Sample records for opioid receptor modulation

  1. Mu-opioid receptors modulate the stability of dendritic spines

    PubMed Central

    Liao, Dezhi; Lin, Hang; Law, Ping Yee; Loh, Horace H.

    2005-01-01

    Opioids classically regulate the excitability of neurons by suppressing synaptic GABA release from inhibitory neurons. Here, we report a role for opioids in modulating excitatory synaptic transmission. By activating ubiquitously clustered μ-opioid receptor (MOR) in excitatory synapses, morphine caused collapse of preexisting dendritic spines and decreased synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Meanwhile, the opioid antagonist naloxone increased the density of spines. Chronic treatment with morphine decreased the density of dendritic spines even in the presence of Tetrodotoxin, a sodium channel blocker, indicating that the morphine's effect was not caused by altered activity in neural network through suppression of GABA release. The effect of morphine on dendritic spines was absent in transgenic mice lacking MORs and was blocked by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2), a μ-receptor antagonist. These data together with others suggest that endogenous opioids and/or constitutive activity of MORs participate in maintaining normal morphology and function of spines, challenging the classical model of opioids. Abnormal alteration of spines may occur in drug addiction when opioid receptors are overactivated by exogenous opiates. PMID:15659552

  2. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors

    PubMed Central

    2016-01-01

    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170

  3. Fast Modulation of μ-Opioid Receptor (MOR) Recycling Is Mediated by Receptor Agonists*

    PubMed Central

    Roman-Vendrell, Cristina; Yu, Y. Joy; Yudowski, Guillermo Ariel

    2012-01-01

    The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca2+-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance. PMID:22378794

  4. Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications

    PubMed Central

    Burford, N T; Traynor, J R; Alt, A

    2015-01-01

    Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691

  5. Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin

    PubMed Central

    Romero-Picó, Amparo; Vázquez, Maria J; González-Touceda, David; Folgueira, Cintia; Skibicka, Karolina P; Alvarez-Crespo, Mayte; Van Gestel, Margriet A; Velásquez, Douglas A; Schwarzer, Christoph; Herzog, Herbert; López, Miguel; Adan, Roger A; Dickson, Suzanne L; Diéguez, Carlos; Nogueiras, Rubén

    2013-01-01

    The opioid system is well recognized as an important regulator of appetite and energy balance. We now hypothesized that the hypothalamic opioid system might modulate the orexigenic effect of ghrelin. Using pharmacological and gene silencing approaches, we demonstrate that ghrelin utilizes a hypothalamic κ-opioid receptor (KOR) pathway to increase food intake in rats. Pharmacological blockade of KOR decreases the acute orexigenic effect of ghrelin. Inhibition of KOR expression in the hypothalamic arcuate nucleus is sufficient to blunt ghrelin-induced food intake. By contrast, the specific inhibition of KOR expression in the ventral tegmental area does not affect central ghrelin-induced feeding. This new pathway is independent of ghrelin-induced AMP-activated protein kinase activation, but modulates the levels of the transcription factors and orexigenic neuropeptides triggered by ghrelin to finally stimulate feeding. Our novel data implicate hypothalamic KOR signaling in the orexigenic action of ghrelin. PMID:23348063

  6. Recent Advances in the Realm of Allosteric Modulators for Opioid Receptors for Future Therapeutics.

    PubMed

    Remesic, Michael; Hruby, Victor J; Porreca, Frank; Lee, Yeon Sun

    2017-06-21

    Opioids, and more specifically μ-opioid receptor (MOR) agonists such as morphine, have long been clinically used as therapeutics for severe pain states but often come with serious side effects such as addiction and tolerance. Many studies have focused on bringing about analgesia from the MOR with attenuated side effects, but its underlying mechanism is not fully understood. Recently, focus has been geared toward the design and elucidation of the orthosteric site with ligands of various biological profiles and mixed subtype opioid activities and selectivities, but targeting the allosteric site is an area of increasing interest. It has been shown that allosteric modulators play key roles in influencing receptor function such as its tolerance to a ligand and affect downstream pathways. There has been a high variance of chemical structures that provide allosteric modulation at a given receptor, but recent studies and reviews tend to focus on the altered cellular mechanisms instead of providing a more rigorous description of the allosteric ligand's structure-function relationship. In this review, we aim to explore recent developments in the structural motifs that potentiate orthosteric binding and their influences on cellular pathways in an effort to present novel approaches to opioid therapeutic design.

  7. Current Research on Opioid Receptor Function

    PubMed Central

    Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying

    2012-01-01

    The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article

  8. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  9. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  10. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity

    PubMed Central

    Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A

    2015-01-01

    BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314

  11. Cocaine Modulates the Expression of Opioid Receptors and miR-let-7d in Zebrafish Embryos

    PubMed Central

    López-Bellido, Roger; Barreto-Valer, Katherine; Sánchez-Simón, Fátima Macho; Rodríguez, Raquel E.

    2012-01-01

    Prenatal exposure to cocaine, in mammals, has been shown to interfere with the expression of opioid receptors, which can have repercussions in its activity. Likewise, microRNAs, such as let-7, have been shown to regulate the expression of opioid receptors and hence their functions in mammals and in vitro experiments. In light of this, using the zebrafish embryos as a model our aim here was to evaluate the actions of cocaine in the expression of opioid receptors and let-7d miRNA during embryogenesis. In order to determine the effects produced by cocaine on the opioid receptors (zfmor, zfdor1 and zfdor2) and let-7d miRNA (dre-let-7d) and its precursors (dre-let-7d-1 and dre-let-7d-2), embryos were exposed to 1.5 µM cocaine hydrochloride (HCl). Our results revealed that cocaine upregulated dre-let-7d and its precursors, and also increased the expression of zfmor, zfdor1 and zfdor2 during early developmental stages and decreased them in late embryonic stages. The changes observed in the expression of opioid receptors might occur through dre-let-7d, since DNA sequences and the morpholinos of opioid receptors microinjections altered the expression of dre-let-7d and its precursors. Likewise, opioid receptors and dre-let-7d showed similar distributions in the central nervous system (CNS) and at the periphery, pointing to a possible interrelationship between them. In conclusion, the silencing and overexpression of opioid receptors altered the expression of dre-let-7d, which points to the notion that cocaine via dre-let-7 can modulate the expression of opioid receptors. Our study provides new insights into the actions of cocaine during zebrafish embryogenesis, indicating a role of miRNAs, let-7d, in development and its relationship with gene expression of opioid receptors, related to pain and addiction process. PMID:23226419

  12. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    PubMed Central

    Sierralta, F.; Naquira, D.; Pinardi, G.; Miranda, H. F.

    1996-01-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level. PMID:8894177

  13. alpha-Adrenoceptor and opioid receptor modulation of clonidine-induced antinociception.

    PubMed

    Sierralta, F; Naquira, D; Pinardi, G; Miranda, H F

    1996-10-01

    1. The antinociceptive action of clonidine (Clon) and the interactions with alpha 1, alpha 2 adrenoceptor and opioid receptor antagonists was evaluated in mice by use of chemical algesiometric test (acetic acid writhing test). 2. Clon produced a dose-dependent antinociceptive action and the ED50 for intracerebroventricular (i.c.v.) was lower than for intraperitoneal (i.p.) administration (1 ng kg-1 vs 300 ng kg-1). The parallelism of the dose-response curves indicates activation of a common receptor subtype. 3. Systemic administration of prazosin and terazosin displayed antinociceptive activity. Pretreatment with prazosin produced a dual action: i.c.v. Clon effect did not change, and i.p. Clon effect was enhanced. Yohimbine i.c.v. or i.p. did not induce antinonciception, but antagonized Clon-induced activity. These results suggest that alpha 1- and alpha 2-adrenoceptors, either located at the pre- and/or post-synaptic level, are involved in the control of spinal antinociception. 4. Naloxone (NX) and naltrexone (NTX) induced antinociceptive effects at low doses (microgram kg-1 range) and a lower antinociceptive effect at higher doses (mg kg-1 range). Low doses of NX or NTX antagonized Clon antinociception, possibly in relation to a preferential mu opioid receptor antagonism. In contrast, high doses of NX or NTX increased the antinociceptive activity of Clon, which could be due to an enhanced inhibition of the release of substance P. 5. The results obtained in the present work suggest the involvement of alpha 1-, alpha 2-adrenoceptor and opioid receptors in the modulation of the antinociceptive activity of clonidine, which seems to be exerted either at spinal and/or supraspinal level.

  14. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    PubMed

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C.

    PubMed

    Mestek, A; Hurley, J H; Bye, L S; Campbell, A D; Chen, Y; Tian, M; Liu, J; Schulman, H; Yu, L

    1995-03-01

    Opioids are some of the most efficacious analgesics used in humans. Prolonged administration of opioids, however, often causes the development of drug tolerance, thus limiting their effectiveness. To explore the molecular basis of those mechanisms that may contribute to opioid tolerance, we have isolated a cDNA for the human mu opioid receptor, the target of such opioid narcotics as morphine, codeine, methadone, and fentanyl. The receptor encoded by this cDNA is 400 amino acids long with 94% sequence similarity to the rat mu opioid receptor. Transient expression of this cDNA in COS-7 cells produced high-affinity binding sites to mu-selective agonists and antagonists. This receptor displays functional coupling to a recently cloned G-protein-activated K+ channel. When both proteins were expressed in Xenopus oocytes, functional desensitization developed upon repeated stimulation of the mu opioid receptor, as observed by a reduction in K+ current induced by the second mu receptor activation relative to that induced by the first. The extent of desensitization was potentiated by both the multifunctional calcium/calmodulin-dependent protein kinase and protein kinase C. These results demonstrate that kinase modulation is a molecular mechanism by which the desensitization of mu receptor signaling may be regulated at the cellular level, suggesting that this cellular mechanism may contribute to opioid tolerance in humans.

  16. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  17. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats.

    PubMed

    Uhari-Väänänen, Johanna; Raasmaja, Atso; Bäckström, Pia; Oinio, Ville; Airavaara, Mikko; Piepponen, Petteri; Kiianmaa, Kalervo

    2016-10-01

    The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward. Copyright © 2016 by the Research Society on Alcoholism.

  18. Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex

    PubMed Central

    Storer, R J; Akerman, S; Goadsby, P J

    2003-01-01

    Opioid agonists have been used for many years to treat all forms of headache, including migraine. We sought to characterize opioid receptors involved in craniovascular nociceptive pathways by in vivo microiontophoresis of μ-receptor agonists and antagonists onto neurons in the trigeminocervical complex of the cat. Cats were anaesthetized with α-chloralose 60 mg kg−1, i.p. and 20 mg kg−1, i.v. supplements after induction and surgical preparation using halothane. Units were identified in the trigeminocervical complex responding to supramaximal electrical stimulation of the superior sagittal sinus, and extracellular recordings of activity made. Seven- or nine-barrelled glass micropipettes incorporating tungsten recording electrodes in their centre barrels were used for microiontophoresis of test substances onto cell bodies. Superior sagittal sinus (SSS)-linked cells whose firing was evoked by microiontophoretic application of L-glutamate (n=8 cells) were reversibly inhibited by microiontophoresis of H2N-Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (n=12), a selective μ-receptor agonist, in a dose dependent manner, but not by control ejection of sodium or chloride ions from a barrel containing saline. The inhibition by DAMGO of SSS-linked neurons activated with L-glutamate could be antagonized by microiontophoresis of selective μ-receptor antagonists D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), or both, in all cells tested (n=4 and 6, respectively). Local iontophoresis of DAMGO during stimulation of the superior sagittal sinus resulted in a reduction in SSS-evoked activity. This effect was substantially reversed 10 min after cessation of iontophoresis. The effect of DAMGO was markedly inhibited by co-iontophoresis of CTAP. Thus, we found that μ-receptors modulate nociceptive input to the trigeminocervical complex. Characterizing the sub-types of opioid receptors that influence trigeminovascular nociceptive

  19. Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen.

    PubMed

    Gago, Belén; Fuxe, Kjell; Brené, Stefan; Díaz-Cabiale, Zaida; Reina-Sánchez, María Dolores; Suárez-Boomgaard, Diana; Roales-Buján, Ruth; Valderrama-Carvajal, Alejandra; de la Calle, Adelaida; Rivera, Alicia

    2013-12-01

    The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or μ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of μ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal μ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -μ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling. Copyright © 2013 Wiley Periodicals, Inc.

  20. The role of the dynorphin/κ opioid receptor system in anxiety.

    PubMed

    Hang, Ai; Wang, Yu-jun; He, Ling; Liu, Jing-gen

    2015-07-01

    Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.

  1. Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function

    PubMed Central

    Schramm, Cicely L.; Honda, Christopher N.

    2010-01-01

    Enhancement of peripheral opioid analgesia following tissue injury or inflammation in animal models is well-documented, but clinical results of peripheral opioid therapy remain inconsistent. Previous studies in the central nervous system have shown that co-administration of μ- and δ-opioid receptor agonists can enhance analgesic outcomes; however, less is known about the functional consequences of opioid receptor interactions in the periphery. The present study examines the effects of intraplantar injection of the μ- and δ-opioid receptor agonists, morphine and deltorphin, alone and in combination on behavioral tests of nociception in naïve rats and on potassium-evoked release of CGRP from sciatic nerves of naïve rats. Neither drug alone affected nociceptive behaviors or CGRP release. Two separate measures of mechanical nociceptive sensitivity remained unchanged after co-administration of the two drugs. In contrast, when deltorphin was co-injected with morphine, dose-dependent and peripherally-restricted increases in paw withdrawal latencies to radiant heat were observed. Similarly, concentration-dependent inhibition of CGRP release was observed when deltorphin and morphine were administered in sequence prior to potassium stimulation. However, no inhibition was observed when morphine was administered prior to deltorphin. All combined opioid effects were blocked by co-application of antagonists. Deltorphin exposure also enhanced the in vivo and in vitro effects of another μ-opioid receptor agonist, DAMGO. Together, these results suggest that under normal conditions, δ-opioid receptor agonists enhance the effect of μ-opioid receptor agonists in the periphery, and local co-administration of δ- and μ-opioid receptor agonists may improve results of peripheral opioid therapy for the treatment of pain. PMID:20970925

  2. Social touch modulates endogenous μ-opioid system activity in humans.

    PubMed

    Nummenmaa, Lauri; Tuominen, Lauri; Dunbar, Robin; Hirvonen, Jussi; Manninen, Sandra; Arponen, Eveliina; Machin, Anna; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko

    2016-09-01

    In non-human primates, opioid-receptor blockade increases social grooming, and the endogenous opioid system has therefore been hypothesized to support maintenance of long-term relationships in humans as well. Here we tested whether social touch modulates opioidergic activation in humans using in vivo positron emission tomography (PET). Eighteen male participants underwent two PET scans with [11C]carfentanil, a ligand specific to μ-opioid receptors (MOR). During the social touch scan, the participants lay in the scanner while their partners caressed their bodies in a non-sexual fashion. In the baseline scan, participants lay alone in the scanner. Social touch triggered pleasurable sensations and increased MOR availability in the thalamus, striatum, and frontal, cingulate, and insular cortices. Modulation of activity of the opioid system by social touching might provide a neurochemical mechanism reinforcing social bonds between humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  4. INTERACTION BETWEEN DELTA OPIOID RECEPTORS AND BENZODIAZEPINES IN CO2- INDUCED RESPIRATORY RESPONSES IN MICE

    PubMed Central

    Borkowski, Anne H.; Barnes, Dylan C.; Blanchette, Derek R.; Castellanos, F. Xavier; Klein, Donald F.; Wilson, Donald A.

    2011-01-01

    The false-suffocation hypothesis of panic disorder (Klein, 1993) suggested δ-opioid receptors as a possible source of the respiratory dysfunction manifested in panic attacks occurring in panic disorder (Preter and Klein, 2008). This study sought to determine if a lack of δ-opioid receptors in a mouse model affects respiratory response to elevated CO2, and whether the response is modulated by benzodiazepines, which are widely used to treat panic disorder. In a whole-body plethysmograph, respiratory responses to 5% CO2 were compared between δ-opioid receptor knockout mice and wild-type mice after saline, diazepam (1 mg/kg), and alprazolam (0.3 mg/kg) injection. The results show that lack of δ-opioid receptors does not affect normal response to elevated CO2, but does prevent benzodiazepines from modulating that response. Thus, in the presence of benzodiazepine agonists, respiratory responses to elevated CO2 were enhanced in δ-opioid receptor knockout mice compared to wild-type mice. This suggests an interplay between benzodiazepine receptors and δ-opioid receptors in regulating the respiratory effects of elevated CO2, which might be related to CO2 induced panic. PMID:21561601

  5. Aerobic exercise modulates anticipatory reward processing via the μ-opioid receptor system.

    PubMed

    Saanijoki, Tiina; Nummenmaa, Lauri; Tuulari, Jetro J; Tuominen, Lauri; Arponen, Eveliina; Kalliokoski, Kari K; Hirvonen, Jussi

    2018-06-08

    Physical exercise modulates food reward and helps control body weight. The endogenous µ-opioid receptor (MOR) system is involved in rewarding aspects of both food and physical exercise, yet interaction between endogenous opioid release following exercise and anticipatory food reward remains unresolved. Here we tested whether exercise-induced opioid release correlates with increased anticipatory reward processing in humans. We scanned 24 healthy lean men after rest and after a 1 h session of aerobic exercise with positron emission tomography (PET) using MOR-selective radioligand [ 11 C]carfentanil. After both PET scans, the subjects underwent a functional magnetic resonance imaging (fMRI) experiment where they viewed pictures of palatable versus nonpalatable foods to trigger anticipatory food reward responses. Exercise-induced changes in MOR binding in key regions of reward circuit (amygdala, thalamus, ventral and dorsal striatum, and orbitofrontal and cingulate cortices) were used to predict the changes in anticipatory reward responses in fMRI. Exercise-induced changes in MOR binding correlated negatively with the exercise-induced changes in neural anticipatory food reward responses in orbitofrontal and cingulate cortices, insula, ventral striatum, amygdala, and thalamus: higher exercise-induced opioid release predicted higher brain responses to palatable versus nonpalatable foods. We conclude that MOR activation following exercise may contribute to the considerable interindividual variation in food craving and consumption after exercise, which might promote compensatory eating and compromise weight control. © 2018 Wiley Periodicals, Inc.

  6. Opioid Receptor Function Is Regulated by Post-endocytic Peptide Processing*

    PubMed Central

    Gupta, Achla; Gomes, Ivone; Wardman, Jonathan; Devi, Lakshmi A.

    2014-01-01

    Most neuroendocrine peptides are generated in the secretory compartment by proteolysis of the precursors at classical cleavage sites consisting of basic residues by well studied endopeptidases belonging to the subtilisin superfamily. In contrast, a subset of bioactive peptides is generated by processing at non-classical cleavage sites that do not contain basic residues. Neither the peptidases responsible for non-classical cleavages nor the compartment involved in such processing has been well established. Members of the endothelin-converting enzyme (ECE) family are considered good candidate enzymes because they exhibit functional properties that are consistent with such a role. In this study we have explored a role for ECE2 in endocytic processing of δ opioid peptides and its effect on modulating δ opioid receptor function by using selective inhibitors of ECE2 that we had identified previously by homology modeling and virtual screening of a library of small molecules. We found that agonist treatment led to intracellular co-localization of ECE2 with δ opioid receptors. Furthermore, selective inhibitors of ECE2 and reagents that increase the pH of the acidic compartment impaired receptor recycling by protecting the endocytosed peptide from degradation. This, in turn, led to a substantial decrease in surface receptor signaling. Finally, we showed that treatment of primary neurons with the ECE2 inhibitor during recycling led to increased intracellular co-localization of the receptors and ECE2, which in turn led to decreased receptor recycling and signaling by the surface receptors. Together, these results support a role for differential modulation of opioid receptor signaling by post-endocytic processing of peptide agonists by ECE2. PMID:24847082

  7. State-dependent μ-opioid modulation of social motivation

    PubMed Central

    Loseth, Guro E.; Ellingsen, Dan-Mikael; Leknes, Siri

    2014-01-01

    Social mammals engage in affiliative interactions both when seeking relief from negative affect and when searching for pleasure and joy. These two motivational states are both modulated by μ-opioid transmission. The μ-opioid receptor (MOR) system in the brain mediates pain relief and reward behaviors, and is implicated in social reward processing and affiliative bonding across mammalian species. However, pharmacological manipulation of the μ-opioid system has yielded opposite effects on rodents and primates: in rodents, social motivation is generally increased by MOR agonists and reduced by antagonists, whereas the opposite pattern has been shown in primates. Here, we address this paradox by taking into account differences in motivational state. We first review evidence for μ-opioid mediation of reward processing, emotion regulation, and affiliation in humans, non-human primates, rodents and other species. Based on the consistent cross-species similarities in opioid functioning, we propose a unified, state-dependent model for μ-opioid modulation of affiliation across the mammalian species. Finally, we show that this state-dependent model is supported by evidence from both rodent and primate studies, when species and age differences in social separation response are taken into account. PMID:25565999

  8. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis

    PubMed Central

    Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel

    2015-01-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  9. Opioid receptor trafficking and interaction in nociceptors

    PubMed Central

    Zhang, X; Bao, L; Li, S

    2015-01-01

    Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24611685

  10. Delta-opioid receptors as targets for migraine therapy.

    PubMed

    Charles, Andrew; Pradhan, Amynah A

    2016-06-01

    The purpose of this review is to contrast the properties of the δ-opioid receptor with those of the μ-opioid receptor, which is the primary target of most currently available opioid analgesics. We also discuss preclinical evidence that indicates the potential efficacy of δ-opioid receptor agonists as migraine therapy. The use of currently available opioid analgesics is highly problematic for patients with migraine. Delta-opioid receptors have key differences from μ receptors; these differences make the δ receptor an attractive therapeutic target for migraine. Delta-opioid receptors are expressed in both the peripheral and central nervous system in anatomical regions and cell types that are believed to play a role in migraine. Delta-receptor agonists have also shown promising effects in multiple migraine models, including nitroglycerin evoked hyperalgesia and conditioned place aversion, and cortical spreading depression. Evidence from animal models indicates that activation of δ receptors is less likely to cause tolerance and dependence, and less likely to cause hyperalgesia. In addition, δ receptors may have antidepressant and anxiolytic properties that are distinct from those of μ receptors. In human studies investigating other conditions, δ-receptor agonists have been generally safe and well tolerated. Delta-opioid receptor agonists have promising potential as acute and/or preventive migraine therapies, without the problems associated with currently used opioid analgesics.

  11. Characterization of opiates, neuroleptics, and synthetic analogs at ORL1 and opioid receptors

    PubMed Central

    Zaveri, Nurulain; Polgar, Willma E.; Olsen, Cris M.; Kelson, Andrew B.; Grundt, Peter; Lewis, John W.; Toll, Lawrence

    2013-01-01

    Nociceptin/orphanin FQ (N/OFQ) was recently identified as the endogenous ligand for the opioid-receptor like (ORL1) receptor. Although the ORL1 receptor shows sequence homology with the opioid receptors, the nociceptin/ORL1 ligand–receptor system has very distinct pharmacological actions compared to the opioid receptor system. Recently, several small-molecule ORL1 receptor ligands were reported by pharmaceutical companies. Most of these ligands had close structural similarities with known neuroleptics and opiates. In this study, we screened several available neuroleptics and opiates for their binding affinity and functional activity at ORL1 and the opioid receptors. We also synthesized several analogs of known opiates with modified piperidine N-substituents in order to characterize the ORL1 receptor ligand binding pocket. Substitution with the large, lipophilic cyclooctylmethyl moiety increased ORL1 receptor affinity and decreased μ receptor affinity and efficacy in the fentanyl series of ligands but had a different effect in the oripavine class of opiate ligands. Our results indicate that opiates and neuroleptics may be good starting points for ORL1 receptor ligand design, and the selectivity may be modulated by appropriate structural modifications. PMID:11779034

  12. Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation

    PubMed Central

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-01-01

    Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519

  13. Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.

    PubMed

    Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan

    2011-10-19

    μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.

  14. Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist

    NASA Astrophysics Data System (ADS)

    Marmolejo-Valencia, A. F.; Martínez-Mayorga, K.

    2017-05-01

    Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.

  15. Modulation of opioid analgesia by agmatine.

    PubMed

    Kolesnikov, Y; Jain, S; Pasternak, G W

    1996-01-18

    Administered alone, agmatine at doses of 0.1 or 10 mg/kg is without effect in the mouse tailflick assay. However, agmatine enhances morphine analgesia in a dose-dependent manner, shifting morphine's ED50 over 5-fold. A far greater effect is observed when morphine is given intrathecally (9-fold shift) than after intracerebroventricular administration (2-fold). In contrast to the potentiation of morphine analgesia, agmatine (10 mg/kg) has no effect on morphine's inhibition of gastrointestinal transit. delta-Opioid receptor-mediated analgesia also is potentiated by agmatine, but kappa1-receptor-mediated (U50,488H; trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeneacetemide) and kappa3-opioid receptor-mediated (naloxone benzoylhydrazone) analgesia is not significantly enhanced by any dose of agmatine tested in this acute model. In chronic studies, agmatine at a low dose (0.1 mg/kg) which does not affect morphine analgesia acutely prevents tolerance following chronic morphine dosing for 10 days. A higher agmatine dose (10 mg/kg) has a similar effect. Agmatine also blocks tolerance to the delta-opioid receptor ligand [D-Pen2,D-Pen5]enkephalin given intrathecally, but not to the kappa3-opioid receptor agonist naloxone benzoylhydrazone. Despite its inactivity on kappa1-opioid analgesia in the acute model, agmatine prevents kappa1-opioid receptor-mediated tolerance. These studies demonstrate the dramatic interactions between agmatine and opioid analgesia and tolerance.

  16. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment

    PubMed Central

    Bagley, Elena E.

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than Ek. Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector. PMID

  17. Opioid and GABAB receptors differentially couple to an adenylyl cyclase/protein kinase A downstream effector after chronic morphine treatment.

    PubMed

    Bagley, Elena E

    2014-01-01

    Opioids are intensely addictive, and cessation of their chronic use is associated with a highly aversive withdrawal syndrome. A cellular hallmark of withdrawal is an opioid sensitive protein kinase A-dependent increase in GABA transporter-1 (GAT-1) currents in periaqueductal gray (PAG) neurons. Elevated GAT-1 activity directly increases GABAergic neuronal excitability and synaptic GABA release, which will enhance GABAergic inhibition of PAG output neurons. This reduced activity of PAG output neurons to several brain regions, including the hypothalamus and medulla, contributes to many of the PAG-mediated signs of opioid withdrawal. The GABAB receptor agonist baclofen reduces some of the PAG mediated signs of opioid withdrawal. Like the opioid receptors the GABAB receptor is a Gi/Go coupled G-protein coupled receptor. This suggests it could be modulating GAT-1 activity in PAG neurons through its inhibition of the adenylyl cyclase/protein kinase A pathway. Opioid modulation of the GAT-1 activity can be detected by changes in the reversal potential of opioid membrane currents. We found that when opioids are reducing the GAT-1 cation conductance and increasing the GIRK conductance the opioid agonist reversal potential is much more negative than E k . Using this approach for GABAB receptors we show that the GABAB receptor agonist, baclofen, does not couple to inhibition of GAT-1 currents during opioid withdrawal. It is possible this differential signaling of the two Gi/Go coupled G-protein coupled receptors is due to the strong compartmentalization of the GABAB receptor that does not favor signaling to the adenylyl cyclase/protein kinase A/GAT-1 pathway. This highlights the importance of studying the effects of G-protein coupled receptors in native tissue with endogenous G-protein coupled receptors and the full complement of relevant proteins and signaling molecules. This study suggests that baclofen reduces opioid withdrawal symptoms through a non-GAT-1 effector.

  18. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological

  19. Molecular Perspectives for mu/delta Opioid Receptor Heteromers as Distinct, Functional Receptors

    PubMed Central

    Ong, Edmund W.; Cahill, Catherine M.

    2014-01-01

    Opioid receptors are the sites of action for morphine and the other opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Understandings of the nature, behavior, and role of these opioid receptor heteromers are developing. Owing to their constituent monomers’ involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. There is now considerable evidence demonstrating M/DOR to be an extant and physiologically relevant receptor species. Participating in the cellular environment as a distinct receptor type, M/DOR availability is complexly regulated and M/DOR exhibits unique pharmacology from that of other opioid receptors (ORs), including its constituents. M/DOR appears to have a range of actions that vary in a ligand- (or ligands-) dependent manner. These actions can meaningfully affect the clinical effects of opioid drugs: strategies targeting M/DOR may be therapeutically useful. This review presents and discusses developments in these understandings with a focus on the molecular nature and activity of M/DOR in the context of therapeutic potentials. PMID:24709907

  20. Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships.

    PubMed

    Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T

    2017-10-16

    Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.

  1. The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain.

    PubMed

    Sánchez-Blázquez, Pilar; Rodríguez-Muñoz, Maria; Berrocoso, Esther; Garzón, Javier

    2013-09-15

    Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced

  2. Evidence that opioids may have toll-like receptor 4 and MD-2 effects.

    PubMed

    Hutchinson, Mark R; Zhang, Yingning; Shridhar, Mitesh; Evans, John H; Buchanan, Madison M; Zhao, Tina X; Slivka, Peter F; Coats, Benjamen D; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S; Landgraf, Kyle E; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J; Leinwand, Leslie A; Maier, Steven F; Yin, Hang; Rice, Kenner C; Watkins, Linda R

    2010-01-01

    Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.

  3. Dimerization with Cannabinoid Receptors Allosterically Modulates Delta Opioid Receptor Activity during Neuropathic Pain

    PubMed Central

    Stockton, Steven D.; Miller, Lydia K.; Devi, Lakshmi A.

    2012-01-01

    The diversity of receptor signaling is increased by receptor heteromerization leading to dynamic regulation of receptor function. While a number of studies have demonstrated that family A G-protein-coupled receptors are capable of forming heteromers in vitro, the role of these heteromers in normal physiology and disease has been poorly explored. In this study, direct interactions between CB1 cannabinoid and delta opioid receptors in the brain were examined. Additionally, regulation of heteromer levels and signaling in a rodent model of neuropathic pain was explored. First we examined changes in the expression, function and interaction of these receptors in the cerebral cortex of rats with a peripheral nerve lesion that resulted in neuropathic pain. We found that, following the peripheral nerve lesion, the expression of both cannabinoid type 1 receptor (CB1R) and the delta opioid receptor (DOR) are increased in select brain regions. Concomitantly, an increase in CB1R activity and decrease in DOR activity was observed. We hypothesize that this decrease in DOR activity could be due to heteromeric interactions between these two receptors. Using a CB1R-DOR heteromer-specific antibody, we found increased levels of CB1R-DOR heteromer protein in the cortex of neuropathic animals. We subsequently examined the functionality of these heteromers by testing whether low, non-signaling doses of CB1R ligands influenced DOR signaling in the cortex. We found that, in cortical membranes from animals that experienced neuropathic pain, non-signaling doses of CB1R ligands significantly enhanced DOR activity. Moreover, this activity is selectively blocked by a heteromer-specific antibody. Together, these results demonstrate an important role for CB1R-DOR heteromers in altered cortical function of DOR during neuropathic pain. Moreover, they suggest the possibility that a novel heteromer-directed therapeutic strategy for enhancing DOR activity, could potentially be employed to reduce

  4. Opioid adjuvant strategy: improving opioid effectiveness.

    PubMed

    Bihel, Frédéric

    2016-01-01

    Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-D-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.

  5. Recent developments in the study of opioid receptors.

    PubMed

    Cox, Brian M

    2013-04-01

    It is now about 40 years since Avram Goldstein proposed the use of the stereoselectivity of opioid receptors to identify these receptors in neural membranes. In 2012, the crystal structures of the four members of the opioid receptor family were reported, providing a structural basis for understanding of critical features affecting the actions of opiate drugs. This minireview summarizes these recent developments in our understanding of opiate receptors. Receptor function is also influenced by amino acid substitutions in the protein sequence. Among opioid receptor genes, one polymorphism is much more frequent in human populations than the many others that have been found, but the functional significance of this single nucleotide polymorphism (SNP) has been unclear. Recent studies have shed new light on how this SNP might influence opioid receptor function. In this minireview, the functional significance of the most prevalent genetic polymorphism among the opioid receptor genes is also considered.

  6. Opioid receptors: from binding sites to visible molecules in vivo

    PubMed Central

    Kieffer, Brigitte L.; Evans, Christopher J.

    2010-01-01

    Opioid drugs such as heroin interact directly with opioid receptors whilst other addictive drugs, including marijuana, alcohol and nicotine indirectly activate endogenous opioid systems to contribute to their rewarding properties. The opioid system therefore plays a key role in addiction neurobiology and continues to be a primary focus for NIDA-supported research. Opioid receptors and their peptide ligands, the endorphins and enkephalins, form an extensive heterogeneous network throughout the central and peripheral nervous system. In addition to reward, opioid drugs regulate many functions such that opioid receptors are targets of choice in several physiological, neurological and psychiatric disorders. Because of the multiplicity and diversity of ligands and receptors, opioid receptors have served as an optimal model for G protein coupled receptor (GPCR) research. The isolation of opioid receptor genes opened the way to molecular manipulations of the receptors, both in artificial systems and in vivo, contributing to our current understanding of the diversity of opioid receptor biology at the behavioral, cellular and molecular levels. This review will briefly summarize some aspects of current knowledge that has accumulated since the very early characterization of opioid receptor genes. Importantly, we will identify a number of research directions that are likely to develop during the next decade. PMID:18718480

  7. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics.

    PubMed

    Siuda, Edward R; Carr, Richard; Rominger, David H; Violin, Jonathan D

    2017-02-01

    Opioid chemistry and biology occupy a pivotal place in the history of pharmacology and medicine. Morphine offers unmatched efficacy in alleviating acute pain, but is also associated with a host of adverse side effects. The advent of biased agonism at G protein-coupled receptors has expanded our understanding of intracellular signaling and highlighted the concept that certain ligands are able to differentially modulate downstream pathways. The ability to target one pathway over another has allowed for the development of biased ligands with robust clinical efficacy and fewer adverse events. In this review we summarize these concepts with an emphasis on biased mu opioid receptor pharmacology and highlight how far opioid pharmacology has evolved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evidence that opioids may have toll like receptor 4 and MD-2 effects

    PubMed Central

    Hutchinson, Mark R.; Zhang, Yingning; Shridhar, Mitesh; Evans, John H.; Buchanan, Madison M.; Zhao, Tina X.; Slivka, Peter F.; Coats, Benjamen D.; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S.; Landgraf, Kyle E.; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J.; Leinwand, Leslie A.; Maier, Steven F.; Yin, Hang; Rice, Kenner C.; Watkins, Linda R.

    2009-01-01

    Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling. PMID:19679181

  10. Opioid Receptors: Toward Separation of Analgesic from Undesirable Effects

    PubMed Central

    Law, P.Y.; Reggio, Patricia H.; Loh, H.H.

    2013-01-01

    The use of opioid analgesics for pain has always been hampered by their many side effects; in particular, the addictive liability associated with chronic use. Recently, attempts to develop analgesic agents with reduced side effects have targeted either the putative opioid receptor splice variants or the receptor heterooligomers. This review discusses the potential for receptor splice variant- and the hetero-oligomer-based discovery of new opioid analgesics. We also examine an alternative approach of using receptor mutants for pain management. Finally, we discuss the role of the biased agonism observed and the recently reported opioid receptor crystal structures in guiding the future development of opioid analgesics PMID:23598157

  11. Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor.

    PubMed

    Taati, Mina; Tamaddonfard, Esmaeal

    2018-06-01

    Oxytocin plays an important role in supraspinal modulation of pain. In the present study, we investigated the effects of ventrolateral orbital cortex (VLOC) microinjection of oxytocin on neuropathic pain after blockade of opioid receptors in this area and ventrolateral periaqueductal gray (vlPAG). Neuropathic pain was induced by complete transcection of preoneal and tibial branches of sciatic nerve. The VLOC and vlPAG were unilaterally (contralateral to the sciatic nerve-injured side) and bilaterally implanted with guide cannulas, respectively. Mechanical paw withdrawal threshold (PWT) was measured using von Frey filaments. Area under curve (AUC) was also calculated. Microinjection of oxytocin (5, 10 and 20 ng/site) into the VLOC increased PWT. Antiallodynia induced by oxytocin (20 ng/site) was inhibited by prior intra-VLOC administration of atosiban (an oxytocin receptor antagonist, 100 ng/site) and naloxone (an opioid receptor antagonist, 500 ng/site). Prior microinjection of naloxone (500 ng/site) into the vlPAG also inhibited antiallodynia induced by intra-VLOC microinjection of oxytocin (20 ng/site). All the VLOC and vlPAG microinjected drugs did not alter locomotor activity. It is concluded that oxytocin and its receptor may be involved in modulation of neuropathic pain at the VLOC level. Opioid receptors of VLOC and vlPAG might be involved in the antiallodynic effect of the VLOC-microinjected oxytocin. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Targeting multiple opioid receptors - improved analgesics with reduced side effects?

    PubMed

    Günther, Thomas; Dasgupta, Pooja; Mann, Anika; Miess, Elke; Kliewer, Andrea; Fritzwanker, Sebastian; Steinborn, Ralph; Schulz, Stefan

    2017-04-05

    Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptorreceptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptorreceptor), δ-opioid receptorreceptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. © 2017 The British Pharmacological Society.

  13. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  14. MU OPIOID RECEPTORS IN PAIN MANAGEMENT

    PubMed Central

    Pasternak, Gavril; Pan, Ying-Xian

    2014-01-01

    Most of the potent analgesics currently in use act through the mu opioid receptor. Although they are classified as mu opioids, clinical experience suggests differences among them. The relative potencies of the agents can vary from patient to patient, as well as the side-effect profiles. These observations, coupled with pharmacological approaches in preclinical models, led to the suggestion of multiple subtypes of mu receptors. The explosion in molecular biology has led to the identification of a single gene encoding mu opioid receptors. It now appears that this gene undergoes extensive splicing, in which a single gene can generate multiple proteins. Evidence now suggests that these splice variants may help explain the clinical variability in responses among patients. PMID:21453899

  15. Antagonists of toll like receptor 4 maybe a new strategy to counteract opioid-induced hyperalgesia and opioid tolerance.

    PubMed

    Li, Qian

    2012-12-01

    Long term opioid treatment results in hyperalgesia and tolerance, which is a troublesome phenomenon in clinic application. Recent studies have revealed a critical role of toll-like receptor 4 (TLR4) in the neuropathological process of opioid-induced hyperalgesia and tolerance. TLR4 is predominantly expressed by microglial cells and is a key modulator in the activation of the innate immune system. Activation of TLR4 may initiate the activation of microglia and hence a number of neurotransmitters and neuromodulators that could enhance neuronal excitability are released. Blockade of TLR4 activation by its antagonists alleviate neuropathic pain. We hypothesized that opioid antagonists such as naloxone and naltrexone, which were also demonstrated to be TLR4 antagonist, may have clinic application value in attenuation of opioid-induced hyperalgesia and tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. β-Arrestins: Regulatory Role and Therapeutic Potential in Opioid and Cannabinoid Receptor-Mediated Analgesia

    PubMed Central

    Bohn, Laura M.

    2016-01-01

    Pain is a complex disorder with neurochemical and psychological components contributing to the severity, the persistence, and the difficulty in adequately treating the condition. Opioid and cannabinoids are two classes of analgesics that have been used to treat pain for centuries and are arguably the oldest of “pharmacological” interventions used by man. Unfortunately, they also produce several adverse side effects that can complicate pain management. Opioids and cannabinoids act at G protein-coupled receptors (GPCRs), and much of their effects are mediated by the mu-opioid receptor (MOR) and cannabinoid CB1 receptor (CB1R), respectively. These receptors couple to intracellular second messengers and regulatory proteins to impart their biological effects. In this chapter, we review the role of the intracellular regulatory proteins, β-arrestins, in modulating MOR and CB1R and how they influence the analgesic and side-effect profiles of opioid and cannabinoid drugs in vivo. This review of the literature suggests that the development of opioid and cannabinoid agonists that bias MOR and CB1R toward G protein signaling cascades and away from β-arrestin interactions may provide a novel mechanism by which to produce analgesia with less severe adverse effects. PMID:24292843

  17. Molecular Pharmacology of δ-Opioid Receptors

    PubMed Central

    Gendron, Louis; Cahill, Catherine M.; von Zastrow, Mark; Schiller, Peter W.

    2016-01-01

    Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs’ capacity to engage a multiplicity of canonical and noncanonical G protein–dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management. PMID:27343248

  18. Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, S.; Costa, T.; Herz, A.

    1988-07-25

    The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex.more » The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.« less

  19. Modulation of 3H-noradrenaline release by presynaptic opioid, cannabinoid and bradykinin receptors and β-adrenoceptors in mouse tissues

    PubMed Central

    Trendelenburg, A U; Cox, S L; Schelb, V; Klebroff, W; Khairallah, L; Starke, K

    2000-01-01

    Release-modulating opioid and cannabinoid (CB) receptors, β-adrenoceptors and bradykinin receptors at noradrenergic axons were studied in mouse tissues (occipito-parietal cortex, heart atria, vas deferens and spleen) preincubated with 3H-noradrenaline. Experiments using the OP1 receptor-selective agonists DPDPE and DSLET, the OP2-selective agonists U50488H and U69593, the OP3-selective agonist DAMGO, the ORL1 receptor-selective agonist nociceptin, and a number of selective antagonists showed that the noradrenergic axons innervating the occipito-parietal cortex possess release-inhibiting OP3 and ORL1 receptors, those innervating atria OP1, ORL1 and possibly OP3 receptors, and those innervating the vas deferens all four opioid receptor types. Experiments using the non-selective CB agonists WIN 55,212-2 and CP 55,940 and the CB1-selective antagonist SR 141716A indicated that the noradrenergic axons of the vas deferens possess release-inhibiting CB1 receptors. Presynaptic CB receptors were not found in the occipito-parietal cortex, in atria or in the spleen. Experiments using the non-selective β-adrenoceptor agonist isoprenaline and the β2-selective agonist salbutamol, as well as subtype-selective antagonists, demonstrated the occurrence of release-enhancing β2-adrenoceptors at the sympathetic axons of atria and the spleen, but demonstrated their absence in the occipito-parietal cortex and the vas deferens. Experiments with bradykinin and the B2-selective antagonist Hoe 140 showed the operation of release-enhancing B2 receptors at the sympathetic axons of atria, the vas deferens and the spleen, but showed their absence in the occipito-parietal cortex. The experiments document a number of new presynaptic receptor locations. They confirm and extend the existence of marked tissue and species differences in presynaptic receptors at noradrenergic neurons. PMID:10807669

  20. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  1. Serotonin receptor 1A–modulated phosphorylation of glycine receptor α3 controls breathing in mice

    PubMed Central

    Manzke, Till; Niebert, Marcus; Koch, Uwe R.; Caley, Alex; Vogelgesang, Steffen; Hülsmann, Swen; Ponimaskin, Evgeni; Müller, Ulrike; Smart, Trevor G.; Harvey, Robert J.; Richter, Diethelm W.

    2010-01-01

    Rhythmic breathing movements originate from a dispersed neuronal network in the medulla and pons. Here, we demonstrate that rhythmic activity of this respiratory network is affected by the phosphorylation status of the inhibitory glycine receptor α3 subtype (GlyRα3), which controls glutamatergic and glycinergic neuronal discharges, subject to serotonergic modulation. Serotonin receptor type 1A–specific (5-HTR1A–specific) modulation directly induced dephosphorylation of GlyRα3 receptors, which augmented inhibitory glycine-activated chloride currents in HEK293 cells coexpressing 5-HTR1A and GlyRα3. The 5-HTR1A–GlyRα3 signaling pathway was distinct from opioid receptor signaling and efficiently counteracted opioid-induced depression of breathing and consequential apnea in mice. Paradoxically, this rescue of breathing originated from enhanced glycinergic synaptic inhibition of glutamatergic and glycinergic neurons and caused disinhibition of their target neurons. Together, these effects changed respiratory phase alternations and ensured rhythmic breathing in vivo. GlyRα3-deficient mice had an irregular respiratory rhythm under baseline conditions, and systemic 5-HTR1A activation failed to remedy opioid-induced respiratory depression in these mice. Delineation of this 5-HTR1A–GlyRα3 signaling pathway offers a mechanistic basis for pharmacological treatment of opioid-induced apnea and other breathing disturbances caused by disorders of inhibitory synaptic transmission, such as hyperekplexia, hypoxia/ischemia, and brainstem infarction. PMID:20978350

  2. μ-Opioid receptor activation inhibits N- and P-type Ca2+ channel currents in magnocellular neurones of the rat supraoptic nucleus

    PubMed Central

    Soldo, Brandi L; Moises, Hylan C

    1998-01-01

    The whole-cell voltage-clamp technique was used to examine opioid regulation of Ba2+ currents (IBa) through voltage-sensitive Ca2+ channels in isolated magnocellular supraoptic neurones (MNCs). The effects of local application of μ-, δ- or κ-opioid receptor selective agonists were examined on specific components of high voltage-activated (HVA) IBa, pharmacologically isolated by use of Ca2+ channel-subtype selective antagonists. The μ-opioid receptor selective agonist, DAMGO, suppressed HVA IBa (in 64/71 neurones) in a naloxone-reversible and concentration-dependent manner (EC50 = 170 nm, Emax = 19.5 %). The DAMGO-induced inhibition was rapid in onset, associated with kinetic slowing and voltage dependent, being reversed by strong depolarizing prepulses. Low-voltage activated (LVA) IBa was not modulated by DAMGO. Administration of κ- (U69 593) or δ-selective (DPDPE) opioid receptor agonists did not affect IBa. However, immunostaining of permeabilized MNCs with an antibody specific for κ1-opioid receptors revealed the presence of this opioid receptor subtype in a large number of isolated somata. μ-Opioid-induced inhibition in IBa was largely abolished after blockade of N-type and P-type channel currents by ω-conotoxin GVIA (1 μm) and ω-agatoxin IVA (100 nm), respectively. Quantitation of antagonist effects on DAMGO-induced reductions in IBa revealed that N- and P-type channels contributed roughly equally to the μ-opioid sensitive portion of total IBa. These results indicate that μ-opioid receptors are negatively coupled to N- and P-type Ca2+ channels in the somatodendritic regions of MNCs, possibly via a membrane-delimited G-protein-dependent pathway. They also support a scheme in which opioids may act in part to modulate cellular activity and regulate neurosecretory function by their direct action on the neuroendocrine neurones of the hypothalamic supraoptic neucleus. PMID:9824718

  3. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  4. Effects of N-Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands.

    PubMed

    Harland, Aubrie A; Bender, Aaron M; Griggs, Nicholas W; Gao, Chao; Anand, Jessica P; Pogozheva, Irina D; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2016-05-26

    N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.

