Science.gov

Sample records for optic-linear array detection

  1. Cold-induced aggregation microextraction based on ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples.

    PubMed

    Gharehbaghi, Maysam; Shemirani, Farzaneh; Farahani, Malihe Davudabadi

    2009-06-15

    A new simple and rapid cold-induced aggregation microextraction (CIAME) method was applied to preconcentrate cobalt(II) ions from water samples as a prior step to its determination by fiber optic-linear array detection spectrophotometry (FO-LADS). In this method, very small amounts of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF(6)] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [Hmim][Tf(2)N] as hydrophobic ionic liquids (ILs) and extractant solvents were dissolved in the sample solution containing Triton X-114 (anti-sticking agent). 1-(2-Pyridylazo)-2-naphthol (PAN) was chosen as the complexing agent. After dissolving, the solution was cooled in the ice bath and a cloudy solution was formed of IL fine droplets due to the decrease of IL solubility. After centrifuging, the fine droplets of extractant phase were settled to the bottom of the conical-bottom centrifuge tube. Analysis was carried out by a fiber optic-linear array detector spectrophotometer at 570 nm. In this method, which is robust against high content of salt and water-miscible organic solvents, various parameters were investigated and optimized. The applicability of the technique was evaluated by the determination of trace amounts of cobalt in several water samples. Under the optimum conditions, the limit of detection (LOD) of the method was 0.14 ng mL(-1) and the relative standard deviation (R.S.D.) for 30 ng mL(-1) cobalt was 2.32%. PMID:19095354

  2. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    NASA Astrophysics Data System (ADS)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  3. Array for detecting microbes

    DOEpatents

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  4. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  5. Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy.

    PubMed

    Kazemi, Elahe; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Amir; Rashidian Vaziri, Mohammad Reza; Behjat, Abbas

    2016-01-28

    This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4-60.0 μg L(-1), a detection limit of 0.21 μg L(-1), an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05-300 μg L(-1), a detection limit of 0.016 μg L(-1) and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples. PMID:26755141

  6. The array for EAS neutron component detection

    NASA Astrophysics Data System (ADS)

    Gromushkin, D.; Alekseenko, V.; Petrukhin, A.; Shchegolev, O.; Stenkin, Yu; Stepanov, V.; Yashin, I.; Zadeba, E.

    2014-08-01

    The idea of a novel type detector array is the following: delayed thermal neutrons generated by hadronic component of Extensive Air Showers (EAS) can be detected over the whole array area using special electron-neutron detectors (en-detectors). The array PRISMA-32 consists of 32 en-detectors, deployed over the area of 450 m2. En-detectors are able to detect two main EAS components: electromagnetic one in a case of a synchronous passage of several charged particles, and hadronic component through thermal neutron captures. Detectors are based on a specialized inorganic scintillator, being a granulated alloy of ZnS(Ag) with LiF, enriched up to 90% with 6Li isotope. The array is triggered by the electromagnetic component of EAS, and provides information about the energy deposit (mostly electrons) and delayed neutrons accompanying the EAS within 20 ms after the trigger. During 2 years of operation more than 105 events were recorded. Examples of EAS detection are presented.

  7. The Giant Radio Array for Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Martineau-Huynh, Olivier; Kotera, Kumiko; Bustamente, Mauricio; Charrier, Didier; De Jong, Sijbrand; de Vries, Krijn D.; Fang, Ke; Feng, Zhaoyang; Finley, Chad; Gou, Quanbu; Gu, Junhua; Hanson, Jordan C.; Hu, Hongbo; Murase, Kohta; Niess, Valentin; Oikonomou, Foteini; Renault-Tinacci, Nicolas; Schmid, Julia; Timmermans, Charles; Wang, Zhen; Wu, Xiangping; Zhang, Jianli; Zhang, Yi

    2016-04-01

    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ˜ 105 radio antennas deployed over ˜ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10-11E-2 GeV-1 cm-2 s-1 sr-1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  8. Optical linear algebra processors - Architectures and algorithms

    NASA Technical Reports Server (NTRS)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  9. Array biosensor for detection of toxins

    NASA Technical Reports Server (NTRS)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  10. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    1996-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  11. Detectability of Tengchong infrasound array in China

    NASA Astrophysics Data System (ADS)

    Su, Wei; Yuan, Songyong

    2016-04-01

    The Tengchong seismo-acoustic array located in southwest of China has been running for 5 years. We perform broadband (0.01-5 Hz) array processing with the infrasound continuous waveform data (from 1 January 2011 to 31 December 2015) using the Progressive Multi-Channel Correlation algorithm in 15 log-spaced frequency bands defined by Matoza et al.(2013).The detection results show microbaroms [0.1-0.5 Hz] come from azimuth between 180 and 240°during April to October related to the significant wave height in southern India ocean,but microbaroms come from azimuth between 30 and 90°during September to March related to the significant wave height in northern Pacific ocean. MAWs [0.01-0.1 Hz] come from azimuth between 270 and 360°,and between 90 and 160°. The detections with azimuth between 100 and 150° in December 2014 to January 2015 may be related to the several typhoons from the Western Pacific ocean. The PMCC results confirm that the coherent signals typically exhibit systematic seasonal variations.

  12. Sensor array for toxic gas detection

    DOEpatents

    Stetter, Joseph R.; Zaromb, Solomon; Penrose, William R.

    1987-01-01

    A portable instrument for use in the field in detecting and identifying a hazardous component in air or other gas including an array of small sensors which upon exposure to the gas from a pattern of electrical responses, a source of standard response patterns characteristic of various components, and microprocessor means for comparing the sensor-formed response pattern with one or more standard patterns to thereby identify the component on a display. The number of responses may be increased beyond the number of sensors by changing the operating voltage, temperature or other condition associated with one or more sensors to provide a plurality of responses from each of one or more of the sensors. In one embodiment, the instrument is capable of identifying anyone of over 50-100 hazardous components.

  13. Graphene microelectrode arrays for neural activity detection.

    PubMed

    Du, Xiaowei; Wu, Lei; Cheng, Ji; Huang, Shanluo; Cai, Qi; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene-electrolyte and gold-electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold-electrolyte interface can be described as a classical double-layer structure, while the graphene-electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing. PMID:25712492

  14. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.

  15. Adaptive laser array-receivers for acoustic waves detection

    NASA Astrophysics Data System (ADS)

    Tuovinen, Hemmo; Murray, Todd W.; Krishnaswamy, Sridhar

    2000-05-01

    Interferometric detection systems typically use a single focused laser point receiver for the detection of acoustic waves. In some cases, where optical damage of the structure is of concern, it may be advantageous to distribute the detection laser energy over an area. This can be done, for example, by using a point-array or a line-array probe. Other advantages of an array receiver include directional sensitivity and frequency selectivity. It is important to notice that laser-array reception is possible only with self-referential interferometers. In this paper adaptive array interferometric detection schemes, which are based on wave mixing in photorefractive bismuth silicate crystal, are described. An adaptive narrow-band laser array receiver of surface acoustic waves is demonstrated. The interferometer is also configured as a linearly frequency modulated (chirped) array receiver. The chirped receiver, when excited with a similarly chirped ultrasonic source, allows pulse compression of the ultrasonic signal thus maintaining high temporal resolution. The signal-to-noise ratio for the different array detection schemes are determined and compared. Several applications of laser-array reception are presented.

  16. Enzyme array-amperometric detection in carbohydrate analysis

    SciTech Connect

    Sun, M.; Lee, C.S.

    1998-03-05

    The introduction of an enzyme array-electrochemical detection method for carbohydrate analysis is demonstrated by using two complex and one high mannose N-linked oligosaccharides. Instead of measuring the remaining uncleaved oligosaccharides in enzymatic digestion, released monosaccharides are directly quantified by pulsed amperometric detection at a gold electrode. The measured monosaccharide concentrations in combination with the enzyme array analysis provide structural characterization of oligosaccharides. The enzyme array-electrochemical detection method does not require any separation procedure or any prior labeling of oligosaccharides. However, this method is limited by the use of purified oligosaccharide samples and the nature of the enzyme array. The development of more sophisticated enzyme arrays relies upon the introduction of a bank of highly specific (bond, arm, aglycon) exoglycosidases.

  17. Detecting and correcting hard errors in a memory array

    DOEpatents

    Kalamatianos, John; John, Johnsy Kanjirapallil; Gelinas, Robert; Sridharan, Vilas K.; Nevius, Phillip E.

    2015-11-19

    Hard errors in the memory array can be detected and corrected in real-time using reusable entries in an error status buffer. Data may be rewritten to a portion of a memory array and a register in response to a first error in data read from the portion of the memory array. The rewritten data may then be written from the register to an entry of an error status buffer in response to the rewritten data read from the register differing from the rewritten data read from the portion of the memory array.

  18. Terahertz line detection by a microlens array coupled photoconductive antenna array.

    PubMed

    Pradarutti, B; Müller, R; Freese, W; Matthäus, G; Riehemann, S; Notni, G; Nolte, S; Tünnermann, A

    2008-10-27

    We present THz ultrashort pulse detection by a photoconductive antenna array consisting of 16 photoconductive antennas. The efficient excitation of the photoconductive antennas has been realized by a microlens array which generates 16 single spots from the exciting fs-laser beam. This combination of optoelectronics and microoptics improves the detection efficiency by an order of magnitude in comparison to an excitation by a line focus. PMID:18958123

  19. Fiber optic linear smoke fire detector

    NASA Astrophysics Data System (ADS)

    Kulakov, Sergei V.; Moskaletz, Oleg D.; Preslenev, Leonid N.; Shabardin, Alexander N.

    2001-11-01

    A global and versatile problem of fire and environmental safety is formulated. It is pointed out that one of the main ways to solve this problem is the development of equipment for early fire detection. The results of the development and study of a smoke fiber optic fire detector are presented. Such detector is absolutely explosion-safe and immune to increased radiation level and aggressive chemical environment.

  20. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  1. Detecting novel genes with sparse arrays

    PubMed Central

    Haiminen, Niina; Smit, Bart; Rautio, Jari; Vitikainen, Marika; Wiebe, Marilyn; Martinez, Diego; Chee, Christine; Kunkel, Joe; Sanchez, Charles; Nelson, Mary Anne; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Kivioja, Teemu

    2014-01-01

    Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties. PMID:20691772

  2. Nanoimprinted nanopillar array chip for procalcitonin detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Ling Ling; Zhou, Xiaodong

    2016-03-01

    Procalcitonin (PCT) is an early and highly specific biomarker in response to bacterial infection. The PCT-guided antibiotic therapy has demonstrated to be more efficient than standard therapy to reduce in antibiotic use without adverse outcome in mortality. The PCT detection in clinics is required to be highly sensitive with a sensitivity of 0.5 ng/ml. At present, the technologies for PCT detection are limited. This paper reported a highly sensitive nanoimprinted gold nanopillar array chip for PCT detection. To achieve high sensitivity for PCT detection, the gold nanopillar array sensing chip was designed by plasmonic simulation and fabricated by high fidelity nanoimprinting technology. The gold nanopillars of 140 nm were nanoimprinted on glass substrate. A robust sandwich bioassay of capture antibody /PCT / quantum dot (QD) conjugated detection antibody was established on the gold nanopillar array chip to detect PCT. The nanopillars serve as localized surface plasmon resonance (LSPR) generators to enhance the fluorescent emission from QD. A limit of detection (LOD) of 0.5 ng/ml was achieved for PCT detection. This is the first time that PCT is detected with such high sensitivity by LSPR enhanced QD emission. By considering the low-cost, high sensitivity of the bioassay, as well as the inexpensive mass fabrication of the high quality chips, this novel nanoimprinted gold nanopillar array chip is particularly useful for developing a point-of-care system for PCT detection.

  3. Highly sensitive detection of nitroaromatic explosives at discrete nanowire arrays.

    PubMed

    Barry, Sean; Dawson, Karen; Correa, Elon; Goodacre, Royston; O'Riordan, Alan

    2013-01-01

    We show a photolithography technique that permits gold nanowire array electrodes to be routinely fabricated at reasonable cost. Nanowire electrode arrays offer the potential for enhancements in electroanalysis such as increased signal-to-noise ratio and increased sensitivity while also allowing quantitative detection at much lower concentrations. We explore application of nanowire array electrodes to the detection of different nitroaromatic species. Characteristic reduction peaks of nitro groups are not observed at nanowire array electrodes using sweep voltammetric methods. By contrast, clear and well-defined reduction peaks are resolved using potential step square wave voltammetry. A Principle Component Analysis technique is employed to discriminate between nitroaromatic species including structural isomers of DNT. The analysis indicates that all compounds are successfully discriminated by unsupervised cluster analysis. Finally, the magnitude of the reduction peak at -671 mV for different concentrations of TNT exhibited excellent linearity with increasing concentrations enabling sub-150 ng mL(-1) limits of detection. PMID:24466670

  4. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  5. Detection of Fast Transients with Radio Interferometric Arrays

    NASA Astrophysics Data System (ADS)

    Bhat, N. D. R.; Chengalur, J. N.; Cox, P. J.; Gupta, Y.; Prasad, J.; Roy, J.; Bailes, M.; Burke-Spolaor, S.; Kudale, S. S.; van Straten, W.

    2013-05-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  6. DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS

    SciTech Connect

    Bhat, N. D. R.; Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S.; Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W.

    2013-05-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg{sup 2} of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  7. Optical linear algebra processors - Noise and error-source modeling

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  8. Device, array, and methods for disease detection and analysis

    DOEpatents

    Rao, Rupa S.; Lane, Stephen M.; Matthews, Dennis L.; Coleman, Matthew A.

    2016-06-14

    A device and array coupled to capture molecules are provided. Specifically, the device and array can be used for detecting the presence and concentration of biomarkers in a sample from a subject. The device and array can also allow the use of a method for scoring a sample for, e.g., the purpose of diagnosing a disease. The method can also be advantageous to applications where there is a need to accurately determine the disease stage of a subject for the purpose of making therapeutic decisions.

  9. A functional gene array for detection of bacterial virulence elements

    SciTech Connect

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  10. Algorithmic sensor failure detection on passive antenna arrays

    NASA Astrophysics Data System (ADS)

    Chun, Joohwan; Luk, Franklin T.

    1991-12-01

    We present an algorithm that can detect and isolate a single passive antenna failure under the assumption of slowly time varying signal sources. Our failure detection algorithm recursively computes an eigenvalue decomposition of the covariance of the "syndrome" vector. The sensor failure is detected using the largest eigenvalue, and the faulty sensor is located using the corresponding eigenvector. The algorithm can also be used in conjunction with existing singular value decomposition or orthogonal triangularization based recursive antenna array processing methods.

  11. Nanomaterials and biomaterials in electrochemical arrays for protein detection

    PubMed Central

    Rusling, James F.; Bishop, Gregory W.; Doan, Nhi; Papadimitrakopoulos, Fotios

    2013-01-01

    Nanomaterials and biomaterials are important components of new electrochemical arrays designed for sensitive detection of proteins in biological fluids. Such multiplexed protein arrays are predicted to have an important future in personalized medical diagnostics, especially for cancer and heart disease. Sandwich immunoassays for proteins benefit greatly in sensitivity from the use of nanostructured sensor surfaces and multilabeled detection strategies involving nano- or microparticles. In these assays, capture agents such as antibodies or aptamers are attached to sensor surfaces in the array. Target proteins with large binding constants for the affinity agents are captured from liquid samples with high efficiency, either on the sensors or on magnetic bioconjugate particles decorated with many copies of labels and antibodies. After target proteins are captured on the sensor surfaces, the labels are detected by electrochemical techniques. This feature article begins with an overview of the recent history of nanoparticles in electrochemical protein sensors, then moves on to specific examples from our own laboratories. We discuss fabrication of nanostructured sensors and arrays with the aim of multiplexed detection as well as reusability. Following this, we describe systems that integrate particle-based protein sensing with microfluidics for multiplexed protein detection. We end with predictions on the diagnostic future of protein detection. PMID:24392222

  12. Oligonucleotide Array for Identification and Detection of Pythium Species†

    PubMed Central

    Tambong, J. T.; de Cock, A. W. A. M.; Tinker, N. A.; Lévesque, C. A.

    2006-01-01

    A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples

  13. Laser diode arrays for expanded mine detection capability

    NASA Astrophysics Data System (ADS)

    Crosby, Frank J.; Holloway, John H., Jr.; Petee, Danny A.; Stetson, Suzanne P.; Suiter, Harold R.; Tinsley, Ken R.

    2002-08-01

    A tactical unmanned aerial vehicle-size illumination system for enhanced mine detection capabilities has been designed, developed, integrated, and tested at the Coastal Systems Station. Airborne test flights were performed from June 12, 2001 to February 1, 2002. The Airborne Laser Diode Array Illuminator uses a single-wavelength compact laser diode array stack to provide illumination and is coupled with a pair of intensified CCD video cameras. The cameras were outfitted with various lenses and polarization filters to determine the benefits of each of the configurations. The first airborne demonstration of a laser diode illumination system is described and its effectiveness to perform nighttime mine detection operations is shown.

  14. DETECTING MASSIVE GRAVITONS USING PULSAR TIMING ARRAYS

    SciTech Connect

    Lee, Kejia; Kramer, Michael; Jenet, Fredrick A.; Price, Richard H.; Wex, Norbert

    2010-10-20

    At the limit of weak static fields, general relativity becomes Newtonian gravity with a potential field that falls off as inverse distance rather than a theory of Yukawa-type fields with a finite range. General relativity also predicts that the speed of disturbances of its waves is c, the vacuum light speed, and is non-dispersive. For these reasons, the graviton, the boson for general relativity, can be considered to be massless. Massive gravitons, however, are features of some alternatives to general relativity. This has motivated experiments and observations that, so far, have been consistent with the zero-mass graviton of general relativity, but further tests will be valuable. A basis for new tests may be the high sensitivity gravitational wave (GW) experiments that are now being performed and the higher sensitivity experiments that are being planned. In these experiments, it should be feasible to detect low levels of dispersion due to non-zero graviton mass. One of the most promising techniques for such a detection may be the pulsar timing program that is sensitive to nano-Hertz GWs. Here, we present some details of such a detection scheme. The pulsar timing response to a GW background with the massive graviton is calculated, and the algorithm to detect the massive graviton is presented. We conclude that, with 90% probability, massless gravitons can be distinguished from gravitons heavier than 3 x 10{sup -22} eV (Compton wavelength {lambda}{sub g} = 4.1 x 10{sup 12} km), if bi-weekly observation of 60 pulsars is performed for 5 years with a pulsar rms timing accuracy of 100 ns. If 60 pulsars are observed for 10 years with the same accuracy, the detectable graviton mass is reduced to 5 x 10{sup -23} eV ({lambda}{sub g} = 2.5 x 10{sup 13} km); for 5 year observations of 100 or 300 pulsars, the sensitivity is respectively 2.5 x 10{sup -22} ({lambda}{sub g} = 5.0 x 10{sup 12} km) and 10{sup -22} eV ({lambda}{sub g} = 1.2 x 10{sup 13} km). Finally, a 10 year

  15. Organic vapor detection with fiber optic bead arrays

    NASA Astrophysics Data System (ADS)

    Stitzel, Shannon E.; Albert, Keith J.; Walt, David R.

