev R.; Tereffe, Welela; Yahalom, Joachim

    2008-08-01

    Purpose: Primary dural lymphoma is a rare intracranial lymphoma that almost always has a marginal zone histologic type and immunophenotype and often remains localized and is thus potentially curable with radiotherapy (RT) alone. The unusual location and histologic type of primary dural marginal zone lymphoma (PDMZL) distinguish it from primary central nervous system lymphoma and poses treatment dilemmas of technique, volume, and dose that have not been well addressed. We set out to analyze our recent experience in treating PDMZL and reviewed the limited published data available. Methods and Materials: Between 2002 and 2006, we treated 5 patients with localizedmore » PDMZL. Of these 5 patients, 3 had unilateral and 2 had bilateral/multifocal involvement, and 3 underwent subtotal tumor resection and 2 biopsy only. Whole brain RT was given before involved-field RT (IFRT) in 4 patients and 1 received IFRT alone. The median whole brain RT, IFRT, and total RT dose was 20, 12, and 30 Gy, respectively. The planning computed tomography scan was always fused with the post-gadolinium magnetic resonance imaging scan to assist in the IFRT volume determination. We also analyzed the published data from 27 additional patients. Results: The median follow-up was 34 months (range, 31-52). All obtained lasting local control. One patient developed a relapse in the soft tissue of the flank and additional systemic progression but no central nervous system recurrence. At last follow-up, no significant treatment-related neurotoxicity was detected. Conclusion: The results of our study have demonstrated that a combination of whole brain RT/IFRT or even low-dose IFRT alone provides excellent durable local control of PDMZL. This approach is potentially curative, possibly without significant neurotoxicity. Additional study and longer follow-up are needed to determine the appropriate RT dose and volume parameters for this rare, debilitating, and yet potentially curable lymphoma.« less

  10. Toxicity and dosimetric analysis of non-small cell lung cancer patients undergoing radiotherapy with 4DCT and image-guided intensity modulated radiotherapy: a regional centre's experience.

    PubMed

    Livingston, Gareth C; Last, Andrew J; Shakespeare, Thomas P; Dwyer, Patrick M; Westhuyzen, Justin; McKay, Michael J; Connors, Lisa; Leader, Stephanie; Greenham, Stuart

    2016-09-01

    For patients receiving radiotherapy for locally advance non-small cell lung cancer (NSCLC), the probability of experiencing severe radiation pneumonitis (RP) appears to rise with an increase in radiation received by the lungs. Intensity modulated radiotherapy (IMRT) provides the ability to reduce planned doses to healthy organs at risk (OAR) and can potentially reduce treatment-related side effects. This study reports toxicity outcomes and provides a dosimetric comparison with three-dimensional conformal radiotherapy (3DCRT). Thirty curative NSCLC patients received radiotherapy using four-dimensional computed tomography and five-field IMRT. All were assessed for early and late toxicity using common terminology criteria for adverse events. All plans were subsequently re-planned using 3DCRT to the same standard as the clinical plans. Dosimetric parameters for lungs, oesophagus, heart and conformity were recorded for comparison between the two techniques. IMRT plans achieved improved high-dose conformity and reduced OAR doses including lung volumes irradiated to 5-20 Gy. One case each of oesophagitis and erythema (3%) were the only Grade 3 toxicities. Rates of Grade 2 oesophagitis were 40%. No cases of Grade 3 RP were recorded and Grade 2 RP rates were as low as 3%. IMRT provides a dosimetric benefit when compared to 3DCRT. While the clinical benefit appears to increase with increasing target size and increasing complexity, IMRT appears preferential to 3DCRT in the treatment of NSCLC.

  11. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  12. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    PubMed

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  13. Choice Shift in Opinion Network Dynamics

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael

    Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.

  14. Opinion Dynamics with Confirmation Bias

    PubMed Central

    Allahverdyan, Armen E.; Galstyan, Aram

    2014-01-01

    Background Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect–when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) –and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. Conclusions The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development. PMID:25007078

  15. Impacts of opinion leaders on social contagions

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Lü, Feng-Mao; Zhang, Qian; Tang, Ming; Zhou, Tao

    2018-05-01

    Opinion leaders are ubiquitous in both online and offline social networks, but the impacts of opinion leaders on social behavior contagions are still not fully understood, especially by using a mathematical model. Here, we generalize the classical Watts threshold model and address the influences of the opinion leaders, where an individual adopts a new behavior if one of his/her opinion leaders adopts the behavior. First, we choose the opinion leaders randomly from all individuals in the network and find that the impacts of opinion leaders make other individuals adopt the behavior more easily. Specifically, the existence of opinion leaders reduces the lowest mean degree of the network required for the global behavior adoption and increases the highest mean degree of the network that the global behavior adoption can occur. Besides, the introduction of opinion leaders accelerates the behavior adoption but does not change the adoption order of individuals. The developed theoretical predictions agree with the simulation results. Second, we randomly choose the opinion leaders from the top h % of the highest degree individuals and find an optimal h % for the network with the lowest mean degree that the global behavior adoption can occur. Meanwhile, the influences of opinion leaders on accelerating the adoption of behaviors become less significant and can even be ignored when reducing the value of h % .

  16. OpinionSeer: interactive visualization of hotel customer feedback.

    PubMed

    Wu, Yingcai; Wei, Furu; Liu, Shixia; Au, Norman; Cui, Weiwei; Zhou, Hong; Qu, Huamin

    2010-01-01

    The rapid development of Web technology has resulted in an increasing number of hotel customers sharing their opinions on the hotel services. Effective visual analysis of online customer opinions is needed, as it has a significant impact on building a successful business. In this paper, we present OpinionSeer, an interactive visualization system that could visually analyze a large collection of online hotel customer reviews. The system is built on a new visualization-centric opinion mining technique that considers uncertainty for faithfully modeling and analyzing customer opinions. A new visual representation is developed to convey customer opinions by augmenting well-established scatterplots and radial visualization. To provide multiple-level exploration, we introduce subjective logic to handle and organize subjective opinions with degrees of uncertainty. Several case studies illustrate the effectiveness and usefulness of OpinionSeer on analyzing relationships among multiple data dimensions and comparing opinions of different groups. Aside from data on hotel customer feedback, OpinionSeer could also be applied to visually analyze customer opinions on other products or services.

  17. Opinion formation on social media: An empirical approach

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun

    2014-03-01

    Opinion exchange models aim to describe the process of public opinion formation, seeking to uncover the intrinsic mechanism in social systems; however, the model results are seldom empirically justified using large-scale actual data. Online social media provide an abundance of data on opinion interaction, but the question of whether opinion models are suitable for characterizing opinion formation on social media still requires exploration. We collect a large amount of user interaction information from an actual social network, i.e., Twitter, and analyze the dynamic sentiments of users about different topics to investigate realistic opinion evolution. We find two nontrivial results from these data. First, public opinion often evolves to an ordered state in which one opinion predominates, but not to complete consensus. Second, agents are reluctant to change their opinions, and the distribution of the number of individual opinion changes follows a power law. Then, we suggest a model in which agents take external actions to express their internal opinions according to their activity. Conversely, individual actions can influence the activity and opinions of neighbors. The probability that an agent changes its opinion depends nonlinearly on the fraction of opponents who have taken an action. Simulation results show user action patterns and the evolution of public opinion in the model coincide with the empirical data. For different nonlinear parameters, the system may approach different regimes. A large decay in individual activity slows down the dynamics, but causes more ordering in the system.

  18. [Clinical experience of carbon ion radiotherapy for malignant tumors].

    PubMed

    Ishikawa, Hitoshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2006-04-01

    The carbon ion (C-ion) beams provide unique advantageous biological and physical properties in radiotherapy (RT) for malignant tumors. C-ion beams have a high relative biological effectiveness (RBE) resulting from the high linear energy transfer (LET). In terms of their physical characteristics, C-ion beams exhibit a spread-out Bragg peak (SOBP) and make for a better dose distribution of the target volume by specified beam modulations. Between June 1994 and August 2005, a total of 2,371 patients with malignant tumors were registered in phase I/II dose-escalation studies and clinical phase II trials using C-ion beams generated at Heavy Ion Medical Accelerator in Chiba (HIMAC). In the initial dose-escalation studies, grade 3 or more late rectal complications had developed in some patients. However, the adverse effects were resolved because of the use of appropriate dose levels and modification of the radiation technique. C-ion beams can carry out hypofractionated radiotherapy with a large fraction dose and reduce the overall treatment times compared with conventional radiotherapy. They can also achieve better local tumor control even for radio-resistant tumors such as malignant melanoma, hepatocellular carcinoma and bone and soft tissue sarcomas with minimal morbidity to the normal surrounding tissues.

  19. Opinion Formation Models on a Gradient

    PubMed Central

    Gastner, Michael T.; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales , not as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  20. [Use of filgrastim, granulocyte colony stimulating factor (G-CSF), in radiotherapy to reduce drop-outs because of radiogenic leukopenia].

    PubMed

    Gava, A; Bertossi, L; Ferrarese, F; Coghetto, F; Marazzato, G; Andrulli, A D; Zorat, P L

    1998-03-01

    Radiotherapy patients are at risk of developing leukopenia, which risk depends on the irradiated volume, the rate of irradiated bone marrow and the radiation dose. Radiogenic leukopenia may cause radiotherapy drop-out, with consequent effects, on local tumor control and clinical outcome. The introduction of granulocyte growth factors, such as filgrastim, has permitted to accelerate normal neutrophil count recovery in irradiation-related neutropenia both in vitro and animal models; clinical experience in humans is still lacking, relative to both indications and scheduling. In the Oncologic Radiotherapy Department of Treviso Hospital, 31 patients irradiated for Hodgkin disease, rectal cancer and other malignancies, who presented leukopenia requiring treatment discontinuation, were given filgrastim to assess its actual effect in avoiding further drop-outs and to compare two administration schedules (2 or 3 vials, 30 MIU, weekly). Filgrastim treatment was continued throughout the radiotherapy cycles, for 1 to 5 weeks. Eighteen patients had received previous chemotherapy and 11 were undergoing concurrent 5-fluorouracil chemotherapy-irradiation. A mean 203% increase in leukocyte count was observed (136% in the patients treated with 2 vials/week and 274% in those receiving 3 vials/week); this increase was more apparent in women that in men (256% versus 91%) and slightly higher in patients 50 years old and with target volumes < 5000 ml. Filgrastin treatment was well tolerated by all patients, with no discontinuations due to adverse effects; 9 patients (29%) reported skeletal pain, which was marked in 2 of them only. Eighty percent of patients completed all the radiotherapy cycles with no discontinuation, while 6 patients dropped out because leukopenia persisted. Biweekly filgrastim administration was effective to prevent unscheduled radiotherapy discontinuation in 75% of patients and triweekly administration was effective in 86% of patients. In our experience, filgrastim

  1. MRI-Related Geometric Distortions in Stereotactic Radiotherapy Treatment Planning: Evaluation and Dosimetric Impact.

    PubMed

    Pappas, Eleftherios P; Alshanqity, Mukhtar; Moutsatsos, Argyris; Lababidi, Hani; Alsafi, Khalid; Georgiou, Konstantinos; Karaiskos, Pantelis; Georgiou, Evangelos

    2017-12-01

    In view of their superior soft tissue contrast compared to computed tomography, magnetic resonance images are commonly involved in stereotactic radiosurgery/radiotherapy applications for target delineation purposes. It is known, however, that magnetic resonance images are geometrically distorted, thus deteriorating dose delivery accuracy. The present work focuses on the assessment of geometric distortion inherent in magnetic resonance images used in stereotactic radiosurgery/radiotherapy treatment planning and attempts to quantitively evaluate the consequent impact on dose delivery. The geometric distortions for 3 clinical magnetic resonance protocols (at both 1.5 and 3.0 T) used for stereotactic radiosurgery/radiotherapy treatment planning were evaluated using a recently proposed phantom and methodology. Areas of increased distortion were identified at the edges of the imaged volume which was comparable to a brain scan. Although mean absolute distortion did not exceed 0.5 mm on any spatial axis, maximum detected control point disposition reached 2 mm. In an effort to establish what could be considered as acceptable geometric uncertainty, highly conformal plans were utilized to irradiate targets of different diameters (5-50 mm). The targets were mispositioned by 0.5 up to 3 mm, and dose-volume histograms and plan quality indices clinically used for plan evaluation and acceptance were derived and used to investigate the effect of geometrical uncertainty (distortion) on dose delivery accuracy and plan quality. The latter was found to be strongly dependent on target size. For targets less than 20 mm in diameter, a spatial disposition of the order of 1 mm could significantly affect (>5%) plan acceptance/quality indices. For targets with diameter greater than 2 cm, the corresponding disposition was found greater than 1.5 mm. Overall results of this work suggest that efficacy of stereotactic radiosurgery/radiotherapy applications could be compromised in case of very

  2. Radiotherapy in pediatric medulloblastoma: Quality assessment of Pediatric Oncology Group Trial 9031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miralbell, Raymond; Fitzgerald, T.J.; Laurie, Fran

    2006-04-01

    Purpose: To evaluate the potential influence of radiotherapy quality on survival in high-risk pediatric medulloblastoma patients. Methods and Materials: Trial 9031 of the Pediatric Oncology Group (POG) aimed to study the relative benefit of cisplatin and etoposide randomization of high-risk patients with medulloblastoma to preradiotherapy vs. postradiotherapy treatment. Two-hundred and ten patients were treated according to protocol guidelines and were eligible for the present analysis. Treatment volume (whole brain, spine, posterior fossa, and primary tumor bed) and dose prescription deviations were assessed for each patient. An analysis of first site of failure was undertaken. Event-free and overall survival rates weremore » calculated. A log-rank test was used to determine the significance of potential survival differences between patients with and without major deviations in the radiotherapy procedure. Results: Of 160 patients who were fully evaluable for all treatment quality parameters, 91 (57%) had 1 or more major deviations in their treatment schedule. Major deviations by treatment site were brain (26%), spinal (7%), posterior fossa (40%), and primary tumor bed (17%). Major treatment volume or total dose deviations did not significantly influence overall and event-free survival. Conclusions: Despite major treatment deviations in more than half of fully evaluable patients, underdosage or treatment volume misses were not associated with a worse event-free or overall survival.« less

  3. Evaluations of secondary cancer risk in spine radiotherapy using 3DCRT, IMRT, and VMAT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehman, Jalil ur, E-mail: jalil_khanphy@yahoo.com; Department of Radiation Physics, UT MD Anderson Cancer Center, Houston, TX; Tailor, Ramesh C.

    2015-04-01

    This study evaluated the secondary cancer risk from volumetric-modulated arc therapy (VMAT) for spine radiotherapy compared with intensity-modulated radiotherapy (IMRT) and 3-dimensional conformal radiotherapy (3DCRT). Computed tomography images of an Radiological Physics Center spine anthropomorphic phantom were exported to a treatment planning system (Pinnacle{sup 3}, version 9.4). Radiation treatment plans for spine were prepared using VMAT (dual-arc), 7-field IMRT (beam angles: 110°, 130°, 150°, 180°, 210°, 230°, and 250°), and 4-field 3DCRT technique. The mean and maximum doses, dose-volume histograms, and volumes receiving more than 2 and 4 Gy to organs at risk (OARs) were calculated and compared. The lifetimemore » risk for secondary cancers was estimated according to the National Cancer Registry Programme Report 116. VMAT delivered the lowest maximum dose to the esophagus (4.03 Gy), bone (8.11 Gy), heart (2.11 Gy), spinal cord (6.45 Gy), and whole lung (5.66 Gy) as compared with other techniques (IMRT and 3DCRT). The volumes of OAR (esophagus) receiving more than 4 Gy were 0% for VMAT, 27.06% for IMRT, and up to 32.35% for 3DCRT. The estimated risk for secondary cancer in the respective OAR is considerably lower in VMAT compared with other techniques. The results of maximum doses and volumes of OARs suggest that the risk of secondary cancer induction for the spine in VMAT is lower than IMRT and 3DCRT, whereas VMAT has the best target coverage compared with the other techniques.« less

  4. Opinion Expression as a Rational Behavior.

    ERIC Educational Resources Information Center

    Kim, Sei-Hill

    This study looks at individuals' opinion expressions as a rational behavior based on a conscious calculus of expected benefits and costs (economic analysis). The influences of "issue benefit,""opinion congruence," and "issue knowledge," as sources of benefits and costs on opinion expression were hypothesized and tested. The study also examined the…

  5. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  6. Dose to Larynx Predicts for Swallowing Complications After Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caglar, Hale B.; Tishler, Roy B.; Othus, Megan

    2008-11-15

    Purpose: To evaluate early swallowing after intensity-modulated radiotherapy for head and neck squamous cell carcinoma and determine factors correlating with aspiration and/or stricture. Methods and Materials: Consecutive patients treated with intensity-modulated radiotherapy with or without chemotherapy between September 2004 and August 2006 at the Dana Farber Cancer Institute/Brigham and Women's Hospital were evaluated with institutional review board approval. Patients underwent swallowing evaluation after completion of therapy; including video swallow studies. The clinical- and treatment-related variables were examined for correlation with aspiration or strictures, as well as doses to the larynx, pharyngeal constrictor muscles, and cervical esophagus. The correlation was assessedmore » with logistic regression analysis. Results: A total of 96 patients were evaluated. Their median age was 55 years, and 79 (82%) were men. The primary site of cancer was the oropharynx in 43, hypopharynx/larynx in 17, oral cavity in 13, nasopharynx in 11, maxillary sinus in 2, and unknown primary in 10. Of the 96 patients, 85% underwent definitive RT and 15% postoperative RT. Also, 28 patients underwent induction chemotherapy followed by concurrent chemotherapy, 59 received concurrent chemotherapy, and 9 patients underwent RT alone. The median follow-up was 10 months. Of the 96 patients, 31 (32%) had clinically significant aspiration and 36 (37%) developed a stricture. The radiation dose-volume metrics, including the volume of the larynx receiving {>=}50 Gy (p = 0.04 and p = 0.03, respectively) and volume of the inferior constrictor receiving {>=}50 Gy (p = 0.05 and p = 0.02, respectively) were significantly associated with both aspiration and stricture. The mean larynx dose correlated with aspiration (p = 0.003). Smoking history was the only clinical factor to correlate with stricture (p = 0.05) but not aspiration. Conclusion: Aspiration and stricture are common side effects

  7. Patterns of radiotherapy infrastructure in Japan and in other countries with well-developed radiotherapy infrastructures.

    PubMed

    Nakamura, Katsumasa; Konishi, Kenta; Komatsu, Tetsuya; Sasaki, Tomonari; Shikama, Naoto

    2018-05-01

    In high-income countries, the number of radiotherapy machine per population reaches a sufficient level. However, the patterns of infrastructure of radiotherapy in high-income countries are not well known. Among 29 high-income countries with gross national income of $25,000 or more per capita, we selected 23 countries whose total number of newly diagnosed cancer patients in 2012 was reported in the Organisation for Economic Co-operation and Development Health Statistics 2017. The numbers of radiotherapy centers and teletherapy machines in each of these 23 countries were collected using the Dictionary of Radiotherapy Centers database. The number of cancer patients per teletherapy machine was 452.35-1398.22 (median 711.66) with a three-fold variation, whereas the number of cancer patients per radiotherapy center varied even more widely, from 826.16 to 5159.86 (median 2259.83) with a six-fold variation. The average number of teletherapy machines per radiotherapy center also ranged widely, from 1.24 to 8.29 (median 3.11) with a seven-fold variation. The number of teletherapy machines in each country was almost proportional to that of cancer patients, and the number of teletherapy machines per radiotherapy center was inversely related to the number of radiotherapy centers per cancer patients. The number of teletherapy machines per radiotherapy center in Japan was 1.24, the most fragmented among the high-income countries. The percentage of large radiotherapy centers having three or more teletherapy machines in Japan was the smallest among 23 high-income countries. Optimization of the radiotherapy infrastructure in Japan should be carefully considered.

  8. The Influence of Pretreatment Characteristics and Radiotherapy Parameters on Time Interval to Development of Radiation-Associated Meningioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulino, Arnold C., E-mail: apaulino@tmhs.or; Ahmed, Irfan M.; Mai, Wei Y.

    2009-12-01

    Purpose: To identify pretreatment characteristics and radiotherapy parameters which may influence time interval to development of radiation-associated meningioma (RAM). Methods and Materials: A Medline/PUBMED search of articles dealing with RAM yielded 66 studies between 1981 and 2006. Factors analyzed included patient age and gender, type of initial tumor treated, radiotherapy (RT) dose and volume, and time interval from RT to development of RAM. Results: A total of 143 patients with a median age at RT of 12 years form the basis of this report. The most common initial tumors or conditions treated with RT were medulloblastoma (n = 27), pituitarymore » adenoma (n = 20), acute lymphoblastic leukemia (n = 20), low-grade astrocytoma (n = 19), and tinea capitis (n = 14). In the 116 patients whose RT fields were known, 55 (47.4%) had a portion of the brain treated, whereas 32 (27.6%) and 29 (25.0%) had craniospinal and whole-brain fields. The median time from RT to develop a RAM or latent time (LT) was 19 years (range, 1-63 years). Male gender (p = 0.001), initial diagnosis of leukemia (p = 0.001), and use of whole brain or craniospinal field (p <= 0.0001) were associated with a shorter LT, whereas patients who received lower doses of RT had a longer LT (p < 0.0001). Conclusions: The latent time to develop a RAM was related to gender, initial tumor type, radiotherapy volume, and radiotherapy dose.« less

  9. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.

    PubMed

    Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee

    2017-04-01

    Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent

  10. Lung reexpansion of obstructive atelectasis caused by radiotherapy after continuous gefitinib treatment in nonsmall cell lung cancer.

    PubMed

    Yang, Xueqin; Xu, Mingfang; Xiong, Yanli; Peng, Bo

    2015-01-01

    A 75-year-old male was diagnosed with central squamous cell carcinoma of the left lung, who has been given 3-dimensional conformal radiotherapy of total dose with 60 Gy in 30 fractions. Three years later, the tumor relapsed in situ and he received another stereotactic radiotherapy with a total dose of 40 Gy at a margin of planning target volume (PTV) in 10 (5 fractions/week) at 4 Gy/fraction. Gefitinib (250 mg/day) was initiated immediately after radiotherapy. Obstructive atelectasis in the left lung and increased pleural effusion occurred at the fourth month after radiotherapy. As this patient has been detected with deletion in exon 19 of the EGFR gene, gefitinib was continuous administered without interruption. After another 4 months, the atelectasis in the left lung reexpanded significantly. To the best of our knowledge, this is the first report in the literature that EGFR tyrosine kinase inhibitors (EGFR-TKI) reversed the radiation atelectasis of pulmonary in the nonsmall cell lung cancer (NSCLC) patient.

  11. Impact of dose escalation and adaptive radiotherapy for cervical cancers on tumour shrinkage—a modelling study

    NASA Astrophysics Data System (ADS)

    Røthe Arnesen, Marius; Paulsen Hellebust, Taran; Malinen, Eirik

    2017-03-01

    Tumour shrinkage occurs during fractionated radiotherapy and is regulated by radiation induced cellular damage, repopulation of viable cells and clearance of dead cells. In some cases additional tumour shrinkage during external beam therapy may be beneficial, particularly for locally advanced cervical cancer where a small tumour volume may simplify and improve brachytherapy. In the current work, a mathematical tumour model is utilized to investigate how local dose escalation affects tumour shrinkage, focusing on implications for brachytherapy. The iterative two-compartment model is based upon linear-quadratic radiation response, a doubling time for viable cells and a half-time for clearance of dead cells. The model was individually fitted to clinical tumour volume data from fractionated radiotherapy of 25 cervical cancer patients. Three different fractionation patterns for dose escalation, all with an additional dose of 12.2 Gy, were simulated and compared to standard fractionation in terms of tumour shrinkage. An adaptive strategy where dose escalation was initiated after one week of treatment was also considered. For 22 out of 25 patients, a good model fit was achieved to the observed tumour shrinkage. A large degree of inter-patient variation was seen in predicted volume reduction following dose escalation. For the 10 best responding patients, a mean tumour volume reduction of 34  ±  3% (relative to standard treatment) was estimated at the time of brachytherapy. Timing of initiating dose escalation had a larger impact than the number of fractions applied. In conclusion, the model was found useful in evaluating the impact from dose escalation on tumour shrinkage. The results indicate that dose escalation could be conducted from the start of external beam radiotherapy in order to obtain additional tumour shrinkage before brachytherapy.

  12. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report.

    PubMed

    Tamaki, Tomoaki; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi; Nakano, Takashi

    2013-04-05

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  13. Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study.

    PubMed

    Supiot, Stéphane; Rousseau, Caroline; Dore, Mélanie; Cheze-Le-Rest, Catherine; Kandel-Aznar, Christine; Potiron, Vincent; Guerif, Stéphane; Paris, François; Ferrer, Ludovic; Campion, Loïc; Meingan, Philippe; Delpon, Gregory; Hatt, Mathieu; Visvikis, Dimitris

    2018-02-09

    Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18 F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18 F-choline-PET. 18 F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUV max and SUV max tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.

  14. [Medical data security in medico-legal opinioning].

    PubMed

    Susło, Robert; Swiatek, Barbara

    2005-01-01

    Medical data security can be approached in medico-legal opinioning in three main situations: security of medical data, on which the opinion should be based, opinioning itself and whether the medical data security was properly ensured and ensuring medical data security during medico-legal opinion giving. The importance of medical data security, during collecting, processing and storing, as well in medical as in legal institutions, is of major importance for the possibility of providing a proper medico-legal opinion. Theoretically speeking, it is possible to give a proper medico-legal opinion using incorrect data, but the possibility is low. When the expert is given improper, unreadable, incomplete or even bogus in part or in the whole medical data it is extremely possible, that he fails in giving his opinion. The term "medical data" was defined and subsequently there was a brief review of medical data storing methods made and specific threats bound with them, based on modern literature. The authors also pointed out possible methods of preventing the threats. They listed Polish as well as international regulations and laws concerning the problem, accenting the importance of preserving medical data for the purposes of medico-legal opinioning.

  15. [Image-guided radiotherapy and partial delegation to radiotherapy technicians: Clermont-Ferrand experience].

    PubMed

    Loos, G; Moreau, J; Miroir, J; Benhaïm, C; Biau, J; Caillé, C; Bellière, A; Lapeyre, M

    2013-10-01

    The various image-guided radiotherapy techniques raise the question of how to achieve the control of patient positioning before irradiation session and sharing of tasks between radiation oncologists and radiotherapy technicians. We have put in place procedures and operating methods to make a partial delegation of tasks to radiotherapy technicians and secure the process in three situations: control by orthogonal kV imaging (kV-kV) of bony landmarks, control by kV-kV imaging of intraprostatic fiducial goldmarkers and control by cone beam CT (CBCT) imaging for prostate cancer. Significant medical overtime is required to control these three IGRT techniques. Because of their competence in imaging, these daily controls can be delegated to radiotherapy technicians. However, to secure the process, initial training and regular evaluation are essential. The analysis of the comparison of the use of kV/kV on bone structures allowed us to achieve a partial delegation of control to radiotherapy technicians. Controlling the positioning of the prostate through the use and automatic registration of fiducial goldmarkers allows better tracking of the prostate and can be easily delegated to radiotherapy technicians. The analysis of the use of daily cone beam CT for patients treated with intensity modulated irradiation is underway, and a comparison of practices between radiotherapy technicians and radiation oncologists is ongoing to know if a partial delegation of this control is possible. Copyright © 2013. Published by Elsevier SAS.

  16. Demand for radiotherapy in Spain.

    PubMed

    Rodríguez, A; Borrás, J M; López-Torrecilla, J; Algara, M; Palacios-Eito, A; Gómez-Caamaño, A; Olay, L; Lara, P C

    2017-02-01

    Assessing the demand for radiotherapy in Spain based on existing evidence to estimate the human resources and equipment needed so that every person in Spain has access to high-quality radiotherapy when they need it. We used data from the European Cancer Observatory on the estimated incidence of cancer in Spain in 2012, along with the evidence-based indications for radiotherapy developed by the Australian CCORE project, to obtain an optimal radiotherapy utilisation proportion (OUP) for each tumour. About 50.5 % of new cancers in Spain require radiotherapy at least once over the course of the disease. Additional demand for these services comes from reradiation therapy and non-melanoma skin cancer. Approximately, 25-30 % of cancer patients with an indication for radiotherapy do not receive it due to factors that include access, patient preference, familiarity with the treatment among physicians, and especially resource shortages, all of which contribute to its underutilisation. Radiotherapy is underused in Spain. The increasing incidence of cancer expected over the next decade and the greater frequency of reradiations necessitate the incorporation of radiotherapy demand into need-based calculations for cancer services planning.

  17. Opinion evolution in different social acquaintance networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion ph and variation proportion pv are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve pv+2 ph=2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This

  18. Radiation dose-volume effects in the esophagus.

    PubMed

    Werner-Wasik, Maria; Yorke, Ellen; Deasy, Joseph; Nam, Jiho; Marks, Lawrence B

    2010-03-01

    Publications relating esophageal radiation toxicity to clinical variables and to quantitative dose and dose-volume measures derived from three-dimensional conformal radiotherapy for non-small-cell lung cancer are reviewed. A variety of clinical and dosimetric parameters have been associated with acute and late toxicity. Suggestions for future studies are presented. Copyright 2010 Elsevier Inc. All rights reserved.

  19. The impact of introducing intensity modulated radiotherapy into routine clinical practice.

    PubMed

    Miles, Elizabeth A; Clark, Catharine H; Urbano, M Teresa Guerrero; Bidmead, Margaret; Dearnaley, David P; Harrington, Kevin J; A'Hern, Roger; Nutting, Christopher M

    2005-12-01

    Intensity modulated radiotherapy (IMRT) at the Royal Marsden Hospital London was introduced in July 2001. Treatment delivery was dynamic using a single-phase technique. Concerns were raised regarding increased clinical workload due to introduction of new technology. The potential increased use of resources was assessed. IMRT patient selection was within guidelines of clinical trials and included patients undergoing prostate plus pelvic lymph node (PPN) irradiation and head and neck cancer (HNC) treatment. Patient planning, quality assurance and treatment times were collected for an initial IMRT patient group. A comparative group of patients with advanced HNC undergoing two- or three-phase conventional radiotherapy, requiring matched photon and electron fields, were also timed. The median overall total planning time for IMRT was greater for HNC patients compared to the PPN cohort. For HNC the overall IMRT planning time was significantly longer than for conventional. The median treatment time for conventional two- or three-phase HNC treatments, encompassing similar volumes to those treated with IMRT, was greater than that for the IMRT HNC patient cohort. A reduction in radiographer man hours per patient of 4.8h was recorded whereas physics time was increased by 4.9h per patient. IMRT currently increases overall planning time. Additional clinician input is required for target volume localisation. Physics time is increased, a significant component of this being patient specific QA. Radiographer time is decreased. For HNC a single phase IMRT treatment has proven to be more efficient than a multiple phase conventional treatment. IMRT has been integrated smoothly and efficiently into the existing treatment working day. This preliminary study suggests that IMRT could be a routine treatment with efficient use of current radiotherapy resources.