  5. Discovery of Peripheral κ-Opioid Receptor Agonists as Novel Analgesics.

    PubMed

    Suzuki, Shinya; Sugawara, Yuji; Inada, Hideaki; Tsuji, Riichiro; Inoue, Atsushi; Tanimura, Ryuji; Shimozono, Rieko; Konno, Mitsuhiro; Ohyama, Tomofumi; Higashi, Eriko; Sakai, Chizuka; Kawai, Koji

    2017-01-01

    κ-Opioid receptor agonists with high selectivity over the μ-opioid receptor and peripheral selectivity are attractive targets in the development of drugs for pain. We have previously attempted to create novel analgesics with peripheral selective κ-opioid receptor agonist on the basis of TRK-820. In this study, we elucidated the biological properties of 17-hydroxy-cyclopropylmethyl and 10α-hydroxy derivatives. These compounds were found to have better κ-opioid receptor selectivity and peripheral selectivity than TRK-820.

  6. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  7. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  8. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area

    PubMed Central

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Cortés, Antoni

    2017-01-01

    population of these MORs form functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin–opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder. PMID:28007761

  9. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.

    PubMed

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi

    2017-02-01

    functional heteromers with the galanin receptor subtype Gal1 (Gal1R), which modulate the activity of the VTA dopaminergic neurons. The MOR-Gal1R heteromer can explain previous results showing antagonistic galanin-opioid interactions and offers a new therapeutic target for the treatment of opioid use disorder. Copyright © 2017 the authors 0270-6474/17/371176-11$15.00/0.

  10. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    PubMed

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  11. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Clinically Employed Opioid Analgesics Produce Antinociception via μ-δ Opioid Receptor Heteromers in Rhesus Monkeys

    PubMed Central

    2012-01-01

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans. PMID:23019498

  13. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys.

    PubMed

    Yekkirala, Ajay S; Banks, Matthew L; Lunzer, Mary M; Negus, Stevens S; Rice, Kenner C; Portoghese, Philip S

    2012-09-19

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.

  14. Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.

    PubMed

    Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

    2010-11-01

    Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to

  15. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice

    PubMed Central

    Pradhan, Amynah A; Smith, Monique L; Zyuzin, Jekaterina; Charles, Andrew

    2014-01-01

    Background and Purpose Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. Experimental Approach Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. Key Results NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. Conclusions and Implications These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder. PMID:24467301

  16. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  17. Novel pharmaco-types and trafficking-types induced by opioid receptor heteromerization

    PubMed Central

    van Rijn, Richard M; Whistler, Jennifer L; Waldhoer, Maria

    2009-01-01

    Homo- and heteromerization of 7 transmembrane spanning (7TM)/G-protein coupled receptors (GPCRs) has been an important field of study. Whereas initial studies were performed in artificial cell systems, recent publications are shifting the focus to the in vivo relevance of heteromerization. This is especially apparent for the field of opioid receptors. Drugs have been identified that selectively target opioid heteromers of the delta opioid receptor with the kappa and the mu opioid receptors, that influence nociception and ethanol consumption, respectively. In addition, in several cases, the specific physiological response produced by the heteromer may be directly attributed to a difference in receptor trafficking properties of the heteromers compared to their homomeric counterparts. This review attempts to highlight some of the latest developments with regard to opioid receptor heteromer trafficking and pharmacology. PMID:19846340

  18. Development of concepts on the interaction of drugs with opioid receptors

    NASA Astrophysics Data System (ADS)

    Kuzmina, N. E.; Kuzmin, V. S.

    2011-02-01

    The development of concepts on the molecular mechanisms of the action of medicinal drugs on the opioid receptors is briefly surveyed. The modern point of view on the mechanism of activation of opioid receptors is given based on the data from chimeric and site-directed mutagenesis of the cloned opioid receptors and the computer-aided simulations of the reception zone and ligand-receptor complexes. Three-dimensional models of the opioid pharmacophore derived by both conventional methods and a comparative analysis of molecular fields are described in detail.

  19. Functional Characteristics of the Naked Mole Rat μ-Opioid Receptor

    PubMed Central

    Roth, Clarisse A.

    2013-01-01

    While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids. PMID:24312175

  20. Role of opioid receptors in the reinstatement of opioid-seeking behavior: an overview.

    PubMed

    Fattore, Liana; Fadda, Paola; Antinori, Silvia; Fratta, Walter

    2015-01-01

    Opioid abuse in humans is characterized by discontinuous periods of drug use and abstinence. With time, the probability of falling into renewed drug consumption becomes particularly high and constitutes a considerable problem in the management of heroin addicts. The major problem in the treatment of opioid dependence still remains the occurrence of relapse, to which stressful life events, renewed use of heroin, and exposure to drug-associated environmental cues are all positively correlated. To study the neurobiology of relapse, many research groups currently use the reinstatement animal model, which greatly contributed to disentangle the mechanisms underlying relapse to drug-seeking in laboratory animals. The use of this model is becoming increasingly popular worldwide, and new versions have been recently developed to better appreciate the differential contribution of each opioid receptor subtype to the relapse phenomenon. In this chapter we review the state of the art of our knowledge on the specific role of the opioid receptors as unrevealed by the reinstatement animal model of opioid-seeking behavior.

  1. Opioid system and human emotions.

    PubMed

    Nummenmaa, Lauri; Tuominen, Lauri

    2017-04-10

    Emotions are states of vigilant readiness that guide human and animal behaviour during survival-salient situations. Categorical models of emotions posit neurally and physiologically distinct basic human emotions (anger, fear, disgust, happiness, sadness and surprise) that govern different survival functions. Opioid receptors are expressed abundantly in the mammalian emotion circuit, and the opioid system modulates a variety of functions related to arousal and motivation. Yet, its specific contribution to different basic emotions has remained poorly understood. Here, we review how the endogenous opioid system and particularly the μ receptor contribute to emotional processing in humans. Activation of the endogenous opioid system is consistently associated with both pleasant and unpleasant emotions. In general, exogenous opioid agonists facilitate approach-oriented emotions (anger, pleasure) and inhibit avoidance-oriented emotions (fear, sadness). Opioids also modulate social bonding and affiliative behaviour, and prolonged opioid abuse may render both social bonding and emotion recognition circuits dysfunctional. However, there is no clear evidence that the opioid system is able to affect the emotions associated with surprise and disgust. Taken together, the opioid systems contribute to a wide array of positive and negative emotions through their general ability to modulate the approach versus avoidance motivation associated with specific emotions. Because of the protective effects of opioid system-mediated prosociality and positive mood, the opioid system may constitute an important factor contributing to psychological and psychosomatic resilience. © 2017 The British Pharmacological Society.

  2. Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test.

    PubMed

    Rizzi, A; Ruzza, C; Bianco, S; Trapella, C; Calo', G

    2017-08-01

    Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions, including pain transmission via selective activation of a specific receptor named NOP. The aim of this study was the investigation of the antinociceptive properties of NOP agonists and their interaction with opioids in the trigeminal territory. The orofacial formalin (OFF) test in mice was used to investigate the antinociceptive potential associated to the activation of NOP and opioid receptors. Mice subjected to OFF test displayed the typical biphasic nociceptive response and sensitivity to opioid and NSAID drugs. Mice knockout for the NOP gene displayed a robust pronociceptive phenotype. The NOP selective agonist Ro 65-6570 (0.1-1mgkg -1 ) and morphine (0.1-10mgkg -1 ) elicited dose dependent antinociceptive effects in the OFF with the alkaloid showing larger effects; the isobologram analysis of their actions demonstrated an additive type of interaction. The mixed NOP/opioid receptor agonist cebranopadol elicited potent (0.01-0.1mgkg -1 ) and robust antinociceptive effects. In the investigated dose range, all drugs did not modify the motor performance of the mice in the rotarod test. Collectively the results of this study demonstrated that selective NOP agonists and particularly mixed NOP/opioid agonists are worthy of development as innovative drugs to treat painful conditions of the trigeminal territory. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Opioid receptor subtypes: fact or artifact?

    PubMed

    Dietis, N; Rowbotham, D J; Lambert, D G

    2011-07-01

    There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.

  4. Opioid agonist efficacy predicts the magnitude of tolerance and the regulation of mu-opioid receptors and dynamin-2.

    PubMed

    Pawar, Mohit; Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Walker, Ellen A; Yoburn, Byron C

    2007-06-01

    It has been proposed that opioid agonist efficacy may play a role in tolerance and the regulation of opioid receptor density. To address this issue, the present studies estimated the in vivo efficacy of three opioid agonists and then examined changes in spinal mu-opioid receptor density following chronic treatment in the mouse. In addition, tolerance and regulation of the trafficking protein dynamin-2 were determined. To evaluate efficacy, the method of irreversible receptor alkylation was employed and the efficacy parameter tau estimated. Mice were injected with the irreversible mu-opioid receptor antagonist clocinnamox (0.32-25.6 mg/kg, i.p), and 24 h later, the analgesic potency of s.c. morphine, oxycodone and etorphine were determined. Clocinnamox dose-dependently antagonized the analgesic effects of morphine, etorphine and oxycodone. The shift to the right of the dose-response curves was greater for morphine and oxycodone compared to etorphine and the highest dose of clocinnamox reduced the maximal effect of morphine and oxycodone, but not etorphine. The order of efficacy calculated from these results was etorphine>morphine>oxycodone. Other mice were infused for 7 days with oxycodone (10-150 mg/kg/day, s.c.) or etorphine (50-250 microg/kg/day, s.c.) and the analgesic potency of s.c. morphine determined. The low efficacy agonist (oxycodone) produced more tolerance than the high efficacy agonist (etorphine) at equi-effective infusion doses. In saturation binding experiments, the low efficacy opioid agonists (morphine, oxycodone) did not regulate the density of spinal mu-opioid receptors, while etorphine produced approximately 40% reduction in mu-opioid receptor density. Furthermore, etorphine increased spinal dynamin-2 abundance, while oxycodone did not produce any significant change in dynamin-2 abundance. Overall, these data indicate that high efficacy agonists produce less tolerance at equi-effective doses. Furthermore, increased efficacy was associated with

  5. Pharmacological traits of delta opioid receptors: pitfalls or opportunities?

    PubMed Central

    van Rijn, Richard M.; DeFriel, Julia N.; Whistler, Jennifer L.

    2013-01-01

    Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders, and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR selective drugs are in clinical trials, but no DOR selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. This review will discuss the existing literature focusing on four aspects: 1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands 2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. 3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. 4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. These combined features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands. PMID:23649885

  6. Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature

    PubMed Central

    Rawls, Scott M.; Benamar, Khalid

    2014-01-01

    Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235

  7. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist

    PubMed Central

    Doi, Seira; Mori, Tomohisa; Uzawa, Naoki; Arima, Takamichi; Takahashi, Tomoyuki; Uchida, Masashi; Yawata, Ayaka; Narita, Michiko; Uezono, Yasuhito; Suzuki, Tsutomu

    2016-01-01

    Background Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated β-arrestin recruitment. Results We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of β-arrestin-2 in µ-opioid receptor-overexpressing cells. Conclusions These results suggest that methadone may, at least partly, produce its pharmacological effect as a β-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone. PMID:27317580

  8. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  9. Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.

    PubMed

    Ansonoff, Michael A; Wen, Ting; Pintar, John E

    2010-01-01

    Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.

  10. Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats.

    PubMed

    Marín, S; Marco, E; Biscaia, M; Fernández, B; Rubio, M; Guaza, C; Schmidhammer, H; Viveros, M P

    2003-02-01

    We have studied the possible interaction between three selective opioid-receptor antagonists, nor-binaltorphimine (NB: kappa) (5 mg/kg), cyprodime (CY: mu) (10 mg/kg) and naltrindole (NTI: delta) (1 mg/kg), and the cannabinoid receptor agonist CP 55,940, in the modulation of anxiety (plus-maze) and adrenocortical activity (serum corticosterone levels by radioimmunoassay) in male rats. The holeboard was used to evaluate motor activity and directed exploration. CP 55,940 (75 microg/kg, but not 10 microg/kg) induced an anxiogenic-like effect, which was antagonised by NB. The other effects of CP 55,940 (75 microg/kg), a decreased holeboard activity and stimulation of adrenocortical activity, were not antagonised by any of the three opioid receptor antagonists. CY and NTI, when administered alone, induced marked reductions in motor activity, anxiogenic-like effects and stimulation of adrenocortical activity. The selective kappa-opioid receptor antagonist NB, on its own, did not modify the level of anxiety but stimulated adrenocortical activity. We provide the first pharmacological evidence about the involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940.

  11. Sustained ligand-activated preconditioning via δ-opioid receptors.

    PubMed

    Peart, Jason N; Hoe, Louise E See; Gross, Garrett J; Headrick, John P

    2011-01-01

    We have previously described novel cardioprotection in response to sustained morphine exposure, efficacious in young to aged myocardium and mechanistically distinct from conventional opioid or preconditioning (PC) responses. We further investigate opioid-dependent sustained ligand-activated preconditioning (SLP), assessing duration of protection, opioid receptor involvement, additivity with conventional responses, and signaling underlying preischemic induction of the phenotype. Male C57BL/6 mice were treated with morphine (75-mg subcutaneous pellet) for 5 days followed by morphine-free periods (0, 3, 5, or 7 days) before ex vivo assessment of myocardial tolerance to 25-min ischemia/45-min reperfusion. SLP substantially reduced infarction (by ∼50%) and postischemic contractile dysfunction (eliminating contracture, doubling force development). Cardioprotection persisted for 5 to 7 days after treatment. SLP was induced specifically by δ-receptor and not κ- or μ-opioid receptor agonism, was eliminated by δ-receptor and nonselective antagonism, and was additive with adenosinergic but not acute morphine- or PC-triggered protection. Cotreatment during preischemic morphine exposure with the phosphoinositide-3 kinase (PI3K) inhibitor wortmannin, but not the protein kinase A (PKA) inhibitor myristoylated PKI-(14-22)-amide, prevented induction of SLP. This was consistent with shifts in total and phospho-Akt during the induction period. In summary, data reveal that SLP triggers sustained protection from ischemia for up to 7 days after stimulus, is δ-opioid receptor mediated, is induced in a PI3K-dependent/PKA-independent manner, and augments adenosinergic protection. Mechanisms underlying SLP may be useful targets for manipulation of ischemic tolerance in young or aged myocardium.

  12. Endogenous opioids regulate moment-to-moment neuronal communication and excitability.

    PubMed

    Winters, Bryony L; Gregoriou, Gabrielle C; Kissiwaa, Sarah A; Wells, Oliver A; Medagoda, Danashi I; Hermes, Sam M; Burford, Neil T; Alt, Andrew; Aicher, Sue A; Bagley, Elena E

    2017-03-22

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.

  13. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA)

    PubMed Central

    2010-01-01

    Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for optimizing equine breeding. PMID

  14. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats.

    PubMed

    Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J

    2002-03-01

    The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.

  15. Opioid receptors and cardioprotection – ‘opioidergic conditioning’ of the heart

    PubMed Central

    Headrick, John P; See Hoe, Louise E; Du Toit, Eugene F; Peart, Jason N

    2015-01-01

    Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or ‘developed’ countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia–reperfusion (I–R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I–R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses. PMID:25521834

  16. Panicolytic-like effect of tramadol is mediated by opioid receptors in the dorsal periaqueductal grey.

    PubMed

    Fiaes, Gislaine Cardoso de Souza; Roncon, Camila Marroni; Sestile, Caio Cesar; Maraschin, Jhonatan Christian; Souza, Rodolfo Luis Silva; Porcu, Mauro; Audi, Elisabeth Aparecida

    2017-05-30

    Tramadol is a synthetic opioid prescribed for the treatment of moderate to severe pain, acting as agonist of μ-opioid receptors and serotonin (5-HT) and noradrenaline (NE) reuptake inhibitor. This study evaluated the effects of tramadol in rats submitted to the elevated T-maze (ETM), an animal model that evaluates behavioural parameters such as anxiety and panic. Male Wistar rats were intraperitoneally (i.p.) treated acutely with tramadol (16 and 32mg/kg) and were submitted to the ETM. Tramadol (32mg/kg) promoted a panicolytic-like effect. Considering that dorsal periaqueductal grey (dPAG) is the main brain structure related to the pathophysiology of panic disorder (PD), this study also evaluated the participation of 5-HT and opioid receptors located in the dPAG in the panicolytic-like effect of tramadol. Seven days after stereotaxic surgery for implantation of a cannula in the dPAG, the animals were submitted to the test. To assess the involvement of 5-HT 1A receptors on the effect of tramadol, we combined the 5-HT 1A receptor antagonist, WAY100635 (0.37nmol), microinjected intra-dPAG, 10min prior to the administration of tramadol (32mg/kg, i.p.). WAY100635 did not block the panicolytic-like effect of tramadol. We also associated the non-selective opioid receptor antagonist, naloxone, systemically (1mg/kg, i.p.) or intra-dPAG (0.5nmol) administered 10min prior to tramadol (32mg/kg, i.p.). Naloxone blocked the panicolytic-like effect of tramadol in both routes of administrations, showing that tramadol modulates acute panic defensive behaviours through its interaction with opioid receptors located in the dPAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  18. Opioid activation of Toll-Like receptor 4 contributes to drug reinforcement

    PubMed Central

    Hutchinson, M.R.; Northcutt, A.L.; Hiranita, T.; Wang, X.; Lewis, S.; Thomas, J.; van Steeg, K.; Kopajtic, T.A.; Loram, L.; Sfregola, C.; Galer, E.; Miles, N.E.; Bland, S.T.; Amat, J.; Rozeske, R.R.; Maslanik, T.; Chapman, T.; Strand, K.; Fleshner, M.; Bachtell, R.K.; Somogyi, A.A.; Yin, H.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Watkins, L.R.

    2012-01-01

    Opioid action was thought to exert reinforcing effects solely via the initial agonism of opioid receptors. Here we present evidence for an additional novel contributor to opioid reward: the innate immune pattern-recognition receptor, Toll-like receptor 4 (TLR4), and its MyD88-dependent signaling. Blockade of TLR4/MD2 by administration of the non-opioid, unnatural isomer of naloxone, (+)-naloxone (rats), or two independent genetic knockouts of MyD88-TLR4-dependent signaling (mice), suppressed opioid-induced conditioned place preference. (+)-Naloxone also reduced opioid (remifentanil) self-administration (rats), another commonly used behavioral measure of drug reward. Moreover, pharmacological blockade of morphine-TLR4/MD2 activity potently reduced morphine-induced elevations of extracellular dopamine in rat nucleus accumbens, a region critical for opioid reinforcement. Importantly, opioid-TLR4 actions are not a unidirectional influence on opioid pharmacodynamics, since TLR4 −/− mice had reduced oxycodone-induced p38 and JNK phosphorylation, whilst displaying potentiated analgesia. Similar to our recent reports of morphine-TLR4/MD2 binding, here we provide a combination of in silico and biophysical data to support (+)-naloxone and remifentanil binding to TLR4/MD2. Collectively, these data indicate that the actions of opioids at classical opioid receptors, together with their newly identified TLR4/MD2 actions, affect the mesolimbic dopamine system which amplifies opioid-induced elevations in extracellular dopamine levels and therefore possibly explaining altered opioid reward behaviors. Thus, the discovery of TLR4/MD2 recognition of opioids as foreign xenobiotic substances adds to the existing hypothesized neuronal reinforcement mechanisms, identifies a new drug target in TLR4/MD2 for the treatment of addictions, and provides further evidence supporting a role for central proinflammatory immune signaling in drug reward. PMID:22895704

  19. Basal μ-opioid receptor availability in the amygdala predicts the inhibition of pain-related brain activity during heterotopic noxious counter-stimulation.

    PubMed

    Piché, Mathieu; Watanabe, Nobuhiro; Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishii, Kenji; Ishiwata, Kiichi; Hotta, Harumi

    2014-01-01

    The aim of this study was to investigate the association between the magnitude of anti-nociceptive effects induced by heterotopic noxious counter-stimulation (HNCS) and the basal μ-opioid receptor availability in the amygdala. In 8 healthy volunteers (4 females and 4 males), transcutaneous electrical stimulation was applied to the right sural nerve to produce the nociceptive flexion reflex (RIII-reflex), moderate pain, and scalp somatosensory evoked potentials (SEPs). Immersion of the left hand in cold water for 20min was used as HNCS. In a separate session, basal μ-opioid receptor availability was measured using positron emission tomography with the radiotracer [(11)C]carfentanil. HNCS produced a reduction of the P260 amplitude (p<0.05), a late component of SEP that reflects activity in the anterior cingulate cortex. This reduction was associated with higher basal μ-opioid receptor availability in the amygdala on the right (R(2)=0.55, p=0.03) with a similar trend on the left (R(2)=0.24, p=0.22). Besides, HNCS did not induce significant changes in pain and RIII-reflex amplitude (p>0.05). These results suggest that activation of μ-opioid receptors in the amygdala may contribute to the anti-nociceptive effects of HNCS. The lack of RIII-reflex modulation further suggests that μ-opioid receptor activation in the amygdala contributes to decrease pain-related brain activity through a cerebral mechanism independent of descending modulation. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Individual differences in orexin 1 receptor modulation of motivation for the opioid remifentanil

    PubMed Central

    Porter-Stransky, Kirsten A.; Bentzley, Brandon S.; Aston-Jones, Gary

    2015-01-01

    Orexin-1 receptors (Ox1Rs) have been implicated in the motivation for drugs of abuse. Here, we utilized a within-session behavioral-economic threshold procedure to screen for individual differences in economic demand for the ultra-short acting opioid remifentanil and to test whether antagonism of Ox1Rs reduces remifentanil demand. The behavioral-economic procedure revealed robust individual differences in free consumption of remifentanil (Q0 parameter; hedonic set point). Rats with low baseline Q0 (low takers) displayed high demand elasticity (α parameter; reduced responding as drug price increased indicating low motivation for drug), whereas subjects with a higher Q0 (high takers) exhibit low demand elasticity (low α) by continuing to self-administer remifentanil despite increased cost (reflecting higher motivation for drug). In a punished responding paradigm utilizing footshock, subjects that were classified as high takers at baseline withstood twice as much shock as low takers to continue self-administering remifentanil. Interestingly, Ox1R antagonism with SB-334867 reduced Q0 and increased α in low takers but not in high takers. Similarly, the Ox1R antagonist attenuated cue-, but not drug-, induced reinstatement of remifentanil seeking in low takers, but had no significant effect on reinstatement of drug seeking in high takers. Together, these data reveal a novel role of orexins in demand for remifentanil: Ox1Rs modulate demand in low takers but not in individuals that exhibit addictive-like behaviors (high takers). Finally, the behavioral assays in this study can serve as a novel laboratory model for studying individual differences in opioid use disorders. PMID:26598295

  1. [The endogenous opioid system and drug addiction].

    PubMed

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  2. Involvement of μ- and κ-, but not δ-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine

    PubMed Central

    Shahbazian, Anaid; Heinemann, Akos; Schmidhammer, Helmut; Beubler, Eckhard; Holzer-Petsche, Ulrike; Holzer, Peter

    2002-01-01

    Opiates inhibit gastrointestinal propulsion, but it is not clear which opioid receptor types are involved in this action. For this reason, the effect of opioid receptor – selective agonists and antagonists on intestinal peristalsis was studied.Peristalsis in isolated segments of the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves.μ-Opioid receptor agonists (DAMGO, morphine), κ-opioid receptor agonists (ICI-204,448 and BRL-52,537) and a δ-opioid receptor agonist (SNC-80) inhibited peristalsis in a concentration-related manner as deduced from a rise of the peristaltic pressure threshold (PPT) and a diminution of peristaltic effectiveness.Experiments with the δ-opioid receptor antagonists naltrindole (30 nM) and HS-378 (1 μM), the κ-opioid receptor antagonist nor-binaltorphimine (30 nM) and the μ-opioid receptor antagonist cyprodime (10 μM) revealed that the antiperistaltic effect of ICI-204,448 and BRL-52,537 was mediated by κ-opioid receptors and that of morphine and DAMGO by μ-opioid receptors. In contrast, the peristaltic motor inhibition caused by SNC-80 was unrelated to δ-opioid receptor activation.Cyprodime and nor-binaltorphimine, but not naltrindole and HS-378, were per se able to stimulate intestinal peristalsis as deduced from a decrease in PPT.The results show that the neural circuits controlling peristalsis in the guinea-pig small intestine are inhibited by endogenous and exogenous opioids acting via μ- and κ-, but not δ-, opioid receptors. PMID:11834622

  3. Anti-nociceptive interactions between opioids and a cannabinoid receptor 2 agonist in inflammatory pain

    PubMed Central

    Hale, David E; Guindon, Josée; Morgan, Daniel J

    2017-01-01

    revealed that co-administration of JWH-133 and morphine has an additive effect on anti-nociception in the formalin test. Overall these findings show that cannabinoid 2 receptor may functionally interact with mu-opioid receptor to modulate anti-nociception in the formalin test. PMID:28879802

  4. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation

    PubMed Central

    Floettmann, Eike; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-01-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ-opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ-opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ-opioid receptor in vitro, naloxegol was a potent inhibitor of binding (Ki = 7.42 nM) and a neutral competitive antagonist (pA2 - 7.95); agonist effects were <10% up to 30 μM and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ-opioid receptor in the ENS while preserving CNS-mediated analgesia. PMID:28336575

  5. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor

    PubMed Central

    Siemian, Justin N.; Obeng, Samuel; Zhang, Yan; Zhang, Yanan

    2016-01-01

    Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3′-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund’s adjuvant–induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R

  6. Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-04-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.

  7. Modulation of Neurally Mediated Vasodepression and Bradycardia by Electroacupuncture through Opioids in Nucleus Tractus Solitarius.

    PubMed

    Tjen-A-Looi, Stephanie C; Fu, Liang-Wu; Guo, Zhi-Ling; Longhurst, John C

    2018-01-30

    Stimulation of vagal afferent endings with intravenous phenylbiguanide (PBG) causes both bradycardia and vasodepression, simulating neurally mediated syncope. Activation of µ-opioid receptors in the nucleus tractus solitarius (NTS) increases blood pressure. Electroacupuncture (EA) stimulation of somatosensory nerves underneath acupoints P5-6, ST36-37, LI6-7 or G37-39 selectively but differentially modulates sympathoexcitatory responses. We therefore hypothesized that EA-stimulation at P5-6 or ST36-37, but not LI6-7 or G37-39 acupoints, inhibits the bradycardia and vasodepression through a µ-opioid receptor mechanism in the NTS. We observed that stimulation at acupoints P5-6 and ST36-37 overlying the deep somatosensory nerves and LI6-7 and G37-39 overlying cutaneous nerves differentially evoked NTS neural activity in anesthetized and ventilated animals. Thirty-min of EA-stimulation at P5-6 or ST36-37 reduced the depressor and bradycardia responses to PBG while EA at LI6-7 or G37-39 did not. Congruent with the hemodynamic responses, EA at P5-6 and ST36-37, but not at LI6-7 and G37-39, reduced vagally evoked activity of cardiovascular NTS cells. Finally, opioid receptor blockade in the NTS with naloxone or a specific μ-receptor antagonist reversed P5-6 EA-inhibition of the depressor, bradycardia and vagally evoked NTS activity. These data suggest that point specific EA stimulation inhibits PBG-induced vasodepression and bradycardia responses through a μ-opioid mechanism in the NTS.

  8. Stabilization of the μ-opioid receptor by truncated single transmembrane splice variants through a chaperone-like action.

    PubMed

    Xu, Jin; Xu, Ming; Brown, Taylor; Rossi, Grace C; Hurd, Yasmin L; Inturrisi, Charles E; Pasternak, Gavril W; Pan, Ying-Xian

    2013-07-19

    The μ-opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, as illustrated by the identification of an array of splice variants generated by both 5' and 3' alternative splicing. The current study reports the identification of another set of splice variants conserved across species that are generated through exon skipping or insertion that encodes proteins containing only a single transmembrane (TM) domain. Using a Tet-Off system, we demonstrated that the truncated single TM variants can dimerize with the full-length 7-TM μ-opioid receptor (MOR-1) in the endoplasmic reticulum, leading to increased expression of MOR-1 at the protein level by a chaperone-like function that minimizes endoplasmic reticulum-associated degradation. In vivo antisense studies suggested that the single TM variants play an important role in morphine analgesia, presumably through modulation of receptor expression levels. Our studies suggest the functional roles of truncated receptors in other G protein-coupled receptor families.

  9. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  10. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    DTIC Science & Technology

    2016-07-01

    treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...slides. Slides were then processed for fluorescent in situ hybridization with RNAscope technology (ACD Biosystems) to detect Oprd1 mRNA, as described

  11. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation.

    PubMed

    Floettmann, Eike; Bui, Khanh; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-05-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ -opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ -opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ -opioid receptor in vitro, naloxegol was a potent inhibitor of binding ( K i = 7.42 nM) and a neutral competitive antagonist (p A 2 - 7.95); agonist effects were <10% up to 30 μ M and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ -opioid receptor in the ENS while preserving CNS-mediated analgesia. Copyright © 2017 The Author(s).

  12. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  13. Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups - Role of the accumbal μ-opioid receptors.

    PubMed

    Laureano, D P; Dalle Molle, R; Alves, M B; Luft, C; Desai, M; Ross, M G; Silveira, P P

    2016-05-13

    Intrauterine growth restriction (IUGR) is associated with increased preference for palatable foods. The hedonic response to sweet taste, modulated by the nucleus accumbens μ-opioid-receptors, may be involved. We investigated hedonic responses and receptor levels in IUGR and Control animals. From pregnancy day 10, Sprague-Dawley dams received either an ad libitum (Control), or a 50% food restricted (FR) diet. At birth, pups were cross-fostered, and nursed by Adlib fed dams. The hedonic response was evaluated at 1 day after birth and at 90 days of life, by giving sucrose solution or water and analyzing the hedonic facial responses (within 60s). Control pups exposed either to water or sucrose resolved their hedonic responses after 16 and 18s, respectively, while FR hedonic responses to sucrose persisted over 20s. FR pups had deceased phospho-μ-opioid-receptor (p=0.009) and reduced phosphor:total mu opioid receptor ratio compared to controls pups (p=0.003). In adults, there was an interaction between group and solution at the end of the evaluation (p=0.044): Control decreased the response after sucrose solution, FR did not change over time. There were no differences in phosphorylation of μ-opioid-receptor in adults. These results demonstrate IUGR newborn rats exhibit alterations in hedonic response accompanied by a decrease in μ-opioid-receptor phosphorylation, though these alterations do not persist at 3 months of age. Opioid system alterations in early life may contribute to the development of preference for highly palatable foods and contribute to rapid weight gain and obesity in IUGR offspring. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice.

    PubMed

    Smith, Craig M; Walker, Lesley L; Leeboonngam, Tanawan; McKinley, Michael J; Denton, Derek A; Lawrence, Andrew J

    2016-11-29

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.

  15. THE ROLE OF DELTA OPIOID RECEPTORS IN THE ANXIOLYTIC ACTIONS OF BENZODIAZEPINES

    PubMed Central

    Primeaux, Stefany D.; Wilson, Steven P.; McDonald, Alexander J.; Mascagni, Franco; Wilson, Marlene A.

    2007-01-01

    The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or β-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1–2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, β-funaltrexamine (20mg/kg, sc), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam. PMID:17109943

  16. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.

    PubMed

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E

    2017-08-01

    Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  17. Mu Opioids and Their Receptors: Evolution of a Concept

    PubMed Central

    Pan, Ying-Xian

    2013-01-01

    Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated. PMID:24076545

  18. Modality-specific peripheral antinociceptive effects of μ-opioid agonists on heat and mechanical stimuli: Contribution of sigma-1 receptors.

    PubMed

    Montilla-García, Ángeles; Perazzoli, Gloria; Tejada, Miguel Á; González-Cano, Rafael; Sánchez-Fernández, Cristina; Cobos, Enrique J; Baeyens, José M

    2018-06-01

    Morphine induces peripherally μ-opioid-mediated antinociception to heat but not to mechanical stimulation. Peripheral sigma-1 receptors tonically inhibit μ-opioid antinociception to mechanical stimuli, but it is unknown whether they modulate μ-opioid heat antinociception. We hypothesized that sigma-1 receptors might play a role in the modality-specific peripheral antinociceptive effects of morphine and other clinically relevant μ-opioid agonists. Mechanical nociception was assessed in mice with the paw pressure test (450 g), and heat nociception with the unilateral hot plate (55 °C) test. Local peripheral (intraplantar) administration of morphine, buprenorphine or oxycodone did not induce antinociception to mechanical stimulation but had dose-dependent antinociceptive effects on heat stimuli. Local sigma-1 antagonism unmasked peripheral antinociception by μ-opioid agonists to mechanical stimuli, but did not modify their effects on heat stimulation. TRPV1+ and IB4+ cells are segregated populations of small neurons in the dorsal root ganglia (DRG) and the density of sigma-1 receptors was higher in IB4+ cells than in the rest of small nociceptive neurons. The in vivo ablation of TRPV1-expressing neurons with resiniferatoxin did not alter IB4+ neurons in the DRG, mechanical nociception, or the effects of sigma-1 antagonism on local morphine antinociception in this type of stimulus. However, it impaired the responses to heat stimuli and the effect of local morphine on heat nociception. In conclusion, peripheral opioid antinociception to mechanical stimuli is limited by sigma-1 tonic inhibitory actions, whereas peripheral opioid antinociception to heat stimuli (produced in TRPV1-expressing neurons) is not. Therefore, sigma-1 receptors contribute to the modality-specific peripheral effects of opioid analgesics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Oscillation patterns are enhanced and firing threshold is lowered in medullary respiratory neuron discharges by threshold doses of a μ-opioid receptor agonist

    PubMed Central

    Mifflin, Steve W.

    2017-01-01

    μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N-methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO2/pH chemosensitivity. PMID:28202437

  20. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse.

    PubMed

    Charbogne, Pauline; Kieffer, Brigitte L; Befort, Katia

    2014-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA

  1. Hydromorphone efficacy and treatment protocol impact on tolerance and mu-opioid receptor regulation.

    PubMed

    Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Dighe, Shveta V; Walker, Ellen A; Yoburn, Byron C

    2008-11-12

    This study examined the antinociceptive (analgesic) efficacy of hydromorphone and hydromorphone-induced tolerance and regulation of mu-opioid receptor density. Initially s.c. hydromorphone's time of peak analgesic (tail-flick) effect (45 min) and ED50 using standard and cumulative dosing protocols (0.22 mg/kg, 0.37 mg/kg, respectively) were determined. The apparent analgesic efficacy (tau) of hydromorphone was then estimated using the operational model of agonism and the irreversible mu-opioid receptor antagonist clocinnamox. Mice were injected with clocinnamox (0.32-25.6 mg/kg, i.p.) and 24 h later, the analgesic potency of hydromorphone was determined. The tau value for hydromorphone was 35, which suggested that hydromorphone is a lower analgesic efficacy opioid agonist. To examine hydromorphone-induced tolerance, mice were continuously infused s.c. with hydromorphone (2.1-31.5 mg/kg/day) for 7 days and then morphine cumulative dose response studies were performed. Other groups of mice were injected with hydromorphone (2.2-22 mg/kg/day) once, or intermittently every 24 h for 7 days. Twenty-four hours after the last injection, mice were tested using morphine cumulative dosing studies. There was more tolerance with infusion treatments compared to intermittent treatment. When compared to higher analgesic efficacy opioids, hydromorphone infusions induced substantially more tolerance. Finally, the effect of chronic infusion (31.5 mg/kg/day) and 7 day intermittent (22 mg/kg/day) hydromorphone treatment on spinal cord mu-opioid receptor density was determined. Hydromorphone did not produce any change in mu-opioid receptor density following either treatment. These results support suggestions that analgesic efficacy is correlated with tolerance magnitude and regulation of mu-opioid receptors when opioid agonists are continuously administered. Taken together, these studies indicate that analgesic efficacy and treatment protocol are important in determining tolerance and

  2. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies.

    PubMed

    Melichar, Jan K; Hume, Susan P; Williams, Tim M; Daglish, Mark R C; Taylor, Lindsay G; Ahmad, Rabia; Malizia, Andrea L; Brooks, David J; Myles, Judith S; Lingford-Hughes, Anne; Nutt, David J

    2005-01-01

    Substitute methadone prescribing is one of the main modes of treatment for opioid dependence with established evidence for improved health and social outcomes. However, the pharmacology underpinning the effects of methadone is little studied despite controversies about dosing in relation to outcome. We therefore examined the relationship between methadone dose and occupation of opioid receptors in brain using the positron emission tomography (PET) radioligand [(11)C]diprenorphine in humans and rats. Eight opioid-dependent subjects stable on their substitute methadone (18-90 mg daily) had an [(11)C]diprenorphine PET scan at predicted peak plasma levels of methadone. These were compared with eight healthy controls. No difference in [(11)C]diprenorphine binding was found between the groups, with no relationship between methadone dose and occupancy. Adult male Sprague-Dawley rats that had been given an acute i.v. injection of methadone hydrochloride (0.35, 0.5, 0.7, or 1.0 mg kg(-1)) before [(11)C]diprenorphine showed a dose-dependent increase in biodistribution but no reduction in [(11)C]diprenorphine binding. We suggest that the lack of a dose-dependent relationship between methadone dose, either given chronically in human or acutely in rat, and occupancy of opioid receptor measured with [(11)C]diprenorphine PET is related to efficacy of this opioid agonist at very low levels of opioid receptor occupancy. This has implications for understanding the actions of methadone in comparison with other opioid drugs such as partial agonists and antagonists.

  3. Structure-Activity Relationships of Bifunctional Cyclic Disulfide Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors

    PubMed Central

    Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2008-01-01

    Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541

  4. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    PubMed Central

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R.; Ishihara, Kumatoshi

    2014-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels. PMID:19596019

  5. Membrane glycoprotein M6a interacts with the micro-opioid receptor and facilitates receptor endocytosis and recycling.

    PubMed

    Wu, Dai-Fei; Koch, Thomas; Liang, Ying-Jian; Stumm, Ralf; Schulz, Stefan; Schröder, Helmut; Höllt, Volker

    2007-07-27

    Using a yeast two-hybrid screen, the neuronal membrane glycoprotein M6a, a member of the proteolipid protein family, was identified to be associated with the mu-opioid receptor (MOPr). Bioluminescence resonance energy transfer and co-immunoprecipitation experiments confirmed that M6a interacts agonist-independently with MOPr in human embryonic kidney 293 cells co-expressing MOPr and M6a. Co-expression of MOPr with M6a, but not with M6b or DM20, exists in many brain regions, further supporting a specific interaction between MOPr and M6a. After opioid treatment M6a co-internalizes and then co-recycles with MOPr to cell surface in transfected human embryonic kidney 293 cells. Moreover, the interaction of M6a and MOPr augments constitutive and agonist-dependent internalization as well as the recycling rate of mu-opioid receptors. On the other hand, overexpression of a M6a-negative mutant prevents mu-opioid receptor endocytosis, demonstrating an essential role of M6a in receptor internalization. In addition, we demonstrated the interaction of M6a with a number of other G protein-coupled receptors (GPCRs) such as the delta-opioid receptor, cannabinoid receptor CB1, and somatostatin receptor sst2A, suggesting that M6a might play a general role in the regulation of certain GPCRs. Taken together, these data provide evidence that M6a may act as a scaffolding molecule in the regulation of GPCR endocytosis and intracellular trafficking.

  6. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  8. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice

    PubMed Central

    Smith, Craig M.; Walker, Lesley L.; Leeboonngam, Tanawan; McKinley, Michael J.; Denton, Derek A.; Lawrence, Andrew J.

    2016-01-01

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior. PMID:27849613

  9. Designing Safer Analgesics via μ-Opioid Receptor Pathways.

    PubMed

    Chan, H C Stephen; McCarthy, Dillon; Li, Jianing; Palczewski, Krzysztof; Yuan, Shuguang

    2017-11-01

    Pain is both a major clinical and economic problem, affecting more people than diabetes, heart disease, and cancer combined. While a variety of prescribed or over-the-counter (OTC) medications are available for pain management, opioid medications, especially those acting on the μ-opioid receptor (μOR) and related pathways, have proven to be the most effective, despite some serious side effects including respiration depression, pruritus, dependence, and constipation. It is therefore imperative that both academia and industry develop novel μOR analgesics which retain their opioid analgesic properties but with fewer or no adverse effects. In this review we outline recent progress towards the discovery of safer opioid analgesics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Designing Safer Analgesics via μ-Opioid Receptor Pathways

    PubMed Central

    Chan, H.C. Stephen; McCarthy, Dillon; Li, Jianing; Palczewski, Krzysztof; Yuan, Shuguang

    2017-01-01

    Pain is both a major clinical and economic problem, affecting more people than diabetes, heart disease, and cancer combined. While a variety of prescribed or over-the-counter (OTC) medications are available for pain management, opioid medications, especially those acting on the μ-opioid receptor (μOR) and related pathways, have proven to be the most effective, despite some serious side effects including respiration depression, pruritus, dependence, and constipation. It is therefore imperative that both academia and industry develop novel μOR analgesics which retain their opioid analgesic properties but with fewer or no adverse effects. In this review we outline recent progress towards the discovery of safer opioid analgesics. PMID:28935293

  11. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities.

    PubMed

    Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I

    2015-11-25

    In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.

  12. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    PubMed Central

    Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Rivera, Alicia; Van Craenenbroeck, Kathleen; Tarakanov, Alexander O.; Agnati, Luigi F.; Fuxe, Kjell

    2013-01-01

    The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR) exerts an antagonistic allosteric influence on the mu opioid receptor (MOR) function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR) heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR) in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor)-TRPV1 (capsaicin receptor) heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia. PMID:23956775

  13. Exploring Molecular Mechanisms of Ligand Recognition by Opioid Receptors with Metadynamics†

    PubMed Central

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible entry pathways of the non-selective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the β2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates), and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  14. Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics.

    PubMed

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-10-27

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible pathways for entry of the nonselective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the beta2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates) and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs.

  15. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    PubMed

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  16. Oscillation patterns are enhanced and firing threshold is lowered in medullary respiratory neuron discharges by threshold doses of a μ-opioid receptor agonist.

    PubMed

    Lalley, Peter M; Mifflin, Steve W

    2017-05-01

    μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N -methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO 2 /pH chemosensitivity. Copyright © 2017 the American Physiological Society.

  17. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn.

    PubMed

    Carey, A N; Borozny, K; Aldrich, J V; McLaughlin, J P

    2007-08-13

    Stress contributes to the reinstatement of cocaine-seeking behavior in abstinent subjects. Kappa-opioid receptor antagonists attenuate the behavioral effects of stress, potentially providing therapeutic value in treating cocaine abuse. Presently, the peptide arodyn produced long-lasting kappa-opioid receptor antagonism, suppressing kappa-opioid receptor agonist-induced antinociception at least 3 days after intracerebroventricular administration of 0.3 nmol. C57Bl/6J mice demonstrated cocaine-conditioned place preference, extinction over 3 weeks, and a subsequent reinstatement of place preference. Arodyn pretreatment suppressed stress-induced, but not cocaine-exposed, reinstatement of cocaine place preference. These results verify that arodyn and other kappa-opioid receptor antagonists may be useful therapeutics for cocaine abuse.

  18. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  19. Amygdala mu-opioid receptors mediate the motivating influence of cue-triggered reward expectations.

    PubMed

    Lichtenberg, Nina T; Wassum, Kate M

    2017-02-01

    Environmental reward-predictive stimuli can retrieve from memory a specific reward expectation that allows them to motivate action and guide choice. This process requires the basolateral amygdala (BLA), but little is known about the signaling systems necessary within this structure. Here we examined the role of the neuromodulatory opioid receptor system in the BLA in such cue-directed action using the outcome-specific Pavlovian-to-instrumental transfer (PIT) test in rats. Inactivation of BLA mu-, but not delta-opioid receptors was found to dose-dependently attenuate the ability of a reward-predictive cue to selectively invigorate the performance of actions directed at the same unique predicted reward (i.e. to express outcome-specific PIT). BLA mu-opioid receptor inactivation did not affect the ability of a reward itself to similarly motivate action (outcome-specific reinstatement), suggesting a more selective role for the BLA mu-opioid receptor in the motivating influence of currently unobservable rewarding events. These data reveal a new role for BLA mu-opioid receptor activation in the cued recall of precise reward memories and the use of this information to motivate specific action plans. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  1. Differentiation of δ, μ, and κ opioid receptor agonists based on pharmacophore development and computed physicochemical properties

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Villar, Hugo O.; Loew, Gilda H.

    2001-04-01

    Compounds that bind with significant affinity to the opioid receptor types, δ, μ, and κ, with different combinations of activation and inhibition at these three receptors could be promising behaviorally selective agents. Working on this hypothesis, the chemical moieties common to three different sets of opioid receptor agonists with significant affinity for each of the three receptor types δ, μ, or κ were identified. Using a distance analysis approach, common geometric arrangements of these chemical moieties were found for selected δ, μ, or κ opioid agonists. The chemical and geometric commonalities among agonists at each opioid receptor type were then compared with a non-specific opioid recognition pharmacophore recently developed. The comparison provided identification of the additional requirements for activation of δ, μ, and κ opioid receptors. The distance analysis approach was able to clearly discriminate κ-agonists, while global molecular properties for all compounds were calculated to identify additional requirements for activation of δ and μ receptors. Comparisons of the combined geometric and physicochemical properties calculated for each of the three sets of agonists allowed the determination of unique requirements for activation of each of the three opioid receptors. These results can be used to improve the activation selectivity of known opioid agonists and as a guide for the identification of novel selective opioid ligands with potential therapeutic usefulness.

  2. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking

    PubMed Central

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other

  3. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.

    PubMed

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British

  4. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls—antagonistic effects between opioid and serotonin-related genes

    PubMed Central

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-01-01

    Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362

  5. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.

    PubMed

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-07-01

    Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.

  6. Neuroprotection Against Hypoxic/Ischemic Injury: δ-Opioid Receptors and BDNF-TrkB Pathway.

    PubMed

    Sheng, Shiying; Huang, Jingzhong; Ren, Yi; Zhi, Feng; Tian, Xuansong; Wen, Guoqiang; Ding, Guanghong; Xia, Terry C; Hua, Fei; Xia, Ying

    2018-05-11

    The delta-opioid receptor (DOR) is one of three classic opioid receptors in the opioid system. It was traditionally thought to be primarily involved in modulating the transmission of messages along pain signaling pathway. Although there were scattered studies on its other neural functions, inconsistent results and contradicting conclusions were found in past literatures, especially in terms of DOR's role in a hypoxic/ischemic brain. Taking inspiration from the finding that the turtle brain exhibits a higher DOR density and greater tolerance to hypoxic/ischemic insult than the mammalian brain, we clarified DOR's specific role in the brain against hypoxic/ischemic injury and reconciled previous controversies in this aspect. Our serial studies have strongly demonstrated that DOR is a unique neuroprotector against hypoxic/ischemic injury in the brain, which has been well confirmed in current research. Moreover, mechanistic studies have shown that during acute phases of hypoxic/ischemic stress, DOR protects the neurons mainly by the stabilization of ionic homeostasis, inhibition of excitatory transmitter release, and attenuation of disrupted neuronal transmission. During prolonged hypoxia/ischemia, however, DOR neuroprotection involves a variety of signaling pathways. More recently, our data suggest that DOR may display its neuroprotective role via the BDNF-TrkB pathway. This review concisely summarizes the progress in this field. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    PubMed

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  8. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?

    PubMed Central

    Yoo, Ji Hoon; Kitchen, Ian; Bailey, Alexis

    2012-01-01

    Cocaine addiction has become a major concern in the UK as Britain tops the European ‘league table’ for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse. PMID:22428846

  9. Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement.