    1999-12-01

    The need for small, fast responding detection systems is growing and fiber-optic bead arrays offer a different approach to small sensor design. Sensor arrays are fabricated by inserting self-encoded microspheres into microwells etched into the distal face of an imaging fiber. Each imaging fiber is 0.5 - 1 mm in outer diameter and consists of 5,000 - 10,000 individually clad, 3 - 4 micrometers diameter optical fibers bundled together. The bundles are coherent, allowing each microsphere in a well to be addressed as an individual sensor. Microsphere sensors are silica or polymer beads (approximately 3 micrometers in diameter) impregnated with solvatochromic dyes. These dyes alter their fluorescence emission spectra in response to changes in vapor polarity, allowing analytes to be discriminated based on their signature fluorescence response over time. A computational network is trained to recognize these response patterns for each sensor type, allowing for identification of specific organic vapors. Each sensor type is cross- reactive, and has unique fluorescence response patterns to different analytes. The sensor types can be identified based on their unique responses, allowing their position to be registered by observing the identity of the response pattern toward a known standard. Such encoding enables array fabrication to be simplified since sensors can be randomly dispersed throughout the array, instead of specifically patterned within the array. Possible applications for bead array detectors include environmental and industrial monitoring, land mine detection, and medical diagnostics.

  16. A novel algorithm for automatic arrays detection in a layout

    NASA Astrophysics Data System (ADS)

    Shafee, Marwah; Park, Jea-Woo; Aslyan, Ara; Torres, Andres; Madkour, Kareem; ElManhawy, Wael

    2013-03-01

    Integrated circuits suffer from serious layout printability issues associated to the lithography manufacturing process. Regular layout designs are emerging as alternative solutions to help reducing these systematic sub-wavelength lithography variations. From CAD point of view, regular layouts can be treated as repeated patterns that are arranged in arrays. In most modern mask synthesis and verification tools, cell based hierarchical processing has been able to identify repeating cells by analyzing the design's cell placement; however, there are some routing levels which are not inside the cell and yet they create an array-like structure because of the underlying topologies which could be exploited by detecting repeated patterns in layout thus reducing simulation run-time by simulating only the representing cells and then restore all the simulation results in their corresponding arrays. The challenge is to make the array detection and restoration of the results a very lightweight operation to fully realize the benefits of the approach. A novel methodology for detecting repeated patterns in a layout is proposed. The main idea is based on translating the layout patterns into string of symbols and construct a "Symbolic Layout". By finding repetitions in the symbolic layout, repeated patterns in the drawn layout are detected. A flow for layout reduction based on arrays-detection followed by pattern-matching is discussed. Run time saving comes from doing all litho simulations on the base-patterns only. The pattern matching is then used to restore all the simulation results over the arrays. The proposed flow shows 1.4x to 2x run time enhancement over the regular litho simulation flow. An evaluation for the proposed flow in terms of coverage and run-time is drafted.

  17. Bistatic radar detection of UHECRs at Telescope Array

    NASA Astrophysics Data System (ADS)

    Hanlon, William

    2013-04-01

    The Telescope Array radar (TARA) project will utilize a bistatic radar technique to detect radar echos from the ionization trails of ultra-high energy cosmic rays as they pass through the Earth's atmosphere. It is colocated with the Telescope Array, the largest cosmic ray observatory in the northern hemisphere, which will provide additional confirmation of the detection and properties of UHECRs via time coincidence. This method of observing cosmic rays has been unproven and is the largest and most ambitious attempt yet at UHECR detection utilizing an array of high gain yagi antennas broadcasting 8 MW of effective radiated power over the TA surface detector array. Recently TARA has been field testing a low power version of the experiment to gain expertise and study techniques to better utilize the radar method on a much larger scale. Soon TARA will begin high power operations and will be the first experiment to utilize this technique at such high power in conjunction with such a large cosmic ray detector. I will discuss the physics of UHECR detection via bistatic radar and the design and goals of the TARA project. I will also discuss recent tests of radar echo detection utilizing TA's electron light source which provides in situ small air showers used for TA calibration.

  18. Detecting stochastic backgrounds of gravitational waves with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2016-03-01

    For the past decade the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank Telescope and the Arecibo Observatory to monitor millisecond pulsars. NANOGrav, along with two other international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA, as well as our sensitivity to stochastic backgrounds of gravitational waves. I will show that a detection of the background produced by supermassive black hole binaries is possible by the end of the decade. Supported by the NANOGrav Physics Frontiers Center.

  19. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid). PMID:20949933

  20. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  1. Self-assembled nanoparticle arrays for multiphase trace analyte detection

    NASA Astrophysics Data System (ADS)

    Cecchini, Michael P.; Turek, Vladimir A.; Paget, Jack; Kornyshev, Alexei A.; Edel, Joshua B.

    2013-02-01

    Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is ≈25 mm2 and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.

  2. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection

    NASA Astrophysics Data System (ADS)

    Sergides, M.; Truong, V. G.; Chormaic, S. Nic

    2016-09-01

    The advancement of trapping and detection of nano-objects at very low laser powers in the near-infra-red region (NIR) is crucial for many applications. Singular visible-light nano-optics based on abrupt phase changes have recently demonstrated a significant improvement in molecule detection. Here, we propose and demonstrate tunable plasmonic nanodevices, which can improve both the trapping field enhancement and detection of nano-objects using singular phase drops in the NIR range. The plasmonic nanostructures, which consist of gaps with dimensions 50 nm × 50 nm connecting nanorings in arrays is discussed. These gaps act as individual detection and trapping sites. The tunability of the system is evident from extinction and reflection spectra while increasing the aperture size in the arrays. Additionally, in the region where the plasmonic nano-array exhibits topologically-protected, near-zero reflection behaviour, the phase displays a rapid change. Our experimental data predict that, using this abrupt phase changes, one can improve the detection sensitivity by 10 times compared to the extinction spectra method. We finally report experimental evidence of 100 nm polystyrene beads trapping using low incident power on these devices. The overall design demonstrates strong capability as an optical, label-free, non-destructive tool for single molecule manipulation where low trapping intensity, minimal photo bleaching and high sensitivity is required.

  3. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  4. Pulsar timing arrays: the promise of gravitational wave detection.

    PubMed

    Lommen, Andrea N

    2015-12-01

    We describe the history, methods, tools, and challenges of using pulsars to detect gravitational waves. Pulsars act as celestial clocks detecting gravitational perturbations in space-time at wavelengths of light-years. The field is poised to make its first detection of nanohertz gravitational waves in the next 10 years. Controversies remain over how far we can reduce the noise in the pulsars, how many pulsars should be in the array, what kind of source we will detect first, and how we can best accommodate our large bandwidth systems. We conclude by considering the important question of how to plan for a post-detection era, beyond the first detection of gravitational waves. PMID:26564968

  5. Object detection with a multistatic array using singular value decomposition

    DOEpatents

    Hallquist, Aaron T.; Chambers, David H.

    2014-07-01

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across a surface and that travels down the surface. The detection system converts the return signals from a time domain to a frequency domain, resulting in frequency return signals. The detection system then performs a singular value decomposition for each frequency to identify singular values for each frequency. The detection system then detects the presence of a subsurface object based on a comparison of the identified singular values to expected singular values when no subsurface object is present.

  6. Numerical simulations of odorant detection by biologically inspired sensor arrays.

    PubMed

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-03-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking. PMID:22155966

  7. Passive Detection of Narrowband Sources Using a Sensor Array

    SciTech Connect

    Chambers, D H; Candy, J V; Guidry, B L

    2007-10-24

    In this report we derive a model for a highly scattering medium, implemented as a set of MATLAB functions. This model is used to analyze an approach for using time-reversal to enhance the detection of a single frequency source in a highly scattering medium. The basic approach is to apply the singular value decomposition to the multistatic response matrix for a time-reversal array system. We then use the array in a purely passive mode, measuring the response to the presence of a source. The measured response is projected onto the singular vectors, creating a time-reversal pseudo-spectrum. We can then apply standard detection techniques to the pseudo-spectrum to determine the presence of a source. If the source is close to a particular scatterer in the medium, then we would expect an enhancement of the inner product between the array response to the source with the singular vector associated with that scatterer. In this note we begin by deriving the Foldy-Lax model of a highly scattering medium, calculate both the field emitted by the source and the multistatic response matrix of a time-reversal array system in the medium, then describe the initial analysis approach.

  8. Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6. The open-end of MWNTs present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. Oligonucleotide probes are selectively functionalized at the open ends cf the nanotube array and specifically hybridized with oligonucleotide targets. The guanine groups are employed as the signal moieties in the electrochemical measurements. Ru(bpy)3(2+) mediator is used to further amplify the guanine oxidation signal. The hybridization of subattomoles of PCR amplified DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the Ru(bpy)32' amplification mechanism. This system provides a general platform of molecular diagnostics for applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparations.

  9. Pattern recognition for selective odor detection with gas sensor arrays.

    PubMed

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  10. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays

    PubMed Central

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  11. Detection Performance of a Diffusive Wave Phased Array

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen P.

    2004-04-01

    Diffusive wave phased arrays have been demonstrated to be a sensitive method of detecting inhomogeneities embedded in heavily scattering media. However, the increase in sensitivity is coupled with an increase in noise, so that the optimum performance may not be obtained when the sources are modulated in antiphase. The performance of a range of configurations in the presence of Gaussian noise is investigated by using probabilistic detection theory. A model of diffusive wave propagation through scattering media is used to demonstrate that the phase performance can be improved by controlling the relative phase difference between the two sources. However, the best performance is obtained by using the amplitude response of a single source system. The major benefit of a phased array system is therefore the rejection of common systematic noise.

  12. Multiplexed Detection of Antibodies using Programmable Bead Arrays

    PubMed Central

    Anderson, Karen S.

    2012-01-01

    Summary The detection of antibodies in sera has broad applications for detection and monitoring of infectious diseases, autoimmunity, and cancer. Proteomic methods of antigen detection, such as protein microarrays, are excellent clinical discovery tools, but due to both cost and specialization of manufacture, these are limited to screening small numbers of sera. Downstream assays for biomarker validation studies require rapid, reproducible, multiplexed assays for the simultaneous screening of fewer (<100) antigens with hundreds or thousands of sera. Traditional clinical ELISA assays use recombinant proteins, but these are limited by the ability to purify proteins free of cross-reacting contaminants and are limited to one antigen at a time. Here, we describe the application of coupled in vitro protein production with anti-tag capture onto bead arrays, for the rapid multiplexed detection of antibodies in sera. These assays can be readily adapted for detection of any protein-specific infectious, autoimmune, or cancer-specific antibodies. PMID:21370069

  13. Negative base encoding in optical linear algebra processors

    NASA Technical Reports Server (NTRS)

    Perlee, C.; Casasent, D.

    1986-01-01

    In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.

  14. Towards robust gravitational wave detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.; Sampson, Laura

    2016-05-01

    Precision timing of highly stable millisecond pulsars is a promising technique for the detection of very low frequency sources of gravitational waves. In any single pulsar, a stochastic gravitational wave signal appears as an additional source of timing noise that can be absorbed by the noise model, and so it is only by considering the coherent response across a network of pulsars that the signal can be distinguished from other sources of noise. In the limit where there are many gravitational wave sources in the sky, or many pulsars in the array, the signals produce a unique tensor correlation pattern that depends only on the angular separation between each pulsar pair. It is this distinct fingerprint that is used to search for gravitational waves using pulsar timing arrays. Here we consider how the prospects for detection are diminished when the statistical isotropy of the timing array or the gravitational wave signal is broken by having a finite number of pulsars and a finite number of sources. We find the standard tensor-correlation analysis to be remarkably robust, with a mild impact on detectability compared to the isotropic limit. Only when there are very few sources and very few pulsars does the standard analysis begin to fail. Having established that the tensor correlations are a robust signature for detection, we study the use of "sky scrambles" to break the correlations as a way to increase confidence in a detection. This approach is analogous to the use of "time slides" in the analysis of data from ground-based interferometric detectors.

  15. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  16. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  17. Real-time threat detection using magnetometer arrays

    NASA Astrophysics Data System (ADS)

    Prouty, Mark D.; Tchernychev, Mikhail

    2016-05-01

    In this paper we present a discussion of using an array of atomic magnetometers to locate the presence of ferrous materials, such as concealed weapons, in real time. Ferrous materials create magnetic field anomalies. In order to determine the location of such objects, readings from many positions must be analyzed. This field inversion is typically done in post processing, once readings over a survey area or region of interest have been gathered. With the recent development of small and low power sensors, the dozen or so sensors required to provide information for magnetic field inversion may be deployed. We have built such an array and present here the results of using a realtime inversion algorithm. The inversion algorithm accurately determines target properties at a rate of 10 times per second as objects move past the array. Accuracies are as good as those obtained with target inversion methods used in analyzing data for unexploded ordnance detection. While those methods are typically applied in post processing, we show here those methods work even better when applied in real-time. We further present some analyses of the predicted performance of arrays in various geometries to address issues in security, such as crowd or perimeter monitoring. Target inversion methods may be accurately simulated, allowing for the development and testing of algorithms in an efficient manner. Additional processing may be done using the time history of the inversion results to remove false alarms and enhance detection. The key step is to start with an inversion method, utilizing the mathematical properties of magnetic fields and the known geometry of the measurements.

  18. Fluorescence detection in capillary arrays based on galvanometer step scanning.

    PubMed

    Xue, G; Yeung, E S

    2001-10-01

    A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluoresceins is 3 x 10(-11) M (S/N = 3) for 5 mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission. PMID:11669531

  19. Multiplex detection of disease marker proteins with arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Sriram, Rashmi; Miller, Benjamin L.

    2010-02-01

    Arrayed Imaging Reflectometry, or "AIR", is a new label-free optical technique for detecting proteins. AIR relies on binding-induced changes in the response of an antireflective coating on the surface of a silicon chip. Thus far, we have demonstrated the use of AIR for the detection of pathogenic E. coli, and for multiplex detection of a broad range of proteins in human serum. Creation of the near-perfect antireflective coating on the surface of silicon requires careful control over preparation of the chip surface prior to probe molecule immobilization. We present methods for highly reproducible, solution-phase silanization and glutaraldehyde functionalization of silicon chips carrying a layer of thermal oxide. Following functionalization with antibodies and passivation of remaining reactive groups, these surfaces provide exceptional performance in the AIR assay.

  20. Flexible 16 Antenna Array for Microwave Breast Cancer Detection.

    PubMed

    Bahramiabarghouei, Hadi; Porter, Emily; Santorelli, Adam; Gosselin, Benoit; Popović, Milica; Rusch, Leslie A

    2015-10-01

    Radar-based microwave imaging has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues has been studied over a wide frequency band for this application. We design single- and dual-polarization antennas for wireless ultrawideband breast cancer detection systems using an inhomogeneous multilayer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50-μm Kapton polyimide are designed, using a high-frequency structure simulator, to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2-4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching when in different positions with different curvature around the breast. Our miniaturized flexible antennas are 20 mm × 20 mm. Furthermore, two flexible conformal 4 × 4 ultrawideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system. By using a reflector for the arrays, the penetration of the propagated electromagnetic waves from the antennas into the breast can be improved by factors of 3.3 and 2.6, respectively. PMID:26011862

  1. WIMP detection and slow ion dynamics in carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Cavoto, G.; Cirillo, E. N. M.; Cocina, F.; Ferretti, J.; Polosa, A. D.

    2016-06-01

    Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs (≈ 11 GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.

  2. Prion protein detection in serum using micromechanical resonator arrays.

    PubMed

    Varshney, Madhukar; Waggoner, Philip S; Montagna, Richard A; Craighead, Harold G

    2009-12-15

    Prion proteins that have transformed from their normal cellular counterparts (PrP(c)) into infectious form (PrP(res)) are responsible for causing progressive neurodegenerative diseases in numerous species, such as bovine spongiform encephalopathy (BSE) in cattle (also known as mad cow disease), scrapie in sheep, and Creutzfeldt-Jakob disease (CJD) in humans. Due to a possible link between BSE and CJD it is highly desirable to develop non-invasive and ante mortem tests for the detection of prion proteins in bovine samples. Such ante mortem tests of all cows prior to slaughter will help to prevent the introduction of PrP(res) into the human food supply. Furthermore, detection of PrP(res) in donated blood will also help to prevent the transmission of CJD among humans through blood transfusion. In this study, we have continued development of a micromechanical resonator array that is capable of detecting PrP(c) in bovine blood serum. The sensitivity of the resonators for the detection of PrP(c) is further enhanced by the use of secondary mass labels. A pair of antibodies is used in a sandwich immunoassay format to immobilize PrP(c) on the surface of resonators and attach nanoparticles as secondary mass labels to PrP(c). Secondary mass labeling is optimized in terms of incubation time to maximize the frequency shifts that correspond to the presence of PrP(c) on the surface of resonators. Our results show that a minimum of 200 pg mL(-1) of PrP(c) in blood serum can be detected using micromechanical resonator arrays. PMID:19836525

  3. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  4. Flexible sixteen monopole antenna array for microwave breast cancer detection.

    PubMed

    Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A

    2014-01-01

    Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system. PMID:25570813

  5. Nanoscale optofluidic sensor arrays for Dengue virus detection

    NASA Astrophysics Data System (ADS)

    Mandal, Sudeep; Akhmechet, Roman; Chen, Likun; Nugen, Sam; Baeumner, Antje; Erickson, David

    2007-09-01

    Here we present our work towards the development of Nanoscale Optofluidic Sensor Arrays (NOSA), which is an optofluidic architecture for performing label free, highly parallel, detections of biomolecular interactions. The approach is based on the use of optically resonant devices whose resonant wavelength is shifted due to a local change in refractive index caused by a positive binding event between a surface bound molecule and it solution phase target. A special two stage micro-/nanofluidics architecture is used to first functionalize the devices and then to deliver the targets. Two variants of the NOSA will be presented here. The first approach utilizes a 1D resonant cavity in a 1D silicon-on-insulator (SOI) waveguide with a unique differential size functionalization approach. This approach allows binding events at one or at a combination of the many sensing sites which causes a unique shift in the output resonator spectrum. The latter approach consists of a SOI waveguide evanescently coupled to multiple 1-D photonic crystal resonators of different sizes along the length, each of which is functionalized with a different oligonucleotide probe. These devices have an extremely low limit of detection and are compatible with aqueous environments. The primary advantage of these devices over existing technology is that it combines the sensitivity (limit of detection) of nanosensor technology with the parallelism of the microarray type format. Our initial application is in the detection of viral RNA of Dengue virus.