  20. Optical spectroscopy of radiotherapy and photodynamic therapy responses in normal rat skin shows vascular breakdown products

    NASA Astrophysics Data System (ADS)

    Teles de Andrade, Cintia; Nogueira, Marcelo S.; Kanick, Stephen C.; Marra, Kayla; Gunn, Jason; Andreozzi, Jacqueline; Samkoe, Kimberley S.; Kurachi, Cristina; Pogue, Brian W.

    2016-03-01

    Photodynamic therapy (PDT) and radiotherapy are non-systemic cancer treatment options with different mechanisms of damage. So combining these techniques has been shown to have some synergy, and can mitigate their limitations such as low PDT light penetration or radiotherapy side effects. The present study monitored the induced tissue changes after PDT, radiotherapy, and a combination protocol in normal rat skin, using an optical spectroscopy system to track the observed biophysical changes. The Wistar rats were treated with one of the protocols: PDT followed by radiotherapy, PDT, radiotherapy and radiotherapy followed by PDT. Reflectance spectra were collected in order to observe the effects of these combined therapies, especially targeting vascular response. From the reflectance, information about oxygen saturation, met-hemoglobin and bilirubin concentration, blood volume fraction (BVF) and vessel radius were extracted from model fitting of the spectra. The rats were monitored for 24 hours after treatment. Results showed that there was no significant variation in the vessel size or BVF after the treatments. However, the PDT caused a significant increase in the met-hemoglobin and bilirubin concentrations, indicating an important blood breakdown. These results may provide an important clue on how the damage establishment takes place, helping to understand the effect of the combination of those techniques in order to verify the existence of a known synergistic effect.

  1. PET/CT aids the staging of and radiotherapy planning for early-stage extranodal natural killer/T-cell lymphoma, nasal type: A case series

    PubMed Central

    2011-01-01

    Extranodal natural killer/T-cell lymphoma (ENKTL), nasal type, is a rare form of non-Hodgkin lymphoma. Treatment of ENKTL primarily relies on radiation; thus, proper delineation of target volumes is critical. Currently, the ideal modalities for delineation of gross tumor volume for ENKTL are unknown. We describe three consecutive cases of localized ENKTL that presented to the Nova Scotia Cancer Centre in Halifax, Nova Scotia. All patients had a planning CT and MRI as well as a planning FDG-PET/CT in the radiotherapy treatment position, wearing immobilization masks. All patients received radiation alone. In two patients, PET/CT changed not only the stage, but also the target volume requiring treatment. The third patient was unable to tolerate an MRI, but was able to undergo PET/CT, which improved the accuracy of the target volume. PET/CT aided the staging of and radiotherapy planning for our patients and appears to be a promising tool in the treatment of ENKTL. PMID:22208903

  2. Opinion Summarizationof CustomerComments

    NASA Astrophysics Data System (ADS)

    Fan, Miao; Wu, Guoshi

    Web 2.0 technologies have enabled more and more customers to freely comment on different kinds of entities, such as sellers, products and services. The large scale of information poses the need and challenge of automatic summarization. In many cases, each of the user-generated short comments implies the opinions which rate the target entity. In this paper, we aim to mine and to summarize all the customer comments of a product. The algorithm proposed in this researchis more reliable on opinion identification because it is unsupervised and the accuracy of the result improves as the number of comments increases. Our research is performed in four steps: (1) mining the frequent aspects of a product that have been commented on by customers; (2) mining the infrequent aspects of a product which have been commented by customers (3) identifying opinion words in each comment and deciding whether each opinion word is positive, negative or neutral; (4) summarizing the comments. This paper proposes several novel techniques to perform these tasks. Our experimental results using comments of a number of products sold online demonstrate the effectiveness of the techniques.

  3. Effect of beam arrangement on oral cavity dose in external beam radiotherapy of nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Vincent W.C.; Yang Zhining; Zhang Wuzhe

    This study compared the oral cavity dose between the routine 7-beam intensity-modulated radiotherapy (IMRT) beam arrangement and 2 other 7-beam IMRT with the conventional radiotherapy beam arrangements in the treatment of nasopharyngeal carcinoma (NPC). Ten NPC patients treated by the 7-beam routine IMRT technique (IMRT-7R) between April 2009 and June 2009 were recruited. Using the same computed tomography data, target information, and dose constraints for all the contoured structures, 2 IMRT plans with alternative beam arrangements (IMRT-7M and IMRT-7P) by avoiding the anterior facial beam and 1 conventional radiotherapy plan (CONRT) were computed using the Pinnacle treatment planning system. Dose-volumemore » histograms were generated for the planning target volumes (PTVs) and oral cavity from which the dose parameters and the conformity index of the PTV were recorded for dosimetric comparisons among the plans with different beam arrangements. The dose distributions to the PTVs were similar among the 3 IMRT beam arrangements, whereas the differences were significant between IMRT-7R and CONRT plans. For the oral cavity dose, the 3 IMRT beam arrangements did not show significant difference. Compared with IMRT-7R, CONRT plan showed a significantly lower mean dose, V30 and V-40, whereas the V-60 was significantly higher. The 2 suggested alternative beam arrangements did not significantly reduce the oral cavity dose. The impact of varying the beam angles in IMRT of NPC did not give noticeable effect on the target and oral cavity. Compared with IMRT, the 2-D conventional radiotherapy irradiated a greater high-dose volume in the oral cavity.« less

  4. Impact of the introduction of weekly radiotherapy quality assurance meetings at one UK cancer centre.

    PubMed

    Brammer, C V; Pettit, L; Allerton, R; Churn, M; Joseph, M; Koh, P; Sayers, I; King, M

    2014-11-01

    The complexity of radiotherapy planning is increasing rapidly. Delivery and planning is subject to detailed quality assurance (QA) checks. The weakest link is often the oncologists' delineation of the clinical target volume (CTV). Weekly departmental meetings for radiotherapy QA (RTQA) were introduced into the Royal Wolverhampton Hospital, Wolverhampton, UK, in October 2011. This article describes the impact of this on patient care. CTVs for megavoltage photon radiotherapy courses for all radical, adjuvant and palliative treatments longer than five fractions (with the exception of two field tangential breast treatments not enrolled into clinical trials) were reviewed in the RTQA meeting. Audits were carried out in January 2012 (baseline) and September 2013, each over a 4-week period. Adherence to departmental contouring protocols was assessed and the number of major and minor alterations following peer review were determined. There was no statistically significant difference for major alterations between the two study groups; 8 alterations in 80 patients (10%) for the baseline audit vs 3 alterations from 72 patients (4.2%) in the second audit (p = 0.17). A trend towards a reduction in alterations following peer review was observed. There has, however, been a change in practice resulting in a reduction in variation in CTV definition within our centre and greater adherence to protocols. There is increasing confidence in the quality and constancy of care delivered. Introduction of a weekly QA meeting for target volume definition has facilitated consensus and adoption of departmental clinical guidelines within the unit. The weakest areas in radiotherapy are patient selection and definition of the CTV. Engagement in high-quality RTQA is paramount. This article describes the impact of this in one UK cancer centre.

  5. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients

    NASA Astrophysics Data System (ADS)

    Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-01

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  6. Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy.

    PubMed

    Nouri, S; Hosseini Pooya, S M; Soltani Nabipour, J

    2017-03-01

    The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO) estimating tumor positions in real-time radiotherapy. One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. The internal target volume (ITV) should be determined based on the applied neural network algorithm on training steps.

  7. Five-year follow-up using a prostate stent as fiducial in image-guided radiotherapy of prostate cancer.

    PubMed

    Carl, Jesper; Sander, Lotte

    2015-06-01

    To report results from the five-year follow-up on a previously reported study using image-guided radiotherapy (IGRT) of localized or locally advanced prostate cancer (PC) and a removable prostate stent as fiducial. Patients with local or locally advanced PC were treated using five-field 3D conformal radiotherapy (3DRT). The clinical target volumes (CTV) were treated to 78 Gy in 39 fractions using daily on-line image guidance (IG). Late genito-urinary (GU) and gastro-intestinal (GI) toxicities were scored using the radiotherapy oncology group (RTOG) score and the common toxicity score of adverse events (CTC) score. Urinary symptoms were also scored using the international prostate symptom score (IPSS). Median observation time was 5.4 year. Sixty-two of the 90 patients from the original study cohort were eligible for toxicity assessment. Overall survival, cancer-specific survival and biochemical freedom from failure were 85%, 96% and 80%, respectively at five years after radiotherapy. Late toxicity GU and GI RTOG scores≥2 were 5% and 0%. Comparing pre- and post-radiotherapy IPSS scores indicate that development in urinary symptoms after radiotherapy may be complex. Prostate image-guided radiotherapy using a prostate stent demonstrated survival data comparable with recently published data. GU and GI toxicities at five-year follow-up were low and comparable to the lowest toxicity rates reported. These findings support that the precision of the prostate stent technique is at least as good as other techniques. IPSS revealed a complex development in urinary symptoms after radiotherapy.

  8. The impact of competing zealots on opinion dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Swami, Ananthram; Chan, Kevin

    2014-02-01

    An individual’s opinion on an issue is greatly impacted by others in his or her social network. Most people are open-minded and ready to change their opinion when presented evidence; however, some are zealots or inflexibles, that is, individuals who refuse to change their opinion while staunchly advocating an opinion in hopes of convincing others. Zealotry is present in opinions of significant personal investment, such as political, religious or corporate affiliation; it tends to be less commonplace in opinions involving rumors or fashion trends. In this paper, we examine the effect that zealots have in a population whose opinion dynamics obey the naming game model. We present numerical and analytical results about the number and nature of steady state solutions, demonstrating the existence of a bifurcation in the space of zealot fractions. Our analysis indicates conditions under which a minority zealot opinion ultimately prevails, and conditions under which neither opinion attains a majority. We also present numerical and simulation analysis of finite populations and on networks with partial connectivity.

  9. Phase I/II Trial of Hyperfractionated Concomitant Boost Proton Radiotherapy for Supratentorial Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizumoto, Masashi; Tsuboi, Koji, E-mail: tsuboi@pmrc.tsukuba.ac.j; Department of Neurosurgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki

    2010-05-01

    Purpose: To evaluate the safety and efficacy of postoperative hyperfractionated concomitant boost proton radiotherapy with nimustine hydrochloride for supratentorial glioblastoma multiforme (GBM). Methods and Materials: Twenty patients with histologically confirmed supratentorial GBM met the following criteria: (1) a Karnofsky performance status of >=60; (2) the diameter of the enhanced area before radiotherapy was <=40 cm; and (3) the enhanced area did not extend to the brain stem, hypothalamus, or thalamus. Magnetic resonance imaging (MRI) T{sub 2}-weighted high area (clinical tumor volume 3 [CTV3]) was treated by x-ray radiotherapy in the morning (50.4 Gy in 28 fractions). More than 6 hoursmore » later, 250 MeV proton beams were delivered to the enhanced area plus a 10-mm margin (CTV2) in the first half of the protocol (23.1 GyE in 14 fractions) and to the enhanced volume (CTV1) in the latter half (23.1 GyE in 14 fraction). The total dose to the CTV1 was 96.6 GyE. Nimustine hydrochloride (80 mg/m2) was administered during the first and fourth weeks. Results: Acute toxicity was mainly hematologic and was controllable. Late radiation necrosis and leukoencephalopathy were each seen in one patient. The overall survival rates after 1 and 2 years were 71.1% and 45.3%, respectively. The median survival period was 21.6 months. The 1- and 2-year progression-free survival rates were 45.0% and 15.5%, respectively. The median MRI change-free survival was 11.2 months. Conclusions: Hyperfractionated concomitant boost proton radiotherapy (96.6 GyE in 56 fractions) for GBM was tolerable and beneficial if the target size was well considered. Further studies are warranted to pursue the possibility of controlling border region recurrences.« less

  10. Phase transitions in Nowak Sznajd opinion dynamics

    NASA Astrophysics Data System (ADS)

    Wołoszyn, Maciej; Stauffer, Dietrich; Kułakowski, Krzysztof

    2007-05-01

    The Nowak modification of the Sznajd opinion dynamics model on the square lattice assumes that with probability β the opinions flip due to mass-media advertising from down to up, and vice versa. Besides, with probability α the Sznajd rule applies that a neighbour pair agreeing in its two opinions convinces all its six neighbours of that opinion. Our Monte Carlo simulations and mean-field theory find sharp phase transitions in the parameter space.

  11. SU-E-J-206: Adaptive Radiotherapy for Gynecological Malignancies with MRIGuided Cobolt-60 Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Kamrava, M; Agazaryan, N

    Purpose: Even in the IMRT era, bowel toxicity and bone marrow irradiation remain concerns with pelvic irradiation. We examine the potential gain from an adaptive radiotherapy workflow for post-operative gynecological patients treated to pelvic targets including lymph nodes using MRI-guided Co-60 radiation therapy. Methods: An adaptive workflow was developed with the intent of minimizing time overhead of adaptive planning. A pilot study was performed using retrospectively analyzed images from one patient’s treatment. The patient’s treated plan was created using conventional PTV margins. Adaptive treatment was simulated on the patient’s first three fractions. The daily PTV was created by removing non-targetmore » tissue, including bone, muscle and bowel, from the initial PTV based on the daily MRI. The number of beams, beam angles, and optimization parameters were kept constant, and the plan was re-optimized. Normal tissue contours were not adjusted for the re-optimization, but were adjusted for evaluation of plan quality. Plan quality was evaluated based on PTV coverage and normal tissue DVH points per treatment protocol. Bowel was contoured as the entire bowel bag per protocol at our institution. Pelvic bone marrow was contoured per RTOG protocol 1203. Results: For the clinically treated plan, the volume of bowel receiving 45 Gy was 380 cc, 53% of the rectum received 30 Gy, 35% of the bladder received 45 Gy, and 28% of the pelvic bone marrow received 40 Gy. For the adaptive plans, the volume of bowel receiving 45 Gy was 175–201 cc, 55–62% of the rectum received 30 Gy, 21– 27% of the bladder received 45 Gy, and 13–17% of the pelvic bone marrow received 40 Gy. Conclusion: Adaptive planning led to a large reduction of bowel and bone marrow dose in this pilot study. Further study of on-line adaptive techniques for the radiotherapy of pelvic lymph nodes is warranted. Dr. Low is a member of the scientific advisory board of ViewRay, Inc.« less

  12. A Self-Categorization Explanation for Opinion Consensus Perceptions

    ERIC Educational Resources Information Center

    Zhang, Jinguang; Reid, Scott A.

    2013-01-01

    The public expression of opinions (and related communicative activities) hinges upon the perception of opinion consensus. Current explanations for opinion consensus perceptions typically focus on egocentric and other biases, rather than functional cognitions. Using self-categorization theory we showed that opinion consensus perceptions flow from…

  13. Coplanar intensity-modulated radiotherapy class solution for patients with prostate cancer with bilateral hip prostheses with and without nodal involvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.

    2013-07-01

    Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less

  14. Nonconsensus opinion model on directed networks

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  15. 38 CFR 14.507 - Opinions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... involving veterans' benefits under laws administered by the Department of Veterans Affairs shall be... been a material change in controlling statute or regulation, a superseding written legal opinion by the... in the Office of the General Counsel. Written legal opinions involving veterans' benefits under laws...

  16. Anisotropic opinion dynamics

    NASA Astrophysics Data System (ADS)

    Neirotti, Juan

    2016-07-01

    We consider the process of opinion formation in a society of interacting agents, where there is a set B of socially accepted rules. In this scenario, we observed that agents, represented by simple feed-forward, adaptive neural networks, may have a conservative attitude (mostly in agreement with B ) or liberal attitude (mostly in agreement with neighboring agents) depending on how much their opinions are influenced by their peers. The topology of the network representing the interaction of the society's members is determined by a graph, where the agents' properties are defined over the vertexes and the interagent interactions are defined over the bonds. The adaptability of the agents allows us to model the formation of opinions as an online learning process, where agents learn continuously as new information becomes available to the whole society (online learning). Through the application of statistical mechanics techniques we deduced a set of differential equations describing the dynamics of the system. We observed that by slowly varying the average peer influence in such a way that the agents attitude changes from conservative to liberal and back, the average social opinion develops a hysteresis cycle. Such hysteretic behavior disappears when the variance of the social influence distribution is large enough. In all the cases studied, the change from conservative to liberal behavior is characterized by the emergence of conservative clusters, i.e., a closed knitted set of society members that follow a leader who agrees with the social status quo when the rule B is challenged.

  17. Anal wall sparing effect of an endorectal balloon in 3D conformal and intensity-modulated prostate radiotherapy.

    PubMed

    Smeenk, Robert Jan; van Lin, Emile N J Th; van Kollenburg, Peter; Kunze-Busch, Martina; Kaanders, Johannes H A M

    2009-10-01

    To investigate the anal wall (Awall) sparing effect of an endorectal balloon (ERB) in 3D conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) for prostate cancer. In 24 patients with localized prostate carcinoma, two planning CT-scans were performed: with and without ERB. A prostate planning target volume (PTV) was defined, and the Awall was delineated, using two different methods. Three-field and 4-field 3D-CRT plans, and IMRT plans were generated with a prescription dose of 78Gy. In 144 treatment plans, the minimum dose (D(min)), maximum dose (D(max)), and mean dose (D(mean)) to the Awall were calculated, as well as the Awall volumes exposed to doses ranging from >or=20Gy to >or=70Gy (V(20)-V(70), respectively). In the 3D-CRT plans, an ERB significantly reduced D(mean), D(max), and V(30)-V(70). For IMRT all investigated dose parameters were significantly reduced by the ERB. The absolute reduction of D(mean) was 12Gy in 3D-CRT and was 7.5Gy in IMRT for both methods of Awall delineation. Application of an ERB showed a significant Awall sparing effect in both 3D-CRT and IMRT. This may lead to reduced late anal toxicity in prostate radiotherapy.

  18. Opinion evolution in different social acquaintance networks.

    PubMed

    Chen, Xi; Zhang, Xiao; Wu, Zhan; Wang, Hongwei; Wang, Guohua; Li, Wei

    2017-11-01

    Social acquaintance networks influenced by social culture and social policy have a great impact on public opinion evolution in daily life. Based on the differences between socio-culture and social policy, three different social acquaintance networks (kinship-priority acquaintance network, independence-priority acquaintance network, and hybrid acquaintance network) incorporating heredity proportion p h and variation proportion p v are proposed in this paper. Numerical experiments are conducted to investigate network topology and different phenomena during opinion evolution, using the Deffuant model. We found that in kinship-priority acquaintance networks, similar to the Chinese traditional acquaintance networks, opinions always achieve fragmentation, resulting in the formation of multiple large clusters and many small clusters due to the fact that individuals believe more in their relatives and live in a relatively closed environment. In independence-priority acquaintance networks, similar to Western acquaintance networks, the results are similar to those in the kinship-priority acquaintance network. In hybrid acquaintance networks, similar to the Chinese modern acquaintance networks, only a few clusters are formed indicating that in modern China, opinions are more likely to reach consensus on a large scale. These results are similar to the opinion evolution phenomena in modern society, proving the rationality and applicability of network models combined with social culture and policy. We also found a threshold curve p v +2p h =2.05 in the results for the final opinion clusters and evolution time. Above the threshold curve, opinions could easily reach consensus. Based on the above experimental results, a culture-policy-driven mechanism for the opinion dynamic is worth promoting in this paper, that is, opinion dynamics can be driven by different social cultures and policies through the influence of heredity and variation in interpersonal relationship networks. This

  19. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  20. [Role of radiotherapy in the treatment of multiple myeloma].

    PubMed

    Mose, S; Pfitzner, D; Rahn, A; Nierhoff, C; Schiemann, M; Böttcher, H D

    2000-11-01

    Chemotherapy is the treatment of choice in multiple myeloma; but there are no curative options. Therefore, the treatment rationale is characterized by reduction of symptoms and inhibition of complications. Regarding reduction of pain, treatment of (impending) fractures, and spinal cord compression radiation is an important part of palliative treatment. In our retrospective study we report the effect of radiotherapy on reduction of pain, recalcification and the reduction of neurological symptoms and evaluate factors which have an impact on therapeutic outcome. From 1, Jan 1988 to 31, Dec 1998, 42 patients (19 women, 23 men; range of ages 46 to 85 years, median age 64.9 years) with 71 target volumes were irradiated (median dose 36 Gy, 2 to 3 Gy 5 times/week) because of symptomatic disease (67/71: osseous pain, 45/71: fractures/impending fractures, 13/71: spinal cord compression) (Tables 1 and 2). The median time from diagnosis to the first course of radiotherapy was 11.9 months (0.3 to 90 months). At the time of first irradiation, 5 and 37 patients were in tumor Stage II and III (Salmon/Durie), respectively. The median value of the Karnofsky performance was 70% (40 to 90%). During follow-up (at least 6 months) in 85% of target volumes complete and partial pain relief (measured by patients' perception and the use of analgetic medication) was achieved; recurrences were seen in 8.8%. In 26/56 (46.4%) lesions evaluable a recalcification was seen whereas 17.9% showed progressive disease (comparison of radiographs before and after radiation). In 22.3% of all lesions initially with impending fracture (4/18) radiotherapy failed because of fracture after treatment (Tables 3 and 4). Simultaneous chemotherapy and a Karnofsky performance > or = 70 had a significant impact on a positive response to treatment, respectively. Spinal cord compression symptoms were reduced in 7/13 (53.8%) of patients (scaled due to the classification by Findlay 1987). The median survival from

  1. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berman Milby, Abigail; Both, Stefan, E-mail: both@uphs.upenn.edu; Ingram, Mark

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using themore » Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be

  2. Opinion Dynamics with Disagreement and Modulated Information

    NASA Astrophysics Data System (ADS)

    Sîrbu, Alina; Loreto, Vittorio; Servedio, Vito D. P.; Tria, Francesca

    2013-04-01

    Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring relevance in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals' opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions' overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices.

  3. The Dosimetric Consequences of Intensity Modulated Radiotherapy for Cervix Cancer: The Impact of Organ Motion, Deformation and Tumour Regression

    NASA Astrophysics Data System (ADS)

    Lim, Karen Siah Huey

    Hypothesis: In intensity modulated radiotherapy (IMRT) for cervix cancer, the dose received by the tumour target and surrounding normal tissues is significantly different to that indicated by a single static plan. Rationale: The optimal use of IMRT in cervix cancer requires a greater attention to clinical target volume (CTV) definition and tumour & normal organ motion to assure maximum tumour control with the fewest side effects. Research Aims: 1) Generate consensus CTV contouring guidelines for cervix cancer; 2) Evaluate intra-pelvic tumour and organ dynamics during radiotherapy; 3) Analyze the dose consequences of intra-pelvic organ dynamics on different radiotherapy strategies. Results: Consensus CTV definitions were generated using experts-in-the-field. Substantial changes in tumour volume and organ motion, resulted in significant reductions in accumulated dose to tumour targets and variability in accumulated dose to surrounding normal tissues. Significance: Formalized CTV definitions for cervix cancer is important in ensuring consistent standards of practice. Complex and unpredictable tumour and organ dynamics mandates daily soft-tissue image guidance if IMRT is used. To maximize the benefits of IMRT for cervix cancer, a strategy of adaptation is necessary.

  4. Identifying opinion leaders to promote behavior change.

    PubMed

    Valente, Thomas W; Pumpuang, Patchareeya

    2007-12-01

    This article reviews 10 techniques used to identify opinion leaders to promote behavior change. Opinion leaders can act as gatekeepers for interventions, help change social norms, and accelerate behavior change. Few studies document the manner in which opinion leaders are identified, recruited, and trained to promote health. The authors categorize close to 200 studies that have studied or used opinion leaders to promote behavior change into 10 different methods. They present the advantages and disadvantages of the 10 opinion leader identification methods and provide sample instruments for each. Factors that might influence programs to select one or another method are then discussed, and the article closes with a discussion of combining and comparing methods.

  5. Monte Carlo simulations of patient dose perturbations in rotational-type radiotherapy due to a transverse magnetic field: A tomotherapy investigation

    PubMed Central

    Yang, Y. M.; Geurts, M.; Smilowitz, J. B.; Sterpin, E.; Bednarz, B. P.

    2015-01-01

    Purpose: Several groups are exploring the integration of magnetic resonance (MR) image guidance with radiotherapy to reduce tumor position uncertainty during photon radiotherapy. The therapeutic gain from reducing tumor position uncertainty using intrafraction MR imaging during radiotherapy could be partially offset if the negative effects of magnetic field-induced dose perturbations are not appreciated or accounted for. The authors hypothesize that a more rotationally symmetric modality such as helical tomotherapy will permit a systematic mediation of these dose perturbations. This investigation offers a unique look at the dose perturbations due to homogeneous transverse magnetic field during the delivery of Tomotherapy® Treatment System plans under varying degrees of rotational beamlet symmetry. Methods: The authors accurately reproduced treatment plan beamlet and patient configurations using the Monte Carlo code geant4. This code has a thoroughly benchmarked electromagnetic particle transport physics package well-suited for the radiotherapy energy regime. The three approved clinical treatment plans for this study were for a prostate, head and neck, and lung treatment. The dose heterogeneity index metric was used to quantify the effect of the dose perturbations to the target volumes. Results: The authors demonstrate the ability to reproduce the clinical dose–volume histograms (DVH) to within 4% dose agreement at each DVH point for the target volumes and most planning structures, and therefore, are able to confidently examine the effects of transverse magnetic fields on the plans. The authors investigated field strengths of 0.35, 0.7, 1, 1.5, and 3 T. Changes to the dose heterogeneity index of 0.1% were seen in the prostate and head and neck case, reflecting negligible dose perturbations to the target volumes, a change from 5.5% to 20.1% was observed with the lung case. Conclusions: This study demonstrated that the effect of external magnetic fields can be

  6. How Public Opinion is Formed

    ERIC Educational Resources Information Center

    Block, Edward M.

    1977-01-01

    Investigates the evolution of the definition of public relations by examining cultural and personal determinants of public opinion. Outlines functions of communicators and opinionmakers in forming and influencing public opinion. Available from: Public Relations Review, Ray Hiebert, Dean, College of Journalism, University of Maryland, College Park,…

  7. Clinical and dosimetric implications of intensity-modulated radiotherapy for early-stage glottic carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Matthew Christopher, E-mail: wardm3@ccf.org; Pham, Yvonne D.; Kotecha, Rupesh

    2016-04-01

    Conventional parallel-opposed radiotherapy (PORT) is the established standard technique for early-stage glottic carcinoma. However, case reports have reported the utility of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) with or without image guidance (image-guided radiotherapy, IGRT) in select patients. The proposed advantages of IMRT/VMAT include sparing of the carotid artery, thyroid gland, and the remaining functional larynx, although these benefits remain unclear. The following case study presents a patient with multiple vascular comorbidities treated with VMAT for early-stage glottic carcinoma. A detailed explanation of the corresponding treatment details, dose-volume histogram (DVH) analysis, and a review of the relevant literaturemore » are provided. Conventional PORT remains the standard of care for early-stage glottic carcinoma. IMRT or VMAT may be beneficial for select patients, although great care is necessary to avoid a geographical miss. Clinical data supporting the benefit of CRT are lacking. Therefore, these techniques should be used with caution and only in selected patients.« less

  8. Dosimetric Improvements with a Novel Breast Stereotactic Radiotherapy Device for Delivery of Preoperative Partial-Breast Irradiation.

    PubMed

    Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J

    2017-01-01

    Partial-breast irradiation (PBI) with external-beam radiotherapy has produced higher than expected rates of fair-to-poor cosmesis. Worsened outcomes have been correlated with larger volumes of breast tissue exposed to radiation. A novel breast-specific stereotactic radiotherapy (BSRT) device (BSRTD) has been developed at our institution and has shown promise in delivering highly conformal dose distributions. We compared normal tissue sparing with this device with that achieved with intensity-modulated radiation therapy (IMRT)-PBI. Fifteen women previously treated with breast conservation therapy were enrolled on an institutional review board-approved protocol. Each of them underwent CT simulation in the prone position using the BSRTD-specific immobilization system. Simulated postoperative and preoperative treatment volumes were generated based on surgical bed/clip position. Blinded planners generated IMRT-PBI plans and BSRT plans for each set of volumes. These plans were compared based on clinically validated markers for cosmetic outcome and toxicity using a Wilcoxon rank-sum test. The BSRT plans consistently reduced the volumes receiving each of several dose levels (Vx) to breast tissue, the chest wall, the lung, the heart, and the skin in both preoperative and postoperative settings (p < 0.05). Preoperative BSRT yielded particularly dramatic improvements. The novel BSRTD has demonstrated significant dosimetric benefits over IMRT-PBI. Further investigation is currently proceeding through initial clinical trials. © 2016 S. Karger AG, Basel.

  9. MO-G-BRF-06: Radiotherapy and Prompt Oxygen Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissick, M; Campos, D; Adamson, E

    Purpose: Adaptive radiotherapy requires a knowledge of the changing local tumor oxygen concentrations for times on the order of the treatment time, a time scale far shorter than cell death and proliferation. This knowledge will be needed to guide hypofractionated radiotherapy. Methods: A diffuse optical probe system was developed to spatially average over the whole interior of athymic Sprague Dawley nude mouse xenografts of human head and neck cancers. The blood volume and hemoglobin saturation was measured in real time. The quantities were measured with spectral fitting before and after 10 Gy of radiation is applied. An MRI BOLD scanmore » is acquired before and after 10 Gy that measures regional changes in R2* which is inversely proportional to oxygen availability. Simulations were performed to fit the blood oxygen dynamics and infer changes in hypoxia within the tumor. Results: The optical probe measured nearly constant blood volume and a significant drop in hemoglobin saturation of about 30% after 10 Gy over the time scale of less than 30 minutes. The averaged R2* within the tumor volume increased by 15% after the 10 Gy dose, which is consistent with the optical results. The simulations and experiments support likely dynamic metabolic changes and/or fast vasoconstrictive signals are occurring that change the oxygen concentrations significantly, but not cell death or proliferation. Conclusion: Significant oxygen changes were observed to occur within 30 minutes, coinciding with the treatment time scale. This dynamic is very important for patient specific adaptive therapy. For hypofractionated therapy, the local instantaneous oxygen content is likely the most important variable to control. The invention of a bedside device for the purpose of measuring the instantaneous response to large radiation doses would be an important step to future improvements in outcome.« less

  10. 28 CFR 80.11 - Effect of FCPA Opinion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Effect of FCPA Opinion. 80.11 Section 80.11 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) FOREIGN CORRUPT PRACTICES ACT OPINION PROCEDURE § 80.11 Effect of FCPA Opinion. Except as specified in § 80.10, an FCPA Opinion will not bind or...