    PubMed

    Le Merrer, Julie; Plaza-Zabala, Ainhoa; Del Boca, Carolina; Matifas, Audrey; Maldonado, Rafael; Kieffer, Brigitte L

    2011-04-01

    Converging experimental data indicate that δ opioid receptors contribute to mediate drug reinforcement processes. Whether their contribution reflects a role in the modulation of drug reward or an implication in conditioned learning, however, has not been explored. In the present study, we investigated the impact of δ receptor gene knockout on reinforced conditioned learning under several experimental paradigms. We assessed the ability of δ receptor knockout mice to form drug-context associations with either morphine (appetitive)- or lithium (aversive)-induced Pavlovian place conditioning. We also examined the efficiency of morphine to serve as a positive reinforcer in these mice and their motivation to gain drug injections, with operant intravenous self-administration under fixed and progressive ratio schedules and at two different doses. Mutant mice showed impaired place conditioning in both appetitive and aversive conditions, indicating disrupted context-drug association. In contrast, mutant animals displayed intact acquisition of morphine self-administration and reached breaking-points comparable to control subjects. Thus, reinforcing effects of morphine and motivation to obtain the drug were maintained. Collectively, the data suggest that δ receptor activity is not involved in morphine reinforcement but facilitates place conditioning. This study reveals a novel aspect of δ opioid receptor function in addiction-related behaviors. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Cell-autonomous regulation of Mu-opioid receptor recycling by substance P.

    PubMed

    Bowman, Shanna L; Soohoo, Amanda L; Shiwarski, Daniel J; Schulz, Stefan; Pradhan, Amynah A; Puthenveedu, Manojkumar A

    2015-03-24

    How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.

  11. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands.

    PubMed

    Bender, Aaron M; Clark, Mary J; Agius, Michael P; Traynor, John R; Mosberg, Henry I

    2014-01-15

    In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference.

    PubMed

    Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-04-01

    Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  14. Regulation of µ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance

    PubMed Central

    Williams, John T.; Ingram, Susan L.; Henderson, Graeme; Chavkin, Charles; von Zastrow, Mark; Schulz, Stefan; Koch, Thomas; Evans, Christopher J.

    2013-01-01

    Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance. PMID:23321159

  15. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  16. Heteromerization of the μ- and δ-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor TraffickingS⃞

    PubMed Central

    Milan-Lobo, Laura

    2011-01-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [d-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows “biased antagonism,” whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer. PMID:21422164

  17. Curvilinear relationships between mu-opioid receptor labeling and undirected song in male European starlings (Sturnus vulgaris).

    PubMed

    Kelm-Nelson, Cynthia A; Riters, Lauren V

    2013-08-21

    Female-directed communication in male songbirds has been reasonably well studied; yet, relatively little is known about communication in other social contexts. Songbirds also produce song that is not clearly directed towards another individual (undirected song) when alone or in flocks. Although the precise functions of undirected song may differ across species, this type of song is considered important for flock maintenance, song learning or practice. Past studies show that undirected song is tightly coupled to analgesia and positive affective state, which are both mediated by opioid activity. Furthermore, labeling for the opioid met-enkephalin in the medial preoptic nucleus (POM) correlates positively with undirected song production. We propose that undirected song is facilitated and maintained by opioid receptor activity in the POM and other brain regions involved in affective state, analgesia, and social behavior. To provide insight into this hypothesis, we used immunohistochemistry to examine relationships between undirected song and mu-opioid receptors in male starlings. Polynomial regression analyses revealed significant inverted-U shaped relationships between measures of undirected song and mu-opioid receptor labeling in the POM, medial bed nucleus of the stria terminalis (BSTm), and periaqueductal gray (PAG). These results suggest that low rates of undirected song may stimulate and/or be maintained by mu-opioid receptor activity; however, it may be that sustained levels of mu-opioid receptor activity associated with high rates of undirected song cause mu-opioid receptor down-regulation. The results indicate that mu-opioid receptor activity in POM, BSTm, and PAG may underlie previous links identified between undirected song, analgesia, and affective state. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?

    PubMed

    Albert-Vartanian, A; Boyd, M R; Hall, A L; Morgado, S J; Nguyen, E; Nguyen, V P H; Patel, S P; Russo, L J; Shao, A J; Raffa, R B

    2016-08-01

    Optimal utilization of opioid analgesics is significantly limited by the central nervous system adverse effects and misuse/abuse potential of currently available drugs. It has been postulated that opioid-associated adverse effects and abuse potential would be greatly reduced if opioids could be excluded from reaching the brain. We review the basic science and clinical evidence of one such approach - peripherally restricted kappa-opioid receptor (KOR) agonists (pKORAs). Published and unpublished literature, websites and other sources were searched for basic science and clinical information related to the potential benefits and development of peripherally restricted kappa-opioid receptor agonists. Each source was summarized, reviewed and assessed. The historical development of pKORAs can be traced from the design of increasingly KOR-selective agonists, elucidation of the pharmacologic attributes of such compounds and strategies to restrict passage across the blood-brain barrier. Novel compounds are under development and have progressed to clinical trials. The results from recent clinical trials suggest that peripherally restricted opioids can be successfully designed and that they can retain analgesic efficacy with a more favourable adverse effect profile. © 2016 John Wiley & Sons Ltd.

  19. Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade

    PubMed Central

    Mills, Holly; Ortega, Amanda; Law, Wenjing; Hapiak, Vera; Summers, Philip; Clark, Tobias

    2016-01-01

    The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate

  20. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  1. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors.

    PubMed

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-03-28

    To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (K(ATP)) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open K(ATP) channels, relates to OIC.

  2. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  3. Functional role of peripheral opioid receptors in the regulation of cardiac spinal afferent nerve activity during myocardial ischemia

    PubMed Central

    Longhurst, John C.

    2013-01-01

    Thinly myelinated Aδ-fiber and unmyelinated C-fiber cardiac sympathetic (spinal) sensory nerve fibers are activated during myocardial ischemia to transmit the sensation of angina pectoris. Although recent observations showed that myocardial ischemia increases the concentrations of opioid peptides and that the stimulation of peripheral opioid receptors inhibits chemically induced visceral and somatic nociception, the role of opioids in cardiac spinal afferent signaling during myocardial ischemia has not been studied. The present study tested the hypothesis that peripheral opioid receptors modulate cardiac spinal afferent nerve activity during myocardial ischemia by suppressing the responses of cardiac afferent nerve to ischemic mediators like bradykinin and extracellular ATP. The nerve activity of single unit cardiac afferents was recorded from the left sympathetic chain (T2–T5) in anesthetized cats. Forty-three ischemically sensitive afferent nerves (conduction velocity: 0.32–3.90 m/s) with receptive fields in the left and right ventricles were identified. The responses of these afferent nerves to repeat ischemia or ischemic mediators were further studied in the following protocols. First, epicardial administration of naloxone (8 μmol), a nonselective opioid receptor antagonist, enhanced the responses of eight cardiac afferent nerves to recurrent myocardial ischemia by 62%, whereas epicardial application of vehicle (PBS) did not alter the responses of seven other cardiac afferent nerves to ischemia. Second, naloxone applied to the epicardial surface facilitated the responses of seven cardiac afferent nerves to epicardial ATP by 76%. Third, administration of naloxone enhanced the responses of seven other afferent nerves to bradykinin by 85%. In contrast, in the absence of naloxone, cardiac afferent nerves consistently responded to repeated application of ATP (n = 7) or bradykinin (n = 7). These data suggest that peripheral opioid peptides suppress the

  4. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    PubMed

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    PubMed

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Delta opioid receptor analgesia: recent contributions from pharmacology and molecular approaches

    PubMed Central

    Gavériaux-Ruff, Claire; Kieffer, Brigitte Lina

    2012-01-01

    Delta opioid receptors represent a promising target for the development of novel analgesics. A number of tools have been developed recently that have significantly improved our knowledge of delta receptor function in pain control. These include several novel delta agonists with potent analgesic properties, as well as genetic mouse models with targeted mutations in the delta opioid receptor gene. Also, recent findings have further documented the regulation of delta receptor function at cellular level, which impacts on the pain-reducing activity of the receptor. These regulatory mechanisms occur at transcriptional and post-translational levels, along agonist-induced receptor activation, signaling and trafficking, or in interaction with other receptors and neuromodulatory systems. All these tools for in vivo research, as well as proposed mechanisms at molecular level, have tremendously increased our understanding of delta receptor physiology, and contribute to designing innovative strategies for the treatment of chronic pain and other diseases such as mood disorders. PMID:21836459

  7. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  8. Altered expression of glial markers, chemokines, and opioid receptors in the spinal cord of type 2 diabetic monkeys.

    PubMed

    Kiguchi, Norikazu; Ding, Huiping; Peters, Christopher M; Kock, Nancy D; Kishioka, Shiroh; Cline, J Mark; Wagner, Janice D; Ko, Mei-Chuan

    2017-01-01

    Neuroinflammation is a pathological condition that underlies diabetes and affects sensory processing. Given the high prevalence of pain in diabetic patients and crosstalk between chemokines and opioids, it is pivotal to know whether neuroinflammation-associated mediators are dysregulated in the central nervous system of diabetic primates. Therefore, the aim of this study was to investigate whether mRNA expression levels of glial markers, chemokines, and opioid receptors are altered in the spinal cord and thalamus of naturally occurring type 2 diabetic monkeys (n=7) compared with age-matched non-diabetic monkeys (n=6). By using RT-qPCR, we found that mRNA expression levels of both GFAP and IBA1 were up-regulated in the spinal dorsal horn (SDH) of diabetic monkeys compared with non-diabetic monkeys. Among all chemokines, expression levels of three chemokine ligand-receptor systems, i.e., CCL2-CCR2, CCL3-CCR1/5, and CCL4-CCR5, were up-regulated in the SDH of diabetic monkeys. Moreover, in the SDH, seven additional chemokine receptors, i.e., CCR4, CCR6, CCR8, CCR10, CXCR3, CXCR5, and CXCR6, were also up-regulated in diabetic monkeys. In contrast, expression levels of MOP, KOP, and DOP, but not NOP receptors, were down-regulated in the SDH of diabetic monkeys, and the thalamus had fewer changes in the glial markers, chemokines and opioids. These findings indicate that neuroinflammation, manifested as glial activation and simultaneous up-regulation of multiple chemokine ligands and receptors, seems to be permanent in type 2 diabetic monkeys. As chemokines and opioids are important pain modulators, this first-in-primate study provides a translational bridge for determining the functional efficacy of spinal drugs targeting their signaling cascades. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis of iboga-like isoquinuclidines: Dual opioid receptors agonists having antinociceptive properties.

    PubMed

    Banerjee, Tuhin Suvro; Paul, Sibasish; Sinha, Surajit; Das, Sumantra

    2014-11-01

    Some novel iboga-analogues consisting of benzofuran moiety and dehydroisoquinuclidine ring connected by -CH2-, (CH2)2 and (CH2)3 linkers have been synthesized with the view to develop potential antinociceptive drugs. The compounds 14 and 21 showed binding at the μ-opioid receptor (MOR), while the compound 11a exhibited dual affinities at both MOR and κ-opioid receptor (KOR). MAP kinase activation indicated all three compounds have opioid agonistic properties. The presence of a double bond and endo-methylcarboxylate group in the dehydroisoquinuclidine ring and the benzofuran and methylene spacer appeared to be essential for opioid receptor binding. Further studies demonstrated 11a caused significant antinociception in mice in the hot-plate test which was comparable to that produced by morphine. The compound 11a was also found to be nontremorigenic unlike various iboga congeners. This study identifies a new pharmacophore which may lead to the development of suitable substitute of morphine in the treatment of pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Regulation of opioid receptor signalling: Implications for the development of analgesic tolerance

    PubMed Central

    2011-01-01

    Opiate drugs are the most effective analgesics available but their clinical use is restricted by severe side effects. Some of these undesired actions appear after repeated administration and are related to adaptive changes directed at counteracting the consequences of sustained opioid receptor activation. Here we will discuss adaptations that contribute to the development of tolerance. The focus of the first part of the review is set on molecular mechanisms involved in the regulation of opioid receptor signalling in heterologous expression systems and neurons. In the second part we assess how adaptations that take place in vivo may contribute to analgesic tolerance developed during repeated opioid administration. PMID:21663702

  11. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors

    PubMed Central

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-01-01

    AIM: To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). METHODS: The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. RESULTS: In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). CONCLUSION: Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open KATP channels, relates to OIC. PMID:22493554

  12. How Oliceridine (TRV-130) Binds and Stabilizes a μ-Opioid Receptor Conformational State That Selectively Triggers G Protein Signaling Pathways.

    PubMed

    Schneider, Sebastian; Provasi, Davide; Filizola, Marta

    2016-11-22

    Substantial attention has recently been devoted to G protein-biased agonism of the μ-opioid receptor (MOR) as an ideal new mechanism for the design of analgesics devoid of serious side effects. However, designing opioids with appropriate efficacy and bias is challenging because it requires an understanding of the ligand binding process and of the allosteric modulation of the receptor. Here, we investigated these phenomena for TRV-130, a G protein-biased MOR small-molecule agonist that has been shown to exert analgesia with less respiratory depression and constipation than morphine and that is currently being evaluated in human clinical trials for acute pain management. Specifically, we carried out multimicrosecond, all-atom molecular dynamics (MD) simulations of the binding of this ligand to the activated MOR crystal structure. Analysis of >50 μs of these MD simulations provides insights into the energetically preferred binding pathway of TRV-130 and its stable pose at the orthosteric binding site of MOR. Information transfer from the TRV-130 binding pocket to the intracellular region of the receptor was also analyzed, and was compared to a similar analysis carried out on the receptor bound to the classical unbiased agonist morphine. Taken together, these studies lead to a series of testable hypotheses of ligand-receptor interactions that are expected to inform the structure-based design of improved opioid analgesics.

  13. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  14. Bioactive Conformations of Two Seminal Delta Opioid Receptor Penta-peptides Inferred from Free-Energy Profiles

    PubMed Central

    Scarabelli, Guido; Provasi, Davide; Negri, Ana; Filizola, Marta

    2013-01-01

    Delta-opioid (DOP) receptors are members of the G protein-coupled receptor (GPCR) sub-family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu-opioid (MOP), kappa-opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr-D-Ala-GlyPhe-D-Leu) and DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta-peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over-simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond-scale molecular dynamics and bias-exchange metadynamics simulations. Free-energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. PMID:23564013

  15. Unexpected opioid activity profiles of analogues of the novel peptide kappa opioid receptor ligand CJ-15,208.

    PubMed

    Aldrich, Jane V; Kulkarni, Santosh S; Senadheera, Sanjeewa N; Ross, Nicolette C; Reilley, Kate J; Eans, Shainnel O; Ganno, Michelle L; Murray, Thomas F; McLaughlin, Jay P

    2011-09-05

    An alanine scan was performed on the novel κ opioid receptor (KOR) peptide ligand CJ-15,208 to determine which residues contribute to the potent in vivo agonist activity observed for the parent peptide. These cyclic tetrapeptides were synthesized by a combination of solid-phase peptide synthesis of the linear precursors, followed by cyclization in solution. Like the parent peptide, each of the analogues exhibited agonist activity and KOR antagonist activity in an antinociceptive assay in vivo. Unlike the parent peptide, the agonist activity of the potent analogues was mediated predominantly, if not exclusively, by μ opioid receptors (MOR). Thus analogues 2 and 4, in which one of the phenylalanine residues was replaced by alanine, exhibited both potent MOR agonist activity and KOR antagonist activity in vivo. These peptides represent novel lead compounds for the development of peptide-based opioid analgesics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    PubMed Central

    Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-01

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106

  17. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  18. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGES

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; ...

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH 2 (DIPP-NH 2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  19. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  20. mu-Opioid receptor-independent fashion of the suppression of sodium currents by mu-opioid analgesics in thalamic neurons.

    PubMed

    Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2009-03-27

    Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.

  1. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  2. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors.

    PubMed

    Hijazi, Mohamad Ali; El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  3. New 2',6'-dimethyl-L-tyrosine (Dmt) opioid peptidomimetics based on the Aba-Gly scaffold. Development of unique mu-opioid receptor ligands.

    PubMed

    Ballet, Steven; Salvadori, Severo; Trapella, Claudio; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Negri, Lucia; Giannini, Elisa; Lattanzi, Roberta; Tourwé, Dirk; Balboni, Gianfranco

    2006-06-29

    The Aba-Gly scaffold, incorporated into Dmt-Tic ligands (H-Dmt-Tic-Gly-NH-CH2-Ph, H-Dmt-Tic-Gly-NH-Ph, H-Dmt-Tic-NH-CH2-Bid), exhibited mixed micro/delta or delta opioid receptor activities with micro agonism. Substitution of Tic by Aba-Gly coupled to -NH-CH2-Ph (1), -NH-Ph (2), or -Bid (Bid=1H-benzimidazole-2-yl) (3) shifted affinity (Ki(micro)=0.46, 1.48, and 19.9 nM, respectively), selectivity, and bioactivity to micro-opioid receptors. These compounds represent templates for a new class of lead opioid agonists that are easily synthesized and suitable for therapeutic pain relief.

  4. Endogenous opioids and feeding behavior: a 30-year historical perspective.

    PubMed

    Bodnar, Richard J

    2004-04-01

    This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed. Copyright 2004 Elsevier Inc.

  5. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pharmacological Consequence of the A118G Mu Opioid Receptor Polymorphism on Morphine- and Fentanyl-mediated Modulation of Ca2+ Channels in Humanized Mouse Sensory Neurons

    PubMed Central

    Mahmoud, Saifeldin; Thorsell, Annika; Sommer, Wolfgang H.; Heilig, Markus; Holgate, Joan K.; Bartlett, Selena E.; Ruiz-Velasco, Victor

    2011-01-01

    Background The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with inter-individual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of the present study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods The coupling of wild-type and mutant mu opioid receptors to voltage-gated Ca2+ channels after exposure to either ligand was examined by employing the whole-cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. Results The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately 5-fold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared to the 118AA mice. Conclusions This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor’s pharmacology in sensory neurons. Additionally, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. PMID:21926562

  7. Kappa Opioid Receptors Mediate Heterosynaptic Suppression of Hippocampal Inputs in the Rat Ventral Striatum

    PubMed Central

    2017-01-01

    Kappa opioid receptors (KORs) are highly enriched within the ventral striatum (VS) and are thought to modulate striatal neurotransmission. This includes presynaptic inhibition of local glutamatergic release from excitatory inputs to the VS. However, it is not known which inputs drive this modulation and what impact they have on the local circuit dynamics within the VS. Individual medium spiny neurons (MSNs) within the VS serve as a site of convergence for glutamatergic inputs arising from the PFC and limbic regions, such as the hippocampus (HP). Recent data suggest that competition can arise between these inputs with robust cortical activation leading to a reduction in ongoing HP-evoked MSN responses. Here, we investigated the contribution of KOR signaling in PFC-driven heterosynaptic suppression of HP inputs onto MSNs using whole-cell patch-clamp recordings in slices from adult rats. Optogenetically evoked HP EPSPs were greatly attenuated after a short latency (50 ms) following burst-like PFC electrical stimulation, and the magnitude of this suppression was partially reversed following blockade of GABAARs (GABA Type A receptors), but not GABABRs (GABA Type B receptors). A similar reduction in suppression was observed in the presence of the KOR antagonist, norBNI. Combined blockade of local GABAARs and KORs resulted in complete blockade of PFC-induced heterosynaptic suppression of less salient HP inputs. These findings highlight a mechanism by which strong, transient PFC activity can take precedence over other excitatory inputs to the VS. SIGNIFICANCE STATEMENT Emerging evidence suggests that kappa opioid receptor (KOR) activation can selectively modulate striatal glutamatergic inputs onto medium spiny neurons (MSNs). In this study, we found that robust cortical stimulation leads to a reduction in ongoing hippocampal-evoked MSNs responses through the combined recruitment of local inhibitory mechanisms and activation of presynaptic KORs in the ventral striatum (VS

  8. The role of δ-opioid receptors in learning and memory underlying the development of addiction.

    PubMed

    Klenowski, Paul; Morgan, Michael; Bartlett, Selena E

    2015-01-01

    Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  9. Toward an effective peripheral visceral analgesic: responding to the national opioid crisis.

    PubMed

    Camilleri, Michael

    2018-06-01

    This minireiew summarizes recent new developments in visceral analgesics. This promising field is important, as a new approach to address abdominal pain with peripheral visceral analgesics is considered a key approach to addressing the current opioid crisis. Some of the novel compounds address peripheral pain mechanisms through modulation of opioid receptors via biased ligands, nociceptin/orphanin FQ opioid peptide (NOP) receptor, or dual action on NOP and μ-opioid receptor, buprenorphine and morphiceptin analogs. Other compounds target nonopioid mechanisms, including cannabinoid (CB2), N-methyl-d-aspartate, calcitonin gene-related peptide, estrogen, and adenosine A 2B receptors and transient receptor potential (TRP) channels (TRPV1, TRPV4, and TRPM8). Although current evidence is based predominantly on animal models of visceral pain, early human studies also support the evidence from the basic and animal research. This augurs well for the development of nonaddictive, visceral analgesics for treatment of chronic abdominal pain, an unmet clinical need.

  10. New features of the delta opioid receptor: conformational properties of deltorphin I analogues.

    PubMed

    Balboni, G; Marastoni, M; Picone, D; Salvadori, S; Tancredi, T; Temussi, P A; Tomatis, R

    1990-06-15

    Deltorphin I is an opioid peptide of sequence H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2, recently isolated from the skin of Phyllomedusa bicolor. Its enormous selectivity towards the delta opioid receptor and the similarity of the conformation of the N-terminal part of the sequence with that of dermorphin (H-Tyr-D-Ala-he-Gly-Tyr-Pro-Ser-NH2), a mu selective peptide, prompted the synthesis, biological evaluation and comparative conformational study of four analogs. A 1H-NMR study showed that the conformational preferences of the N-terminal sequences of all peptides are similar. The different selectivities towards opioid receptors have been interpreted in terms of charge effects in the interaction with the membrane and at the receptor site and of hydrophobicity of the C-terminal part, when structured in a folded conformation.

  11. m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs.

    PubMed

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Nogueira, Cristina Wayne

    2018-03-02

    Depressive symptoms precipitated by stress are prevalent in population. In experimental models of social stress, endogenous opioids mediate different aspects of defensive and submissive behaviors. The present study investigated the opioid receptors, mitogen-activated protein kinase (MAPKs) and protein kinase B (Akt) contribution to m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on social avoidance induced by social defeat stress (SDS). Adult Swiss mice were subjected to SDS and treated with (m-CF 3 -PhSe) 2 (5 to 25mg/kg) for 7days. After that, the mice performed locomotor and social avoidance tests. The opioid receptors, MAPKs and Akt protein contents were determined in the prefrontal cortical samples of mice. Firstly, the mice were segregated in susceptible or resilient subpopulation based on their social avoidance induced by stress. (m-CF 3 -PhSe) 2 (25mg/kg) was effective against the stress-induced social avoidance and improved social interaction behavior in mice. SDS increased the μ and κ protein contents but reduced those of δ opioid receptors in susceptible mice. Resilient and (m-CF 3 -PhSe) 2 -treated mice had no alteration in the levels of opioid receptors. Moreover, (m-CF 3 -PhSe) 2 was effective against the increase of c-Jun N-terminal kinase (JNK) and the decrease of Akt phosphorylation protein contents induced by SDS in susceptible mice. The protein content of extracellular signal-regulated kinase (ERK) phosphorylation was reduced in both susceptible and resilient mice, whereas p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation was increased only in resilient mice. (m-CF 3 -PhSe) 2 was partially effective against the pERK decrease and ineffective against the increase in p38 MAPK phosphorylation in mice subjected to SDS. These results suggest that the modulation of protein contents of opioid receptors, JNK and Akt phosphorylation is associated with resilience to SDS promoted by (m-CF 3 -PhSe) 2 in mice. Copyright

  12. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0076 TITLE: Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors PRINCIPAL...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...SUBTITLE Atypical Opioid Mechanisms of Control of Injury-Induced 5a. CONTRACT NUMBER Cutaneous Pain by Delta Receptors 5b. GRANT NUMBER 5c. PROGRAM

  13. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    PubMed Central

    El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome. PMID:28280516

  14. Opioid receptors regulate blocking and overexpectation of fear learning in conditioned suppression.

    PubMed

    Arico, Carolyn; McNally, Gavan P

    2014-04-01

    Endogenous opioids play an important role in prediction error during fear learning. However, the evidence for this role has been obtained almost exclusively using the species-specific defense response of freezing as the measure of learned fear. It is unknown whether opioid receptors regulate predictive fear learning when other measures of learned fear are used. Here, we used conditioned suppression as the measure of learned fear to assess the role of opioid receptors in fear learning. Experiment 1a studied associative blocking of fear learning. Rats in an experimental group received conditioned stimulus A (CSA) + training in Stage I and conditioned stimulus A and B (CSAB) + training in Stage II, whereas rats in a control group received only CSAB + training in Stage II. The prior fear conditioning of CSA blocked fear learning to conditioned stimulus B (CSB) in the experimental group. In Experiment 1b, naloxone (4 mg/kg) administered before Stage II prevented this blocking, thereby enabling normal fear learning to CSB. Experiment 2a studied overexpectation of fear. Rats received CSA + training and CSB + training in Stage I, and then rats in the experimental group received CSAB + training in Stage II whereas control rats did not. The Stage II compound training of CSAB reduced fear to CSA and CSB on test. In Experiment 2b, naloxone (4 mg/kg) administered before Stage II prevented this overexpectation. These results show that opioid receptors regulate Pavlovian fear learning, augmenting learning in response to positive prediction error and impairing learning in response to negative prediction error, when fear is assessed via conditioned suppression. These effects are identical to those observed when freezing is used as the measure of learned fear. These findings show that the role for opioid receptors in regulating fear learning extends across multiple measures of learned fear.

  15. Opioid receptors and their ligands in the musculoskeletal system and relevance for pain control.

    PubMed

    Spetea, Mariana

    2013-01-01

    Interest in opioid drugs like morphine, as the oldest and most potent pain-killing agents known, has been maintained through the years. One of the most frequent chronic pain sensations people experience is associated with pathological conditions of the musculoskeletal system. Chronic musculoskeletal pain is a major health problem, and an adequate management requires understanding of both peripheral and central components, with more attention drawn to the former. Intense experimental and clinical research activities resulted in important knowledge on the mechanisms and functions of the endogenous opioid system located in the periphery. This review describes the occurrence and distribution of endogenous opioids and their receptors in the musculoskeletal system, and their role in pain control in musculoskeletal disorders, such as rheumatoid arthritis and osteoarthritis. Using different techniques, including immunohistochemistry, electron microscopy or radioimmunoassay, expression of enkephalins, dynorphin, β-endorphin, and endomorphins was demonstrated in musculoskeletal tissues of animals and humans. Localization of opioid peptides was found in synovial membrane, periosteum, bone and bone marrow, loose connective tissue, the paratenon and musculotendinous junction of the achilles tendon. Animal and human studies have also demonstrated expression of µ, δ and κ opioid receptor proteins in musculoskeletal tissues using radioligand binding assays, autoradiography, electrophysiology, immunohistochemistry and Western blotting. Opioid receptor gene expression was reported based on polymerase chain reaction and in situ hybridization techniques. Combining morphological and quantitative approaches, important evidence that the musculoskeletal apparatus is equipped with a peripheral opioid system is provided. Demonstration of the occurrence of an endogenous opioid system in bone and joint tissues represents an essential step for defining novel pharmacological strategies to

  16. Region specific up-regulation of oxytocin receptors in the opioid oprm1 (-/-) mouse model of autism.

    PubMed

    Gigliucci, Valentina; Leonzino, Marianna; Busnelli, Marta; Luchetti, Alessandra; Palladino, Viola Stella; D'Amato, Francesca R; Chini, Bice

    2014-01-01

    Autism spectrum disorders (ASDs) are characterized by impaired communication, social impairments, and restricted and repetitive behaviors and interests. Recently, altered motivation and reward processes have been suggested to participate in the physiopathology of ASDs, and μ-opioid receptors (MORs) have been investigated in relation to social reward due to their involvement in the neural circuitry of reward. Mice lacking a functional MOR gene (Oprm1 (-/-) mice) display abnormal social behavior and major autistic-like core symptoms, making them an animal model of autism. The oxytocin (OXT) system is a key regulator of social behavior and co-operates with the opioidergic system in the modulation of social behavior. To better understand the opioid-OXT interplay in the central nervous system, we first determined the expression of the oxytocin receptor (OXTR) in the brain of WT C57BL6/J mice by quantitative autoradiography; we then evaluated OXTR regional alterations in Oprm1 (-/-) mice. Moreover, we tested these mice in a paradigm of social behavior, the male-female social interaction test, and analyzed the effects of acute intranasal OXT treatment on their performance. In autoradiography, Oprm1 (-/-) mice selectively displayed increased OXTR expression in the Medial Anterior Olfactory Nucleus, the Central and Medial Amygdaloid nuclei, and the Nucleus Accumbens. Our behavioral results confirmed that Oprm1 (-/-) male mice displayed social impairments, as indicated by reduced ultrasonic calls, and that these were rescued by a single intranasal administration of OXT. Taken together, our results provide evidence of an interaction between OXT and opioids in socially relevant brain areas and in the modulation of social behavior. Moreover, they suggest that the oxytocinergic system may act as a compensative mechanism to bypass and/or restore alterations in circuits linked to impaired social behavior.

  17. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with

  18. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection.

    PubMed

    Hagan, M M; Rushing, P A; Benoit, S C; Woods, S C; Seeley, R J

    2001-03-01

    Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.

  19. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors

  20. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    PubMed Central

    Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.

    2015-01-01

    SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029

  1. Prospects for Creation of Cardioprotective and Antiarrhythmic Drugs Based on Opioid Receptor Agonists

    PubMed Central

    Maslov, Leonid N; Oeltgen, Peter R.; Naryzhnaya, Natalia V.; Pei, Jian‐Ming; Brown, Stephen A.; Lishmanov, Yury B.; Downey, James M.

    2016-01-01

    Abstract It has now been demonstrated that the μ, δ1, δ2, and κ1 opioid receptor (OR) agonists represent the most promising group of opioids for the creation of drugs enhancing cardiac tolerance to the detrimental effects of ischemia/reperfusion (I/R). Opioids are able to prevent necrosis and apoptosis of cardiomyocytes during I/R and improve cardiac contractility in the reperfusion period. The OR agonists exert an infarct‐reducing effect with prophylactic administration and prevent reperfusion‐induced cardiomyocyte death when ischemic injury of heart has already occurred; that is, opioids can mimic preconditioning and postconditioning phenomena. Furthermore, opioids are also effective in preventing ischemia‐induced arrhythmias. PMID:27197922

  2. Mechanistic Insights into the Allosteric Modulation of Opioid Receptors by Sodium Ions

    PubMed Central

    2015-01-01

    The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation. PMID:25073009

  3. Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions.

    PubMed

    Shang, Yi; LeRouzic, Valerie; Schneider, Sebastian; Bisignano, Paola; Pasternak, Gavril W; Filizola, Marta

    2014-08-12

    The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation.

  4. Recovery from Mu-opioid Receptor Desensitization following Chronic Treatment with Morphine and Methadone

    PubMed Central

    Quillinan, Nidia; Lau, Elaine; Virk, Michael; von Zastrow, Mark; Williams, John T

    2011-01-01

    Chronic treatment with morphine results in a decrease in mu-opioid receptor sensitivity, an increase in acute desensitization and a reduction in the recovery from acute desensitization in locus coeruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares mu-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6–7 days with a range of doses of morphine (60, 30, 15 mg/kg/day) and methadone (60, 30, 5 mg/kg/day) applied by subcutaneous implantation of osmotic mini pumps. Mice were treated with 45 mg/kg/day. In morphine treated animals, recovery from acute [Met]5enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine treated animals were not observed in animals lacking β-arrestin2. Further, pharmacological inhibition of GRK2, while not affecting the ability of [Met]5enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather then serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin dependent desensitization is another way in which morphine and methadone are distinguished. PMID:21430144

  5. Inhibition of Opioid Transmission at the μ-Opioid Receptor Prevents Both Food Seeking and Binge-Like Eating

    PubMed Central

    Giuliano, Chiara; Robbins, Trevor W; Nathan, Pradeep J; Bullmore, Edward T; Everitt, Barry J

    2012-01-01

    Endogenous opioids, and in particular μ-opioid receptors, have been linked to hedonic and rewarding mechanisms engaged during palatable food intake. The aim of this study was to investigate the effects of GSK1521498, a novel μ-opioid receptor antagonist, on food-seeking behavior and on binge-like eating of a highly preferred chocolate diet. Food seeking was measured in rats trained to respond for chocolate under a second-order schedule of reinforcement, in which prolonged periods of food-seeking behavior were maintained by contingent presentation of a reward-associated conditioned reinforcer. After reaching a stable baseline in both procedures, animals were treated with GSK1521498 (0.1, 1, and 3 mg/kg; IP) or naltrexone (NTX, 0.1, 1, and 3 mg/kg; SC). The binge eating model was characterized by four temporally contiguous phases: 1-h chow access, 2-h food deprivation, 10-min chow access, and 10-min access to either chocolate-flavoured food or standard chow. During training the rats developed binge-like hyperphagia of palatable food and anticipatory chow hypophagia (anticipatory negative contrast). Both compounds reduced binge-like palatable food hyperphagia. However, GSK1521498 reduced the impact of high hedonic value on ingestion more specifically than NTX, abolishing anticipatory chow hypophagia. GSK1521498 also dose-dependently reduced food seeking both before and after food ingestion, whereas NTX reduced food seeking only after food ingestion. Thus, while both drugs affected the hedonic value of the preferred food, GSK1521498 also directly decreased incentive motivation for chocolate. Selective μ-opioid receptor antagonism by GSK1521498 may have utility as a treatment for reducing maladaptive, palatability-driven eating behavior by reducing the motivational properties of stimuli that elicit the binge eating commonly associated with obesity. PMID:22805601

  6. Involvement of substance P and central opioid receptors in morphine modulation of the CHS response.

    PubMed

    Nelson, C J; Lysle, D T

    2001-04-02

    Morphine administration prior to challenge with the antigen 2,4-dinitro-fluorobenzene increases the contact hypersensitivity (CHS) response in rats. The present study extended these findings by showing that central, but not systemic, administration of N-methylnaltrexone antagonized the morphine-induced enhancement of the CHS response. The importance of the neuroimmune mediator substance P was shown via the attenuation of the morphine-induced enhancement following both systemic and topical administration of the NK-1 antagonist WIN51,708. Taken together, the findings of the present study provide new data showing that central opioid receptors and peripheral substance P are involved in the morphine-induced enhancement of the CHS response.

  7. Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids.

    PubMed

    Song, Bingbing; Marvizón, Juan Carlos G

    2003-03-01

    To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.

  8. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    PubMed Central

    Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β-endorphin. Omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 μM) or 50 mM KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP and were Ca2+-dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are mainly cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, since the potencies of endomorphin-1 and -2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons. PMID:12629189

  9. Substance P and dopamine interact to modulate the distribution of delta-opioid receptors on cholinergic interneurons in the striatum.

    PubMed

    Heath, Emily; Chieng, Billy; Christie, Macdonald J; Balleine, Bernard W

    2018-05-01

    It has been recently demonstrated that predictive learning induces a persistent accumulation of delta-opioid receptors (DOPrs) at the somatic membrane of cholinergic interneurons (CINs) in the nucleus accumbens shell (Nac-S). This accumulation is required for predictive learning to influence subsequent choice between goal-directed actions. The current experiments investigated the local neurochemical events responsible for this translocation. We found that (1) local administration of substance P into multiple striatal sub-territories induced DOPr translocation and (2) that this effect was mediated by the NK1 receptor, likely through its expression on CINs. Interestingly, whereas intrastriatal infusion of the D1 agonist chloro-APB reduced the DOPr translocation on CINs and infusion of the D2 agonist quinpirole had no effect, co-administration of both agonists again generated DOPr translocation, suggesting the effect of the D1 agonist alone was due to receptor internalisation. In support of this, local administration of cocaine was found to increase DOPr translocation as was chloro-APB when co-administered with the DOPr antagonist naltrindole. These studies provide the first evidence of delta-opioid receptor translocation in striatal cholinergic interneurons outside of the accumbens shell and suggest that, despite differences in local striatal neurochemical microenvironments, a similar molecular mechanism - involving an interaction between dopamine and SP signalling via NK1R - regulates DOPr translocation in multiple striatal regions. To our knowledge, this represents a novel mechanism by which DOPr distribution is regulated that may be particularly relevant to learning-induced DOPr trafficking. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines

    PubMed Central

    Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

    2011-01-01

    Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

  11. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less

  12. [Functional selectivity of opioid receptors ligands].

    PubMed

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  13. Site-specific effects of the nonsteroidal anti-inflammatory drug lysine clonixinate on rat brain opioid receptors.

    PubMed

    Ortí, E; Coirini, H; Pico, J C

    1999-04-01

    In addition to effects in the periphery through inhibition of prostaglandin synthesis, several lines of evidence suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) act in the central nervous system. The possibility that the central action of NSAIDs involves regulation of opioid receptors was investigated by quantitative autoradiography of mu, delta, and kappa sites in rat brain slices. Increased (p < 0.05) labeling of mu receptors was observed in thalamic nuclei, gyrus dentate, and layers of the parietal cortex of rats treated for 10 days with lysine clonixinate. Labeling of delta receptors was lower in the lateral septum, and kappa sites decreased in thalamic nuclei. These effects were not mediated through direct interaction with opioid-binding sites, since receptor-binding assays using rat brain membranes confirmed that clonixinate up to 1 x 10(-4) mol/l does not inhibit mu, delta, and kappa receptor specific binding. Central effects of NSAIDs might, therefore, involve interaction with the opioid receptor system through indirect mechanisms.

  14. Continuous delivery of naltrexone and nalmefene leads to tolerance in reducing alcohol drinking and to supersensitivity of brain opioid receptors.

    PubMed

    Korpi, Esa R; Linden, Anni-Maija; Hytönen, Heidi R; Paasikoski, Nelli; Vashchinkina, Elena; Dudek, Mateusz; Herr, Deron R; Hyytiä, Petri

    2017-07-01

    Opioid antagonist treatments reduce alcohol drinking in rodent models and in alcohol-dependent patients, with variable efficacy across different studies. These treatments may suffer from the development of tolerance and opioid receptor supersensitivity, as suggested by preclinical models showing activation of these processes during and after subchronic high-dose administration of the short-acting opioid antagonist naloxone. In the present study, we compared equipotent low and moderate daily doses of naltrexone and nalmefene, two opioid antagonists in the clinical practice for treatment of alcoholism. The antagonists were given here subcutaneously for 7 days either as daily injections or continuous osmotic minipump-driven infusions to alcohol-preferring AA rats having trained to drink 10% alcohol in a limited access protocol. One day after stopping the antagonist treatment, [ 35 S]GTPγS autoradiography on brain cryostat sections was carried out to examine the coupling of receptors to G protein activation. The results prove the efficacy of repeated injections over infused opioid antagonists in reducing alcohol drinking. Tolerance to the reducing effect on alcohol drinking and to the enhancement of G protein coupling to μ-opioid receptors in various brain regions were consistently detected only after infused antagonists. Supersensitivity of κ-opioid receptors was seen in the ventral and dorsal striatal regions especially by infused nalmefene. Nalmefene showed no clear agonistic activity in rat brain sections or at human recombinant κ-opioid receptors. The findings support the as-needed dosing practice, rather than the standard continual dosing, in the treatment of alcoholism with opioid receptor antagonists. © 2016 Society for the Study of Addiction.

  15. Control of glutamate release by calcium channels and κ-opioid receptors in rodent and primate striatum

    PubMed Central

    Hill, M P; Brotchie, J M

    1999-01-01

    The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release

  16. δ-Opioid and Dopaminergic Processes in Accumbens Shell Modulate the Cholinergic Control of Predictive Learning and Choice

    PubMed Central

    Laurent, Vincent; Bertran-Gonzalez, Jesus; Chieng, Billy C.

    2014-01-01

    Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions. PMID:24453326

  17. Immunoneutralization of Agmatine Sensitizes Mice to μ-Opioid Receptor Tolerance

    PubMed Central

    Wade, Carrie L.; Eskridge, Lori L.; Nguyen, H. Oanh X.; Kitto, Kelley F.; Stone, Laura S.; Wilcox, George

    2009-01-01

    Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-d-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two μ-opioid receptor-selective agonists, [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity. PMID:19684255

  18. Immunoneutralization of agmatine sensitizes mice to micro-opioid receptor tolerance.

    PubMed

    Wade, Carrie L; Eskridge, Lori L; Nguyen, H Oanh X; Kitto, Kelley F; Stone, Laura S; Wilcox, George; Fairbanks, Carolyn A

    2009-11-01

    Systemically or centrally administered agmatine (decarboxylated arginine) prevents, moderates, or reverses opioid-induced tolerance and self-administration, inflammatory and neuropathic pain, and sequelae associated with ischemia and spinal cord injury in rodents. These behavioral models invoke the N-methyl-D-aspartate (NMDA) receptor/nitric-oxide synthase cascade. Agmatine (AG) antagonizes the NMDA receptor and inhibits nitric-oxide synthase in vitro and in vivo, which may explain its effect in models of neural plasticity. Agmatine has been detected biochemically and immunohistochemically in the central nervous system. Consequently, it is conceivable that agmatine operates in an anti-glutamatergic manner in vivo; the role of endogenous agmatine in the central nervous system remains minimally defined. The current study used an immunoneutralization strategy to evaluate the effect of sequestration of endogenous agmatine in acute opioid analgesic tolerance in mice. First, intrathecal pretreatment with an anti-AG IgG (but not normal IgG) reversed an established pharmacological effect of intrathecal agmatine: antagonism of NMDA-evoked behavior. This result justified the use of anti-AG IgG to sequester endogenous agmatine in vivo. Second, intrathecal pretreatment with the anti-AG IgG sensitized mice to induction of acute spinal tolerance of two micro-opioid receptor-selective agonists, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin and endomorphin-2. A lower dose of either agonist that, under normal conditions, produces moderate or no tolerance was tolerance-inducing after intrathecal pretreatment of anti-AG IgG (but not normal IgG). The effect of the anti-AG IgG lasted for at least 24 h in both NMDA-evoked behavior and the acute opioid tolerance. These results suggest that endogenous spinal agmatine may moderate glutamate-dependent neuroplasticity.

  19. AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence.

    PubMed

    Hu, Xiaoyu; Tian, Xuebi; Guo, Xiao; He, Ying; Chen, Haijun; Zhou, Jia; Wang, Zaijie Jim

    2018-04-25

    Development of opioid tolerance and dependence hinders the use of opioids for the treatment of chronic pain. In searching for the mechanism and potential intervention for opioid tolerance and dependence, we studied the action of two positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR PAMs). In mice treated with morphine (100 mg/kg, s.c.), acute morphine tolerance and dependence developed in 4-6 h. Treatment with aniracetam, a well-established AMPAR PAM, was able to completely prevent and reverse the development of acute antinociceptive tolerance to morphine. Partial, but significant, effects of aniracetam on acute morphine induced-physical dependence were also observed. Moreover, aniracetam significantly reversed the established morphine tolerance and dependence in a chronic model of morphine tolerance and dependence produced by intermittent morphine (10 mg/kg, s.c. for 5d). In addition, HJC0122, a new AMPAR PAM was found to have similar effects as aniracetam but with a higher potency. These previously undisclosed actions of AMPAR PAMs are intriguing and may shed lights on understanding the APMA signaling pathway in opioid addiction. Moreover, these data suggest that AMPAR PAMs may have utility in preventing and treating morphine tolerance and dependence. Copyright © 2018. Published by Elsevier Ltd.

  20. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction.

    PubMed

    Bond, C; LaForge, K S; Tian, M; Melia, D; Zhang, S; Borg, L; Gong, J; Schluger, J; Strong, J A; Leal, S M; Tischfield, J A; Kreek, M J; Yu, L

    1998-08-04

    Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.

  1. Multiple opioid receptors in endotoxic shock: evidence for delta involvement and mu-delta interactions in vivo.

    PubMed Central

    D'Amato, R; Holaday, J W

    1984-01-01

    The use of selective delta and mu opioid antagonists has provided evidence that delta opioid receptors within the brain mediate the endogenous opioid component of endotoxic shock hypotension. The selectivity of these delta and mu antagonists was demonstrated by their differing effects upon morphine analgesia and endotoxic hypotension. The mu antagonist beta-funaltrexamine, at doses that antagonized morphine analgesia, failed to alter shock, whereas the delta antagonist M 154,129: [N,N-bisallyl-Tyr-Gly-Gly-psi-(CH2S)-Phe-Leu-OH] (ICI) reversed shock at doses that failed to block morphine analgesia. Therefore, selective delta antagonists may have therapeutic value in reversing circulatory shock without altering the analgesic actions of endogenous or exogenous opioids. Additional data revealed that prior occupancy of mu binding sites by irreversible opioid antagonists may allosterically attenuate the actions of antagonists with selectivity for delta binding sites. For endogenous opioid systems, this observation provides an opportunity to link in vivo physiological responses with receptor-level biochemical interactions. PMID:6326151

  2. Asymmetric synthesis and in vitro and in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy μ opioid receptoropioid receptor ligands.

    PubMed

    Bender, Aaron M; Griggs, Nicholas W; Anand, Jessica P; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2015-08-19

    We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine.

  3. Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-09-01

    Naltrexone (NTX) is an opioid antagonist that inhibits or accelerates cell proliferation in vivo when utilized in a low (LDN) or high (HDN) dose, respectively. The mechanism of opioid antagonist action on growth is not well understood. We established a tissue culture model of LDN and HDN using short-term and continuous opioid receptor blockade, respectively, in human ovarian cancer cells, and found that the duration of opioid receptor blockade determines cell proliferative response. The alteration of growth by NTX also was detected in cells representative of pancreatic, colorectal and squamous cell carcinomas. The opioid growth factor (OGF; [Met(5)]-enkephalin) and its receptor (OGFr) were responsible for mediating the action of NTX on cell proliferation. NTX upregulated OGF and OGFr at the translational but not at the transcriptional level. The mechanism of inhibition by short-term NTX required p16 and/or p21 cyclin-dependent inhibitory kinases, but was not dependent on cell survival (necrosis, apoptosis). Sequential administration of short-term NTX and OGF had a greater inhibitory effect on cell proliferation than either agent alone. Given the parallels between short-term NTX in vitro and LDN in vivo, we now demonstrate at the molecular level that the OGF-OGFr axis is a common pathway that is essential for the regulation of cell proliferation by NTX.

  4. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    PubMed Central

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  5. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization.

    PubMed

    Chen, W; Marvizón, J C G

    2009-06-16

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.

  6. Anti-nociceptive effect of patchouli alcohol: Involving attenuation of cyclooxygenase 2 and modulation of mu-opioid receptor.

    PubMed

    Yu, Xuan; Wang, Xin-Pei; Yan, Xiao-Jin; Jiang, Jing-Fei; Lei, Fan; Xing, Dong-Ming; Guo, Yue-Ying; Du, Li-Jun

    2017-08-09

    To explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels. The acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confifirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA's target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA. PA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect. Both COX2 and MOR are involved in the mechanism of PA's anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA's effect on MOR.