  6. High Density Nano-Electrode Array for Radiation Detection

    SciTech Connect

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  7. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  8. Damage Detection in Composite Structures with Wavenumber Array Data Processing

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.

  9. Comparison between BAC and oligo array platforms in detecting submicroscopic genomic rearrangements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Array-based comparative genomic hybridization (array CGH) has emerged as a powerful diagnostic technique for high resolution analysis of the human genome. It is a specific, sensitive, and rapid technique enabling detection of genomic arrangements and copy number changes. A variety of array CGH platf...

  10. Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.

    PubMed

    Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B

    2009-07-01

    This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly. PMID:19528580

  11. Inferential statistics for transient signal detection in radio astronomy phased arrays

    NASA Astrophysics Data System (ADS)

    Schmid, Natalia A.; Prestage, Richard M.; Alkhweldi, Marwan

    2015-05-01

    In this paper we develop two statistical rules for the purpose of detecting pulsars and transients using signals from phased array feeds installed on a radio telescope in place of a traditional horn receiver. We assume a known response of the antenna arrays and known coupling among array elements. We briefly summarize a set of pre-processing steps applied to raw array data prior to signal detection and then derive two detection statistics assuming two models for the unknown radio source astronomical signal: (1) the signal is deterministic and (2) the signal is a random process. The performance of both detectors is analyzed using both real and simulated data.

  12. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays.

    PubMed

    Ambroz, Kristi L H; Zhang, Yonghong; Schutz-Geschwender, Amy; Olive, D Michael

    2008-06-01

    Antibody specificity is critical for RP protein arrays (RPA). The effects of blocking and detection chemistries on antibody specificity were evaluated for Western blots and RPA. Blocking buffers significantly affected nonspecific banding on Western blots, with corresponding effects on arrays. Tyramide signal amplification (TSA) increased both specific and nonspecific signals on Westerns and arrays, masking the expected gradations in signal intensity. These results suggest that consistent blocking and detection conditions should be used for antibody validation and subsequent RPA experiments. PMID:18563731

  13. Unexploded ordnance detection using imaging giant magnetoresistive (GMR) sensor arrays

    SciTech Connect

    Chaiken, A., LLNL

    1997-05-06

    False positive detections account for a great part of the expense associated with unexploded ordnance (UXO) remediation. Presently fielded systems like pulsed electromagnetic induction systems and cesium-vapor magnetometers are able to distinguish between UXO and other metallic ground clutter only with difficulty. The discovery of giant magnetoresistance (GMR) has led to the development of a new generation of integrated-circuit magnetic sensors that are far more sensitive than previously available room-temperature-operation electronic devices. The small size of GMR sensors makes possible the construction of array detectors that can be used to image the flux emanating from a ferrous object or from a non-ferrous object with eddy currents imposed by an external coil. The purpose of a GMR-based imaging detector would be to allow the operator to easily distinguish between UXO and benign objects (like shrapnel or spent bullets) that litter formerly used defense sites (FUDS). In order to demonstrate the potential of a GMR-based imaging technology, a crude magnetic imaging system has been constructed using commercially available sensors. The ability to roughly determine the outline and disposition of magnetic objects has been demonstrated. Improvements to the system which are necessary to make it into a high-performance UXO detector are outlined.

  14. Deep diode arrays for X-ray detection

    NASA Technical Reports Server (NTRS)

    Zemel, J. N.

    1984-01-01

    Temperature gradient zone melting process was used to form p-n junctions in bulk of high purity silicon wafers. These diodes were patterned to form arrays for X-ray spectrometers. The whole fabrication processes for these X-ray detectors are reviewed in detail. The p-n junctions were evaluated by (1) the dark diode I-V measurements, (2) the diode C sub I - V measurements, and (3) the MOS C-V measurements. The results showed that these junctions were linearly graded in charge distribution with low reverse bias leakage current flowing through them (few nA at -10 volts). The X-ray detection experiments showed that an FWHM of 500 eV was obtained from these diodes with a small bias of just -5 volts (for X-ray source Fe55). A theoretical model was proposed to explain the extra peaks found in the energy spectra and a very interesting point - cross talk effect was pointed out. This might be a solution to the problem of making really high resolution X-ray spectrometers.

  15. The electronics of the INDRA 4π detection array

    NASA Astrophysics Data System (ADS)

    Pouthas, J.; Bertaut, A.; Borderie, B.; Bourgault, P.; Cahan, B.; Carles, G.; Charlet, D.; Cussol, D.; Dayras, R.; Engrand, M.; Jouniaux, O.; Le Botlan, P.; Leconte, A.; Lelong, P.; Martina, L.; Mosrin, P.; Olivier, L.; Passerieux, J. P.; Piquet, B.; Plagnol, E.; Plaige, E.; Raine, B.; Richard, A.; Saint-Laurent, F.; Spitaels, C.; Tillier, J.; Tripon, M.; Vallerand, P.; Volkov, P.; Wittwer, G.

    1996-02-01

    INDRA is a 4π detection array designed for the studies of "hot nuclei" at the heavy ion accelerator GANIL. The INDRA multidetector is composed of 96 ionization chambers, 196 silicon detectors, 324 CsI(TI) scintillators and 12 NE102/NE115 phoswich detectors. This article describes the associated electronics. The signal treatment is performed through specifically designed modules, most of which are in the new VXIbus standard. This standard allows us to considerably reduce the number of modules by regrouping many functions in the same module. For example, all the functions related to 24 CsI(TI) scintillators are stacked in one D-size module. VXIbus also provides the opportunity to locate all the electronics close to the detector, in the beam cave, with full remote control (VXI-VME buses) including visualization of analogic and logic signals on oscilloscopes. The large dynamic range (4000 to 1) required for the silicon detectors is reached by means of a new method: a low noise amplifier providing a unipolar signal which is charge integrated and converted on two dynamic ranges. The trigger system relies on a new working mode called "asynchronous mode" and performs event selections based on multiplicity functions which are built up from subgroups of detectors. The performances of the data acquisition and the graphical software packages which were developed to set up and control the electronic parameters are also presented.

  16. An Intelligent Fault Detection and Isolation Architecture for Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Rahnamai, K.; Arabshahi, P.; Yan, T.-Y.; Pham, T.; Finley, S. G.

    1997-10-01

    This article describes a general architecture for fault modeling, diagnosis, and isolation of the DSN antenna array based on computationally intelligent techniques(neural networks and fuzzy logic). It encompasses a suite of intelligent test and diagnosis algorithms in software. By continuously monitoring the health of the highly complex and nonlinear array observables, the automated diagnosis software will be able to identify and isolate the most likely causes of system failure in cases of faulty operation. Furthermore, it will be able to recommend a series of corresponding corrective actions and effectively act as an automated real-time and interactive system supervisor. In so doing, it will enhance the array capability by reducing the operational workload, increasing science information availability, reducing the overall cost of operation by reducing system downtimes, improving risk management, and making mission planning much more reliable. Operation of this architecture is illustrated using examples from observables available from the 34-meter arraying task.

  17. Electrochemical Patterning and Detection of DNA Arrays on a Two-Electrode Platform

    PubMed Central

    Furst, Ariel; Landefeld, Sally; Hill, Michael G.; Barton, Jacqueline K.

    2014-01-01

    We report a novel method of DNA array formation that is electrochemically formed and addressed with a two-electrode platform. Electrochemical activation of a copper catalyst, patterned with one electrode, enables precise placement of multiple sequences of DNA onto a second electrode surface. The two-electrode patterning and detection platform allows for both spatial resolution of the patterned DNA array and optimization of detection through DNA-mediated charge transport with electrocatalysis. This two-electrode platform has been used to form arrays that enable differentiation between well-matched and mismatched sequences, the detection of TATA-binding protein, and sequence-selective DNA hybridization. PMID:24328227

  18. Electrochemical patterning and detection of DNA arrays on a two-electrode platform.

    PubMed

    Furst, Ariel; Landefeld, Sally; Hill, Michael G; Barton, Jacqueline K

    2013-12-26

    We report a novel method of DNA array formation that is electrochemically formed and addressed with a two-electrode platform. Electrochemical activation of a copper catalyst, patterned with one electrode, enables precise placement of multiple sequences of DNA onto a second electrode surface. The two-electrode patterning and detection platform allows for both spatial resolution of the patterned DNA array and optimization of detection through DNA-mediated charge transport with electrocatalysis. This two-electrode platform has been used to form arrays that enable differentiation between well-matched and mismatched sequences, the detection of TATA-binding protein, and sequence-selective DNA hybridization. PMID:24328227

  19. Poly(dimethylsiloxane) microlens array integrated with microfluidic channel for fluorescence spectroscopy detection

    NASA Astrophysics Data System (ADS)

    Rujihan, Suparat; Damrongsak, Badin; Kittidachachan, Pattareeya

    2013-06-01

    Fluorescence spectroscopy detection has been commonly used in chemical and biochemical applications as it provides a good reliability and high sensitivity. Commercially available fluorescence spectroscopy system is typically bulky and expensive, hence making it inconvenience for on-site measurement which requires portable systems. However, the drawback of small devices is that it has a low detection volume, resulting in low fluorescence signal. In this paper, we report a microfluidic channel implemented with a microlens array for enhancing the performance of fluorescence spectroscopy detection. The microlens array was used to focus an excitation light onto the microchannel, thus expecting the increase in fluorescence detection signal. Both microchannels and microlens arrays were individually fabricated from poly-dimethylsiloxane (PDMS) using low-cost printed-circuit-board master molds. The fabrication and characterization of PDMS-based microlens arrays are discussed. In short, the microlens in plano-convex shape was designed with diameters of 700, 800 and 900 microns. The fabricated microlens arrays were characterized for radius of curvatures, SAGs and focal lengths. The plano-convex microlens array was then integrated into a microfluidic system in order to investigate the overall performance of fluorescence spectroscopy detection. Experiments were conducted with two fluorescence dyes, i.e. Rhodamine 6G and Coumarin 153. The preliminary results revealed that the PDMS microlens array implemented on the designed system shows potential for improving excitation and emission light intensity and, as a consequence, signal to background ratio of the fluorescence spectroscopy detection.

  20. Pyroelectric sensor arrays for detection and thermal imaging

    NASA Astrophysics Data System (ADS)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  1. Array-Based Detection of Persistent Organic Pollutants via Cyclodextrin Promoted Energy Transfer

    PubMed Central

    Serio, Nicole; Moyano, Daniel F.; Rotello, Vincent M.; Levine, Mindy

    2015-01-01

    We report herein the selective array-based detection of 30 persistent organic pollutants via cyclodextrin-promoted energy transfer. The use of three fluorophores enabled the development of an array that classified 30 analytes with 100% accuracy and identified unknown analytes with 96% accuracy, as well as identifying 92% of analytes in urine. PMID:26096542

  2. Synthetic Array Heterodyne Detection: Developments within the Caliope CO{sub 2} DIAL Program

    SciTech Connect

    Rehse, S.J.; Strauss, E.M.

    1995-09-01

    A new technique, Synthetic Array Heterodyne Detection, offers a wider field of view and improved signal to noise for coherent DIAL systems by reducing speckle interference. We have implemented a synthetic multi-pixel array using a CO{sub 2} laser on a single element HgCdTe photodiode.

  3. Single-Cell Detection and Collection of Persister Bacteria in a Directly Accessible Femtoliter Droplet Array.

    PubMed

    Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko

    2016-01-01

    A directly accessible femtoliter droplet array as a platform for single-cell detection and collection of persister bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single cells, long-term culture and observation of single cells in droplets, and collection of identified persisters from single droplets are described in detail. PMID:26468103

  4. Static corrections for enhanced signal detection at IMS seismic arrays

    NASA Astrophysics Data System (ADS)

    Wilkins, Neil; Wookey, James; Selby, Neil

    2016-04-01

    Seismic monitoring forms an important part of the International Monitoring System (IMS) for verifying the Comprehensive nuclear Test Ban Treaty (CTBT). Analysis of seismic data can be used to discriminate between nuclear explosions and the tens of thousands of natural earthquakes of similar magnitude that occur every year. This is known as "forensic seismology", and techniques include measuring the P-to-S wave amplitude ratio, the body-to-surface wave magnitude ratio (mb/Ms), and source depth. Measurement of these seismic discriminants requires very high signal-to-noise ratio (SNR) data, and this has led to the development and deployment of seismic arrays as part of the IMS. Array processing methodologies such as stacking can be used, but optimum SNR improvement needs an accurate estimate of the arrival time of the particular seismic phase. To enhance the imaging capability of IMS arrays, we aim to develop site-specific static corrections to the arrival time as a function of frequency, slowness and backazimuth. Here, we present initial results for the IMS TORD array in Niger. Vespagrams are calculated for various events using the F-statistic to clearly identify seismic phases and measure their arrival times. Observed arrival times are compared with those predicted by 1D and 3D velocity models, and residuals are calculated for a range of backazimuths and slownesses. Finally, we demonstrate the improvement in signal fidelity provided by these corrections.

  5. Silicon PIN diode array hybrids for charged particle detection

    SciTech Connect

    Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.; Gaalema, S.

    1988-09-01

    We report on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included. 8 refs., 7 figs., 1 tab.

  6. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.

    PubMed

    Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N

    2014-01-01

    Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time. PMID:24603850

  7. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-12-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication. PMID:27431495

  8. Ultrasonic damage detection of concrete structures by using pulse-echo sensor arrays and SAFT

    NASA Astrophysics Data System (ADS)

    Shi, Li-hua; Shao, Zhi-xue; Shao, Zhe

    2009-07-01

    In ultrasonic nondestructive testing (NDT) of concrete structures, the synthetic aperture focusing technique (SAFT) can improve the resolution of target and therefore gives a better image display of the B-scan data. In traditional B-scan of concrete structures the ultrasonic transducers are usually moved manually to detect the whole structure, the detection speed and the consistency in different test points are greatly affected. A PZT sensor array is designed in this paper to perform B-scan on large concrete structures more efficiently. The excitation of the sensor array and the data processing techniques for the array data are discussed. A signal processing approach is proposed to improve the consistency between different test channels in the array. Experiments on real structures show the embedded objects can be located accurately by using the array sensor and SAFT method.

  9. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-07-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication.

  10. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  11. Accounting for uncertainty in location when detecting point sources using infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Nichols, J. M.; Waterman, J. R.

    2016-07-01

    This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.

  12. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  13. Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents.

    PubMed

    Spehar-Délèze, Anna-Maria; Gransee, Rainer; Martinez-Montequin, Sergio; Bejarano-Nosas, Diego; Dulay, Samuel; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K

    2015-09-01

    Development of a fully automated electrochemiluminescence (ECL) DNA assay for multiplex detection of six biowarfare agents is described. Aminated-DNA capture probes were covalently immobilised on activated-carbon electrodes and subsequently hybridised to target strands. Detection was achieved via a sandwich-type assay after Ru(bpy)3(2+)-labelled reporter probes were hybridised to the formed probe-target complexes. The assay was performed in an automated microsystem in a custom designed ECL detection box with integrated fluidics, electronics,and movable photomultiplier detector. The obtained limits of detection were 0.6-1.2 nmol L(-1) for six targets ranging from 50 to 122 base pairs in size, with linear range 1-15 nmol L(-1). Non-specific adsorption and cross-reactivity were very low. Detection of six targets on a single chip was achieved with subnanomolar detection limits. PMID:26100549

  14. Detection of biological warfare agents with fiber-optic microsphere-based DNA arrays

    NASA Astrophysics Data System (ADS)

    Song, Linan; Walt, David R.

    2005-11-01

    Biological warfare agents (BWAs) pose significant threats to both military forces and civilian populations. The increased concern about bioterrorism has promoted the development of rapid, sensitive, and reliable detection systems to provide an early warning for detecting the release of BWAs. We have developed a high-density DNA array to detect BWAs in real environmental samples with fast response times and high sensitivity. An optical fiber bundle containing approximately 50,000 individual 3.1 μm diameter fibers was chemically etched to yield an array of microwells and used as the substrate for the array. 50-mer single-stranded DNA probes designed to be specific for target BWAs were covalently attached to 3.1-μm microspheres, and the microspheres were distributed into the microwells to form a randomized high-density DNA array. We demonstrated the applicability of this DNA array for the identification of Bacillus thuringiensis kurstaki, a BWA simulant, in real samples. PCR was used to amplify the sequences, introduce fluorescent labels into the target molecules, and provide a second level of specificity. After hybridization of test solutions to the array, analysis was performed by evaluating the specific responses of individual probes on the array.

  15. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  16. Development of Recombinant Antigen Array for Simultaneous Detection of Viral Antibodies

    PubMed Central

    Liu, Yi; Yu, Fengling; Huang, Haiyan; Han, Jinxiang

    2013-01-01

    Protein microarrays have been developed to study antibody reactivity against a large number of antigens, demonstrating extensive perspective for clinical application. We developed a viral antigen array by spotting four recombinant antigens and synthetic peptide, including glycoprotein G of herpes simplex virus (HSV) type 1 and 2, phosphoprotein 150 of cytomegalovirus (CMV), Rubella virus (RV) core plus glycoprotein E1 and E2 as well as a E1 peptide with the optimal concentrations on activated glass slides to simultaneously detect IgG and IgM against HSV1, HSV2, CMV and RV in clinical specimens of sera and cerebrospinal fluids (CSFs). The positive reference sera were initially used to measure the sensitivity and specificity of the array with the optimal conditions. Then clinical specimens of 144 sera and 93 CSFs were tested for IgG and IgM antibodies directed against HSV1, HSV2, CMV and RV by the antigen array. Specificity of the antigen array for viral antibodies detection was satisfying compared to commercial ELISA kits but sensitivity of the array varied relying on quality and antigenic epitopes of the spotting antigens. In short, the recombinant antigen array has potential to simultaneous detect multiple viral antibodies using minute amount (3 µl) of samples, which holds the particularly advantage to detect viral antibodies in clinical CSFs being suspicious of neonatal meningitis and encephalitis. PMID:24058498

  17. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Trincavelli, Marco

    2012-01-01

    We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets. PMID:23443385

  18. Defect detection in aluminum laser welds using an anisotropic magnetoresistive sensor array

    SciTech Connect

    Allweins, K.; Kreutzbruck, M. von; Gierelt, G.

    2005-05-15

    For the detection of defects in aluminum laser welds an anisotropic magnetoresistive (AMR) sensor array was implemented in an eddy current testing system. The reliability of weld testing is strongly influenced by the texture of the laser weld whose field response significantly superimposes the defect's magnetic signature. A finite-element model was used to determine the influence of the weld's topology on the detection of defects such as porosities and inclusions hosted in the aluminum matrix. When using an AMR sensor array with field sensitivity of better than 1 nT/{radical}Hz defects with a radius smaller than 100 {mu}m could be detected and classified.