  11. Hypothyroidism as a Consequence of Intensity-Modulated Radiotherapy With Concurrent Taxane-Based Chemotherapy for Locally Advanced Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel

    Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less

  12. Mucosal Malignant Melanoma of the Head and Neck Treated by Carbon Ion Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagi, Takeshi; Mizoe, Jun-etsu; Hasegawa, Azusa

    2009-05-01

    Purpose: To evaluate the efficacy of carbon ion radiotherapy for mucosal malignant melanoma of the head and neck. Methods and Materials: Between 1994 and 2004, 72 patients with mucosal malignant melanoma of the head and neck were treated with carbon ion beams in three prospective studies. Total dose ranged from 52.8 GyE to 64 GyE given in 16 fixed fractions over 4 weeks. Clinical parameters including gender, age, Karnofsky index, tumor site, tumor volume, tumor status, total dose, fraction size, and treatment time were evaluated in relation to local control and overall survival. Results: The median follow-up period was 49.2more » months (range, 16.8-108.5 months). Treatment toxicity was within acceptable limits, and no patients showed Grade 3 or higher toxicity in the late phase. The 5-year local control rate was 84.1%. In relation to local control, there were no significant differences in any parameters evaluated. The 5-year overall and cause-specific survival rates were 27.0% and 39.6%, respectively. For overall survival, however, tumor volume ({>=}100 mL) was found to be the most significant prognostic parameter. Of the patients who developed distant metastasis, 85% were free from local recurrence. Conclusion: Carbon ion radiotherapy is a safe and effective treatment for mucosal malignant melanoma of the head and neck in terms of high local control and acceptable toxicities. Overall survival rate was better than in those treated with conventional radiotherapy and was comparable to that with surgery.« less

  13. Fractionated Proton Radiotherapy for Benign Cavernous Sinus Meningiomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Jerry D., E-mail: jdslater@dominion.llumc.edu; Loredo, Lilia N.; Chung, Arthur

    2012-08-01

    Purpose: To evaluate the efficacy of fractionated proton radiotherapy for a population of patients with benign cavernous sinus meningiomas. Methods and Materials: Between 1991 and 2002, 72 patients were treated at Loma Linda University Medical Center with proton therapy for cavernous sinus meningiomas. Fifty-one patients had biopsy or subtotal resection; 47 had World Health Organization grade 1 pathology. Twenty-one patients had no histologic verification. Twenty-two patients received primary proton therapy; 30 had 1 previous surgery; 20 had more than 1 surgery. The mean gross tumor volume was 27.6 cm{sup 3}; mean clinical target volume was 52.9 cm{sup 3}. Median totalmore » doses for patients with and without histologic verification were 59 and 57 Gy, respectively. Mean and median follow-up periods were 74 months. Results: The overall 5-year actuarial control rate was 96%; the control rate was 99% in patients with grade 1 or absent histologic findings and 50% for those with atypical histology. All 21 patients who did not have histologic verification and 46 of 47 patients with histologic confirmation of grade 1 tumor demonstrated disease control at 5 years. Control rates for patients without previous surgery, 1 surgery, and 2 or more surgeries were 95%, 96%, and 95%, respectively. Conclusions: Fractionated proton radiotherapy for grade 1 cavernous sinus meningiomas achieves excellent control rates with minimal toxicities, regardless of surgical intervention or use of histologic diagnosis. Disease control for large lesions can be achieved by primary fractionated proton therapy.« less

  14. 28 CFR 80.8 - Attorney General opinion.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Attorney General opinion. 80.8 Section 80.8 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) FOREIGN CORRUPT PRACTICES ACT OPINION PROCEDURE § 80.8 Attorney General opinion. The Attorney General or his designee shall, within 30 days after...

  15. Proton Radiotherapy for Pediatric Bladder/Prostate Rhabdomyosarcoma: Clinical Outcomes and Dosimetry Compared to Intensity-Modulated Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotter, Shane E.; Herrup, David A.; Friedmann, Alison

    Purpose: In this study, we report the clinical outcomes of 7 children with bladder/prostate rhabdomyosarcoma (RMS) treated with proton radiation and compare proton treatment plans with matched intensity-modulated radiation therapy (IMRT) plans, with an emphasis on dose savings to reproductive and skeletal structures. Methods and Materials: Follow-up consisted of scheduled clinic appointments at our institution or direct communication with the treating physicians for referred patients. Each proton radiotherapy plan used for treatment was directly compared to an IMRT plan generated for the study. Clinical target volumes and normal tissue volumes were held constant to facilitate dosimetric comparisons. Each plan wasmore » optimized for target coverage and normal tissue sparing. Results: Seven male patients were treated with proton radiotherapy for bladder/prostate RMS at the Massachusetts General Hospital between 2002 and 2008. Median age at treatment was 30 months (11-70 months). Median follow-up was 27 months (10-90 months). Four patients underwent a gross total resection prior to radiation, and all patients received concurrent chemotherapy. Radiation doses ranged from 36 cobalt Gray equivalent (CGE) to 50.4 CGE. Five of 7 patients were without evidence of disease and with intact bladders at study completion. Target volume dosimetry was equivalent between the two modalities for all 7 patients. Proton radiotherapy led to a significant decrease in mean organ dose to the bladder (25.1 CGE vs. 33.2 Gy; p = 0.03), testes (0.0 CGE vs. 0.6 Gy; p = 0.016), femoral heads (1.6 CGE vs. 10.6 Gy; p = 0.016), growth plates (21.7 CGE vs. 32.4 Gy; p = 0.016), and pelvic bones (8.8 CGE vs. 13.5 Gy; p = 0.016) compared to IMRT. Conclusions: This study provides evidence of significant dose savings to normal structures with proton radiotherapy compared to IMRT and is well tolerated in this patient population. The long-term impact of these reduced doses can be tested in future studies

  16. How to identify rectal sub-regions likely involved in rectal bleeding in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dréan, G.; Acosta, O.; Ospina, J. D.; Voisin, C.; Rigaud, B.; Simon, A.; Haigron, P.; de Crevoisier, R.

    2013-11-01

    Nowadays, the de nition of patient-speci c constraints in prostate cancer radiotherapy planning are solely based on dose-volume histogram (DVH) parameters. Nevertheless those DVH models lack of spatial accuracy since they do not use the complete 3D information of the dose distribution. The goal of the study was to propose an automatic work ow to de ne patient-speci c rectal sub-regions (RSR) involved in rectal bleeding (RB) in case of prostate cancer radiotherapy. A multi-atlas database spanning the large rectal shape variability was built from a population of 116 individuals. Non-rigid registration followed by voxel-wise statistical analysis on those templates allowed nding RSR likely correlated with RB (from a learning cohort of 63 patients). To de ne patient-speci c RSR, weighted atlas-based segmentation with a vote was then applied to 30 test patients. Results show the potentiality of the method to be used for patient-speci c planning of intensity modulated radiotherapy (IMRT).

  17. Cone beam computed tomography-derived adaptive radiotherapy for radical treatment of esophageal cancer.

    PubMed

    Hawkins, Maria A; Brooks, Corrinne; Hansen, Vibeke N; Aitken, Alexandra; Tait, Diana M

    2010-06-01

    To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +/- 4% and the PTV2 = 96.8% +/- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Accelerated partial breast intensity-modulated radiotherapy in women who have prior breast augmentation.

    PubMed

    Leonard, Charles E; Johnson, Tim; Tallhamer, Michael; Howell, Kathryn; Kercher, Jane; Kaske, Terese; Barke, Lora; Sedlacek, Scot; Hobart, Tracy; Carter, Dennis L

    2011-06-01

    To examine the outcome of breast cancer patients who have prior breast augmentation treated with lumpectomy followed by accelerated partial breast external intensity-modulated radiotherapy (APBIMRT) with image-guided radiotherapy (IGRT). Four patients with previous elective subpectoral breast augmentation were enrolled on this APBIMRT trial. These four patients were treated with 10 equal twice daily 3.85 Gy fractions over 5 consecutive days (total dose of 38.5 Gy) using APBIMRT and IGRT. Patients were assessed for pain and cosmetic outcome (physician and a patient self-assessment). At last follow-up, two patients reported an excellent cosmetic results (at 2 years and at 8 months, respectively), one reported good cosmetic results (at 2 years), and one reported poor cosmetic results (at 20 months). Physicians rated the cosmetic outcomes as excellent in two (CEL; at 2 years and 8 months, respectively), good in one (CEL; at 20 months) and excellent in one (KTH; at 2 years). Three patients reported no breast/chest wall pain (two at 2 years and one at 1 year) and the fourth reported mild pain (at 20 months). The mean percent volume of ipsilateral breast receiving 100%, 75%, 50%, and 25% of the prescribed dose was 7.28%, 17.55%, 24.33%, and 33.1%, respectively. The mean breast, planning target volume (PTV), and implant volumes were 399.88 cc, 43.55 cc, and 313.36 cc, respectively. The mean breast prosthesis/total volume (breast tissue plus prosthesis) ratio was 44.55%. The mean PTV/ipsilateral breast and PTV/total volume ratios were 11.1% and 6.1%, respectively. The results show that a regimen of APBIMRT with IGRT is possible in patients who have prior breast augmentation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Identifying Opinion Leaders to Promote Behavior Change

    ERIC Educational Resources Information Center

    Valente, Thomas W.; Pumpuang, Patchareeya

    2007-01-01

    This article reviews 10 techniques used to identify opinion leaders to promote behavior change. Opinion leaders can act as gatekeepers for interventions, help change social norms, and accelerate behavior change. Few studies document the manner in which opinion leaders are identified, recruited, and trained to promote health. The authors categorize…

  20. Year-Round Daylight Saving Time Study : Volume 2. Supporting Studies

    DOT National Transportation Integrated Search

    1975-06-01

    This volume contains detailed background material in support of findings of the Interim Report. It includes the findings of a survey of attifudes towards daylight saving conducted by the National Opinion Research Center; description of sunrise and su...

  1. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel

  2. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    PubMed

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the

  3. [First results of a German second opinion program show high patient satisfaction and large discrepancies between initial therapy recommendations and second opinion].

    PubMed

    Weyerstraß, Jan; Prediger, Barbara; Neugebauer, Edmund; Pieper, Dawid

    2018-02-23

    Although legally anchored, there are no empirical results from German second opinion programs. In this study, various aspects within a population of a second opinion program are examined. In this study patients were analyzed who sought a second opinion in the period from August 2011 to December 2016. Differences in patient characteristics, differentiated by agreement of first and second opinion, were analyzed using multivariate logistic regression. Patients' satisfaction and quality of life were examined one, three and six months after obtaining the second opinion. In total, 1,414 patients sought a second opinion. Most frequent medical indications were the knee (38.7 %), the back (26.8 %), the hip (11.7 %), and the shoulder (10.2 %). Except for the indication (p=0.035), no patient characteristic had influence on the conformation of the second opinion. Approximately two out of three initial recommendations were not confirmed by the specialists. 89 % of the patients were satisfied or very satisfied with the second opinion and the service offered. The second opinion offers patients the opportunity to seek an additional independent medical opinion and thus provide support for decision making. Further research is needed to examine the reasons for the high discrepancies between the first and second opinions. Copyright © 2018. Published by Elsevier GmbH.

  4. Impact of the introduction of weekly radiotherapy quality assurance meetings at one UK cancer centre

    PubMed Central

    Brammer, C V; Allerton, R; Churn, M; Joseph, M; Koh, P; Sayers, I; King, M

    2014-01-01

    Objective: The complexity of radiotherapy planning is increasing rapidly. Delivery and planning is subject to detailed quality assurance (QA) checks. The weakest link is often the oncologists' delineation of the clinical target volume (CTV). Weekly departmental meetings for radiotherapy QA (RTQA) were introduced into the Royal Wolverhampton Hospital, Wolverhampton, UK, in October 2011. This article describes the impact of this on patient care. Methods: CTVs for megavoltage photon radiotherapy courses for all radical, adjuvant and palliative treatments longer than five fractions (with the exception of two field tangential breast treatments not enrolled into clinical trials) were reviewed in the RTQA meeting. Audits were carried out in January 2012 (baseline) and September 2013, each over a 4-week period. Adherence to departmental contouring protocols was assessed and the number of major and minor alterations following peer review were determined. Results: There was no statistically significant difference for major alterations between the two study groups; 8 alterations in 80 patients (10%) for the baseline audit vs 3 alterations from 72 patients (4.2%) in the second audit (p = 0.17). A trend towards a reduction in alterations following peer review was observed. There has, however, been a change in practice resulting in a reduction in variation in CTV definition within our centre and greater adherence to protocols. There is increasing confidence in the quality and constancy of care delivered. Conclusion: Introduction of a weekly QA meeting for target volume definition has facilitated consensus and adoption of departmental clinical guidelines within the unit. Advances in knowledge: The weakest areas in radiotherapy are patient selection and definition of the CTV. Engagement in high-quality RTQA is paramount. This article describes the impact of this in one UK cancer centre. PMID:25251520

  5. [Clinical experience in image-guided ultra-conformal hypofractionated radiotherapy in case of metastatic diseases at the University of Pécs].

    PubMed

    László, Zoltán; Boronkai, Árpád; Lõcsei, Zoltán; Kalincsák, Judit; Szappanos, Szabolcs; Farkas, Róbert; Al Farhat, Yousuf; Sebestyén, Zsolt; Sebestyén, Klára; Kovács, Péter; Csapó, László; Mangel, László

    2015-06-01

    With the development of radiation therapy technology, the utilization of more accurate patient fixation, inclusion of PET/CT image fusion into treatment planning, 3D image-guided radiotherapy, and intensity-modulated dynamic arc irradiation, the application of hypofractionated stereotactic radiotherapy can be extended to specified extracranial target volumes, and so even to the treatment of various metastases. Between October 2012 and August 2014 in our institute we performed extracranial, hypofractionated, image-többguided radiotherapy with RapidArc system for six cases, and 3D conformal multifield technique for one patient with Novalis TX system in case of different few-numbered and slow-growing metastases. For the precise definition of the target volumes we employed PET/CT during the treatment planning procedure. Octreotid scan was applied in one carcinoid tumour patient. Considering the localisation of the metastases and the predictable motion of the organs, we applied 5 to 20 mm safety margin during the contouring procedure. The average treatment volume was 312 cm3. With 2.5-3 Gy fraction doses we delivered 39-45 Gy total dose, and the treatment duration was 2.5 to 3 weeks. The image guidance was carried out via ExacTrac, and kV-Cone Beam CT equipment based on an online protocol, therefore localisation differences were corrected before every single treatment. The patients tolerated the treatments well without major (Gr>2) side effects. Total or near total regression of the metastases was observed at subsequent control examinations in all cases (the median follow-up time was 5 months). According to our first experience, extracranial, imageguided hypofractionated radiotherapy is well-tolerated by patients and can be effectively applied in the treatment of slow-growing and few-numbered metastases.

  6. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer.

    PubMed

    Chandra, Anurag; Guerrero, Thomas M; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Wang, Xiaochun; Murshed, Hasan; Bonnen, Mark D; Garg, Amit K; Stevens, Craig W; Chang, Joe Y; Jeter, Melinda D; Mohan, Radhe; Cox, James D; Komaki, Ritsuko

    2005-12-01

    To evaluate the feasibility whether intensity-modulated radiotherapy (IMRT) can be used to reduce doses to normal lung than three-dimensional conformal radiotherapy (3 DCRT) in treating distal esophageal malignancies. Ten patient cases with cancer of the distal esophagus were selected for a retrospective treatment-planning study. IMRT plans using four, seven, and nine beams (4B, 7B, and 9B) were developed for each patient and compared with the 3 DCRT plan used clinically. IMRT and 3 DCRT plans were evaluated with respect to PTV coverage and dose-volumes to irradiated normal structures, with statistical comparison made between the two types of plans using the Wilcoxon matched-pair signed-rank test. IMRT plans (4B, 7B, 9B) reduced total lung volume treated above 10 Gy (V(10)), 20 Gy (V(20)), mean lung dose (MLD), biological effective volume (V(eff)), and lung integral dose (P<0.05). The median absolute improvement with IMRT over 3DCRT was approximately 10% for V(10), 5% for V(20), and 2.5 Gy for MLD. IMRT improved the PTV heterogeneity (P<0.05), yet conformity was better with 7B-9B IMRT plans. No clinically meaningful differences were observed with respect to the irradiated volumes of spinal cord, heart, liver, or total body integral doses. Dose-volume of exposed normal lung can be reduced with IMRT, though clinical investigations are warranted to assess IMRT treatment outcome of esophagus cancers.

  7. WE-AB-204-03: A Novel 3D Printed Phantom for 4D PET/CT Imaging and SIB Radiotherapy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soultan, D; Murphy, J; Moiseenko, V

    Purpose: To construct and test a 3D printed phantom designed to mimic variable PET tracer uptake seen in lung tumor volumes. To assess segmentation accuracy of sub-volumes of the phantom following 4D PET/CT scanning with ideal and patient-specific respiratory motion. To plan, deliver and verify delivery of PET-driven, gated, simultaneous integrated boost (SIB) radiotherapy plans. Methods: A set of phantoms and inserts were designed and manufactured for a realistic representation of lung cancer gated radiotherapy steps from 4D PET/CT scanning to dose delivery. A cylindrical phantom (40x 120 mm) holds inserts for PET/CT scanning. The novel 3D printed insert dedicatedmore » to 4D PET/CT mimics high PET tracer uptake in the core and lower uptake in the periphery. This insert is a variable density porous cylinder (22.12×70 mm), ABS-P430 thermoplastic, 3D printed by uPrint SE Plus with inner void volume (5.5×42 mm). The square pores (1.8×1.8 mm2 each) fill 50% of outer volume, resulting in a 2:1 SUV ratio of PET-tracer in the void volume with respect to porous volume. A matching in size cylindrical phantom is dedicated to validate gated radiotherapy. It contains eight peripheral holes matching the location of the porous part of the 3D printed insert, and one central hole. These holes accommodate adaptors for Farmer-type ion chamber and cells vials. Results: End-to-end test were performed from 4D PET/CT scanning to transferring data to the planning system and target volume delineation. 4D PET/CT scans were acquired of the phantom with different respiratory motion patterns and gating windows. A measured 2:1 18F-FDG SUV ratio between inner void and outer volume matched the 3D printed design. Conclusion: The novel 3D printed phantom mimics variable PET tracer uptake typical of tumors. Obtained 4D PET/CT scans are suitable for segmentation, treatment planning and delivery in SIB gated treatments of NSCLC.« less

  8. Opinion dynamics in a group-based society

    NASA Astrophysics Data System (ADS)

    Gargiulo, F.; Huet, S.

    2010-09-01

    Many models have been proposed to analyze the evolution of opinion structure due to the interaction of individuals in their social environment. Such models analyze the spreading of ideas both in completely interacting backgrounds and on social networks, where each person has a finite set of interlocutors. In this paper we analyze the reciprocal feedback between the opinions of the individuals and the structure of the interpersonal relationships at the level of community structures. For this purpose we define a group-based random network and we study how this structure co-evolves with opinion dynamics processes. We observe that the adaptive network structure affects the opinion dynamics process helping the consensus formation. The results also show interesting behaviors in regards to the size distribution of the groups and their correlation with opinion structure.

  9. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    PubMed

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  10. Applications of flow-networks to opinion-dynamics

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Kurths, Jürgen

    2015-04-01

    Networks were successfully applied to describe complex systems, such as brain, climate, processes in society. Recently a socio-physical problem of opinion-dynamics was studied using network techniques. We present the toy-model of opinion-formation based on the physical model of advection-diffusion. We consider spreading of the opinion on the fixed subject, assuming that opinion on society is binary: if person has opinion then the state of the node in the society-network equals 1, if the person doesn't have opinion state of the node equals 0. Opinion can be spread from one person to another if they know each other, or in the network-terminology, if the nodes are connected. We include into the system governed by advection-diffusion equation the external field to model such effects as for instance influence from media. The assumptions for our model can be formulated as the following: 1.the node-states are influenced by the network structure in such a way, that opinion can be spread only between adjacent nodes (the advective term of the opinion-dynamics), 2.the network evolution can have two scenarios: -network topology is not changing with time; -additional links can appear or disappear each time-step with fixed probability which requires adaptive networks properties. Considering these assumptions for our system we obtain the system of equations describing our model-dynamics which corresponds well to other socio-physics models, for instance, the model of the social cohesion and the famous voter-model. We investigate the behavior of the suggested model studying "waiting time" of the system, time to get to the stable state, stability of the model regimes for different values of model parameters and network topology.

  11. Radiotherapy.

    PubMed

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  12. Prediction of radiation-induced normal tissue complications in radiotherapy using functional image data

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Partridge, Mike; Bedford, James L.; Webb, Steve

    2005-03-01

    The aim of this study has been to explicitly include the functional heterogeneity of an organ as a factor that contributes to the probability of complication of normal tissues following radiotherapy. Situations for which the inclusion of this information can be advantageous to the design of treatment plans are then investigated. A Java program has been implemented for this purpose. This makes use of a voxelated model of a patient, which is based on registered anatomical and functional data in order to enable functional voxel weighting. Using this model, the functional dose-volume histogram (fDVH) and the functional normal tissue complication probability (fNTCP) are then introduced as extensions to the conventional dose-volume histogram (DVH) and normal tissue complication probability (NTCP). In the presence of functional heterogeneity, these tools are physically more meaningful for plan evaluation than the traditional indices, as they incorporate additional information and are anticipated to show a better correlation with outcome. New parameters mf, nf and TD50f are required to replace the m, n and TD50 parameters. A range of plausible values was investigated, awaiting fitting of these new parameters to patient outcomes where functional data have been measured. As an example, the model is applied to two lung datasets utilizing accurately registered computed tomography (CT) and single photon emission computed tomography (SPECT) perfusion scans. Assuming a linear perfusion-function relationship, the biological index mean perfusion weighted lung dose (MPWLD) has been extracted from integration over outlined regions of interest. In agreement with the MPWLD ranking, the fNTCP predictions reveal that incorporation of functional imaging in radiotherapy treatment planning is most beneficial for organs with a large volume effect and large focal areas of dysfunction. There is, however, no additional advantage in cases presenting with homogeneous function. Although presented

  13. Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.

    PubMed

    López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio

    2015-01-01

    To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.

  14. Discrepancy and Disliking Do Not Induce Negative Opinion Shifts

    PubMed Central

    Flache, Andreas; Mäs, Michael

    2016-01-01

    Both classical social psychological theories and recent formal models of opinion differentiation and bi-polarization assign a prominent role to negative social influence. Negative influence is defined as shifts away from the opinion of others and hypothesized to be induced by discrepancy with or disliking of the source of influence. There is strong empirical support for the presence of positive social influence (a shift towards the opinion of others), but evidence that large opinion differences or disliking could trigger negative shifts is mixed. We examine positive and negative influence with controlled exposure to opinions of other individuals in one experiment and with opinion exchange in another study. Results confirm that similarities induce attraction, but results do not support that discrepancy or disliking entails negative influence. Instead, our findings suggest a robust positive linear relationship between opinion distance and opinion shifts. PMID:27333160

  15. 17 CFR 200.63 - Commission opinions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AND ETHICS; AND INFORMATION AND REQUESTS Canons of Ethics § 200.63 Commission opinions. The opinions... guided in his decisions by a deep regard for the integrity of the system of law which he administers. He...

  16. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less

  17. Radiotherapy quality assurance report from children's oncology group AHOD0031

    PubMed Central

    Dharmarajan, Kavita V.; Friedman, Debra L.; FitzGerald, T.J.; McCarten, Kathleen M.; Constine, Louis S.; Chen, Lu; Kessel, Sandy K.; Iandoli, Matt; Laurie, Fran; Schwartz, Cindy L.; Wolden, Suzanne L.

    2016-01-01

    Purpose A phase III trial assessing response-based therapy in intermediate-risk Hodgkin lymphoma, mandated real-time central review of involved field radiotherapy and imaging records by a centralized review center to maximize protocol compliance. We report the impact of centralized radiotherapy review upon protocol compliance. Methods Review of simulation films, port films, and dosimetry records was required pre-treatment and after treatment completion. Records were reviewed by study-affiliated or review center-affiliated radiation oncologists. A 6–10% deviation from protocol-specified dose was scored as “minor”; >10% was “major”. A volume deviation was scored as “minor” if margins were less than specified, or “major” if fields transected disease-bearing areas. Interventional review and final compliance review scores were assigned to each radiotherapy case and compared. Results Of 1712 patients enrolled, 1173 underwent IFRT at 256 institutions in 7 countries. An interventional review was performed in 88% and a final review in 98%. Overall, minor and major deviations were found in 12% and 6%, respectively. Among the cases for which ≥ 1 pre-IFRT modification was requested by QARC and subsequently made by the treating institution, 100% were made compliant on final review. In contrast, among the cases for which ≥ 1 modification was requested but not made by the treating institution, 10% were deemed compliant on final review. Conclusion In a large trial with complex treatment pathways and heterogeneous radiotherapy fields, central review was performed in a large percentage of cases pre-IFRT and identified frequent potential deviations in a timely manner. When suggested modifications were performed by the institutions, deviations were almost eliminated. PMID:25670539

  18. Comparative planning evaluation of intensity-modulated radiotherapy techniques for complex lung cancer cases.

    PubMed

    Yartsev, Slav; Chen, Jeff; Yu, Edward; Kron, Tomas; Rodrigues, George; Coad, Terry; Trenka, Kristina; Wong, Eugene; Bauman, Glenn; Dyk, Jake Van

    2006-02-01

    Lung cancer treatment can be one of the most challenging fields in radiotherapy. The aim of the present study was to compare different modalities of radiation delivery based on a balanced scoring scheme for target coverage and normal tissue avoidance. Treatment plans were developed for 15 patients with stage III inoperable non-small cell lung cancer using 3D conformal technique and intensity-modulated radiotherapy (IMRT). Elective nodal irradiation was included for all cases to create the most challenging scenarios with large target volumes. A 2 cm margin was used around the gross tumour volume (GTV) to generate PTV2 and 1cm margin around elective nodes for PTV1 resulting in PTV1 volumes larger than 1000 cm(3) in 13 of the 15 patients. 3D conformal and IMRT plans were generated on a commercial treatment planning system (TheraPlan Plus, Nucletron) with various combinations of beam energies and gantry angles. A 'dose quality factor' (DQF) was introduced to correlate the plan quality with patient specific parameters. A good correlation was found between the quality of the plans and the overlap between PTV1 and lungs. The patient feature factor (PFF), which is a product of several pertinent characteristics, was introduced to facilitate the choice of a particular technique for a particular patient. This approach may allow the evaluation of different treatment options prior to actual planning, subject to validation in larger prospective data sets.

  19. SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manning, M; Maurer, J

    2015-06-15

    Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTVmore » with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy.« less

  20. Practical problems in aggregating expert opinions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booker, J.M.; Picard, R.R.; Meyer, M.A.

    1993-11-01

    Expert opinion is data given by a qualified person in response to a technical question. In these analyses, expert opinion provides information where other data are either sparse or non-existent. Improvements in forecasting result from the advantageous addition of expert opinion to observed data in many areas, such as meteorology and econometrics. More generally, analyses of large, complex systems often involve experts on various components of the system supplying input to a decision process; applications include such wide-ranging areas as nuclear reactor safety, management science, and seismology. For large or complex applications, no single expert may be knowledgeable enough aboutmore » the entire application. In other problems, decision makers may find it comforting that a consensus or aggregation of opinions is usually better than a single opinion. Many risk and reliability studies require a single estimate for modeling, analysis, reporting, and decision making purposes. For problems with large uncertainties, the strategy of combining as diverse a set of experts as possible hedges against underestimation of that uncertainty. Decision makers are frequently faced with the task of selecting the experts and combining their opinions. However, the aggregation is often the responsibility of an analyst. Whether the decision maker or the analyst does the aggregation, the input for it, such as providing weights for experts or estimating other parameters, is imperfect owing to a lack of omniscience. Aggregation methods for expert opinions have existed for over thirty years; yet many of the difficulties with their use remain unresolved. The bulk of these problem areas are summarized in the sections that follow: sensitivities of results to assumptions, weights for experts, correlation of experts, and handling uncertainties. The purpose of this paper is to discuss the sources of these problems and describe their effects on aggregation.« less

  1. 32 CFR 1698.2 - Requests for advisory opinions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADVISORY OPINIONS § 1698.2 Requests for advisory opinions. (a) Any male born after December 31, 1959 who... advisory opinion as to the liability of any male person born after December 31, 1959 who has attained 18...

  2. 32 CFR 1698.2 - Requests for advisory opinions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADVISORY OPINIONS § 1698.2 Requests for advisory opinions. (a) Any male born after December 31, 1959 who... advisory opinion as to the liability of any male person born after December 31, 1959 who has attained 18...

  3. SU-E-J-12: A New Stereological Method for Tumor Volume Evaluation for Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y; Tianjin Medical University Cancer Institute and Hospital; East Carolina University

    2014-06-01

    Purpose: Stereological method used to obtain three dimensional quantitative information from two dimensional images is a widely used tool in the study of cells and pathology. But the feasibility of the method for quantitative evaluation of volumes with 3D image data sets for radiotherapy clinical application has not been explored. On the other hand, a quick, easy-to-use and reliable method is highly desired in image-guided-radiotherapy(IGRT) for tumor volume measurement for the assessment of response to treatment. To meet this need, a stereological method for evaluating tumor volumes for esophageal cancer is presented in this abstract. Methods: The stereology method wasmore » optimized by selecting the appropriate grid point distances and sample types. 7 patients with esophageal cancer were selected retrospectively for this study, each having pre and post treatment computed tomography (CT) scans. Stereological measurements were performed for evaluating the gross tumor volume (GTV) changes after radiotherapy and the results was compared with the ones by planimetric measurements. Two independent observers evaluated the reproducibility for volume measurement using the new stereological technique. Results: The intraobserver variation in the GTV volume estimation was 3.42±1.68cm3 (the Wilcoxon matched-pairs test Resultwas Z=−1.726,P=0.084>0.05); the interobserver variation in the GTV volume estimation was 22.40±7.23 cm3 (Z=−3.296,P=0.083>0.05), which showed the consistency in GTV volume calculation with the new method for the same and different users. The agreement level between the results from the two techniques was also evaluated. Difference between the measured GTVs was 20.10±5.35 cm3 (Z=−3.101,P=0.089>0.05). Variation of the measurement results using the two techniques was low and clinically acceptable. Conclusion: The good agreement between stereological and planimetric techniques proves the reliability of the stereological tumor volume estimations. The

  4. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Dosimetric benefits of IMRT and VMAT in the treatment of middle thoracic esophageal cancer: is the conformal radiotherapy still an alternative option?

    PubMed

    Wu, Zhiqin; Xie, Congying; Hu, Meilong; Han, Ce; Yi, Jinling; Zhou, Yongqiang; Yuan, Huawei; Jin, Xiance

    2014-05-08

    The purpose of this study is to investigate the dosimetric differences among conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and volumetric-modulated radiotherapy (VMAT) in the treatment of middle thoracic esophageal cancer, and determine the most appropriate treatment modality. IMRT and one-arc VMAT plans were generated for eight middle thoracic esophageal cancer patients treated previous with CRT. The planning target volume (PTV) coverage and protections on organs at risk of three planning schemes were compared. All plans have sufficient PTV coverage and no significant differences were observed, except for the conformity and homogeneity. The lung V5, V10, and V13 in CRT were 47.9% ± 6.1%, 36.5% ± 4.6%, and 33.2% ± 4.2%, respectively, which were greatly increased to 78.2% ± 13.7% (p < 0.01), 80.8% ± 14.9% (p < 0.01), 48.4% ± 8.2% (p = 0.05) in IMRT and 58.6% ± 10.5% (p = 0.03), 67.7% ± 14.0% (p < 0.01), and 53.0% ± 10.1% (p < 0.01) in VMAT, respectively. The lung V20 (p = 0.03) in VMAT and the V30 (p = 0.04) in IMRT were lower than those in CRT. Both IMRT and VMAT achieved a better protection on heart. However, the volumes of the healthy tissue outside of PTV irradiated by a low dose were higher for IMRT and VMAT. IMRT and VMAT also had a higher MU, optimization time, and delivery time compared to CRT. In conclusion, all CRT, IMRT, and VMAT plans are able to meet the prescription and there is no clear distinction on PTV coverage. IMRT and VMAT can only decrease the volume of lung and heart receiving a high dose, but at a cost of delivering low dose to more volume of lung and normal tissues. CRT is still a feasible option for middle thoracic esophageal cancer radiotherapy, especially for the cost-effective consideration.