  7. Targeting delta opioid receptors for pain treatment: drugs in phase I and II clinical development.

    PubMed

    Spahn, Viola; Stein, Christoph

    2017-02-01

    Opioids are widely used to treat severe pain. Most clinically used opioids activate µ-opioid receptors (MOR). Their ligands induce potent analgesia but also adverse effects. The δ-opioid receptor (DOR) is another member of the opioid receptor family that has been under intense investigation with the aim to avoid MOR-induced side effects. Areas covered: This article reviews DOR ligands which appeared to be promising after preclinical evaluation. A literature search using Pubmed, Cochrane library, ClinicalTrials.gov, EudraCT, AdisInsight database and EBSCO Online Library was conducted. Out of numerous newly synthesized molecules, only few candidates entered phase I and/or II clinical investigation. The publicly accessible results are presented here. Expert opinion: Many compounds showed potent DOR-specific pain inhibition in preclinical studies. ADL5859 and ADL5747 entered clinical trials and successfully passed phase I. However, in phase II studies the primary endpoint (pain reduction) was not met and further investigation was terminated. A third compound, NP2, is in phase II clinical evaluation and results are pending. These findings suggest a potential of DOR ligands according to preclinical studies. Further clinical research and secondary analysis of unpublished data is needed to identify molecules which are useful in humans.

  8. Heterodimerization of μ and δ Opioid Receptors: A Role in Opiate Synergy

    PubMed Central

    Gomes, I.; Jordan, B. A.; Gupta, A.; Trapaidze, N.; Nagy, V.; Devi, L. A.

    2011-01-01

    Opiate analgesics are widely used in the treatment of severe pain. Because of their importance in therapy, different strategies have been considered for making opiates more effective while curbing their liability to be abused. Although most opiates exert their analgesic effects primarily via μ opioid receptors, a number of studies have shown that δ receptor-selective drugs can enhance their potency. The molecular basis for these findings has not been elucidated previously. In the present study, we examined whether heterodimerization of μ and δ receptors could account for the cross-modulation previously observed between these two receptors. We find that co-expression of μ and δ receptors in heterologous cells followed by selective immunoprecipitation results in the isolation of μ–δ heterodimers. Treatment of these cells with extremely low doses of certain δ-selective ligands results in a significant increase in the binding of a μ receptor agonist. Similarly, treatment with μ-selective ligands results in a significant increase in the binding of a δ receptor agonist. This robust increase is also seen in SKNSH cells that endogenously express both μ and δ receptors. Furthermore, we find that a δ receptor antagonist enhances both the potency and efficacy of the μ receptor signaling; likewise a μ antagonist enhances the potency and efficacy of the δ receptor signaling. A combination of agonists (μ and δ receptor selective) also synergistically binds and potentiates signaling by activating the μ–δ heterodimer. Taken together, these studies show that heterodimers exhibit distinct ligand binding and signaling characteristics. These findings have important clinical ramifications and may provide new foundations for more effective therapies. PMID:11069979

  9. Heterodimerization of mu and delta opioid receptors: A role in opiate synergy.

    PubMed

    Gomes, I; Jordan, B A; Gupta, A; Trapaidze, N; Nagy, V; Devi, L A

    2000-11-15

    Opiate analgesics are widely used in the treatment of severe pain. Because of their importance in therapy, different strategies have been considered for making opiates more effective while curbing their liability to be abused. Although most opiates exert their analgesic effects primarily via mu opioid receptors, a number of studies have shown that delta receptor-selective drugs can enhance their potency. The molecular basis for these findings has not been elucidated previously. In the present study, we examined whether heterodimerization of mu and delta receptors could account for the cross-modulation previously observed between these two receptors. We find that co-expression of mu and delta receptors in heterologous cells followed by selective immunoprecipitation results in the isolation of mu-delta heterodimers. Treatment of these cells with extremely low doses of certain delta-selective ligands results in a significant increase in the binding of a mu receptor agonist. Similarly, treatment with mu-selective ligands results in a significant increase in the binding of a delta receptor agonist. This robust increase is also seen in SKNSH cells that endogenously express both mu and delta receptors. Furthermore, we find that a delta receptor antagonist enhances both the potency and efficacy of the mu receptor signaling; likewise a mu antagonist enhances the potency and efficacy of the delta receptor signaling. A combination of agonists (mu and delta receptor selective) also synergistically binds and potentiates signaling by activating the mu-delta heterodimer. Taken together, these studies show that heterodimers exhibit distinct ligand binding and signaling characteristics. These findings have important clinical ramifications and may provide new foundations for more effective therapies.

  10. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist

    PubMed Central

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien

    2012-01-01

    Summary Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many of their undesirable side effects (sedation, apnea and dependence) by binding to and activating the G-protein-coupled μ-opioid receptor (μOR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the μOR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most GPCRs published to date, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the μOR crystallizes as a two-fold symmetric dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction. PMID:22437502

  11. Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain

    PubMed Central

    Olson, Keith M.; Lei, Wei; Keresztes, Attila; LaVigne, Justin; Streicher, John M.

    2017-01-01

    Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients. PMID:28356897

  12. The Role of the Asn40Asp Polymorphism of the Mu Opioid Receptor Gene (OPRM1) on Alcoholism Etiology and Treatment: A Critical Review

    PubMed Central

    Ray, Lara A.; Barr, Christina S.; Blendy, Julie A.; Oslin, David; Goldman, David; Anton, Raymond F.

    2011-01-01

    The endogenous opioid system has been implicated in the pathophysiology of alcoholism as it modulates the neurobehavioral effects of alcohol. A variant in the mu opioid receptor gene (OPRM1), the Asn40Asp polymorphism, has received attention as a functional variant that may influence a host of behavioral phenotypes for alcoholism as well as clinical response to opioid antagonists. This paper will review converging lines of evidence on the effect of the Asn40Asp SNP on alcoholism phenotypes, including: (i) genetic association studies; (ii) behavioral studies of alcoholism; (iii) neuroimaging studies; (iv) pharmacogenetic studies and clinical trials; and (v) preclinical animal studies. Together, these lines of research seek to elucidate the effects of this functional polymorphism on alcoholism etiology and treatment response. PMID:21895723

  13. Melanocortin-1 receptor gene variants affect pain and µ-opioid analgesia in mice and humans

    PubMed Central

    Mogil, J; Ritchie, J; Smith, S; Strasburg, K; Kaplan, L; Wallace, M; Romberg, R; Bijl, H; Sarton, E; Fillingim, R; Dahan, A

    2005-01-01

    Background: A recent genetic study in mice and humans revealed the modulatory effect of MC1R (melanocortin-1 receptor) gene variants on κ-opioid receptor mediated analgesia. It is unclear whether this gene affects basal pain sensitivity or the efficacy of analgesics acting at the more clinically relevant µ-opioid receptor. Objective: To characterise sensitivity to pain and µ-opioid analgesia in mice and humans with non-functional melanocortin-1 receptors. Methods: Comparisons of spontaneous mutant C57BL/6-Mc1re/e mice to C57BL/6 wildtype mice, followed by a gene dosage study of pain and morphine-6-glucuronide (M6G) analgesia in humans with MC1R variants. Results: C57BL/6-Mc1re/e mutant mice and human redheads—both with non-functional MC1Rs—display reduced sensitivity to noxious stimuli and increased analgesic responsiveness to the µ-opioid selective morphine metabolite, M6G. In both species the differential analgesia is likely due to pharmacodynamic factors, as plasma levels of M6G are similar across genotype. Conclusions: Genotype at MC1R similarly affects pain sensitivity and M6G analgesia in mice and humans. These findings confirm the utility of cross species translational strategies in pharmacogenetics. PMID:15994880

  14. The opioid receptor triple agonist DPI-125 produces analgesia with less respiratory depression and reduced abuse liability.

    PubMed

    Yi, Shou-Pu; Kong, Qing-Hong; Li, Yu-Lei; Pan, Chen-Ling; Yu, Jie; Cui, Ben-Qiang; Wang, Ying-Fei; Wang, Guan-Lin; Zhou, Pei-Lan; Wang, Li-Li; Gong, Ze-Hui; Su, Rui-Bin; Shen, Yue-Hai; Yu, Gang; Chang, Kwen-Jen

    2017-07-01

    Opioid analgesics remain the first choice for the treatment of moderate to severe pain, but they are also notorious for their respiratory depression and addictive effects. This study focused on the pharmacology of a novel opioid receptor mixed agonist DPI-125 and attempted to elucidate the relationship between the δ-, μ- and κ-receptor potency ratio and respiratory depression and abuse liability. Five diarylmethylpiperazine compounds (DPI-125, DPI-3290, DPI-130, KUST202 and KUST13T02) were selected for this study. PKA fluorescence redistribution assays in CHO cells individually expressing δ-, μ- or κ-receptors were used to measure the agonist potency. The respiratory safety profiles were estimated in rats by the ratio of ED 50 (pCO 2 increase)/ED 50 (antinociception). The abuse liability of DPI-125 was evaluated with a self-administration model in rhesus monkeys. The observed agonist potencies of DPI-125 for δ-, μ- and κ-opioid receptors were 4.29±0.36, 11.10±3.04, and 16.57±4.14 nmol/L, respectively. The other four compounds were also mixed agonists with varying potencies. DPI-125 exhibited a high respiratory safety profile, clearly related to its high δ-receptor potency. The ratio of the EC 50 potencies for the μ- and δ-receptors was found to be positively correlated with the respiratory safety ratio. DPI-125 has similar potencies for μ- and κ-receptors, which is likely the reason for its reduced abuse potential. Our results demonstrate that the opioid receptor mixed agonist DPI-125 is safer and less addictive than traditional μ-agonist analgesics. These findings suggest that the development of δ>μ∼κ opioid receptor mixed agonists is feasible, and such compounds could represent a promising class of potent analgesics with wider therapeutic windows.

  15. Inflammatory Pain Promotes Increased Opioid Self-Administration: Role of Dysregulated Ventral Tegmental Area μ Opioid Receptors

    PubMed Central

    Hipólito, Lucia; Wilson-Poe, Adrianne; Campos-Jurado, Yolanda; Zhong, Elaine; Gonzalez-Romero, Jose; Virag, Laszlo; Whittington, Robert; Comer, Sandra D.; Carlton, Susan M.; Walker, Brendan M.; Bruchas, Michael R.

    2015-01-01

    Pain management in opioid abusers engenders ethical and practical difficulties for clinicians, often resulting in pain mismanagement. Although chronic opioid administration may alter pain states, the presence of pain itself may alter the propensity to self-administer opioids, and previous history of drug abuse comorbid with chronic pain promotes higher rates of opioid misuse. Here, we tested the hypothesis that inflammatory pain leads to increased heroin self-administration resulting from altered mu opioid receptor (MOR) regulation of mesolimbic dopamine (DA) transmission. To this end, the complete Freund's adjuvant (CFA) model of inflammation was used to assess the neurochemical and functional changes induced by inflammatory pain on MOR-mediated mesolimbic DA transmission and on rat intravenous heroin self-administration under fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. In the presence of inflammatory pain, heroin intake under an FR schedule was increased for high, but attenuated for low, heroin doses with concomitant alterations in mesolimbic MOR function suggested by DA microdialysis. Consistent with the reduction in low dose FR heroin self-administration, inflammatory pain reduced motivation for a low dose of heroin, as measured by responding under a PR schedule of reinforcement, an effect dissociable from high heroin dose PR responding. Together, these results identify a connection between inflammatory pain and loss of MOR function in the mesolimbic dopaminergic pathway that increases intake of high doses of heroin. These findings suggest that pain-induced loss of MOR function in the mesolimbic pathway may promote opioid dose escalation and contribute to opioid abuse-associated phenotypes. SIGNIFICANCE STATEMENT This study provides critical new insights that show that inflammatory pain alters heroin intake through a desensitization of MORs located within the VTA. These findings expand our knowledge of the interactions between

  16. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    PubMed Central

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  17. Introduction to the College on Problems of Drug Dependence special issue: contemporary advances in opioid neuropharmacology.

    PubMed

    Walsh, Sharon L; Unterwald, Ellen M; Izenwasser, Sari

    2010-05-01

    Opioid receptors are critical therapeutic targets for medications development relevant to the treatment of drug dependence and pain. With recent advances in molecular neurobiology, it has become evident that the functional activity of opioid receptors, as ligand-regulated protein complexes, is modulated by multifarious intracellular and extracellular events, that there is genetic variation in coding for receptors, and that the activity of endogenous opioid systems may underlie actions common to other addictive disorders. This supplemental issue of Drug and Alcohol Dependence, arising from an invited symposium at the 71st Annual Meeting of the College on Problems of Drug Dependence, provides a series of contemporary reviews focused on recent advances in opioid neuropharmacology. Each speaker provides herein an invited comprehensive review of the state of knowledge on a specific topic in opioid neuropharmacology. Evans and colleagues describe the multi-faceted control of the opioid G-protein coupled receptor as a dynamic "sensor" complex and identify novel targets for drug development. von Zastrow focuses on opioid receptor-mediated events regulated by endocytosis and membrane trafficking through the endocytic pathway and differential responses to opioid agonists. Blendy and colleague provide a review of human association studies on the functional relevance of the mu opioid receptor variant, A118G, and presents data from the A112G knock-in model, an analogous mouse variant to A118G. Finally, Maldonado and colleagues provide a broader systems review from genetic, pharmacologic and behavioral studies implicating the endogenous opioid systems as a substrate for the mediation of substance use disorders spanning pharmacological classes.

  18. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    PubMed

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  19. Immunohistochemical observations of methionine-enkephalin and delta opioid receptor in the digestive system of Octopus ocellatus.

    PubMed

    Sha, Ailong; Sun, Hushan; Wang, Yiyan

    2013-02-01

    The study was designed to determine whether methionine-enkephalin (met-Enk) or delta opioid receptor was present in the digestive system of Octopus ocellatus. The results showed that they were both in the bulbus oris, esophagus, crop, stomach, gastric cecum, intestine, posterior salivary glands of O. ocellatus, one of them, met-Enk in the rectum, anterior salivary glands, digestive gland. And the distributions were extensive in the digestive system. Strong or general met-Enk immunoreactivity was observed in the inner epithelial cells of the bulbus oris, esophagus, stomach, gastric cecum, intestine, anterior salivary glands and the adventitia of the intestine and rectum, and so was the delta opioid receptor immunoreactivity in the inner epithelial cells of the bulbus oris, esophagus, and crop, however, they were weak in other parts. Combining with delta opioid receptor, met-Enk may be involved in the regulations of food intake, absorption, movement of gastrointestinal smooth muscle and secretion of digestive gland. The different densities of met-Enk and delta opioid receptor may be related to the different functions in the digestive system of O. ocellatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Opioid microinjection into raphe magnus modulates cardiorespiratory function in mice and rats.

    PubMed

    Hellman, Kevin M; Mendelson, Scott J; Mendez-Duarte, Marco A; Russell, James L; Mason, Peggy

    2009-11-01

    The raphe magnus (RM) participates in opioid analgesia and contains pain-modulatory neurons with respiration-related discharge. Here, we asked whether RM contributes to respiratory depression, the most prevalent lethal effect of opioids. To investigate whether opioidergic transmission in RM produces respiratory depression, we microinjected a mu-opioid receptor agonist, DAMGO, or morphine into the RM of awake rodents. In mice, opioid microinjection produced sustained decreases in respiratory rate (170 to 120 breaths/min), as well as heart rate (520 to 400 beats/min). Respiratory sinus arrhythmia, indicative of enhanced parasympathetic activity, was prevalent in mice receiving DAMGO microinjection. We performed similar experiments in rats but observed no changes in breathing rate or heart rate. Both rats and mice experienced significantly more episodes of bradypnea, indicative of impaired respiratory drive, after opioid microinjection. During spontaneous arousals, rats showed less tachycardia after opioid microinjection than before microinjection, suggestive of an attenuated sympathetic tone. Thus, activation of opioidergic signaling within RM produces effects beyond analgesia, including the unwanted destabilization of cardiorespiratory function. These adverse effects on homeostasis consequent to opioid microinjection imply a role for RM in regulating the balance of sympathetic and parasympathetic tone.

  1. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention.

    PubMed

    Dal Monte, Olga; Piva, Matthew; Anderson, Kevin M; Tringides, Marios; Holmes, Avram J; Chang, Steve W C

    2017-05-16

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute's transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition.

  2. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention

    PubMed Central

    Dal Monte, Olga; Anderson, Kevin M.; Tringides, Marios; Holmes, Avram J.

    2017-01-01

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute’s transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition. PMID:28461466

  3. Opioid receptor and β-arrestin2 densities and distribution change after sexual experience in the ventral tegmental area of male rats.

    PubMed

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2018-05-15

    Sexual experience modifies brain functioning and copulatory efficiency. Sexual activity, ejaculation in particular, is a rewarding behavior associated with the release of endogenous opioids, which modulate the activity of the mesolimbic dopaminergic system (MLS). In sexually exhausted rats, repeated ejaculation produces μ (MOR) and δ opioid receptor (DOR) internalization in ventral tegmental area (VTA) neurons, as well as long-lasting behavioral changes suggestive of brain plasticity processes. We hypothesized that in sexually naïve rats the endogenous opioids released during sexual experience acquisition, might contribute to brain plasticity processes involved in the generation of the behavioral changes induced by sexual experience. To this aim, using double immunohistochemistry and confocal microscopy, we compared in vivo MOR, DOR and β-arrestin2 densities and activation in the VTA of sexually naïve males, sexually experienced rats not executing sexual activity prior to sacrifice and sexually experienced animals that ejaculated once before sacrifice. Results showed that sexual experience acquisition improved male's copulatory ability and induced persistent changes in the density, cellular distribution and activation of MOR and β-arrestin2 in VTA neurons. DOR density was not modified, but its cellular location changed after sexual experience, revealing that these two opioid receptors were differentially activated during sexual experience acquisition. It is concluded that the endogenous opioids released during sexual activity produce adjustments in VTA neurons of sexually naïve male rats that might contribute to the behavioral plasticity expressed as an improvement in male copulatory parameters, promoted by the acquisition of sexual experience. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  5. Activation of kappa opioid receptors in the dorsal raphe have sex dependent effects on social behavior in California mice.

    PubMed

    Wright, Emily C; Parks, Tiffany V; Alexander, Jonathon O; Supra, Rajesh; Trainor, Brian C

    2018-06-06

    Kappa opioid receptor activation has been linked to stress and anxiety behavior, thus leading to kappa antagonists being popularized in research as potential anxiolytics. However, while these findings may hold true in standard models, the neuromodulatory effects of social defeat may change the behavioral outcome of kappa opioid receptor activation. Previous research has shown that social defeat can lead to hyperactivity of serotonergic neurons in the dorsal raphe nucleus, and that inhibition of this increase blocks the social deficits caused by defeat. Kappa opioid receptor activation in the dorsal raphe nucleus works to decrease serotonergic activity. We injected the kappa opioid receptor U50,488 directly into the dorsal raphe nucleus of male and female, defeat and control adult California mice. Here we show evidence that U50,488 induces anxiety behavior in control male California mice, but helps relieve it in defeated males. Consistent with previous literature, we find little effect in females adding evidence that there are marked and important sex differences in the kappa opioid system. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    PubMed

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  7. Modulation of Pain Transmission by G Protein-Coupled Receptors

    PubMed Central

    Pan, Hui-Lin; Wu, Zi-Zhen; Zhou, Hong-Yi; Chen, Shao-Rui; Zhang, Hong-Mei; Li, De-Pei

    2010-01-01

    The heterotrimeric G protein-coupled receptors (GPCRs) represent the largest and most diverse family of cell surface receptors and proteins. GPCRs are widely distributed in the peripheral and central nervous systems and are one of the most important therapeutic targets in pain medicine. GPCRs are present on the plasma membrane of neurons and their terminals along the nociceptive pathways and are closely associated with the modulation of pain transmission. GPCRs that can produce analgesia upon activation include opioid, cannabinoid, α2-adrenergic, muscarinic acetylcholine, γ-aminobutyric acidB (GABAB), group II and III metabotropic glutamate, and somatostatin receptors. Recent studies have led to a better understanding of the role of these GPCRs in the regulation of pain transmission. Here, we review the current knowledge about the cellular and molecular mechanisms that underlie the analgesic actions of GPCR agonists, with a focus on their effects on ion channels expressed on nociceptive sensory neurons and on synaptic transmission at the spinal cord level. PMID:17959251

  8. CANNABINOID AND OPIOID MODULATION OF SOCIAL PLAY BEHAVIOR IN ADOLESCENT RATS: DIFFERENTIAL BEHAVIORAL MECHANISMS

    PubMed Central

    Trezza, Viviana; Vanderschuren, Louk J.M.J.

    2008-01-01

    We have recently shown that the pharmacological mechanisms through which cannabinoid and opioid drugs influence social play behavior in adolescent rats can be partially dissociated. Here, we characterize the effects of the direct cannabinoid agonist WIN55,212-2, the indirect cannabinoid agonist URB597 and the opioid agonist morphine on social play at the behavioral level. By treating either one or both partners of the test dyad, we show that these drugs differentially affect play solicitation and play responsiveness. By testing these drugs in animals which were either familiar or unfamiliar to the test cage, we show that environmental factors differentially modulate the effects of cannabinoid and opioid drugs on social play. These results support and extend our previous findings suggesting that, although cannabinoid and opioid systems interact in the modulation of social play behavior in adolescent rats, they do so through partially dissociable behavioral and pharmacological mechanisms. PMID:18434104

  9. SEIZURE ACTIVITY INVOLVED IN THE UP-REGULATION OF BDNF mRNA EXPRESSION BY ACTIVATION OF CENTRAL MU OPIOID RECEPTORS

    PubMed Central

    ZHANG, H. N.; KO, M. C.

    2009-01-01

    Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF m

  10. μ-Opioid Receptor Trafficking on Inhibitory Synapses in the Rat Brainstem

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Whole-cell recordings were made from identified gastric-projecting rat dorsal motor nucleus of the vagus (DMV) neurons. The amplitude of evoked IPSCs (eIPSCs) was unaffected by perfusion with met-enkephalin (ME) or by μ-, δ-, or κ-opioid receptor selective agonists, namely d-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO), cyclic [d-Pen2-d-Pen5]-enkephalin, or trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolytinil)-cyclohexyl]-benzeneacetamide methane sulfonate (U50,488), respectively. Brief incubation with the adenylate cyclase activator forskolin or the nonhydrolysable cAMP analog 8-bromo-cAMP, thyrotropin releasing hormone, or cholecystokinin revealed the ability of ME and DAMGO to inhibit IPSC amplitude; this inhibition was prevented by pretreatment with the μ-opioid receptor (MOR1) selective antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2. Conversely, incubation with the adenylate cyclase inhibitor dideoxyadenosine, with the protein kinase A (PKA) inhibitor N-[2-(p-Bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), or with the Golgi-disturbing agent brefeldin A, blocked the ability of forskolin to facilitate the inhibitory actions of ME. Immunocytochemical experiments revealed that under control conditions, MOR1 immunoreactivity (MOR1-IR) was colocalized with glutamic acid decarboxylase (GAD)-IR in profiles apposing DMV neurons only after stimulation of the cAMP–PKA pathway. Pretreatment with H89 or brefeldin A or incubation at 4°C prevented the forskolin-mediated insertion of MOR1 on GAD-IR-positive profiles. These results suggest that the cAMP–PKA pathway regulates trafficking of μ-opioid receptors into the cell surface of GABAergic nerve terminals. By consequence, the inhibitory actions of opioid peptides in the dorsal vagal complex may depend on the state of activation of brainstem vagal circuits. PMID:15317860

  11. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    PubMed Central

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  12. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior.

    PubMed

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.

  13. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus

    PubMed Central

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104

  14. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus.

    PubMed

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.

  15. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  16. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and opioid receptors in spinal cord nociceptive reflexes.

    PubMed

    Ramos-Zepeda, Guillermo; Herrero, Juan F

    2013-08-14

    We previously observed that the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is a very effective antinociceptive agent on intact but not on spinalized adult rats with inflammation. Since a close connection between opioid and adenosine A1 receptors has been described, we studied a possible relationship between these systems in the spinal cord. CPA-mediated antinociception was challenged by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1, 3-dimethylxanthine (CPT) and by the opioid receptor antagonist naloxone on male adult Wistar rats with carrageenan-induced inflammation. Withdrawal reflexes activated by noxious mechanical and electrical stimulation were recorded using the single motor technique in intact and sham-spinalized animals. CPA was very effective in intact and sham spinalized rats but not in spinalized animals. Full reversal of CPA antinociception was observed with i.v. 1mg/kg of naloxone but not with 20mg/kg of CPT i.v. in responses to noxious mechanical and electrical stimulation. CPT fully prevented CPA from any antinociceptive action whereas naloxone did not modify CPA activity. These results suggest a centrally-mediated action, since CPA depressed the wind-up phenomenon which is derived of the activity of spinal cord neurons. The present study provides strong in vivo evidence of an antinociceptive activity mediated by the adenosine A1 receptor system in the spinal cord, linked to an activation of opioid receptors in adult animals with inflammation. © 2013.

  17. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  18. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors.

    PubMed

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L

    2015-01-01

    We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2 A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  19. Induction of hyperphagia and carbohydrate intake by μ-opioid receptor stimulation in circumscribed regions of frontal cortex.

    PubMed

    Mena, Jesus D; Sadeghian, Ken; Baldo, Brian A

    2011-03-02

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague Dawley rats, bilateral infusions of the μ-opioid agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) markedly increased intake of standard rat chow. When given a choice between palatable fat-enriched versus carbohydrate-enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor nonspecific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized δ-opioid, κ-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or α- or β-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5-HT2A (5-hydroxytryptamine receptor 2A) receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders.

  20. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  1. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  2. μ-Opioid receptor availability in the amygdala is associated with smoking for negative affect relief.

    PubMed

    Falcone, Mary; Gold, Allison B; Wileyto, E Paul; Ray, Riju; Ruparel, Kosha; Newberg, Andrew; Dubroff, Jacob; Logan, Jean; Zubieta, Jon-Kar; Blendy, Julie A; Lerman, Caryn

    2012-08-01

    The perception that smoking relieves negative affect contributes to smoking persistence. Endogenous opioid neurotransmission, and the μ-opioid receptor (MOR) in particular, plays a role in affective regulation and is modulated by nicotine. We examined the relationship of MOR binding availability in the amygdala to the motivation to smoke for negative affect relief and to the acute effects of smoking on affective responses. Twenty-two smokers were scanned on two separate occasions after overnight abstinence using [¹¹C]carfentanil positron emission tomography imaging: after smoking a nicotine-containing cigarette and after smoking a denicotinized cigarette. Self-reports of smoking motives were collected at baseline, and measures of positive and negative affect were collected pre- and post- cigarette smoking. Higher MOR availability in the amygdala was associated with motivation to smoke to relieve negative affect. However, MOR availability was unrelated to changes in affect after smoking either cigarette. Increased MOR availability in amygdala may underlie the motivation to smoke for negative affective relief. These results are consistent with previous data highlighting the role of MOR neurotransmission in smoking behavior.

  3. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    PubMed

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-08-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy.

  4. Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.

    PubMed Central

    Negri, L; Erspamer, G F; Severini, C; Potenza, R L; Melchiorri, P; Erspamer, V

    1992-01-01

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy. PMID:1353890

  5. Social Novelty Investigation in the Juvenile Rat: Modulation by the μ-Opioid System.

    PubMed

    Smith, C J W; Wilkins, K B; Mogavero, J N; Veenema, A H

    2015-10-01

    The drive to approach and explore novel conspecifics is inherent to social animals and may promote optimal social functioning. Juvenile animals seek out interactions with novel peers more frequently and find these interactions to be more rewarding than their adult counterparts. In the present study, we aimed to establish a behavioural paradigm to measure social novelty-seeking in juvenile rats and to determine the involvement of the opioid, dopamine, oxytocin and vasopressin systems in this behaviour. To this end, we developed the social novelty preference test to assess the preference of a juvenile rat to investigate a novel over a familiar (cage mate) conspecific. We show that across the juvenile period both male and female rats spend more time investigating a novel conspecific than a cage mate, independent of subject sex or repeated exposure to the test. We hypothesised that brain systems subserving social information processing and social motivation/reward (i.e. the opioid, dopamine, oxytocin, vasopressin systems) might support social novelty preference. To test this, receptor antagonists of each of these systems were administered i.c.v. prior to exposure to the social novelty preference test and, subsequently, to the social preference test, to examine the specificity of these effects. We find that μ-opioid receptor antagonism reduces novel social investigation in both the social novelty preference and social preference tests while leaving the investigation of a cage mate (social novelty preference test) or an object (social preference test) unaffected. In contrast, central blockade of dopamine D2 receptors (with eticlopride), oxytocin receptors (with des-Gly-NH2,d(CH2)5[Tyr(Me)2,Thr4]OVT) or vasopressin V1a receptors [with (CH2)5Tyr(Me2)AVP] failed to alter social novelty preference or social preference. Overall, we have established a new behavioural test to study social novelty-seeking behaviour in the juvenile rat and show that the μ-opioid system

  6. Biphalin preferentially recruits peripheral opioid receptors to facilitate analgesia in a mouse model of cancer pain - A comparison with morphine.

    PubMed

    Lesniak, Anna; Bochynska-Czyz, Marta; Sacharczuk, Mariusz; Benhye, Sandor; Misicka, Aleksandra; Bujalska-Zadrozny, Magdalena; Lipkowski, Andrzej W

    2016-06-30

    The search for new drugs for cancer pain management has been a long-standing goal in basic and clinical research. Classical opioid drugs exert their primary antinociceptive effect upon activating opioid receptors located in the central nervous system. A substantial body of evidence points to the relevance of peripheral opioid receptors as potential targets for cancer pain treatment. Peptides showing limited blood-brain-barrier permeability promote peripheral analgesia in many pain models. In the present study we examined the peripheral and central analgesic effect of intravenously administered biphalin - a dimeric opioid peptide in a mouse skin cancer pain model, developed by an intraplantar inoculation of B16F0 melanoma cells. The effect of biphalin was compared with morphine - a golden standard in cancer pain management. Biphalin produced profound, dose-dependent and naloxone sensitive spinal analgesia. Additionally, the effect in the tumor-bearing paw was largely mediated by peripheral opioid receptors, as it was readily attenuated by the blood-brain-barrier-restricted opioid receptor antagonist - naloxone methiodide. On the contrary, morphine facilitated its analgesic effect primarily by activating spinal opioid receptors. Both drugs induced tolerance in B16F0 - implanted paws after chronic treatment, however biphalin as opposed to morphine, showed little decrease in its activity at the spinal level. Our results indicate that biphalin may be considered a future alternative drug in cancer pain treatment due to an enhanced local analgesic activity as well as lower tolerance liability compared with morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ACTIVATION OF MU OPIOID RECEPTORS IN THE STRIATUM DIFFERENTIALLY AUGMENTS METHAMPHETAMINE-INDUCED GENE EXPRESSION AND ENHANCES STEREOTYPIC BEHAVIOR

    PubMed Central

    Horner, Kristen A.; Hebbard, John C.; Logan, Anna S.; Vanchipurakel, Golda A.; Gilbert, Yamiece E.

    2013-01-01

    Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. In order to further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with D-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1 μg/μl), treated with methamphetamine (0.5 mg/kg) and sacrificed at 45 minutes or 2 hours later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pretreatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine. PMID:22150526

  8. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    PubMed Central

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. PMID:22110284

  9. YFa and analogs: investigation of opioid receptors in smooth muscle contraction.

    PubMed

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-10-28

    To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  10. Use of receptor chimeras to identify small molecules with high affinity for the dynorphin A binding domain of the kappa opioid receptor.

    PubMed

    Kumar, Virendra; Guo, Deqi; Marella, Michael; Cassel, Joel A; Dehaven, Robert N; Daubert, Jeffrey D; Mansson, Erik

    2008-06-15

    A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.

  11. Opioids in Preclinical and Clinical Trials

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    Since 1952, when Gates determined the stereo structure of morphine, numerous groups have focused on discovering a nonnarcotic opioid drug [1]. Although several natural, semisynthetic, and synthetic opioid ligands (alkaloids and peptides) have been developed in clinical studies, very few were nonnarcotic opioid drugs [2]. One of the most important studies in the opioid field appeared in 1976, when Martin and colleagues [3] established types of opioid receptors (these are now classified into μ, δ, and κ types). Later, Portoghese discovered a highly selective μ type opioid receptor antagonist, β-funaltrexamine [4]. This led to the finding that the μ type opioid receptor was correlated to drug dependence [5]. Consequently, δ, and particularly κ, opioid agonists were expected to lead to ideal opioid drugs. Moreover, opioid antagonists were evaluated for the treatment of symptoms related to undesirable opioid system activation. In this chapter, we provide a short survey of opioid ligands in development and describe the discovery of the two most promising drugs, TRK-851 [6] and TRK-820 (nalfurafine hydrochloride) [7].

  12. Mindfulness Meditation Modulates Pain Through Endogenous Opioids.

    PubMed

    Sharon, Haggai; Maron-Katz, Adi; Ben Simon, Eti; Flusser, Yuval; Hendler, Talma; Tarrasch, Ricardo; Brill, Silviu

    2016-07-01

    Recent evidence supports the beneficial effects of mindfulness meditation on pain. However, the neural mechanisms underlying this effect remain poorly understood. We used an opioid blocker to examine whether mindfulness meditation-induced analgesia involves endogenous opioids. Fifteen healthy experienced mindfulness meditation practitioners participated in a double-blind, randomized, placebo-controlled, crossover study. Participants rated the pain and unpleasantness of a cold stimulus prior to and after a mindfulness meditation session. Participants were then randomized to receive either intravenous naloxone or saline, after which they meditated again, and rated the same stimulus. A (3) × (2) repeated-measurements analysis of variance revealed a significant time effect for pain and unpleasantness scores (both P <.001) as well as a significant condition effect for pain and unpleasantness (both P <.2). Post hoc comparisons revealed that pain and unpleasantness scores were significantly reduced after natural mindfulness meditation and after placebo, but not after naloxone. Furthermore, there was a positive correlation between the pain scores following naloxone vs placebo and participants' mindfulness meditation experience. These findings show, for the first time, that meditation involves endogenous opioid pathways, mediating its analgesic effect and growing resilient with increasing practice to external suggestion. This finding could hold promising therapeutic implications and further elucidate the fine mechanisms involved in human pain modulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

    PubMed

    Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L

    2012-03-01

    Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.

  14. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain

    PubMed Central

    2014-01-01

    Background The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. Methods The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. Results An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. Conclusion These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation. PMID:24884961

  15. Substance P-induced respiratory excitation is blunted by delta-receptor specific opioids in the rat medulla oblongata.

    PubMed

    Chen, Z; Hedner, J; Hedner, T

    1996-06-01

    The effects of substance P (SP) and the naturally occurring met-enkephalin and the synthetic mu-specific opioid agonist, DAGO (Tyr-D-Ala-Gly-N-Methy-Phe-Gly-ol) and the delta-specific opioid agonist DADL (Tyr-D-Ala-Gly-Phe-D-Leu) on basal ventilation were investigated in halothane-anaesthetized rats. Local injections of SP (0.75-1.5 nmol) in the ventrolateral medulla oblongata (VLM), e.g. nucleus paragigantocellularis, and nucleus reticularis lateralis increased ventilation because of an elevation of tidal volume. Met-enkephalin induced a short-lasting ventilatory depression mainly because of a depression of tidal volume. Activation of delta- and mu-opioid receptors in the VLM by local application of DADL and DAGO, respectively, induced ventilatory depression, which was later in onset and more long-lasting. Local administration of met-enkephalin into the VLM also produced a long-lasting inhibition of the SP-induced ventilatory excitation. A similar blockade of the SP-induced excitatory ventilatory response could be elicited by DADL but not by DAGO. This antagonistic effect was attenuated by local application of the delta-opioid receptor antagonist ICI 154. 129. We conclude that the naturally occurring met-enkephalin as well as synthetic mu- and delta-specific enkephalin analogues (DAGO and DADL, respectively) in VLM depress basal ventilation by an effect on inspiratory drive. There is a functional antagonism between activation of delta-opioid receptors and SP receptors into the VLM in respect to respiratory regulation.

  16. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    PubMed Central

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  17. Social Laughter Triggers Endogenous Opioid Release in Humans.

    PubMed

    Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri

    2017-06-21

    The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the

  18. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABAB receptors, but not α2 adrenergic receptors

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G.

    2010-01-01

    GABAB, μ-opioid, and adrenergic α2 receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABAB receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABAB agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α2 adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABAB receptors, but not by α2 receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. PMID:20726886

  19. Opioid Modulation of Value-Based Decision-Making in Healthy Humans.

    PubMed

    Eikemo, Marie; Biele, Guido; Willoch, Frode; Thomsen, Lotte; Leknes, Siri

    2017-08-01

    Modifying behavior to maximize reward is integral to adaptive decision-making. In rodents, the μ-opioid receptor (MOR) system encodes motivation and preference for high-value rewards. Yet it remains unclear whether and how human MORs contribute to value-based decision-making. We reasoned that if the human MOR system modulates value-based choice, this would be reflected by opposite effects of agonist and antagonist drugs. In a double-blind pharmacological cross-over study, 30 healthy men received morphine (10 mg), placebo, and the opioid antagonist naltrexone (50 mg). They completed a two-alternative decision-making task known to induce a considerable bias towards the most frequently rewarded response option. To quantify MOR involvement in this bias, we fitted accuracy and reaction time data with the drift-diffusion model (DDM) of decision-making. The DDM analysis revealed the expected bidirectional drug effects for two decision subprocesses. MOR stimulation with morphine increased the preference for the stimulus with high-reward probability (shift in starting point). Compared to placebo, morphine also increased, and naltrexone reduced, the efficiency of evidence accumulation. Since neither drug affected motor-coordination, speed-accuracy trade-off, or subjective state (indeed participants were still blinded after the third session), we interpret the MOR effects on evidence accumulation efficiency as a consequence of changes in effort exerted in the task. Together, these findings support a role for the human MOR system in value-based choice by tuning decision-making towards high-value rewards across stimulus domains.

  20. Opioid modulation of GABA release in the rat inferior colliculus

    PubMed Central

    Tongjaroenbungam, Walaiporn; Jongkamonwiwat, Nopporn; Cunningham, Joanna; Phansuwan-Pujito, Pansiri; Dodson, Hilary C; Forge, Andrew; Govitrapong, Piyarat; Casalotti, Stefano O

    2004-01-01

    Background The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication. Results Using a perfusion protocol we demonstrate that morphine can inhibit KCl-induced release of [3H]GABA from rat inferior colliculus slices. DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin) but not DADLE ([D-Ala2, D-Leu5]-enkephalin or U69593 has the same effect as morphine indicating that μ rather than δ or κ opioid receptors mediate this action. [3H]GABA release was diminished by 16%, and this was not altered by the protein kinase C inhibitor bisindolylmaleimide I. Immunostaining of inferior colliculus cryosections shows extensive staining for glutamic acid decarboxylase, more limited staining for μ opiate receptors and relatively few neurons co-stained for both proteins. Conclusion The results suggest that μ-opioid receptor ligands can modify neurotransmitter release in a sub population of GABAergic neurons of the inferior colliculus. This could have important physiological implications in the processing of hearing information and/or other functions attributed to the inferior colliculus such as audiogenic seizures and aversive behaviour. PMID:15353008

  1. Innovative Opioid Peptides and Biased Agonism: Novel Avenues for More Effective and Safer Analgesics to Treat Chronic Pain.

    PubMed

    Bedini, Andrea; Spampinato, Santi Mario

    2017-02-15

    Chronic pain is a clinically relevant and yet unsolved conditions that is poorly treated with the currently available drugs, thus highlighting the urgent need of innovative analgesics. Although opiates are not very effective in the treatment of inflammatory and neuropathic pain, developing novel opioid receptor peptide agonists, as well as modulating the opioid receptor-mediated responses in a ligand-specific fashion, may represent an innovative and promising strategy to identify more efficacious and safer antalgic drugs. In this review, novel analogues of endomorphin 1 (a mu opioid receptor selective agonist able to induce analgesia in different animal models of pain - including neuropathic pain) and dermorphin (one of the most potent opioid peptide existing in nature) will be discussed as they are emerging as a promising starting point to develop novel opioid agonists: endomorphin 1 analogues, in fact, may determine antinociception in different models of neuropathic pain with reduced side effects as compared to classic opiates as morphine; dermorphin analogues may elicit analgesia in animal models of both inflammatory and neuropathic pain and with less severe adverse effects. Furthermore, such opioid peptides may allow to explore unprecedented modalities of ligand-receptor interactions, helping to characterize biased agonism at opioid receptors: exploiting functional selectivity at opioid receptor may lead to identify innovative analgesic with improved pharmacological responses and optimized side effects. Thus, innovative opioid peptides, as those outlined in this review, are promising candidates to develop more effective opioid analgesics to be employed as medications for chronic pain states, as inflammatory or neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Exploring pharmacological activities and signaling of morphinans substituted in position 6 as potent agonists interacting with the μ opioid receptor

    PubMed Central

    2014-01-01

    Background Opioid analgesics are the most effective drugs for the treatment of moderate to severe pain. However, they also produce several adverse effects that can complicate pain management. The μ opioid (MOP) receptor, a G protein-coupled receptor, is recognized as the opioid receptor type which primarily mediates the pharmacological actions of clinically used opioid agonists. The morphinan class of analgesics including morphine and oxycodone are of main importance as therapeutically valuable drugs. Though the natural alkaloid morphine contains a C-6-hydroxyl group and the semisynthetic derivative oxycodone has a 6-carbonyl function, chemical approaches have uncovered that functionalizing position 6 gives rise to a range of diverse activities. Hence, position 6 of N-methylmorphinans is one of the most manipulated sites, and is established to play a key role in ligand binding at the MOP receptor, efficacy, signaling, and analgesic potency. We have earlier reported on a chemically innovative modification in oxycodone resulting in novel morphinans with 6-acrylonitrile incorporated substructures. Results This study describes in vitro and in vivo pharmacological activities and signaling of new morphinans substituted in position 6 with acrylonitrile and amido functions as potent agonists and antinociceptive agents interacting with MOP receptors. We show that the presence of a 6-cyano group in N-methylmorphinans has a strong influence on the binding to the opioid receptors and post-receptor signaling. One 6-cyano-N-methylmorphinan of the series was identified as the highest affinity and most selective MOP agonist, and very potent in stimulating G protein coupling and intracellular calcium release through the MOP receptor. In vivo, this MOP agonist showed to be greatly effective against thermal and chemical nociception in mice with marked increased antinociceptive potency than the lead molecule oxycodone. Conclusion Development of such novel chemotypes by targeting

  3. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex

    PubMed Central

    Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.

    2011-01-01

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037

  4. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  5. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A.

    PubMed

    Drinovac, V; Bach-Rojecky, L; Matak, I; Lacković, Z

    2013-07-01

    Botulinum toxin A (BTX-A) is approved for treatment of chronic migraine and has been investigated in various other painful conditions. Recent evidence demonstrated retrograde axonal transport and suggested the involvement of CNS in antinociceptive effect of BTX-A. However, the mechanism of BTX-A central antinociceptive action is unknown. In this study we investigated the potential role of opioid receptors in BTX-A's antinociceptive activity. In formalin-induced inflammatory pain we assessed the effect of opioid antagonists on antinociceptive activity of BTX-A. Naltrexone was injected subcutaneously (0.02-2 mg/kg) or intrathecally (0.07 μg/10 μl-350 μg/10 μl), while selective μ-antagonist naloxonazine was administered intraperitoneally (5 mg/kg) prior to nociceptive testing. The influence of naltrexone (2 mg/kg s.c.) on BTX-A antinociceptive activity was examined additionally in an experimental neuropathy induced by partial sciatic nerve transection. To investigate the effects of naltrexone and BTX-A on neuronal activation in spinal cord, c-Fos expression was immunohistochemically examined in a model of formalin-induced pain. Antinociceptive effects of BTX-A in formalin and sciatic nerve transection-induced pain were prevented by non-selective opioid antagonist naltrexone. Similarly, BTX-A-induced pain reduction was abolished by low dose of intrathecal naltrexone and by selective μ-antagonist naloxonazine. BTX-A-induced decrease in dorsal horn c-Fos expression was prevented by naltrexone. Prevention of BTX-A effects on pain and c-Fos expression by opioid antagonists suggest that the central antinociceptive action of BTX-A might be associated with the activity of endogenous opioid system (involving μ-opioid receptor). These results provide first insights into the mechanism of BTX-A's central antinociceptive activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. δ-Opioid Mechanisms for ADL5747 and ADL5859 Effects in Mice: Analgesia, Locomotion, and Receptor Internalization

    PubMed Central

    Nozaki, Chihiro; Le Bourdonnec, Bertrand; Reiss, David; Windh, Rolf T.; Little, Patrick J.; Dolle, Roland E.; Gavériaux-Ruff, Claire

    2012-01-01

    N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4′-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4′-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity

  7. N-Substituted cis-4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists

    PubMed Central

    Carroll, F. Ivy; Chaudhari, Sachin; Thomas, James B.; Mascarella, S. Wayne; Gigstad, Kenneth M.; Deschamps, Jeffrey; Navarro, Hernán A.

    2008-01-01

    N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a–g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctahydroisoquinolines 6a–g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has the lower potential energy relative to the axial conformation. Evaluation of compounds 6a–g in the [35S]GTP-γ-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a Ke of 0.27 nM at the κ opioid receptor with 154- and 46-fold selectively relative to the μ and δ receptors, respectively, possessed the best combination of κ potency and selectivity. PMID:16366600

  8. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  9. In vitro and in vivo activity of cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH2, a mu opioid receptor agonist biased toward β-arrestin.

    PubMed

    Gach-Janczak, Katarzyna; Piekielna-Ciesielska, Justyna; Adamska-Bartłomiejczyk, Anna; Wtorek, Karol; Ferrari, Federica; Calo', Girolamo; Szymaszkiewicz, Agata; Piasecka-Zelga, Joanna; Janecka, Anna

    2018-07-01

    Morphine and related drugs, which are the most effective analgesics for the relief of severe pain, act through activating opioid receptors. The endogenous ligands of these receptors are opioid peptides which cannot be used as antinociceptive agents due to their low bioactivity and stability in biological fluids. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists in order to improve therapeutic utility of opioids. Analgesic effects of morphine are mediated mostly through activation of the mu opioid receptor. However, in the search for safer and more effective drug candidates, analogs with mixed opioid receptor profile gained a lot of interest. Recently, the concept of biased agonists able to differentially activate GPCR downstream pathways, became a new approach in the design of novel drug candidates. It is hypothesized that compounds promoting G-protein signaling may produce analgesia while β-arrestin recruitment may be responsible for opioid side effects. In this report we showed that replacement of the tyrosine residue in the mu-selective ligand Tyr-c[d-Lys-Phe-Asp]NH 2 with 2',6'-dimethyltyrosine (Dmt) produced a cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH 2 with mu/delta opioid receptor agonist profile. This analog showed improved antinociception in the hot-plate test, probably due to the simultaneous activation of mu and delta receptors but also significantly inhibited the gastrointestinal transit. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that this analog was a mu receptor agonist biased toward β-arrestin. β-Arrestin-dependent signaling is most likely responsible for the observed inhibition of gastrointestinal motility exerted by the novel cyclopeptide. Copyright © 2018. Published by Elsevier Inc.