  19. Parallel Beam Approximation for Calculation of Detection Efficiency of Crystals in PET Detector Arrays

    PubMed Central

    Komarov, Sergey; Song, Tae Yong; Wu, Heyu; Tai, Yuan-Chuan

    2014-01-01

    In this work we propose a parallel beam approximation for the computation of the detection efficiency of crystals in a PET detector array. In this approximation the detection efficiency of a crystal is estimated using the distance between source and the crystal and the pre-calculated detection cross section of the crystal in a crystal array which is calculated for a uniform parallel beam of gammas. The pre-calculated detection cross sections for a few representative incident angles and gamma energies can be used to create a look-up table to be used in simulation studies or practical implementation of scatter or random correction algorithms. Utilizing the symmetries of the square crystal array, the pre-calculated look-up tables can be relatively small. The detection cross sections can be measured experimentally, calculated analytically or simulated using a Monte Carlo (MC) approach. In this work we used a MC simulation that takes into account the energy windowing, Compton scattering and factors in the “block effect”. The parallel beam approximation was validated by a separate MC simulation using point sources located at different positions around a crystal array. Experimentally measured detection efficiencies were compared with Monte Carlo simulated detection efficiencies. Results suggest that the parallel beam approximation provides an efficient and accurate way to compute the crystal detection efficiency, which can be used for estimation of random and scatter coincidences for PET data corrections. PMID:25400292

  20. Detection of Multiple Waterborne Pathogens Using Microsequencing Arrays

    EPA Science Inventory

    Aims: A microarray was developed to simultaneously detect Cryptosporidium parvum, Cryptosporidium hominis, Enterococcus faecium, Bacillus anthracis and Francisella tularensis in water. Methods and Results: A DNA microarray was designed to contain probes that specifically dete...

  1. Single molecule detection using charge-coupled device array technology

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  2. Polymer waveguide sensor arrays for enhanced multichemical detection

    NASA Astrophysics Data System (ADS)

    Cordero, Steven R.; Low, Aaron; Ruiz, David; Lieberman, Robert A.

    2007-09-01

    We report the development of absorption-based waveguide sensors for the toxic industrial chemicals hydrogen cyanide, hydrogen sulfide, and chlorine. Polymeric materials formulated as colorimetric sensors have been engineered into miniature waveguide channels. The channels have dimensions 30x0.6x0.05 mm (LxWxH) and are patterned on glass substrates using a photolithography process. Subsequent light coupling was achieved using optical fibers. Enhanced sensitivity is observed owing to the increased path length as described by the Beer-Lambert law. When the individual sensors are challenged with the IDLH concentrations of their target gases they react instantaneously with response times (T90) less than 20 seconds. When tested simultaneously as an array, a predictable level of cross interference was observed. The cross interference indicates that the inclusion of a signal processing algorithm is required to selectively resolve the analytes and reduce or eliminate false alarms.

  3. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  4. Detection of inflammatory cytokines using a fiber optic microsphere immunoassay array

    NASA Astrophysics Data System (ADS)

    Blicharz, Timothy M.; Walt, David R.

    2006-10-01

    A multiplexed fiber optic microsphere-based immunoassay array capable of simultaneously measuring five inflammatory cytokines has been developed. Five groups of amine-functionalized 3.1 micron microspheres were internally encoded with five distinct concentrations of a europium dye and converted to cytokine probes by covalently coupling monoclonal capture antibodies specific for human VEGF, IFN-gamma, RANTES, IP-10, and Eotaxin-3 to the microspheres via glutaraldehyde chemistry. The microspheres were pooled and loaded into a 1 mm diameter fiber optic bundle containing ~50,000 individual etched microwells, producing the multiplexed cytokine immunoassay array. Multiple arrays can be created from a single microsphere pool for high throughput sample analysis. Sandwich fluoroimmunoassays were performed by incubating the probe array in a sample, followed by incubation in a mixture of biotin-labeled detection antibodies that are complementary to the five cytokines. Finally, universal detection of each protein was performed using a fluorescence imaging system after briefly immersing the array in a solution of fluorophore-labeled streptavidin. The multiplexed cytokine array has been shown to respond selectively to VEGF, IFNgamma, RANTES, IP-10, and Eotaxin-3, permitting multiplexed quantitative analysis. Ultimately, the multiplexed cytokine array will be utilized to evaluate the potential of using saliva as a noninvasive diagnostic fluid for pulmonary inflammatory diseases such as asthma.

  5. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  6. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  7. Ultrasonic array for obstacle detection based on CDMA with Kasami codes.

    PubMed

    Diego, Cristina; Hernández, Alvaro; Jiménez, Ana; Alvarez, Fernando J; Sanz, Rebeca; Aparicio, Joaquín

    2011-01-01

    This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675

  8. Simultaneous detection of three lily-infecting viruses using a multiplex Luminex bead array.

    PubMed

    Lim, Mi Sang; Kim, Su Min; Choi, Sun Hee

    2016-05-01

    A Luminex bead array was applied to detect multiple-virus coinfection in lily plants exhibiting typical symptoms, and the efficiency of this detection system was assessed. Specific primer sets for the simultaneous detection of 4 targets in virus-infected lily plants were constructed and used for reverse transcription (RT)-polymerase chain reaction (PCR), and specific probes were used for Luminex-based assay. Each of the 4 targets was amplified, and the amplicons were used for Luminex bead array experiments. A Luminex bead array analysis of lily-infecting viruses was performed using the quadruplex RT-PCR products followed by hybridization between the biotinylated targets and anti-tagged microsphere beads. The hybridization products produced fluorescence signals that were detected by the Luminex system. Signal strengths were analyzed by their median fluorescence intensity (MFI) values. Detection of the different target elements was found to be very specific to the corresponding viruses in lilies, and coinfection with multiple viruses was specifically detected via the MFI signals. Therefore, the use of a Luminex bead array for the detection of co-infected multiple viruses in lily plants can be an improved system for screening and analyzing multiple-virus infection. PMID:26898956

  9. DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY

    SciTech Connect

    Finn, Lee Samuel; Lommen, Andrea N.

    2010-08-01

    Efforts to detect gravitational waves by timing an array of pulsars have traditionally focused on stationary gravitational waves, e.g., stochastic or periodic signals. Gravitational wave bursts-signals whose duration is much shorter than the observation period-will also arise in the pulsar timing array waveband. Sources that give rise to detectable bursts include the formation or coalescence of supermassive black holes (SMBHs), the periapsis passage of compact objects in highly elliptic or unbound orbits about an SMBH, or cusps on cosmic strings. Here, we describe how pulsar timing array data may be analyzed to detect and characterize these bursts. Our analysis addresses, in a mutually consistent manner, a hierarchy of three questions. (1) What are the odds that a data set includes the signal from a gravitational wave burst? (2) Assuming the presence of a burst, what is the direction to its source? (3) Assuming the burst propagation direction, what is the burst waveform's time dependence in each of its polarization states? Applying our analysis to synthetic data sets, we find that we can detect gravitational waves even when the radiation is too weak to either localize the source or infer the waveform, and detect and localize sources even when the radiation amplitude is too weak to permit the waveform to be determined. While the context of our discussion is gravitational wave detection via pulsar timing arrays, the analysis itself is directly applicable to gravitational wave detection using either ground- or space-based detector data.

  10. Highly ordered graphene-isolated silver nanodot arrays as SERS substrate for detection of urinary nucleosides

    NASA Astrophysics Data System (ADS)

    Xu, Shicai; Jiang, Shouzhen; Hu, Guodong; Wei, Jie; Wang, Li; Zhang, Junye; Li, Qiuju

    2015-11-01

    An efficient surface enhanced Raman scattering (SERS) substrate has been developed based on highly ordered arrays of graphene-isolated Ag nanodot (G/AgND) arrays. By combining the plasmonic activity of AgND arrays and unique physical/chemical properties of graphene, the G/AgND arrays show high performance in terms of sensitivity, signal-to-noise ratio and reproducibility. The SERS signals of R6G are clearly detected even at very low concentration of 10-11M. The maximum deviations of SERS intensities from 20 positions of the SERS substrate are less than 5%. The G/AgND arrays were employed for detection of human urinary nucleosides. The diagnostic algorithms based on principal component analysis achieved a diagnostic sensitivity of 91.1% and specificity of 93.3% for separating cancer from normal samples. This work demonstrates that G/AgND arrays used in Raman spectroscopy could be developed as a smart and promising system for detection and screening of cancers.

  11. Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.

    PubMed

    Hong, Bang-Xing; Jiang, Li-Fang; Hu, Yu-Shan; Fang, Dan-Yun; Guo, Hui-Yu

    2004-09-01

    A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections. PMID:15279944

  12. Development of immune-affinity 96 spots monolith array for multiple mycotoxins detection in food samples.

    PubMed

    Li, Li; Xia, Li-Ru; Zhao, Yong-Fu; Wang, He-Ye

    2016-09-01

    In this paper, a novel highly sensitive chemiluminescence immune-affinity 96 spots monolith array was developed to detect deoxynivalenol (DON), zearalenone (ZEN), T-2 toxin (T-2), and fumonisin B1 (FB1) in corn samples. Firstly, the monolith array was prepared through on suit UV-initiated copolymerization using polyethylene glycol diacrylate (PEGDA) as cross-linker, glycidyl methacrylate (GMA) as functional monomer and polyethylene glycol 200 (PEG 200) as the porogen. Subsequently, the four mycotoxins immune-affinity monolith array was prepared by immobilization of DON, ZEN, T-2, and FB1 antibody. The mole ratio of PEGDA/GMA, UV exposure time, and the volume ratio of PEG 200/PEGDA were optimized to improve the performances of the immune-affinity monolith array. For the mycotoxins immune-affinity monolith array based on chemiluminescence detection, the limit of detection was 0.0036ng/mL (DON), 0.0048ng/mL (ZEN), 0.0039ng/mL (T-2), and 0.0017ng/mL (FB1), respectively. The linear response in the range of 0.01-0.1ng/mL (R(2)=0.98). The results showed that the proposed four mycotoxins immune-affinity monolith array was a stable, accurate, and highly sensitive method to determine levels of DON, ZEN, T-2, and FB1 in real samples. PMID:27423670

  13. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  14. High-sensitivity high-throughput chip based biosensor array for multiplexed detection of heavy metals

    NASA Astrophysics Data System (ADS)

    Yan, Hai; Tang, Naimei; Jairo, Grace A.; Chakravarty, Swapnajit; Blake, Diane A.; Chen, Ray T.

    2016-03-01

    Heavy metal ions released into the environment from industrial processes lead to various health hazards. We propose an on-chip label-free detection approach that allows high-sensitivity and high-throughput detection of heavy metals. The sensing device consists of 2-dimensional photonic crystal microcavities that are combined by multimode interferometer to form a sensor array. We experimentally demonstrate the detection of cadmium-chelate conjugate with concentration as low as 5 parts-per-billion (ppb).

  15. Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Jackson, J.

    1986-01-01

    A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.

  16. Non-enzymatic protein acetylation detected by NAPPA protein arrays*

    PubMed Central

    Olia, Adam S.; Barker, Kristi; McCullough, Cheryl E.; Tang, Hsin-Yao; Speicher, David W.; Qiu, Ji; LaBaer, Joshua; Marmorstein, Ronen

    2015-01-01

    Acetylation is a post-translational modification that occurs on thousands of proteins located in many cellular organelles. This process mediates many protein functions and modulates diverse biological processes. In mammalian cells, where acetyl-CoA is the primary acetyl donor, acetylation in the mitochondria is thought to occur by chemical means due to the relatively high concentration of acetyl-CoA located in this organelle. In contrast, acetylation outside of the mitochondria is thought to be mediated predominantly by acetyltransferase enzymes. Here we address the possibility that non-enzymatic chemical acetylation outside of the mitochondria may be more common than previously appreciated. We employed the Nucleic Acid Programmable Protein Array platform to perform an unbiased screen for human proteins that undergo chemical acetylation, which resulted in the identification of a multitude of proteins with diverse functions and cellular localization. Mass spectrometry analysis revealed that basic residues typically precede the acetylated lysine in the −7 to −3 position, and we show by mutagenesis that these basic residues contribute to chemical acetylation capacity. We propose that these basic residues lower the pKa of the substrate lysine for efficient chemical acetylation. Many of the identified proteins reside outside of the mitochondria, and have been previously demonstrated to be acetylated in vivo. As such, our studies demonstrate that chemical acetylation occurs more broadly throughout the eukaryotic cell than previously appreciated, and suggests that this post-translational protein modification may have more diverse roles in protein function and pathway regulation. PMID:26083674

  17. The 2011 Tohoku earthquake sequences detected by IMS hydroacoustic array

    NASA Astrophysics Data System (ADS)

    Yun, S.; Lee, W.

    2011-12-01

    A Mw 9.1 thrust-fault earthquake has been occurred in the Pacific coast of Tohoku, Japan, on March 11, 2011. It is the fourth largest earthquake ever recorded since modern seismographs installed, and hundreds of strong aftershocks (M > 5) have been accompanied. We applied a cross-correlation method to the continuous data recorded in the Hawaii hydroacoustic array operated by International Monitoring System (IMS), and calculated back-azimuths of T-waves generated by the earthquake sequences. The back-azimuth values of the major events show somewhat scattered pattern, which is a different feature from that of the Great Sumatra-Andaman Earthquake. This may imply that the rupture is not likely to propagate linearly through the thrust fault line. Several aftershocks, however, clearly show gradual back-azimuthal change toward North. These differences might be caused by complex and diverse source mechanisms of the earthquakes. Combining hydroacoustic data obtained by other IMS hydroacoustic stations, if available, we could resolve a better azimuthal change regarding the earthquake sequence.

  18. Array sensing using optical methods for detection of chemical and biological hazards.

    PubMed

    Diehl, Katharine L; Anslyn, Eric V

    2013-11-21

    By mimicking the mammalian senses of taste and smell, artificial arrays of cross-reactive receptors have found use in a variety of sensing applications. Pattern recognition algorithms allow these arrays to be used for discriminating analytes and even for predicting the identity of unknown analytes. Furthermore, in selecting a signaling method for these assays, the choice of optical detection is particularly desirable due to its high sensitivity and the associated convenient instrumentation. This tutorial review provides a brief introduction to array sensing using optical detection and chemometrics. While differential sensing approaches have been used for a number of applications, this review focuses on progress towards the detection of chemical and biological hazards. PMID:23999658

  19. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  20. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays. PMID:27131696

  1. A dual mode imaging array for damage detection in grout structures

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Yu, Lingyu; EL-Batanouny, Mohamed; Ziehl, Paul; Zhao, Liuxian

    2013-04-01

    Due to the heterogeneous nature of the cement-based materials, the ultrasonic waves in concrete exhibit highly scattering and attenuation, leading to the difficulty of concrete damaged detection. This paper presents a dual mode ultrasonic array imaging methodology that can map damage using Rayleigh surface waves and permanently installed piezoelectric sensors. The dual mode sensing integrates passive acoustic emission and active ultrasonic wave inspection. When a crack is developing, acoustic emission (AE) occurs and the disturbance can propagate outwards along the structure surface. A novel AE source imaging algorithm has been developed to detect and locate the AE source. Once the AE source is located, the sensor array switches to its active mode. For active sensing, one sensor in the array is used to generate Rayleigh wave for interrogation, while all the others are used as the wave receivers. All the sensory data are processed by the active ultrasonic array imaging algorithm. The proof-of-concept testing was performed on a grout specimen with representative dimensions. The passive array imaging algorithm was able to locate the AE source simulated by pencil lead break while active sensing imaging was able to detect the damage simulated by a hole. The duel mode imaging method is promising and economically beneficial for solving a key source localization problem in damage detection on large concrete structures.

  2. Fabrication of immunosensor microwell arrays from gold compact discs for detection of cancer biomarker proteins†

    PubMed Central

    Tang, Chi K.; Vaze, Abhay; Rusling, James F.

    2012-01-01

    A simple method is reported to fabricate gold arrays featuring microwells surrounding 8-electrodes from gold compact discs (CDs) for less than $0.2 per chip. Integration of these disposable gold CD array chips with microfluidics provided inexpensive immunoarrays that were used to measure a cancer biomarker protein quickly at high sensitivity. The gold CD sensor arrays were fabricated using thermal transfer of laserjet toner from a computer-printed pattern followed by selective chemical etching. Sensor elements had an electrochemically addressable surface area of 0.42 mm2 with RSD <2%. For a proof-of-concept application, the arrays were integrated into a simple microfluidic device for electrochemical detection of cancer biomarker interleukin-6 (IL-6) in diluted serum. Capture antibodies of IL-6 were chemically linked onto the electrode arrays and a sandwich immunoassay protocol was developed. A biotinylated detection antibody with polymerized horseradish peroxidase labels was used for signal amplification. The detection limit of IL-6 in diluted serum was remarkably low at 10 fg mL −1 (385 aM) with a linear response with log of IL-6 concentration from 10 to 1300 fg mL −1. These easily fabricated, ultrasensitive, microfluidic immunosensors should be readily adapted for sensitive detection of multiple biomarkers for cancer diagnostics. PMID:22116194

  3. An impulse radar array for detecting land mines

    SciTech Connect

    Gavel, D.T.; Mast, J.E.; Warhus, J.; Azevedo, S.G.

    1995-04-03

    The Lawrence Livermore National Laboratory has developed radar and imaging technologies with potential application in demining efforts. A patented wideband (impulse) radar that is very compact, very low cost, and very low power, has been demonstrated in test fields to be able to detect and image nonmetallic land mines buried in 2-10 cm of soil. The scheme takes advantage of the very short radar impulses and the ability to form a large synthetic aperture with many small individual units, to generate high resolution 2-D or 3-D tomographic images of the mine and surrounding ground. Radar range calculations predict that a vehicle-mounted or man-carried system is quite feasible using this technology. This paper presents the results of field tests using a prototype unit and describes practical mine detection system concepts. Predicted capabilities in terms of stand-off range and radiated power requirements are discussed.

  4. Detection of Crosstalk Faults in Field Programmable Gate Arrays (FPGA)

    NASA Astrophysics Data System (ADS)

    Das, N.; Roy, P.; Rahaman, H.

    2015-09-01

    In this work, a Built-in-Self-Test (BIST) technique has been proposed to detect crosstalk faults in FPGA and run time congestion and to provide the crosstalk aware router for FPGA. The proposed BIST circuits require less overhead as compared to earlier techniques. The proposed detector can detect any logic hazard or delay due to crosstalk. A technique has also been proposed to avoid the crosstalk by routing the path in such a way that no interference occurs between the interconnects. The proposed router has achieved better utilization of routing resource to determine the net as compared to the earlier works. The proposed scheme is simulated in MATLAB and verified using Xilinx ISE tools and Modelsim 6.0. The router is implemented by using class provided by JBits for Xilinx, Vertex-II FPGA. It has been found that the results are quite encouraging.