  6. Opinion data mining based on DNA method and ORA software

    NASA Astrophysics Data System (ADS)

    Tian, Ru-Ya; Wu, Lei; Liang, Xiao-He; Zhang, Xue-Fu

    2018-01-01

    Public opinion, especially the online public opinion is a critical issue when it comes to mining its characteristics. Because it can be formed directly and intensely in a short time, and may lead to the outbreak of online group events, and the formation of online public opinion crisis. This may become the pushing hand of a public crisis event, or even have negative social impacts, which brings great challenges to the government management. Data from the mass media which reveal implicit, previously unknown, and potentially valuable information, can effectively help us to understand the evolution law of public opinion, and provide a useful reference for rumor intervention. Based on the Dynamic Network Analysis method, this paper uses ORA software to mine characteristics of public opinion information, opinion topics, and public opinion agents through a series of indicators, and quantitatively analyzed the relationships between them. The results show that through the analysis of the 8 indexes associating with opinion data mining, we can have a basic understanding of the public opinion characteristics of an opinion event, such as who is important in the opinion spreading process, the information grasping condition, and the opinion topics release situation.

  7. Efficacy of patient-specific bolus created using three-dimensional printing technique in photon radiotherapy.

    PubMed

    Fujimoto, Koya; Shiinoki, Takehiro; Yuasa, Yuki; Hanazawa, Hideki; Shibuya, Keiko

    2017-06-01

    A commercially available bolus ("commercial-bolus") does not make complete contact with the irregularly shaped patient skin. This study aims to customise a patient-specific three-dimensional (3D) bolus using a 3D printing technique ("3D-bolus") and to evaluate its clinical feasibility for photon radiotherapy. The 3D-bolus was designed using a treatment planning system (TPS) in Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format, and converted to stereolithographic format for printing. To evaluate its physical characteristics, treatment plans were created for water-equivalent phantoms that were bolus-free, or had a flat-form printed 3D-bolus, a TPS-designed bolus ("virtual-bolus"), or a commercial-bolus. These plans were compared based on the percentage depth dose (PDD) and target-volume dose volume histogram (DVH) measurements. To evaluate the clinical feasibility, treatment plans were created for head phantoms that were bolus-free or had a 3D-bolus, a virtual-bolus, or a commercial-bolus. These plans were compared based on the target volume DVH. In the physical evaluation, the 3D-bolus provided effective dose coverage in the build-up region, which was equivalent to the commercial-bolus. With regard to the clinical feasibility, the air gaps were lesser with the 3D-bolus when compared to the commercial-bolus. Furthermore, the prescription dose could be delivered appropriately to the target volume. The 3D-bolus has potential use for air-gap reduction compared to the commercial-bolus and facilitates target-volume dose coverage and homogeneity improvement. A 3D-bolus produced using a 3D printing technique is comparable to a commercial-bolus applied to an irregular-shaped skin surface. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Target margins in radiotherapy of prostate cancer

    PubMed Central

    Bauman, Glenn

    2016-01-01

    We reviewed the literature on the use of margins in radiotherapy of patients with prostate cancer, focusing on different options for image guidance (IG) and technical issues. The search in PubMed database was limited to include studies that involved external beam radiotherapy of the intact prostate. Post-prostatectomy studies, brachytherapy and particle therapy were excluded. Each article was characterized according to the IG strategy used: positioning on external marks using room lasers, bone anatomy and soft tissue match, usage of fiducial markers, electromagnetic tracking and adapted delivery. A lack of uniformity in margin selection among institutions was evident from the review. In general, introduction of pre- and in-treatment IG was associated with smaller planning target volume (PTV) margins, but there was a lack of definitive experimental/clinical studies providing robust information on selection of exact PTV values. In addition, there is a lack of comparative research regarding the cost–benefit ratio of the different strategies: insertion of fiducial markers or electromagnetic transponders facilitates prostate gland localization but at a price of invasive procedure; frequent pre-treatment imaging increases patient in-room time, dose and labour; online plan adaptation should improve radiation delivery accuracy but requires fast and precise computation. Finally, optimal protocols for quality assurance procedures need to be established. PMID:27377353

  9. A dosimetric phantom study of thoracic radiotherapy based on three-dimensional modeling of mediastinal lymph nodes

    PubMed Central

    Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo

    2018-01-01

    The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300

  10. Inter- and Intrafraction Uncertainty in Prostate Bed Image-Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Kitty; Palma, David A.; Department of Oncology, University of Western Ontario, London

    2012-10-01

    Purpose: The goals of this study were to measure inter- and intrafraction setup error and prostate bed motion (PBM) in patients undergoing post-prostatectomy image-guided radiotherapy (IGRT) and to propose appropriate population-based three-dimensional clinical target volume to planning target volume (CTV-PTV) margins in both non-IGRT and IGRT scenarios. Methods and Materials: In this prospective study, 14 patients underwent adjuvant or salvage radiotherapy to the prostate bed under image guidance using linac-based kilovoltage cone-beam CT (kV-CBCT). Inter- and intrafraction uncertainty/motion was assessed by offline analysis of three consecutive daily kV-CBCT images of each patient: (1) after initial setup to skin marks, (2)more » after correction for positional error/immediately before radiation treatment, and (3) immediately after treatment. Results: The magnitude of interfraction PBM was 2.1 mm, and intrafraction PBM was 0.4 mm. The maximum inter- and intrafraction prostate bed motion was primarily in the anterior-posterior direction. Margins of at least 3-5 mm with IGRT and 4-7 mm without IGRT (aligning to skin marks) will ensure 95% of the prescribed dose to the clinical target volume in 90% of patients. Conclusions: PBM is a predominant source of intrafraction error compared with setup error and has implications for appropriate PTV margins. Based on inter- and estimated intrafraction motion of the prostate bed using pre- and post-kV-CBCT images, CBCT IGRT to correct for day-to-day variances can potentially reduce CTV-PTV margins by 1-2 mm. CTV-PTV margins for prostate bed treatment in the IGRT and non-IGRT scenarios are proposed; however, in cases with more uncertainty of target delineation and image guidance accuracy, larger margins are recommended.« less

  11. Carotid-Sparing Intensity-Modulated Radiotherapy for Early-Stage Squamous Cell Carcinoma of the True Vocal Cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chera, Bhishamjit S.; Amdur, Robert J., E-mail: amdurr@shands.ufl.ed; Morris, Christopher G.

    2010-08-01

    Purpose: To compare radiation doses to carotid arteries among various radiotherapy techniques for treatment of early-stage squamous cell carcinoma (SCC) of the true vocal cords. Methods and Materials: Five patients were simulated using computed tomography (CT). Clinical and planning target volumes (PTV) were created for bilateral and unilateral stage T1 vocal cord cancers. Planning risk volumes for the carotid arteries and spinal cord were delineated. For each patient, three treatment plans were designed for bilateral and unilateral target volumes: opposed laterals (LATS), three-dimensional conformal radiotherapy (3DCRT), and intensity-modulated radiotherapy (IMRT), for a total of 30 plans. More than 95% ofmore » the PTV received the prescription dose (63Gy at 2.25 Gy per treatment). Results: Carotid dose was lowest with IMRT. With a bilateral vocal cord target, the median carotid dose was 10Gy with IMRT vs. 25 Gy with 3DCRT and 38 Gy with LATS (p < 0.05); with a unilateral target, the median carotid dose was 4 Gy with IMRT vs. 19 Gy with 3DCRT and 39 Gy with LATS (p < 0.05). The dosimetric tradeoff with IMRT is a small area of high dose in the PTV. The worst heterogeneity results were at a maximum point dose of 80 Gy (127%) in a unilateral target that was close to the carotid. Conclusions: There is no question that IMRT can reduce the dose to the carotid arteries in patients with early-stage vocal cord cancer. The question is whether the potential advantage of reducing the carotid dose outweighs the risk of tumor recurrence due to contouring errors and organ motion and the risk of complications from dose heterogeneity.« less

  12. Dosimetric aspects of breast radiotherapy with three-dimensional and intensity-modulated radiotherapy helical tomotherapy planning modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org

    In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less

  13. Community Size, Perceptions of Majority Opinion and Opinion Expression.

    ERIC Educational Resources Information Center

    Salmon, Charles T.; Oshagan, Hayg

    A study examined structural determinants of opinion expression by merging two theoretical perspectives: the "spiral of silence" model advanced by Elisabeth Noelle-Neumann, and the structural approach to communication research offered by Phillip Tichenor, George Donohue, and Clarice Olien. The study also distinguished between different…

  14. 2001 traffic safety issues opinion survey.

    DOT National Transportation Integrated Search

    2002-02-01

    As a means of determining public opinion on specific traffic safety issues, a public opinion survey was conducted. A total of 4,500 mail surveys were sent to a stratified sample of drivers selected from the drivers license file. The state was divided...

  15. Social opinion dynamics is not chaotic

    NASA Astrophysics Data System (ADS)

    Lim, Chjan; Zhang, Weituo

    2016-08-01

    Motivated by the research on social opinion dynamics over large and dense networks, a general framework for verifying the monotonicity property of multi-agent dynamics is introduced. This allows a derivation of sociologically meaningful sufficient conditions for monotonicity that are tailor-made for social opinion dynamics, which typically have high nonlinearity. A direct consequence of monotonicity is that social opinion dynamics is nonchaotic. A key part of this framework is the definition of a partial order relation that is suitable for a large class of social opinion dynamics such as the generalized naming games. Comparisons are made to previous techniques to verify monotonicity. Using the results obtained, we extend many of the consequences of monotonicity to this class of social dynamics, including several corollaries on their asymptotic behavior, such as global convergence to consensus and tipping points of a minority fraction of zealots or leaders.

  16. A hybrid model for opinion formation

    NASA Astrophysics Data System (ADS)

    Borra, Domenica; Lorenzi, Tommaso

    2013-06-01

    This paper presents a hybrid model for opinion formation in a large group of agents exposed to the persuasive action of a small number of strong opinion leaders. The model is defined by coupling a finite difference equation for the dynamics of leaders opinion with a continuous integro-differential equation for the dynamics of the others. Such a definition stems from the idea that the leaders are few and tend to retain original opinions, so that their dynamics occur on a longer time scale with respect to the one of the other agents. A general well-posedness result is established for the initial value problem linked to the model. The asymptotic behavior in time of the related solution is characterized for some general parameter settings, which mimic distinct social scenarios, where different emerging behaviors can be observed. Analytical results are illustrated and extended through numerical simulations.

  17. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in

  18. Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

    2015-03-01

    Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support

  19. Comparison of linac-based fractionated stereotactic radiotherapy and tomotherapy treatment plans for intra-cranial tumors

    NASA Astrophysics Data System (ADS)

    Jang, Bo Shim; Suk, Lee; Sam, Ju Cho; Sang, Hoon Lee; Juree, Kim; Kwang, Hwan Cho; Chul, Kee Min; Hyun Do, Huh; Rena, Lee; Dae, Sik Yang; Young, Je Park; Won, Seob Yoon; Chul, Yong Kim; Soo, Il Kwon

    2010-11-01

    This study compares and analyzes stereotactic radiotherapy using tomotherapy and linac-based fractionated stereotactic radiotherapy in the treatment of intra-cranial tumors, according to some cases. In this study, linac-based fractionated stereotactic radiotherapy and tomotherapy treatment were administered to five patients diagnosed with intra-cranial cancer in which the dose of 18-20 Gy was applied on 3-5 separate occasions. The tumor dosing was decided by evaluating the inhomogeneous index (II) and conformity index (CI). Also, the radiation-sensitive tissue was evaluated using low dose factors V1, V2, V3, V4, V5, and V10, as well as the non-irradiation ratio volume (NIV). The values of the II for each prescription dose in the linac-based non-coplanar radiotherapy plan and tomotherapy treatment plan were (0.125±0.113) and (0.090±0.180), respectively, and the values of the CI were (0.899±0.149) and (0.917±0.114), respectively. The low dose areas, V1, V2, V3, V4, V5, and V10, in radiation-sensitive tissues in the linac-based non-coplanar radiotherapy plan fell into the ranges 0.3%-95.6%, 0.1%-87.6%, 0.1%-78.8%, 38.8%-69.9%, 26.6%-65.2%, and 4.2%-39.7%, respectively, and the tomotherapy treatment plan had ranges of 13.6%-100%, 3.5%-100%, 0.4%-94.9%, 0.2%-82.2%, 0.1%-78.5%, and 0.3%-46.3%, respectively. Regarding the NIV for each organ, it is possible to obtain similar values except for the irradiation area of the brain stem. The percentages of NIV 10%, NIV20%, and NIV30%for the brain stem in each patient were 15%-99.8%, 33.4%-100%, and 39.8%-100%, respectively, in the fractionated stereotactic treatment plan and 44.2%-96.5%, 77.7%-99.8%, and 87.8%-100%, respectively, in the tomotherapy treatment plan. In order to achieve higher-quality treatment of intra-cranial tumors, treatment plans should be tailored according to the isodose target volume, inhomogeneous index, conformity index, position of the tumor upon fractionated stereotactic radiosurgery, and radiation

  20. Phase Transition in Opinion Diffusion in Social Networks

    DTIC Science & Technology

    2012-05-01

    the opinions of social agents diffuse in a network under a so-called hard-interaction model, in which the agents inter- act more strongly with...gent behavior. Index Terms— opinion diffusion , opinion dynamics, social net- works, phase transition, herding. 1. INTRODUCTION The study of the

  1. Potential risk of alpha-glucosidase inhibitor administration in prostate cancer external radiotherapy by exceptional rectal gas production: a case report.

    PubMed

    Nishimura, Takuya; Yamazaki, Hideya; Iwama, Kazuki; Oota, Yoshitaka; Aibe, Norihiro; Nakamura, Satoaki; Yoshida, Ken; Okabe, Haruumi; Yamada, Kei

    2014-05-05

    Radiotherapy is a standard treatment for prostate cancer, and image-guided radiotherapy is increasingly being used to aid precision of dose delivery to targeted tissues. However, precision during radiotherapy cannot be maintained when unexpected intrafraction organ motion occurs. We report our experience of internal organ motion caused by persistent gas production in a patient taking an alpha-glucosidase inhibitor. A 68-year-old Japanese man with prostate cancer visited our institution for treatment with helical tomotherapy. He suffered from diabetes mellitus and took an alpha-glucosidase inhibitor. Routine treatment planning computed tomography showed a large volume of rectal gas; an enema was given to void the rectum. Subsequent treatment planning computed tomography again showed a large volume of gas. After exercise (walking) to remove the intestinal gas, a third scan was performed as a test scan without tight fixation, which showed a sufficiently empty rectum for planning. However, after only a few minutes, treatment planning computed tomography again showed extreme accumulation of gas. Therefore, we postponed treatment planning computed tomography and consulted his doctor to suspend the alpha-glucosidase inhibitor, which was the expected cause of his persistent gas. Four days after the alpha-glucosidase inhibitor regimen was suspended, we took a fourth treatment planning computed tomography and made a treatment plan without gas accumulation. Thereafter, the absence of rectal gas accumulation was confirmed using daily megavolt computed tomography before treatment, and the patient received 37 fractions of intensity-modified radiotherapy at 74 Gy without rectal gas complications. In this case study, the alpha-glucosidase inhibitor induced the accumulation of intestinal gas, which may have caused unexpected organ motion, untoward reactions, and insufficient doses to clinical targets. We suggest that patients who are taking an alpha-glucosidase inhibitor for

  2. A lexicon based method to search for extreme opinions.

    PubMed

    Almatarneh, Sattam; Gamallo, Pablo

    2018-01-01

    Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words.

  3. Effect of Radiotherapy Dose and Volume on Relapse in Merkel Cell Cancer of the Skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foote, Matthew, E-mail: matthew_foote@health.qld.gov.a; Harvey, Jennifer; Porceddu, Sandro

    Purpose: To assess the effect of radiotherapy (RT) dose and volume on relapse patterns in patients with Stage I-III Merkel cell carcinoma (MCC). Patients and Methods: This was a retrospective analysis of 112 patients diagnosed with MCC between January 2000 and December 2005 and treated with curative-intent RT. Results: Of the 112 evaluable patients, 88% had RT to the site of primary disease for gross (11%) or subclinical (78%) disease. Eighty-nine percent of patients had RT to the regional lymph nodes; in most cases (71%) this was for subclinical disease in the adjuvant or elective setting, whereas 21 patients (19%)more » were treated with RT to gross nodal disease. With a median follow-up of 3.7 years, the 2-year and 5-year overall survival rates were 72% and 53%, respectively, and the 2-year locoregional control rate was 75%. The in-field relapse rate was 3% for primary disease, and relapse was significantly lower for patients receiving {>=}50Gy (hazard ratio [HR] = 0.22; 95% confidence interval [CI], 0.06-0.86). Surgical margins did not affect the local relapse rate. The in-field relapse rate was 11% for RT to the nodes, with dose being significant for nodal gross disease (HR = 0.24; 95% CI, 0.07-0.87). Patients who did not receive elective nodal RT had a much higher rate of nodal relapse compared with those who did (HR = 6.03; 95% CI, 1.34-27.10). Conclusion: This study indicates a dose-response for subclinical and gross MCC. Doses of {>=}50Gy for subclinical disease and {>=}55Gy for gross disease should be considered. The draining nodal basin should be treated in all patients.« less

  4. Interfractional variation in bladder volume and its impact on cervical cancer radiotherapy: Clinical significance of portable bladder scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Huanli; Jin, Fu; Yang, Dingyi

    Purpose: A constant bladder volume (BV) is essential to direct the radiotherapy (RT) of pelvic tumors with precision. The purpose of this study was to investigate changes in BV and their impact on cervical cancer RT and to assess the clinical significance of a portable bladder scanner (BS) in achieving a constant BV. Methods: A standard bladder phantom (133 ml) and measurements of actual urine volume were both used as benchmarks to evaluate the accuracy of the BS. Comparisons of BS with computed tomography (CT), cone-beam CT (CBCT), and an ultrasound diagnostic device (iU22) were made. Twenty-two consecutive patients withmore » cervical cancer treated with external beam radical RT were divided into an experimental group (13 patients) and a control group (9 patients). In the experimental group, the BV was measured multiple times by BS pre-RT until it was consistent with that found by planning CT. Then a CBCT was performed. The BV was measured again immediately post-RT, after which the patient’s urine was collected and recorded. In the control group, CBCT only was performed pre-RT. Interfractional changes in BV and their impact on cervical cancer RT were investigated in both groups. The time of bladder filling was also recorded and analyzed. Results: In measuring the volume of the standard bladder phantom, the BS deviated by 1.4% in accuracy. The difference between the measurements of the BS and the iU22 had no statistical significance (linear correlation coefficient 0.96, P < 0.05). The BV measured by the BS was strongly correlated with the actual urine volume (R = 0.95, P < 0.05), planning CT (R = 0.95, P < 0.05), or CBCT (R = 0.91, P < 0.05). Compared with the BV at the time of CT, its value changed by −36.1% [1 SD (standard deviation) 42.3%; range, −79.1%–29.4%] in the control group, and 5.2% (1 SD 21.5%; range, −13.3%–22.1%) in the experimental group during treatment. The change in BV affected the target position in the superior–inferior (SI

  5. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  6. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.

    PubMed

    Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio

    2007-01-01

    Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation

  7. Dosimetric correlations of acute esophagitis in lung cancer patients treated with radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Ken; Nemoto, Kenji; Saito, Haruo

    2005-07-01

    Purpose: To evaluate the factors associated with acute esophagitis in lung cancer patients treated with thoracic radiotherapy. Methods and Materials: We examined 35 patients with non-small-cell lung cancer (n = 27, 77%) and small-cell lung cancer (n = 8, 23%) treated with thoracic radiotherapy between February 2003 and November 2004. The median patient age was 70 years (range, 50-83 years). The disease stage was Stage I in 2 patients (6%), Stage II in 1 (3%), Stage IIIa in 10 (28%), Stage IIIb in 9 (26%), and Stage IV in 9 (26%); 4 patients (11%) had recurrent disease after surgery. Amore » median dose of 60 Gy (range, 50-67 Gy) was given to the isocenter and delivered in single daily fractions of 1.8 or 2 Gy. With heterogeneity corrections, the median given dose to the isocenter was 60.3 Gy (range, 49.9-67.2 Gy). Of the 35 patients, 30 (86%) received concurrent chemotherapy consisting of a platinum agent, cisplatin or carboplatin, combined with paclitaxel in 18 patients (52%), irinotecan hydrochloride in 7 (20%), vincristine sulfate and etoposide in 2 (5%), vinorelbine ditartrate in 1 (3%), etoposide in 1 (3%), and docetaxel in 1 patient (3%). Three of these patients underwent induction therapy with cisplatin and irinotecan hydrochloride, administered before thoracic radiotherapy, and concurrent chemotherapy. Esophageal toxicity was graded according to the Radiation Therapy Oncology Group criteria. The following factors were analyzed with respect to their association with Grade 1 or worse esophagitis by univariate and multivariate analyses: age, gender, concurrent chemotherapy, chemotherapeutic agents, maximal esophageal dose, mean esophageal dose, and percentage of esophageal volume receiving >10 to >65 Gy in 5-Gy increments. Results: Of the 35 patients, 25 (71%) developed acute esophagitis, with Grade 1 in 20 (57%) and Grade 2 in 5 (14%). None of the patients had Grade 3 or worse toxicity. The most significant correlation was between esophagitis and percentage

  8. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    PubMed

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  9. MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy.

    PubMed

    Murrell, Donna H; Zarghami, Niloufar; Jensen, Michael D; Dickson, Fiona; Chambers, Ann F; Wong, Eugene; Foster, Paula J

    2017-10-01

    Incidence of brain metastasis attributed to breast cancer is increasing and prognosis is poor. It is thought that disseminated dormant cancer cells persist in metastatic organs and may evade treatments, thereby facilitating a mechanism for recurrence. Radiotherapy is used to treat brain metastases clinically, but assessment has been limited to macroscopic tumor volumes detectable by clinical imaging. Here, we use cellular MRI to understand the concurrent responses of metastases and nonproliferative or slowly cycling cancer cells to radiotherapy. MRI cell tracking was used to investigate the impact of early cranial irradiation on the fate of individual iron-labeled cancer cells and outgrowth of breast cancer brain metastases in the human MDA-MB-231-BR-HER2 cell model. Early whole-brain radiotherapy significantly reduced the outgrowth of metastases from individual disseminated cancer cells in treated animals compared to controls. However, the numbers of nonproliferative iron-retaining cancer cells in the brain were not significantly different. Radiotherapy, when given early in cancer progression, is effective in preventing the outgrowth of solitary cancer cells to brain metastases. Future studies of the nonproliferative cancer cells' clonogenic potentials are warranted, given that their persistent presence suggests that they may have evaded treatment. Magn Reson Med 78:1506-1512, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. MRI-guided Dose-escalated Salvage Radiotherapy for Bulky Bladder Neck Recurrence of Prostate Cancer

    PubMed Central

    Tyran, Marguerite; Steinberg, Michael L.; Holden, Stuart B; Cao, Minsong

    2018-01-01

    Nearly 30% of patients treated with radical prostatectomy for prostate cancer ultimately develop biochemical recurrences, and nearly a quarter of men with nonpalpable biochemical recurrences have gross local recurrences identified with magnetic resonance imaging (MRI). The only curative intervention for patients with recurrent disease after radical prostatectomy is salvage radiotherapy – this is particularly true for patients with gross local recurrences. Furthermore, even in patients with an incurable metastatic disease, a local recurrence can be the source of significant morbidity and should be addressed. Delivering a sufficient dose of radiation in the postoperative setting to control gross disease while minimizing toxicity poses a significant technical challenge. Because of the inherent uncertainty in the verification of gross disease positioning with standard onboard imaging technologies, large margins must be used. Larger margins, in turn, will lead to larger volumes of tissue receiving high doses of radiation, potentially increasing long-term toxicity. Herein, we present the case of a patient with a bulky gross recurrence (>40 cm3) at the bladder neck and synchronous metastatic disease who was referred for salvage radiotherapy after a multidisciplinary consensus recommendation to pursue local therapy for mitigating urinary morbidity from the bulky tumor. The case illustrates the utilization of MRI-guided radiotherapy to allow significant margin reduction, thereby facilitating the delivery of an escalated dose of radiotherapy to a bulky recurrence. PMID:29805929

  11. A lexicon based method to search for extreme opinions

    PubMed Central

    Gamallo, Pablo

    2018-01-01

    Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words. PMID:29799867

  12. Four-dimensional multislice computed tomography for determination of respiratory lung tumor motion in conformal radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.

    2005-07-01

    Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical

  13. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy.

    PubMed

    McDonald, Andrew M; Baker, Christopher B; Popple, Richard A; Shekar, Kiran; Yang, Eddy S; Jacob, Rojymon; Cardan, Rex; Kim, Robert Y; Fiveash, John B

    2014-06-03

    To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients.

  14. Melatonin prevents possible radiotherapy-induced thyroid injury.

    PubMed

    Arıcıgil, Mitat; Dündar, Mehmet Akif; Yücel, Abitter; Eryılmaz, Mehmet Akif; Aktan, Meryem; Alan, Mehmet Akif; Fındık, Sıdıka; Kılınç, İbrahim

    2017-12-01

    We aimed to investigate the protective effect of melatonin in radiotherapy-induced thyroid gland injury in an experimental rat model. Thirty-two rats were divided into four groups: the control group, melatonin treatment group, radiotherapy group and melatonin plus radiotherapy group. The neck region of each rat was defined by simulation and radiated with 2 Gray (Gy) per min with 6-MV photon beams, for a total dose of 18 Gy. Melatonin was administered at a dose of 50 mg/kg through intraperitoneal injection, 15 min prior to radiation exposure. Thirty days after the beginning of the study, rats were decapitated and analyses of blood and thyroid tissue were performed. Tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) levels in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05), whereas interleukin-10 (IL-10) and glutathione (GSH) values were higher in the melatonin plus radiotherapy group (p < .05). The infiltration of inflammatory cells and percentage of apoptosis in the radiotherapy group were significantly higher than those in the melatonin plus radiotherapy group (p < .05). Melatonin helped protect thyroid gland structure against the undesired cytotoxic effects of radiotherapy in rats.

  15. Effect of heterogeneity correction on dosimetric parameters of radiotherapy planning for thoracic esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Masao, E-mail: naka2008@med.kobe-u.ac.jp; Yoshida, Kenji; Nishimura, Hideki

    2014-04-01

    The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose,more » and dose that covers 95% of the PTV between the first and second plans were 1.10 Gy (1.8%), 1.35 Gy (2.2%), 1.10 Gy (1.9%), and 0.56 Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30 Gy (lung V{sub 5}, V{sub 10}, V{sub 20}, and V{sub 30}) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V{sub 5} and V{sub 10}) than on the dosimetric parameters related to the PTV and other OARs.« less

  16. Examining Determinants of Radiotherapy Access: Do Cost and Radiotherapy Inconvenience Affect Uptake of Breast-conserving Treatment for Early Breast Cancer?

    PubMed

    Lam, J; Cook, T; Foster, S; Poon, R; Milross, C; Sundaresan, P

    2015-08-01

    Radiotherapy utilisation is likely affected by multiple factors pertaining to radiotherapy access. Radiotherapy is an integral component of breast-conserving treatment (BCT) for early breast cancer. We aimed to determine if stepwise improvements in radiotherapy access in regional Australia affected the uptake of BCT and thus radiotherapy. Breast cancer operations in the Central Coast of New South Wales between January 2010 and March 2014 for T1-2N0-1M0 invasive or in situ (≤5 cm) disease in female patients eligible for BCT were examined. BCT uptake was calculated for three 1 year periods: period 1 (local radiotherapy available at cost to user or out of area radiotherapy with travel cost and inconvenience); period 2 (as per period 1 + publicly funded transport and radiotherapy at out of area facilities at no cost to user); period 3 (as per period 1 + publicly funded local radiotherapy at no cost to user). In total, 574 cases met eligibility criteria. BCT declined with increasing distance to publicly funded radiotherapy (P = 0.035). BCT rates for periods 1, 2 and 3 were 63% (113/180), 61% (105/173) and 71% (156/221). There were no statistically significant differences in BCT between periods 1 and 2 in the whole cohort or within age, histology or tumour size subgroups. Overall, there was a 9% increase in BCT in the whole cohort in period 3 compared with periods 1 and 2 (P = 0.031). This increase was statistically significant for women over 70 years (19% increase, P = 0.034), for women with ductal carcinoma in situ (25% increase, P = 0.013) and for women with primary tumours that were ≤10 mm (21% increase, P = 0.016). Improving the affordability of radiotherapy through publicly funded transport and radiotherapy at out of area facilities did not improve BCT uptake in a region where radiotherapy was locally available, albeit at cost to the user. Improving both affordability and convenience through the provision of local publicly funded radiotherapy increased BCT

  17. Is a Clinical Target Volume (CTV) Necessary in the Treatment of Lung Cancer in the Modern Era Combining 4-D Imaging and Image-guided Radiotherapy (IGRT)?

    PubMed

    Kilburn, Jeremy M; Lucas, John T; Soike, Michael H; Ayala-Peacock, Diandra N; Blackstock, Arthur W; Hinson, William H; Munley, Michael T; Petty, William J; Urbanic, James J

    2016-01-23

    We hypothesized that omission of clinical target volumes (CTV) in lung cancer radiotherapy would not compromise control by determining retrospectively if the addition of a CTV would encompass the site of failure. Stage II-III patients were treated from 2009-2012 with daily cone-beam imaging and a 5 mm planning target volume (PTV) without a CTV. PTVs were expanded 1 cm and termed CTVretro. Recurrences were scored as 1) within the PTV, 2) within CTVretro, or 3) outside the PTV. Locoregional control (LRC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated. Among 110 patients, Stage IIIA 57%, IIIB 32%, IIA 4%, and IIB 7%. Eighty-six percent of Stage III patients received chemotherapy. Median dose was 70 Gy (45-74 Gy) and fraction size ranged from 1.5-2.7 Gy. Median follow-up was 12 months, median OS was 22 months (95% CI 19-30 months), and LRC at two years was 69%. Fourteen local and eight regional events were scored with two CTVretro failures equating to a two-year CTV failure-free survival of 98%. Omission of a 1 cm CTV expansion appears feasible based on only two events among 110 patients and should be considered in radiation planning.

  18. 10 CFR 590.404 - Final opinions and orders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Final opinions and orders. 590.404 Section 590.404 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Opinions and Orders § 590.404 Final opinions and...

  19. Environment and Public Opinion in Minnesota.

    ERIC Educational Resources Information Center

    Tichenor, P. J.; And Others

    Surveys conducted in Minnesota in 1969 and 1970 to obtain public opinion regarding environmental issues are discussed. Several generalizations are made about the state of public opinion about the environmental issue, as follows: (1) The environmental issue has reached public prominence through a sequence from professional and interest-group…

  20. Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning.