  10. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor

    PubMed Central

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    BACKGROUND AND PURPOSE Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. EXPERIMENTAL APPROACH Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. KEY RESULTS Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. CONCLUSIONS AND IMPLICATIONS These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24697554

  11. Morphine-induced internalization of the L83I mutant of the rat μ-opioid receptor.

    PubMed

    Cooke, A E; Oldfield, S; Krasel, C; Mundell, S J; Henderson, G; Kelly, E

    2015-01-01

    Naturally occurring single-nucleotide polymorphisms (SNPs) within GPCRs can result in alterations in various pharmacological parameters. Understanding the regulation and function of endocytic trafficking of the μ-opioid receptor (MOP receptor) is of great importance given its implication in the development of opioid tolerance. This study has compared the agonist-dependent trafficking and signalling of L83I, the rat orthologue of a naturally occurring variant of the MOP receptor. Cell surface elisa, confocal microscopy and immunoprecipitation assays were used to characterize the trafficking properties of the MOP-L83I variant in comparison with the wild-type receptor in HEK 293 cells. Functional assays were used to compare the ability of the L83I variant to signal to several downstream pathways. Morphine-induced internalization of the L83I MOP receptor was markedly increased in comparison with the wild-type receptor. The altered trafficking of this variant was found to be specific to morphine and was both G-protein receptor kinase- and dynamin-dependent. The enhanced internalization of L83I variant in response to morphine was not due to increased phosphorylation of serine 375, arrestin association or an increased ability to signal. These results suggest that morphine promotes a specific conformation of the L83I variant that makes it more liable to internalize in response to morphine, unlike the wild-type receptor that undergoes significantly less morphine-stimulated internalization, providing an example of a ligand-selective biased receptor. The presence of this SNP within an individual may consequently affect the development of tolerance and analgesic responses. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  12. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Opioid modulation of reflex versus operant responses following stress in the rat.

    PubMed

    King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P

    2007-06-15

    In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.

  14. Evidence of morphine like substance and μ-opioid receptor expression in Toxacara canis (Nematoda: Ascaridae)

    PubMed Central

    Golabi, Mostafa; Naem, Soraya; Imani, Mehdi; Dalirezh, Nowruz

    2016-01-01

    Toxocara canis (Nematoda: Ascaridae) is an intestinal nematode parasite of dogs, which can also cause disease in humans. Transmission to humans usually occurs because of direct contact with T. canis eggs present in soil contaminated with the feces of infected dogs. This nematode has extraordinary abilities to survive for many years in different tissues of vertebrates, and develop to maturity in the intestinal tract of its definitive host. Survival of parasitic nematodes within a host requires immune evasion using complicated pathways. Morphine-like substance, as well as opioids, which are known as down regulating agents, can modulate both innate and acquired immune responses, and let the parasite survives in their hosts. In the present study, we aimed to find evidences of morphine-like substance and µ-opiate receptor expression in T. canis, using high performance liquid chromatography (HPLC) and reverse transcription polymerase chain reaction (RT-PCR). The results indicated that T. canis produced morphine-like substances at the level of 2.31± 0.26 ng g-1 wet weight, and expressed µ-opiate receptor as in expected size of 441 bp. According to our findings, it was concluded that T. canis, benefits using morphine-like substance to modulate host immunity. PMID:28144426

  15. Evidence of morphine like substance and μ-opioid receptor expression in Toxacara canis (Nematoda: Ascaridae).

    PubMed

    Golabi, Mostafa; Naem, Soraya; Imani, Mehdi; Dalirezh, Nowruz

    2016-01-01

    Toxocara canis (Nematoda: Ascaridae) is an intestinal nematode parasite of dogs, which can also cause disease in humans. Transmission to humans usually occurs because of direct contact with T. canis eggs present in soil contaminated with the feces of infected dogs. This nematode has extraordinary abilities to survive for many years in different tissues of vertebrates, and develop to maturity in the intestinal tract of its definitive host. Survival of parasitic nematodes within a host requires immune evasion using complicated pathways. Morphine-like substance, as well as opioids, which are known as down regulating agents, can modulate both innate and acquired immune responses, and let the parasite survives in their hosts. In the present study, we aimed to find evidences of morphine-like substance and µ-opiate receptor expression in T. canis , using high performance liquid chromatography (HPLC) and reverse transcription polymerase chain reaction (RT-PCR). The results indicated that T. canis produced morphine-like substances at the level of 2.31± 0.26 ng g -1 wet weight, and expressed µ-opiate receptor as in expected size of 441 bp. According to our findings, it was concluded that T. canis , benefits using morphine-like substance to modulate host immunity.

  16. Chronic Neuropathic Pain in Mice Reduces μ-Opioid Receptor-Mediated G-protein Activity in the Thalamus

    PubMed Central

    Hoot, Michelle R.; Sim-Selley, Laura J.; Selley, Dana E.; Scoggins, Krista L.; Dewey, William L.

    2011-01-01

    Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4, Gly5-OH] enkephalin (DAMGO)-stimulated [35S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [35S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC50 values. In PAG, however, DAMGO Emax values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [3H]Naloxone binding in membranes of the thalamus showed no significant differences in Bmax values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain. PMID:21762883

  17. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus

    PubMed Central

    Williams, Tanya J.; Torres-Reveron, Annelyn; Chapleau, Jeanette D.; Milner, Teresa A.

    2011-01-01

    Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that

  18. Sigma receptors [σRs]: biology in normal and diseased states

    PubMed Central

    Rousseaux, Colin G.; Greene, Stephanie F.

    2016-01-01

    Abstract This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them. PMID:26056947

  19. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    PubMed

    Weibel, Raphaël; Reiss, David; Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A J; Wood, John N; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  20. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  1. The opioid systems--panacea and nemesis.

    PubMed

    Terenius, Lars; Johansson, Björn

    2010-05-21

    This mini-review outlines the opioid systems and their roles primarily as related to reward and compulsive drug/alcohol intake. The central role is taken by the mu-opioid receptor, target for opiate analgesics and also a central target in compulsive alcohol abuse, alcoholism. The mu-opioid receptor and the cognate opioid neuropeptides from proenkephalin and proopiomelancortin are members of a superfamily of opioid systems, each with unique and still to be defined roles in the central nervous system. 2010. Published by Elsevier Inc.

  2. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  3. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  4. Src family kinases mediate the inhibition of substance P release in the rat spinal cord by μ-opioid receptors and GABA(B) receptors, but not α2 adrenergic receptors.

    PubMed

    Zhang, Guohua; Chen, Wenling; Marvizón, Juan Carlos G

    2010-09-01

    GABA(B) , μ-opioid and adrenergic α(2) receptors inhibit substance P release from primary afferent terminals in the dorsal horn. Studies in cell expression systems suggest that μ-opioid and GABA(B) receptors inhibit transmitter release from primary afferents by activating Src family kinases (SFKs), which then phosphorylate and inhibit voltage-gated calcium channels. This study investigated whether SFKs mediate the inhibition of substance P release by these three receptors. Substance P release was measured as neurokinin 1 receptor (NK1R) internalization in spinal cord slices and in vivo. In slices, NK1R internalization induced by high-frequency dorsal root stimulation was inhibited by the μ-opioid agonist DAMGO and the GABA(B) agonist baclofen. This inhibition was reversed by the SFK inhibitor PP1. NK1R internalization induced by low-frequency stimulation was also inhibited by DAMGO, but PP1 did not reverse this effect. In vivo, NK1R internalization induced by noxious mechanical stimulation of the hind paw was inhibited by intrathecal DAMGO and baclofen. This inhibition was reversed by intrathecal PP1, but not by the inactive PP1 analog PP3. PP1 produced no effect by itself. The α(2) adrenergic agonists medetomidine and guanfacine produced a small but statistically significant inhibition of NK1R internalization induced by low-frequency dorsal root stimulation. PP1 did not reverse the inhibition by guanfacine. These results show that SFKs mediate the inhibition of substance P release by μ-opioid and GABA(B) receptors, but not by α(2) receptors, which is probably mediated by the binding of G protein βγ subunits to calcium channels. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. No claim to original US government works.

  5. Discovery of Potent and Selective Agonists of δ Opioid Receptor by Revisiting the "Message-Address" Concept.

    PubMed

    Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei

    2016-04-14

    The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.

  6. Cholesterol Regulates μ-Opioid Receptor-Induced β-Arrestin 2 Translocation to Membrane Lipid RaftsS⃞

    PubMed Central

    Qiu, Yu; Wang, Yan; Chen, Hong-Zhuan; Loh, Horace H.

    2011-01-01

    μ-Opioid receptor (OPRM1) is mainly localized in lipid raft microdomains but internalizes through clathrin-dependent pathways. Our previous studies demonstrated that disruption of lipid rafts by cholesterol-depletion reagent blocked the agonist-induced internalization of OPRM1 and G protein-dependent signaling. The present study demonstrated that reduction of cholesterol level decreased and culturing cells in excess cholesterol increased the agonist-induced internalization and desensitization of OPRM1, respectively. Further analyses indicated that modulation of cellular cholesterol level did not affect agonist-induced receptor phosphorylation but did affect membrane translocation of β-arrestins. The translocation of β-arrestins was blocked by cholesterol reduction, and the effect could be reversed by incubating with cholesterol. OptiPrep gradient separation of lipid rafts revealed that excess cholesterol retained more receptors in lipid raft domains and facilitated the recruitment of β-arrestins to these microdomains upon agonist activation. Moreover, excess cholesterol could evoke receptor internalization and protein kinase C-independent extracellular signal-regulated kinases activation upon morphine treatment. Therefore, these results suggest that cholesterol not only can influence OPRM1 localization in lipid rafts but also can effectively enhance the recruitment of β-arrestins and thereby affect the agonist-induced trafficking and agonist-dependent signaling of OPRM1. PMID:21518774

  7. Prospects of Using of κ-Opioid Receptor Agonists U-50,488 and ICI 199,441 for Improving Heart Resistance to Ischemia/Reperfusion.

    PubMed

    Tsibulnikov, S Yu; Maslov, L N; Mukhomedzyanov, A V; Krylatov, A V; Tsibulnikova, M R; Lishmanov, Yu B

    2015-10-01

    We studied the ability of the agonist of κ1-opioid receptors U-50,488 in doses of 0.1 and 1 mg/kg to simulate ischemic pre- and postconditioning of the heart and κ-opioid receptors ICI 199,441 in a dose of 0.1 mg/kg to simulate the antiarrhythmic effect of heart preconditioning. The duration of ischemia was 10 or 45 min and the duration of reperfusion was 10 min or 2 h. Administration of 1 mg/kg U-50,488 both before ischemia and 5 min before reperfusion produced a pronounced antiarrhythmic effect. U-50,488 injected 5 min before reperfusion 2-fold reduced the ratio of infarction to risk area. Administration of ICI 199,441 in a dose of 0.1 mg/kg 15 min before ischemia produced a potent antiarrhythmic effect. Antiarrhythmic effect of κ-opioid receptor agonists depended on activation of κ-opioid receptors.

  8. New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology.

    PubMed

    Zádor, Ferenc; Király, Kornél; Váradi, András; Balogh, Mihály; Fehér, Ágnes; Kocsis, Dóra; Erdei, Anna I; Lackó, Erzsébet; Zádori, Zoltán S; Hosztafi, Sándor; Noszál, Béla; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-08-15

    Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported to have limited CNS access. The current study, for the first time gives report on the synthesis and the in vitro [competition binding, G-protein activation, isolated mouse vas deferens (MVD) and mouse colon assay] pharmacology of the zwitterionic compound, naltrexone-14-O-sulfate. Naltrexone, naloxone, and its 14-O-sulfate analogue were used as reference compounds. In competition binding assays, naltrexone-14-O-sulfate showed lower affinity for µ, δ or κ opioid receptor than the parent molecule, naltrexone. However, the μ/κ opioid receptor selectivity ratio significantly improved, indicating better selectivity. Similar tendency was observed for naloxone-14-O-sulfate when compared to naloxone. Naltrexone-14-O-sulfate failed to activate [ 35 S]GTPγS-binding but inhibit the activation evoked by opioid agonists (DAMGO, Ile 5,6 deltorphin II and U69593), similarly to the reference compounds. Schild plot constructed in MVD revealed that naltrexone-14-O-sulfate acts as a competitive antagonist. In mouse colon, naltrexone-14-O-sulfate antagonized the inhibitory effect of morphine with lower affinity compared to naltrexone and higher affinity when compared to naloxone or naloxone-14-O-sulfate. In vivo (mouse tail-flick test), subcutaneously injected naltrexone-14-O-sulfate antagonized morphine's antinociception in a dose-dependent manner, indicating it's CNS penetration, which was unexpected from such zwitter ionic structure. Future studies are needed to evaluate it's pharmacokinetic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Mechanisms of inhibitory action of TRK-130 (Naltalimide), a μ-opioid receptor partial agonist, on the micturition reflex.

    PubMed

    Fujimura, Morihiro; Izumimoto, Naoki; Kanie, Sayoko; Kobayashi, Ryosuke; Yoshikawa, Satoru; Momen, Shinobu; Hirakata, Mikito; Komagata, Toshikazu; Okanishi, Satoshi; Iwata, Masashi; Hashimoto, Tadatoshi; Doi, Takayuki; Yoshimura, Naoki; Kawai, Koji

    2017-04-01

    To clarify the mechanism of inhibitory action of TRK-130 (Naltalimide), a unique µ-opioid receptor partial agonist, on the micturition reflex. The effect of TRK-130 on isovolumetric rhythmic bladder contractions (RBCs) was examined in guinea pigs, the effect of which was clarified by co-treatment with naloxone or in spinal cord transection. The effect of TRK-130 on urodynamic parameters was also observed in guinea pigs. In addition, the effect of TRK-130 on bladder contraction induced by peripheral stimulation of the pelvic nerve was investigated in rats. TRK-130 (0.001-0.01 mg/kg, iv) dose-dependently inhibited RBCs, which was dose-dependently antagonized by naloxone; however, the antagonism susceptibility was different from morphine (1 mg/kg, iv). The minimum effective dose (0.003 mg/kg) of TRK-130 remained similar in spinal cord-transected animals. TRK-130 (0.0025 mg/kg, iv) increased bladder capacity without changing the voiding efficiency, maximum flow rate, and intravesical pressure at the maximum flow rate, whereas oxybutynin (1 mg/kg, iv) increased the bladder capacity but affected the other parameters. TRK-130 (0.005 mg/kg, iv) did not produce significant changes on the bladder contractions induced by peripheral stimulation of the pelvic nerve, while oxybutynin (1 mg/kg, iv) significantly suppressed the bladder contractions. These results suggest that TRK-130 enhances the bladder storage function by modulating the afferent limb of the micturition reflex through µ-opioid receptors in the spinal cord. TRK-130 could be a more effective and safer therapeutic agent with a different fashion from antimuscarinics and conventional opioids for overactive bladder.

  11. Computer-aided structure-affinity relationships in a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives binding to the μ-opioid receptor

    NASA Astrophysics Data System (ADS)

    Barlocco, Daniela; Cignarella, Giorgio; Greco, Giovanni; Novellino, Ettore

    1993-10-01

    Molecular modeling studies were carried out on a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives with the aim to highlight the main factors modulating their affinity for the μ-opioid receptor. Structure-affinity relationships were developed with the aid of molecular mechanics and semiempirical quantum-mechanics methods. According to our proposed pharmacodynamic model, the binding to the μ-receptor is promoted by the following physico-chemical features: the presence of hydrocarbon fragments on the nitrogen ring frame capable of interacting with one of two hypothesized hydrophobic receptor pockets; a `correct' orientation of an N-propionyl side chain so as to avoid a sterically hindered region of the receptor; the possibility of accepting a hydrogen bond from a receptor site complementary to the morphine phenol oxygen.

  12. Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors

    PubMed Central

    Wang, Pei-Chen; Ho, Ing-Kang; Lee, Cynthia Wei-Sheng

    2015-01-01

    Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium-labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N-linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U-69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration-dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP-expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration-dependent AC superactivation elicited by chronic buprenorphine exposure. PMID:26153065

  13. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  14. Contribution of GABAA, Glycine, and Opioid Receptors to Sacral Neuromodulation of Bladder Overactivity in Cats.

    PubMed

    Jiang, Xuewen; Fuller, Thomas W; Bandari, Jathin; Bansal, Utsav; Zhang, Zhaocun; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-12-01

    In α-chloralose-anesthetized cats, we examined the role of GABA A , glycine, and opioid receptors in sacral neuromodulation-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.5% acetic acid (AA). AA irritation significantly (P < 0.01) reduced bladder capacity to 59.5 ± 4.8% of saline control. S1 or S2 dorsal root stimulation at threshold intensity for inducing reflex twitching of the anal sphincter or toe significantly (P < 0.01) increased bladder capacity to 105.3 ± 9.0% and 134.8 ± 8.9% of saline control, respectively. Picrotoxin, a GABA A receptor antagonist administered i.v., blocked S1 inhibition at 0.3 mg/kg and blocked S2 inhibition at 1.0 mg/kg. Picrotoxin (0.4 mg, i.t.) did not alter the inhibition induced during S1 or S2 stimulation, but unmasked a significant (P < 0.05) poststimulation inhibition that persisted after termination of stimulation. Naloxone, an opioid receptor antagonist (0.3 mg, i.t.), significantly (P < 0.05) reduced prestimulation bladder capacity and removed the poststimulation inhibition. Strychnine, a glycine receptor antagonist (0.03-0.3 mg/kg, i.v.), significantly (P < 0.05) increased prestimulation bladder capacity but did not reduce sacral S1 or S2 inhibition. After strychnine (0.3 mg/kg, i.v.), picrotoxin (0.3 mg/kg, i.v.) further (P < 0.05) increased prestimulation bladder capacity and completely blocked both S1 and S2 inhibition. These results indicate that supraspinal GABA A receptors play an important role in sacral neuromodulation of bladder overactivity, whereas glycine receptors only play a minor role to facilitate the GABA A inhibitory mechanism. The poststimulation inhibition unmasked by blocking spinal GABA A receptors was mediated by an opioid mechanism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    ERIC Educational Resources Information Center

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  16. The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity.

    PubMed

    Leyton, M; Stewart, J

    1992-10-23

    Systemic injections of the kappa (kappa) opioid receptor agonist U-50,488H decreased male sexual behavior, locomotor activity, body temperature and bodily grooming, and induced body flattening. The U-50,488H-induced inhibitions of male sexual behavior were prevented by systemic injections of naloxone and by intra-cranial injections of the kappa opioid antagonist nor-binaltorphimine (NBNI). Injections of NBNI to either the ventral tegmental area (VTA) or the nucleus accumbens septi (NAS) increased female-directed behavior, and prevented the U-50,488H-induced decreases in female-directed behavior. Intra-VTA NBNI prevented U-50,488H-induced decreases in the mean number of ejaculations, intra-NAS NBNI prevented U-50,488H-induced increases in copulation latencies. Intra-medial preoptic area (mPOA) injections of NBNI increased female-directed behavior, and attenuated U-50,488H-induced decreases in female-directed behavior as well as U-50,488H-induced increases in both copulation and ejaculation latencies. Injections of NBNI dorsal to the mPOA were ineffective. Two of 26 days following the central injection of NBNI, systemic injections of U-50,488H remained behaviorally ineffective, leaving both sexual behavior and locomotor activity undiminished. These results suggest that the stimulation of central kappa opioid receptors inhibits sexual behavior in the male rat; perhaps endogenous kappa opioid agonists induce sexual refractory periods.

  17. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol.

    PubMed

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S

    2009-01-01

    We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.

  18. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice.

    PubMed

    Szentirmay, A K; Király, K P; Lenkey, N; Lackó, E; Al-Khrasani, M; Friedmann, T; Timár, J; Gyarmati, S; Tóth, G; Fürst, S; Riba, P

    2013-01-01

    Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like

  19. Glucocorticoid receptor modulators.

    PubMed

    Meijer, Onno C; Koorneef, Lisa L; Kroon, Jan

    2018-06-01

    The glucocorticoid hormone cortisol acts throughout the body to support circadian processes and adaptation to stress. The glucocorticoid receptor is the target of cortisol and of synthetic glucocorticoids, which are used widely in the clinic. Both agonism and antagonism of the glucocorticoid receptor may be beneficial in disease, but given the wide expression of the receptor and involvement in various processes, beneficial effects are often accompanied by unwanted side effects. Selective glucocorticoid receptor modulators are ligands that induce a receptor conformation that allows activation of only a subset of downstream signaling pathways. Such molecules thereby combine agonistic and antagonistic properties. Here we discuss the mechanisms underlying selective receptor modulation and their promise in treating diseases in several organ systems where cortisol signaling plays a role. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Sex differences in analgesic, reinforcing, discriminative, and motoric effects of opioids.

    PubMed

    Craft, Rebecca M

    2008-10-01

    This review summarizes evidence for sex differences in behavioral effects of opioids, primarily in rats. Whereas micro agonists have been found to be more potent and in some cases more efficacious in producing analgesia and sedation in males than females, females are more sensitive than males to reinforcing and locomotor stimulant effects of opioids. Sex differences in motoric effects of opioids may contribute to sex differences in other behavioral effects of opioids; for example, sex differences in rats' ability to discriminate morphine from saline can be attributed entirely to greater morphine-induced sedation in males. Chronic estradiol blunts females' sensitivity to morphine's analgesic and sedative effects, but enhances females' sensitivity to the reinforcing and locomotor stimulant effects of micro opioids. The neurobiological basis for sex differences in and estradiol modulation of behavioral effects of opioids includes brain opioid receptor density (greater in males and under low-estradiol conditions in females) and dopaminergic function (greater in females and under high-estradiol conditions). Given the significant and growing use of opioids by women, both medicinally and recreationally, understanding how female biology influences analgesic and other effects of opioids is crucial. Copyright (c) 2008 APA, all rights reserved.

  1. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects.

    PubMed

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W

    2011-12-06

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile.

  2. Endometriosis Is Associated With a Shift in MU Opioid and NMDA Receptor Expression in the Brain Periaqueductal Gray

    PubMed Central

    Torres-Reverón, Annelyn; Palermo, Karylane; Hernández-López, Anixa; Hernández, Siomara; Cruz, Myrella L.; Thompson, Kenira J.; Flores, Idhaliz; Appleyard, Caroline B.

    2016-01-01

    Studies have examined how endometriosis interacts with the nervous system, but little attention has been paid to opioidergic systems, which are relevant to pain signaling. We used the autotransplantation rat model of endometriosis and allowed to progress for 60 days. The brain was collected and examined for changes in endogenous opioid peptides, mu opioid receptors (MORs), and the N-methyl-d-aspartate subunit receptor (NR1) in the periaqueductal gray (PAG), since both of these receptors can regulate PAG activity. No changes in endogenous opioid peptides in met- and leu-enkephalin or β-endorphin levels were observed within the PAG. However, MOR immunoreactivity was significantly decreased in the ventral PAG in the endometriosis group. Endometriosis reduced by 20% the number of neuronal profiles expressing MOR and reduced by 40% the NR1 profiles. Our results suggest that endometriosis is associated with subtle variations in opioidergic and glutamatergic activity within the PAG, which may have implications for pain processing. PMID:27089914

  3. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System.

    PubMed

    Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  4. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System.

    PubMed

    Hauser, Kurt F; Knapp, Pamela E

    2017-01-01

    The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  5. Blocking of opioid receptors in experimental formaline-inactivated respiratory syncytial virus (FI-RSV) immunopathogenesis: from beneficial to harmful impacts.

    PubMed

    Salimi, Vahid; Mirzaei, Habib; Ramezani, Ali; Tahamtan, Alireza; Jamali, Abbas; Shahabi, Shahram; Golaram, Maryam; Minaei, Bagher; Gharagozlou, Mohammad Javad; Mahmoodi, Mahmood; Bont, Louis; Shokri, Fazel; Mokhtari-Azad, Talat

    2018-04-01

    Opioid system plays a significant role in pathophysiological processes, such as immune response and impacts on disease severity. Here, we investigated the effect of opioid system on the immunopathogenesis of respiratory syncytial virus (RSV) vaccine (FI-RSV)-mediated illness in a widely used mouse model. Female Balb/c mice were immunized at days 0 and 21 with FI-RSV (2 × 10 6  pfu, i.m.) and challenged with RSV-A2 (3 × 10 6  pfu, i.n.) at day 42. Nalmefene as a universal opioid receptors blocker administered at a dose of 1 mg/kg in combination with FI-RSV (FI-RSV + NL), and daily after live virus challenge (RSV + NL). Mice were sacrificed at day 5 after challenge and bronchoalveolar lavage (BAL) fluid and lungs were harvested to measure airway immune cells influx, T lymphocyte subtypes, cytokines/chemokines secretion, lung histopathology, and viral load. Administration of nalmefene in combination with FI-RSV (FI-RSV + NL-RSV) resulted in the reduction of the immune cells infiltration to the BAL fluid, the ratio of CD4/CD8 T lymphocyte, the level of IL-5, IL-10, MIP-1α, lung pathology, and restored weight loss after RSV infection. Blocking of opioid receptors during RSV infection in vaccinated mice (FI-RSV-RSV + NL) had no significant effects on RSV immunopathogenesis. Moreover, administration of nalmefene in combination with FI-RSV and blocking opioid receptors during RSV infection (FI-RSV + NL-RSV + NL) resulted in an increased influx of the immune cells to the BAL fluid, increases the level of IFN-γ, lung pathology, and weight loss in compared to control condition. Although nalmefene administration within FI-RSV vaccine decreases vaccine-enhanced infection during subsequent exposure to the virus, opioid receptor blocking during RSV infection aggravates the host inflammatory response to RSV infection. Thus, caution is required due to beneficial/harmful functions of opioid systems while targeting as potentially therapies.

  6. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  7. [18F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and μ-Opioid Receptor

    PubMed Central

    2017-01-01

    18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577

  8. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors.

    PubMed

    Díaz-Cenzano, Elena; Gaztañaga, Mirari; Gabriela Chotro, M

    2014-09-01

    Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period. © 2013 Wiley Periodicals, Inc.

  9. Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI.

    PubMed

    Maraschin, Jhonatan Christian; Almeida, Camila Biesdorf; Rangel, Marcel Pereira; Roncon, Camila Marroni; Sestile, Caio César; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-06-01

    Panic patients may have abnormalities in serotonergic and opioidergic neurotransmission. The dorsal periaqueductal gray (dPAG) plays an important role in organizing proximal defense, related to panic attacks. The 5-HT 1A receptor (5-HT 1A -R) is involved in regulating escape behavior that is organized in the dPAG. Activation of κ-opioid receptor (KOR) in this region causes anxiogenic effects. In this study, we investigated the involvement of KOR in regulating escape behavior, using systemic and intra-dPAG injection of the KOR antagonist Nor-BNI. As panic models, we used the elevated T-maze (ETM) and the dPAG electrical stimulation test (EST). We also evaluated whether activation of the 5-HT 1A -R or the μ-opioid receptor (MOR) in the dPAG contributes to the Nor-BNI effects. The results showed that systemic administration of Nor-BNI, either subcutaneously (2.0 and 4.0mg/kg) or intraperitoneally (2.0mg/kg), impaired escape in the EST, indicating a panicolytic-like effect. Intra-dPAG injection of this antagonist (6.8nmol) caused the same effect in the EST and in the ETM. Association of ineffective doses of Nor-BNI and the 5-HT 1A -R agonist 8-OH-DPAT caused panicolytic-like effect in these two tests. Previous administration of the 5-HT 1A -R antagonist WAY-100635, but not of the MOR antagonist CTOP, blocked the panicolytic-like effect of Nor-BNI. These results indicate that KOR enhances proximal defense in the dPAG through 5-HT 1A -R modulation, independently of MOR. Because former results indicate that the 5-HT 1A -R is involved in the antipanic action of antidepressants, KOR antagonists may be useful as adjunctive or alternative drug treatment of panic disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The rewarding action of acute cocaine is reduced in β-endorphin deficient but not in μ opioid receptor knockout mice.

    PubMed

    Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah

    2012-07-05

    We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action

  11. Fentanyl-related designer drugs W-18 and W-15 lack appreciable opioid activity in vitro and in vivo.

    PubMed

    Huang, Xi-Ping; Che, Tao; Mangano, Thomas J; Le Rouzic, Valerie; Pan, Ying-Xian; Majumdar, Susruta; Cameron, Michael D; Baumann, Michael H; Pasternak, Gavril W; Roth, Bryan L

    2017-11-16

    W-18 (4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide) and W-15 (4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide) represent two emerging drugs of abuse chemically related to the potent opioid agonist fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylpropanamide). Here, we describe the comprehensive pharmacological profiles of W-18 and W-15, as examination of their structural features predicted that they might lack opioid activity. We found W-18 and W-15 to be without detectible activity at μ, δ, κ, and nociception opioid receptors in a variety of assays. We also tested W-18 and W-15 for activity as allosteric modulators at opioid receptors and found them devoid of significant positive or negative allosteric modulatory activity. Comprehensive profiling at essentially all the druggable GPCRs in the human genome using the PRESTO-Tango platform revealed no significant activity. Weak activity at the sigma receptors and the peripheral benzodiazepine receptor was found for W-18 (Ki = 271 nM). W-18 showed no activity in either the radiant heat tail-flick or the writhing assays and also did not induce classical opioid behaviors. W-18 is extensively metabolized, but its metabolites also lack opioid activity. Thus, although W-18 and W-15 have been suggested to be potent opioid agonists, our results reveal no significant activity at these or other known targets for psychoactive drugs.

  12. Desensitization and Tolerance of Mu Opioid Receptors on Pontine Kölliker-Fuse Neurons.

    PubMed

    Levitt, Erica S; Williams, John T

    2018-01-01

    Acute desensitization of mu opioid receptors is thought to be an initial step in the development of tolerance to opioids. Given the resistance of the respiratory system to develop tolerance, desensitization of neurons in the Kölliker-Fuse (KF), a key area in the respiratory circuit, was examined. The activation of G protein-coupled inwardly rectifying potassium current was measured using whole-cell voltage-clamp recordings from KF and locus coeruleus (LC) neurons contained in acute rat brain slices. A saturating concentration of the opioid agonist [Met 5 ]-enkephalin (ME) caused significantly less desensitization in KF neurons compared with LC neurons. In contrast to LC, desensitization in KF neurons was not enhanced by activation of protein kinase C or in slices from morphine-treated rats. Cellular tolerance to ME and morphine was also lacking in KF neurons from morphine-treated rats. The lack of cellular tolerance in KF neurons correlates with the relative lack of tolerance to the respiratory depressant effect of opioids. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Pavlovian conditioning of multiple opioid-like responses in mice.

    PubMed

    Bryant, Camron D; Roberts, Kristofer W; Culbertson, Christopher S; Le, Alan; Evans, Christopher J; Fanselow, Michael S

    2009-07-01

    Conditional responses in rodents such as locomotion have been reported for drugs of abuse and similar to the placebo response in humans, may be associated with the expectation of reward. We examined several conditional opioid-like responses and the influence of drug expectation on conditioned place preference and concomitant conditional locomotion. Male C57BL/6J mice were conditioned with the selective mu opioid receptor agonist fentanyl (0.2mg/kg, i.p.) in a novel context and subsequently given a vehicle injection. In separate experiments, locomotor activity, Straub tail, hot plate sensitivity, and conditioned place preference (CPP) were measured. Mice exhibited multiple conditional opioid-like responses including conditional hyperlocomotion, a conditional pattern of opioid-like locomotion, Straub tail, analgesia, and place preference. Modulating drug expectation via administration of fentanyl to "demonstrator" mice in the home cage did not affect the expression of conditioned place preference or the concomitant locomotor activity in "observer" mice. In summary, Pavlovian conditioning of an opioid in a novel context induced multiple conditional opioid-like behaviors and provides a model for studying the neurobiological mechanisms of the placebo response in mice.

  14. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in μ-opioid receptor knockout mice

    PubMed Central

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R.; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2012-01-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the μ-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a κ-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for δ-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia. PMID:18417173

  15. Partial purification of the mu opioid receptor irreversibly labeled with (/sup 3/H)b-funaltrexamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu-Chen, L.Y.; Phillips, C.A.; Tam, S.W.

    1986-03-01

    The mu opioid receptor in bovine striatal membranes was specifically and irreversibly labeled by incubation with 5 nM (/sup 3/H)..beta..-funaltrexamine (approx.-FNA) at 37/sup 0/C for 90 min in the presence of 100 mM NaCl. The specific and irreversible binding of (/sup 3/H)..beta..-FNA as defined by that blocked by 1 /sup +/M naloxone was about 60% of total irreversible binding. The specific irreversible binding was saturable, stereospecific, time-, temperature, and tissue-dependent. Mu opioid ligands were much more potent than delta or kappa ligands in inhibiting the specific irreversible labeling. SDS polyacrylamide gel electrophoresis of solubilized membranes in the presence of 2-mercaptoethanolmore » yielded a major radiolabeled broad band of MW 68-97K daltons, characteristic of a glycoprotein band. This band was not observed in membranes labeled in the presence of excess unlabeled naloxone. The glycoprotein nature of the (/sup 3/H)..beta..-FNA-labeled opioid receptor was confirmed by its binding to a wheat germ agglutinin-Sepharose column and its elution with N-acetylglucosamine.« less

  16. Exploring the Neuroimmunopharmacology of Opioids: An Integrative Review of Mechanisms of Central Immune Signaling and Their Implications for Opioid Analgesia

    PubMed Central

    Shavit, Yehuda; Grace, Peter M.; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2011-01-01

    Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical. PMID:21752874

  17. Potential involvement of μ-opioid receptor dysregulation on the reduced antinociception of morphine in the inflammatory pain state in mice.

    PubMed

    Aoki, Yuta; Mizoguchi, Hirokazu; Watanabe, Chizuko; Takeda, Kumiko; Sakurada, Tsukasa; Sakurada, Shinobu

    2014-01-01

    The antinociceptive effect of morphine in the inflammatory pain state was described in the von Frey filament test using the complete Freund's adjuvant (CFA)-induced mouse inflammatory pain model. After an i.pl. injection of CFA, mechanical allodynia was observed in the ipsilateral paw. The antinociceptive effect of morphine injected s.c. and i.t. against mechanical allodynia was reduced bilaterally at 1 day and 4 days after the CFA pretreatment. The expression level of mRNA for μ-opioid receptors at 1 day after the CFA pretreatment was reduced bilaterally in the lumbar spinal cord and dorsal root ganglion (DRG). In contrast, the protein level of μ-opioid receptors at 1 day after CFA pretreatment was decreased in the ipsilateral side in the DRG but not the lumbar spinal cord. Single or repeated i.t. pretreatment with the protein kinase Cα (PKCα) inhibitor Ro-32-0432 completely restored the reduced morphine antinociception in the contralateral paw but only partially restored it in the ipsilateral paw in the inflammatory pain state. In conclusion, reduced morphine antinociception against mechanical allodynia in the inflammatory pain state is mainly mediated via a decrease in μ-opioid receptors in the ipsilateral side and via the desensitization of μ-opioid receptors in the contralateral side by PKCα-induced phosphorylation.

  18. Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet.

    PubMed

    Pitman, Kimberley A; Borgland, Stephanie L

    2015-10-01

    The incidence of obesity in both adults and children is rising. In order to develop effective treatments for obesity, it is important to understand how diet can induce changes in the brain that could promote excessive intake of high-calorie foods and alter the efficacy of therapeutic targets. The mu-opioid receptor is involved in regulating the motivation for and hedonic reaction to food. Here, we review the literature examining changes in the expression and function of mu-opioid receptors in the mesolimbic system of rodents after extended access to a high-fat diet. We also review how maternal diet can induce long-term changes in the expression or function of mu-opioid receptors in the mesolimbic system of offspring. Understanding the behavioural and therapeutic implications of these changes requires further study. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    PubMed

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders. Copyright © 2015 The Authors. Published by Elsevier

  20. Long-lasting, distinct changes in central opioid receptor and urinary bladder functions in models of schizophrenia in rats.

    PubMed

    Kekesi, Orsolya; Tuboly, Gabor; Szucs, Maria; Birkas, Erika; Morvay, Zita; Benedek, Gyorgy; Horvath, Gyongyi

    2011-07-01

    Ketamine treatments and social isolation of rats reflect certain features of schizophrenia, among them altered pain sensitivity. To study the underlying mechanisms of these phenomena, rats were either housed individually or grouped for 33 days after weaning, and treated with either ketamine or saline for 14 days. After one month re-socialization, the urinary bladder capacity by ultrasound examination in the anesthetized animals, and changes of μ-opioid receptors by saturation binding experiments using a specific μ-opioid agonist [(3)H]DAMGO were determined. G-protein signaling was investigated in DAMGO-stimulated [(35)S]GTPγS functional assays. Ketamine treatment significantly decreased the bladder volume and isolation decreased the receptor density in cortical membranes. Among all groups, the only change in binding affinity was an increase induced by social isolation in the cortex. G-protein signaling was significantly decreased by either ketamine or social isolation in this tissue. Ketamine treatment, but not housing, significantly increased μ-opioid receptor densities in hippocampal membranes. Both ketamine and isolation increased the efficacy, while the potency of signaling was decreased by any treatment. Ketamine increased the receptor density and G-protein activation; while isolation decreased the efficacy of G-protein signaling in hippocampal membranes. The changes in the co-treated group were similar to those of the isolated animals in most tests. The distinct changes of opioid receptor functioning in different areas of the CNS may, at least partially, explain the augmented nociceptive threshold and morphine potency observed in these animals. Changes in the relative urinary bladder suggest a detrusor hyperreflexia, another sign of schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dmt and opioid peptides: a potent alliance.

    PubMed

    Bryant, Sharon D; Jinsmaa, Yunden; Salvadori, Severo; Okada, Yoshio; Lazarus, Lawrence H

    2003-01-01

    The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance. Copyright 2003 Wiley Periodicals, Inc.

  2. Methylnaltrexone mechanisms of action and effects on opioid bowel dysfunction and other opioid adverse effects.

    PubMed

    Yuan, Chun-Su

    2007-06-01

    To review the mechanisms of action of methylnaltrexone and its effects on opioid bowel dysfunction, as well as its effects on other opioid-induced adverse effects (ADEs), and its potential roles in clinical practice. A literature search using the MEDLINE and Cochrane Collaboration databases for articles published between 1966 and March 2007 was performed. Additional data sources were obtained from manual searches of recent journal articles, book chapters, and monographs. An updated literature search showed no additional publications. Abstracts and original preclinical and clinical research reports published in the English language were identified for review. Review articles, commentaries, and news reports of this compound were excluded. Literature related to opioids, opioid receptors, opioid antagonists, methylnaltrexone, opioid-induced bowel dysfunction, constipation, nausea, and vomiting was evaluated and selected based on consideration of the support shown for the proof of concept, mechanistic findings, and timeliness. Fifty-eight original articles from preclinical studies and clinical trials using methylnaltrexone were identified. Pharmacologic action, benefits, and ADEs of methylnaltrexone were reviewed, with a focus on its effects on bowel dysfunction after opioids. Emphases were placed on its receptor binding activities and therapeutically relevant sites of action (peripheral vs central), in which peripheral opioid receptors in the body contribute to physiological and drug-induced effects. Morphine and related opioids are associated with a number of limiting ADEs, including opioid-induced bowel dysfunction. Methylnaltrexone, a quaternary derivative of naltrexone, blocks peripheral effects of opioids while sparing central analgesic effects. It is currently under late-stage clinical investigation for the treatment of opioid-induced constipation in patients with advanced illness. Reported results showed the drug to be generally well-tolerated. The rapid

  3. Interaction between the mu-agonist dermorphin and the delta-agonist [D-Ala2, Glu4]deltorphin in supraspinal antinociception and delta-opioid receptor binding.

    PubMed Central

    Negri, L.; Improta, G.; Lattanzi, R.; Potenza, R. L.; Luchetti, F.; Melchiorri, P.

    1995-01-01

    1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole

  4. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    PubMed Central

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  5. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    PubMed

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  6. Lithium attenuated the behavioral despair induced by acute neurogenic stress through blockade of opioid receptors in mice.

    PubMed

    Khaloo, Pegah; Sadeghi, Banafshe; Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Haj-Mirzaian, Arya; Zolfagharie, Samira; Dehpour, Ahmad-Reza

    2016-10-01

    Major depressive disorder is disease with high rate of morbidity and mortality. Stressful events lead to depression and they can be used as a model of depression in rodents. In this study we aimed to investigate whether lithium modifies the stressed-induced depression through blockade of opioid receptors in mice. We used foot shock stress as stressor and forced swimming test (FST), tail suspension test (TST) and open field test (OFT) to evaluation the behavioral responses in mice. We also used naltrexone hydrochloride (as opioid receptor antagonist), and morphine (as opioid receptor agonist). Our results displayed that foot-shock stress significantly increased the immobility time in TST and FST but it could not change the locomotor behavior in OFT. When we combined the low concentrations of lithium and naltrexone a significant reduction in immobility time was seen in the FST and TST in comparison with control foot-shock stressed group administered saline only. Despite the fact that our data showed low concentrations of lithium, when administered independently did not significantly affect the immobility time. Also our data indicated that concurrent administration of lithium and naltrexone had no effect on open field test. Further we demonstrated that simultaneous administration of morphine and lithium reverses the antidepressant like effect of active doses of lithium. Our data acclaimed that we lithium can augment stressed-induced depression and opioid pathways are involved in this action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects

    PubMed Central

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W.

    2011-01-01

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile. PMID:22106286

  8. PPARγ activation attenuates opioid consumption and modulates mesolimbic dopamine transmission.

    PubMed

    de Guglielmo, Giordano; Melis, Miriam; De Luca, Maria Antonietta; Kallupi, Marsida; Li, Hong Wu; Niswender, Kevin; Giordano, Antonio; Senzacqua, Martina; Somaini, Lorenzo; Cippitelli, Andrea; Gaitanaris, George; Demopulos, Gregory; Damadzic, Ruslan; Tapocik, Jenica; Heilig, Markus; Ciccocioppo, Roberto

    2015-03-01

    PPARγ is one of the three isoforms identified for the peroxisome proliferator-activated receptors (PPARs) and is the receptor for the thiazolidinedione class of anti-diabetic medications including pioglitazone. PPARγ has been long studied for its role in adipogenesis and glucose metabolism, but the discovery of the localization in ventral tegmental area (VTA) neurons opens new vistas for a potential role in the regulation of reward processing and motivated behavior in drug addiction. Here, we demonstrate that activation of PPARγ by pioglitazone reduces the motivation for heroin and attenuates its rewarding properties. These effects are associated with a marked reduction of heroin-induced increase in phosphorylation of DARPP-32 protein in the nucleus accumbens (NAc) and with a marked and selective reduction of acute heroin-induced elevation of extracellular dopamine (DA) levels in the NAc shell, as measured by in vivo microdialysis. Through ex vivo electrophysiology in acute midbrain slices, we also show that stimulation of PPARγ attenuates opioid-induced excitation of VTA DA neurons via reduction of presynaptic GABA release from the rostromedial tegmental nucleus (RMTg). Consistent with this finding, site-specific microinjection of pioglitazone into the RMTg but not into the VTA reduced heroin taking. Our data illustrate that activation of PPARγ may represent a new pharmacotherapeutic option for the treatment of opioid addiction.

  9. β‐Endorphin, Met‐enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis

    PubMed Central

    Mousa, Shaaban A; Straub, Rainer H; Schäfer, Michael; Stein, Christoph

    2007-01-01

    Objective Intra‐articularly applied opioid agonists or antagonists modulate pain after knee surgery and in chronic arthritis. Therefore, the expression of β‐endorphin (END), Met‐enkephalin (ENK), and μ and δ opioid receptors (ORs) within synovium of patients with joint trauma (JT), osteoarthritis (OA) and rheumatoid arthritis (RA) were examined. Methods Synovial samples were subjected to double immunohistochemical analysis of opioid peptides with immune cell markers, and of ORs with the neuronal markers calcitonin gene‐related peptide (CGRP) and tyrosine hydroxylase (TH). Results END and ENK were expressed by macrophage‐like (CD68+) and fibroblast‐like (CD68−) cells within synovial lining layers of all disorders. In the sublining layers, END and ENK were mostly expressed by granulocytes in patients with JT, and by macrophages/monocytes, lymphocytes and plasma cells in those with OA and RA. Overall, END‐ and ENK‐immunoreactive (IR) cells were more abundant in patients with RA than in those with OA and JT. ORs were found on nerve fibres and immune cells in all patients. OR‐IR nerve fibres were significantly more abundant in patients with RA than in those with OA and JT. μORs and δORs were coexpressed with CGRP but not with TH. Conclusions Parallel to the severity of inflammation, END and ENK in immune cells and their receptors on sensory nerve terminals are more abundant in patients with RA than in those with JT and OA. These findings are consistent with the notion that, with prolonged and enhanced inflammation, the immune and peripheral nervous systems upregulate sensory nerves expressing ORs and their ligands to counterbalance pain and inflammation. PMID:17324971

  10. Molecular signatures of mu opioid receptor and somatostatin receptor 2 in pancreatic cancer

    PubMed Central

    Jorand, Raphael; Biswas, Sunetra; Wakefield, Devin L.; Tobin, Steven J.; Golfetto, Ottavia; Hilton, Kelsey; Ko, Michelle; Ramos, Joe W.; Small, Alexander R.; Chu, Peiguo; Singh, Gagandeep; Jovanovic-Talisman, Tijana

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC), a particularly aggressive malignancy, has been linked to atypical levels, certain mutations, and aberrant signaling of G-protein–coupled receptors (GPCRs). GPCRs have been challenging to target in cancer because they organize into complex networks in tumor cells. To dissect such networks with nanometer-scale precision, here we combine traditional biochemical approaches with superresolution microscopy methods. A novel interaction specific to PDAC is identified between mu opioid receptor (MOR) and somatostatin receptor 2 (SSTR2). Although MOR and SSTR2 did not colocalize in healthy pancreatic cells or matching healthy patient tissues, the pair did significantly colocalize in pancreatic cancer cells, multicellular tumor spheroids, and cancerous patient tissues. Moreover, this association in pancreatic cancer cells correlated with functional cross-talk and increased metastatic potential of cells. Coactivation of MOR and SSTR2 in PDAC cells led to increased expression of mesenchymal markers and decreased expression of an epithelial marker. Together these results suggest that the MOR-SSTR2 heteromer may constitute a novel therapeutic target for PDAC. PMID:27682590

  11. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    PubMed

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  12. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  13. 6'-Guanidinonaltrindole (6'-GNTI) is a G protein-biased κ-opioid receptor agonist that inhibits arrestin recruitment.