  5. Protein detection system based on 32x32 SPAD pixel array

    NASA Astrophysics Data System (ADS)

    Pancheri, L.; Pasquardini, L.; Morganti, E.; Massari, N.; Stoppa, D.; Collini, C.; Lorenzelli, L.; Lunelli, L.; Pederzolli, C.

    2012-04-01

    In this work, a compact low-cost system designed to detect low amounts of proteins in biological fluids is presented. The system, based on time-gated fluorescence detection principle, is composed by a Single-Photon Avalanche Diode (SPAD) pixel array, a LED excitation light source and a micro-machined reaction chamber coupled to a microfluidic network. A dual-site binding strategy based on DNA aptamers is used for target protein recognition. The microreactor, composed of an array of microwells covered with a transparent membrane, is functionalized with a primary aptamer, while a fluorescent-tagged secondary aptamer is used for the detection. Preliminary measurements demonstrate the feasibility of fluorescence lifetime detection to discriminate between different fluorophores. The detection of human thrombin protein in 300nM concentration is reported as a biological proof of principle of the biosensor.

  6. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    PubMed Central

    Shih, Jeanne-Louise; Wu, Kuo-Ting; Jen, Cheng-Kuei; Chiu, Chun-Hsiung; Tzeng, Jing-Chi; Liaw, Jiunn-Woei

    2013-01-01

    In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT) array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 μm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH) of ϕ3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections. PMID:23322101

  7. Referencing cross-reactivity of detection antibodies for protein array experiments

    PubMed Central

    Lemass, Darragh; O'Kennedy, Richard; Kijanka, Gregor S.

    2016-01-01

    Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires requires a platform-dependent, lot-to-lot validation of secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. The cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Secondary antibody characterisation using protein arrays enables generation of reference lists of cross-reactive proteins, which can be then excluded from analysis in follow-up experiments. Furthermore, making such cross-reactivity lists accessible to the wider research community may help to interpret data generated by the same antibodies in applications not related to protein arrays such as immunoprecipitation, Western blots or other immunoassays. PMID:27335636

  8. Applications of flexible ultrasonic transducer array for defect detection at 150 °C.

    PubMed

    Shih, Jeanne-Louise; Wu, Kuo-Ting; Jen, Cheng-Kuei; Chiu, Chun-Hsiung; Tzeng, Jing-Chi; Liaw, Jiunn-Woei

    2013-01-01

    In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT) array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 µm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH) of f3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections. PMID:23322101

  9. Sequencing of oligosaccharides using enzyme array digestion with electrochemical and fluorescent detections

    SciTech Connect

    Sun, M.; Lee, C.S.

    1997-12-31

    The objective of this study is to develop a rapid and sensitive method for oligosaccharide sequencing. The oligosaccharides are subjected to the enzyme array digestion with exoglycosidases of known and well-defined specificities. The enzyme array method involves the division of oligosaccharide sample into aliquots, and the incubation of each aliquot with a precisely defined mixture of exoglycosidases. In the enzyme array method, the presence of a specific linkage anywhere in the oligosaccharide is determined by the inability of an enzyme mixture lacking a given enzyme to cleave that linkage ( a stop point) and the ability of the other enzymes to cleave the linkage up to that point. The direct quantification of released monosaccharides from the enzyme array can be achieved by using pulsed amperometric detection (PAD) or by fluorescent derivatization with a fluorophoric agent. The measured monosaccharide concentrations in combination with the enzyme array analysis provide detail characterization of oligosaccharides with their sugar composition, configuration, and linkage information, The released monosaccharides are further quantified by anion exchange chromatography and capillary electrophoresis for the comparison with the results obtained from PAD and fluorescence measurements. Our enzyme array-electrochemical (or fluorescent) detection method does not require any separation procedure and any prior labeling of oligosaccharide and have several practical advantages over the current carbohydrate sequencing techniques including simplicity, speed, and the ability to use small amounts of starting material.

  10. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn S.; Tokumaru, Phillip; Martin, Charles R.; Mitchell, David

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  11. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.

    2006-10-17

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  12. INDRA, a 4 π charged product detection array at GANIL

    NASA Astrophysics Data System (ADS)

    Pouthas, J.; Borderie, B.; Dayras, R.; Plagnol, E.; Rivet, M. F.; Saint-Laurent, F.; Steckmeyer, J. C.; Auger, G.; Bacri, C. O.; Barbey, S.; Barbier, A.; Benkirane, A.; Benlliure, J.; Berthier, B.; Bougamont, E.; Bourgault, P.; Box, P.; Bzyl, R.; Cahan, B.; Cassagnou, Y.; Charlet, D.; Charvet, J. L.; Chbihi, A.; Clerc, T.; Copinet, N.; Cussol, D.; Engrand, M.; Gautier, J. M.; Huguet, Y.; Jouniaux, O.; Laville, J. L.; Le Botlan, P.; Leconte, A.; Legrain, R.; Lelong, P.; Le Guay, M.; Martina, L.; Mazur, C.; Mosrin, P.; Olivier, L.; Passerieux, J. P.; Pierre, S.; Piquet, B.; Plaige, E.; Pollacco, E. C.; Raine, B.; Richard, A.; Ropert, J.; Spitaels, C.; Stab, L.; Sznajderman, D.; Tassan-got, L.; Tillier, J.; Tripon, M.; Vallerand, P.; Volant, C.; Volkov, P.; Wieleczko, J. P.; Wittwer, G.

    1995-02-01

    INDRA, a new and innovative highly segmented detector for light charged particles and fragments is described. It covers geometrically 90% of the 4π solid angle and has very low detection thresholds. The detector, operated under vacuum, is axially symmetric and segmented in 336 independent cells allowing efficient detection of high multiplicity events. Nucleus identification down to very low energy threshold (≈ 1 A MeV) is achieved by using ionization chambers operated with low pressure C 3F 8 gas. Residual energies are measured by a combination of silicon (300 μm thick) and cesium iodide (5 to 14 cm in length) detectors. Very forward angles are covered by fast counting phoswich scintillators (NE102/NE115). Charge resolution up to Z = 50 is achieved on a large energy dynamic range (5000 to 1 for silicon detectors). Isotopic separation is obtained up to Z = 3. The treatment of the signals is performed through specifically designed and highly integrated modules, most of which are in the new VXIbus standard. Full remote control of parameter settings, including visualization of signals, is thus allowed. The detector is continuously monitored with a laser source and electronic pulsers and is found stable over several days. Energy calibration procedures, making use of specific detectors and the ability of the GANIL accelerator to deliver secondary beams, have been developed. First experiments were performed in the spring of 1993.

  13. Patterned Array of Poly(ethylene glycol) Silane Monolayer for Label-Free Detection of Dengue.

    PubMed

    Rosly, Nor Zida; Ahmad, Shahrul Ainliah Alang; Abdullah, Jaafar; Yusof, Nor Azah

    2016-01-01

    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA. PMID:27571080

  14. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  15. Multi-layer hierarchical array fabricated with diatom frustules for highly sensitive bio-detection applications

    NASA Astrophysics Data System (ADS)

    Li, Aobo; Cai, Jun; Pan, Junfeng; Wang, Yu; Yue, Yue; Zhang, Deyuan

    2014-02-01

    Diatoms have delicate porous structures which are very beneficial in improving the absorbing ability in the bio-detection field. In this study, multi-layered hierarchical arrays were fabricated by packing Nitzschia soratensis (N. soratensis) frustules into Cosinodiscus argus (C. argus) frustules to achieve advanced sensitivity in bio-detection chips. Photolithographic patterning was used to obtain N. soratensis frustule arrays, and the floating behavior of C. argus frustules was employed to control their postures for packing N. soratensis frustule array spots. The morphology of the multi-layer C. argus-N. soratensis package array was investigated by scanning electron microscopy, demonstrating that the overall and sub-structures of the diatom frustules were retained. The signal enhancing effect of multi-layer C. argus-N. soratensis packages was demonstrated by fluorescent antibody test results. The mechanism of the enhancement was also analyzed, indicating that both complex hierarchical frustule structures and optimized posture of C. argus frustules were important for improving bio-detection sensitivities. The technique for fabricating multi-layer diatom frustules arrays is also useful for making multi-functional biochips and controllable drug delivery systems.

  16. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  17. Tropical cyclone waves detected with infrasound sensor array

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-02-01

    The strong winds of a tropical cyclone whip up the sea surface, driving ocean waves a dozen meters high. When one such ocean wave runs into another wave that has an equal period but is traveling in the opposite direction, the interaction produces low-frequency sound waves that can be detected thousands of kilometers away. The infrasound signals produced by interacting ocean surface waves—known as microbarom—have typical frequencies around 0.2 hertz. Researchers previously determined that as a hurricane travels along its track, early waves generated by the storm will interact with those generated later on, producing a strong microbarom signal in the storm's wake. Researchers also found, however, that microbarom signals are produced by regular surface ocean behavior, including swell, surface waves, and nontropical cyclone storms.

  18. TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2

    PubMed Central

    Zhang, Xiaoxing; Zhang, Jinbin; Jia, Yichao; Xiao, Peng; Tang, Ju

    2012-01-01

    The detection of partial discharge through analysis of SF6 gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2, and the application of the anodic oxidation method for the directional growth of highly ordered TiO2 nanotube arrays. The sensor response of 10–50 ppm SO2 gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO2 nanotube sensor array has good response to SO2 gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components. PMID:22737009

  19. TiO2 nanotube array sensor for detecting the SF6 decomposition product SO2.

    PubMed

    Zhang, Xiaoxing; Zhang, Jinbin; Jia, Yichao; Xiao, Peng; Tang, Ju

    2012-01-01

    The detection of partial discharge through analysis of SF(6) gas components in gas-insulated switchgear, is significant for the diagnosis and assessment of the operating state of power equipment. The present study proposes the use of a TiO(2) nanotube array sensor for detecting the SF(6) decomposition product SO(2), and the application of the anodic oxidation method for the directional growth of highly ordered TiO(2) nanotube arrays. The sensor response of 10-50 ppm SO(2) gas is tested, and the sensitive response mechanism is discussed. The test results show that the TiO(2) nanotube sensor array has good response to SO(2) gas, and by ultraviolet radiation, the sensor can remove attached components very efficiently, shorten recovery time, reduce chemical poisoning, and prolong the life of the components. PMID:22737009

  20. The Unique Capabilities of the Allen Telescope Array for Pulsar Timing and Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    McLaughlin, Maura

    2011-01-01

    Since their discovery in 1982, millisecond pulsars have served as exquisite probes of fundamental physics. I will discuss the most transformative current application of millisecond pulsars: the direct detection of gravitational waves. Timing an array of pulsars could result in the detection of a stochastic background of gravitational waves, most likely resulting from an ensemble of supermassive black hole binaries. The unique capabilities of the Allen Telescope Array (ATA) will make it a very important resource for this experiment. The multi-wavelength coverage will increase sensitivity and enable optimal removal of interstellar propagation affects and the flexibility of scheduling afforded by commensal observing will increase the number of sources times and the cadence at which we can observe each source. I will discuss how these properties complement existing facilities and how including the ATA will increase the sensitivity of the international pulsar timing array.

  1. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    NASA Astrophysics Data System (ADS)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi C.; Berthing, Trine; Madsen, Morten H.; Holm, Johannes; Nygård, Jesper; Martinez, Karen L.

    2013-10-01

    Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended to many high aspect ratio nanostructures.Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual

  2. Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays

    SciTech Connect

    Ghenuche, Petru; Torres, Juan de; Ferrand, Patrick; Wenger, Jérôme

    2014-09-29

    Fluorescence sensing and fluorescence correlation spectroscopy (FCS) are powerful methods to detect and characterize single molecules; yet, their use has been restricted by expensive and complex optical apparatus. Here, we present a simple integrated design using a self-assembled bi-dimensional array of microspheres to realize multi-focus parallel detection scheme for FCS. We simultaneously illuminate and collect the fluorescence from several tens of microspheres, which all generate their own photonic nanojet to efficiently excite the molecules and collect the fluorescence emission. Each photonic nanojet contributes to the global detection volume, reaching FCS detection volumes of several tens of femtoliters while preserving the fluorescence excitation and collection efficiencies. The microspheres photonic nanojets array enables FCS experiments at low picomolar concentrations with a drastic reduction in apparatus cost and alignment constraints, ideal for microfluidic chip integration.

  3. Comparison of printed glycan array, suspension array and ELISA in the detection of human anti-glycan antibodies.

    PubMed

    Pochechueva, Tatiana; Jacob, Francis; Goldstein, Darlene R; Huflejt, Margaret E; Chinarev, Alexander; Caduff, Rosemarie; Fink, Daniel; Hacker, Neville; Bovin, Nicolai V; Heinzelmann-Schwarz, Viola

    2011-12-01

    Anti-glycan antibodies represent a vast and yet insufficiently investigated subpopulation of naturally occurring and adaptive antibodies in humans. Recently, a variety of glycan-based microarrays emerged, allowing high-throughput profiling of a large repertoire of antibodies. As there are no direct approaches for comparison and evaluation of multi-glycan assays we compared three glycan-based immunoassays, namely printed glycan array (PGA), fluorescent microsphere-based suspension array (SA) and ELISA for their efficacy and selectivity in profiling anti-glycan antibodies in a cohort of 48 patients with and without ovarian cancer. The ABO blood group glycan antigens were selected as well recognized ligands for sensitivity and specificity assessments. As another ligand we selected P(1), a member of the P blood group system recently identified by PGA as a potential ovarian cancer biomarker. All three glyco-immunoassays reflected the known ABO blood groups with high performance. In contrast, anti-P(1) antibody binding profiles displayed much lower concordance. Whilst anti-P(1) antibody levels between benign controls and ovarian cancer patients were significantly discriminated using PGA (p=0.004), we got only similar results using SA (p=0.03) but not for ELISA. Our findings demonstrate that whilst assays were largely positively correlated, each presents unique characteristic features and should be validated by an independent patient cohort rather than another array technique. The variety between methods presumably reflects the differences in glycan presentation and the antigen/antibody ratio, assay conditions and detection technique. This indicates that the glycan-antibody interaction of interest has to guide the assay selection. PMID:21948103

  4. Imaging, object detection, and change detection with a polarized multistatic GPR array

    SciTech Connect

    Beer, N. Reginald; Paglieroni, David W.

    2015-07-21

    A polarized detection system performs imaging, object detection, and change detection factoring in the orientation of an object relative to the orientation of transceivers. The polarized detection system may operate on one of several modes of operation based on whether the imaging, object detection, or change detection is performed separately for each transceiver orientation. In combined change mode, the polarized detection system performs imaging, object detection, and change detection separately for each transceiver orientation, and then combines changes across polarizations. In combined object mode, the polarized detection system performs imaging and object detection separately for each transceiver orientation, and then combines objects across polarizations and performs change detection on the result. In combined image mode, the polarized detection system performs imaging separately for each transceiver orientation, and then combines images across polarizations and performs object detection followed by change detection on the result.

  5. Systems and methods for detecting a failure event in a field programmable gate array

    NASA Technical Reports Server (NTRS)

    Ng, Tak-Kwong (Inventor); Herath, Jeffrey A. (Inventor)

    2009-01-01

    An embodiment generally relates to a method of self-detecting an error in a field programmable gate array (FPGA). The method includes writing a signature value into a signature memory in the FPGA and determining a conclusion of a configuration refresh operation in the FPGA. The method also includes reading an outcome value from the signature memory.

  6. Detection of Regional Infrasound Signals Using Array Data - Testing, Tuning, and Physical Interpretation

    NASA Astrophysics Data System (ADS)

    Park, J.; Stump, B. W.; Hayward, C.; Arrowsmith, S.; Che, I. Y.; Drob, D. P.

    2015-12-01

    In order to understand the impact environmental conditions have on infrasound detection, an automated detector that accounts for both correlated and uncorrelated noise is run on data from a number of infrasonic arrays, all in a regional context. Data from six seismo-acoustic arrays in South Korea (BRDAR, CHNAR, KMPAR, KSGAR, TJIAR, and YPDAR), which are cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU), were used. An adaptive F-detector (AFD) (Arrowsmith et al., 2009) is applied that utilizes the F-statistic (Blandford, 1974) with an adaptive procedure that assesses variations in coherent noise in order to reduce false alarms. The adaptive procedure is characterized by the time dependent C-value that is found to depend on the weather conditions and local site effects. Arrays located on islands or near the coast produce noise power densities that are higher, consistent with both higher wind speeds as well as ocean wave contributions that vary seasonally. These results suggest that optimal detection processing requires careful characterization of background noise level and its relationship to enviornmental measures at individual arrays. This study also documents significant seasonal variations in infrasound detections including daily time of occurrence, total number of detections, and phase velocity/azimuth estimates. These time-dependent effects in most part explained by atmospheric models across the Korean peninsula as described by Drob et al. (2003).

  7. Flexible Non-Constrained RF Wrist Pulse Detection Sensor Based on Array Resonators.

    PubMed

    An, Yong-Jun; Kim, Byung-Hyun; Yun, Gi-Ho; Kim, Sung-Woo; Hong, Seung-Bum; Yook, Jong-Gwan

    2016-04-01

    This paper presents the development of a non-contact, nonintrusive wrist pulse sensor based on the near-field variation of an array resonator. A compact resonator and its array were designed and fabricated on flexible substrate. The reflection coefficient of the resonator can vary as a function of the distance between the resonator and the walls of the major arteries, and the corresponding variation is utilized to obtain heart rate information at the wrist. To detect very weak pulse signals from the main arteries, a sensitivity enhancement technique was devised using a radio frequency (RF) array resonator. The sensor system was implemented with an RF switch to combine or select appropriate signals from the resonator element and was tested using the 2.4 GHz ISM band. The results demonstrated the sensor system's excellent performance in both sequential and simultaneous detection schemes. The measurement results showed that a heartbeat pulse can be detected from both radial and ulnar arteries via the array resonators. Considering the high sensitivity and characteristics, the proposed detection system can be utilized as a wearable, long-term health monitoring device. PMID:25966481

  8. Carbon Nanotube Nanoelectrode Array as an Electronic Chip for Ultrasensitive Label-free DNA Detection

    NASA Technical Reports Server (NTRS)

    Li, Jun; Koehne, Jessica; Chen, Hua; Cassell, Alan; Ng, Hou Tee; Fan, Wendy; Ye, Qi; Han, Jie; Meyyappan, M.