    PubMed

    Muirhead, Rebecca; McNee, Stuart G; Featherstone, Carrie; Moore, Karen; Muscat, Sarah

    2008-12-01

    Four-dimensional computed tomography (4DCT) is currently being introduced to radiotherapy centers worldwide, for use in radical radiotherapy planning for non-small cell lung cancer (NSCLC). A significant drawback is the time required to delineate 10 individual CT scans for each patient. Every department will hence ask the question if the single Maximum Intensity Projection (MIP) scan can be used as an alternative. Although the problems regarding the use of the MIP in node-positive disease have been discussed in the literature, a comprehensive study assessing its use has not been published. We compared an internal target volume (ITV) created using the MIP to an ITV created from the composite volume of 10 clinical target volumes (CTVs) delineated on the 10 phases of the 4DCT. 4DCT data was collected from 14 patients with NSCLC. In each patient, the ITV was delineated on the MIP image (ITV_MIP) and a composite ITV created from the 10 CTVs delineated on each of the 10 scans in the dataset. The structures were compared by assessment of volumes of overlap and exclusion. There was a median of 19.0% (range, 5.5-35.4%) of the volume of ITV_10phase not enclosed by the ITV_MIP, demonstrating that the use of the MIP could result in under-treatment of disease. In contrast only a very small amount of the ITV_MIP was not enclosed by the ITV_10phase (median of 2.3%, range, 0.4-9.8%), indicating the ITV_10phase covers almost all of the tumor tissue as identified by MIP. Although there were only two Stage I patients, both demonstrated very similar ITV_10phase and ITV_MIP volumes. These findings suggest that Stage I NSCLC tumors could be outlined on the MIP alone. In Stage II and III tumors the ITV_10phase would be more reliable. To prevent under-treatment of disease, the MIP image can only be used for delineation in Stage I tumors.

  1. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey

    NASA Astrophysics Data System (ADS)

    Lorenz, Jan

    Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.

  2. Opinion Dynamics with Heterogeneous Interactions and Information Assimilation

    ERIC Educational Resources Information Center

    Mir Tabatabaei, Seydeh Anahita

    2013-01-01

    In any modern society, individuals interact to form opinions on various topics, including economic, political, and social aspects. Opinions evolve as the result of the continuous exchange of information among individuals and of the assimilation of information distributed by media. The impact of individuals' opinions on each other forms a network,…

  3. History, Philosophy, and Public Opinion Research.

    ERIC Educational Resources Information Center

    Herbst, Susan

    1993-01-01

    Argues for the importance of the classical tradition (broad, speculative, and historically informed writing and research) in public opinion research. Argues that asking large, normative questions about public opinion processes, trying to build grand theory, and taking history seriously will enrich the field and command the attention of scholars in…

  4. New Internet search volume-based weighting method for integrating various environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. Themore » resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.« less

  5. Analysis and application of opinion model with multiple topic interactions.

    PubMed

    Xiong, Fei; Liu, Yun; Wang, Liang; Wang, Ximeng

    2017-08-01

    To reveal heterogeneous behaviors of opinion evolution in different scenarios, we propose an opinion model with topic interactions. Individual opinions and topic features are represented by a multidimensional vector. We measure an agent's action towards a specific topic by the product of opinion and topic feature. When pairs of agents interact for a topic, their actions are introduced to opinion updates with bounded confidence. Simulation results show that a transition from a disordered state to a consensus state occurs at a critical point of the tolerance threshold, which depends on the opinion dimension. The critical point increases as the dimension of opinions increases. Multiple topics promote opinion interactions and lead to the formation of macroscopic opinion clusters. In addition, more topics accelerate the evolutionary process and weaken the effect of network topology. We use two sets of large-scale real data to evaluate the model, and the results prove its effectiveness in characterizing a real evolutionary process. Our model achieves high performance in individual action prediction and even outperforms state-of-the-art methods. Meanwhile, our model has much smaller computational complexity. This paper provides a demonstration for possible practical applications of theoretical opinion dynamics.

  6. Opinion formation of free speech on the directed social network

    NASA Astrophysics Data System (ADS)

    Su, Jiongming; Ma, Hongxu; Liu, Baohong; Li, Qi

    2014-12-01

    A dynamical model with continuous opinion is proposed to study how the speech order and the topology of directed social network affect the opinion formation of free speech. In the model, agents express their opinions one by one with random order (RO) or probability order (PO), other agents paying attentions to the speaking agent, receive provider's opinion, update their opinions and then express their new opinions in their turns. It is proved that with the same agent j repeats its opinion more, other agents who pay their attentions to j and include j's opinion in their confidence level at initial time, will continue approaching j's opinion. Simulation results reveal that on directed scale-free network: (1) the model for PO forms fewer opinion clusters, larger maximum cluster (MC), smaller standard deviation (SD), and needs less waiting time to reach a middle level of consensus than RO; (2) as the parameter of scale-free degree distribution decreases or the confidence level increases, the results often get better for both speech orders; (3) the differences between PO and RO get smaller as the size of network decreases.

  7. A Case Report of Salvage Radiotherapy for a Patient with Recurrent Gastric Cancer and Multiple Comorbidities Using Real-time MRI-guided Adaptive Treatment System

    PubMed Central

    Jeon, Seung Hyuck; Chie, Eui Kyu

    2018-01-01

    The stomach is one of the most deforming organs caused by respiratory motions and daily variation by food intake. Applying radiotherapy has been quite a challenge due to the high risk of missing the target as well as radiation exposure to large volumes of normal tissue. However, real-time magnetic resonance (MR)-guided radiotherapy with adaptive planning could focus the high dose radiation to the target area while minimizing neighboring normal tissue exposure and compensate for not only daily but real-time variation. Here is a case report of a patient with recurrent gastric cancer and multiple co-morbidities, unsuitable for both resection and chemotherapy, who underwent MR guided adaptive radiotherapy. PMID:29900091

  8. 29 CFR 18.610 - Religious beliefs or opinions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Religious beliefs or opinions. 18.610 Section 18.610 Labor... OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.610 Religious beliefs or opinions. Evidence of the beliefs or opinions of a witness on matters of religion is not admissible for the purpose...

  9. 29 CFR 18.610 - Religious beliefs or opinions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Religious beliefs or opinions. 18.610 Section 18.610 Labor... OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.610 Religious beliefs or opinions. Evidence of the beliefs or opinions of a witness on matters of religion is not admissible for the purpose...

  10. 42 CFR 57.1511 - Opinion of legal counsel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Opinion of legal counsel. 57.1511 Section 57.1511... Personnel § 57.1511 Opinion of legal counsel. At appropriate stages in the application and approval... memorandum or opinion of legal counsel with respect to the legality of any proposed note issue, the legal...

  11. 42 CFR 57.1511 - Opinion of legal counsel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Opinion of legal counsel. 57.1511 Section 57.1511... Personnel § 57.1511 Opinion of legal counsel. At appropriate stages in the application and approval... memorandum or opinion of legal counsel with respect to the legality of any proposed note issue, the legal...

  12. 29 CFR 18.610 - Religious beliefs or opinions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Religious beliefs or opinions. 18.610 Section 18.610 Labor... OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.610 Religious beliefs or opinions. Evidence of the beliefs or opinions of a witness on matters of religion is not admissible for the purpose...

  13. 29 CFR 18.610 - Religious beliefs or opinions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Religious beliefs or opinions. 18.610 Section 18.610 Labor... OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.610 Religious beliefs or opinions. Evidence of the beliefs or opinions of a witness on matters of religion is not admissible for the purpose...

  14. 29 CFR 18.610 - Religious beliefs or opinions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Religious beliefs or opinions. 18.610 Section 18.610 Labor... OFFICE OF ADMINISTRATIVE LAW JUDGES Rules of Evidence Witnesses § 18.610 Religious beliefs or opinions. Evidence of the beliefs or opinions of a witness on matters of religion is not admissible for the purpose...

  15. The launch of the first UK charity devoted to radiotherapy: ACORRN -- Action Radiotherapy.

    PubMed

    Price, P

    2011-01-01

    The Academic Clinical Oncology and Radiobiology Research Network (ACORRN) was set up to support research and development in radiotherapy in the UK. This innovative networking initiative was launched initially by the National Cancer Research Institute in 2005 to harness the power of the radiation research base in the UK. Through an interactive website a co-ordinated network of multidisciplinary radiation researchers has been established. The network has developed to a stage where it can be self-funding and dedicated to improving radiotherapy for cancer. A patient interactive section and extended support for service development will ensure that anyone treated in the UK will have immediate access to the best knowledge in the country. This provides a solution for cost-effectiveness and future improvement of cancer care and is seen as a new model to support healthcare development and delivery. The charity ACORRN - Action Radiotherapy aims to support radiotherapy research and development and was launched in the House of Lords in July 2010.

  16. Rise of an alternative majority against opinion leaders

    NASA Astrophysics Data System (ADS)

    Tucci, K.; González-Avella, J. C.; Cosenza, M. G.

    2016-03-01

    We investigate the role of opinion leaders or influentials in the collective behavior of a social system. Opinion leaders are characterized by their unidirectional influence on other agents. We employ a model based on Axelrod's dynamics for cultural interaction among social agents that allows for non-interacting states. We find three collective phases in the space of parameters of the system, given by the fraction of opinion leaders and a quantity representing the number of available states: one ordered phase having the state imposed by the leaders; another nontrivial ordered phase consisting of a majority group in a state orthogonal or alternative to that of the opinion leaders, and a disordered phase, where many small groups coexist. We show that the spontaneous rise of an alternative group in the presence of opinion leaders depends on the existence of a minimum number of long-range connections in the underlying network. This phenomenon challenges the common idea that influentials are fundamental to propagation processes in society, such as the formation of public opinion.

  17. Opinion diversity and community formation in adaptive networks

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Xiao, G.; Li, G.; Tay, W. P.; Teoh, H. F.

    2017-10-01

    It is interesting and of significant importance to investigate how network structures co-evolve with opinions. In this article, we show that, a simple model integrating consensus formation, link rewiring, and opinion change allows complex system dynamics to emerge, driving the system into a dynamic equilibrium with the co-existence of diversified opinions. Specifically, similar opinion holders may form into communities yet with no strict community consensus; and rather than being separated into disconnected communities, different communities are connected by a non-trivial proportion of inter-community links. More importantly, we show that the complex dynamics may lead to different numbers of communities at the steady state with a given tolerance between different opinion holders. We construct a framework for theoretically analyzing the co-evolution process. Theoretical analysis and extensive simulation results reveal some useful insights into the complex co-evolution process, including the formation of dynamic equilibrium, the transition between different steady states with different numbers of communities, and the dynamics between opinion distribution and network modularity.

  18. Dose-Volume Parameters of the Corpora Cavernosa Do Not Correlate With Erectile Dysfunction After External Beam Radiotherapy for Prostate Cancer: Results From a Dose-Escalation Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wielen, Gerard J. van der; Hoogeman, Mischa S.; Dohle, Gert R.

    2008-07-01

    Purpose: To analyze the correlation between dose-volume parameters of the corpora cavernosa and erectile dysfunction (ED) after external beam radiotherapy (EBRT) for prostate cancer. Methods and Materials: Between June 1997 and February 2003, a randomized dose-escalation trial comparing 68 Gy and 78 Gy was conducted. Patients at our institute were asked to participate in an additional part of the trial evaluating sexual function. After exclusion of patients with less than 2 years of follow-up, ED at baseline, or treatment with hormonal therapy, 96 patients were eligible. The proximal corpora cavernosa (crura), the superiormost 1-cm segment of the crura, and themore » penile bulb were contoured on the planning computed tomography scan and dose-volume parameters were calculated. Results: Two years after EBRT, 35 of the 96 patients had developed ED. No statistically significant correlations between ED 2 years after EBRT and dose-volume parameters of the crura, the superiormost 1-cm segment of the crura, or the penile bulb were found. The few patients using potency aids typically indicated to have ED. Conclusion: No correlation was found between ED after EBRT for prostate cancer and radiation dose to the crura or penile bulb. The present study is the largest study evaluating the correlation between ED and radiation dose to the corpora cavernosa after EBRT for prostate cancer. Until there is clear evidence that sparing the penile bulb or crura will reduce ED after EBRT, we advise to be careful in sparing these structures, especially when this involves reducing treatment margins.« less

  19. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Magnetic resonance imaging for precise radiotherapy of small laboratory animals.

    PubMed

    Frenzel, Thorsten; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes; Jäckel, Maria; Schumacher, Udo; Krüll, Andreas

    2017-03-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging. Copyright © 2016. Published by Elsevier GmbH.

  1. Opinion Leadership, Poverty, and Information Sharing.

    ERIC Educational Resources Information Center

    Chatman, Elfreda A.

    1987-01-01

    This test of theory of opinion leadership in a low-income environment addressed three questions: (1) whether opinion leaders exist, their characteristics, and their role in information dissemination; (2) what the information world of this population is; and (3) whether this population views the library as a source of useful information. (EM)

  2. 49 CFR 1503.645 - Expert or opinion witnesses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROCEDURES Rules of Practice in TSA Civil Penalty Actions § 1503.645 Expert or opinion witnesses. An employee of the agency may not be called as an expert or opinion witness, for any party other than TSA, in any... an expert or opinion witness for TSA in any proceeding governed by this subpart to which the...

  3. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggestad, E.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  4. [Big data, generalities and integration in radiotherapy].

    PubMed

    Le Fèvre, C; Poty, L; Noël, G

    2018-02-01

    The many advances in data collection computing systems (data collection, database, storage), diagnostic and therapeutic possibilities are responsible for an increase and a diversification of available data. Big data offers the capacities, in the field of health, to accelerate the discoveries and to optimize the management of patients by combining a large volume of data and the creation of therapeutic models. In radiotherapy, the development of big data is attractive because data are very numerous et heterogeneous (demographics, radiomics, genomics, radiogenomics, etc.). The expectation would be to predict the effectiveness and tolerance of radiation therapy. With these new concepts, still at the preliminary stage, it is possible to create a personalized medicine which is always more secure and reliable. Copyright © 2017. Published by Elsevier SAS.

  5. Radiation-induced second primary cancer risks from modern external beam radiotherapy for early prostate cancer: impact of stereotactic ablative radiotherapy (SABR), volumetric modulated arc therapy (VMAT) and flattening filter free (FFF) radiotherapy

    NASA Astrophysics Data System (ADS)

    Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2015-02-01

    Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute

  6. "We Don't Want Your Opinion": Knowledge Construction and the Discourse of Opinion in the Equity Classroom

    ERIC Educational Resources Information Center

    Diangelo, Robin; Sensoy, Ozlem

    2009-01-01

    As educators who teach courses that examine social power, we often struggle with a specific form of resistance in the equity-oriented classroom: "That's just [the author]'s opinion." This "opinion discourse" emerges when students study scholarship that unsettles dominant knowledge claims and methods or when students are themselves asked to situate…

  7. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients.

    PubMed

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C

    2013-12-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.

  8. High Dose Hyperfractionated Radiotherapy for Adults with Glioblastomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koukourakis, Michael; Scarlatos, John; Yiannakakis, Dimitrios

    2015-01-15

    From 1989 to 1991, 27 patients with glioblastoma multiforme or anaplastic astrocytoma of the brain were treated with radiotherapy. Fifteen of twenty-seven patients were treated through limited volume fields, with a thrice-a-day (1.1 Gy/f) or twice-a-day (1.4 Gy/f) hyperfractionated regimen to a total physical dose of 62–92 Gy (median dose 76 Gy). The remaining 12 were treated with whole brain irradiation (40 Gy of total conventionally fractionated dose) and a localised boost to a total dose of 60 Gy. The hyperfractionated regimen was well tolerated and there was no sign of increased brain oedema to indicate the insertion of amore » split. Of six patients who received a NTD10 (normalised total dose for α/β =10) higher than 71 Gy, five showed CR (83% CR rate) versus three of 21 patients who received a lower NTD10 (14% CR rate). For 13 patients who received a NTD10 higher than 66 Gy, the 18-months survival was 61% (8/13) versus 28% (4/14) for 14 patients who received a NTD10 less than 66 Gy. As far as the late morbidity is concerned, of six patients treated with 76-92 Gy of physical dose, none died because of radiation-induced brain necrosis within 18-42 months of follow-up, and three of them are without evidence of disease 18-31 months after the end of radiation treatment. None of our 15 patients who received less than whole brain irradiation relapsed outside the radiation portals. The present study strongly suggests the use of limited volume hyperfractionated radiotherapy schemes, so as to increase the local tumor dose (NTD10) to values higher than 79 Gy, at the same time keeping the NTD2 (NTD for α/β = 2) below 68 Gy.« less

  9. Expanding global access to radiotherapy.

    PubMed

    Atun, Rifat; Jaffray, David A; Barton, Michael B; Bray, Freddie; Baumann, Michael; Vikram, Bhadrasain; Hanna, Timothy P; Knaul, Felicia M; Lievens, Yolande; Lui, Tracey Y M; Milosevic, Michael; O'Sullivan, Brian; Rodin, Danielle L; Rosenblatt, Eduardo; Van Dyk, Jacob; Yap, Mei Ling; Zubizarreta, Eduardo; Gospodarowicz, Mary

    2015-09-01

    Radiotherapy is a critical and inseparable component of comprehensive cancer treatment and care. For many of the most common cancers in low-income and middle-income countries, radiotherapy is essential for effective treatment. In high-income countries, radiotherapy is used in more than half of all cases of cancer to cure localised disease, palliate symptoms, and control disease in incurable cancers. Yet, in planning and building treatment capacity for cancer, radiotherapy is frequently the last resource to be considered. Consequently, worldwide access to radiotherapy is unacceptably low. We present a new body of evidence that quantifies the worldwide coverage of radiotherapy services by country. We show the shortfall in access to radiotherapy by country and globally for 2015-35 based on current and projected need, and show substantial health and economic benefits to investing in radiotherapy. The cost of scaling up radiotherapy in the nominal model in 2015-35 is US$26·6 billion in low-income countries, $62·6 billion in lower-middle-income countries, and $94·8 billion in upper-middle-income countries, which amounts to $184·0 billion across all low-income and middle-income countries. In the efficiency model the costs were lower: $14·1 billion in low-income, $33·3 billion in lower-middle-income, and $49·4 billion in upper-middle-income countries-a total of $96·8 billion. Scale-up of radiotherapy capacity in 2015-35 from current levels could lead to saving of 26·9 million life-years in low-income and middle-income countries over the lifetime of the patients who received treatment. The economic benefits of investment in radiotherapy are very substantial. Using the nominal cost model could produce a net benefit of $278·1 billion in 2015-35 ($265·2 million in low-income countries, $38·5 billion in lower-middle-income countries, and $239·3 billion in upper-middle-income countries). Investment in the efficiency model would produce in the same period an even

  10. Topological evolution of the internet public opinion

    NASA Astrophysics Data System (ADS)

    Lian, Ying; Dong, Xuefan; Liu, Yijun

    2017-11-01

    The Internet forms a platform featured with high liquidity, accessibility and concealment for the public to express their respective views on certain events, thus leading to a large network graph. Due to such environmental features, the public opinions formed on the Internet are different from those on traditional media. Studies focusing on the former area are relatively fewer. In addition, the majority of existing methods proposed for constructing the Internet public opinion topological structure are based on the classic BA model, thus resulting in drawbacks in the range of simplicity and a lack of strict deduction. Therefore, based on the complex networks theory, a model applied to describe the topology of the Internet public opinion is deduced with rigorous derivation in the present paper. Results show that the proposed expression could well reflect the degree distribution of Internet public opinion which follows an analogous power law distribution, and that the peak value and the degree distribution are not correlative to each other. Moreover, it has been also proved that compared to the classic BA model, the proposed model has better accuracy performance in the description of the degree distribution of the Internet public opinion, which contributes to future studies focusing on this area. Thus, an attempt has been made to give the first theoretical description of the Internet public opinion topology in the present paper. In addition, it is also the first paper focusing on the solution of networks degree distribution with an exponential growth form.

  11. Does adjuvant radiotherapy suppress liver regeneration after partial hepatectomy?

    PubMed

    Choi, Jin-Hwa; Kim, Kyubo; Chie, Eui Kyu; Jang, Jin-Young; Kim, Sun Whe; Oh, Do-Youn; Im, Seock-Ah; Kim, Tae-You; Bang, Yung-Jue; Ha, Sung W

    2009-05-01

    To analyze the influence of the adjuvant radiotherapy (RT) on the liver regeneration and liver function after partial hepatectomy (PH). Thirty-four patients who underwent PH for biliary tract cancer between October 2003 and July 2005 were reviewed. Hemihepatectomy was performed in 14 patients and less extensive surgery in 20. Of the patients, 19 patients had no adjuvant therapy (non-RT group) and 15 underwent adjuvant RT by a three-dimensional conformal technique (RT group). Radiation dose range was 40 to 50 Gy (median, 40 Gy). Liver volume on computed tomography and the results of liver function tests at 1, 4, 12, 24, and 52 weeks after PH were compared between the RT and non-RT groups. The preoperative characteristics were identical for both groups. During the interval between Weeks 4 and 12 when adjuvant RT was delivered in the RT group, the increase in liver volume was significantly smaller in the RT group than non-RT group (22.9 +/- 38.3cm(3) and 81.5 +/- 75.6cm(3), respectively, p = 0.007). However, the final liver volume measured at 1 year after PH did not differ between the two groups (p = 0.878). Liver function tests were comparable for both groups. The resection extent and original liver volume was independent factors for final liver volume measured at 1 year after PH. In this study, adjuvant RT delayed the liver regeneration process after PH, but the volume difference between the two study groups became nonsignificant after 1 year. Adjuvant RT had no additional adverse effect on liver function after PH.

  12. Boltzmann-type control of opinion consensus through leaders

    PubMed Central

    Albi, G.; Pareschi, L.; Zanella, M.

    2014-01-01

    The study of formations and dynamics of opinions leading to the so-called opinion consensus is one of the most important areas in mathematical modelling of social sciences. Following the Boltzmann-type control approach recently introduced by the first two authors, we consider a group of opinion leaders who modify their strategy accordingly to an objective functional with the aim of achieving opinion consensus. The main feature of the Boltzmann-type control is that, owing to an instantaneous binary control formulation, it permits the minimization of the cost functional to be embedded into the microscopic leaders’ interactions of the corresponding Boltzmann equation. The related Fokker–Planck asymptotic limits are also derived, which allow one to give explicit expressions of stationary solutions. The results demonstrate the validity of the Boltzmann-type control approach and the capability of the leaders’ control to strategically lead the followers’ opinion. PMID:25288820

  13. Sznajd Opinion Dynamics with Global and Local Neighborhood

    NASA Astrophysics Data System (ADS)

    Schulze, Christian

    In this modification of the Sznajd consensus model on the square lattice, two people of arbitrary distance who agree in their opinions convince their nearest neighbors of this opinion. Similarly to the mean field theory of Slanina and Lavicka, the times needed to reach consensus are distributed exponentially and are quite small. The width of the phase transition vanishes reciprocally to the linear lattice dimension. Advertising has effects independent of the system size. For more than two opinions, three opinions reach a consensus in roughly half of the samples, and four only rarely and only for small lattices. Up to 109 agents were simulated.

  14. Modeling Expert Opinion: Likelihoods under Incomplete Probabilistic Specification

    DTIC Science & Technology

    1992-12-09

    regarding points per game for participants in the 1991 NBA championship basketball series. 2 1. Introduction Expert opinion is often sought with regard to...for the participants in the 1991 NBA championship basketball series. We present a synthesis of this opinion. The key features of our approach are...applied to opinion collected regarding points per game for participants in the 1991 NBA championship basketball series.

  15. Opinion Formation by Social Influence: From Experiments to Modeling

    PubMed Central

    Chacoma, Andrés; Zanette, Damián H.

    2015-01-01

    Predicting different forms of collective behavior in human populations, as the outcome of individual attitudes and their mutual influence, is a question of major interest in social sciences. In particular, processes of opinion formation have been theoretically modeled on the basis of a formal similarity with the dynamics of certain physical systems, giving rise to an extensive collection of mathematical models amenable to numerical simulation or even to exact solution. Empirical ground for these models is however largely missing, which confine them to the level of mere metaphors of the real phenomena they aim at explaining. In this paper we present results of an experiment which quantifies the change in the opinions given by a subject on a set of specific matters under the influence of others. The setup is a variant of a recently proposed experiment, where the subject’s confidence on his or her opinion was evaluated as well. In our realization, which records the quantitative answers of 85 subjects to 20 questions before and after an influence event, the focus is put on characterizing the change in answers and confidence induced by such influence. Similarities and differences with the previous version of the experiment are highlighted. We find that confidence changes are to a large extent independent of any other recorded quantity, while opinion changes are strongly modulated by the original confidence. On the other hand, opinion changes are not influenced by the initial difference with the reference opinion. The typical time scales on which opinion varies are moreover substantially longer than those of confidence change. Experimental results are then used to estimate parameters for a dynamical agent-based model of opinion formation in a large population. In the context of the model, we study the convergence to full consensus and the effect of opinion leaders on the collective distribution of opinions. PMID:26517825

  16. The impact of computed tomography slice thickness on the assessment of stereotactic, 3D conformal and intensity-modulated radiotherapy of brain tumors.

    PubMed

    Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V

    2014-05-01

    To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.

  17. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    NASA Astrophysics Data System (ADS)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates

  18. Moderator's view: High-volume plasma exchange: pro, con and consensus.

    PubMed

    Kaplan, Andre A

    2017-09-01

    I have been asked to comment on the pro and con opinions regarding high-volume plasma exchange. The authors of both positions have provided cogent arguments and a reasonable approach to choosing the exchange volume for any given therapeutic plasma exchange. The major issue of relevance in this discussion is the nature of the toxins targeted for removal. These parameters include molecular weight, the apparent volume of distribution, the degree of protein binding, the biologic and chemical half-life, and the severity and rapidity of its toxicity. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Cardiac Side-effects From Breast Cancer Radiotherapy.

    PubMed

    Taylor, C W; Kirby, A M

    2015-11-01

    Breast cancer radiotherapy reduces the risk of cancer recurrence and death. However, it usually involves some radiation exposure of the heart and analyses of randomised trials have shown that it can increase the risk of heart disease. Estimates of the absolute risks of radiation-related heart disease are needed to help oncologists plan each individual woman's treatment. The risk for an individual woman varies according to her estimated cardiac radiation dose and her background risk of ischaemic heart disease in the absence of radiotherapy. When it is known, this risk can then be compared with the absolute benefit of the radiotherapy. At present, many UK cancer centres are already giving radiotherapy with mean heart doses of less than 3 Gy and for most women the benefits of the radiotherapy will probably far outweigh the risks. Technical approaches to minimising heart dose in breast cancer radiotherapy include optimisation of beam angles, use of multileaf collimator shielding, intensity-modulated radiotherapy, treatment in a prone position, treatment in deep inspiration (including the use of breath-hold and gating techniques), proton therapy and partial breast irradiation. The multileaf collimator is suitable for many women with upper pole left breast cancers, but for women with central or lower pole cancers, breath-holding techniques are now recommended in national UK guidelines. Ongoing work aims to identify ways of irradiating pan-regional lymph nodes that are effective, involve minimal exposure of organs at risk and are feasible to plan, deliver and verify. These will probably include wide tangent-based field-in-field intensity-modulated radiotherapy or arc radiotherapy techniques in combination with deep inspiratory breath-hold, and proton beam irradiation for women who have a high predicted heart dose from intensity-modulated radiotherapy. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Radiotherapy dose verification on a customised head and neck perspex phantom

    NASA Astrophysics Data System (ADS)

    Eng, K. Y.; Kandaiya, S.; Yahaya, N. Z.

    2017-05-01

    IMRT dose planned for head and neck radiotherapy was verified using a customised acrylic head-and-neck phantom. The dosimeters used were calibrated Gafchromic EBT2 film and metal-oxide-semiconductor-field-effect-transistor (MOSFET). Target volumes (TV) and organs-at-risk (OAR) which were previously contoured by an oncologist on selected nasopharynx (NPC) patients were transferred to this phantom by an image fusion procedure. Three radiotherapy plans were done: Plan1 with 7-fields intensity-modulated radiotherapy (IMRT) of prescribed dose 70 Gy using 33 fractions; Plan2 with 7-fields IMRT plan at 70 Gy and 35 fractions; and Plan3 which was a mid-plane-dose (MPD) plan of 66 Gy at 33 fractions. The dose maps were first verified using MapCheck2 by SNC-PatientTM software. The passing rates from gamma analysis were 97.7% (Plan1), 93.1% (Plan2) and 100% (Plan3). Percentage difference between Treatment Planning System (TPS) calculated dose and MOSFET measured dose was comparatively higher than those from EBT2. Calculated dose and EBT2 measured doses showed differences of within the range of ±3% for TV and <±10% for OARs. However MOSFET had differences of within the range of ±6% for TV and within the range of ±10% for OARs between measured and planned doses. An overdose treatment may occur as TPS calculated doses were lower than the measured doses in these plans. This may be due to the effects of leaf leakage, leaf scatter and photon backscatter into the measuring tools (Pawlicki et al., 1999 and Ma et al., 2000). More IMRT plans have to be studied to validate this conclusion. However, the dose measurements were still within the 10% tolerance (AAPM Task Group 119). In conclusion, both GafchromicEBT2 film and MOSFET are suitable for IMRT radiotherapy dosimetry.

  2. Long-Term Outcomes of Vestibular Schwannomas Treated With Fractionated Stereotactic Radiotherapy: An Institutional Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Sumit; Batra, Sachin; Carson, Kathryn

    2011-11-01

    Purpose: We assessed clinical outcome and long-term tumor control after fractionated stereotactic radiotherapy (FSRT) for unilateral schwannoma. Methods and Materials: Between 1995 and 2007, 496 patients were treated with fractionated stereotactic radiotherapy at Johns Hopkins Hospital (Baltimore, MD); 385 patients had radiologic follow-up that met the inclusion criteria. The primary endpoint was treatment failure. Secondary endpoints were radiologic progression and clinical outcome. Logistic regression analysis assessed the association of age, race, tumor side, sex, and pretreatment symptoms. Results: In 11 patients (3%) treatment failed, and they required salvage (microsurgical) treatment. Radiologic progression was observed in 116 patients (30.0%), including 35more » patients (9%) in whom the treatment volume more than doubled during the follow-up period, although none required surgical resection. Tumors with baseline volumes of less than 1 cm{sup 3} were 18.02 times more likely to progress than those with tumor volumes of 1 cm{sup 3} or greater (odds ratio, 18.02; 95% confidence interval, 4.25-76.32). Treatment-induced neurologic morbidity included 8 patients (1.6%) with new facial weakness, 12 patients (2.8%) with new trigeminal paresthesias, 4 patients (0.9%) with hydrocephalus (1 communicating and 3 obstructive), and 2 patients (0.5%) with possibly radiation-induced neoplasia. Conclusions: Although the rate of treatment failure is low (3%), careful follow-up shows that radiologic progression occurs frequently. When reporting outcome, the 'no salvage surgery needed' and 'no additional treatment needed' criteria for treatment success need to be complemented by the radiologic data.« less

  3. Effect of heterogeneity correction on dosimetric parameters of radiotherapy planning for thoracic esophageal cancer.

    PubMed

    Nakayama, Masao; Yoshida, Kenji; Nishimura, Hideki; Miyawaki, Daisuke; Uehara, Kazuyuki; Okamoto, Yoshiaki; Okayama, Takanobu; Sasaki, Ryohei

    2014-01-01

    The present study aimed to investigate the effect of heterogeneity correction (HC) on dosimetric parameters in 3-dimensional conformal radiotherapy planning for patients with thoracic esophageal cancer. We retrospectively analyzed 20 patients. Two treatment plans were generated for each patient using a superposition algorithm on the Xio radiotherapy planning system. The first plan was calculated without HC. The second was a new plan calculated with HC, using identical beam geometries and maintaining the same number of monitor units as the first. With regard to the planning target volume (PTV), the overall mean differences in the prescription dose, maximum dose, mean dose, and dose that covers 95% of the PTV between the first and second plans were 1.10Gy (1.8%), 1.35Gy (2.2%), 1.10Gy (1.9%), and 0.56Gy (1.0%), respectively. With regard to parameters related to the organs at risk (OARs), the mean differences in the absolute percentages of lung volume receiving greater than 5, 10, 20, and 30Gy (lung V5, V10, V20, and V30) between the first and second plans were 7.1%, 2.7%, 0.4%, and 0.5%, respectively. These results suggest that HC might have a more pronounced effect on the percentages of lung volume receiving lower doses (e.g., V5 and V10) than on the dosimetric parameters related to the PTV and other OARs. © 2013 Published by American Association of Medical Dosimetrists on behalf of American Association of Medical Dosimetrists.