    PubMed

    Rives, Marie-Laure; Rossillo, Mary; Liu-Chen, Lee-Yuan; Javitch, Jonathan A

    2012-08-03

    κ-Opioid receptor (KOR) agonists do not activate the reward pathway stimulated by morphine-like μ-opioid receptor (MOR) agonists and thus have been considered to be promising nonaddictive analgesics. However, KOR agonists produce other adverse effects, including dysphoria, diuresis, and constipation. The therapeutic promise of KOR agonists has nonetheless recently been revived by studies showing that their dysphoric effects require arrestin recruitment, whereas their analgesic effects do not. Moreover, KOR agonist-induced antinociceptive tolerance observed in vivo has also been proposed to be correlated to the ability to induce arrestin-dependent phosphorylation, desensitization, and internalization of the receptor. The discovery of functionally selective drugs that are therapeutically effective without the adverse effects triggered by the arrestin pathway is thus an important goal. We have identified such an extreme G protein-biased KOR compound, 6'-guanidinonaltrindole (6'-GNTI), a potent partial agonist at the KOR receptor for the G protein activation pathway that does not recruit arrestin. Indeed, 6'-GNTI functions as an antagonist to block the arrestin recruitment and KOR internalization induced by other nonbiased agonists. As an extremely G protein-biased KOR agonist, 6'-GNTI represents a promising lead compound in the search for nonaddictive opioid analgesic as its signaling profile suggests that it will be without the dysphoria and other adverse effects promoted by arrestin recruitment and its downstream signaling.

  14. Elucidation of conformational states, dynamics, and mechanism of binding in human κ-opioid receptor complexes.

    PubMed

    Leonis, Georgios; Avramopoulos, Aggelos; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Yurtsever, Mine; Papadopoulos, Manthos G

    2014-08-25

    Opioid G protein-coupled receptors (GPCRs) have been implicated in modulating pain, addiction, psychotomimesis, mood and memory, among other functions. We have employed the recently reported crystal structure of the human κ-opioid receptor (κ-OR) and performed molecular dynamics (MD), free energy, and ab initio calculations to elucidate the binding mechanism in complexes with antagonist JDTic and agonist SalA. The two systems were modeled in water and in DPPC lipid bilayers, in order to investigate the effect of the membrane upon conformational dynamics. MD and Atoms in Molecules (AIM) ab initio calculations for the complexes in water showed that each ligand was stabilized inside the binding site of the receptor through hydrogen bond interactions that involved residues Asp138 (with JDTic) and Gln115, His291, Leu212 (with SalA). The static description offered by the crystal structure was overcome to reveal a structural rearrangement of the binding pocket, which facilitated additional interactions between JDTic and Glu209/Tyr139. The role of Glu209 was emphasized, since it belongs to an extracellular loop that covers the binding site of the receptor and is crucial for ligand entrapment. The above interactions were retained in membrane complexes (SalA forms additional hydrogen bonds with Tyr139/312), except the Tyr139 interaction, which is abolished in the JDTic complex. For the first time, we report that JDTic alternates between a "V-shape" (stabilized via a water-mediated intramolecular interaction) and a more extended conformation, a feature that offers enough suppleness for effective binding. Moreover, MM-PBSA calculations showed that the more efficient JDTic binding to κ-OR compared to SalA (ΔGJDTic = -31.6 kcal mol(-1), ΔGSalA = -9.8 kcal mol(-1)) is attributed mostly to differences in electrostatic contributions. Importantly, our results are in qualitative agreement with the experiments (ΔGJDTic,exp = -14.4 kcal mol(-1), ΔGSalA,exp = -10.8 kcal mol(-1

  15. Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype.

    PubMed

    Ziauddeen, Hisham; Nestor, Liam J; Subramaniam, Naresh; Dodds, Chris; Nathan, Pradeep J; Miller, Sam R; Sarai, Bhopinder K; Maltby, Kay; Fernando, Disala; Warren, Liling; Hosking, Louise K; Waterworth, Dawn; Korzeniowska, Anna; Win, Beta; Richards, Duncan B; Vasist Johnson, Lakshmi; Fletcher, Paul C; Bullmore, Edward T

    2016-10-01

    The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate-heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.

  16. Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype

    PubMed Central

    Ziauddeen, Hisham; Nestor, Liam J; Subramaniam, Naresh; Dodds, Chris; Nathan, Pradeep J; Miller, Sam R; Sarai, Bhopinder K; Maltby, Kay; Fernando, Disala; Warren, Liling; Hosking, Louise K; Waterworth, Dawn; Korzeniowska, Anna; Win, Beta; Richards, Duncan B; Vasist Johnson, Lakshmi; Fletcher, Paul C; Bullmore, Edward T

    2016-01-01

    The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate–heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders. PMID:27109624

  17. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  18. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans

    PubMed Central

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Elayi, Samy Claude; Walsh, Sharon L.

    2016-01-01

    Background The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. Methods Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21 hours before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. Results Oxycodone produced prototypic opioid agonist effects (i.e., suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. Conclusion CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal. PMID:27234658

  19. Gonadal Hormone Modulation of Mu, Kappa, and Delta Opioid Antinociception in Male and Female Rats

    PubMed Central

    Stoffel, Erin C.; Ulibarri, Catherine M.; Folk, John E.; Rice, Kenner C.

    2005-01-01

    Previous studies suggest that sex differences in morphine antinociception in rodents might be attributed to the activational effects of gonadal hormones. The present study determined whether hormonal modulation of opioid antinociception in adult rats extends to opioids other than the prototypic mu agonist morphine. Male and female rats were sham-gonadectomized (sham-GDX) or gonadectomized (GDX) and replaced with no hormone, estradiol (E2, females), progesterone (P4, females), E2+P4 (females), or testosterone (males). Approximately 28 days later, nociception was evaluated on the 50°C hot plate and warm water tail withdrawal tests before and after subcutaneous administration of hydromorphone, buprenorphine, U50,488, or SNC 80. In sham-GDX (gonadally intact) rats, the mu agonists and U50,488 were less effective in females than in males in at least one nociceptive test, and the delta agonist SNC 80 was less effective in males than in females. In males, gonadectomy tended to decrease, and testosterone tended to increase antinociception produced by 3 of the 4 agonists. In females, gonadectomy and hormone treatment had more variable effects, although E2 tended to decrease mu opioid antinociception. The present results suggest that activational effects of gonadal hormones are relatively modest and somewhat inconsistent on antinociception produced by various opioid agonists in the adult rat. Perspective: This study demonstrates that reproductive hormones such as testosterone in males and estradiol in females do not consistently modulate sensitivity to the analgesic effects of opioids in the adult organism. PMID:15820914

  20. Drug-induced GABA transporter currents enhance GABA release to induce opioid withdrawal behaviors.

    PubMed

    Bagley, Elena E; Hacker, Jennifer; Chefer, Vladimir I; Mallet, Christophe; McNally, Gavan P; Chieng, Billy C H; Perroud, Julie; Shippenberg, Toni S; Christie, MacDonald J

    2011-10-30

    Neurotransmitter transporters can affect neuronal excitability indirectly via modulation of neurotransmitter concentrations or directly via transporter currents. A physiological or pathophysiological role for transporter currents has not been described. We found that GABA transporter 1 (GAT-1) cation currents directly increased GABAergic neuronal excitability and synaptic GABA release in the periaqueductal gray (PAG) during opioid withdrawal in rodents. In contrast, GAT-1 did not indirectly alter GABA receptor responses via modulation of extracellular GABA concentrations. Notably, we found that GAT-1-induced increases in GABAergic activity contributed to many PAG-mediated signs of opioid withdrawal. Together, these data support the hypothesis that GAT-1 activity directly produces opioid withdrawal signs through direct hyperexcitation of GABAergic PAG neurons and nerve terminals, which presumably enhances GABAergic inhibition of PAG output neurons. These data provide, to the best of our knowledge, the first evidence that dysregulation of a neurotransmitter transporter current is important for the maladaptive plasticity that underlies opiate withdrawal.

  1. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain.

    PubMed

    Chen, W; McRoberts, J A; Marvizón, J C G

    2014-05-16

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund's adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. Published by Elsevier Ltd.

  2. μ-Opioid receptor inhibition of substance P release from primary afferents disappears in neuropathic pain but not inflammatory pain

    PubMed Central

    Chen, Wenling; McRoberts, James A.; Marvizón, Juan Carlos G.

    2014-01-01

    Opiate analgesia in the spinal cord is impaired during neuropathic pain. We hypothesized that this is caused by a decrease in μ-opioid receptor inhibition of neurotransmitter release from primary afferents. To investigate this possibility, we measured substance P release in the spinal dorsal horn as neurokinin 1 receptor (NK1R) internalization in rats with chronic constriction injury (CCI) of the sciatic nerve. Noxious stimulation of the paw with CCI produced inconsistent NK1R internalization, suggesting that transmission of nociceptive signals by the injured nerve was variably impaired after CCI. This idea was supported by the fact that CCI produced only small changes in the ability of exogenous substance P to induce NK1R internalization or in the release of substance P evoked centrally from site of nerve injury. In subsequent experiments, NK1R internalization was induced in spinal cord slices by stimulating the dorsal root ipsilateral to CCI. We observed a complete loss of the inhibition of substance P release by the μ-opioid receptor agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) in CCI rats but not in sham-operated rats. In contrast, DAMGO still inhibited substance P release after inflammation of the hind paw with complete Freund’s adjuvant and in naïve rats. This loss of inhibition was not due to μ-opioid receptor downregulation in primary afferents, because their colocalization with substance P was unchanged, both in dorsal root ganglion neurons and primary afferent fibers in the dorsal horn. In conclusion, nerve injury eliminates the inhibition of substance P release by μ-opioid receptors, probably by hindering their signaling mechanisms. PMID:24583035

  3. Primary afferent neurons express functional delta opioid receptors in inflamed skin.

    PubMed

    Brederson, Jill-Desiree; Honda, Christopher N

    2015-07-21

    Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat.

    PubMed

    Lindholm, S; Werme, M; Brené, S; Franck, J

    2001-05-01

    Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence.

  5. Allosteric Modulation of Chemoattractant Receptors

    PubMed Central

    Allegretti, Marcello; Cesta, Maria Candida; Locati, Massimo

    2016-01-01

    Chemoattractants control selective leukocyte homing via interactions with a dedicated family of related G protein-coupled receptor (GPCR). Emerging evidence indicates that the signaling activity of these receptors, as for other GPCR, is influenced by allosteric modulators, which interact with the receptor in a binding site distinct from the binding site of the agonist and modulate the receptor signaling activity in response to the orthosteric ligand. Allosteric modulators have a number of potential advantages over orthosteric agonists/antagonists as therapeutic agents and offer unprecedented opportunities to identify extremely selective drug leads. Here, we resume evidence of allosterism in the context of chemoattractant receptors, discussing in particular its functional impact on functional selectivity and probe/concentration dependence of orthosteric ligands activities. PMID:27199992

  6. Effect of Iboga Alkaloids on µ-Opioid Receptor-Coupled G Protein Activation

    PubMed Central

    Antonio, Tamara; Childers, Steven R.; Rothman, Richard B.; Dersch, Christina M.; King, Christine; Kuehne, Martin; Bornmann, William G.; Eshleman, Amy J.; Janowsky, Aaron; Simon, Eric R.; Reith, Maarten E. A.; Alper, Kenneth

    2013-01-01

    Objective The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. Methods Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([35S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. Results And Significance In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a

  7. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation.

    PubMed

    Antonio, Tamara; Childers, Steven R; Rothman, Richard B; Dersch, Christina M; King, Christine; Kuehne, Martin; Bornmann, William G; Eshleman, Amy J; Janowsky, Aaron; Simon, Eric R; Reith, Maarten E A; Alper, Kenneth

    2013-01-01

    The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([(35)S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [(35)S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35)S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35)S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and further

  8. Kinase cascades and ligand-directed signaling at the kappa opioid receptor.

    PubMed

    Bruchas, Michael R; Chavkin, Charles

    2010-06-01

    The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.

  9. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    PubMed Central

    2011-01-01

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  10. Making structural sense of dimerization interfaces of delta opioid receptor homodimers.

    PubMed

    Johnston, Jennifer M; Aburi, Mahalaxmi; Provasi, Davide; Bortolato, Andrea; Urizar, Eneko; Lambert, Nevin A; Javitch, Jonathan A; Filizola, Marta

    2011-03-15

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed "4" dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed "4/5" dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer.

  11. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses.

    PubMed

    Roncon, Camila Marroni; Yamashita, Paula Shimene de Melo; Frias, Alana Tercino; Audi, Elisabeth Aparecida; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne; Zangrossi, Helio

    2017-06-01

    The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.

  12. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms.

    PubMed

    Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J; Chiu, Yen-Chen; Striegel, Heather N; Chavkin, Charles

    2015-09-01

    G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Possible involvement of opioid receptors in moclobemide-induced hypothermia in mice.

    PubMed

    Ginawi, O T

    2003-09-01

    Effect of moclobemide, a selective monoamine oxidase-type A enzyme inhibitor, was investigated on the body temperature of male mice. Moclobemide (15-30 mg kg(-1), i.p.) produced significant reductions of body temperature in both normal and yeast-induced hyperthermic male mice. The hypothermic effect of moclobemide was moderate and short-lasting. Moclobemide-induced hypothermia was not antagonized by previous administration of prazosin (10 and 20 mg kg(-1), s.c.), propranolol (5, 10, and 20 mg kg(-1), s.c.), haloperidol (2 and 10 mg kg(-1), s.c.), atropine (10 and 20 mg kg(-1), s.c.), mepyramine (25 and 50 mg kg(-1), s.c.), or methysergide (0.5, 1, and 2 mg kg(-1), s.c.). Pretreatment with the opioid antagonist naloxone (10 mg kg(-1), s.c.), however, was able to reverse the hypothermic effect of moclobemide (30 mg kg(-1), i.p.) in both normal and yeast-induced hyperthermic mice. The present results indicate a possible role for central opioid receptors in the hypothermic effect of moclobemide. Also, a peripheral component for this effect of moclobemide at the mitochondria of peripheral tissues is suspected. The peripheral tissue mitochondria could be considered a common target for moclobemide and opioids actions on body temperature.

  14. A comprehensive review of opioid-induced hyperalgesia.

    PubMed

    Lee, Marion; Silverman, Sanford M; Hansen, Hans; Patel, Vikram B; Manchikanti, Laxmaiah

    2011-01-01

    talk of neural mechanisms of pain and tolerance. Clinicians should suspect OIH when opioid treatment's effect seems to wane in the absence of disease progression, particularly if found in the context of unexplained pain reports or diffuse allodynia unassociated with the original pain, and increased levels of pain with increasing dosages. The treatment involves reducing the opioid dosage, tapering them off, or supplementation with NMDA receptor modulators. This comprehensive review addresses terminology and definition, prevalence, the evidence for mechanism and physiology with analysis of various factors leading to OIH, and effective strategies for preventing, reversing, or managing OIH.

  15. Potent μ-Opioid Receptor Agonists from Cyclic Peptides Tyr-c[D-Lys-Xxx-Tyr-Gly]: Synthesis, Biological, and Structural Evaluation.

    PubMed

    Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette

    2016-02-11

    To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.

  16. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test.

    PubMed

    Haj-Mirzaian, Arya; Ostadhadi, Sattar; Kordjazy, Nastaran; Dehpour, Ahmad Reza; Ejtemaei Mehr, Shahram

    2014-07-15

    Opioid and glutamatergic receptors have a key role in depression following stress. In this study, we assessed opioid and glutamatergic receptors interaction with the depressant-like behavior of acute foot-shock stress in the mouse forced swimming test. Stress was induced by intermittent foot shock stimulation during 30min and swim periods were afterwards conducted by placing mice in separated glass cylinders filled with water for 6min. The immobility time during the last 4min of the test was considered. Acute foot-shock stress significantly increased the immobility time of mice compared to non-stressed control group (P≤0.01). Administration of non-selective opioid receptors antagonist, naltrexone (1 and 2mg/kg, i.p.), and the selective non-competitive NMDA receptor antagonist, MK-801 (0.05mg/kg, i.p.), and the selective serotonin reuptake inhibitor, fluoxetine (5mg/kg), significantly reduced the immobility time in stressed animals (P≤0.01). Lower doses of MK-801 (0.01mg/kg), naltrexone (0.3mg/kg), NMDA (75mg/kg) and morphine(5mg/kg) had no effect on foot-shock stressed mice. Combined treatment of sub-effective doses of naltrexone and MK-801 significantly showed an antidepressant-like effect (P≤0.001). On the other hand, co-administration of non-effective doses of NMDA and morphine with effective doses of naltrexone and MK-801 reversed the anti-immobility effect of these drugs. Taken together, we have for the first time demonstrated the possible role of opioid/NMDA receptors signaling in the depressant-like effect of foot-shock stress, and proposed the use of drugs that act like standard anti-depressants in stress-induced depression. Copyright © 2014. Published by Elsevier B.V.

  17. Opioid systems in the response to inflammatory pain: sustained blockade suggests role of kappa- but not mu-opioid receptors in the modulation of nociception, behaviour and pathology.

    PubMed

    Millan, M J; Colpaert, F C

    1991-01-01

    One day after intraplantar inoculation of Mycobacterium butyricum into the right hind-paw, unilaterally inflamed and control rats were implanted subcutaneously with osmotic mini-pumps delivering naloxone at 0.16 or 3.0 mg/kg/h or vehicle. As determined three days after implantation, 0.16 mg/kg/h of naloxone completely antagonized the antinociceptive action of the mu-agonist, morphine, but did not affect antinociception evoked by the kappa-agonist, U69,593. In contrast, at 3.0 mg/kg/h, naloxone blocked both morphine- and U69,593-induced antinociception. Thus, 0.16 mg/kg ("low dose") and 3.0 mg/kg ("high dose") of naloxone block mu, or mu- plus kappa-opioid receptors, respectively. Pumps were removed one week following their implantation. Inoculation was associated with a sustained hyperalgesia of the inflamed paw to noxious pressure, and elevation in resting core temperature, a loss of body weight, hypophagia, hypodipsia and a reduction in mobility. These parameters were differentially modified by the high as compared to the low dose of naloxone. Two days following implantation of pumps delivering the high dose of naloxone, the hyperalgesia of the inflamed paw was potentiated: by six days, this effect was lost. Further, one day after removal of pumps yielding the high dose, the inflamed paw showed a normalization of thresholds, that is a "rebound antinociception". One day later, this effect had subsided. In distinction, at no time did the low dose of naloxone modify nociceptive thresholds. The high dose of naloxone enhanced the reduction in body weight and food intake shown by unilaterally inflamed rats whereas the low dose was ineffective. Neither dose affected the reduction in water intake or hypothermia of unilaterally inflamed animals. The high dose of naloxone reduced the mobility of unilaterally inflamed rats whereas the low dose was ineffective. Finally, by 10 days following pump removal, pathology had transferred to the contralateral paw. In rats which had

  18. Neuraxial Opioid-Induced Itch and Its Pharmacological Antagonism

    PubMed Central

    2015-01-01

    Given its profound analgesic nature, neuraxial opioids are frequently used for pain management. Unfortunately, the high incident rate of itch/pruritus after spinal administration of opioid analgesics reported in postoperative and obstetric patients greatly diminishes patient satisfaction and thus the value of the analgesics. Many endeavors to solve the mystery behind neuraxial opioid-induced itch had not been successful, as the pharmacological antagonism other than the blockade of mu opioid receptors remains elusive. Nevertheless, as the characteristics of all opioid receptor subtypes have become more understood, more studies have shed light on the potential effective treatments. This review discusses the mechanisms underlying neuraxial opioid-induced itch and compares pharmacological evidence in nonhuman primates with clinical findings across diverse drugs. Both nonhuman primate and human studies corroborate that mixed mu/kappa opioid partial agonists seem to be the most effective drugs in ameliorating neuraxial opioid-induced itch while retaining neuraxial opioid-induced analgesia. PMID:25861787

  19. Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats - possible relevance in the psychopathology and treatment of binge-eating disorder.

    PubMed

    Heal, David J; Hallam, Michelle; Prow, Michael; Gosden, Jane; Cheetham, Sharon; Choi, Yong K; Tarazi, Frank; Hutson, Peter

    2017-06-01

    Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D 1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D 1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D 2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D 1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.

  20. Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation

    PubMed Central

    Patierno, Simona; Anselmi, Laura; Jaramillo, Ingrid; Scott, David; Garcia, Rachel; Sternini, Catia

    2010-01-01

    Background & Aims The μ opioid receptor (μOR) undergoes rapid endocytosis following acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine’s ability to induce receptor endocytosis in enteric neurons. Methods We compared the effects of morphine, a poor μOR-internalizing opiate, and [D-Ala2, MePhe4,Gly-ol5] enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. Results Morphine (100 µM) strongly induced endocytosis of μOR in tolerant but not naïve neurons (55.7%±9.3% vs. 24.2%±7.3%, P<0.001) whereas DAMGO (10 µM) strongly induced internalization of μOR in neurons from tolerant and naïve animals (63.6%±8.4% and 66.5%±3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR, because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase in dynamin and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β arrestin immunoreactivity. Conclusion Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells. PMID:21070774

  1. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.

    PubMed

    Sestile, Caio César; Maraschin, Jhonatan Christian; Gama, Vanessa Scalco; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-09-01

    A wealth of evidence has shown that opioid and kinin systems may control proximal defense in the dorsal periaqueductal gray matter (dPAG), a critical panic-associated area. Studies with drugs that interfere with serotonin-mediated neurotransmission suggest that the μ-opioid receptor (MOR) synergistically interacts with the 5-HT 1A receptor in the dPAG to inhibit escape, a panic-related behavior. A similar inhibitory effect has also been reported after local administration of bradykinin (BK), which is blocked by the non-selective opioid receptor antagonist naloxone. The latter evidence, points to an interaction between BK and opioids in the dPAG. We further explored the existence of this interaction through the dPAG electrical stimulation model of panic. We also investigated whether intra-dPAG injection of captopril, an inhibitor of the angiotensin-converting enzyme (ACE) that also degrades BK, causes a panicolytic-like effect. Our results showed that intra-dPAG injection of BK inhibited escape performance in a dose-dependent way, and this panicolytic-like effect was blocked by the BK type 2 receptor (B2R) antagonist HOE-140, and by the selective MOR antagonist CTOP. Conversely, the panicolytic-like effect caused by local administration of the selective MOR agonist DAMGO was antagonized by pre-treatment with either CTOP or HOE-140, indicating cross-antagonism between MOR and B2R. Finally, intra-dPAG injection of captopril also impaired escape in a dose-dependent way, and this panicolytic-like effect was blocked by pretreatment with HOE-140, suggesting mediation by endogenous BK. The panicolytic-like effect of captopril indicates that the use of ACE inhibitors in the clinical management of panic disorder may be worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related

  3. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    PubMed

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  4. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins.

    PubMed

    Bedini, Andrea

    2015-01-01

    Bioluminescence resonance energy transfer (BRET) is a very sensitive technique employed to study protein-protein interactions, including G-protein-coupled receptors (GPCRs) hetero- and homo-dimerization. Recently, BRET has also been used to investigate the interaction between GPCRs (e.g., β2 adrenergic receptor, muscarinic M2 receptor, dopaminergic D2 receptor) and non-visual arrestins. Here a BRET protocol is described to investigate interactions between the kappa opioid receptor (KOR) and non visual arrestins (arrestin-2 and arrestin-3) in HEK-293 cells, both under basal conditions and after exposure to KOR ligands.

  5. Investigational opioid antagonists for treating opioid-induced bowel dysfunction.

    PubMed

    Mozaffari, Shilan; Nikfar, Shekoufeh; Abdollahi, Mohammad

    2018-03-01

    Opioids have been highlighted for their role in pain relief among cancer and non-cancer patients. Novel agents have been investigated to reduce opioid-induced constipation (OIC) as the main adverse effect that may lead to treatment discontinuation. Development of peripherally acting mu-opioid receptor antagonists (PAMORA) has resulted in a novel approach to preserve the efficacy of pain control along with less OIC. Areas covered: Clinical evidence for investigational PAMORAs was reviewed and clinical trials on investigational agents to reduce OIC were included. TD-1211 is currently being evaluated in Phase II clinical trial. Oxycodone-naltrexone and ADL-5945 went through Phase III clinical trials, but have been discontinued. Expert opinion: There is a substantial need to develop agents with specific pharmacokinetic properties to meet the needs of patients with underlying diseases. Holding the efficacy of a medicine with the highest selectivity on targeted receptors and the least adverse effects is the main approach in upcoming investigations to improve patients' quality of life (QoL). Novel agents to reduce opioid-induced bowel dysfunction (OIBD) that do not reverse peripherally mediated pain analgesia are of great interest. Direct comparison of available agents in this field is lacking in the literature.

  6. β-Endorphin via the Delta Opioid Receptor is a Major Factor in the Incubation of Cocaine Craving

    PubMed Central

    Dikshtein, Yahav; Barnea, Royi; Kronfeld, Noam; Lax, Elad; Roth-Deri, Ilana; Friedman, Alexander; Gispan, Iris; Elharrar, Einat; Levy, Sarit; Ben-Tzion, Moshe; Yadid, Gal

    2013-01-01

    Cue-induced cocaine craving intensifies, or ‘incubates', during the first few weeks of abstinence and persists over extended periods of time. One important factor implicated in cocaine addiction is the endogenous opioid β-endorphin. In the present study, we examined the possible involvement of β-endorphin in the incubation of cocaine craving. Rats were trained to self-administer cocaine (0.75 mg/kg, 10 days, 6 h/day), followed by either a 1-day or a 30-day period of forced abstinence. Subsequent testing for cue-induced cocaine-seeking behavior (without cocaine reinforcement) was performed. Rats exposed to the drug-associated cue on day 1 of forced abstinence demonstrated minimal cue-induced cocaine-seeking behavior concurrently with a significant increase in β-endorphin release in the nucleus accumbens (NAc). Conversely, exposure to the cue on day 30 increased cocaine seeking, while β-endorphin levels remained unchanged. Intra-NAc infusion of an anti-β-endorphin antibody (4 μg) on day 1 increased cue-induced cocaine seeking, whereas infusion of a synthetic β-endorphin peptide (100 ng) on day 30 significantly decreased cue response. Both intra-NAc infusions of the δ opioid receptor antagonist naltrindole (1 μg) on day 1 and naltrindole together with β-endorphin on day 30 increased cue-induced cocaine-seeking behavior. Intra-NAc infusion of the μ opioid receptor antagonist CTAP (30 ng and 3 μg) had no behavioral effect. Altogether, these results demonstrate a novel role for β-endorphin and the δ opioid receptor in the development of the incubation of cocaine craving. PMID:23800967

  7. Transcriptional activation of human mu-opioid receptor gene by insulin-like growth factor-I in neuronal cells is modulated by the transcription factor REST.

    PubMed

    Bedini, Andrea; Baiula, Monica; Spampinato, Santi

    2008-06-01

    The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.

  8. Effects of the κ-opioid receptor on the inhibition of 100 Hz electroacupuncture on cocaine-induced conditioned place preference

    PubMed Central

    Hou, Bingjun

    2016-01-01

    The administration of 100 Hz electroacupuncture has been demonstrated to suppress cocaine-induced conditioned place preference (CPP) in rats, and there is evidence that the κ-opioid receptor may have a role in cocaine addiction. The present study sought to explore the mechanisms underlying the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP in rats. A rat model of cocaine-induced CPP was used in the present study to investigate the following: i) Naloxone treatment (5 and 10 mg/kg) following 100 Hz electroacupuncture-mediated inhibition on cocaine-induced CPP, revealing that a high dose (10 mg/kg) of naloxone blocked the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP; ii) nor-binaltorphimine (nor-BNI) on 100 Hz electroacupuncture-mediated inhibition on cocaine-induced CPP, which indicated that administration of 10 µg/5 µl and 0.3 µg/1 µl nor-BNI intracerebroventricularly and via the nucleus accumbens, respectively, reversed the inhibitory effects of 100 Hz electroacupuncture on cocaine-induced CPP, and that injection of nor-BNI in different brain areas of rats blocks the inhibitory effects of electroacupuncture on cocaine-induced CPP; and iv) 100 Hz electroacupuncture on the mRNA expression levels of the κ-opioid receptor in the rat nucleus accumbens and amygdala, which established that mRNA expression levels of κ-opioid receptor in the nucleus accumbens were increased with 100 Hz electroacupuncture plus cocaine-induced CPP. Overall, the results of the present study indicated that 100 Hz electroacupuncture was able to suppress cocaine-induced CPP via the κ-opioid receptor in the nucleus accumbens. PMID:27588082

  9. The effects of opioid receptor antagonists on electroacupuncture-produced anti-allodynia/hyperalgesia in rats with paclitaxel-evoked peripheral neuropathy.

    PubMed

    Meng, Xianze; Zhang, Yu; Li, Aihui; Xin, Jiajia; Lao, Lixing; Ren, Ke; Berman, Brian M; Tan, Ming; Zhang, Rui-Xin

    2011-09-26

    Research supports the effectiveness of acupuncture for conditions such as chronic low back and knee pain. In a five-patient pilot study the modality also improved the symptoms of chemotherapy-induced neuropathic pain. Using an established rat model of paclitaxel-induced peripheral neuropathy, we evaluated the effect of electroacupuncture (EA) on paclitaxel-induced hyperalgesia and allodynia that has not been studied in an animal model. We hypothesize that EA would relieve the paclitaxel-induced mechanical allodynia and hyperalgesia, which was assessed 30 min after EA using von Frey filaments. Beginning on day 13, the response frequency to von Frey filaments (4-15 g) was significantly increased in paclitaxel-injected rats compared to those injected with vehicle. EA at 10 Hz significantly (P<0.05) decreased response frequency at 4-15 g compared to sham EA; EA at 100 Hz only decreased response frequency at 15 g stimulation. Compared to sham EA plus vehicle, EA at 10 Hz plus either a μ, δ, or κ opioid receptor antagonist did not significantly decrease mechanical response frequency, indicating that all three antagonists blocked EA inhibition of allodynia and hyperalgesia. Since we previously demonstrated that μ and δ but not κ opioid receptors affect EA anti-hyperalgesia in an inflammatory pain model, these data show that EA inhibits pain through different opioid receptors under varying conditions. Our data indicate that EA at 10 Hz inhibits mechanical allodynia/hyperalgesia more potently than does EA at 100 Hz. Thus, EA significantly inhibits paclitaxel-induced allodynia/hyperalgesia through spinal opioid receptors, and EA may be a useful complementary treatment for neuropathic pain patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Chronic suppression of μ-opioid receptor signaling in the nucleus accumbens attenuates development of diet-induced obesity in rats.

    PubMed

    Lenard, N R; Zheng, H; Berthoud, H-R

    2010-06-01

    To test the hypothesis that micro-opioid receptor signaling in the nucleus accumbens contributes to hedonic (over)eating and obesity. To investigate the effects of chronic micro-opioid antagonism in the nucleus accumbens core or shell on intake of a palatable diet, and the development of diet-induced obesity in rats. Chronic blockade of micro-opioid receptor signaling in the nucleus accumbens core or shell was achieved by means of repeated injections (every 4-5 days) of the irreversible receptor antagonist beta-funaltrexamine (BFNA) over 3-5 weeks. The diet consisted of either a choice of high-fat chow, chocolate-flavored Ensure and regular chow (each nutritionally complete) or regular chow only. Intake of each food item, body weight and body fat mass were monitored throughout the study. The BFNA injections aimed at either the core or shell of the nucleus accumbens resulted in significantly attenuated intake of palatable diet, body weight gain and fat accretion, compared with vehicle control injections. The injection of BFNA in the core did not significantly change these parameters in chow-fed control rats. The injection of BFNA in the core and shell differentially affected intake of the two palatable food items: in the core, BFNA significantly reduced the intake of high-fat, but not of Ensure, whereas in the shell, it significantly reduced the intake of Ensure, but not of high-fat, compared with vehicle treatment. Endogenous micro-opioid receptor signaling in the nucleus accumbens core and shell is necessary for palatable diet-induced hyperphagia and obesity to fully develop in rats. Sweet and non-sweet fatty foods may be differentially processed in subcomponents of the ventral striatum.

  11. Selective Glucocorticoid Receptor modulators.

    PubMed

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  12. Distinct Mu, Delta, and Kappa Opioid Receptor Mechanisms Underlie Low Sociability and Depressive-Like Behaviors During Heroin Abstinence

    PubMed Central

    Lutz, Pierre-Eric; Ayranci, Gulebru; Chu-Sin-Chung, Paul; Matifas, Audrey; Koebel, Pascale; Filliol, Dominique; Befort, Katia; Ouagazzal, Abdel-Mouttalib; Kieffer, Brigitte L

    2014-01-01

    Addiction is a chronic disorder involving recurring intoxication, withdrawal, and craving episodes. Escaping this vicious cycle requires maintenance of abstinence for extended periods of time and is a true challenge for addicted individuals. The emergence of depressive symptoms, including social withdrawal, is considered a main cause for relapse, but underlying mechanisms are poorly understood. Here we establish a mouse model of protracted abstinence to heroin, a major abused opiate, where both emotional and working memory deficits unfold. We show that delta and kappa opioid receptor (DOR and KOR, respectively) knockout mice develop either stronger or reduced emotional disruption during heroin abstinence, establishing DOR and KOR activities as protective and vulnerability factors, respectively, that regulate the severity of abstinence. Further, we found that chronic treatment with the antidepressant drug fluoxetine prevents emergence of low sociability, with no impact on the working memory deficit, implicating serotonergic mechanisms predominantly in emotional aspects of abstinence symptoms. Finally, targeting the main serotonergic brain structure, we show that gene knockout of mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) before heroin exposure abolishes the development of social withdrawal. This is the first result demonstrating that intermittent chronic MOR activation at the level of DRN represents an essential mechanism contributing to low sociability during protracted heroin abstinence. Altogether, our findings reveal crucial and distinct roles for all three opioid receptors in the development of emotional alterations that follow a history of heroin exposure and open the way towards understanding opioid system-mediated serotonin homeostasis in heroin abuse. PMID:24874714

  13. The Novel μ-Opioid Receptor Antagonist, [N-Allyl-Dmt1]Endomorphin-2, Attenuates the Enhancement of GABAergic Neurotransmission by Ethanol

    PubMed Central

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.

    2009-01-01

    Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291

  14. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction.

    PubMed

    Jacobsen, Jonathan Henry W; Watkins, Linda R; Hutchinson, Mark R

    2014-01-01

    Opioids have historically, and continue to be, an integral component of pain management. However, despite pharmacokinetic and dynamic optimization over the past 100 years, opioids continue to produce many undesirable side effects such as tolerance, reward, and dependence. As such, opioids are liable for addiction. Traditionally, opioid addiction was viewed as a solely neuronal process, and while substantial headway has been made into understanding the molecular and cellular mechanisms mediating this process, research has however, been relatively ambivalent to how the rest of the central nervous system (CNS) responds to opioids. Evidence over the past 20 years has clearly demonstrated the importance of the immunocompetent cells of the CNS (glia) in many aspects of opioid pharmacology. Particular focus has been placed on microglia and astrocytes, who in response to opioids, become activated and release inflammatory mediators. Importantly, the mechanism underlying immune activation is beginning to be elucidated. Evidence suggests an innate immune pattern-recognition receptor (toll-like receptor 4) as an integral component underlying opioid-induced glial activation. The subsequent proinflammatory response may be viewed akin to neurotransmission creating a process termed central immune signaling. Translationally, we are beginning to appreciate the importance of central immune signaling as it contributes to many behavioral actions of addiction including reward, withdrawal, and craving. As such, the aim of this chapter is to review and integrate the neuronal and central immune signaling perspective of addiction. © 2014 Elsevier Inc. All rights reserved.

  15. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    PubMed

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cyclopeptide Dmt-[D-Lys-p-CF3-Phe-Phe-Asp]NH2, a novel G protein-biased agonist of the mu opioid receptor.

    PubMed

    Piekielna-Ciesielska, Justyna; Ferrari, Federica; Calo', Girolamo; Janecka, Anna

    2018-03-01

    Opioid peptides and alkaloid drugs such as morphine, mediate their analgesic effects, but also undesired side effects, mostly through activation of the mu opioid receptor which belongs to the G protein-coupled receptor (GPCR) family. A new important pharmacological concept in the field of GPCRs is biased agonism. Two mu receptor ligands, Dmt-c[D-Lys-Phe-Phe-Asp]NH 2 (C-36) and Dmt-c[D-Lys-Phe-p-CF 3 -Phe-Asp]NH 2 (F-81), were evaluated in terms of their ability to promote or block mu receptor/G protein and mu receptor/β-arrestin interactions. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that C-36 activated both, G protein and β-arrestin pathways. Incorporation of trifluoromethyl group into the aromatic ring of phenylalanine in the sequence of F-81 led to activation of G-protein pathway rather than β-arrestin recruitment. Opioid cyclopeptide F-81 turned out to be a biased G protein mu receptor agonist. Such biased ligands are able to separate the biological actions of an activated receptor and have the potential to become more effective drug candidates with fewer side effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling.

    PubMed

    Largent-Milnes, Tally M; Guo, Wenhong; Wang, Hoau-Yan; Burns, Lindsay H; Vanderah, Todd W

    2008-08-01

    Both peripheral nerve injury and chronic opioid treatment can result in hyperalgesia associated with enhanced excitatory neurotransmission at the level of the spinal cord. Chronic opioid administration leads to a shift in mu-opioid receptor (MOR)-G protein coupling from G(i/o) to G(s) that can be prevented by cotreatment with an ultra-low-dose opioid antagonist. In this study, using lumbar spinal cord tissue from rats with L(5)/L(6) spinal nerve ligation (SNL), we demonstrated that SNL injury induces MOR linkage to G(s) in the damaged (ipsilateral) spinal dorsal horn. This MOR-G(s) coupling occurred without changing G(i/o) coupling levels and without changing the expression of MOR or Galpha proteins. Repeated administration of oxycodone alone or in combination with ultra-low-dose naltrexone (NTX) was assessed on the SNL-induced MOR-G(s) coupling as well as on neuropathic pain behavior. Repeated spinal oxycodone exacerbated the SNL-induced MOR-G(s) coupling, whereas ultra-low-dose NTX cotreatment slightly but significantly attenuated this G(s) coupling. Either spinal or oral administration of oxycodone plus ultra-low-dose NTX markedly enhanced the reductions in allodynia and thermal hyperalgesia produced by oxycodone alone and minimized tolerance to these effects. The MOR-G(s) coupling observed in response to SNL may in part contribute to the excitatory neurotransmission in spinal dorsal horn in neuropathic pain states. The antihyperalgesic and antiallodynic effects of oxycodone plus ultra-low-dose NTX (Oxytrex, Pain Therapeutics, Inc., San Mateo, CA) suggest a promising new treatment for neuropathic pain. The current study investigates whether Oxytrex (oxycodone with an ultra-low dose of naltrexone) alleviates mechanical and thermal hypersensitivities in an animal model of neuropathic pain over a period of 7 days, given locally or systemically. In this report, we first describe an injury-induced shift in mu-opioid receptor coupling from G(i/o) to G(s), suggesting

  18. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    PubMed

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  19. μ-Opioid Receptor-Mediated Inhibition of Intercalated Neurons and Effect on Synaptic Transmission to the Central Amygdala.

    PubMed

    Blaesse, Peter; Goedecke, Lena; Bazelot, Michaël; Capogna, Marco; Pape, Hans-Christian; Jüngling, Kay

    2015-05-13

    The amygdala is a key region for the processing of information underlying fear, anxiety, and fear extinction. Within the local neuronal networks of the amygdala, a population of inhibitory, intercalated neurons (ITCs) modulates the flow of information among various nuclei of amygdala, including the basal nucleus (BA) and the centromedial nucleus (CeM) of the amygdala. These ITCs have been shown to be important during fear extinction and are target of a variety of neurotransmitters and neuropeptides. Here we provide evidence that the activation of μ-opioid receptors (MORs) by the specific agonist DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin) hyperpolarizes medially located ITCs (mITCs) in acute brain slices of mice. Moreover, we use whole-cell patch-clamp recordings in combination with local electrical stimulation or glutamate uncaging to analyze the effect of MOR activation on local microcircuits. We show that the GABAergic transmission between mITCs and CeM neurons is attenuated by DAMGO, whereas the glutamatergic transmission on CeM neurons and mITCs is unaffected. Furthermore, MOR activation induced by theta burst stimulation in BA suppresses plastic changes of feedforward inhibitory transmission onto CeM neurons as revealed by the MOR antagonist CTAP d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2. In summary, the mITCs constitute a target for the opioid system, and therefore, the activation of MOR in ITCs might play a central role in the modulation of the information processing between the basolateral complex of the amygdala and central nuclei of the amygdala. Copyright © 2015 Blaesse, Goedecke et al.

  20. Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.

    PubMed

    Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G

    1988-05-01

    A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.

  1. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    PubMed

    Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr

    2015-01-01

    HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid

  2. ROLES OF OPIOID RECEPTOR SUBTYPES IN MEDIATING ALCOHOL SEEKING INDUCED BY DISCRETE CUES AND CONTEXT

    PubMed Central

    Marinelli, Peter W.; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A.D.

    2009-01-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu opioid (MOP) receptors on alcohol seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0 – 15-mg/kg, IP) or the MOP receptor antagonist CTOP (0 – 3-µg/kg ICV). In a separate set of experiments, reinstatement was tested with the presentation of a discrete light+tone cue previously associated with alcohol delivery, following extinction without the cue. In Experiment 2, the effects of naltrindole (0 – 5-mg/kg, IP) or CTOP (0 – 3-µg/kg µg ICV) were assessed. For context-induced renewal, 7.5-mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete cue-induced reinstatement, 1 and 5-mg/kg naltrindole attenuated responding, but CTOP had no effect. We conclude that while DOP receptors mediate alcohol seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol seeking, and support a more prominent role for DOP receptors. PMID:19686472

  3. THE ROLE OF AMYGDALAR MU OPIOID RECEPTORS IN ANXIETY-RELATED RESPONSES IN TWO RAT MODELS

    PubMed Central

    Wilson, Marlene A.; Junor, Lorain

    2009-01-01

    Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze and the defensive burying test. The role of MOR in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) or β-funaltrexamine (FNA) were bilaterally infused into the CEA of rats prior to testing. The results show that microinjection of DAMGO in the CEA decreased open arm time in the plus maze, while CTAP increased open arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdala output circuits and behavioral responses during exposure to potential threats (open arms of the maze) versus discrete threats (predator odor). PMID:18216773

  4. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice.

    PubMed

    Higgs, Josefina; Wasowski, Cristina; Loscalzo, Leonardo M; Marder, Mariel

    2013-09-01

    The pharmacotherapy for the treatment of pain is an active area of investigation. There are effective drugs to treat this problem, but there is also a need to find alternative treatments free of undesirable side effects. In the present work the capacity of a series of flavonoids to bind to the μ opioid receptor was evaluated. The most active compound, 3,3-dibromoflavanone (31), a synthetic flavonoid, presented a significant inhibition of the binding of the selective μ opioid ligand [(3)H]DAMGO, with a Ki of 0.846 ± 0.263 μM. Flavanone 31 was further synthesized using a simple and cheap procedure with good yield. Its in vivo effects in mice, after acute treatments, were studied using antinociceptive and behavioral assays. It showed no sedative, anxiolytic, motor incoordination effects or inhibition of the gastrointestinal transit in mice at the doses tested. It evidenced antinociceptive activity on the acetic acid-induced nociception, hot plate and formalin tests (at 10 mg/kg and 30 mg/kg). The results showed that the 5-HT2 receptor and the adrenoceptors seem unlikely to be involved in its antinociceptive effects. Naltrexone, a nonselective opioid receptors antagonist, totally blocked compound 31 antinociceptive effects on the hot plate test, but naltrindole (δ opioid antagonist) and nor-binaltorphimine (κ opioid antagonist) did not. These findings demonstrated that 3,3-dibromoflavanone (31), at doses that did not interfere with the motor performance, exerted clear dose dependent antinociception when assessed in the chemical and thermal models of nociception in mice and it seems that its action is related to the activation of the μ opioid receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling.

    PubMed

    Archer-Lahlou, Elodie; Audet, Nicolas; Amraei, Mohammad Gholi; Huard, Karine; Paquin-Gobeil, Mélanie; Pineyro, Graciela

    2009-01-01

    Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.

  6. Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area.

    PubMed

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-12-06

    Opioid receptors internalize upon specific agonist stimulation. The in vivo significance of receptor internalization is not well established, partly due to the limited in vivo models used to study this phenomenon. Ejaculation promotes endogenous opioid release which activates opioid receptors at the brain, including the mesolimbic system and medial preoptic area. The objective of the present work was to analyze if there was a correlation between the degree of in vivo mu (MOR) and delta opioid receptor (DOR) internalization in the ventral tegmental area and the execution of different amounts of ejaculatory behavior of male rats. To this aim, we analyzed the brains of rats that ejaculated once or six successive times and of sexually exhausted rats with an established sexual inhibition, using immunofluorescence and confocal microscopy. Results showed that MOR and DOR internalization increased as a consequence of ejaculation. There was a relationship between the amount of sexual activity executed and the degree of internalization for MOR, but not for DOR. MOR internalization was larger in rats that ejaculated repeatedly than in animals ejaculating only once. Significant DOR internalization was found only in animals ejaculating once. Changes in MOR, DOR and beta arrestin2 detection, associated to sexual activity, were also found. It is suggested that copulation to satiety might be useful as a model system to study the biological significance of receptor internalization. © 2013 Published by Elsevier B.V.

  7. Parallel Synthesis of Hexahydrodiimidazodiazepines Heterocyclic Peptidomimetics and Their in Vitro and in Vivo Activities at μ (MOR), δ (DOR), and κ (KOR) Opioid Receptors.

    PubMed

    Eans, Shainnel O; Ganno, Michelle L; Mizrachi, Elisa; Houghten, Richard A; Dooley, Colette T; McLaughlin, Jay P; Nefzi, Adel

    2015-06-25

    In the development of analgesics with mixed-opioid agonist activity, peripherally selective activity is expected to decrease side effects, minimizing respiratory depression and reinforcing properties generating significantly safer analgesic therapeutics. We synthesized diazaheterocyclics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with the diimidazodiazepine 14 (2065-14) displaying good affinity for DOR and KOR. Central (icv), intraperitoneal (ip), or oral (po) administration of 14 produced dose-dependent, opioid-receptor mediated antinociception in the mouse, as determined from a 55 °C warm-water tail-withdrawal assay. Only trace amounts of compound 14 was found in brain up to 90 min later, suggesting poor BBB penetration and possible peripherally restricted activity. Central administration of 14 did not produce locomotor effects, acute antinociceptive tolerance, or conditioned-place preference or aversion. The data suggest these diazaheterocyclic mixed activity opioid receptor agonists may hold potential as new analgesics with fewer liabilities of use.

  8. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function.