    2003-01-01

    A reliable nanoelectrode array based on vertically aligned multi-walled carbon nanotubes (MWNTs) embedded in SiO2 is used for ultrasensitive DNA detection. Characteristic nanoelectrode behavior is observed using low-density MWNT arrays for measuring both bulk and surface immobilized redox species such as K4Fe(CN)6 and ferrocene derivatives. The open-end of MWNTs are found to present similar properties as graphite edge-plane electrodes with wide potential window, flexible chemical functionalities, and good biocompatibility. BRCA1 related oligonucleotide probes with 18 bp are selectively functionalized at the open ends of the nanotube array and specifically hybridized with oligonucleotide targets incorporated with a polyG tag. The guanine groups are employed as the signal moieties in the electrochemical measurements. R(bpy)(sup 2+, sub 3) mediator is used to further amplify the guanine oxidation signal. The hybridization of sub-attomoles of DNA targets is detected electrochemically by combining the MWNT nanoelectrode array with the R(bpy)(sup 2+, sub 3) amplification mechanism. This technique was employed for direct electrochemical detection of label-free PCR amplicon from a healthy donor through specific hybridization with the BRCA1 probe. The detection limit is estimated to be less than 1000 DNA molecules since abundant guanine bases in the PCR amplicon provides a large signal. This system provides a general platform for rapid molecular diagnostics in applications requiring ultrahigh sensitivity, high-degree of miniaturization, and simple sample preparation, and low-cost operation.

  9. DNA detection on transistor arrays following mutation-specific enzymatic amplification

    NASA Astrophysics Data System (ADS)

    Pouthas, F.; Gentil, C.; Côte, D.; Bockelmann, U.

    2004-03-01

    An integrated array of silicon field-effect transistor structures is used for electronic detection of label-free DNA. Measurements of the dc current-voltage characteristics of the transistors gives us access to reproducible detection of single- and double-stranded DNA, locally adsorbed on the surface of the device. We combine this approach with allele-specific polymerase chain reaction, to test for the 35delG mutation, a frequent mutation related to prelingual nonsyndromic deafness.

  10. Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces.

    PubMed

    Sairi, Masniza; Arrigan, Damien W M

    2015-01-01

    The behaviour of protonated ractopamine (RacH(+)) at an array of micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated via cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV). The micro-ITIES array was formed at silicon membranes containing 30 pores of radius 11.09±0.12 µm and pore centre-to-centre separation of 18.4±2.1 times the pore radius. CV shows that RacH(+) transferred across the water |1,6-dichlorohexane µITIES array at a very positive applied potential, close to the upper limit of the potential window. Nevertheless, CV was used in the estimation of some of the drug's thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. LSSV was implemented by pre-concentration of the drug, into the organic phase, followed by voltammetric detection, based on the back-transfer of RacH(+) from the organic to aqueous phase. Under optimised pre-concentration and detection conditions, a limit of detection of 0.1 µM was achieved. In addition, the impact of substances such as sugar, ascorbic acid, metal ions, amino acid and urea on RacH(+) detection was assessed. The detection of RacH(+) in artificial serum indicated that the presence of serum protein interferes in the detection signal, so that sample deproteinisation is required for feasible bioanalytical applications. PMID:25476299

  11. Real-time system for imaging and object detection with a multistatic GPR array

    SciTech Connect

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  12. Detection and localization of particle-emitting sources with compound-eye inspired detector arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2007-08-01

    We develop methods to detect and localize particle-emitting sources using detector arrays that are inspired by biological compound eyes. The sources of interest may be optical, nuclear, or cosmic; they emit particles such as visible photons, neutrons, protons, or charged particles. Our results may have wide applications to artificial vision, which can be important in robotics (robot vision) or medicine (e.g., artificial eyes for the blind); security, where the detection of nuclear materials is needed; or astronomy. This dissertation consists of three parts. First, we detect a far-field particle source using two directional detector arrays: cubic and spherical. We propose a mean-difference test (MDT) detector, analyze its statistical performance, and show that the MDT has a number of advantages over the generalized likelihood- ratio test (GLRT). Second, we localize the source by proposing a novel biologically inspired detector array, whose configuration generalizes the compound eye of insects. This array combines the advantages of compound eyes (e.g., large field-of-view) and human eyes (e.g., high angular resolution). Based on a statistical model of the array measurements, we analyze the array performance by computing the Cramérao bound (CRB) on the error in estimating the source direction. We also derive lower bounds on the mean-square angular error (MSAE) of the source localization and investigate the MSAE of two source- direction estimators. Numerical examples, including the optimal array design, are presented to further illustrate the array performance. Third, we derive a statistical angular resolution limit (ARL) on resolving two closely spaced point sources in a three-dimensional frame, which is applicable to various measurement models (e.g., radar, sonar, or astronomy). Using the asymptotic analysis of the GLRT, we derive the ARL with constraints on the probabilities of false alarm and detection. Our results give explicit analytical expression for the ARL

  13. Flexible-foam-based capacitive sensor arrays for object detection at low cost

    NASA Astrophysics Data System (ADS)

    Metzger, Christian; Fleisch, Elgar; Meyer, Jan; Dansachmüller, Mario; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard; Bauer, Siegfried

    2008-01-01

    Polymer foams are used in the automotive and construction industries for thermal insulation, vibration attenuation, and pressure absorption, due to their lightweight structure, thermal characteristics and low manufacturing costs. These foams have higher elasticity in their cross sections than bulk polymers, which makes them the preferred mount for capacitive sensor arrays. The authors describe a flexible pressure-sensitive surface mounted on packaging foam. The elastic properties of the foam are presented along with the sensor array's weight sensitivity. The authors illustrate an inventory management application where objects on display can be detected through their weights.

  14. Comparison of Two Suspension Arrays for Simultaneous Detection of Five Biothreat Bacterial in Powder Samples

    PubMed Central

    Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan

    2012-01-01

    We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic “write powder” samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples. PMID:22690123

  15. Comparison of two suspension arrays for simultaneous detection of five biothreat bacterial in powder samples.

    PubMed

    Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan

    2012-01-01

    We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples. PMID:22690123

  16. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    PubMed

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-01-01

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927

  17. 64-element photodiode array for scintillation detection of x-rays

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators

  18. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    PubMed Central

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-01-01

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients. PMID:27294927

  19. Multiplexed protein detection using antibody-conjugated microbead arrays in a microfabricated electrophoretic device

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua

    2011-01-01

    We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631

  20. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2016-04-01

    We present a 16 × 16 CMOS biosensor array aiming at impedance detection of whole-cell bacteria. Each 14 μm × 16 μm pixel comprises high-sensitive passivated microelectrodes connected to an innovative readout interface based on charge sharing principle for capacitance-to-voltage conversion and subthreshold gain stage to boost the sensitivity. Fabricated in a 0.25 μm CMOS process, the capacitive array was experimentally shown to perform accurate dielectric measurements of the electrolyte up to electrical conductivities of 0.05 S/m, with maximal sensitivity of 55 mV/fF and signal-to-noise ratio (SNR) of 37 dB. As biosensing proof of concept, real-time detection of Staphylococcus epidermidis binding events was experimentally demonstrated and provides detection limit of ca. 7 bacteria per pixel and sensitivity of 2.18 mV per bacterial cell. Models and simulations show good matching with experimental results and provide a comprehensive analysis of the sensor and circuit system. Advantages, challenges and limits of the proposed capacitive biosensor array are finally described with regards to literature. With its small area and low power consumption, the present capacitive array is particularly suitable for portable point-of-care (PoC) diagnosis tools and lab-on-chip (LoC) systems. PMID:25974947

  1. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.

    PubMed

    Matatagui, D; Fontecha, J; Fernández, M J; Aleixandre, M; Gràcia, I; Cané, C; Horrillo, M C

    2011-09-15

    An array of Love-wave sensors based on quartz and Novolac has been developed to detect chemical warfare agents (CWAs). These weapons are a risk for human health due to their efficiency and high lethality; therefore an early and clear detection is of enormous importance for the people safety. Love-wave devices realized on quartz as piezoelectric substrate and Novolac as guiding layer have been used to make up an array of six sensors, which have been coated with specific polymers by spin coating. The CWAs are very dangerous and for safety reasons their well known simulants have been used: dimethylmethyl phosphonate (DMMP), dipropyleneglycol methyl ether (DPGME), dimethylmethyl acetamide (DMA), dichloroethane (DCE), dichloromethane (DCM) and dichloropentane (DCP). The array has been exposed to these CWA simulants detecting very low concentrations, such as 25 ppb of DMMP, a simulant of nerve agent sarin. Finally, principal component analysis (PCA) as data pre-processing and discrimination technique, and probabilistic neural networks (PNN) as patterns classification technique have been applied. The performance of the sensor array has shown stability, accuracy, high sensitivity and good selectivity to these simulants. PMID:21807207

  2. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection

    NASA Astrophysics Data System (ADS)

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L.

    2012-12-01

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL-1 has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV.

  3. Patterned polymer nanowire arrays as an effective protein immobilizer for biosensing and HIV detection.

    PubMed

    Shen, Yue; Liu, Yingyi; Zhu, Guang; Fang, Hao; Huang, Yunhui; Jiang, Xingyu; Wang, Zhong L

    2013-01-21

    We report an array of polymeric nanowires for effectively immobilizing biomolecules on biochips owing to the large surface area. The nanowires were fabricated in predesigned patterns using an inductively coupled plasma (ICP) etching process. Microfluidic biochips integrated using the substrates with arrays of nanowires and polydimethylsiloxane channels have been demonstrated to be effective for detecting antigens, and a detection limit of antigens at 0.2 μg mL(-1) has been achieved, which is improved by a factor of 50 compared to that based on flat substrates without the nanowires. In addition, the high sensitivity for clinical detection of human immunodeficiency virus (HIV) antibody has also been demonstrated, showing a 20 times enhancement in fluorescent signal intensity between the samples with positive and negative HIV. PMID:23223639

  4. Label-Free Optical Detection of Biomolecular Translocation through Nanopore Arrays

    PubMed Central

    2015-01-01

    In recent years, nanopores have emerged as exceptionally promising single-molecule sensors due to their ability to detect biomolecules at subfemtomole levels in a label-free manner. Development of a high-throughput nanopore-based biosensor requires multiplexing of nanopore measurements. Electrical detection, however, poses a challenge, as each nanopore circuit must be electrically independent, which requires complex nanofluidics and embedded electrodes. Here, we present an optical method for simultaneous measurements of the ionic current across an array of solid-state nanopores, requiring no additional fabrication steps. Proof-of-principle experiments are conducted that show simultaneous optical detection and characterization of ssDNA and dsDNA using an array of pores. Through a comparison with electrical measurements, we show that optical measurements are capable of accessing equivalent transmembrane current information. PMID:25232895

  5. Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors

    PubMed Central

    Contreras, Javier; Costa, Daniel; Pereira, Sonia; Fortunato, Elvira; Martins, Rodrigo; Wierzbicki, Rafal; Heerlein, Holger; Ferreira, Isabel

    2010-01-01

    The movement of a micro cantilever was detected via a self constructed portable data acquisition prototype system which integrates a linear array of 32 1D amorphous silicon position sensitive detectors (PSD). The system was mounted on a microscope using a metal structure platform and the movement of the 30 μm wide by 400 μm long cantilever was tracked by analyzing the signals acquired by the 32 sensor array electronic readout system and the relevant data algorithm. The obtained results show a linear behavior of the photocurrent relating X and Y movement, with a non-linearity of about 3%, a spatial resolution of less than 2 μm along the lateral dimension of the sensor as well as of less than 3 μm along the perpendicular dimension of the sensor, when detecting just the micro-cantilever, and a spatial resolution of less than 1 μm when detecting the holding structure. PMID:22163648

  6. Algorithm-Based Error Detection Of A Cholesky Factor Updating Systolic Array Using Cordic Processors

    NASA Astrophysics Data System (ADS)

    Chou, S. I.; Rader, Charles M.

    1989-12-01

    Lincoln Laboratory has developed an architecture for a folded linear systolic array using fixed-point CORDIC processors, applicable to adaptive nulling for a radar sidelobe canceler. The algorithm implemented uses triangularization by Givens rotations to solve a least-squares problem in the voltage domain. In this paper, the implementation of an inexpensive algorithm-based error-detection scheme is proposed for this systolic array. Column average checksum encoding is intended to detect most errors caused by the failure of any single arithmetic unit. It retains or almost retains the 100% processor utilization of Lincoln Laboratory's novel design. For the case of 64 degrees of freedom, the increase in time complexity is only 3%. The increase in hardware is mainly two adders and two comparators per CORDIC processor. We believe that the small increase in cost will be amply offset by the improvement in system performance brought about by this error detection.

  7. Highly specific DNA detection employing ligation on suspension bead array readout.

    PubMed

    Mezger, Anja; Kühnemund, Malte; Nilsson, Mats; Herthnek, David

    2015-09-25

    We show for the first time that monomerized rolling circle amplification (RCA) products can be directly detected with the Luminex suspension bead array readout without the need of PCR amplification. Furthermore, using monomerized RCA products to guide ligation of the detection oligonucleotide (DO) to barcode sequences on the magnetic Luminex beads, combined with efficient washing and increased measurement temperature, yields a higher signal to noise ratio. As a proof-of-principle, we demonstrate detection of pathogenic DNA sequences with high reproducibility, sensitivity and a dynamic range over four orders of magnitude. Using padlock probes in combination with bead suspension arrays opens up the possibility for highly multiplexed DNA targeting and readout. PMID:25681158

  8. Periodic Application of Concurrent Error Detection in Processor Array Architectures. PhD. Thesis -

    NASA Technical Reports Server (NTRS)

    Chen, Paul Peichuan

    1993-01-01

    Processor arrays can provide an attractive architecture for some applications. Featuring modularity, regular interconnection and high parallelism, such arrays are well-suited for VLSI/WSI implementations, and applications with high computational requirements, such as real-time signal processing. Preserving the integrity of results can be of paramount importance for certain applications. In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detection (CED) techniques offer the advantage that transient and intermittent faults may be detected with greater probability than with off-line diagnostic tests. Applying time-redundant CED techniques can reduce hardware redundancy costs. However, most time-redundant CED techniques degrade a system's performance.

  9. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    NASA Astrophysics Data System (ADS)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2011-11-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  10. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    NASA Astrophysics Data System (ADS)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2012-01-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  11. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  12. Surface-Enhanced Raman Spectroscopy on Liquid Interfacial Nanoparticle Arrays for Multiplex Detecting Drugs in Urine.

    PubMed

    Ma, Yongmei; Liu, Honglin; Mao, Mei; Meng, Juan; Yang, Liangbao; Liu, Jinhuai

    2016-08-16

    The design and application of liquid interfacial plasmonic platform is still in its infancy but is an exciting topic in tunable optical devices, sensors, and catalysis. Here, we developed an interfacial surface-enhanced Raman scattering (SERS) platform through the large-scale self-assembly of gold nanoparticle (GNP) arrays at the cyclohexane (CYH)/water interface for detecting trace drug molecules in the urine of humans. The molecules extracted by the CYH phase from a urine sample were directly localized into the self-organized plasmonic hotspots, yielded excellent Raman enhancement, and realized the substrate-free interfacial SERS detection. Synchrotron radiation small-angle X-ray scattering (SR-SAXS) experiments reveals a good uniformity of approximately 2-3 nm interparticle distance in the GNP arrays. SERS colocalization experiments demonstrated that amphetamine molecules of different concentration levels could be loaded into the interfacial GNP arrays and realized the coassembly together with nanoparticles at the liquid/liquid interface. Interfacial GNP arrays with dynamic nanogaps in liquid interfacial structure can make surrounding molecules easily diffuse into the nanogaps. In contrast, the fixed GNP arrays on Si wafer were more irregular, such as multilayer stack, random aggregates, and voids, during the drying process. When the drugs directly participate in the self-assembly process, it becomes easier for analytes diffusing into the nanogaps of GNP arrays, produces a concentration effect, and amplified the SERS sensitivity. This feature also enables molecules to be adsorbed evenly in the arrays and makes a more uniform distribution of both the analytes and GNPs in the liquid interface and realizes the significant increase in signal reproducibility. Interfacial SERS produced a standard deviation of 12.5% at 1001 cm(-1) peak of methamphetamine (MAMP) molecules under the concentration of 1 ppm, implying a good reproducibility. Moreover, dual-analyte detection

  13. Expected properties of the first gravitational wave signal detected with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Sesana, Alberto; Gair, Jonathan

    2015-08-01

    In this paper, we attempt to investigate the nature of the first gravitational wave (GW) signal to be detected by pulsar timing arrays (PTAs): will it be an individual, resolved supermassive black hole binary (SBHB), or a stochastic background made by the superposition of GWs produced by an ensemble of SBHBs? To address this issue, we analyse a broad set of simulations of the cosmological population of SBHBs that cover the entire parameter space allowed by current electromagnetic observations in an unbiased way. For each simulation, we construct the expected GW signal and identify the loudest individual sources. We then employ appropriate detection statistics to evaluate the relative probability of detecting each type of source as a function of time for a variety of PTAs; we consider the current International PTA, and speculate into the era of the Square Kilometre Array. The main properties of the first detectable individual SBHBs are also investigated. Contrary to previous work, we cast our results in terms of the detection probability (DP), since the commonly adopted criterion based on a signal-to-noise ratio threshold is statistic-dependent and may result in misleading conclusions for the statistics adopted here. Our results confirm quantitatively that a stochastic signal is more likely to be detected first (with between 75 and 93 per cent probability, depending on the array), but the DP of single-sources is not negligible. Our framework is very flexible and can be easily extended to more realistic arrays and to signal models including environmental coupling and SBHB eccentricity.

  14. Seismicity of Dronning Maud Land/antarctica As Detected By The Neumayer Seismological Array

    NASA Astrophysics Data System (ADS)

    Eckstaller, A.; Mueller, C.; Hoffmann, M.

    Array seismology provides a powerful tool for improving detection and localization capabilities for monitoring weak seismic events. Little is known about seismic activity of the Antarctic continent due to the sparse station deployment of the global network in this region. To improve monitoring capabilities a small-aperture short-period detec- tion array was installed in the vicinity of the German base Neumayer/Dronning Maud Land. The array complements the Neumayer seismograph network and the broadband seismograph SNAA at the neighbouring South African base Sanae IV. The array was installed in the austral summer season 1997 and has been operational almost continu- ously since that time. The design was adopted from the SPITS-array in Svalbard and consists of 15 short-period vertical seismometers arranged on three concentric rings around the 3-component intermediate-period seismometer in the center. Event detec- tion and beamforming is done automatically using array processing software from NORSAR. With this seismic antenna the number of detected Antarctic earthquakes was increased significantly. In particular, two seismically active regions were identified along the Jutul-Penck-Graben and off Kapp Norvegia. The nature of this seismic activity is not yet fully understood. Especially, the Jutul-Penck-Graben region is of interest since the question arises if this is an active tectonic rift system or if the seismic activity origi- nates from post-glacial rebound movements. Better knowledge of hypocentral depths and focal mechanisms will contribute to the understanding of these mechanisms. An integrated approach by using temporary local networks including geodetical and air- borne geophysical measurements may reveal the mechanisms of these neotectonic dynamics.