  4. 22 CFR 126.9 - Advisory opinions and related authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Advisory opinions and related authorizations. 126.9 Section 126.9 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.9 Advisory opinions and related authorizations. (a) Advisory opinion...

  5. Opinion Analysis on Rohingya using Twitter Data

    NASA Astrophysics Data System (ADS)

    Rochmawati, N.; Wibawa, S. C.

    2018-04-01

    Rohingya is an ethnicity in Myanmar. Recently there was a conflict in the area between the Rakhine population and the Myanmar army. Many opinions are pro and contra in addressing this issue. There is a critic, there is a support and there is a neutral. The purpose of this paper is to analyze the world public opinion about the case of Rohingya. The opinion data to be processed is taken from twitter. the reason for using twitter is because twitter has become one of the popular social media and includes the most frequently visited social media. Therefore, it would be a lot of data that can be taken from twitter to be processed in the process of sentiment analysis. The grouping of opinions will be divided into 3 parts of positive, negative and neutral. the method used in grouping is the naïve Bayes method.

  6. Protection of Salivary Function by Concomitant Pilocarpine During Radiotherapy: A Double-Blind, Randomized, Placebo-Controlled Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burlage, Fred R.; Roesink, Judith M.; Kampinga, Harm H.

    2008-01-01

    Purpose: To investigate the effect of concomitant administration of pilocarpine during radiotherapy for head-and-neck squamous cell carcinoma (HNSCC) on postradiotherapy xerostomia. Methods and Materials: A prospective, double blind, placebo-controlled randomized trial including 170 patients with HNSCC was executed to study the protective effect of pilocarpine on radiotherapy-induced parotid gland dysfunction. The primary objective endpoint was parotid flow rate complication probability (PFCP) scored 6 weeks, 6 months, and 12 months after radiotherapy. Secondary endpoints included Late Effects of Normal Tissue/Somatic Objective Management Analytic scale (LENT SOMA) and patient-rated xerostomia scores. For all parotid glands, dose-volume histograms were assessed because the dosemore » distribution in the parotid glands is considered the most important prognostic factor with regard to radiation-induced salivary dysfunction. Results: Although no significant differences in PFCP were found for the two treatments arms, a significant (p = 0.03) reduced loss of parotid flow 1 year after radiotherapy was observed in those patients who received pilocarpine and a mean parotid dose above 40 Gy. The LENT SOMA and patient-rated xerostomia scores showed similar trends toward less dryness-related complaints for the pilocarpine group. Conclusions: Concomitant administration of pilocarpine during radiotherapy did not improve the PFCP or LENT SOMA and patient-rated xerostomia scores. In a subgroup of patients with a mean dose above 40 Gy, pilocarpine administration resulted in sparing of parotid gland function. Therefore, pilocarpine could be provided to patients in whom sufficient sparing of the parotid is not achievable.« less

  7. Correlation between information diffusion and opinion evolution on social media

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhang, Zhenjiang

    2014-12-01

    Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.

  8. Use of Polymethyl Methacrylate-Based Cement for Cosmetic Correction of Donor-Site Defect following Transposition of Temporalis Myofascial Flap and Evaluation of Results after Adjuvant Radiotherapy.

    PubMed

    Mandlik, Dushyant; Gupta, Karan; Patel, Daxesh; Patel, Purvi; Toprani, Rajendra; Patel, Kaustubh

    2015-11-01

    Temporalis myofascial flap is a versatile flap for reconstruction of the oral cavity defects, but results in an esthetically compromised deformity at the donor site. We used polymethyl methacrylate (PMMA) cement to correct the volume loss defect caused by temporalis myofascial flap and evaluated its results before and after adjuvant radiotherapy. We discuss our experience of using PMMA cement to augment donor-site deformity in 25 patients (17 males, 8 females) between years 2005 and 2009. The primary defect was a result of the ablative surgery for squamous cell carcinoma of the upper alveolar and the buccoalveolar sulcus. A modified curved hemicoronal incision was used as an access for better cosmetic outcome. The volume of cement required was decided during the surgery. All patients are in regular follow-up, alive and free of complications at implant site, except one patient who developed wound dehiscence. The condition of the implant was evaluated by postoperative computed tomographic scan, repeated after adjuvant radiotherapy in cases required. There were no radiation-induced changes in the contour and volume of the implants. Cosmetic result of the implant was reported satisfactory by the patients postoperatively.  Restoration of the temporal area defect after the temporalis myofascial flap harvest with the use of PMMA cement is an easy and safe method, with excellent esthetic results. The implant is stable and resistant to any changes in contour and loss of volume even after adjuvant radiotherapy, with no added morbidity to the patients. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Neurocognitive functioning and health-related quality of life in patients treated with stereotactic radiotherapy for brain metastases: a prospective study

    PubMed Central

    Habets, Esther J.J.; Dirven, Linda; Wiggenraad, Ruud G.; Verbeek-de Kanter, Antoinette; Lycklama à Nijeholt, Geert J.; Zwinkels, Hanneke; Klein, Martin; Taphoorn, Martin J.B.

    2016-01-01

    Background Stereotactic radiotherapy (SRT) is expected to have a less detrimental effect on neurocognitive functioning and health-related quality of life (HRQoL) than whole-brain radiotherapy. To evaluate the impact of brain metastases and SRT on neurocognitive functioning and HRQoL, we performed a prospective study. Methods Neurocognitive functioning and HRQoL of 97 patients with brain metastases were measured before SRT and 1, 3, and 6 months after SRT. Seven cognitive domains were assessed. HRQoL was assessed with the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 and BN20 questionnaires. Neurocognitive functioning and HRQoL over time were analyzed with linear mixed models and stratified for baseline Karnofsky performance status (KPS), total metastatic volume, and systemic disease. Results Median overall survival of patients was 7.7 months. Before SRT, neurocognitive domain and HRQoL scores were lower in patients than in healthy controls. At group level, patients worsened in physical functioning and fatigue at 6 months, while other outcome parameters of HRQoL and cognition remained stable. KPS < 90 and tumor volume >12.6 cm3 were both associated with worse information processing speed and lower HRQoL scores over 6 months time. Intracranial tumor progression was associated with worsening of executive functioning and motor function. Conclusions Prior to SRT, neurocognitive functioning and HRQoL are moderately impaired in patients with brain metastases. Lower baseline KPS and larger tumor volume are associated with worse functioning. Over time, SRT does not have an additional detrimental effect on neurocognitive functioning and HRQoL, suggesting that SRT may be preferred over whole-brain radiotherapy. PMID:26385615

  10. Peer Review of Radiotherapy Planning: Quantifying Outcomes and a Proposal for Prospective Data Collection.

    PubMed

    Mackenzie, J; Graham, G; Olivotto, I A

    2016-12-01

    The Canadian Partnership for Quality Radiotherapy quality assurance guidelines recommend that radiation oncologist peer review of curative radiotherapy plans takes place ideally before the first fraction of treatment is delivered. This study documented and evaluated the outcomes of weekly, disease site-specific, radiotherapy peer review, quality assurance rounds at the Tom Baker Cancer Centre in Calgary, Canada with a view to making recommendations about the optimal timing and documentation of peer review during the radiotherapy planning processes. Outcomes of each case reviewed at (i) breast, (ii) head and neck (including thyroid and cutaneous cases) and (iii) lung team quality assurance rounds from 6 January to 5 May 2015 were recorded prospectively. Each radiotherapy plan was assigned an outcome: A for plans with no suggested changes; B for satisfactory, but where issues were raised to consider for future patients; or C when a change was recommended before the first or next fraction. The B outcomes were further subdivided into B1 for a case-specific concern and B2 for a policy gap. Plans were assessed after contour definition and before the plan was formulated (post-contouring reviews) and/or assessed when the plan was complete (post-planning reviews). 209 radiotherapy plans prescribed by 20 radiation oncologists were peer reviewed at 43 quality assurance meetings. 93% were curative-intent and 7% were palliative. 83% of plans were reviewed before delivery of the first treatment fraction. There were a total of 257 case reviews: 60 at the post-contouring stage, 197 at the post-planning stage, including 46 patients reviewed at both time points. Overall rates of A, B1, B2 and C outcomes were 78%, 9%, 4% and 9%, respectively. The most common reason for a B or C outcome was related to target volume definition. Only 56% of C outcomes at the post-planning stage would have been detected at the post-contouring stage. Results varied between tumour site groups. 9% of

  11. SU-E-T-449: Hippocampal Sparing Radiotherapy Using Intensity Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, S; Kyung Hee University Hospital at Gangdong, Gangdong-gu; Kim, D

    2015-06-15

    Purpose: The hippocampus sparing during the cranial irradiation has become interesting because it may mitigate radiation-induced neurocognitive toxicity. Herein we report our preliminary study for sparing the hippocampus with and without tilling condition for patient with brain metastases. Methods: Ten patients previously treated with whole brain were reviewed. Five patients tilted the head to around 30 degrees and others were treated without tilting. Treatment plans of linear accelerator (Linac)-based volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT) were generated for prescription dose of 30 Gy in 15 fractions. Hippocampal avoidance regions were created with 5-mm volumetric expansion aroundmore » the hippocampus. Whole brain, hippocampus and hippocampal avoidance volume were 1372cm3, 6cm3 and 30cm3 and hippocampal avoidance volume was 2.2% of the whole brain planned target volume in average. Organs at risk (OARs) are hippocampus, eyes, lens, and cochleae. Coverage index (CVI), conformity index (CI), homogeneity index (HI) and mean dose to OARs were used to compare dose characteristic of tilted and non-tilted cases. Results: In IMRT, when CI, CVI and HI of whole brain were 0.88, 0.09 and 0.98 in both tilted and non-tilted cases, absorbed dose of hippocampal avoidance volume in tilted cases were 10% lower than non-tilted cases. Doses in other OARs such as eyes, lens, and cochleae were also decreased about 20% when tilting the head. When CI, HI and CVI in VMAT were 0.9, 0.08 and 0.99, the dose-decreased ratio of OARs in both with and without tilting cases were almost the same with IMRT. But absolute dose of hippocampal avoidance volume in VMAT was 30% lower than IMRT. Conclusion: This study confirms that dose to hippocampus decreases if patients tilt the head. When treating the whole brain with head tilted, patients can acquire the same successful treatment Result and also preserve their valuable memory.« less

  12. Comparison of Dose Decrement from Intrafraction Motion for Prone and Supine Prostate Radiotherapy

    PubMed Central

    Olsen, Jeffrey; Parikh, Parag J; Watts, Michael; Noel, Camille E; Baker, Kenneth W; Santanam, Lakshmi; Michalski, Jeff M

    2012-01-01

    Background and Purpose Dose effects of intrafraction motion during prone prostate radiotherapy are unknown. We compared prone and supine treatment using real-time tracking data to model dose coverage. Material and Methods Electromagnetic tracking data was analyzed for 10 patients treated prone, and 15 treated supine, with IMRT for localized prostate cancer. Plans were generated using 0, 3, and 5 mm PTV expansions. Manual beam-hold interventions were applied to reposition the patient when translations exceeded a predetermined threshold. A custom software application (SWIFTER) used intrafraction tracking data acquired during beam-on to model delivered prostate dose, by applying rigid body transformations to the prostate structure contoured at simulation within the planned dose cloud. The delivered minimum prostate dose as a percentage of planned dose (Dmin%), and prostate volume covered by the prescription dose as a percentage of the planned volume (VRx%) were compared for prone and supine treatment. Results Dmin% was reduced for prone treatment for 0 (p=0.02) and 3 mm (p=0.03) PTV margins. VRx% was reduced for prone treatment only for 0 mm margins (p=0.002). No significant differences were found using 5 mm margins. Conclusions Intrafraction motion has a greater impact on target coverage for prone compared to supine prostate radiotherapy. PTV margins of 3 mm or less correlate with a significant decrease in delivered dose for prone treatment. PMID:22809590

  13. Comparison of dose decrement from intrafraction motion for prone and supine prostate radiotherapy.

    PubMed

    Olsen, Jeffrey R; Parikh, Parag J; Watts, Michael; Noel, Camille E; Baker, Kenneth W; Santanam, Lakshmi; Michalski, Jeff M

    2012-08-01

    Dose effects of intrafraction motion during prone prostate radiotherapy are unknown. We compared prone and supine treatment using real-time tracking data to model dose coverage. Electromagnetic tracking data were analyzed for 10 patients treated prone, and 15 treated supine, with IMRT for localized prostate cancer. Plans were generated using 0 mm, 3 mm, and 5mm PTV expansions. Manual beam-hold interventions were applied to reposition the patient when translations exceeded a predetermined threshold. A custom software application (SWIFTER) used intrafraction tracking data acquired during beam-on model delivered prostate dose, by applying rigid body transformations to the prostate structure contoured at simulation within the planned dose cloud. The delivered minimum prostate dose as a percentage of planned dose (Dmin%), and prostate volume covered by the prescription dose as a percentage of the planned volume (VRx%) were compared for prone and supine treatment. Dmin% was reduced for prone treatment for 0 (p=0.02) and 3 mm (p=0.03) PTV margins. VRx% was reduced for prone treatment only for 0mm margins (p=0.002). No significant differences were found using 5 mm margins. Intrafraction motion has a greater impact on target coverage for prone compared to supine prostate radiotherapy. PTV margins of 3 mm or less correlate with a significant decrease in delivered dose for prone treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. The role of intraoperative radiotherapy in solid tumors.

    PubMed

    Skandarajah, A R; Lynch, A C; Mackay, J R; Ngan, S; Heriot, A G

    2009-03-01

    Combined multimodality therapy is becoming standard treatment for many solid tumors, but the role of intraoperative radiotherapy in the management of solid tumors remains uncertain. The aim is to review the indication, application, and outcomes of intraoperative radiotherapy in the management of nongynecological solid tumors. A literature search was performed using Medline, Embase, Ovid, and Cochrane database for studies between 1965 and 2008 assessing intraoperative radiotherapy, using the keywords "intraoperative radiotherapy," "colorectal cancer," "breast cancer," "gastric cancer," "pancreatic cancer," "soft tissue tumor," and "surgery." Only publications in English with available abstracts and regarding adult humans were included, and the evidence was critically evaluated. Our search retrieved 864 publications. After exclusion of nonclinical papers, duplicated papers and exclusion of brachytherapy papers, 77 papers were suitable to assess the current role of intraoperative radiotherapy. The clinical application and evidence base of intraoperative radiotherapy for each cancer is presented. Current studies in all common cancers show an additional benefit in local recurrence rates when intraoperative radiotherapy is included in the multimodal treatment. However, intraoperative radiotherapy may not improve overall survival and has significant morbidity depending on the site of the tumor. Intraoperative radiotherapy does have a role in the multidisciplinary management of solid tumors, but further studies are required to more precisely determine the extent of benefit.

  15. Genome-wide transcription responses to synchrotron microbeam radiotherapy.

    PubMed

    Sprung, Carl N; Yang, Yuqing; Forrester, Helen B; Li, Jason; Zaitseva, Marina; Cann, Leonie; Restall, Tina; Anderson, Robin L; Crosbie, Jeffrey C; Rogers, Peter A W

    2012-10-01

    The majority of cancer patients achieve benefit from radiotherapy. A significant limitation of radiotherapy is its relatively low therapeutic index, defined as the maximum radiation dose that causes acceptable normal tissue damage to the minimum dose required to achieve tumor control. Recently, a new radiotherapy modality using synchrotron-generated X-ray microbeam radiotherapy has been demonstrated in animal models to ablate tumors with concurrent sparing of normal tissue. Very little work has been undertaken into the cellular and molecular mechanisms that differentiate microbeam radiotherapy from broad beam. The purpose of this study was to investigate and compare the whole genome transcriptional response of in vivo microbeam radiotherapy versus broad beam irradiated tumors. We hypothesized that gene expression changes after microbeam radiotherapy are different from those seen after broad beam. We found that in EMT6.5 tumors at 4-48 h postirradiation, microbeam radiotherapy differentially regulates a number of genes, including major histocompatibility complex (MHC) class II antigen gene family members, and other immunity-related genes including Ciita, Ifng, Cxcl1, Cxcl9, Indo and Ubd when compared to broad beam. Our findings demonstrate molecular differences in the tumor response to microbeam versus broad beam irradiation and these differences provide insight into the underlying mechanisms of microbeam radiotherapy and broad beam.

  16. Palliative radiotherapy practice within Western European countries: impact of the radiotherapy financing system?

    PubMed

    Lievens, Y; Van den Bogaert, W; Rijnders, A; Kutcher, G; Kesteloot, K

    2000-09-01

    To analyze the reimbursement modalities for radiotherapy in the different Western European countries, as well as to investigate if these differences have an impact on the palliative radiotherapy practice for bone metastases. A questionnaire was sent to 565 radiotherapy centres included in the 1997 ESTRO directory. In this questionnaire the reimbursement strategy applied in the different centres was assessed, with respect to the use of a budget (departmental or hospital budget), case payment and/or fee-for-service reimbursement. The differences were analyzed according to country and to type and size of the radiotherapy centre. A total of 170 centres (86% of the responders) returned the questionnaire. Most frequent is budget reimbursement: some form of budget reimbursement is found in 69% of the centres, whereas 46% of the centres are partly reimbursed through fee-for-service and 35% through case payment. The larger the department, the more frequent the reimbursement through a budget or a case payment system and the less the importance of fee-for-service reimbursement (chi(2): P=0.0012; logit: P=0.0055). Whereas private centres are almost equally reimbursed by fee-for-service financing as by budget or case payment, radiotherapy departments in university hospitals receive the largest part of their financial resources through a budget or by case payment (83%) (chi(2): P=0.002; logit: P=0.0073). A correlation between the country and the radiotherapy reimbursement system was also demonstrated (P=0.002), radiotherapy centres in Spain, the Netherlands and the United Kingdom being almost entirely reimbursed through a budget and/or case payment and centres in Germany and Switzerland mostly through a fee-for-service system. In budget and case payment financing lower total number of fractions and lower total dose (chi(2): P=0.003; logit: P=0.0120) as well as less shielding blocks (chi(2): P=0.003; logit: P=0.0066) are used. A same tendency is found for the use of isodose

  17. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oborn, B. M., E-mail: brad.oborn@gmail.com; Ge, Y.; Hardcastle, N.

    2016-01-15

    Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6 MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: A total of eight clinical lung tumor cases were recalculated using Monte Carlo methods, and external magnetic fields of 0.5, 1.0, and 3 T were included to observe the impact on dose to the planning target volume (PTV) and gross tumor volume (GTV). Three plans were 6 MV 3D-CRT plans while 6 were 6 MV IMRT. The GTV’s ranged from 0.8 to 16 cm{sup 3}, whilemore » the PTV’s ranged from 1 to 59 cm{sup 3}. In addition, the dose changes in a 30 cm diameter cylindrical water phantom were investigated for small beams. The central 20 cm of this phantom contained either water or lung density insert. Results: For single beams, an inline magnetic field of 1 T has a small impact in lung dose distributions by reducing the lateral scatter of secondary electrons, resulting in a small dose increase along the beam. Superposition of multiple small beams leads to significant dose enhancements. Clinically, this process occurs in the lung tissue typically surrounding the GTV, resulting in increases to the D{sub 98%} (PTV). Two isolated tumors with very small PTVs (3 and 6 cm{sup 3}) showed increases in D{sub 98%} of 23% and 22%. Larger PTVs of 13, 26, and 59 cm{sup 3} had increases of 9%, 6%, and 4%, describing a natural fall-off in enhancement with increasing PTV size. However, three PTVs bounded to the lung wall showed no significant increase, due to lack of dose enhancement in the denser PTV volume. In general, at 0.5 T, the GTV mean dose enhancement is around 60% lower than that at 1 T, while at 3 T, it is 5%–60% higher than 1 T. Conclusions: Monte Carlo methods have described significant and predictable dose enhancement effects in small lung tumor plans for 6 MV radiotherapy when an external inline magnetic field is included. Results of

  18. Estimating radiotherapy demands in South East Asia countries in 2025 and 2035 using evidence-based optimal radiotherapy fractions.

    PubMed

    Yahya, Noorazrul; Roslan, Nurhaziqah

    2018-01-08

    As about 50% of cancer patients may require radiotherapy, the demand of radiotherapy as the main treatment to treat cancer is likely to rise due to rising cancer incidence. This study aims to quantify the radiotherapy demand in countries in Southeast Asia (SEA) in 2025 and 2035 using evidence-based optimal radiotherapy fractions. SEA country-specific cancer incidence by tumor site for 2015, 2025 and 2035 was extracted from the GLOBOCAN database. We utilized the optimal radiotherapy utilization rate model by Wong et al. (2016) to calculate the optimal number of fractions for all tumor sites in each SEA country. The available machines (LINAC & Co-60) were extracted from the IAEA's Directory of Radiotherapy Centres (DIRAC) from which the number of available fractions was calculated. The incidence of cancers in SEA countries are expected to be 1.1 mil cases (2025) and 1.4 mil (2035) compared to 0.9 mil (2015). The number of radiotherapy fractions needed in 2025 and 2035 are 11.1 and 14.1 mil, respectively, compared to 7.6 mil in 2015. In 2015, the radiotherapy fulfillment rate (RFR; required fractions/available fractions) varied between countries with Brunei, Singapore and Malaysia are highest (RFR > 1.0 - available fractions > required fractions), whereas Cambodia, Indonesia, Laos, Myanmar, Philippines, Timor-Leste and Vietnam have RFR < 0.5. RFR is correlated to GDP per capita (ρ = 0.73, P = 0.01). To allow RFR ≥1 in 2025 and 2035, another 866 and 1177 machines are required, respectively. The number are lower if longer running hours are implemented. With the optimal number of radiotherapy fractions, estimation for number of machines required can be obtained which will guide acquisition of machines in SEA countries. RFR is low with access varied based on the economic status. © 2018 John Wiley & Sons Australia, Ltd.

  19. Retrospective estimate of the quality of intensity-modulated radiotherapy plans for lung cancer

    NASA Astrophysics Data System (ADS)

    Koo, Jihye; Yoon, Myonggeun; Chung, Weon Kuu; Kim, Dong Wook

    2015-07-01

    This study estimated the planning quality of intensity-modulated radiotherapy in 42 lung cancer cases to provide preliminary data for the development of a planning quality assurance algorithm. Organs in or near the thoracic cavity (ipsilateral lung, contralateral lung, heart, liver, esophagus, spinal cord, and bronchus) were selected as organs at risk (OARs). Radiotherapy plans were compared by using the conformity index (CI), coverage index (CVI), and homogeneity index (HI) of the planning target volume (PTV), the OAR-PTV distance and the OAR-PTV overlap volume, and the V10 Gy , V20 Gy , and equivalent uniform dose (EUD) of the OARs. The CI, CVI, and HI of the PTV were 0.54-0.89 (0.77 ± 0.08), 0.90-1.00 (0.98 ± 0.02), and 0.11-0.41, (0.15 ± 0.05), respectively. The mean EUDs (V10 Gy , V20 Gy ) of the ipsilateral lung, contralateral lung, esophagus, cord, liver, heart, and bronchus were 8.07 Gy (28.06, 13.17), 2.59 Gy (6.53, 1.18), 7.02 Gy (26.17, 12.32), 3.56 Gy (13.56, 4.48), 0.72 Gy (2.15, 0.91), 5.14 Gy (19.68, 8.62), and 10.56 Gy (36.08, 19.79), respectively. EUDs tended to decrease as the OAR-PTV distance increased and the OAR-PTV overlap volume decreased. Because the plans in this study were from a single department, relatively few people were involved in treatment planning. Differences in treatment results for a given patient would be much more pronounced if many departments were involved.

  20. Radiation Dose-Volume Effects and the Penile Bulb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Nam, Jiho; Gagliardi, Giovanna

    2010-03-01

    The dose, volume, and clinical outcome data for penile bulb are reviewed for patients treated with external-beam radiotherapy. Most, but not all, studies find an association between impotence and dosimetric parameters (e.g., threshold doses) and clinical factors (e.g., age, comorbid diseases). According to the data available, it is prudent to keep the mean dose to 95% of the penile bulb volume to <50 Gy. It may also be prudent to limit the D70 and D90 to 70 Gy and 50 Gy, respectively, but coverage of the planning target volume should not be compromised. It is acknowledged that the penile bulbmore » may not be the critical component of the erectile apparatus, but it seems to be a surrogate for yet to be determined structure(s) critical for erectile function for at least some techniques.« less

  1. A case study of the neuropsychological outcomes following microsurgery, conventional radiotherapy and stereotactic radiotherapy for an adult's recurrent craniopharyngioma.

    PubMed

    Preece, David; Allan, Alfred; Becerra, Rodrigo

    2016-01-01

    To examine the neuropsychological outcomes for an adult patient, 2 years after receiving microsurgery and conventional radiotherapy for a recurrent craniopharyngioma; and the impact of a further intervention, stereotactic radiotherapy, on this level of neuropsychological functioning. JD, a 30 year old male whose recurrent craniopharyngioma had 2 years earlier been treated with two operations and conventional radiotherapy. JD was assessed (using standardized clinical tests) before and after a course of stereotactic radiotherapy. Prior to stereotactic radiotherapy (and 2 years after microsurgery and conventional radiotherapy) JD's IQ was intact, but considerable impairments were present in executive functioning, memory, theory of mind and processing speed. Fifteen months after stereotactic radiotherapy, all neuropsychological domains remained largely static or improved, supporting the utility of this treatment option in the neuropsychological domain. However, deficits in executive functioning, memory and processing speed remained. These findings suggest that, even after multiple treatments, substantial cognitive impairments can be present in an adult patient with a recurrent craniopharyngioma. This profile of deficits underlines the inadequacy of relying purely on IQ as a marker for cognitive health in this population and emphasizes the need to include neuropsychological impairments as a focus of rehabilitation with these patients.

  2. 12 CFR 211.11 - Advisory opinions under Regulation K.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Advisory opinions under Regulation K. 211.11... INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Operations of U.S. Banking Organizations § 211.11 Advisory opinions under Regulation K. (a) Request for advisory opinion. Any person may submit a request to...

  3. 12 CFR 211.11 - Advisory opinions under Regulation K.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Advisory opinions under Regulation K. 211.11... INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Operations of U.S. Banking Organizations § 211.11 Advisory opinions under Regulation K. (a) Request for advisory opinion. Any person may submit a request to...

  4. 12 CFR 211.11 - Advisory opinions under Regulation K.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Advisory opinions under Regulation K. 211.11... INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Operations of U.S. Banking Organizations § 211.11 Advisory opinions under Regulation K. (a) Request for advisory opinion. Any person may submit a request to...

  5. 12 CFR 211.11 - Advisory opinions under Regulation K.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Advisory opinions under Regulation K. 211.11... INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Operations of U.S. Banking Organizations § 211.11 Advisory opinions under Regulation K. (a) Request for advisory opinion. Any person may submit a request to...

  6. 12 CFR 211.11 - Advisory opinions under Regulation K.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Advisory opinions under Regulation K. 211.11... INTERNATIONAL BANKING OPERATIONS (REGULATION K) International Operations of U.S. Banking Organizations § 211.11 Advisory opinions under Regulation K. (a) Request for advisory opinion. Any person may submit a request to...

  7. Advances in Radiotherapy for Glioblastoma

    PubMed Central

    Mann, Justin; Ramakrishna, Rohan; Magge, Rajiv; Wernicke, A. Gabriella

    2018-01-01

    External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity. PMID:29379468

  8. Advances in Radiotherapy for Glioblastoma.

    PubMed

    Mann, Justin; Ramakrishna, Rohan; Magge, Rajiv; Wernicke, A Gabriella

    2017-01-01

    External beam radiotherapy (RT) has long played a crucial role in the treatment of glioblastoma. Over the past several decades, significant advances in RT treatment and image-guidance technology have led to enormous improvements in the ability to optimize definitive and salvage treatments. This review highlights several of the latest developments and controversies related to RT, including the treatment of elderly patients, who continue to be a fragile and vulnerable population; potential salvage options for recurrent disease including reirradiation with chemotherapy; the latest imaging techniques allowing for more accurate and precise delineation of treatment volumes to maximize the therapeutic ratio of conformal RT; the ongoing preclinical and clinical data regarding the combination of immunotherapy with RT; and the increasing evidence of cancer stem-cell niches in the subventricular zone which may provide a potential target for local therapies. Finally, continued development on many fronts have allowed for modestly improved outcomes while at the same time limiting toxicity.

  9. Opinion evolution in open community

    NASA Astrophysics Data System (ADS)

    Pan, Qiuhui; Qin, Yao; Xu, Yiqun; Tong, Mengfei; He, Mingfeng

    We consider a dynamic group composed with a constant number of people and the people will change periodically. Every member in the community owns a value of confidence — a mechanism that measures the agent’s coherence to his or her own attitude. Based on Cellular Automata, the opinions of all agents are synchronously updated. As long as the updating frequency and updating proportion are appropriate, the open system can reach a democracy-like steady state. The majority of agents in the community will hold the same opinion.

  10. Non-consensus opinion model with a neutral view on complex networks

    NASA Astrophysics Data System (ADS)

    Tian, Zihao; Dong, Gaogao; Du, Ruijin; Ma, Jing

    2016-05-01

    A nonconsensus opinion (NCO) model was introduced recently, which allows the stable coexistence of minority and majority opinions. However, due ​to disparities in the knowledge, experiences, and personality or self-protection of agents, they often remain ​neutral when faced with some opinions in real scenarios. ​To address this issue, we propose a general non-consensus opinion model with neutral view (NCON) ​and we define the dynamic opinion ​change process. We applied the NCON model to different topological networks and studied the formation of opinion clusters. In the case of random graphs, random regular networks, and scale-free (SF) networks, we found that the system moved from a continuous phase transition to a discontinuous phase transition as the connectivity density and exponent of the SF network λ ​decreased and increased in the steady state, respectively. Moreover, the initial proportions of neutral opinions were found to have little effect on the proportional structure of opinions at the steady state. These results suggest that the majority choice between positive and negative opinions depends on the initial proportion of each opinion. The NCON model may have potential applications for decision makers.