    PubMed

    Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Mendelowitz, David

    2007-08-01

    Opioids evoke respiratory depression, bradycardia, and reduced respiratory sinus arrhythmia, whereas serotonin (5-HT) agonists stimulate respiration and cardiorespiratory interactions. This study tested whether serotonin agonists can prevent the inhibitory effects of opioids on cardiorespiratory function. Spontaneous and rhythmic inspiratory-related activity and gamma-aminobutyric acid (GABA) neurotransmission to premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus were recorded simultaneously in an in vitro thick slice preparation. The mu-opioid agonist fentanyl inhibited respiratory frequency. The 5-hydroxytryptamine 1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin increased respiratory frequency by itself and also prevented the fentanyl-induced respiratory depression. The 5-hydroxytryptamine 4alpha agonist BIMU-8 did not by itself change inspiratory activity but prevented the mu-opioid-mediated respiratory depression. Both spontaneous and inspiratory-evoked GABAergic neurotransmission to cardiac vagal neurons were inhibited by fentanyl. 8-Hydroxy-2-(di-n-propylamino)tetralin inhibited spontaneous but not inspiratory-evoked GABAergic activity to parasympathetic cardiac neurons. However, 8-hydroxy-2-(di-n-propylamino)tetralin differentially altered the opioid-mediated depression of inspiratory-evoked GABAergic activity but did not change the opioid-induced reduction in spontaneous GABAergic neurotransmission. In contrast, BIMU-8 did not alter GABAergic neurotransmission to cardiac vagal neurons by itself but prevented the fentanyl depression of both spontaneous and inspiratory-elicited GABAergic neurotransmission to cardiac vagal neurons. In the presence of tetrodotoxin, the inhibition of GABAergic inhibitory postsynaptic currents with fentanyl is prevented by coapplication of BIMU-8, indicating that BIMU-8 acts at presynaptic GABAergic terminals to prevent fentanyl-induced depression. These results suggest that activation of 5

  9. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia.

    PubMed

    Gomes, Ivone; Gupta, Achla; Filipovska, Julija; Szeto, Hazel H; Pintar, John E; Devi, Lakshmi A

    2004-04-06

    Opiates such as morphine are the choice analgesic in the treatment of chronic pain. However their long-term use is limited because of the development of tolerance and dependence. Due to its importance in therapy, different strategies have been considered for making opiates such as morphine more effective, while curbing its liability to be abused. One such strategy has been to use a combination of drugs to improve the effectiveness of morphine. In particular, delta opioid receptor ligands have been useful in enhancing morphine's potency. The underlying molecular basis for these observations is not understood. We propose the modulation of receptor function by physical association between mu and delta opioid receptors as a potential mechanism. In support of this hypothesis, we show that mu-delta interacting complexes exist in live cells and native membranes and that the occupancy of delta receptors (by antagonists) is sufficient to enhance mu opioid receptor binding and signaling activity. Furthermore, delta receptor antagonists enhance morphine-mediated intrathecal analgesia. Thus, heterodimeric associations between mu-delta opioid receptors can be used as a model for the development of novel combination therapies for the treatment of chronic pain and other pathologies.

  10. Effects of opioid peptides on thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate thatmore » stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.« less

  11. 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-(4'-pyridylcarboxamido)morphinan (NAP) Modulating the Mu Opioid Receptor in a Biased Fashion.

    PubMed

    Zhang, Yan; Williams, Dwight A; Zaidi, Saheem A; Yuan, Yunyun; Braithwaite, Amanda; Bilsky, Edward J; Dewey, William L; Akbarali, Hamid I; Streicher, John M; Selley, Dana E

    2016-03-16

    Mounting evidence has suggested that G protein-coupled receptors can be stabilized in multiple conformations in response to distinct ligands, which exert discrete functions through selective activation of various downstream signaling events. In accordance with this concept, we report biased signaling of one C6-heterocyclic substituted naltrexamine derivative, namely, 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-(4'-pyridylcarboxamido)morphinan (NAP) at the mu opioid receptor (MOR). NAP acted as a low efficacy MOR partial agonist in the G protein-mediated [(35)S]GTPγS binding assay, whereas it did not significantly induce calcium flux or β-arrestin2 recruitment. In contrast, it potently blocked MOR full agonist-induced β-arrestin2 recruitment and translocation. Additionally, NAP dose-dependently antagonized MOR full agonist-induced intracellular calcium flux and β-arrestin2 recruitment. Further results in an isolated organ bath preparation confirmed that NAP reversed the morphine-induced reduction in colon motility. Ligand docking and dynamics simulation studies of NAP at the MOR provided more supporting evidence for biased signaling of NAP at an atomic level. Due to the fact that NAP is MOR selective and preferentially distributed peripherally upon systemic administration while β-arrestin2 is reportedly required for impairment of intestinal motility by morphine, biased antagonism of β-arrestin2 recruitment by NAP further supports its utility as a treatment for opioid-induced constipation.

  12. PET Measures of Endogenous Opioid Neurotransmission Predict Impulsiveness Traits in Humans

    PubMed Central

    Love, Tiffany M.; Stohler, Christian S.; Zubieta, Jon-Kar

    2011-01-01

    Objective The endogenous opioid system and μ-opioid receptors are known to interface environmental events, both positive (e.g., relevant emotional stimuli) and negative (e.g., stressors) with pertinent behavioral responses, regulating motivated behavior. Here we examined the degree to which trait impulsiveness, the tendency to act on cravings and urges rather than delaying gratification, is predicted by either baseline μ-opioid receptor availability or the response of this system to a standardized, experientially-matched stressor. Method Nineteen (19) young healthy male volunteers completed a personality questionnaire (NEO PI-R) and positron emission tomography scans with the μ-opioid receptor selective radiotracer [11C]carfentanil. Measures of receptor concentrations were obtained at rest and during the receipt of an experimentally maintained pain stressor of matched intensity between subjects. Baseline receptor levels and stress-induced activation of μ-opioid neurotransmission were compared between subjects scoring above and below the population median of the NEO impulsiveness subscale and the orthogonal dimension, deliberation, expected to interact with it. Results High impulsiveness and low deliberation scores were associated with significantly higher regional μ-opioid receptor concentrations and greater stress-induced endogenous opioid system activation. Effects were obtained in regions involved in motivated behavior and the effects of drugs of abuse: prefrontal and orbitofrontal cortex, anterior cingulate, thalamus, nucleus accumbens and basolateral amygdala. Mu-opioid receptor availability, and the magnitude of stress-induced endogenous opioid activation in these regions accounted for 21 to 49% of the variance in these personality traits. Conclusions Our data demonstrate that individual differences in the function of the endogenous μ-opioid system predicts personality traits that confer vulnerability or resiliency for risky behaviors, such as the

  13. Identification of the First Marine-Derived Opioid Receptor "Balanced" Agonist with a Signaling Profile That Resembles the Endorphins.

    PubMed

    Johnson, Tyler A; Milan-Lobo, Laura; Che, Tao; Ferwerda, Madeline; Lambu, Eptisam; McIntosh, Nicole L; Li, Fei; He, Li; Lorig-Roach, Nicholas; Crews, Phillip; Whistler, Jennifer L

    2017-03-15

    Opioid therapeutics are excellent analgesics, whose utility is compromised by dependence. Morphine (1) and its clinically relevant derivatives such as OxyContin (2), Vicodin (3), and Dilaudid (4) are "biased" agonists at the μ opioid receptor (OR), wherein they engage G protein signaling but poorly engage β-arrestin and the endocytic machinery. In contrast, endorphins, the endogenous peptide agonists for ORs, are potent analgesics, show reduced liability for tolerance and dependence, and engage both G protein and β-arrestin pathways as "balanced" agonists. We set out to determine if marine-derived alkaloids could serve as novel OR agonist chemotypes with a signaling profile distinct from morphine and more similar to the endorphins. Screening of 96 sponge-derived extracts followed by LC-MS-based purification to pinpoint the active compounds and subsequent evaluation of a mini library of related alkaloids identified two structural classes that modulate the ORs. These included the following: aaptamine (10), 9-demethyl aaptamine (11), demethyl (oxy)-aaptamine (12) with activity at the δ-OR (EC 50 : 5.1, 4.1, 2.3 μM, respectively) and fascaplysin (17), and 10-bromo fascaplysin (18) with activity at the μ-OR (EC 50 : 6.3, 4.2 μM respectively). An in vivo evaluation of 10 using δ-KO mice indicated its previously reported antidepressant-like effects are dependent on the δ-OR. Importantly, 17 functioned as a balanced agonist promoting both G protein signaling and β-arrestin recruitment along with receptor endocytosis similar to the endorphins. Collectively these results demonstrate the burgeoning potential for marine natural products to serve as novel lead compounds for therapeutic targets in neuroscience research.

  14. Learning-Related Translocation of δ-Opioid Receptors on Ventral Striatal Cholinergic Interneurons Mediates Choice between Goal-Directed Actions

    PubMed Central

    Bertran-Gonzalez, Jesus; Laurent, Vincent; Chieng, Billy C.; Christie, MacDonald J.

    2013-01-01

    The ability of animals to extract predictive information from the environment to inform their future actions is a critical component of decision-making. This phenomenon is studied in the laboratory using the pavlovian–instrumental transfer protocol in which a stimulus predicting a specific pavlovian outcome biases choice toward those actions earning the predicted outcome. It is well established that this transfer effect is mediated by corticolimbic afferents on the nucleus accumbens shell (NAc-S), and recent evidence suggests that δ-opioid receptors (DORs) play an essential role in this effect. In DOR-eGFP knock-in mice, we show a persistent, learning-related plasticity in the translocation of DORs to the somatic plasma membrane of cholinergic interneurons (CINs) in the NAc-S during the encoding of the specific stimulus–outcome associations essential for pavlovian–instrumental transfer. We found that increased membrane DOR expression reflected both stimulus-based predictions of reward and the degree to which these stimuli biased choice during the pavlovian–instrumental transfer test. Furthermore, this plasticity altered the firing pattern of CINs increasing the variance of action potential activity, an effect that was exaggerated by DOR stimulation. The relationship between the induction of membrane DOR expression in CINs and both pavlovian conditioning and pavlovian–instrumental transfer provides a highly specific function for DOR-related modulation in the NAc-S, and it is consistent with an emerging role for striatal CIN activity in the processing of predictive information. Therefore, our results reveal evidence of a long-term, experience-dependent plasticity in opioid receptor expression on striatal modulatory interneurons critical for the cognitive control of action. PMID:24107940

  15. Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity

    PubMed Central

    Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H

    2009-01-01

    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541

  16. A Commonly Carried Genetic Variant in the Delta Opioid Receptor Gene, OPRD1, is Associated with Smaller Regional Brain Volumes: Replication in Elderly and Young Populations

    PubMed Central

    Roussotte, Florence F.; Jahanshad, Neda; Hibar, Derrek P.; Sowell, Elizabeth R.; Kohannim, Omid; Barysheva, Marina; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Montgomery, Grant W.; Martin, Nicholas G.; Wright, Margaret J.; Toga, Arthur W.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2014-01-01

    Delta opioid receptors are implicated in a variety of psychiatric and neurological disorders. These receptors play a key role in the reinforcing properties of drugs of abuse, and polymorphisms in OPRD1 (the gene encoding delta opioid receptors) are associated with drug addiction. Delta opioid receptors are also involved in protecting neurons against hypoxic and ischemic stress. Here, we first examined a large sample of 738 elderly participants with neuroimaging and genetic data from the Alzheimer’s Disease Neuroimaging Initiative. We hypothesized that common variants in OPRD1 would be associated with differences in brain structure, particularly in regions relevant to addictive and neurodegenerative disorders. One very common variant (rs678849) predicted differences in regional brain volumes. We replicated the association of this single-nucleotide polymorphism with regional tissue volumes in a large sample of young participants in the Queensland Twin Imaging study. Although the same allele was associated with reduced volumes in both cohorts, the brain regions affected differed between the two samples. In healthy elderly, exploratory analyses suggested that the genotype associated with reduced brain volumes in both cohorts may also predict cerebrospinal fluid levels of neurodegenerative biomarkers, but this requires confirmation. If opiate receptor genetic variants are related to individual differences in brain structure, genotyping of these variants may be helpful when designing clinical trials targeting delta opioid receptors to treat neurological disorders. PMID:23427138

  17. Targinact--opioid pain relief without constipation?

    PubMed

    2010-12-01

    Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.

  18. Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells.

    PubMed

    Guarino, Goffredo; Spampinato, Santi

    2008-07-16

    Nandrolone and other anabolic androgenic steroids alter the expression and function of neurotransmitter systems and contribute to drug dependence. Nandrolone treatment (10-10 M) caused a time-dependent and concentration-dependent downregulation of mu opioid receptor (MOPr) transcripts in SH-SY5Y human neuroblastoma cells. This effect was prevented by the androgen receptor antagonist hydroxyflutamide. Receptor binding assays confirmed a decrease in MOPr of approximately 40% in nandrolone-treated cells. Treatment with actinomycin D (10 (-5)M), a transcription inhibitor, revealed that nandrolone might regulate MOPr mRNA stability. In SH-SY5Y cells transfected with a human MOPr luciferase promoter/reporter construct, nandrolone did not alter the rate of gene transcription. These results suggest that nandrolone may regulate MOPr expression through posttranscriptional mechanisms requiring the androgen receptor.

  19. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  20. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  1. Discovery of 5-substituted tetrahydronaphthalen-2yl-methyl with N-phenyl-N-(piperidin-4-yl)propionamide derivatives as potent opioid receptor ligands.

    PubMed

    Deekonda, Srinivas; Wugalter, Lauren; Kulkarni, Vinod; Rankin, David; Largent-Milnes, Tally M; Davis, Peg; Bassirirad, Neemah M; Lai, Josephine; Vanderah, Todd W; Porreca, Frank; Hruby, Victor J

    2015-09-15

    A new series of novel opioid ligands have been designed and synthesized based on the 4-anilidopiperidine scaffold containing a 5-substituted tetrahydronaphthalen-2yl)methyl group with different N-phenyl-N-(piperidin-4-yl)propionamide derivatives to study the biological effects of these substituents on μ and δ opioid receptor interactions. Recently our group reported novel 4-anilidopiperidine analogues, in which several aromatic ring-contained amino acids were conjugated with N-phenyl-N-(piperidin-4-yl)propionamide and examined their biological activities at the μ and δ opioid receptors. In continuation of our efforts in these novel 4-anilidopiperidine analogues, we took a peptidomimetic approach in the present design, in which we substituted aromatic amino acids with tetrahydronaphthalen-2yl methyl moiety with amino, amide and hydroxyl substitutions at the 5th position. In in vitro assays these ligands, showed very good binding affinity and highly selective toward the μ opioid receptor. Among these, the lead ligand 20 showed excellent binding affinity (2 nM) and 5000 fold selectivity toward the μ opioid receptor, as well as functional selectivity in GPI assays (55.20 ± 4.30 nM) and weak or no agonist activities in MVD assays. Based on the in vitro bioassay results the lead compound 20 was chosen for in vivo assessment for efficacy in naïve rats after intrathecal administration. Compound 20 was not significantly effective in alleviating acute pain. This discrepancy between high in vitro binding affinity, moderate in vitro activity, and low in vivo activity may reflect differences in pharmacodynamics (i.e., engaging signaling pathways) or pharmacokinetics (i.e., metabolic stability). In sum, our data suggest that further optimization of this compound 20 is required to enhance in vivo activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    PubMed Central

    Moore, Kelsey; Madularu, Dan; Iriah, Sade; Yee, Jason R.; Kulkarni, Praveen; Darcq, Emmanuel; Kieffer, Brigitte L.; Ferris, Craig F.

    2016-01-01

    Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (μ) opioid receptor knock-outs (MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high μ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus), and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and preoptic areas). This result indicates that most effects of OXY on positive BOLD are mediated by the μ opioid receptor (on-target effects). OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum), and in some case intensified (hippocampus). Negative BOLD analysis therefore shows activation and deactivation events in the absence of the μ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects). Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY brain

  3. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    PubMed

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  5. Does naltrexone affect craving in abstinent opioid-dependent patients?

    PubMed

    Dijkstra, Boukje A G; De Jong, Cor A J; Bluschke, Sarah M; Krabbe, Paul F M; van der Staak, Cees P F

    2007-06-01

    Naltrexone blocks the opioid receptors that modulate the release of dopamine in the brain reward system and therefore blocks the rewarding effects of heroin and alcohol. It is generally assumed that naltrexone leads to reduction of craving, but few studies have been performed to prove this. The purpose of the present study was to examine the effect of the administration of naltrexone on craving level after rapid opioid detoxification induced by naltrexone. A naturalistic study was carried out in which patients were followed during 10 months after rapid detoxification. Data about abstinence, relapse, and naltrexone use were collected by means of urine specimens. Craving was measured by the visual analogue scale craving, the Obsessive Compulsive Drug Use Scale, and the Desires for Drug Questionnaire. Results showed that patients who relapsed in opioid use experienced obviously more craving than abstinent people. Patients who took naltrexone did not experience significant less craving than those who did not. These results suggest that the use of opioids is associated with increased craving and that abstinence for opioids is associated with less craving, independent of the use of naltrexone. This is in contrast to the general opinion. Because of the naturalistic design of the study, no firm conclusions can be drawn, but the results grounded the needs of an experimental study.

  6. Regulated endocytosis of opioid receptors: cellular mechanisms and proposed roles in physiological adaptation to opiate drugs.

    PubMed

    von Zastrow, Mark; Svingos, Adena; Haberstock-Debic, Helena; Evans, Chris

    2003-06-01

    Opiate drugs such as morphine and heroin are among the most effective analgesics known. Prolonged or repeated administration of opiates produces adaptive changes in the nervous system that lead to reduced drug potency or efficacy (tolerance), as well as physiological withdrawal symptoms and behavioral manifestations such as craving when drug use is terminated (dependence). These adaptations limit the therapeutic utility of opiate drugs, particularly in the treatment of chronically painful conditions, and are thought to contribute to the highly addictive nature of opiates. For many years it has been proposed that physiological tolerance to opiate drugs is associated with a modification of the number or functional activity of opioid receptors in specific neurons. We now understand certain mechanisms of opioid receptor desensitization and endocytosis in considerable detail. However, the functional roles that these mechanisms play in the complex physiological adaptation of the intact nervous system to opiates are only beginning to be explored.

  7. Exploring Binding Properties of Agonists Interacting with a δ-Opioid Receptor

    PubMed Central

    Collu, Francesca; Ceccarelli, Matteo; Ruggerone, Paolo

    2012-01-01

    Ligand-receptor interactions are at the basis of the mediation of our physiological responses to a large variety of ligands, such as hormones, neurotransmitters and environmental stimulants, and their tuning represents the goal of a large variety of therapies. Several molecular details of these interactions are still largely unknown. In an effort to shed some light on this important issue, we performed a computational study on the interaction of two related compounds differing by a single methyl group (clozapine and desmethylclozapine) with a -opioid receptor. According to experiments, desmethylclozapine is more active than clozapine, providing a system well suited for a comparative study. We investigated stable configurations of the two drugs inside the receptor by simulating their escape routes by molecular dynamics simulations. Our results point out that the action of the compounds might be related to the spatial and temporal distribution of the affinity sites they visit during their permanency. Moreover, no particularly pronounced structural perturbations of the receptor were detected during the simulations, reinforcing the idea of a strong dynamical character of the interaction process, with an important role played by the solvent in addition. PMID:23300729

  8. Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women.

    PubMed

    Kennedy, Susan E; Koeppe, Robert A; Young, Elizabeth A; Zubieta, Jon-Kar

    2006-11-01

    There is extensive evidence implicating dysfunctions in stress responses and adaptation to stress in the pathophysiological mechanism of major depressive disorder (MDD) in humans. Endogenous opioid neurotransmission activating mu-opioid receptors is involved in stress and emotion regulatory processes and has been further implicated in MDD. To examine the involvement of mu-opioid neurotransmission in the regulation of affective states in volunteers with MDD and its relationship with clinical response to antidepressant treatment. Measures of mu-opioid receptor availability in vivo (binding potential [BP]) were obtained with positron emission tomography and the mu-opioid receptor selective radiotracer carbon 11-labeled carfentanil during a neutral state. Changes in BP during a sustained sadness challenge were obtained by comparing it with the neutral state, reflecting changes in endogenous opioid neurotransmission during the experience of that emotion. Clinics and neuroimaging facilities at a university medical center. Fourteen healthy female volunteers and 14 individually matched patient volunteers diagnosed with MDD were recruited via advertisement and through outpatient clinics. Sustained neutral and sadness states, randomized and counterbalanced in order, elicited by the cued recall of an autobiographical event associated with that emotion. Following imaging procedures, patients underwent a 10-week course of treatment with 20 to 40 mg of fluoxetine hydrochloride. Changes in mu-opioid receptor BP during neutral and sustained sadness states, negative and positive affect ratings, plasma cortisol and corticotropin levels, and clinical response to antidepressant administration. The sustained sadness condition was associated with a statistically significant decrease in mu-opioid receptor BP in the left inferior temporal cortex of patients with MDD and correlated with negative affect ratings experienced during the condition. Conversely, a significant increase in mu-opioid

  9. Localization and Regulation of Fluorescence-Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice

    PubMed Central

    Scherrer, Gregory; Evans, Christopher J.; Kieffer, Brigitte L.; Bunnett, Nigel W.

    2015-01-01

    Background & Aims Opioids and opiates inhibit gastrointestinal functions via μ, δ, and κ receptors. Although agonists of the δ opioid receptor (DOR) suppress motility and secretion, little is known about the localization and regulation of DOR in the gastrointestinal tract. Methods We studied mice in which the gene that encodes the enhanced green fluorescent protein (eGFP) was inserted into Oprd1, which encodes DOR, to express an ~80 kDa product (DOReGFP). We used these mice to examine how agonists of DOR regulate the subcellular distribution of the DOR. Results DOReGFP was expressed in all regions but confined to enteric neurons and fibers within the muscularis externa. In the submucosal plexus, DOReGFP was detected in neuropeptide Y-positive secretomotor and vasodilator neurons of the small intestine, but was rarely observed in the large bowel. In the myenteric plexus of the small intestine, DOReGFP was present in similar proportions of excitatory motoneurons and interneurons that expressed choline acetyltransferase and substance P, and in inhibitory motoneurons and interneurons that contained nitric oxide synthase. DOReGFP was mostly present in nitrergic myenteric neurons of colon. DOReGFP and μ opioid receptors were often co-expressed. DOReGFP-expressing neurons were associated with enkephalin-containing varicosities and enkephalin-induced, clathrin- and dynamin-mediated endocytosis and lysosomal trafficking of DOReGFP. DOReGFP replenishment at the plasma membrane was slow, requiring de novo synthesis, rather than recycling. Conclusions DOR localizes specifically to submucosal and myenteric neurons, which might account for the ability of DOR agonists to inhibit gastrointestinal secretion and motility. Sustained down-regulation of DOReGFP at the plasma membrane of activated could induce long-lasting tolerance to DOR agonists. PMID:21699782

  10. Averting Opioid-induced Respiratory Depression without Affecting Analgesia.

    PubMed

    Dahan, Albert; van der Schrier, Rutger; Smith, Terry; Aarts, Leon; van Velzen, Monique; Niesters, Marieke

    2018-05-01

    The ventilatory control system is highly vulnerable to exogenous administered opioid analgesics. Particularly respiratory depression is a potentially lethal complication that may occur when opioids are overdosed or consumed in combination with other depressants such as sleep medication or alcohol. Fatalities occur in acute and chronic pain patients on opioid therapy and individuals that abuse prescription or illicit opioids for their hedonistic pleasure. One important strategy to mitigate opioid-induced respiratory depression is cotreatment with nonopioid respiratory stimulants. Effective stimulants prevent respiratory depression without affecting the analgesic opioid response. Several pharmaceutical classes of nonopioid respiratory stimulants are currently under investigation. The majority acts at sites within the brainstem respiratory network including drugs that act at α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (ampakines), 5-hydroxytryptamine receptor agonists, phospodiesterase-4 inhibitors, D1-dopamine receptor agonists, the endogenous peptide glycyl-glutamine, and thyrotropin-releasing hormone. Others act peripherally at potassium channels expressed on oxygen-sensing cells of the carotid bodies, such as doxapram and GAL021 (Galleon Pharmaceuticals Corp., USA). In this review we critically appraise the efficacy of these agents. We conclude that none of the experimental drugs are adequate for therapeutic use in opioid-induced respiratory depression and all need further study of efficacy and toxicity. All discussed drugs, however, do highlight potential mechanisms of action and possible templates for further study and development.

  11. Superpotent [Dmt¹] dermorphin tetrapeptides containing the 4-aminotetrahydro-2-benzazepin-3-one scaffold with mixed μ/δ opioid receptor agonistic properties.

    PubMed

    Vandormael, Bart; Fourla, Danai-Dionysia; Gramowski-Voss, Alexandra; Kosson, Piotr; Weiss, Dieter G; Schröder, Olaf H-U; Lipkowski, Andrzej; Georgoussi, Zafiroula; Tourwé, Dirk

    2011-11-24

    Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides. The most potent ligand H-Dmt-NMe-d-Ala-Aba-Gly-NH(2) (BVD03) displayed mixed μ/δ opioid agonist properties with picomolar functional potencies. Functional electrophysiological in vitro assays using primary cortical and spinal cord networks showed that this analogue possessed electrophysiological similarity toward gabapentin and sufentanil, which makes it an interesting candidate for further study as an analgesic for neuropathic pain.

  12. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  13. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  14. Delta Opioid Pharmacology in Relation to Alcohol Behaviors

    PubMed Central

    Alongkronrusmee, Doungkamol; Chiang, Terrance

    2016-01-01

    Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs. PMID:27316912

  15. Allosteric Modulation of Metabotropic Glutamate Receptors

    PubMed Central

    Sheffler, Douglas J.; Gregory, Karen J.; Rook, Jerri M.; Conn, P. Jeffrey

    2013-01-01

    The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson’s disease, and Fragile X syndrome. PMID:21907906

  16. Rational use of opioids.

    PubMed

    Mastronardi, P; Cafiero, T

    2001-04-01

    The role of analgesia and sedation in intensive care units (ICU) is ancillary to other intensive care strategies, nevertheless they permit that every other diagnostic and therapeutic procedure is safely performed by keeping the patient pain-free, anxiety-free and cooperative. Commonly used opioids in ICU include morphine, fentanyl, sufentanil and remifentanil. The choice among opioid drugs relies on their pharmacokinetics and their pharmacodynamic effects. Cardiovascular stability observed with fentanyl and sufentanil indicates their use in hemodynamically compromised patients. Short-acting remifentanil offers several advantages in patients requiring prolonged infusions. The organ-independent metabolism of this newer molecule may be valuable in patients with multiple organ failure. The main indications for opioid analgesia and sedation in ICU include: 1) Anxiety, pain and agitation: in turn, they can increase cardiac workload, myocardial oxygen consumption and rate of dysarrhythmias; 2) immediate postoperative period after major surgery; 3) short-term invasive procedures. Potential advantages offered by opioids in the ICU setting also include: a) Cardiac protection: in animal models, it has been observed that delta-opiate receptor stimulation confers a preconditioning-like protective effects against myocardial ischemia; b) Neuroprotection: recent studies suggest that mu- and kappa-opiate receptors are involved in ischemic preconditioning against seizures in the brain. During opioid therapy in the ICU, drug tolerance and withdrawal symptoms should be anticipated and the dose adjusted accordingly.

  17. Constitutive activity of the δ-opioid receptor expressed in C6 glioma cells: identification of non-peptide δ-inverse agonists

    PubMed Central

    Neilan, Claire L; Akil, Huda; Woods, James H; Traynor, John R

    1999-01-01

    G-protein coupled receptors can exhibit constitutive activity resulting in the formation of active ternary complexes in the absence of an agonist. In this study we have investigated constitutive activity in C6 glioma cells expressing either the cloned δ-(OP1) receptor (C6δ), or the cloned μ-(OP3) opioid receptor (C6μ).Constitutive activity was measured in the absence of Na+ ions to provide an increased signal. The degree of constitutive activity was defined as the level of [35S]-GTPγS binding that could be inhibited by pre-treatment with pertussis toxin (PTX). In C6δ cells the level of basal [35S]-GTPγS binding was reduced by 51.9±6.1 fmols mg−1 protein, whereas in C6μ and C6 wild-type cells treatment with PTX reduced basal [35S]-GTPγS binding by only 10.0±3.5 and 8.6±3.1 fmols mg−1 protein respectively.The δ-antagonists N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864), 7-benzylidenenaltrexone (BNTX) and naltriben (NTB), in addition to clocinnamox (C-CAM), acted as δ-opioid receptor inverse agonists. Naloxone, buprenorphine, and naltrindole were neutral antagonists. Furthermore, naltrindole blocked the reduction in [35S]-GTPγS binding caused by the inverse agonists. The inverse agonists did not inhibit basal [35S]-GTPγS binding in C6μ or C6 wild-type cell membranes.Competition binding assays in C6δ cell membranes revealed a leftward shift in the displacement curve of [3H]-naltrindole by ICI 174,864 and C-CAM in the presence of NaCl and the GTP analogue, GppNHp. There was no change in the displacement curve for BNTX or NTB under these conditions.These data confirm the presence of constitutive activity associated with the δ-opioid receptor and identify three novel, non-peptide, δ-opioid inverse agonists. PMID:10516632

  18. Effect of Peripheral μ-, δ-, and κ-Opioid Ligands on the Development of Tolerance to Ethanol-Induced Analgesia.

    PubMed

    Sudakov, S K; Alekseeva, E V; Nazarova, G A

    2017-06-01

    We studied the rate of development of tolerance to the ethanol-induced analgesia under the effect of μ-, δ-, and κ-opioid agonists and antagonists not crossing the blood-brain barrier and rapidly inactivated by gastric and duodenal proteolytic enzymes. Activation of gastric κ-opioid receptors eliminated the analgesic effect of ethanol and accelerated the development of tolerance to ethanol-induced analgesia. In contrast, activation of gastric μ-opioid receptors decelerated the development of this tolerance. Activation of gastric δ-opioid receptors produced no effect on examined tolerance. μ-Opioid receptor antagonist decelerated and δ-opioid receptor antagonist accelerated the development of tolerance to ethanol-induced analgesia. Thus, the state of gastric opioid receptors affects the manifestation of ethanol-induced analgesia and the development of tolerance to this effect.

  19. Magnesium ions and opioid agonists in vincristine-induced neuropathy.

    PubMed

    Bujalska, Magdalena; Makulska-Nowak, Helena; Gumułka, Stanisław W

    2009-01-01

    Neuropathic pain is difficult to treat. Classic analgesics (i.e., opioid receptor agonists) usually possess low activity. Therefore other agents such as antidepressants, anticonvulsants, and corticosteroids are used. It is commonly known that NMDA antagonists increase analgesic activity of opioids. Unfortunately, clinical use of NMDA antagonists is limited because of the relatively frequent occurrence of adverse effects e.g., memory impairment, psychomimetic effects, ataxia and motor in-coordination. Magnesium ions (Mg(2+)) are NMDA receptor blockers in physiological conditions. Therefore, in this study the effect of opioid receptor agonists and the influence of Mg(2+) on the action of opioid agonists in vincristine-induced hyperalgesia were examined. Opioid agonists such as morphine (5 mg/kg, ip), and fentanyl (0.0625 mg/kg, ip), as well as the partial agonist buprenorphine (0.075 mg/kg, ip) administered alone on 5 consecutives days did not modify the hyperalgesia in vincristine rats. In contrast, pretreatment with a low dose of magnesium sulfate (30 mg/kg, ip) resulted in a progressive increase of the analgesic action of all three investigated opioids. After discontinuation of drug administration, the effect persisted for several days.

  20. Paraventricular Nucleus Modulates Excitatory Cardiovascular Reflexes during Electroacupuncture

    PubMed Central

    Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Fu, Liang-Wu; Longhurst, John C.

    2016-01-01

    The paraventricular nucleus (PVN) regulates sympathetic outflow and blood pressure. Somatic afferent stimulation activates neurons in the hypothalamic PVN. Parvocellular PVN neurons project to sympathoexcitatory cardiovascular regions of the rostral ventrolateral medulla (rVLM). Electroacupuncture (EA) stimulates the median nerve (P5-P6) to modulate sympathoexcitatory responses. We hypothesized that the PVN and its projections to the rVLM participate in the EA-modulation of sympathoexcitatory cardiovascular responses. Cats were anesthetized and ventilated. Heart rate and mean blood pressure were monitored. Application of bradykinin every 10-min on the gallbladder induced consistent pressor reflex responses. Thirty-min of bilateral EA stimulation at acupoints P5-P6 reduced the pressor responses for at least 60-min. Inhibition of the PVN with naloxone reversed the EA-inhibition. Responses of cardiovascular barosensitive rVLM neurons evoked by splanchnic nerve stimulation were reduced by EA and then restored with opioid receptor blockade in the PVN. EA at P5-P6 decreased splanchnic evoked activity of cardiovascular barosensitive PVN neurons that also project directly to the rVLM. PVN neurons labeled with retrograde tracer from rVLM were co-labeled with μ-opioid receptors and juxtaposed to endorphinergic fibers. Thus, the PVN and its projection to rVLM are important in processing acupuncture modulation of elevated blood pressure responses through a PVN opioid mechanism. PMID:27181844

  1. Low-Dose Cannabinoid Type 2 Receptor Agonist Attenuates Tolerance to Repeated Morphine Administration via Regulating μ-Opioid Receptor Expression in Walker 256 Tumor-Bearing Rats.

    PubMed

    Zhang, Mingyue; Wang, Kun; Ma, Min; Tian, Songyu; Wei, Na; Wang, Guonian

    2016-04-01

    Morphine is widely used in patients with moderate and severe cancer pain, whereas the development of drug tolerance remains a major problem associated with opioid use. Previous studies have shown that cannabinoid type 2 (CB2) receptor agonists induce morphine analgesia, attenuate morphine tolerance in normal and neuropathic pain animals, induce transcription of the μ-opioid receptor (MOR) gene in Jurkat T cells, and increase morphine analgesia in cancer pain animals. However, no studies of the effects of CB2 receptor agonists on morphine tolerance in cancer pain have been performed. Therefore, we investigated the effect of repeated intrathecal (IT) injection of the low-dose CB2 receptor agonist AM1241 on the development of morphine tolerance in walker 256 tumor-bearing rats. We also tested the influence of the CB2 receptor agonist AM1241 on MOR protein and messenger ribonucleic acid (mRNA) expression in the rat spinal cord and dorsal root ganglia (DRG). Walker 256 cells were implanted into the plantar region of each rat's right hindpaw. Tumor-bearing rats received IT injection of the CB2 receptor agonist AM1241 or antagonist AM630 with or without morphine subcutaneously twice daily for 8 days. Rats receiving drug vehicle only served as the control group. Mechanical paw withdrawal threshold and thermal paw withdrawal latency were assessed by a von Frey test and hot plate test 30 minutes after drug administration every day. MOR protein and mRNA expression in the spinal cord and DRG were detected after the last day (day 8) of drug administration via Western blot and real-time reverse transcription polymerase chain reaction. The data were analyzed via analysis of variance followed by Student t test with Bonferroni correction for multiple comparisons. Repeated morphine treatments reduced the mechanical withdrawal threshold and thermal latency. Coadministration of a nonanalgetic dose of the CB2 receptor agonist AM1241 with morphine significantly inhibited the

  2. The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception.

    PubMed

    Hill, Rob; Disney, Alex; Conibear, Alex; Sutcliffe, Katy; Dewey, William; Husbands, Stephen; Bailey, Chris; Kelly, Eamonn; Henderson, Graeme

    2018-07-01

    PZM21 is a novel μ-opioid receptor ligand that has been reported to induce minimal arrestin recruitment and be devoid of the respiratory depressant effects characteristic of classical μ receptor ligands such as morphine. We have re-examined the signalling profile of PZM21 and its ability to depress respiration. G protein (G i ) activation and arrestin-3 translocation were measured in vitro, using BRET assays, in HEK 293 cells expressing μ receptors. Respiration (rate and tidal volume) was measured in awake, freely moving mice by whole-body plethysmography, and antinociception was measured by the hot plate test. PZM21 (10 -9 - 3 × 10 -5  M) produced concentration-dependent G i activation and arrestin-3 translocation. Comparison with responses evoked by morphine and DAMGO revealed that PZM21 was a low efficacy agonist in both signalling assays. PZM21 (10-80 mg·kg -1 ) depressed respiration in a dose-dependent manner. The respiratory depression was due to a decrease in the rate of breathing not a decrease in tidal volume. On repeated daily administration of PZM21 (twice daily doses of 40 mg·kg -1 ), complete tolerance developed to the antinociceptive effect of PZM21 over 3 days but no tolerance developed to its respiratory depressant effect. These data demonstrate that PZM21 is a low efficacy μ receptor agonist for both G protein and arrestin signalling. Contrary to a previous report, PZM21 depresses respiration in a manner similar to morphine, the classical opioid receptor agonist. © 2018 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  3. Delta-opioid receptor expression in the ventral tegmental area protects against elevated alcohol consumption.

    PubMed

    Margolis, Elyssa B; Fields, Howard L; Hjelmstad, Gregory O; Mitchell, Jennifer M

    2008-11-26

    Alcoholism is a complex and debilitating syndrome affecting approximately 140 million people worldwide. However, not everyone who consumes ethanol develops abuse, raising the possibility that some individuals have a protective mechanism that inhibits elevated alcohol consumption. We tested the hypothesis that the delta-opioid receptor (DOR) plays such a protective role. Here we show that DOR activity in the ventral tegmental area (VTA) robustly decreases ethanol consumption in rats and that these effects depend on baseline ethanol consumption. Intra-VTA microinjection of the DOR agonist DPDPE decreases drinking, particularly in low-drinking animals. Furthermore, VTA microinjection of the DOR selective antagonist TIPP-Psi increases drinking in low, but not high, drinkers and this increase is blocked by comicroinjection of the GABA(A) antagonist bicuculline. Using electrophysiological techniques we found that in VTA brain slices from drinking rats DPDPE presynaptically inhibits GABA(A) receptor mediated IPSCs in low drinkers, but not in high drinkers or naive animals, most likely through activation of DORs on GABA terminals. This DOR-mediated inhibition of IPSCs also correlates inversely with behavioral correlates of anxiety measured in the elevated plus maze. In contrast, presynaptic inhibition of VTA GABA(A) IPSCs by the mu-opioid receptor agonist DAMGO is significantly reduced in both high- and low-drinking rats (<30%) compared with age-matched nondrinking controls (>70%). Together, our findings demonstrate the protective nature of VTA DORs and identify an important new target for therapeutic intervention for alcoholism.

  4. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    PubMed

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  5. Novel Opioid Analgesics and Side Effects.

    PubMed

    Del Vecchio, Giovanna; Spahn, Viola; Stein, Christoph

    2017-08-16

    Conventional opioids mediate analgesia as well as severe adverse effects via G-protein coupled opioid receptors (OR) in both inflamed (peripheral injured tissue) and healthy (brain, intestinal wall) environments. To exclude side effects, OR activation can be selectively achieved in damaged tissue by lowering the pK a of an opioid ligand to the acidic pH of inflammation. As a result, protonation of the ligand and consequent OR binding and activation of G-proteins is pH- and injury-specific. A novel compound (NFEPP) demonstrates the feasibility of this approach and displays blockade of pain transmission only at the peripheral site of injury, but with lack of central and gastrointestinal adverse effects. These findings suggest disease-specific receptor activation as a new strategy in drug design.

  6. Local analgesic effect of tramadol is mediated by opioid receptors in late postoperative pain after plantar incision in rats.

    PubMed

    de Oliveira Junior, José Oswaldo; de Freitas, Milena Fernandes; Bullara de Andrade, Carolina; Chacur, Marucia; Ashmawi, Hazem Adel

    2016-01-01

    Tramadol is a drug used to treat moderate to severe pain. It is known to present a peripheral effect, but the local mechanisms underlying its actions remain unclear. The role of peripheral opioid receptors in postoperative pain is not well understood. In the present study, we examined the peripheral opioid receptors to determine the local effect of tramadol in a plantar incision pain model. Rats were subjected to plantar incision and divided into four groups on postoperative day (POD) 1: SF_SF, 0.9% NaCl injected into the right hindpaw; SF_TraI, 0.9% NaCl and tramadol injected into the right hindpaw; SF_TraC, 0.9% NaCl and tramadol injected into the contralateral hindpaw; and Nal_Tra, naloxone and tramadol injected into the ipsilateral hindpaw. To determine the animals' nociceptive threshold, mechanical hyperalgesia was measured before incision, on POD1 before treatment and at 15, 30, 45, and 60 minutes after the incision. The same procedure was repeated on the POD2. The expression levels of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) were obtained through immunoblotting assays in the lumbar dorsal root ganglia (L3-L6) in naïve rats and 1, 2, 3, and 7 days after the incision. Our results showed that the plantar incision was able to cause an increase in mechanical hyperalgesia and that tramadol reversed this hyperalgesia on POD1 and POD2. Tramadol injections in the contralateral paw did not affect the animals' nociceptive threshold. Naloxone was able to antagonize the tramadol effect partially on POD1 and completely on POD2. The DOR expression increased on POD2, POD3, and POD7, whereas the MOR expression did not change. Together, our results show that tramadol promoted a local analgesic effect in the postoperative pain model that was antagonized by naloxone in POD2, alongside the increase of DOR expression.

  7. Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates.

    PubMed

    Lee, Heeseung; Ko, Mei-Chuan

    2015-06-29

    How neuropeptides in the primate spinal cord regulate itch and pain is largely unknown. Here we elucidate the sensory functions of spinal opioid-related peptides and gastrin-releasing peptide (GRP) in awake, behaving monkeys. Following intrathecal administration, β-endorphin (10-100 nmol) and GRP (1-10 nmol) dose-dependently elicit the same degree of robust itch scratching, which can be inhibited by mu-opioid peptide (MOP) receptor and GRP receptor (BB2) antagonists, respectively. Unlike β-endorphin, which produces itch and attenuates inflammatory pain, GRP only elicits itch without affecting pain. In contrast, enkephalins (100-1000 nmol) and nociceptin-orphanin FQ (3-30 nmol) only inhibit pain without eliciting itch. More intriguingly, dynorphin A(1-17) (10-100 nmol) dose-dependently attenuates both β-endorphin- and GRP-elicited robust scratching without affecting pain processing. The anti-itch effects of dynorphin A can be reversed by a kappa-opioid peptide (KOP) receptor antagonist nor-binaltorphimine. These nonhuman primate behavioral models with spinal delivery of ligands advance our understanding of distinct functions of neuropeptides for modulating itch and pain. In particular, we demonstrate causal links for itch-eliciting effects by β-endorphin-MOP receptor and GRP-BB2 receptor systems and itch-inhibiting effects by the dynorphin A-KOP receptor system. These studies will facilitate transforming discoveries of novel ligand-receptor systems into future therapies as antipruritics and/or analgesics in humans.

  8. Emerging therapies for patients with symptoms of opioid-induced bowel dysfunction

    PubMed Central

    Leppert, Wojciech

    2015-01-01

    Opioid-induced bowel dysfunction (OIBD) comprises gastrointestinal (GI) symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50%) after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN) in one tablet (a ratio of 2:1) provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying causes and patomechanisms of OIBD is recommended. Newer strategies comprise methylnaltrexone or OXN administration in the management of OIBD

  9. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    PubMed

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  10. Role of neurotensin and opioid receptors in the cardiorespiratory effects of [Ile⁹]PK20, a novel antinociceptive chimeric peptide.

    PubMed

    Kaczyńska, Katarzyna; Szereda-Przestaszewska, Małgorzata; Kleczkowska, Patrycja; Lipkowski, Andrzej W

    2014-10-15

    Ile(9)PK20 is a novel hybrid of opioid-neurotensin peptides synthesized from the C-terminal hexapeptide of neurotensin and endomorphin-2 pharmacophore. This chimeric compound shows potent central and peripheral antinociceptive activity in experimental animals, however nothing is known about its influence on the respiratory and cardiovascular parameters. The present study was designed to determine the cardiorespiratory effects exerted by an intravenous injection (i.v.) of [Ile(9)]PK20. Share of the vagal afferentation and the contribution of NTS1 neurotensin and opioid receptors were tested. Intravenous injection of the hybrid at a dose of 100 μg/kg in the intact, anaesthetized rats provoked an increase in tidal volume preceded by a prompt short-lived decrease. Immediately after the end of injection brief acceleration of the respiratory rhythm appeared, and was ensued by the slowing down of breathing. Changes in respiration were concomitant with a bi-phasic response of the blood pressure: an immediate increase was followed by a sustained hypotension. Midcervical vagotomy eliminated the increase in tidal volume and respiratory rate responses. Antagonist of opioid receptors - naloxone hydrochloride eliminated only [Ile(9)]PK20-evoked decline in tidal volume response. Blockade of NTS1 receptors with an intravenous dose of SR 142,948, lessened the remaining cardiorespiratory effects. This study depicts that [Ile(9)]PK20 acting through neurotensin NTS1 receptors augments the tidal component of the breathing pattern and activates respiratory timing response through the vagal pathway. Blood pressure effects occur outside vagal afferentation and might result from activation of the central and peripheral vascular NTS1 receptors. In summary the respiratory effects of the hybrid appeared not to be profound, but they were accompanied with unfavourable prolonged hypotension. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    PubMed

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Endomorphin analogues containing D-Pro2 discriminate different μ-opioid receptor mediated antinociception in mice

    PubMed Central

    Sakurada, Shinobu; Watanabe, Hiroyuki; Hayashi, Takafumi; Yuhki, Masayuki; Fujimura, Tsutomu; Murayama, Kimie; Sakurada, Chikai; Sakurada, Tsukasa

    2002-01-01

    The antagonistic actions of D-Pro2-endomorphins on inhibition of the paw withdrawal response by endomorphins were studied in mice. D-Pro2-endomorphin-1 and D-Pro2-endomorphin-2, injected intrathecally (i.t.), had no significant effect on the nociceptive thermal threshold alone. When D-Pro2-endomorphin-1 (0.05–0.1 pmol) was injected simultaneously with i.t. endomorphin-1 (5.0 nmol) or endomorphin-2 (5.0 nmol), antinociception induced by endomoprhin-1 was reduced significantly, whereas endomorphin-2-induced antinociception was not affected by D-Pro2-endomorphin-1. Antinociception induced by i.t. endomorphin-2 (5.0 nmol) was reduced significantly by its analogue, D-Pro2-endomorphin-2 (100 pmol), but not by D-Pro2-endomorphin-1. D-Pro2-endomorphin-1. D-Pro2-endomorphin-1 also antagonized the antinociceptive effect of i.t. DAMGO, a μ-opioid receptor agonist, whereas D-Pro2-endomorphin-2 failed to reduce the effect of DAMGO. These results suggest that endomorphin analogues containing D-Pro2 are able to discriminate the antinociceptive actions of μ1- and μ2-opioid receptor agonists at the spinal cord level. PMID:12466222

  13. Tolerance and Withdrawal From Prolonged Opioid Use in Critically Ill Children

    PubMed Central

    Anand, Kanwaljeet J. S.; Willson, Douglas F.; Berger, John; Harrison, Rick; Meert, Kathleen L.; Zimmerman, Jerry; Carcillo, Joseph; Newth, Christopher J. L.; Prodhan, Parthak; Dean, J. Michael; Nicholson, Carol

    2012-01-01

    OBJECTIVE After prolonged opioid exposure, children develop opioid-induced hyperalgesia, tolerance, and withdrawal. Strategies for prevention and management should be based on the mechanisms of opioid tolerance and withdrawal. PATIENTS AND METHODS Relevant manuscripts published in the English language were searched in Medline by using search terms “opioid,” “opiate,” “sedation,” “analgesia,” “child,” “infant-newborn,” “tolerance,” “dependency,” “withdrawal,” “analgesic,” “receptor,” and “individual opioid drugs.” Clinical and preclinical studies were reviewed for data synthesis. RESULTS Mechanisms of opioid-induced hyperalgesia and tolerance suggest important drug- and patient-related risk factors that lead to tolerance and withdrawal. Opioid tolerance occurs earlier in the younger age groups, develops commonly during critical illness, and results more frequently from prolonged intravenous infusions of short-acting opioids. Treatment options include slowly tapering opioid doses, switching to longer-acting opioids, or specifically treating the symptoms of opioid withdrawal. Novel therapies may also include blocking the mechanisms of opioid tolerance, which would enhance the safety and effectiveness of opioid analgesia. CONCLUSIONS Opioid tolerance and withdrawal occur frequently in critically ill children. Novel insights into opioid receptor physiology and cellular biochemical changes will inform scientific approaches for the use of opioid analgesia and the prevention of opioid tolerance and withdrawal. PMID:20403936

  14. An examination of the effects of subthalamic nucleus inhibition or μ-opioid receptor stimulation on food-directed motivation in the non-deprived rat

    PubMed Central

    Pratt, Wayne E.; Choi, Eugene; Guy, Elizabeth G.