  15. Seismic detections of the 15 February 2013 Chelyabinsk meteor from the dense ChinArray

    NASA Astrophysics Data System (ADS)

    Li, Lu; Wang, Baoshan; Peng, Zhigang; Wang, Weitao

    2016-07-01

    ChinArray is a dense portable broadband seismic network to cover the entire continental China, and the Phase I is deployed along the north-south seismic belt in southwest China. In this study, we analyze seismic data recorded on the ChinArray following the February 15, 2013 Chelyabinsk (Russia) meteor. This was the largest known object entering the Earth's atmosphere since the 1908 Tunguska meteor. The seismic energy radiated from this event was recorded by seismic stations worldwide including the dense ChinArray that are more than 4000 km away. The weak signal from the meteor event was contaminated by a magnitude 5.8 Tonga earthquake occurred ~20 min earlier. To test the feasibility of detecting the weak seismic signals from the meteor event, we compute vespagram and perform F-K analysis to the surface-wave data. We identify a seismic phase with back azimuth (BAZ) of 329.7° and slowness of 34.73 s/deg, corresponding to the surface wave from the Russian meteor event (BAZ ~325.97°). The surface magnitude (M S) of the meteor event is 3.94 ± 0.18. We also perform similar analysis on the data from the broadband array F-net in Japan, and find the BAZ of the surface waves to be 316.61°. With the different BAZs of ChinArray and F-net, we locate the Russian meteor event at 58.80°N, 58.72°E. The relatively large mislocation (~438 km as compared with 55.15°N, 61.41°E by others) may be a result of the bending propagation path of surface waves, which deviates from the great circle path. Our results suggest that the dense ChinArray and its subarrays could be used to detect weak signals at teleseismic distances.

  16. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  17. Design of a detection system of highlight LED arrays' effect on the human organization

    NASA Astrophysics Data System (ADS)

    Chen, Shuwang; Shi, Guiju; Xue, Tongze; Liu, Yanming

    2009-05-01

    LED (Light Emitting Diode) has many advantages in the intensity, wavelength, practicality and price, so it is feasible to apply in biomedicine engineering. A system for the research on the effect of highlight LED arrays to human organization is designed. The temperature of skin surface can rise if skin and organization are in irradiation by highlight LED arrays. The metabolism and blood circulation of corresponding position will be quicker than those not in the shine, so the surface temperature will vary in different position of skin. The structure of LED source arrays system is presented and a measure system for studying LED's influence on human organization is designed. The temperature values of shining point are detected by infrared temperature detector. Temperature change is different according to LED parameters, such as the number, irradiation time and luminous intensity of LED. Experimental device is designed as an LED arrays pen. The LED arrays device is used to shine the points of human body, then it may effect on personal organization as well as the acupuncture. The system is applied in curing a certain skin disease, such as age pigment, skin cancer and fleck.

  18. Detecting super-Nyquist-frequency gravitational waves using a pulsar timing array

    NASA Astrophysics Data System (ADS)

    Yi, Shu-Xu; Zhang, Shuang-Nan

    2016-08-01

    The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ( f Ny) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they appear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency > f Ny (super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data. Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is λs = -0.82, βs = -1.03 (rad); the corresponding minimum GW strain is h = 6.31 × 10-11 at f = 1 × 10-5 Hz.

  19. Trapping and Detection of Nanoparticles and Cells Using a Parallel Photonic Nanojet Array.

    PubMed

    Li, Yuchao; Xin, Hongbao; Liu, Xiaoshuai; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-06-28

    In advanced nanoscience, there is a strong desire to trap and detect nanoscale objects with high-throughput, single-nanoparticle resolution and high selectivity. Although emerging optical methods have enabled the selective trapping and detection of multiple micrometer-sized objects, it remains a great challenge to extend this functionality to the nanoscale. Here, we report an approach to trap and detect nanoparticles and subwavelength cells at low optical power using a parallel photonic nanojet array produced by assembling microlenses on an optical fiber probe. Benefiting from the subwavelength confinement of the photonic nanojets, tens to hundreds of nanotraps were formed in three dimensions. Backscattering signals were detected in real time with single-nanoparticle resolution and enhancement factors of 10(3)-10(4). Selective trapping of nanoparticles and cells from a particle mixture or human blood solution was demonstrated using the nanojet array. The developed nanojet array is potentially a powerful tool for nanoparticle assembly, biosensing, single-cell analysis, and optical sorting. PMID:27163754

  20. ZnO nano-array-based EGFET biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  1. Detection of food-borne pathogens with DNA arrays on disk.

    PubMed

    Arnandis-Chover, T; Morais, S; Tortajada-Genaro, L A; Puchades, R; Maquieira, Á; Berganza, J; Olabarria, G

    2012-11-15

    A DNA oligonucleotide array for duplex pathogen detection on a DVD platform is developed. The assay involves hybridization of PCR products and optical detection using compact disc technology. Different DNA array constructions for attachment of synthetic oligonucleotides on to DVD surface are evaluated, finding that streptavidin-biotin coupling method yielded the highest sensitivity in combination with enzymatic signal amplification. Issues of importance for the DNA array construction such immobilized probes design, PCR product labeling strategy and composition of the hybridization buffer were addressed. The methodology was proved scoring single nucleotide polymorphisms with high selectivity. The assay capability was also demonstrated by the identification of two pathogenic microorganisms in powder milk samples. In fifty minutes, the DVD-array system identifies Salmonella spp. and Cronobacter spp. (previously named Enterobacter sakazakii) precise and simultaneously with a sensitivity of 10(0) and 10(2) cfu/mL, respectively, in infant milk. Results were in good agreement with those obtained by quantitative real-time PCR. PMID:23158341

  2. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides.

    PubMed

    Qian, Sihua; Lin, Hengwei

    2015-01-01

    Due to relatively low persistence and high effectiveness for insect and pest eradication, organophosphates (OPs) and carbamates are the two major classes of pesticides that broadly used in agriculture. Hence, the sensitive and selective detection of OPs and carbamates is highly significant. In this current study, a colorimetric sensor array comprising five inexpensive and commercially available thiocholine and H2O2 sensitive indicators for the simultaneous detection and identification of OPs and carbamates is developed. The sensing mechanism of this array is based on the irreversible inhibition capability of OPs and carbamates to the activity of acetylcholinesterase (AChE), preventing production of thiocholine and H2O2 from S-acetylthiocholine and acetylcholine and thus resulting in decreased or no color reactions to thiocholine and H2O2 sensitive indicators. Through recognition patterns and standard statistical methods (i.e., hierarchical clustering analysis and principal component analysis), the as-developed array demonstrates not only discrimination of OPs and carbamates from other kinds of pesticides but, more interestingly, identification of them exactly from each other. Moreover, this array is experimentally confirmed to have high selectivity and sensitivity, good anti-interference capability, and potential applications in real samples for OPs and carbamates. PMID:25913282

  3. Report on demonstration project: imaging detection of unexploded ordinance using giant magnetoresistive sensor arrays

    SciTech Connect

    Chaiken, A., LLNL

    1996-09-01

    The goal of the project was to demonstrate the feasibility of the detection of buried unexploded ordnance (UXO) using giant magnetoresistive (GMR) sensor arrays. 3x3 and 5x5 arrays of off-the-shelf GMR sensors were purchased from Nonvolatile Electronics (NVE) and were interfaced with a data acquisition card and a personal computer. Magnetic images were obtained from a number of ferrous objects, such as threadstock, bolts, and rebar. These images can be interpreted in terms of the remanent magnetic state of the objects. The ability of the GMR sensor approach to discriminate among magnetic objects is assessed and the design of a more realistic UXO detection system is discussed.

  4. DETECTION OF MULTIPLE BIPOLAR FLOWS IN NGC 7027 WITH SUBMILLIMETER ARRAY

    SciTech Connect

    Huang Zhenyuan; Hasegawa, Tatsuhiko I.; Dinh-V-Trung; Kwok, Sun; Muller, Sebastien; Hirano, Naomi; Lim, Jeremy; Muthu Mariappan, C.; Lyo, Aran E-mail: hirano@asiaa.sinica.edu.t E-mail: trung@asiaa.sinica.edu.t E-mail: jlim@asiaa.sinica.edu.t E-mail: muthu@aries.ernet.i

    2010-10-10

    Highly collimated multiple bipolar flows are detected with a 3'' resolution in the HCO{sup +} (J = 3-2) and HCN (J = 3-2) lines in the young planetary nebula NGC 7027 with the Submillimeter Array. The HCO{sup +} and HCN flows coincide in location and velocity with compact and fast CO flows detected with {approx}6'' resolutions with other millimeter arrays. The equatorial molecular torus of NGC 7027 is captured in HCO{sup +} emission in the present observations. The HCO{sup +} emission also closely follows the H{sub 2} emission, indicating that the present observations probe the photon-dominated region of the molecular envelope of NGC 7027.

  5. Rapid oligonucleotide suspension array-based multiplex detection of bacterial pathogens.

    PubMed

    Zhao, Jinyin; Kang, Lin; Hu, Rui; Gao, Shan; Xin, Wenwen; Chen, Weijun; Wang, Jinglin

    2013-10-01

    A gene-specific microsphere suspension array coupled with 15-plex polymerase chain reaction (PCR) was developed to screen bacterial samples rapidly for 10 strains of bacteria: Shigella spp. (S. flexneri, S. dysenteriae, and S. sonnei), Staphylococcus aureus, Vibrio cholerae (serology O1 and O139), Legionella pneumophila, and Clostridium botulinum (types A, B, and E). Fifteen sets of highly validated primers were chosen to amplify target genes simultaneously. Corresponding oligonucleotide probes directly conjugated with microsphere sets were used to specifically identify PCR amplicons. Sensitivity tests revealed that the array coupled with single PCR was able to detect purified genomic DNA at concentrations as low as 10 copies/μL, while the multiplex detection limit was 10-10⁴ copies/μL. The assay was validated using water samples artificially spiked with S. aureus and S. dysenteriae, as well as water specimens from swimming pools previously identified to contain S. aureus. PMID:23947819

  6. Impact of blocking and detection chemistries on antibody performance for reverse phase protein arrays.

    PubMed

    Ambroz, Kristi

    2011-01-01

    Careful selection of well-qualified antibodies is critical for accurate data collection from reverse phase protein arrays (RPPA). The most common way to qualify antibodies for RPPA analysis is by Western blotting because the detection mechanism is based on the same immunodetection principles. Western blots of tissue or cell lysates that result in single bands and low cross-reactivity indicate appropriate antibodies for RPPA detection. Western blot conditions used to validate antibodies for RPPA experiments, including blocking and detection reagents, have significant effects on aspects of antibody performance such as cross-reactivity against other proteins in the sample. We have found that there can be a dramatic impact on antibody behavior with changes in blocking reagent and detection method, and offer an alternative method that allows detection reagents and conditions to be held constant in both antibody validation and RPPA experiments. PMID:21901590

  7. Improved Detection and Location of Ocean Microseism Signals using Array Techniques

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Koper, K. D.; Tkalcic, H.

    2015-12-01

    We present and evaluate a range of approaches that may be used to investigate ocean microseisms using seismic array data. At amplitudes below the dominant incoming signal, the ambient seismic energy (background noise) associated with microseisms arrives from multiple directions at any one time. Thus we address the challenge of detecting weaker signals from unpredictable directions in the presence of other strong signals. Our aim is to extract the most accurate information possible from such weaker signals in order to expand the capability of ocean storm studies, using seismology, including the ability to extract storm patterns from archive seismic array records. Detection of weaker microseism signals may be improved using algorithms widely used in astronomy. One example is the CLEAN algorithm which has wide usage in radio astronomy. This algorithm operates by finding the position and strength of point sources and iteratively deconvolving their contribution to the image. It may be combined to optimum effect with the previously published (Incoherently Averaged Signal) IAS Capon implementation for an accurate detection of weaker sources. Having detected weaker sources, they may be backprojected using a suitable Earth model, taking into account a correction for the mislocation due to slowness-azimuth station corrections. The microseism generation locations inferred in this manner are strongly frequency dependent, even within relatively restricted frequency ranges (0.325-0.725 Hz) for some arrays. Our advances in seismic array processing, with a focus on methods appropriate to weaker ambient noise signals, have led to insights, for example, regarding the generation of seismic noise. We find that secondary microseisms in the lower frequency band are generated mainly by ocean swell whereas higher frequency bands are generated by local wind conditions. These arrivals are investigated over a two-decade time frame for the Southern Ocean and west Pacific Ocean.

  8. Highly Sensitive Multi-Channel IDC Sensor Array for Low Concentration Taste Detection

    PubMed Central

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2015-01-01

    In this study, we designed and developed an interdigitated capacitor (IDC)-based taste sensor array to detect different taste substances. The designed taste sensing array has four IDC sensing elements. The four IDC taste sensing elements of the array are fabricated by incorporating four different types of lipids into the polymer, dioctyl phenylphosphonate (DOPP) and tetrahydrofuran (THF) to make the respective dielectric materials that are individually placed onto an interdigitated electrode (IDE) via spin coating. When the dielectric material of an IDC sensing element comes into contact with a taste substance, its dielectric properties change with the capacitance of the IDC sensing element; this, in turn, changes the voltage across the IDC, as well as the output voltage of each channel of the system. In order to assess the effectiveness of the sensing system, four taste substances, namely sourness (HCl), saltiness (NaCl), sweetness (glucose) and bitterness (quinine-HCl), were tested. The IDC taste sensor array had rapid response and recovery times of about 12.9 s and 13.39 s, respectively, with highly stable response properties. The response property of the proposed IDC taste sensor array was linear, and its correlation coefficient R2 was about 0.9958 over the dynamic range of the taste sensor array as the taste substance concentration was varied from 1 μM to 1 M. The proposed IDC taste sensor array has several other advantages, such as real-time monitoring capabilities, high sensitivity 45.78 mV/decade, good reproducibility with a standard deviation of about 0.029 and compactness, and the circuitry is based on readily available and inexpensive electronic components. The proposed IDC taste sensor array was compared with the potentiometric taste sensor with respect to sensitivity, dynamic range width, linearity and response time. We found that the proposed IDC sensor array has better performance. Finally, principal component analysis (PCA) was applied to

  9. Array microscopy technology and its application to digital detection of Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    McCall, Brian P.

    Tuberculosis causes more deaths worldwide than any other curable infectious disease. This is the case despite tuberculosis appearing to be on the verge of eradication midway through the last century. Efforts at reversing the spread of tuberculosis have intensified since the early 1990s. Since then, microscopy has been the primary frontline diagnostic. In this dissertation, advances in clinical microscopy towards array microscopy for digital detection of Mycobacterium tuberculosis are presented. Digital array microscopy separates the tasks of microscope operation and pathogen detection and will reduce the specialization needed in order to operate the microscope. Distributing the work and reducing specialization will allow this technology to be deployed at the point of care, taking the front-line diagnostic for tuberculosis from the microscopy center to the community health center. By improving access to microscopy centers, hundreds of thousands of lives can be saved. For this dissertation, a lens was designed that can be manufactured as 4x6 array of microscopes. This lens design is diffraction limited, having less than 0.071 waves of aberration (root mean square) over the entire field of view. A total area imaged onto a full-frame digital image sensor is expected to be 3.94 mm2, which according to tuberculosis microscopy guidelines is more than sufficient for a sensitive diagnosis. The design is tolerant to single point diamond turning manufacturing errors, as found by tolerance analysis and by fabricating a prototype. Diamond micro-milling, a fabrication technique for lens array molds, was applied to plastic plano-concave and plano-convex lens arrays, and found to produce high quality optical surfaces. The micro-milling technique did not prove robust enough to produce bi-convex and meniscus lens arrays in a variety of lens shapes, however, and it required lengthy fabrication times. In order to rapidly prototype new lenses, a new diamond machining technique was

  10. Sensor array and preconcentrator for the detection of explosives in water

    NASA Astrophysics Data System (ADS)

    Woodka, Marc D.; Shpil, J. Cory; Schnee, Vincent P.; Polcha, J. Michael P.

    2012-06-01

    A sensor system has been constructed that is capable of detecting and discriminating between various explosives presented in ocean water with detection limits at the 10-100 parts per trillion level. The sensor discriminates between different compounds using a biologically-inspired fluorescent polymer sensor array, which responds with a unique fluorescence quenching pattern during exposure to different analytes. The sensor array was made from commercially available fluorescent polymers coated onto glass beads, and was demonstrated to discriminate between different electron-withdrawing analytes delivered in salt water solutions, including the explosives 2,4,6-trinitrotoluene (TNT) and tetryl, the explosive hydrolysis products 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, as well as other explosive-related compounds and explosive simulants. Sensitivities of 10-100 parts per trillion were achieved by employing a preconcentrator (PC) upstream of the sensor inlet. The PC consists of the porous polymer Tenax, which captures explosives from contaminated water as it passes through the PC. As the concentration of explosives in water decreased, longer loading times were required to concentrate a detectable amount of explosives within the PC. Explosives accumulated within the PC were released to the sensor array by heating the PC to 190 C. This approach yielded preconcentration factors of up to 100-1000x, however this increased sensitivity towards lower concentrations of explosives was achieved at the expense of proportionally longer sampling times. Strategies for decreasing this sampling time are discussed.

  11. Detecting MLC errors in stereotactic radiotherapy plans with a liquid filled ionization chamber array.

    PubMed

    O'Connor, Patrick; Seshadri, Venkatakrisnan; Charles, Paul

    2016-03-01

    Quality assurance of stereotactic radiotherapy demands the use of equipment with the highest resolution and sensitivity available. This study examines the sensitivity of a commercially available liquid-filled ionization chamber array-the Octavius 1000 SRS (PTW, Frieburg, Germany) for detecting small (sub-millimetre) multi-leaf collimator (MLC) alignment errors in static square fields (side length 16-40 mm). Furthermore, the effectiveness of detecting small MLC errors in clinical stereotactic radiotherapy patient plans using the device was also evaluated. The commonly used gamma pass rate metric (of the measurements compared with treatment planning system generated results) was used. The gamma pass rates were then evaluated as a function of MLC position error (MLC error size 0.1-2.5 mm). The detector array exhibited a drop in pass rate between plans without error and those which had MLC errors induced. For example a drop in pass rate of 4.5 % (gamma criteria 3 %, 1 mm) was observed when a 0.8 mm error was introduced into a 16 mm square field. Furthermore the drop in pass rate increased as the MLC position error increased. This study showed that the Octavius 1000 SRS array could be a useful tool for applications requiring the detection of small geometric delivery uncertainties. PMID:26979835

  12. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection.