  11. Innovations in Radiotherapy Technology.

    PubMed

    Feain, I J; Court, L; Palta, J R; Beddar, S; Keall, P

    2017-02-01

    Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy. Copyright © 2016 The Royal College of Radiologists. All rights reserved.

  12. A review of plan library approaches in adaptive radiotherapy of bladder cancer.

    PubMed

    Collins, Shane D; Leech, Michelle M

    2018-05-01

    Large variations in the shape and size of the bladder volume are commonly observed in bladder cancer radiotherapy (RT). The clinical target volume (CTV) is therefore frequently inadequately treated and large isotropic margins are inappropriate in terms of dose to organs at risk (OAR); thereby making adaptive radiotherapy (ART) attractive for this tumour site. There are various methods of ART delivery, however, for bladder cancer, plan libraries are frequently used. A review of published studies on plan libraries for bladder cancer using four databases (Pubmed, Science Direct, Embase and Cochrane Library) was conducted. The endpoints selected were accuracy and feasibility of initiation of a plan library strategy into a RT department. Twenty-four articles were included in this review. The majority of studies reported improvement in accuracy with 10 studies showing an improvement in planning target volume (PTV) and CTV coverage with plan libraries, some by up to 24%. Seventeen studies showed a dose reduction to OARs, particularly the small bowel V45Gy, V40Gy, V30Gy and V10Gy, and the rectal V30Gy. However, the occurrence of no suitable plan was reported in six studies, with three studies showing no significant difference between adaptive and non-adaptive strategies in terms of target coverage. In addition, inter-observer variability in plan selection appears to remain problematic. The additional resources, education and technology required for the initiation of plan library selection for bladder cancer may hinder its routine clinical implementation, with eight studies illustrating increased treatment time required. While there is a growing body of evidence in support of plan libraries for bladder RT, many studies differed in their delivery approach. The advent of the clinical use of the MRI-linear accelerator will provide RT departments with the opportunity to consider daily online adaption for bladder cancer as an alternate to plan library approaches.

  13. Quality assessment for VMAT prostate radiotherapy planning based on data envelopment analysis

    NASA Astrophysics Data System (ADS)

    Lin, Kuan-Min; Simpson, John; Sasso, Giuseppe; Raith, Andrea; Ehrgott, Matthias

    2013-08-01

    The majority of commercial radiotherapy treatment planning systems requires planners to iteratively adjust the plan parameters in order to find a satisfactory plan. This iterative trial-and-error nature of radiotherapy treatment planning results in an inefficient planning process and in order to reduce such inefficiency, plans can be accepted without achieving the best attainable quality. We propose a quality assessment method based on data envelopment analysis (DEA) to address this inefficiency. This method compares a plan of interest to a set of past delivered plans and searches for evidence of potential further improvement. With the assistance of DEA, planners will be able to make informed decisions on whether further planning is required and ensure that a plan is only accepted when the plan quality is close to the best attainable one. We apply the DEA method to 37 prostate plans using two assessment parameters: rectal generalized equivalent uniform dose (gEUD) as the input and D95 (the minimum dose that is received by 95% volume of a structure) of the planning target volume (PTV) as the output. The percentage volume of rectum overlapping PTV is used to account for anatomical variations between patients and is included in the model as a non-discretionary output variable. Five plans that are considered of lesser quality by DEA are re-optimized with the goal to further improve rectal sparing. After re-optimization, all five plans improve in rectal gEUD without clinically considerable deterioration of the PTV D95 value. For the five re-optimized plans, the rectal gEUD is reduced by an average of 1.84 Gray (Gy) with only an average reduction of 0.07 Gy in PTV D95. The results demonstrate that DEA can correctly identify plans with potential improvements in terms of the chosen input and outputs.

  14. Breast Cancer Patients’ Experience of External-Beam Radiotherapy

    PubMed Central

    Schnur, Julie B.; Ouellette, Suzanne C.; Bovbjerg, Dana H.; Montgomery, Guy H.

    2013-01-01

    Radiotherapy is a critical component of treatment for the majority of women with breast cancer, particularly those who receive breast conserving surgery. Although medically beneficial, radiotherapy can take a physical and psychological toll on patients. However, little is known about the specific thoughts and feelings experienced by women undergoing breast cancer radiotherapy. Therefore, the study aim was to use qualitative research methods to develop an understanding of these thoughts and feelings based on 180 diary entries, completed during radiotherapy by 15 women with Stage 0-III breast cancer. Thematic analysis identified four primary participant concerns: (a) a preoccupation with time; (b) fantasies (both optimistic and pessimistic) about life following radiotherapy; (c) the toll their side-effect experience takes on their self-esteem; and (d) feeling mystified by radiotherapy. These themes are consistent with previous literature on illness and identity. These findings have implications for the treatment and care of women undergoing breast cancer radiotherapy. PMID:19380502

  15. Relationship between Eustachian tube dysfunction and otitis media with effusion in radiotherapy patients.

    PubMed

    Akazawa, K; Doi, H; Ohta, S; Terada, T; Fujiwara, M; Uwa, N; Tanooka, M; Sakagami, M

    2018-02-01

    This study evaluated the relationship between radiation and Eustachian tube dysfunction, and examined the radiation dose required to induce otitis media with effusion. The function of 36 Eustachian tubes in 18 patients with head and neck cancer were examined sonotubometrically before, during, and 1, 2 and 3 months after, intensity-modulated radiotherapy. Patients with an increase of 5 dB or less in sound pressure level (dB) during swallowing were categorised as being in the dysfunction group. Additionally, radiation dose distributions were assessed in all Eustachian tubes using three dose-volume histogram parameters. Twenty-two of 25 normally functioning Eustachian tubes before radiotherapy (88.0 per cent) shifted to the dysfunction group after therapy. All ears that developed otitis media with effusion belonged to the dysfunction group. The radiation dose threshold evaluation revealed that ears with otitis media with effusion received significantly higher doses to the Eustachian tubes. The results indicate a relationship between radiation dose and Eustachian tube dysfunction and otitis media with effusion.

  16. Target volume delineation for radical radiotherapy of early oesophageal carcinoma in elderly patients.

    PubMed

    Su, J; Zhu, S; Liu, Z; Zhao, Y; Song, C

    2017-02-01

    To compare the prognosis of elderly patients with early oesophageal carcinoma between radical elective nodal prophylactic irradiation and involved-field irradiation and to estimate the failure modes and adverse effects, then to provide the patients the safe and individual therapeutic regimens. The charts of 96 patients aged 65 and over with early stage oesophageal carcinoma receiving radical radiotherapy in our department were retrospectively analysed. Of all the patients, 49 received elective nodal prophylactic irradiation and the other 47 received involved-field irradiation. After completion of the whole treatment, we analysed short-term effects, tumour local control, overall survival of the patients, failure modes and adverse effects. The 1-, 3-, and 5-year local control rate in elective nodal irradiation and involved-field irradiation groups were 80.6%, 57.4%, 54.0% and 65.4%, 46.5%, 30.5% respectively, and the difference was statistically significant (χ 2 =4.478, P=0.03). The differences of overall survival and progression-free survival were not significant (P>0.05). The difference of 1-, 3-, and 5-years local regional failure rate was statistically significant between elective nodal prophylactic irradiation and involved-field irradiation groups, except for the overall failure and distant metastasis rates. The overall incidence of radiation-induced oesophagitis after elective nodal irradiation or involved-field irradiation was 79.6% and 59.6%, and the difference was statistically significant (χ 2 =4.559, P=0.03). The difference of radiation pneumonitis between elective nodal prophylactic irradiation and involved-field irradiation was not significant (12.2% vs 14.9%; χ 2 =0.144, P=0.7). For elderly patients with early stage oesophageal carcinoma receiving radical radiotherapy, although elective nodal prophylactic irradiation could increase the incidence of radiation-induced oesophagitis, patients could tolerate the treatment and benefit from local

  17. Bifurcation Phenomena of Opinion Dynamics in Complex Networks

    NASA Astrophysics Data System (ADS)

    Guo, Long; Cai, Xu

    In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ɛ increasing. Furthermore, the evolution of the steady opinion s * as a function of ɛ, and the relation between the minority steady opinion s_{*}^{min} and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.

  18. Competing opinions and stubborness: Connecting models to data.

    PubMed

    Burghardt, Keith; Rand, William; Girvan, Michelle

    2016-03-01

    We introduce a general contagionlike model for competing opinions that includes dynamic resistance to alternative opinions. We show that this model can describe candidate vote distributions, spatial vote correlations, and a slow approach to opinion consensus with sensible parameter values. These empirical properties of large group dynamics, previously understood using distinct models, may be different aspects of human behavior that can be captured by a more unified model, such as the one introduced in this paper.

  19. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    PubMed

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Very Early Salvage Radiotherapy Improves Distant Metastasis-Free Survival.

    PubMed

    Abugharib, Ahmed; Jackson, William C; Tumati, Vasu; Dess, Robert T; Lee, Jae Y; Zhao, Shuang G; Soliman, Moaaz; Zumsteg, Zachary S; Mehra, Rohit; Feng, Felix Y; Morgan, Todd M; Desai, Neil; Spratt, Daniel E

    2017-03-01

    Early salvage radiotherapy following radical prostatectomy for prostate cancer is commonly advocated in place of adjuvant radiotherapy. We aimed to determine the optimal definition of early salvage radiotherapy. We performed a multi-institutional retrospective study of 657 men who underwent salvage radiotherapy between 1986 and 2013. Two comparisons were made to determine the optimal definition of early salvage radiotherapy, including 1) the time from radical prostatectomy to salvage radiotherapy (less than 9, 9 to 21, 22 to 47 or greater than 48 months) and 2) the level of detectable pre-salvage radiotherapy prostate specific antigen (0.01 to 0.2, greater than 0.2 to 0.5 or greater than 0.5 ng/ml). Outcomes included freedom from salvage androgen deprivation therapy, and biochemical relapse-free, distant metastases-free and prostate cancer specific survival. Median followup was 9.8 years. Time from radical prostatectomy to salvage radiotherapy did not correlate with 10-year biochemical relapse-free survival rates (R 2 = 0.18). Increasing pre-salvage radiotherapy prostate specific antigen strongly correlated with biochemical relapse-free survival (R 2 = 0.91). Increasing detectable pre-salvage radiotherapy prostate specific antigen (0.01 to 0.2, greater than 0.2 to 0.5 and greater than 0.5 ng/ml) predicted worse 10-year biochemical relapse-free survival (62%, 44% and 27%), freedom from salvage androgen deprivation therapy (77%, 66% and 49%), distant metastases-free survival (86%, 79% and 66%, each p <0.001) and prostate cancer specific survival (93%, 89% and 80%, respectively, p = 0.001). On multivariable analysis early salvage radiotherapy (prostate specific antigen greater than 0.2 to 0.5 ng/ml) was associated with a twofold increase in biochemical failure, use of salvage androgen deprivation therapy and distant metastases compared to very early salvage radiotherapy (prostate specific antigen 0.01 to 0.2 ng/ml). The duration from radical prostatectomy to salvage

  1. [Definition of nodal volumes in breast cancer treatment and segmentation guidelines].

    PubMed

    Kirova, Y M; Castro Pena, P; Dendale, R; Campana, F; Bollet, M A; Fournier-Bidoz, N; Fourquet, A

    2009-06-01

    To assist in the determination of breast and nodal volumes in the setting of radiotherapy for breast cancer and establish segmentation guidelines. Materials and methods. Contrast metarial enhanced CT examinations were obtained in the treatment position in 25 patients to clearly define the target volumes. The clinical target volume (CTV) including the breast, internal mammary nodes, supraclavicular and subclavicular regions and axxilary region were segmented along with the brachial plexus and interpectoral nodes. The following critical organs were also segmented: heart, lungs, contralateral breast, thyroid, esophagus and humeral head. A correlation between clinical and imaging findings and meeting between radiation oncologists and breast specialists resulted in a better definition of irradiation volumes for breast and nodes with establishement of segmentation guidelines and creation of an anatomical atlas. A practical approach, based on anatomical criteria, is proposed to assist in the segmentation of breast and node volumes in the setting of breast cancer treatment along with a definition of irradiation volumes.

  2. Radiotherapy for Early Mediastinal Hodgkin Lymphoma According to the German Hodgkin Study Group (GHSG): The Roles of Intensity-Modulated Radiotherapy and Involved-Node Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo

    2012-05-01

    Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be

  3. Public Opinion Poll Question Databases: An Evaluation

    ERIC Educational Resources Information Center

    Woods, Stephen

    2007-01-01

    This paper evaluates five polling resource: iPOLL, Polling the Nations, Gallup Brain, Public Opinion Poll Question Database, and Polls and Surveys. Content was evaluated on disclosure standards from major polling organizations, scope on a model for public opinion polls, and presentation on a flow chart discussing search limitations and usability.

  4. Internet Censorship in Turkey: University Students' Opinions

    ERIC Educational Resources Information Center

    Ozkan, Hasan; Arikan, Arda

    2009-01-01

    The aim of this paper is to study university students' opinions toward online censorship with references to their socio-political and economic variables. Considering the upwards trend and the increasing number of online restrictions in Turkey, the opinions of university students (n=138) are thought to give significant findings. The questionnaire…

  5. 38 CFR 3.328 - lndependent medical opinions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false lndependent medical... Connection § 3.328 lndependent medical opinions. (a) General. When warranted by the medical complexity or controversy involved in a pending claim, an advisory medical opinion may be obtained from one or more medical...

  6. 38 CFR 3.328 - lndependent medical opinions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false lndependent medical... Connection § 3.328 lndependent medical opinions. (a) General. When warranted by the medical complexity or controversy involved in a pending claim, an advisory medical opinion may be obtained from one or more medical...

  7. 38 CFR 3.328 - lndependent medical opinions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false lndependent medical... Connection § 3.328 lndependent medical opinions. (a) General. When warranted by the medical complexity or controversy involved in a pending claim, an advisory medical opinion may be obtained from one or more medical...

  8. Results of a multicentric in silico clinical trial (ROCOCO): comparing radiotherapy with photons and protons for non-small cell lung cancer.

    PubMed

    Roelofs, Erik; Engelsman, Martijn; Rasch, Coen; Persoon, Lucas; Qamhiyeh, Sima; de Ruysscher, Dirk; Verhaegen, Frank; Pijls-Johannesma, Madelon; Lambin, Philippe

    2012-01-01

    This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR). Twenty-five patients, stage IA-IIIB, were prospectively included. On 4D F18-labeled fluorodeoxyglucose-positron emission tomography-computed tomography scans, the gross tumor, clinical and planning target volumes, and OAR were delineated. Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT) photon and passive scattered conformal proton therapy (PSPT) plans were created to give 70 Gy to the tumor in 35 fractions. Dose (de-)escalation was performed by rescaling to the maximum tolerable dose. Protons resulted in the lowest dose to the OAR, while keeping the dose to the target at 70 Gy. The integral dose (ID) was higher for 3DCRT (59%) and IMRT (43%) than for PSPT. The mean lung dose reduced from 18.9 Gy for 3DCRT and 16.4 Gy for IMRT to 13.5 Gy for PSPT. For 10 patients, escalation to 87 Gy was possible for all 3 modalities. The mean lung dose and ID were 40 and 65% higher for photons than for protons, respectively. The treatment planning results of the Radiation Oncology Collaborative Comparison trial show a reduction of ID and the dose to the OAR when treating with protons instead of photons, even with dose escalation. This shows that PSPT is able to give a high tumor dose, while keeping the OAR dose lower than with the photon modalities.

  9. Different rectal toxicity tolerance with and without simultaneous conventionally-fractionated pelvic lymph node treatment in patients receiving hypofractionated prostate radiotherapy

    PubMed Central

    2014-01-01

    Purpose To investigate added morbidity associated with the addition of pelvic elective nodal irradiation (ENI) to hypofractionated radiotherapy to the prostate. Methods and materials Two-hundred twelve patients, treated with hypofractionated radiotherapy to the prostate between 2004 and 2011, met the inclusion criteria for the analysis. All patients received 70 Gy to the prostate delivered over 28 fractions and 103 (49%) received ENI consisting of 50.4 Gy to the pelvic lymphatics delivered simultaneously in 1.8 Gy fractions. The mean dose-volume histograms were compared between the two subgroups defined by use of ENI, and various dose-volume parameters were analyzed for effect on late lower gastrointestinal (GI) and genitourinary (GU) toxicity. Results Acute grade 2 lower GI toxicity occurred in 38 (37%) patients receiving ENI versus 19 (17%) in those who did not (p = 0.001). The Kaplan-Meier estimate of grade ≥ 2 lower GI toxicity at 3 years was 15.3% for patients receiving ENI versus 5.3% for those who did not (p = 0.026). Each rectal isodose volume was increased for patients receiving ENI up to 50 Gy (p ≤ 0.021 for each 5 Gy increment). Across all patients, the absolute V70 of the rectum was the only predictor of late GI toxicity. When subgroups, defined by the use of ENI, were analyzed separately, rectal V70 was only predictive of late GI toxicity for patients who received ENI. For patients receiving ENI, V70 > 3 cc was associated with an increased risk of late GI events. Conclusions Elective nodal irradiation increases the rates of acute and late GI toxicity when delivered simultaneously with hypofractioanted prostate radiotherapy. The use of ENI appears to sensitize the rectum to hot spots, therefore we recommend added caution to minimize the volume of rectum receiving 100% of the prescription dose in these patients. PMID:24893842

  10. Improvements in the radiotherapy of medulloblastoma, 1946 to 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landberg, T.G.; Lindgren, M.L.; Cavallin-Staehl, E.K.

    1980-02-01

    The prognosis in medulloblastoma has often been reported to be gloomy, and five-year survival rates of approximately 25% are often reported. In recent years, however, some centers have published results that indicate a possible cure rate of 60% or even more. During the years 1946 to 1975, 50 children received radiotherapy for medulloblastoma at the University Hospital, Lund, Sweden. During this period the target volume had been defined in three different ways, whereas the target-absorbed doses had not differed. When only the demonstrated tumor was treated, the ten-year survival rate was 5%. If the spinal subdural space also was included,more » it rose to 25%, and when the whole subdural space was treated in addition to the demonstrated tumor, the projected ten-year survival rate was 53%. It is apparent that the target volume in the radiotherapy of medulloblastoma should include not only the demonstrated tumor but also the whole subdural space from the tip of the frontal lobes down to and including the second sacral segment. The size of the target-absorbed dose to be aimed at is not settled, but should consider not only the cure rate but also the performance status of the survivors. It seems from the present series that an absorbed dose of 45 Gy in not more than 30 fractions over six weeks to the demonstrated tumor and 30 Gy in 20 fractions over four weeks to the subdural space resulted in a fair frequency of tumor healing and minimal side effects. The delivery of this complicated treatment demands a high degree of precision in the technique. In this material the performance status of the children was not affected by the radiation treatment.« less

  11. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-01

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  12. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer.

    PubMed

    Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-07

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  13. WE-FG-202-02: Exploration of High-Resolution Quantitative Ultrasonic Micro-Vascular Imaging for Early Assessment of Radiotherapy Tumor Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasoji, S; Rivera, J; Dayton, P

    Purpose: Currently, we cannot predict an individual patient’s response to a given radiotherapy which normally is not detected for weeks to months post-treatment. As a result, precious time is wasted for patients with unresponsive tumors who could have switched to an alternative treatment much earlier. Presently, no early treatment response detection method exists that is effective, low-cost, non-invasive, and safe. We hypothesize that changes in tumor microvasculature predict tumor response to radiotherapy earlier than tumor volume changes. Recent radiobiology research suggests tumors undergo vascular remodeling in response to radiation well before manifesting changes in tumor volume. We propose monitoring tumormore » microvasculature post-radiation using Acoustic Angiography (AA), a novel ultrasound imaging modality developed and patented in-house. In this study, we investigate whether changes in tumor microvasculature, measured using AA, can be an early indicator of high-dose radiotherapy success, compared to changes in tumor volume. Methods: Fibrosarcoma xenograft tumor tissue was subcutaneously implanted into rodent flanks (N=10). Animal tumors (N=8) were irradiated with a single treatment of 15Gy using a clinical LINAC at 100SSD and 2×2cm field size. Two untreated rats were left as tumor controls. AA imaging was performed immediately posttreatment and every third day thereafter for 30 days, or until tumors disappeared. Tumor volumes and vascular densities were measured from anatomical b-mode ultrasound and AA images, respectively. Results: Statistical differences in vascular density between treatment responders and non-responders were observed on Day 10 (p=0.005), whereas statistical differences in tumor volume were not observed until Day 19 (p=0.02). Conclusions: Tumor vascularity differences may be observed substantially earlier than differences in tumor size. In addition, significant early increases in vascular density were observed in non

  14. Information Filtering Based on Users' Negative Opinions

    NASA Astrophysics Data System (ADS)

    Guo, Qiang; Li, Yang; Liu, Jian-Guo

    2013-05-01

    The process of heat conduction (HC) has recently found application in the information filtering [Zhang et al., Phys. Rev. Lett.99, 154301 (2007)], which is of high diversity but low accuracy. The classical HC model predicts users' potential interested objects based on their interesting objects regardless to the negative opinions. In terms of the users' rating scores, we present an improved user-based HC (UHC) information model by taking into account users' positive and negative opinions. Firstly, the objects rated by users are divided into positive and negative categories, then the predicted interesting and dislike object lists are generated by the UHC model. Finally, the recommendation lists are constructed by filtering out the dislike objects from the interesting lists. By implementing the new model based on nine similarity measures, the experimental results for MovieLens and Netflix datasets show that the new model considering negative opinions could greatly enhance the accuracy, measured by the average ranking score, from 0.049 to 0.036 for Netflix and from 0.1025 to 0.0570 for Movielens dataset, reduced by 26.53% and 44.39%, respectively. Since users prefer to give positive ratings rather than negative ones, the negative opinions contain much more information than the positive ones, the negative opinions, therefore, are very important for understanding users' online collective behaviors and improving the performance of HC model.

  15. Survey on deep learning for radiotherapy.

    PubMed

    Meyer, Philippe; Noblet, Vincent; Mazzara, Christophe; Lallement, Alex

    2018-07-01

    More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Social judgment theory based model on opinion formation, polarization and evolution

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred

    2014-12-01

    The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  17. Harry and Louise and health care reform: romancing public opinion.

    PubMed

    Goldsteen, R L; Goldsteen, K; Swan, J H; Clemeña, W

    2001-12-01

    The question whether the "Harry and Louise" campaign ads, sponsored by the Health Insurance Association of America (HIAA) during the 1993-1994 health care reform debate, influenced public opinion has particular relevance today since interest groups are increasingly choosing commercial-style mass media campaigns to sway public opinion about health policy issues. Our study revisits the issue of the Harry and Louise campaign's influence on public opinion, comparing the ad campaign's messages to changes in opinion about health care reform over a twenty-six-month period in Oklahoma. Looking at the overall trends just prior to the introduction of the Harry and Louise campaign, public opinion was going in the "wrong" direction, from the HIAA perspective. Moreover, public opinion continued in the wrong direction until the mid-point of the campaign. However, in either the turning point of the campaign in terms of message content and tone or in the lag period following it, public opinion reversed on each health reform issue and returned to pre-campaign levels. It appears from these findings that the campaign captured public opinion when support for issues that were unfavorable to HIAA members was increasing and turned public opinion back to pre-campaign levels. The campaign may result in many more such marriages of political interest groups and commercial advertisers for the purpose of demobilizing public support for health policy initiatives that are unfavorable to special interests.

  18. Stable target opinion through power-law bias in information exchange

    NASA Astrophysics Data System (ADS)

    Datta, Amitava

    2018-04-01

    We study a model of binary decision making when a certain population of agents is initially seeded with two different opinions, "+" and "-," with fractions p1 and p2, respectively, p1+p2=1 . Individuals can reverse their initial opinion only once based on this information exchange. We study this model on a completely connected network, where any pair of agents can exchange information, and a two-dimensional square lattice with periodic boundary conditions, where information exchange is possible only between the nearest neighbors. We propose a model in which each agent maintains two counters of opposite opinions and accepts opinions of other agents with a power-law bias until a threshold is reached, when they fix their final opinion. Our model is inspired by the study of negativity bias and positive-negative asymmetry, which has been known in the psychology literature for a long time. Our model can achieve a stable intermediate mix of positive and negative opinions in a population. In particular, we show that it is possible to achieve close to any fraction p3, 0 ≤p3≤1 , of "-" opinion starting from an initial fraction p1 of "-" opinion by applying a bias through adjusting the power-law exponent of p3.

  19. Stable target opinion through power-law bias in information exchange.

    PubMed

    Datta, Amitava

    2018-04-01

    We study a model of binary decision making when a certain population of agents is initially seeded with two different opinions, "+" and "-," with fractions p_{1} and p_{2}, respectively, p_{1}+p_{2}=1. Individuals can reverse their initial opinion only once based on this information exchange. We study this model on a completely connected network, where any pair of agents can exchange information, and a two-dimensional square lattice with periodic boundary conditions, where information exchange is possible only between the nearest neighbors. We propose a model in which each agent maintains two counters of opposite opinions and accepts opinions of other agents with a power-law bias until a threshold is reached, when they fix their final opinion. Our model is inspired by the study of negativity bias and positive-negative asymmetry, which has been known in the psychology literature for a long time. Our model can achieve a stable intermediate mix of positive and negative opinions in a population. In particular, we show that it is possible to achieve close to any fraction p_{3}, 0≤p_{3}≤1, of "-" opinion starting from an initial fraction p_{1} of "-" opinion by applying a bias through adjusting the power-law exponent of p_{3}.

  20. Volumetric modulation arc radiotherapy with flattening filter-free beams compared with static gantry IMRT and 3D conformal radiotherapy for advanced esophageal cancer: a feasibility study.

    PubMed

    Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca

    2012-10-01

    A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a

  1. Public School Principals: Opinions and Status. ERS Educator Opinion Poll.

    ERIC Educational Resources Information Center

    Educational Research Service, Arlington, VA.

    The opinion poll of public school administrators reported in this document is part of a series designed to report scientifically collected data that accurately reflects the views and experiences of specific groups of educators. For this study, a total of 3,300 principals were included in the random sample and 1,502 (46 percent) responded. Tables…

  2. Kinetic model for multidimensional opinion formation

    NASA Astrophysics Data System (ADS)

    Boudin, Laurent; Monaco, Roberto; Salvarani, Francesco

    2010-03-01

    In this paper, we deal with a kinetic model to describe the evolution of the opinion in a closed group with respect to a choice between multiple options (e.g., political parties), which takes into account two main mechanisms of opinion formation, namely, the interaction between individuals and the effect of the mass media. We numerically test the model in some relevant cases and eventually provide an existence and a uniqueness result for it.

  3. Individualized Margins in 3D Conformal Radiotherapy Planning for Lung Cancer: Analysis of Physiological Movements and Their Dosimetric Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Francois; Beaulieu, Luc; Fortin, Andre

    2008-04-01

    In conformal radiotherapy planning for lung cancer, respiratory movements are not taken into account when a single computed tomography (CT) scan is performed. This study examines tumor movements to design individualized margins to account for these movements and evaluates their dosimetric impacts on planning volume. Fifteen patients undergoing CT-based planning for radical radiotherapy for localized lung cancer formed the study cohort. A reference plan was constructed based on reference gross, clinical, and planning target volumes (rGTV, rCTV, and rPTV, respectively). The reference plans were compared with individualized plans using individualized margins obtained by using 5 serial CT scans to generatemore » individualized target volumes (iGTV, iCTV, and iPTV). Three-dimensional conformal radiation therapy was used for plan generation using 6- and 23-MV photon beams. Ten plans for each patient were generated and dose-volume histograms (DVHs) were calculated. Comparisons of volumetric and dosimetric parameters were performed using paired Student t-tests. Relative to the rGTV, the total volume occupied by the superimposed GTVs increased progressively with each additional CT scans. With the use of all 5 scans, the average increase in GTV was 52.1%. For the plans with closest dosimetric coverage, target volume was smaller (iPTV/rPTV ratio 0.808) but lung irradiation was only slightly decreased. Reduction in the proportion of lung tissue that received 20 Gy or more outside the PTV (V20) was observed both for 6-MV plans (-0.73%) and 23-MV plans (-0.65%), with p = 0.02 and p = 0.04, respectively. In conformal RT planning for the treatment of lung cancer, the use of serial CT scans to evaluate respiratory motion and to generate individualized margins to account for these motions produced only a limited lung sparing advantage.« less

  4. Public Opinion Poll on Community Priorities: Sacramento

    ERIC Educational Resources Information Center

    Sierra Health Foundation, 2009

    2009-01-01

    The primary goal of this study was to measure public perceptions, opinions and priorities as they pertain to youth issues in Sacramento for the purposes of further developing public and private youth programming and public policy in the Sacramento region. By presenting a "statistically reliable" profile of public opinion on youth issues,…

  5. Comparison of Tennessee Opinions with U.S. and Other States' Opinions. 1974 Statewide Opinion Survey. Preliminary Report No. 3.

    ERIC Educational Resources Information Center

    Haskins, Jack B.

    Information gathered in the 1974 statewide survey of Tennesseeans' opinions on higher education is compared with similar information gathered in other states. Questions asked concerned confidence in institutions, freedom to teach, quality of education and college type, favorability to increased spending, favorability to institutional expansion,…

  6. The spreading of opposite opinions on online social networks with authoritative nodes

    NASA Astrophysics Data System (ADS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Jiang, Shijin; Zhang, Xiao; Ding, Wenrui; Zheng, Zhiming

    2013-09-01

    The study of opinion dynamics, such as spreading and controlling of rumors, has become an important issue on social networks. Numerous models have been devised to describe this process, including epidemic models and spin models, which mainly focus on how opinions spread and interact with each other, respectively. In this paper, we propose a model that combines the spreading stage and the interaction stage for opinions to illustrate the process of dispelling a rumor. Moreover, we set up authoritative nodes, which disseminate positive opinion to counterbalance the negative opinion prevailing on online social networking sites. With analysis of the relationship among positive opinion proportion, opinion strength and the density of authoritative nodes in networks with different topologies, we demonstrate that the positive opinion proportion grows with the density of authoritative nodes until the positive opinion prevails in the entire network. In particular, the relationship is linear in homogeneous topologies. Besides, it is also noteworthy that initial locations of the negative opinion source and authoritative nodes do not influence positive opinion proportion in homogeneous networks but have a significant impact on heterogeneous networks. The results are verified by numerical simulations and are helpful to understand the mechanism of two different opinions interacting with each other on online social networking sites.

  7. Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets.

    PubMed

    Shu, Lei; Liu, Bing; Xu, Hu; Kim, Annice

    2016-11-01

    It is well-known that opinions have targets. Extracting such targets is an important problem of opinion mining because without knowing the target of an opinion, the opinion is of limited use. So far many algorithms have been proposed to extract opinion targets. However, an opinion target can be an entity or an aspect (part or attribute) of an entity. An opinion about an entity is an opinion about the entity as a whole, while an opinion about an aspect is just an opinion about that specific attribute or aspect of an entity. Thus, opinion targets should be separated into entities and aspects before use because they represent very different things about opinions. This paper proposes a novel algorithm, called Lifelong-RL , to solve the problem based on lifelong machine learning and relaxation labeling . Extensive experiments show that the proposed algorithm Lifelong-RL outperforms baseline methods markedly.