    2012-01-01

    The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-hr intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N = 6–9) were tested following bilateral inhibition of the STN with the GABAA receptor agonist muscimol (at 0–5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-hr feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-hr PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-hr DRL-20 sec reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes. PMID:22391117

  15. Synthesis, molecular modeling, and opioid receptor affinity of 9, 10-diazatricyclo[4.2.1.1(2,5)]decanes and 2,7-diazatricyclo[4.4.0. 0(3,8)]decanes structurally related to 3,8-diazabicyclo[3.2. 1]octanes.

    PubMed

    Vianello, P; Albinati, A; Pinna, G A; Lavecchia, A; Marinelli, L; Borea, P A; Gessi, S; Fadda, P; Tronci, S; Cignarella, G

    2000-06-01

    Various lines of evidence, including molecular modeling studies, imply that the endoethylenic bridge of 3,8-diazabicyclo[3.2. 1]octanes (DBO, 1) plays an essential role in modulating affinity toward mu opioid receptors. This hypothesis, together with the remarkable analgesic properties observed for N(3) propionyl, N(8) arylpropenyl derivatives (2) and of the reverted isomers (3), has prompted us to insert an additional endoethylenic bridge on the piperazine moiety in order to identify derivatives with increased potency toward this receptor class. In the present report, we describe the synthesis of the novel compounds 9,10-diazatricyclo[4.2. 1.1(2,5)]decane (4) and 2,7-diazatricyclo[4.4.0.0(3,8)]decane (5), as well as the representative derivatives functionalized at the two nitrogen atoms by propionyl and arylpropenyl groups (6a-e, 7a-d). Opioid receptor binding assays revealed that, among the compounds tested, the N-propionyl-N-cinnamyl derivatives 6a and 7a exhibited the highest mu-receptor affinity, and remarkably, compound 7a displayed in vivo (mice) an analgesic potency 6-fold that of morphine.

  16. The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours.

    PubMed

    Kelly, Eamonn; Mundell, Stuart J; Sava, Anna; Roth, Adelheid L; Felici, Antonio; Maltby, Kay; Nathan, Pradeep J; Bullmore, Edward T; Henderson, Graeme

    2015-01-01

    The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene. To determine whether the novel opioid antagonist, GSK1521498, is an orthosteric or allosteric antagonist at the μ opioid receptor (MOPr) and whether it has neutral antagonist or inverse agonist properties. A combination of radioligand binding assays and [(35)S]GTPγS binding assays was employed. GSK1521498 completely displaced [(3)H]naloxone binding to MOPr and did not alter the rate of [(3)H]naloxone dissociation from MOPr observations compatible with it binding to the orthosteric site on MOPr. GSK1521498 exhibited inverse agonism when MOPr was overexpressed but not when the level of MOPr expression was low. In parallel studies under conditions of high receptor expression density, naloxone, naltrexone, 6-β-naltrexol and nalmefene exhibited partial agonism, not inverse agonism as has been reported previously for naloxone and naltrexone. In brain tissue from mice receiving a prolonged morphine pre-treatment, GSK1521498 exhibited slight inverse agonism. Differences between GSK1521498 and naltrexone in their effects on compulsive reward seeking are arguably linked to the more selective and complete MOPr antagonism of GSK1521498 versus the partial MOPr agonism of naltrexone. GSK1521498 is also pharmacologically differentiated by its inverse agonist efficacy at high levels of MOPr expression, but this may be less likely to contribute to behavioural differentiation at patho-physiological levels of expression.

  17. Distinct Roles of Opioid and Dopamine Systems in Lateral Hypothalamic Intracranial Self-Stimulation.

    PubMed

    Ide, Soichiro; Takahashi, Takehiro; Takamatsu, Yukio; Uhl, George R; Niki, Hiroaki; Sora, Ichiro; Ikeda, Kazutaka

    2017-05-01

    Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems. Mice were implanted with electrodes into the right lateral hypothalamus (l hour). Mice were then trained to put their muzzle into the hole in the head-dipping chamber for intracranial electrical stimulation, and the influences of gene knockout were assessed. Significant differences are observed between opioid and dopamine systems in reward function. µ-Opioid receptor knockout mice exhibited enhanced intracranial electrical stimulation, which induced dopamine release. They also exhibited greater motility under conditions of "despair" in both the tail suspension test and water wheel test. In contrast, dopamine transporter knockout mice maintained intracranial electrical stimulation responding even when more active efforts were required to obtain the reward. The absence of µ-opioid receptor or dopamine transporter did not lead to the absence of intracranial electrical stimulation responsiveness but rather differentially altered it. The present results in µ-opioid receptor knockout mice are consistent with the suppressive involvement of µ-opioid receptors in both positive incentive motivation associated with intracranial electrical stimulation and negative incentive motivation associated with depressive states. In contrast, the results in dopamine transporter knockout mice are consistent with the involvement of dopamine transporters in positive incentive motivation, especially its persistence. Differences in intracranial electrical stimulation in µ-opioid receptor and dopamine transporter knockout mice underscore the multidimensional nature of reward. © The Author

  18. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits

    PubMed Central

    Kononenko, Olga; Galatenko, Vladimir; Andersson, Malin; Bazov, Igor; Watanabe, Hiroyuki; Zhou, Xing Wu; Iatsyshyna, Anna; Mityakina, Irina; Yakovleva, Tatiana; Sarkisyan, Daniil; Ponomarev, Igor; Krishtal, Oleg; Marklund, Niklas; Tonevitsky, Alex; Adkins, DeAnna L.; Bakalkin, Georgy

    2017-01-01

    Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.—Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits. PMID:28122917

  19. Pain, opioids, and sleep: implications for restless legs syndrome treatment.

    PubMed

    Trenkwalder, Claudia; Zieglgänsberger, Walter; Ahmedzai, Sam H; Högl, Birgit

    2017-03-01

    Opioid receptor agonists are known to relieve restless legs syndrome (RLS) symptoms, including both sensory and motor events, as well as improving sleep. The mechanisms of action of opioids in RLS are still a matter of speculation. The mechanisms by which endogenous opioids contribute to the pathophysiology of this polygenetic disorder, in which there are a number of variants, including developmental factors, remains unknown. A summary of the cellular mode of action of morphine and its (partial) antagonist naloxone via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the involvement of dendritic spine activation is described. By targeting pain and its consequences, opioids are the first-line treatment in many diseases and conditions with both acute and chronic pain and have thus been used in both acute and chronic pain conditions over the last 40 years. Addiction, dependence, and tolerability of opioids show a wide variability interindividually, as the response to opioids is influenced by a complex combination of genetic, molecular, and phenotypic factors. Although several trials have now addressed opioid treatment in RLS, hyperalgesia as a complication of long-term opioid treatment, or opioid-opioid interaction have not received much attention so far. Therapeutic opioids may act not only on opioid receptors but also via histamine or N-methyl-d-aspartate (NMDA) receptors. In patients with RLS, one of the few studies investigating opioid bindings found that possible brain regions involved in the severity of RLS symptoms are similar to those known to be involved in chronic pain, such as the medial pain system (medial thalamus, amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex, and orbitofrontal cortex). The results of this diprenorphine positron emission tomography study suggested that the more severe the RLS, the greater the release of endogenous opioids. Since 1993, when the first small controlled study was performed with

  20. Structural Insights into σ₁ Receptor Interactions with Opioid Ligands by Molecular Dynamics Simulations.

    PubMed

    Kurciński, Mateusz; Jarończyk, Małgorzata; Lipiński, Piotr F J; Dobrowolski, Jan Cz; Sadlej, Joanna

    2018-02-18

    Despite considerable advances over the past years in understanding the mechanisms of action and the role of the σ₁ receptor, several questions regarding this receptor remain unanswered. This receptor has been identified as a useful target for the treatment of a diverse range of diseases, from various central nervous system disorders to cancer. The recently solved issue of the crystal structure of the σ₁ receptor has made elucidating the structure-activity relationship feasible. The interaction of seven representative opioid ligands with the crystal structure of the σ₁ receptor (PDB ID: 5HK1) was simulated for the first time using molecular dynamics (MD). Analysis of the MD trajectories has provided the receptor-ligand interaction fingerprints, combining information on the crucial receptor residues and frequency of the residue-ligand contacts. The contact frequencies and the contact maps suggest that for all studied ligands, the hydrophilic (hydrogen bonding) interactions with Glu172 are an important factor for the ligands' affinities toward the σ₁ receptor. However, the hydrophobic interactions with Tyr120, Val162, Leu105, and Ile124 also significantly contribute to the ligand-receptor interplay and, in particular, differentiate the action of the agonistic morphine from the antagonistic haloperidol.

  1. Binding Pathway of Opiates to μ-Opioid Receptors Revealed by Machine Learning

    NASA Astrophysics Data System (ADS)

    Barati Farimani, Amir; Feinberg, Evan; Pande, Vijay

    2018-02-01

    Many important analgesics relieve pain by binding to the $\\mu$-Opioid Receptor ($\\mu$OR), which makes the $\\mu$OR among the most clinically relevant proteins of the G Protein Coupled Receptor (GPCR) family. Despite previous studies on the activation pathways of the GPCRs, the mechanism of opiate binding and the selectivity of $\\mu$OR are largely unknown. We performed extensive molecular dynamics (MD) simulation and analysis to find the selective allosteric binding sites of the $\\mu$OR and the path opiates take to bind to the orthosteric site. In this study, we predicted that the allosteric site is responsible for the attraction and selection of opiates. Using Markov state models and machine learning, we traced the pathway of opiates in binding to the orthosteric site, the main binding pocket. Our results have important implications in designing novel analgesics.

  2. Opioid Analgesics and Nicotine: More Than Blowing Smoke.

    PubMed

    Yoon, Jin H; Lane, Scott D; Weaver, Michael F

    2015-09-01

    Practitioners are highly likely to encounter patients with concurrent use of nicotine products and opioid analgesics. Smokers present with more severe and extended chronic pain outcomes and have a higher frequency of prescription opioid use. Current tobacco smoking is a strong predictor of risk for nonmedical use of prescription opioids. Opioid and nicotinic-cholinergic neurotransmitter systems interact in important ways to modulate opioid and nicotine effects: dopamine release induced by nicotine is dependent on facilitation by the opioid system, and the nicotinic-acetylcholine system modulates self-administration of several classes of abused drugs-including opioids. Nicotine can serve as a prime for the use of other drugs, which in the case of the opioid system may be bidirectional. Opioids and compounds in tobacco, including nicotine, are metabolized by the cytochrome P450 enzyme system, but the metabolism of opioids and tobacco products can be complicated. Accordingly, drug interactions are possible but not always clear. Because of these issues, asking about nicotine use in patients taking opioids for pain is recommended. When assessing patient tobacco use, practitioners should also obtain information on products other than cigarettes, such as cigars, pipes, smokeless tobacco, and electronic nicotine delivery systems (ENDS, or e-cigarettes). There are multiple forms of behavioral therapy and pharmacotherapy available to assist patients with smoking cessation, and opioid agonist maintenance and pain clinics represent underutilized opportunities for nicotine intervention programs.

  3. NMDA receptor modulators: an updated patent review (2013-2014).

    PubMed

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2014-12-01

    The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are capable of regulating the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA intersubunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics.

  4. Morphine induces endocytosis of neuronal μ-opioid receptors through the sustained transfer of Gα subunits to RGSZ2 proteins

    PubMed Central

    Rodríguez-Muñoz, María; de la Torre-Madrid, Elena; Sánchez-Blázquez, Pilar; Garzón, Javier

    2007-01-01

    Background In general, opioids that induce the recycling of μ-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not prevent this opioid from inducing strong antinociceptive tolerance. Results In neurons, morphine stimulates the long-lasting transfer of MOR-activated Gα subunits to proteins of the RGS-R7 and RGS-Rz subfamilies. We investigated the influence of this regulatory process on the capacity of morphine to promote desensitization and its association with MOR recycling in the mature nervous system. In parallel, we also studied the effects of [D-Ala2, N-MePhe4, Gly-ol5] encephalin (DAMGO), a potent inducer of MOR internalization that promotes little tolerance. We observed that the initial exposure to icv morphine caused no significant internalization of MORs but rather, a fraction of the Gα subunits was stably transferred to RGS proteins in a time-dependent manner. As a result, the antinociception produced by a second dose of morphine administered 6 h after the first was weaker. However, this opioid now stimulated the phosphorylation, internalization and recycling of MORs, and further exposure to morphine promoted little tolerance to this moderate antinociception. In contrast, the initial dose of DAMGO stimulated intense phosphorylation and internalization of the MORs associated with a transient transfer of Gα subunits to the RGS proteins, recovering MOR control shortly after the effects of the opioid had ceased. Accordingly, the recycled MORs re-established their association with G proteins and the neurons were rapidly resensitized to DAMGO. Conclusion In the nervous system, morphine induces a strong desensitization before promoting the phosphorylation and recycling of MORs. The

  5. Spatiotemporal control of opioid signaling and behavior

    PubMed Central

    Siuda, Edward R.; Copits, Bryan A.; Schmidt, Martin J.; Baird, Madison A.; Al-Hasani, Ream; Planer, William J.; Funderburk, Samuel C.; McCall, Jordan G.; Gereau, Robert W.; Bruchas, Michael R.

    2015-01-01

    Summary Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically-sensitive, mu-opioid-like receptor, we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels, and internalizes with similar kinetics as the mu-opioid receptor. To assess in vivo utility we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot, led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways. PMID:25937173

  6. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent.

    PubMed

    Kren, Nancy P; Zagon, Ian S; McLaughlin, Patricia J

    2016-02-01

    Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner. © 2015 by the Society for Experimental Biology and Medicine.

  7. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects.

    PubMed

    Yoshikawa, Masaaki

    2015-10-01

    We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Palmitoylation and membrane cholesterol stabilize μ-opioid receptor homodimerization and G protein coupling

    PubMed Central

    2012-01-01

    Background A cholesterol-palmitoyl interaction has been reported to occur in the dimeric interface of the β2-adrenergic receptor crystal structure. We sought to investigate whether a similar phenomenon could be observed with μ-opioid receptor (OPRM1), and if so, to assess the role of cholesterol in this class of G protein-coupled receptor (GPCR) signaling. Results C3.55(170) was determined to be the palmitoylation site of OPRM1. Mutation of this Cys to Ala did not affect the binding of agonists, but attenuated receptor signaling and decreased cholesterol associated with the receptor signaling complex. In addition, both attenuation of receptor palmitoylation (by mutation of C3.55[170] to Ala) and inhibition of cholesterol synthesis (by treating the cells with simvastatin, a HMG-CoA reductase inhibitor) impaired receptor signaling, possibly by decreasing receptor homodimerization and Gαi2 coupling; this was demonstrated by co-immunoprecipitation, immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) analyses. A computational model of the OPRM1 homodimer structure indicated that a specific cholesterol-palmitoyl interaction can facilitate OPRM1 homodimerization at the TMH4-TMH4 interface. Conclusions We demonstrate that C3.55(170) is the palmitoylation site of OPRM1 and identify a cholesterol-palmitoyl interaction in the OPRM1 complex. Our findings suggest that this interaction contributes to OPRM1 signaling by facilitating receptor homodimerization and G protein coupling. This conclusion is supported by computational modeling of the OPRM1 homodimer. PMID:22429589

  9. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    PubMed Central

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  10. Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System.

    PubMed

    Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Duarte, Igor Dimitri Gama; Aguiar, Daniele C; Moreira, Fabricio A; Romero, Thiago Roberto Lima

    2017-01-01

    Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E 2 (PGE 2 , 2  μ g). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE 2 injection. Aripiprazole (100  μ g/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50  μ g/paw), a nonselective opioid receptor antagonist. The role of μ -, δ -, and κ -opioid receptors was investigated using the selective antagonists, clocinnamox (40  μ g/paw), naltrindole (15, 30, and 60  μ g/paw), and nor-binaltorphimine (200  μ g/paw), respectively. The data indicated that only the δ -opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400  μ g), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25  μ g/paw) aripiprazole-induced peripheral antinociception. The results suggest the participation of the opioid system via δ -opioid receptor in the peripheral antinociceptive effect induced by aripiprazole.

  11. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction.

    PubMed

    Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R

    2017-01-01

    The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic. © 2017 Elsevier Inc. All rights reserved.

  12. Mu-Opioid Receptors in Ganglia, But Not in Muscle, Mediate Peripheral Analgesia in Rat Muscle Pain.

    PubMed

    Bagues, Ana; Martín, María Isabel; Higuera-Matas, Alejandro; Esteban-Hernández, Jesús; Ambrosio, Emilio; Sánchez-Robles, Eva María

    2018-04-01

    Previous studies have demonstrated the participation of peripheral μ-opioid receptors (MOR) in the antinociceptive effect of systemically administered morphine and loperamide in an orofacial muscle pain model, induced by hypertonic saline, but not in a spinally innervated one, in rats. In this study, we determine whether this peripheral antinociceptive effect is due to the activation of MOR localized in the muscle, ganglia, or both. To determine the local antinociceptive effect of morphine and loperamide, 2 models of acute muscle pain (trigeminal and spinal) were used. Also, to study the MOR expression, protein quantification was performed in the trigeminal and spinal ganglia, and in the muscles. The behavioral results show that the intramuscular injection of morphine and loperamide did not exert an antinociceptive effect in either muscle (morphine: P = .63, loperamide: P = .9). On the other hand, MOR expression was found in the ganglia but not in the muscles. This expression was on average 44% higher (95% confidence interval, 33.3-53.9) in the trigeminal ganglia than in the spinal one. The peripheral antinociceptive effect of systemically administered opioids may be due to the activation of MOR in ganglia. The greater expression of MOR in trigeminal ganglia could explain the higher antinociceptive effect of opioids in orofacial muscle pain than in spinal muscle pain. Therefore, peripheral opioids could represent a promising approach for the treatment of orofacial pain.

  13. Probes for narcotic receptor mediated phenomena. 43. Synthesis of the ortho-a and para-a, and improved synthesis and optical resolution of the ortho-b and para–b oxide-bridged phenylmorphans: Compounds with moderate to low opioid-receptor affinity

    PubMed Central

    Li, Feng; Folk, John E.; Cheng, Kejun; Kurimura, Muneaki; Deck, Jason A.; Deschamps, Jeffrey R.; Rothman, Richard B.; Dersch, Christina M.; Jacobson, Arthur E.; Rice, Kenner C.

    2011-01-01

    N-Phenethyl-substituted ortho-a and para-a oxide-bridged phenylmorphans have been obtained through an improved synthesis and their binding affinity examined at the various opioid receptors. Although the N-phenethyl substituent showed much greater affinity for μ- and κ-opioid receptors than their N-methyl relatives (e.g., Ki = 167 nM and 171 nM at μ- and κ-receptors vs >2800 and 7500 nM for the N-methyl ortho-a oxide-bridged phenylmorphan), the a-isomers were not examined further because of their relatively low affinity. The N-phenethyl substituted ortho-b and para-b oxide-bridged phenylmorphans were also synthesized and their enantiomers were obtained using supercritical fluid chromatography. Of the four enantiomers, only the (+)-ortho-b isomer had moderate affinity for μ- and κ-receptors (Ki = 49 and 42 nM, respectively, and it was found to also have moderate μ- and κ-opioid antagonist activity in the [35S]GTP-γ-S assay (Ke = 31 and 26 nM). PMID:21684752

  14. Multiple opiate receptors: déjà vu all over again.

    PubMed

    Pasternak, Gavril W

    2004-01-01

    The concept of multiple opioid receptors has changed dramatically since their initial proposal by Martin nearly 40 years ago. Three major opioid receptor families have now been proposed: mu, kappa and delta. Most of the opioid analgesics used clinically selectively bind to mu opioid receptors. Yet, clinicians have long appreciated subtle, but significant, differences in their pharmacology. These observations suggested more than one mu opioid receptor mechanism of action and led us to propose multiple mu opioid receptors over 20 years ago based upon a range of pharmacological and receptor binding approaches. A mu opioid receptor, MOR-1, was cloned about a decade ago. More recent studies have now identified a number of splice variants of this clone. These splice variants may help explain the pharmacology of the mu opioids and open interesting directions for future opioid research.

  15. Dopamine D1 and μ-opioid receptor antagonism blocks anticipatory 50 kHz ultrasonic vocalizations induced by palatable food cues in Wistar rats.

    PubMed

    Buck, Cara L; Vendruscolo, Leandro F; Koob, George F; George, Olivier

    2014-03-01

    Fifty kilohertz ultrasonic vocalizations (USVs) have been sometimes shown to reflect positive affective-like states in rats. Rewarding events, such as access to palatable food or drugs of abuse, increase the number of anticipatory 50-kHz USVs. However, little is known about the predictability of USVs, subtypes of USVs involved, and underlying neurobiological mechanisms. We examined whether cue-induced anticipatory 50-kHz USVs predict palatable food intake and tested the effects of dopamine D1 and μ-opioid receptor antagonism on anticipatory USVs. Food-restricted rats received repeated sessions of a 2-min cue light immediately followed by a 5-min access to palatable food. Ultrasonic vocalizations were recorded during cue presentation. After 24 pairing sessions, the rats were pretreated with the D1 receptor antagonist SCH 23390 (5, 10, and 20 μg/kg) and μ-opioid receptor antagonist naltrexone (0.03, 0.06, 0.13, 0.25, 0.5, and 1 mg/kg) in a Latin-square design, and USVs were recorded during cue presentation. Rats emitted 50-kHz USVs during cue presentation, and the number of USVs increased across sessions with robust and stable interindividual differences. Escalation in USVs was subtype-dependent, with nontrill calls significantly increasing over time. Palatable food intake was positively correlated with anticipatory 50-kHz USVs. Moreover, anticipatory USVs were dose-dependently prevented by antagonism of D1 and μ-opioid receptors. These findings demonstrate that anticipatory 50-kHz USVs represent a stable phenotype of increased motivation for food, and dopamine and opioid systems appear to mediate anticipatory 50-kHz USVs.

  16. The different roles of opioid receptors in the inhibitory effects induced by sacral dorsal root ganglion stimulation on nociceptive and nonnociceptive conditions in cats.

    PubMed

    Wang, Zhaoxia; Liao, Limin; Deng, Han; Li, Xing; Chen, Guoqing; Liao, Xiwen

    2018-06-04

    To examine the roles of opioid receptors in the inhibition of nociceptive and nonnociceptive bladder reflexes by sacral dorsal root ganglion (DRG) stimulation in cats. Hook electrodes were placed in the right S1 and S2 DRG of cats. The bladders were infused with physiologic saline or 0.25% acetic acid (AA). Naloxone (0.1, 0.3, and 1 mg/kg), an opioid receptor antagonist, was administered intravenously. S1 or S2 DRG stimulation was applied before and after administering the drug. Multiple cystometrograms were performed to determine the effects of DRG stimulation and opioid receptors on the micturition reflex under nociceptive and non-nociceptive conditions. AA significantly (P < 0.01) reduced bladder capacity (BC). DRG stimulation at threshold (T) and 1.5 T significantly increased BC of the saline control under nociceptive and non-nociceptive conditions. When saline was infused, naloxone (0.1-1 mg/kg) significantly (P < 0.01) reduced BC; however, naloxone did not change BC during AA irritation. During saline infusion, naloxone (0.3 and 1 mg/kg) partly blocked S1 DRG stimulation-induced inhibition but had only a slight effect on S2 DRG stimulation. During AA infusion, naloxone (0.3 and 1 mg/kg) only partially blocked S1 DRG stimulation at T intensity but not during 1.5 T stimulation. However, no doses of naloxone significantly affected S2 DRG stimulation. Opioid receptors play a role in sacral DRG stimulation on non-nociceptive condition but are not involved in the inhibitory effect of stimulation in nociceptive conditions. © 2018 Wiley Periodicals, Inc.

  17. On subclasses of opioid analgesics.

    PubMed

    Raffa, Robert B

    2014-12-01

    The history of discovery of analgesic drugs has followed a trajectory from original serendipitous discovery of plant-derived substances to laboratory creation of customized molecules that are intentionally designed to interact with specific receptors of neurotransmitters involved in either the transmission of the pain signal or the attenuation of such a signal. The drugs most recently developed have been designed to provide incremental greater separation between pain relief and adverse effects. The result has been drugs that have individualized pharmacodynamic and pharmacokinetic characteristics that represent specific advances in basic science and translate into unique clinical profiles. Several of the drugs include non-opioid components. They retain some of the features of opioids, but have distinct clinical characteristics that differentiate them from traditional opioids. Thus they defy simple classification as opioids. A summary is provided of the development of the modern view of multi-mechanistic pain and its treatment using analgesics that have multi-mechanisms of action (consisting of both opioid and non-opioid components). Descriptions of examples of such current analgesics and of those that have pharmacokinetic characteristics that result in atypical opioid clinical profiles are given. By serendipity or design, several current strong analgesics have opioid components of action, but have an additional non-opioid mechanism of action or some pharmacokinetic feature that gives them an atypical opioid clinical profile and renders them not easily classified as classical opioids. An appreciation that there are now opioid analgesics that differentiate from classical opioids in ways that defy their simplistic classification as opioids suggests that recognition of subclasses of opioid analgesics would be more accurate scientifically and would be more informative for healthcare providers and regulators. This would likely lead to positive outcomes for the clinical

  18. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain.

    PubMed

    Podolsky, Alexander T; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S; Vanderah, Todd W

    2013-12-18

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids have highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. © 2013. Published by Elsevier Inc. All rights reserved.

  19. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain

    PubMed Central

    Podolsky, Alexander T.; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K.; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S.; Vanderah, Todd W.

    2014-01-01

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids has highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Aims Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Main Methods Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. Key findings RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. Significance This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. PMID:24084045

  20. Dextromethorphan differentially affects opioid antinociception in rats

    PubMed Central

    Chen, Shiou-Lan; Huang, Eagle Yi-Kung; Chow, Lok-Hi; Tao, Pao-Luh

    2005-01-01

    Opioid drugs such as morphine and meperidine are widely used in clinical pain management, although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate (NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may have some therapeutic benefits when coadministered with morphine. In the present study, we investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated the possible pharmacokinetic mechanisms involved. The antinociceptive effects of the μ-opioid receptor agonists morphine (5 mg kg−1, s.c.), meperidine (25 mg kg−1, s.c.) and codeine (25 mg kg−1, s.c.), and the κ-opioid agonists nalbuphine (8 mg kg−1, s.c.) and U-50,488H (20 mg kg−1, s.c.) were studied using the tail-flick test in male Sprague–Dawley rats. Coadministration of DM (20 mg kg−1, i.p.) with these opioids was also performed and investigated. The pharmacokinetic effects of DM on morphine and codeine were examined, and the free concentration of morphine or codeine in serum was determined by HPLC. It was found that DM potentiated the antinociceptive effects of some μ-opioid agonists but not codeine or κ-opioid agonists in rats. DM potentiated morphine's antinociceptive effect, and acutely increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect of codeine and decreased the serum concentration of its active metabolite (morphine). The pharmacokinetic interactions between DM and opioids may partially explain the differential effects of DM on the antinociception caused by opioids. PMID:15655510

  1. The noradrenergic component in tapentadol action counteracts μ-opioid receptor-mediated adverse effects on adult neurogenesis.

    PubMed

    Meneghini, Vasco; Cuccurazzu, Bruna; Bortolotto, Valeria; Ramazzotti, Vera; Ubezio, Federica; Tzschentke, Thomas M; Canonico, Pier Luigi; Grilli, Mariagrazia

    2014-05-01

    Opiates were the first drugs shown to negatively impact neurogenesis in the adult mammalian hippocampus. Literature data also suggest that norepinephrine is a positive modulator of hippocampal neurogenesis in vitro and in vivo. On the basis of these observations, we investigated whether tapentadol, a novel central analgesic combining μ-opioid receptor (MOR) agonism with norepinephrine reuptake inhibition (NRI), may produce less inhibition of hippocampal neurogenesis compared with morphine. When tested in vitro, morphine inhibited neuronal differentiation, neurite outgrowth, and survival of adult mouse hippocampal neural progenitors and their progeny, via MOR interaction. By contrast, tapentadol was devoid of these adverse effects on cell survival and reduced neurite outgrowth and the number of newly generated neurons only at nanomolar concentrations where the MOR component is predominant. On the contrary, at higher (micromolar) concentrations, tapentadol elicited proneurogenic and antiapoptotic effects via activation of β2 and α2 adrenergic receptors, respectively. Altogether, these data suggest that the noradrenergic component in tapentadol has the potential to counteract the adverse MOR-mediated effects on hippocampal neurogenesis. As a proof of concept, we showed that reboxetine, an NRI antidepressant, counteracted both antineurogenic and apoptotic effects of morphine in vitro. In line with these observations, chronic tapentadol treatment did not negatively affect hippocampal neurogenesis in vivo. In light of the increasing long-term use of opiates in chronic pain, in principle, the tapentadol combined mechanism of action may result in less or no reduction in adult neurogenesis compared with classic opiates.

  2. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  3. Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition?

    PubMed Central

    Vamecq, Joseph; Mention-Mulliez, Karine; Leclerc, Francis; Dobbelaere, Dries

    2015-01-01

    Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions. PMID:26426025

  4. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  5. Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System

    PubMed Central

    Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Aguiar, Daniele C.; Moreira, Fabricio A.

    2017-01-01

    Background Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Methods Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E2 (PGE2, 2 μg). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE2 injection. Results Aripiprazole (100 μg/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50 μg/paw), a nonselective opioid receptor antagonist. The role of μ-, δ-, and κ-opioid receptors was investigated using the selective antagonists, clocinnamox (40 μg/paw), naltrindole (15, 30, and 60 μg/paw), and nor-binaltorphimine (200 μg/paw), respectively. The data indicated that only the δ-opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400 μg), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25 μg/paw) aripiprazole-induced peripheral antinociception. Conclusion The results suggest the participation of the opioid system via δ-opioid receptor in the peripheral antinociceptive effect induced by aripiprazole. PMID:28758123

  6. The contribution of activated peripheral kappa opioid receptors (kORs) in the inflamed knee joint to anti-nociception.

    PubMed

    Moon, Sun Wook; Park, Eui Ho; Suh, Hye Rim; Ko, Duk Hwan; Kim, Yang In; Han, Hee Chul

    2016-10-01

    The systemic administration of opioids can be used for their strong analgesic effect. However, extensive activation of opioid receptors (ORs) beyond the targeted tissue can cause dysphoria, pruritus, and constipation. Therefore, selective activation of peripheral ORs present in the afferent fibers of the targeted tissue can be considered a superior strategy in opioid analgesia to avoid potential adverse effects. The purpose of this study was to clarify the role of peripheral kappa opioid receptors (kORs) in arthritic pain for the possible use of peripheral ORs as a target in anti-nociceptive therapy. We administered U50488 or nor-BNI/DIPPA, a selective agonist or antagonist of kOR, respectively into arthritic rat knee joints induced using 1% carrageenan. After the injection of U50488 or U50488 with nor-BNI or DIPPA into the inflamed knee joint, we evaluated nociceptive behavior as indicated by reduced weight-bearing on the ipsilateral limbs of the rat and recorded the activity of mechanosensitive afferents (MSA). In the inflamed knee joint, the intra-articular application of 1μM, 10nM, or 0.1nM U50488 resulted in a significant reduction in nociceptive behavior. In addition, 1μM and 10nM U50488 decreased MSA activity. However, in a non-inflamed knee joint, 1μM U50488 had no effect on MSA activity. Additionally, intra-articular pretreatment with 20μM nor-BNI or 10μM DIPPA significantly blocked the inhibitory effects of 1μM U50488 on nociceptive behavior and MSA activity in the inflamed knee joint. These results implicate that peripheral kORs can contribute to anti-nociceptive processing in an inflamed knee joint. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nonpeptidic Delta (δ) Opioid Agonists and Antagonists of the Diarylmethylpiperazine Class: What Have We Learned?

    NASA Astrophysics Data System (ADS)

    Calderon, Silvia N.

    The discovery of the selective delta (δ) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, represented a major advance in the field of δ-opioid ligands. Extensive research has recently been performed to uncover the structure-activity relationships (SAR) of this class of ligands, thereby providing valuable tools for the pharmacological characterization of the δ opioid receptor. This review focuses on the SAR of this unique series of ligands, and provides an overview of the various chemical routes that have been developed and optimized through the years to allow the syntheses of these ligands on a multigram scale. The search for selective δ opioid agonists and antagonists, as well as for those with mixed opioid agonist properties with potential therapeutic value, continues. Several questions regarding the interaction at the molecular level of diphenylmethylpiperazine derivatives and related analogs with opioid receptors and in particular with the δ opioid system still remain unanswered. Indeed, the development and pharmacological characterization of novel nonpeptidic δ opioid ligands remains an active area of research, as it may provide a better understanding of the role of this receptor in multiple disease states and disorders.

  8. Spatiotemporal control of opioid signaling and behavior.

    PubMed

    Siuda, Edward R; Copits, Bryan A; Schmidt, Martin J; Baird, Madison A; Al-Hasani, Ream; Planer, William J; Funderburk, Samuel C; McCall, Jordan G; Gereau, Robert W; Bruchas, Michael R

    2015-05-20

    Optogenetics is now a widely accepted tool for spatiotemporal manipulation of neuronal activity. However, a majority of optogenetic approaches use binary on/off control schemes. Here, we extend the optogenetic toolset by developing a neuromodulatory approach using a rationale-based design to generate a Gi-coupled, optically sensitive, mu-opioid-like receptor, which we term opto-MOR. We demonstrate that opto-MOR engages canonical mu-opioid signaling through inhibition of adenylyl cyclase, activation of MAPK and G protein-gated inward rectifying potassium (GIRK) channels and internalizes with kinetics similar to that of the mu-opioid receptor. To assess in vivo utility, we expressed a Cre-dependent viral opto-MOR in RMTg/VTA GABAergic neurons, which led to a real-time place preference. In contrast, expression of opto-MOR in GABAergic neurons of the ventral pallidum hedonic cold spot led to real-time place aversion. This tool has generalizable application for spatiotemporal control of opioid signaling and, furthermore, can be used broadly for mimicking endogenous neuronal inhibition pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism -1438 A/G on Speed-Dating Success.

    PubMed

    Wu, Karen; Chen, Chuansheng; Moyzis, Robert K; Greenberger, Ellen; Yu, Zhaoxia

    2016-09-01

    We examined an understudied but potentially important source of romantic attraction-genetics-using a speed-dating paradigm. The mu opioid receptor (OPRM1) polymorphism A118G (rs1799971) and the serotonin receptor (HTR2A) polymorphism -1438 A/G (rs6311) were studied because they have been implicated in social affiliation. Guided by the social role theory of mate selection and prior genetic evidence, we examined these polymorphisms' gender-specific associations with speed-dating success (i.e., date offers, mate desirability). A total of 262 single Asian Americans went on speed-dates with members of the opposite gender and completed interaction questionnaires about their partners. Consistent with our prediction, significant gender-by-genotype interactions were found for speed-dating success. Specifically, the minor variant of A118G (G-allele), which has been linked to submissiveness/social sensitivity, predicted greater speed-dating success for women, whereas the minor variant of -1438 A/G (G-allele), which has been linked to leadership/social dominance, predicted greater speed-dating success for men. For both polymorphisms, reverse "dampening" effects of minor variants were found for opposite-gender counterparts. These results support previous research on the importance of the opioid and serotonergic systems in social affiliation, indicating that their influence extends to dating success, with opposite, yet gender-norm consistent, effects for men and women.

  10. Anti-Analgesic Effect of the Mu/Delta Opioid Receptor Heteromer Revealed by Ligand-Biased Antagonism

    PubMed Central

    Milan-Lobo, Laura; Enquist, Johan; van Rijn, Richard M.; Whistler, Jennifer L.

    2013-01-01

    Delta (DOR) and mu opioid receptors (MOR) can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment. PMID:23554887

  11. Opioid Receptor Probes Derived from Cycloaddition of the Hallucinogen Natural Product Salvinorin A†

    PubMed Central

    Lozama, Anthony; Cunningham, Christopher W.; Caspers, Michael J.; Douglas, Justin T.; Dersch, Christina M.; Rothman, Richard B.; Prisinzano, Thomas E.

    2011-01-01

    As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan containing natural products. PMID:21338114

  12. Opioid receptor probes derived from cycloaddition of the hallucinogen natural product salvinorin A.

    PubMed

    Lozama, Anthony; Cunningham, Christopher W; Caspers, Michael J; Douglas, Justin T; Dersch, Christina M; Rothman, Richard B; Prisinzano, Thomas E

    2011-04-25

    As part of our continuing efforts toward more fully understanding the structure-activity relationships of the neoclerodane diterpene salvinorin A, we report the synthesis and biological characterization of unique cycloadducts through [4+2] Diels-Alder cycloaddition. Microwave-assisted methods were developed and successfully employed, aiding in functionalizing the chemically sensitive salvinorin A scaffold. This demonstrates the first reported results for both cycloaddition of the furan ring and functionalization via microwave-assisted methodology of the salvinorin A skeleton. The cycloadducts yielded herein introduce electron-withdrawing substituents and bulky aromatic groups into the C-12 position. Kappa opioid (KOP) receptor space was explored through aromatization of the bent oxanorbornadiene system possessed by the cycloadducts to a planar phenyl ring system. Although dimethyl- and diethylcarboxylate analogues 5 and 6 retain some affinity and selectivity for KOP receptors and are full agonists, their aromatized counterparts 13 and 14 have reduced affinity for KOP receptors. The methods developed herein signify a novel approach toward rapidly probing the structure-activity relationships of furan-containing natural products.

  13. Frog skin opioid peptides: a case for environmental mimicry.

    PubMed Central

    Lazarus, L H; Bryant, S D; Attila, M; Salvadori, S

    1994-01-01

    Naturally occurring environmental substances often mimic endogenous substances found in mammals and are capable of interacting with specific proteins, such as receptors, with a high degree of fidelity and selectivity. Narcotic alkaloids and amphibian skin secretions, introduced into human society through close association with plants and animals through folk medicine and religious divination practices, were incorporated into the armamentarium of the early pharmacopoeia. These skin secretions contain a myriad of potent bioactive substances, including alkaloids, biogenic amines, peptides, enzymes, mucus, and toxins (noxious compounds notwithstanding); each class exhibits a broad range of characteristic properties. One specific group of peptides, the opioids, containing the dermorphins (dermal morphinelike substances) and the deltorphins (delta-selective opioids), display remarkable analgesic properties and include an amino acid with the rare (in a mammalian context) D-enantiomer in lieu of the normal L-isomer. Synthesis of numerous stereospecific analogues and conformational analyses of these peptides provided essential insights into the tertiary composition and microenvironment of the receptor "pocket" and the optimal interactions between receptor and ligand that trigger a biological response; new advances in the synthesis and receptor-binding properties of the deltorphins are discussed in detail. These receptor-specific opioid peptides act as more than mimics of endogenous opioids: their high selectivity for either the mu or delta receptor makes them formidable environmentally derived agents in the search for new antagonists for treating opiate addiction and in the treatment of a wide variety of human disorders. Images p648-a Figure 2. Figure 3. PMID:7895704

  14. Decreased consumption of sweet fluids in mu opioid receptor knockout mice: a microstructural analysis of licking behavior

    PubMed Central

    Ostlund, Sean B.; Kosheleff, Alisa; Maidment, Nigel T.; Murphy, Niall P.

    2013-01-01

    Summary Rationale Evidence suggests that the palatability of food (i.e., the hedonic impact produced by its sensory features) can promote feeding and may underlie compulsive eating, leading to obesity. Pharmacological studies implicate opioid transmission in the hedonic control of feeding, though these studies often rely on agents lacking specificity for particular opioid receptors. Objectives Here, we investigated the role of mu opioid receptors (MORs) specifically in determining hedonic responses to palatable sweet stimuli. Methods In Experiment 1, licking microstructure when consuming sucrose solution (2 to 20 %) was compared in MOR knockout and wildtype mice as a function of sucrose concentration and level of food deprivation. In Experiment 2, a similar examination was conducted using the palatable but calorie-free stimulus sucralose (0.001 to 1%), allowing study of licking behavior independent of homeostatic variables. Results In Experiment 1, MOR knockout mice exhibited several alterations in sucrose licking. Although wildtype mice exhibited a two-fold increase in the burst length when food deprived, relative to the nondeprived test, this aspect of sucrose licking was generally insensitive to manipulations of food deprivation for MOR knockout mice. Furthermore, during concentration testing, their rate of sucrose licking was less than half that of wildtype mice. During sucralose testing (Experiment 2), MOR knockout mice licked at approximately half the wildtype rate, providing more direct evidence that MOR knockout mice were impaired in processing stimulus palatability. Conclusions These results suggest that transmission through MORs mediates hedonic responses to palatable stimuli, and therefore likely contributes to normal and pathological eating. PMID:23568577

  15. Opioid receptor mediated anticonvulsant effect of pentazocine.

    PubMed

    Khanna, N; Khosla, R; Kohli, J

    1998-01-01

    Intraperitoneal (i.p.) administration of (+/-) pentazocine (10, 30 & 50 mg/kg), a Sigma opioid agonist, resulted in a dose dependent anticonvulsant action against maximal electroshock seizures in mice. This anticonvulsant effect of pentazocine was not antagonized by both the doses of naloxone (1 and 10 mg/kg) suggesting thereby that its anticonvulsant action is probably mediated by Sigma opiate binding sites. Its anticonvulsant effect was potentiated by both the anticonvulsant drugs viz. diazepam and diphenylhydantoin. Morphine, mu opioid agonist, on the other hand, failed to protect the animals against maximal electroshock seizures when it was given in doses of 10-40 mg/kg body wt.

  16. Relaxation Training and Opioid Inhibition of Blood Pressure Response to Stress.

    ERIC Educational Resources Information Center

    McCubbin, James A.; And Others

    1996-01-01

    Sought to determine the role of endogenous opioid mechanisms in the circulatory effects of relaxation training. Subjects were 32 young men with mildly elevated casual arterial pressure. Assessed opioid mechanisms by examining the effects of opioid receptor blockade with naltrexone on acute cardiovascular reactivity to laboratory stress before and…

  17. Endomorphin-2: A Biased Agonist at the μ-Opioid Receptor

    PubMed Central

    Rivero, Guadalupe; Llorente, Javier; McPherson, Jamie; Cooke, Alex; Mundell, Stuart J.; McArdle, Craig A.; Rosethorne, Elizabeth M.; Charlton, Steven J.; Krasel, Cornelius; Bailey, Christopher P.; Henderson, Graeme

    2012-01-01

    Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the μ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K+ current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K+ current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins. PMID:22553358

  18. Endomorphin-2: a biased agonist at the μ-opioid receptor.

    PubMed

    Rivero, Guadalupe; Llorente, Javier; McPherson, Jamie; Cooke, Alex; Mundell, Stuart J; McArdle, Craig A; Rosethorne, Elizabeth M; Charlton, Steven J; Krasel, Cornelius; Bailey, Christopher P; Henderson, Graeme; Kelly, Eamonn

    2012-08-01

    Previously we correlated the efficacy for G protein activation with that for arrestin recruitment for a number of agonists at the μ-opioid receptor (MOPr) stably expressed in HEK293 cells. We suggested that the endomorphins (endomorphin-1 and -2) might be biased toward arrestin recruitment. In the present study, we investigated this phenomenon in more detail for endomorphin-2, using endogenous MOPr in rat brain as well as MOPr stably expressed in HEK293 cells. For MOPr in neurons in brainstem locus ceruleus slices, the peptide agonists [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and endomorphin-2 activated inwardly rectifying K(+) current in a concentration-dependent manner. Analysis of these responses with the operational model of pharmacological agonism confirmed that endomorphin-2 had a much lower operational efficacy for G protein-mediated responses than did DAMGO at native MOPr in mature neurons. However, endomorphin-2 induced faster desensitization of the K(+) current than did DAMGO. In addition, in HEK293 cells stably expressing MOPr, the ability of endomorphin-2 to induce phosphorylation of Ser375 in the COOH terminus of the receptor, to induce association of arrestin with the receptor, and to induce cell surface loss of receptors was much more efficient than would be predicted from its efficacy for G protein-mediated signaling. Together, these results indicate that endomorphin-2 is an arrestin-biased agonist at MOPr and the reason for this is likely to be the ability of endomorphin-2 to induce greater phosphorylation of MOPr than would be expected from its ability to activate MOPr and to induce activation of G proteins.

  19. Buprenorphine implants in medical treatment of opioid addiction.

    PubMed

    Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria

    2017-08-01

    Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.

  20. Opioid receptor-mediated hyperalgesia and antinociceptive tolerance induced by sustained opiate delivery.

    PubMed

    Gardell, Luis R; King, Tamara; Ossipov, Michael H; Rice, Kenner C; Lai, Josephine; Vanderah, Todd W; Porreca, Frank

    2006-03-20

    Opiates are commonly used to treat moderate to severe pain and can be used over prolonged periods in states of chronic pain such as those associated with cancer. In addition, to analgesic actions, studies show that opiate administration can paradoxically induce hyperalgesia. At the pre-clinical level, such hyperalgesia is associated with numerous pronociceptive neuroplastic changes within the primary afferent fibers and the spinal cord. In rodents, sustained opiate administration also induces antinociceptive tolerance. The mechanisms by which prolonged opiate exposure induces hyperalgesia and the relationship of this state to antinociceptive tolerance remain unclear. The present study was aimed at determining whether sustained opiate-induced hyperalgesia, associated neuroplasticity and antinociceptive tolerance are the result of specific opiate interaction at opiate receptors. Enantiomers of oxymorphone, a mu opioid receptor agonist, were administered to rats by spinal infusion across 7 days. Sustained spinal administration of (-)-oxymorphone, but not its inactive enantiomer (+)-oxymorphone or vehicle, upregulated spinal dynorphin content, produced thermal and tactile hypersensitivity, and produced antinociceptive tolerance. These results indicate that these pronociceptive actions of sustained opiate administration require specific interaction with opiate receptors and are unlikely to be the result of accumulation of potentially excitatory metabolic products. While the precise mechanisms, which may account for these pronociceptive changes remain to be unraveled, the present data point to plasticity initiated by opiate receptor interaction.