  8. Post-radiotherapy hypothyroidism in dogs treated for thyroid carcinomas.

    PubMed

    Amores-Fuster, I; Cripps, P; Blackwood, L

    2017-03-01

    Hypothyroidism is a common adverse event after head and neck radiotherapy in human medicine, but uncommonly reported in canine patients. Records of 21 dogs with histologically or cytologically confirmed thyroid carcinoma receiving definitive or hypofractionated radiotherapy were reviewed. Nine cases received 48 Gy in 12 fractions, 10 received 36 Gy in 4 fractions and 2 received 32 Gy in 4 fractions. Seventeen cases had radiotherapy in a post-operative setting. Ten cases developed hypothyroidism (47.6%) after radiotherapy. The development of hypothyroidism was not associated with the radiotherapy protocol used. Median time to diagnosis of hypothyroidism was 6 months (range, 1-13 months). Hypothyroidism is a common side effect following radiotherapy for thyroid carcinomas. Monitoring of thyroid function following radiotherapy is recommended. No specific risk factors have been identified. © 2015 John Wiley & Sons Ltd.

  9. Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk : Planning study in esophageal carcinoma.

    PubMed

    Fakhrian, K; Oechsner, M; Kampfer, S; Schuster, T; Molls, M; Geinitz, H

    2013-04-01

    The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive ≥ 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher

  10. How to Read a U.S. Supreme Court Opinion

    ERIC Educational Resources Information Center

    Middleton, Tiffany

    2013-01-01

    Reading U.S. Supreme Court opinions can be intimidating. Yet, in the digital age, it has never been easier to access them. The average opinion is about 4,750 words, and is one of approximately 75 issued by the Court each year. It might be reassuring to know that opinions contain similar parts and tend to follow a similar format. There are also…

  11. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma

    2010-03-15

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from

  12. SU-F-T-198: Dosimetric Comparison of Carbon and Proton Radiotherapy for Recurrent Nasopharynx Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Y; Zhao, J; Wang, W

    2016-06-15

    Purpose: Various radiotherapy planning methods for locally recurrent nasopharynx carcinoma (R-NPC) have been proposed. The purpose of this study was to compare carbon and proton therapy for the treatment of R-NPC in terms of dose coverage for target volume and sparing for organs at risk (OARs). Methods: Six patients who were suffering from R-NPC and treated using carbon therapy were selected for this study. Treatment plans with a total dose of 57.5Gy (RBE) in 23 fractions were made using SIEMENS Syngo V11. An intensity-modulated radiotherapy optimization method was chosen for carbon plans (IMCT) while for proton plans both intensity-modulated radiotherapymore » (IMPT) and single beam optimization (proton-SBO) methods were chosen. Dose distributions, dose volume parameters, and selected dosimetric indices for target volumes and OARs were compared for all treatment plans. Results: All plans provided comparable PTV coverage. The volume covered by 95% of the prescribed dose was comparable for all three plans. The average values were 96.11%, 96.24% and 96.11% for IMCT, IMPT, and proton-SBO respectively. A significant reduction of the 80% and 50% dose volumes were observed for the IMCT plans compared to the IMPT and proton-SBO plans. Critical organs lateral to the target such as brain stem and spinal cord were better spared by IMPT than by proton-SBO, while IMCT spared those organs best. For organs in the beam path, such as parotid glands, the mean dose results were similar for all three plans. Conclusion: Carbon plans yielded better dose conformity than proton plans. They provided similar or better target coverage while significantly lowering the dose for normal tissues. Dose sparing for critical organs in IMPT plans was better than proton-SBO, however, IMPT is known to be more sensitive to range uncertainties. For proton plans it is essential to find a balance between the two optimization methods.« less

  13. Dose-distance metric that predicts late rectal bleeding in patients receiving radical prostate external-beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali

    2012-12-01

    The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.

  14. Dynamic 3D measurement of modulated radiotherapy: a scintillator-based approach

    NASA Astrophysics Data System (ADS)

    Archambault, Louis; Rilling, Madison; Roy-Pomerleau, Xavier; Thibault, Simon

    2017-05-01

    With the rise of high-conformity dynamic radiotherapy, such as volumetric modulated arc therapy and robotic radiosurgery, the temporal dimension of dose measurement is becoming increasingly important. It must be possible to tell both ‘where’ and ‘when’ a discrepancy occurs between the plan and its delivery. A 3D scintillation-based dosimetry system could be ideal for such a thorough, end-to-end verification; however, the challenge lies in retrieving the volumetric information of the light-emitting volume. This paper discusses the motivation, from an optics point of view, of using the images acquired with a plenoptic camera, or light field imager, of an irradiated plastic scintillator volume to reconstruct the delivered 3D dose distribution. Current work focuses on the optimization of the optical design as well as the data processing that is involved in the ongoing development of a clinically viable, second generation dosimetry system.

  15. Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH.

    PubMed

    Gong, Guanzhong; Wang, Ruozheng; Guo, Yujie; Zhai, Deyin; Liu, Tonghai; Lu, Jie; Chen, Jinhu; Liu, Chengxin; Yin, Yong

    2013-12-20

    Lung radiation injury is a critical complication of radiotherapy (RT) for thoracic esophageal carcinoma (EC). Therefore, the goal of this study was to investigate the feasibility and dosimetric effects of reducing the lung tissue irradiation dose during RT for thoracic EC by applying volumetric modulated arc radiotherapy (VMAT) combined with active breathing control (ABC) for moderate deep inspiration breath-hold (mDIBH). Fifteen patients with thoracic EC were randomly selected to undergo two series of computed tomography (CT) simulation scans with ABC used to achieve mDIBH (representing 80% of peak DIBH value) versus free breathing (FB). Gross tumor volumes were contoured on different CT images, and planning target volumes (PTVs) were obtained using different margins. For PTV-FB, intensity-modulated radiotherapy (IMRT) was designed with seven fields, and VMAT included two whole arcs. For PTV-DIBH, VMAT with three 135° arcs was applied, and the corresponding plans were named: IMRT-FB, VMAT-FB, and VMAT-DIBH, respectively. Dosimetric differences between the different plans were compared. The heart volumes decreased by 19.85%, while total lung volume increased by 52.54% in mDIBH, compared to FB (p < 0.05). The mean conformality index values and homogeneity index values for VMAT-DIBH (0.86, 1.07) were slightly worse than those for IMRT-FB (0.90, 1.05) and VMAT-FB (0.90, 1.06) (p > 0.05). Furthermore, compared to IMRT-FB and VMAT-FB, VMAT-DIBH reduced the mean total lung dose by 18.64% and 17.84%, respectively (p < 0.05); moreover, the V5, V10, V20, and V30 values for IMRT-FB and VMAT-FB were reduced by 10.84% and 10.65% (p > 0.05), 12.5% and 20% (p < 0.05), 30.77% and 33.33% (p < 0.05), and 50.33% and 49.15% (p < 0.05), respectively. However, the heart dose-volume indices were similar between VMAT-DIBH and VMAT-FB which were lower than IMRT-FB without being statistically significant (p > 0.05). The monitor units and treatment time of VMAT-DIBH were also the lowest (p

  16. Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer: A retrospective analysis of seventy-three patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alterio, Daniela; Jereczek-Fossa, Barbara Alicja; University of Milan, Milan

    2007-01-01

    Purpose: To evaluate the incidence of thyroid disorders and dose distribution to the thyroid in patients treated with radiotherapy for head-and-neck carcinomas. Methods and Materials: A retrospective evaluation of data from 73 patients treated for head-and-neck cancers in our department was performed. Thyroid function was evaluated mainly by the measurement of thyrotropin (thyroid stimulating hormone [TSH]). A retrospective analysis of treatment plans was performed for 57 patients. Percentages of thyroid glandular volume absorbing 10, 30, and 50 Gy (V10, V30, and V50 respectively) were considered for statistical analysis. Results: A majority of patients (61%) had a normal thyroid function whereasmore » 19 patients (26%) had hypothyroidism. Mean thyroid volume was 30.39 cc. Point 3 (located at isthmus) absorbed lower doses compared with other points (p < 0.0001). Median values of V10, V30, and V50 were 92% (range, 57-100%), 75% (range, 28.5-100%), and 35% (range, 3-83%) respectively. Gender was associated with toxicity (presence of any kind of thyroid disorders) (p < 0.05), with females displaying higher levels of TSHr (relative TSH = patient's value/maximum value of the laboratory range) (p = 0.0005) and smaller thyroid volume (p 0.0012) compared with male population. TSHr values were associated with thyroid volume, and the presence of midline shielding block in the anterior field was associated with relative free thyroxine (FT4r = patient's value/maximum value of the laboratory range) values. Conclusions: Gender and thyroid volume seem to play an important role in the occurrence of thyroid toxicity, but further studies on dose-effect relationship for radiotherapy-induced thyroid toxicity are needed.« less

  17. Radiation-induced Liver Injury after 3D-conformal Radiotherapy for Hepatocellular Carcinoma: Quantitative Assessment Using Gd-EOB-DTPA-enhanced MRI.

    PubMed

    Fukugawa, Yoshiyuki; Namimoto, Tomohiro; Toya, Ryo; Saito, Tetsuo; Yuki, Hideaki; Matsuyama, Tomohiko; Ikeda, Osamu; Yamashita, Yasuyuki; Oya, Natsuo

    2017-02-01

    Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary- phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule.

  18. Anal sphincter dysfunction in patients treated with primary radiotherapy for anal cancer: a study with the functional lumen imaging probe.

    PubMed

    Haas, Susanne; Faaborg, Pia; Liao, Donghua; Laurberg, Søren; Gregersen, Hans; Lundby, Lilly; Christensen, Peter; Krogh, Klaus

    2018-04-01

    Sphincter-sparing radiotherapy or chemoradiation are standard treatments for patients with anal cancer. The ultimate treatment goal is full recovery from anal cancer with preserved anorectal function. Unfortunately, long-term survivors often suffer from severe anorectal symptoms. The aim of the present study was to characterize changes in anorectal physiology after radiotherapy for anal cancer. We included 13 patients (10 women, age 63.4 ± 1.9) treated with radiotherapy or chemoradiation for anal cancer and 14 healthy volunteers (9 women, age 61.4 ± 1.5). Symptoms were assessed with scores for fecal incontinence and low anterior resection syndrome. Anorectal physiology was examined with anorectal manometry and the Functional Lumen Imaging Probe. Patients had a median Wexner fecal incontinence score of 5 (0-13) and a median LARS score of 29 (0-39). Compared to healthy volunteers, patients had lower mean (±SE) anal -resting (38 ± 5 vs. 71 ± 6, p < .001) and -squeeze pressures (76 ± 11 vs. 165 ± 15, p < .001). Patients also had lower anal yield pressure (15.5 ± 1.3 mmHg vs. 28.0 ± 2.0 mmHg, p < .001), higher distensibility, and lower resistance to flow (reduced resistance ratio of the anal canal during distension, q = 5.09, p < .001). No differences were found in median (range) rectal volumes at first sensation (70.5 (15-131) vs. 57 (18-132) ml, p > .4), urge (103 (54-176) vs. 90 (32-212), p > .6) or maximum tolerable volume (173 (86-413) vs. 119.5 (54-269) ml, p > .10). Patients treated with radiotherapy or chemoradiation for anal cancer have low anal resting and squeeze pressures as well as reduced resistance to distension and flow.

  19. A consensus opinion model based on the evolutionary game

    NASA Astrophysics Data System (ADS)

    Yang, Han-Xin

    2016-08-01

    We propose a consensus opinion model based on the evolutionary game. In our model, both of the two connected agents receive a benefit if they have the same opinion, otherwise they both pay a cost. Agents update their opinions by comparing payoffs with neighbors. The opinion of an agent with higher payoff is more likely to be imitated. We apply this model in scale-free networks with tunable degree distribution. Interestingly, we find that there exists an optimal ratio of cost to benefit, leading to the shortest consensus time. Qualitative analysis is obtained by examining the evolution of the opinion clusters. Moreover, we find that the consensus time decreases as the average degree of the network increases, but increases with the noise introduced to permit irrational choices. The dependence of the consensus time on the network size is found to be a power-law form. For small or larger ratio of cost to benefit, the consensus time decreases as the degree exponent increases. However, for moderate ratio of cost to benefit, the consensus time increases with the degree exponent. Our results may provide new insights into opinion dynamics driven by the evolutionary game theory.

  20. SU-E-T-287: Dose Verification On the Variation of Target Volume and Organ at Risk in Preradiation Chemotherapy IMRT for Nasopharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X; Kong, L; Wang, J

    2015-06-15

    Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less

  1. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less

  2. Hypothyroidism After Head-and-Neck Radiotherapy in Children and Adolescents: Preliminary Results of the 'Registry for the Evaluation of Side Effects After Radiotherapy in Childhood and Adolescence' (RiSK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boelling, Tobias, E-mail: Tobias.Boelling@uni-muenster.de; Department of Radiotherapy, Paracelsus Clinic Osnabrueck, Osnabrueck; Geisenheiser, Alina

    Purpose: The 'Registry for the Evaluation of Side Effects After Radiotherapy in Childhood and Adolescence' (RiSK) has been established to prospectively characterize dose-volume effects of radiation in terms of side effects. The aim of this analysis was to characterize the function of the thyroid gland after radiotherapy to the head-and-neck region in children and adolescents. Methods and Materials: Detailed information regarding radiation doses to at-risk organs has been collected across Germany since 2001. Thyroid function was evaluated by blood value examinations of thyroid-stimulating hormone, triiodothyronine, and thyroxine. Information regarding thyroid hormone substitution was requested from the treating physicians. Results: Untilmore » May 2009, 1,086 patients from 62 centers were recruited, including 404 patients (median age, 10.9 years) who had received radiotherapy to the thyroid gland and/or hypophysis. Follow-up information was available for 264 patients (60.9%; median follow-up, 40 months), with 60 patients (22.7%) showing pathologic values. In comparison to patients treated with prophylactic cranial irradiation (median dose, 12 Gy), patients with radiation doses of 15 to 25 Gy to the thyroid gland had a hazard ratio of 3.072 (p = 0.002) for the development of pathologic thyroid blood values. Patients with greater than 25 Gy to the thyroid gland and patients who underwent craniospinal irradiation had hazard ratios of 3.768 (p = 0.009) and 5.674 (p < 0.001), respectively. The cumulative incidence of thyroid hormone substitution therapy did not differ between defined subgroups. Conclusions: Radiation-induced thyroid function impairment, including damage to the thyroid gland and/or hypophysis, can frequently be observed after radiotherapy in children. A structured follow-up examination is advised.« less

  3. [Tolerance of latissimus dorsi without implant to radiotherapy in immediate breast reconstruction].

    PubMed

    Carrabin, N; Vermersh, C; Faure, C; Dammacco, M A; Delay, E; Ho Quoc, C

    2015-12-01

    Rates of immediate breast reconstruction (IBR) after mastectomy are currently increasing, leading us to evaluate outcomes of breast reconstruction with latissimus dorsi without implant followed by adjuvant radiotherapy. From January 1999 to August 2013, 31 breast reconstructions with latissimus dorsi have been irradiated. Patients have been selected from a prospective database and contacted to evaluate outcomes of breast reconstruction, and 2 patients have been lost. Median follow-up was 6.5 years. Breast reconstruction outcomes were evaluated as very good or good in 86% of cases, with breast reconstructed consistency as very good or good in 93% of cases. An additional fat grafting has been performed for 58% of cases (mean volume transferred of 250 cc) and was associated with contralateral breast reduction in 32% of the whole population. IBR was judged as essential for 79% of women a posteriori. In our experience, latissimus dorsi has a good tolerance to adjuvant irradiation, and may be offered to patients willing to benefit of an IBR even if postoperative radiotherapy is scheduled. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Cross-correlation patterns in social opinion formation with sequential data

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.

    2016-11-01

    Recent research on large-scale internet data suggests existence of patterns in the collective behavior of billions of people even though each of them may pursue own activities. In this paper, we interpret online rating activity as a process of forming social opinion about individual items, where people sequentially choose a rating based on the current information set comprising all previous ratings and own preferences. We construct an opinion index from the sequence of ratings and we show that (1) movie-specific opinion converges much slower than an independent and identically distributed (i.i.d.) sequence of ratings, (2) rating sequence for individual movies shows lesser variation compared to an i.i.d. sequence of ratings, (3) the probability density function of the asymptotic opinions has more spread than that defined over opinion arising from i.i.d. sequence of ratings, (4) opinion sequences across movies are correlated with significantly higher and lower correlation compared to opinion constructed from i.i.d. sequence of ratings, creating a bimodal cross-correlation structure. By decomposing the temporal correlation structures from panel data of movie ratings, we show that the social effects are very prominent whereas group effects cannot be differentiated from those of surrogate data and individual effects are quite small. The former explains a large part of extreme positive or negative correlations between sequences of opinions. In general, this method can be applied to any rating data to extract social or group-specific effects in correlation structures. We conclude that in this particular case, social effects are important in opinion formation process.

  5. Pain and mean absorbed dose to the pubic bone after radiotherapy among gynecological cancer survivors.

    PubMed

    Waldenström, Ann-Charlotte; Olsson, Caroline; Wilderäng, Ulrica; Dunberger, Gail; Lind, Helena; al-Abany, Massoud; Palm, Åsa; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar

    2011-07-15

    To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. We analyzed data from 650 survivors (participation rate 79%) with median follow-up of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses ≥ 52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Pain and Mean Absorbed Dose to the Pubic Bone After Radiotherapy Among Gynecological Cancer Survivors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldenstroem, Ann-Charlotte, E-mail: ann-charlotte.waldenstrom@oncology.gu.se; Department of Oncology, Sahlgrenska University Hospital, Gothenburg; Olsson, Caroline

    Purpose: To analyze the relationship between mean absorbed dose to the pubic bone after pelvic radiotherapy for gynecological cancer and occurrence of pubic bone pain among long-term survivors. Methods and Materials: In an unselected, population-based study, we identified 823 long-term gynecological cancer survivors treated with pelvic radiotherapy during 1991-2003. For comparison, we used a non-radiation-treated control population of 478 matched women from the Swedish Population Register. Pain, intensity of pain, and functional impairment due to pain in the pubic bone were assessed with a study-specific postal questionnaire. Results: We analyzed data from 650 survivors (participation rate 79%) with median follow-upmore » of 6.3 years (range, 2.3-15.0 years) along with 344 control women (participation rate, 72 %). Ten percent of the survivors were treated with radiotherapy; ninety percent with surgery plus radiotherapy. Brachytherapy was added in 81%. Complete treatment records were recovered for 538/650 survivors, with dose distribution data including dose-volume histograms over the pubic bone. Pubic bone pain was reported by 73 survivors (11%); 59/517 (11%) had been exposed to mean absorbed external beam doses <52.5 Gy to the pubic bone and 5/12 (42%) to mean absorbed external beam doses {>=}52.5 Gy. Thirty-three survivors reported pain affecting sleep, a 13-fold increased prevalence compared with control women. Forty-nine survivors reported functional impairment measured as pain walking indoors, a 10-fold increased prevalence. Conclusions: Mean absorbed external beam dose above 52.5 Gy to the pubic bone increases the occurrence of pain in the pubic bone and may affect daily life of long-term survivors treated with radiotherapy for gynecological cancer.« less

  7. Dosimetric and radiobiological characterizations of prostate intensity-modulated radiotherapy and volumetric-modulated arc therapy: A single-institution review of ninety cases

    PubMed Central

    Khan, Muhammad Isa; Jiang, Runqing; Kiciak, Alexander; ur Rehman, Jalil; Afzal, Muhammad; Chow, James C. L.

    2016-01-01

    This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8–335 cm3) and 50 VMAT patients (planning target volume = 120–351 cm3) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy. PMID:27651562

  8. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysismore » included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions

  9. Museum Personnel's Opinions on Mobile Guidance Systems

    ERIC Educational Resources Information Center

    Yoshimura, Hirokazu; Sekiguchi, Hiromi; Yabumoto, Yoshitaka

    2007-01-01

    While opinions from the general public are certainly important, opinions from the museum staff are also necessary to improve user service systems. this article introduces two groups of museum staff who have evaluated the usability of mobile guidance systems in Japanese museums. One group is the research team who used the PDA system in the National…

  10. Towards understanding what contributes to forming an opinion

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Song, Jia; Huo, Jie; Hao, Rui; Wang, Xu-Ming

    Opinion evolution mechanism can be captured by physical modeling. In this paper, a kinetic equation is established by defining a generalized displacement(cognitive level), a driving force and the related factors such as generalized potential, information quantity and attitude. It has been shown that the details of opinion evolution depend on the type of the driving force, self-dominated driving or environment-dominated driving. In the former case, the participants can have their attitudes changed in the process of competition between the self-driving force and environment-driving force. In the latter case, all of the participants are pulled by the environment. Some regularities behind the dynamics of opinion are also revealed, for instance, the information entropy decays with time in a special way, etc. The results may help us to get some deep understanding for the formation of a public opinion.

  11. Hybrid adaptive radiotherapy with on-line MRI in cervix cancer IMRT.

    PubMed

    Oh, Seungjong; Stewart, James; Moseley, Joanne; Kelly, Valerie; Lim, Karen; Xie, Jason; Fyles, Anthony; Brock, Kristy K; Lundin, Anna; Rehbinder, Henrik; Milosevic, Michael; Jaffray, David; Cho, Young-Bin

    2014-02-01

    Substantial organ motion and tumor shrinkage occur during radiotherapy for cervix cancer. IMRT planning studies have shown that the quality of radiation delivery is influenced by these anatomical changes, therefore the adaptation of treatment plans may be warranted. Image guidance with off-line replanning, i.e. hybrid-adaptation, is recognized as one of the most practical adaptation strategies. In this study, we investigated the effects of soft tissue image guidance using on-line MR while varying the frequency of off-line replanning on the adaptation of cervix IMRT. 33 cervical cancer patients underwent planning and weekly pelvic MRI scans during radiotherapy. 5 patients of 33 were identified in a previous retrospective adaptive planning study, in which the coverage of gross tumor volume/clinical target volume (GTV/CTV) was not acceptable given single off-line IMRT replan using a 3mm PTV margin with bone matching. These 5 patients and a randomly selected 10 patients from the remaining 28 patients, a total of 15 patients of 33, were considered in this study. Two matching methods for image guidance (bone to bone and soft tissue to dose matrix) and three frequencies of off-line replanning (none, single, and weekly) were simulated and compared with respect to target coverage (cervix, GTV, lower uterus, parametrium, upper vagina, tumor related CTV and elective lymph node CTV) and OAR sparing (bladder, bowel, rectum, and sigmoid). Cost (total process time) and benefit (target coverage) were analyzed for comparison. Hybrid adaptation (image guidance with off-line replanning) significantly enhanced target coverage for both 5 difficult and 10 standard cases. Concerning image guidance, bone matching was short of delivering enough doses for 5 difficult cases even with a weekly off-line replan. Soft tissue image guidance proved successful for all cases except one when single or more frequent replans were utilized in the difficult cases. Cost and benefit analysis preferred

  12. Method for Atypical Opinion Extraction from Ungrammatical Answers in Open-ended Questions

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Ayako; Tamura, Shingo; Oiso, Hiroaki; Komoda, Norihisa

    This paper presents a method for atypical opinion extraction from ungrammatical answers to open-ended questions supplied through cellular phones. The proposed system excludes typical opinions and extracts only atypical opinions. To cope with incomplete syntax of texts due to the input by cellular phones, the system treats the opinions as the sets of keywords. The combinations of words are established beforehand in a typical word database. Based on the ratio of typical word combinations in sentences of an opinion, the system classifies the opinion typical or atypical. When typical word combinations are sought in an opinion, the system considers the word order and the distance of difference between the positions of words to exclude unnecessary combinations. Furthermore, when an opinion includes meanings the system divides the opinion into phrases at each typical word combination. By applying questionnaire data supplied by users of a mobile game content when they cancel their account, the extraction accuracy of the proposed system was confirmed.

  13. The CHESS method of forensic opinion formulation: striving to checkmate bias.

    PubMed

    Wills, Cheryl D

    2008-01-01

    Expert witnesses use various methods to render dispassionate opinions. Some forensic psychiatrists acknowledge bias up front; other experts use principles endorsed by the American Academy of Psychiatry and the Law or other professional organizations. This article introduces CHESS, a systematic method for reducing bias in expert opinions. The CHESS method involves identifying a Claim or preliminary opinion; developing a Hierarchy of supporting evidence; examining the evidence for weaknesses or areas of Exposure; Studying and revising the claim and supporting evidence; and Synthesizing a revised opinion. Case examples illustrate how the CHESS method may help experts reduce bias while strengthening opinions. The method also helps experts prepare for court by reminding them to anticipate questions that may be asked during cross-examination. The CHESS method provides a framework for formulating, revising, and identifying limitations of opinions, which allows experts to incorporate neutrality into forensic opinions.

  14. Understanding public opinion regarding transit in southeast Michigan.

    DOT National Transportation Integrated Search

    2015-04-01

    This report presents findings from a study on public opinion regarding transit in Southeast Michigan. The overall goals of this : study were to assess the nature of public opinion regarding regional transit and to understand its relation to socio-dem...

  15. Salvage Reirradiaton With Stereotactic Body Radiotherapy for Locally Recurrent Head-and-Neck Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cengiz, Mustafa, E-mail: mcengiz@hacettepe.edu.tr; Ozyigit, Goekhan; Yazici, Goezde

    2011-09-01

    Purpose: In this study, we present our results of reirradiation of locally recurrent head-and-neck cancer with image-guided, fractionated, frameless stereotactic body radiotherapy technique. Methods and Materials: From July 2007 to February 2009, 46 patients were treated using the CyberKnife (Accuray, Sunnyvale, CA) at the Department of Radiation Oncology, Hacettepe University, Ankara, Turkey. All patients had recurrent, unresectable, and previously irradiated head-and-neck cancer. The most prominent site was the nasopharynx (32.6%), and the most common histopathology was epidermoid carcinoma. The planning target volume was defined as the gross tumor volume identified on magnetic resonance imaging and computed tomography. There were 22more » female and 24 male patients. Median age was 53 years (range, 19-87 years). The median tumor dose with stereotactic body radiotherapy was 30 Gy (range, 18-35 Gy) in a median of five (range, one to five) fractions. Results: Of 37 patients whose response to therapy was evaluated, 10 patients (27%) had complete tumor regression, 11 (29.8%) had partial response, and 10 (27%) had stable disease. Ultimate local disease control was achieved in 31 patients (83.8%). The overall survival was 11.93 months in median (ranged, 11.4 - 17.4 months), and the median progression free survival was 10.5 months. One-year progression-free survival and overall survival were 41% and 46%, respectively. Grade II or greater long-term complications were observed in 6 (13.3%) patients. On follow-up, 8 (17.3%) patients had carotid blow-out syndrome, and 7 (15.2%) patients died of bleeding from carotid arteries. We discovered that this fatal syndrome occurred only in patients with tumor surrounding carotid arteries and carotid arteries receiving all prescribed dose. Conclusions: Stereotactic body radiotherapy is an appealing treatment option for patients with recurrent head-and-neck cancer previously treated with radiation to high doses. Good local control

  16. Multi-atlas-based segmentation of the parotid glands of MR images in patients following head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian

    2013-02-01

    Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.

  17. Vocational Opinion Index.

    ERIC Educational Resources Information Center

    Benson, Stephen D.; Whittington, Marna C.

    The Vocational Opinion Index (VOI) is an instrument used to measure an individual's job readiness posture (JRP). JRP is a term used to define an individual's attitudes, perceptions, and motivations as they reflect on his ability to obtain and maintain a job. The VOI determines an individual's JRP by assessing three psychological diminsions:…

  18. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance.

    PubMed

    Sveistrup, Joen; af Rosenschöld, Per Munck; Deasy, Joseph O; Oh, Jung Hun; Pommer, Tobias; Petersen, Peter Meidahl; Engelholm, Svend Aage

    2014-02-04

    Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.

  19. Outcome of accelerated radiotherapy alone or accelerated radiotherapy followed by exenteration of the nasal cavity in dogs with intranasal neoplasia: 53 cases (1990-2002).

    PubMed

    Adams, William M; Bjorling, Dale E; McAnulty, Jonathan E; Green, Eric M; Forrest, Lisa J; Vail, David M

    2005-09-15

    To compare long-term results of radiotherapy alone versus radiotherapy followed by exenteration of the nasal cavity in dogs with malignant intranasal neoplasia. Retrospective study. 53 dogs with malignant intranasal neoplasia. All dogs underwent radiotherapy consisting of administration of 10 fractions of 4.2 Gy each on consecutive weekdays. For dogs in the surgery group (n=13), follow-up computed tomography was performed, and dogs were scheduled for surgery if persistent or recurrent tumor was seen. Perioperative complications for dogs that underwent surgery included hemorrhage requiring transfusion (2 dogs) and subcutaneous emphysema (8). Rhinitis and osteomyelitis-osteonecrosis occurred significantly more frequently in dogs in the radiotherapy and surgery group (9 and 4 dogs, respectively) than in dogs in the radiotherapy-only group (4 and 3 dogs, respectively). Two- and 3-year survival rates were 44% and 24%, respectively, for dogs in the radiotherapy group and 69% and 58%, respectively, for dogs in the surgery group. Overall median survival time for dogs in the radiotherapy and surgery group (477 months) was significantly longer than time for dogs in the radiotherapy-only group (19.7 months). Results suggest that exenteration of the nasal cavity significantly prolongs survival time in dogs with intranasal neoplasia that have undergone radiotherapy. Exenteration after radiotherapy may increase the risk of chronic complications.

  20. Prostate-specific antigen bounce after intensity-modulated radiotherapy for prostate cancer.

    PubMed

    Sheinbein, Courtney; Teh, Bin S; Mai, Wei Y; Grant, Walter; Paulino, Arnold; Butler, E Brian

    2010-09-01

    To report prostate-specific antigen (PSA) bounce in patients treated with intensity-modulated radiotherapy (IMRT) alone. Previous studies have reported PSA bounce in prostate cancer patients treated with conventional radiotherapy, 3D conformal radiotherapy, and permanent seed brachytherapy. From January 1997 to July 2002, 102 patients with clinically localized prostate cancer were treated with IMRT alone. No patients received androgen ablation. PSA bounce was defined as a PSA increase of at least 0.4 ng/mL, followed by any PSA decrease. Biochemical failure was defined by both the American Society for Therapeutic Radiology and Oncology 1996 and 2006 consensus definitions. The median follow-up was 76 months. The median length of time until the first PSA bounce was 13.6 months. Thirty-three patients (32.4%) had at least 1 PSA bounce, with 25 (24.5%) having 1 bounce; 6 (5.9%), 2 bounces; and 2 (2.0%), 4 bounces. PSA bounce was not significantly associated with biochemical no evidence of disease survival, clinical stage, pretreatment PSA, Gleason combined score, prostate planning target volume, PSA nadir, or mean dose to the prostate. The rate of PSA bounce in patients aged ≤ 70 and > 70 years was 44.4% and 22.8%, respectively (P = .032). Our patient series is the first report on PSA bounce in patients treated with IMRT. Our study confirms that the majority of patients with a bouncing PSA remain biochemically and clinically free of disease with extended follow-up. Copyright © 2010 Elsevier Inc. All rights reserved.