    PubMed

    Nugaeva, Natalia; Gfeller, Karin Y; Backmann, Natalija; Lang, Hans Peter; Düggelin, Marcel; Hegner, Martin

    2005-12-15

    We demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays. We exploited the specific biomolecular interactions of surface grafted proteins with the molecular structures on the fungal cell surface. It was found that these proteins have different affinities and efficiencies to bind the spores. Maximum spore immobilization, germination and mycelium growth was observed on the immunoglobulin G functionalized cantilever surfaces. We show that spore immobilization and germination of the mycelial fungus A. niger and yeast S. cerevisiae led to shifts in resonance frequency within a few hours as measured by dynamically operated cantilever arrays, whereas conventional techniques would require several days. The biosensor could detect the target fungi in a range of 10(3) - 10(6) CFUml(-1). The measured shift is proportional to the mass of single fungal spores and can be used to evaluate spore contamination levels. Applications lie in the field of medical and agricultural diagnostics, food- and water-quality monitoring. PMID:16257652

  13. Rapid and multiplex microRNA detection on graphically encoded silica suspension array.

    PubMed

    Jiang, Li; Shen, Ye; Zheng, Kexiao; Li, Jiong

    2014-11-15

    MicroRNA (miRNA), an 18-24-nucleotide noncoding RNA molecule, has become an ideal class of biomarker candidates for clinical diagnosis of cancers. By now, a number of detection methods for miRNAs have been developed on planar arrays and suspension arrays. In this work, we describe a hybridization-triggered fluorescence strategy for label-free and multiplex miRNA detection on graphically encoded silica suspension array. The total RNA is directly applied for analysis with an 8-mer Universal Tag which can be selectively captured by the capture probe via base-stacking effects. Benefiting from base-stacking effects, this novel method exhibits superb discrimination ability toward the 5' and 3' end single-nucleotide alteration. Mature miRNAs can be distinguished from their corresponding pre-miRNAs easily. Moreover, the estimated detection limit of 5 amol is comparable to some of the most sensitive methods. All these mentioned characteristics offer exciting possibilities for discovery and clinical applications. PMID:24892784

  14. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays.

    PubMed

    Ji, Xiaofan; Xiao, Chenyu; Lau, Wai-Fung; Li, Jianping; Fu, Junxue

    2016-08-15

    As metal nano-arrays show great potential on metal enhanced fluorescence (MEF) than random nanostructures, MEF of Ag zigzag nanorod (ZNR) arrays made by oblique angle deposition has been studied for biomolecule-protein interaction and DNA hybridization. By changing the folding number and the deposition substrate temperature, a 14-fold enhancement factor (EF) is obtained for biotin-neutravidin detection. The optimal folding number is decided as Z=7, owing to the high scattering intensity of Ag ZNRs. The substrate temperature T=25°C and 0°C slightly alters the morphology of Ag ZNRs but has no big difference in EF. Further, Ag ZNRs deposited on a layer of Ag film have been introduced to the DNA hybridization and a significant signal enhancement has been observed through the fluorescence microscope. Through a detailed quantitative EF analysis, which excludes the enhancing effect from the increased surface area of ZNRs and only considers the contribution of MEF, an EF of 28 is achieved for the hybridization of two single-stranded oligonucleotides with 33 bases. Furthermore, a limit of detection is determined as 0.01pM. We believe that the Ag ZNR arrays can serve as a universal and sensitive bio-detection platform. PMID:27088369

  15. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation.

    PubMed

    Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P

    2016-07-01

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time. PMID:27475150

  16. Simultaneous Detection of Fenitrothion and Chlorpyrifos-Methyl with a Photonic Suspension Array

    PubMed Central

    Wang, Xuan; Mu, Zhongde; Shangguan, Fengqi; Liu, Ran; Pu, Yuepu; Yin, Lihong

    2013-01-01

    A technique was developed for simultaneous detection of fenitrothion (FNT) and chlorpyrifos-methyl (CLT) using a photonic suspension array based on silica colloidal crystal beads (SCCBs). The SCCBs were encoded with the characteristic reflection peak originating from the stop-band of colloidal crystal. This approach avoids the bleaching, fading or potential interference seen when encoding by fluorescence. SCCBs with a nanopatterned surface had increased biomolecule binding capacity and improved stability. Under optimal conditions, the proposed suspension array allowed simultaneous detection of the selected pesticides in the ranges of 0.25 to 1024 ng/mL and 0.40 to 735.37 ng/mL, with the limits of detection (LODs) of 0.25 and 0.40 ng/mL, respectively. The suspension array was specific and had no significant cross-reactivity with other chemicals. The mean recoveries in tests in which samples were spiked with target standards were 82.35% to 109.90% with a standard deviation within 9.93% for CLT and 81.64% to 108.10% with a standard deviation within 8.82% for FNT. The proposed method shows a potentially powerful capability for fast quantitative analysis of pesticide residues. PMID:23805266

  17. Instantaneous dynamic change detection based on three-line-array stereoscopic images of TH-1 satellite

    NASA Astrophysics Data System (ADS)

    Zheng, Tuanjie; Cheng, Jiasheng; Li, Heyuan

    2014-05-01

    TH-1 satellite loading three-line array stereoscopic camera, can scanning 3 times from different directions on the same region or target within the time for about 1 minute, conducive to regional monitoring or target instantaneous change monitoring. Based on the time difference of forward, nadir and backward images of the three-line-array camera of TH-1 Satellite, this paper gives a method to get regional dynamic change image by processing of geometric and physical consistency under the principle of photogrammetry, and to construct the model of change detection by the quantitative results of change detection under the improvement and optimization of noise filtering algorithm. The experimental results show that, by using the detection results of forward, nadir and backward images of the three-line -array camera of TH-1 Satellite, moving distance and velocity can be accurately calculated, and quantitative monitoring of topography changes can be achieved, which not only has temporal resolution, but also can't be achieved by other environmental monitoring satellites. It's significant for flood, fire, clouds, or motion detectors. TH-1 satellite is China's first generation of transmission photogrammetry satellite. With the more satellites networking operation, and higher spatial and temporal resolution, The TH satellites will play a greater role in the field of Earth observation. This article merely uses the principles of photogrammetry to consider photography deformation from different directions, and thorough study will aim at shadow and sun elevation angle, to fully realize the monitoring of changes in topography and moving targets.

  18. Detection and Analysis of Low-Frequency Sperm Whale Vocalizations with a Towed Array

    NASA Astrophysics Data System (ADS)

    Bohn, Alexander

    Sperm whale vocalizations recorded during a sea test and calibration experiment in the Gulf of Maine on a single towed, horizontal, densely sampled, low-frequency (< 2500 Hz), coherent hydrophone array system are detected and analyzed for signal energy level and other characteristics. The vocalizing individuals are localized in bearing, range, and depth. An algorithm is developed to achieve automatic detection of vocalizations. This analysis is shown to have potential utility despite restriction to only the low-frequency component of the vocalizations by sampling theory. In addition, transmission loss in the New England continental shelf and slope environment is accounted for with an ocean waveguide-acoustic propagation model. Multiple averaged realizations of this model are used to estimate transmission loss as a function of range and depth for transects between the receiver array and vocalizing whales. Comparison of the vocalizations and background noise levels and the estimated transmission loss suggests the sperm whale detection range after coherent array processing exceeds 60 km in low-to-moderate sea states. Low-frequency source levels of vocalizations are estimated using the received levels and the estimated transmission loss, and applications of both this estimate and the receiver-side statistics are discussed.

  19. Detection of plate components defects by surface wave based on transducer arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Meng, Fanwu; Xu, Chunguang; Li, Xipeng; Zhou, Shiyuan; Xiao, Dingguo

    2013-01-01

    Detection of micro damages in flat components on-site has a significant sense for improving the safety of the equipment. Based on the theory of the surface acoustic wave (SAW) propagation laws in flat components, the micro damage detection in the flat component has been researched. Using wavelet analysis technology and inversed spectrum technology, the microdamages' feature parameters can be extracted out accurately. Utilizing the feature parameters got by every transducer in a transducer arrays, the micro-damages' image can be reconstructed, and the micro-damages' location, outer geometric configuration, and damage level can be showed clearly.

  20. A Compact, Low-Power Cantilever-Based Sensor Array for Chemical Detection

    SciTech Connect

    Loui, A; Ratto, T; Wilson, T; Mukerjee, E; Hu, Z; Sulchek, T; Hart, B

    2007-02-22

    A compact and low-power cantilever-based sensor array has been developed and used to detect various vapor analytes. This device employs sorptive polymers that are deposited onto piezoresistive cantilevers. We have successfully detected several organic vapors, representing a breadth of chemical properties and over a range of concentrations. Comparisons of the polymer/vapor partition coefficient to the cantilever deflection responses show that a simple linear relationship does not exist, emphasizing the need to develop an appropriate functional model to describe the chemical-to-mechanical transduction that is unique to this sensing modality.

  1. Detection of foreign body using fast thermoacoustic tomography with a multielement linear transducer array

    SciTech Connect

    Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan

    2007-04-23

    Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.

  2. Characterization of protein expression levels with label-free detected reverse phase protein arrays.

    PubMed

    Guo, Xuexue; Deng, Yihong; Zhu, Chenggang; Cai, Junlong; Zhu, Xiangdong; Landry, James P; Zheng, Fengyun; Cheng, Xunjia; Fei, Yiyan

    2016-09-15

    In reverse-phase protein arrays (RPPA), one immobilizes complex samples (e.g., cellular lysate, tissue lysate or serum etc.) on solid supports and performs parallel reactions of antibodies with immobilized protein targets from the complex samples. In this work, we describe a label-free detection of RPPA that enables quantification of RPPA data and thus facilitates comparison of studies performed on different samples and on different solid supports. We applied this detection platform to characterization of phosphoserine aminotransferase (PSAT) expression levels in Acanthamoeba lysates treated with artemether and the results were confirmed by Western blot studies. PMID:27372609

  3. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    PubMed

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-01

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence. PMID:23695411

  4. Report for Development of a Census Array and Evaluation of the Array to Detect Biothreat Agents and Environmental Samples for DHS

    SciTech Connect

    Jaing, C; Jackson, P

    2011-04-14

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, Taqman PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. This report focuses on the design, testing and results of samples on the Census Array. We designed a Census/Detection Array to detect all sequenced viruses (including phage), bacteria (eubacteria), and plasmids. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments, and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species with homology to sequenced organisms, and to be unique relative to the human genome. A combination of 'detection' probes with high levels of conservation within a family plus 'census' probes targeting strain/isolate specific regions enabled detection and taxonomic classification from the level of family down to the strain. The array has wider coverage of bacterial and viral targets based on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the literature. We tested the array with purified bacterial and viral DNA/RNA samples, artificial mixes of known bacterial/viral samples, spiked DNA against complex background including BW aerosol samples and soil samples, and environmental samples to evaluate the array's sensitivity and forensic capability. The data were analyzed using our novel maximum likelihood software. For most of the organisms tested, we have achieved at least species level discrimination.

  5. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.

    PubMed

    Labroo, Pratima; Cui, Yue

    2014-02-27

    The development of a miniaturized and low-cost platform for the highly sensitive, selective and rapid detection of multiplexed metabolites is of great interest for healthcare, pharmaceuticals, food science, and environmental monitoring. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with extraordinary electrical sensing capability. Microfluidic paper with printing technique is a low cost matrix. Here, we demonstrated the development of graphene-ink based biosensor arrays on a microfluidic paper for the multiplexed detection of different metabolites, such as glucose, lactate, xanthine and cholesterol. Our results show that the graphene biosensor arrays can detect multiple metabolites on a microfluidic paper sensitively, rapidly and simultaneously. The device exhibits a fast measuring time of less than 2 min, a low detection limit of 0.3 μM, and a dynamic detection range of 0.3-15 μM. The process is simple and inexpensive to operate and requires a low consumption of sample volume. We anticipate that these results could open exciting opportunities for a variety of applications. PMID:24528665

  6. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  7. Automatic defect detection for TFT-LCD array process using quasiconformal kernel support vector data description.

    PubMed

    Liu, Yi-Hung; Chen, Yan-Jen

    2011-01-01

    Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625

  8. Mode-shape-based mass detection scheme using mechanically diverse, indirectly coupled microresonator arrays

    NASA Astrophysics Data System (ADS)

    Glean, Aldo A.; Judge, John A.; Vignola, Joseph F.; Ryan, Teresa J.

    2015-02-01

    We explore vibration localization in arrays of microresonators used for ultrasensitive mass detection and describe an algorithm for identifying the location and amount of added mass using measurements of a vibration mode of the system. For a set of sensing elements coupled through a common shuttle mass, the inter-element coupling is shown to be proportional to the ratio of the element masses to the shuttle mass and to vary with the frequency mistuning between any two sensing elements. When any two elements have sufficiently similar frequencies, mass adsorption on one element can result in measurable changes to multiple modes of the system. We describe the effects on system frequencies and mode shapes due to added mass, in terms of mass ratio and frequency spacing. In cases in which modes are not fully localized, frequency-shift-based mass detection methods may give ambiguous results. The mode-shape-based detection algorithm presented uses a single measured mode shape and corresponding natural frequency to identify the location and amount of added mass. Mass detection in the presence of measurement noise is numerically simulated using a ten element sensor array. The accuracy of the detection scheme is shown to depend on the amplitude with which each element vibrates in the chosen mode.

  9. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  10. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array.

    PubMed

    Peveler, William J; Roldan, Alberto; Hollingsworth, Nathan; Porter, Michael J; Parkin, Ivan P

    2016-01-26

    The sensing and differentiation of explosive molecules is key for both security and environmental monitoring. Single fluorophores are a widely used tool for explosives detection, but a fluorescent array is a more powerful tool for detecting and differentiating such molecules. By combining array elements into a single multichannel platform, faster results can be obtained from smaller amounts of sample. Here, five explosives are detected and differentiated using quantum dots as luminescent probes in a multichannel platform: 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), tetryl (2,4,6-trinitrophenylmethylnitramine), cyclotrimethylenetrinitramine (RDX), and pentaerythritol tetranitrate (PETN). The sharp, variable emissions of the quantum dots, from a single excitation wavelength, make them ideal for such a system. Each color quantum dot is functionalized with a different surface receptor via a facile ligation process. These receptors undergo nonspecific interactions with the explosives, inducing variable fluorescence quenching of the quantum dots. Pattern analysis of the fluorescence quenching data allows for explosive detection and identification with limits-of-detection in the ppb range. PMID:26579950

  11. Ultrasensitive Detection of Dual Cancer Biomarkers with Integrated CMOS-Compatible Nanowire Arrays.

    PubMed

    Lu, Na; Gao, Anran; Dai, Pengfei; Mao, Hongju; Zuo, Xiaolei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2015-11-17

    A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. However, the existing methods of detecting cancer biomarkers suffer from poor sensitivity as well as the requirement of enzymatic labeling or nanoparticle conjugations. Here, we proposed a two-channel PDMS microfluidic integrated CMOS-compatible silicon nanowire (SiNW) field-effect transistor arrays with potentially single use for label-free and ultrasensitive electrical detection of cancer biomarkers. The integrated nanowire arrays showed not only ultrahigh sensitivity of cytokeratin 19 fragment (CYFRA21-1) and prostate specific antigen (PSA) with detection to at least 1 fg/mL in buffer solution but also highly selectivity of discrimination from other similar cancer biomarkers. In addition, this method was used to detect both CYFRA21-1 and PSA real samples as low as 10 fg/mL in undiluted human serums. With its excellent properties and miniaturization, the integrated SiNW-FET device opens up great opportunities for a point-of-care test (POCT) for quick screening and early diagnosis of cancer and other complex diseases. PMID:26473941

  12. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  13. Evaluation of GenoFlow DR-MTB Array Test for Detection of Rifampin and Isoniazid Resistance in Mycobacterium tuberculosis.

    PubMed

    Molina-Moya, B; Kazdaglis, G; Lacoma, A; Prat, C; Gómez, A; Villar-Hernández, R; García-García, E; Haba, L; Maldonado, J; Samper, S; Ruiz-Manzano, J; Ausina, V; Domínguez, J

    2016-04-01

    The aim of this study was to evaluate the GenoFlow DR-MTB array test (DiagCor Bioscience, Hong Kong) on 70 cultured isolates and 50 sputum specimens. The GenoFlow array test showed good sensitivity and specificity compared to the phenotypic Bactec 460TB. This array accurately detected mutations inrpoB,katG, andinhAassociated with resistance to rifampin and isoniazid. PMID:26865688

  14. DETECTION OF FAST RADIO TRANSIENTS WITH MULTIPLE STATIONS: A CASE STUDY USING THE VERY LONG BASELINE ARRAY

    SciTech Connect

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.; Brisken, Walter F.; Deller, Adam T.; Tingay, Steven J.; Wayth, Randall B.

    2011-07-10

    Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.

  15. Detection of Fast Radio Transients with Multiple Stations: A Case Study Using the Very Long Baseline Array

    NASA Astrophysics Data System (ADS)

    Thompson, David R.; Wagstaff, Kiri L.; Brisken, Walter F.; Deller, Adam T.; Majid, Walid A.; Tingay, Steven J.; Wayth, Randall B.

    2011-07-01

    Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54. The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.

  16. Fast Confocal Raman Imaging Using a 2-D Multifocal Array for Parallel Hyperspectral Detection.

    PubMed

    Kong, Lingbo; Navas-Moreno, Maria; Chan, James W

    2016-01-19

    We present the development of a novel confocal hyperspectral Raman microscope capable of imaging at speeds up to 100 times faster than conventional point-scan Raman microscopy under high noise conditions. The microscope utilizes scanning galvomirrors to generate a two-dimensional (2-D) multifocal array at the sample plane, generating Raman signals simultaneously at each focus of the array pattern. The signals are combined into a single beam and delivered through a confocal pinhole before being focused through the slit of a spectrometer. To separate the signals from each row of the array, a synchronized scan mirror placed in front of the spectrometer slit positions the Raman signals onto different pixel rows of the detector. We devised an approach to deconvolve the superimposed signals and retrieve the individual spectra at each focal position within a given row. The galvomirrors were programmed to scan different focal arrays following Hadamard encoding patterns. A key feature of the Hadamard detection is the reconstruction of individual spectra with improved signal-to-noise ratio. Using polystyrene beads as test samples, we demonstrated not only that our system images faster than a conventional point-scan method but that it is especially advantageous under noisy conditions, such as when the CCD detector operates at fast read-out rates and high temperatures. This is the first demonstration of multifocal confocal Raman imaging in which parallel spectral detection is implemented along both axes of the CCD detector chip. We envision this novel 2-D multifocal spectral detection technique can be used to develop faster imaging spontaneous Raman microscopes with lower cost detectors. PMID:26654100

  17. An integrative segmentation method for detecting germline copy number variations in SNP arrays.

    PubMed

    Shi, Jianxin; Li, Peng

    2012-05-01

    Germline copy number variations (CNVs) are a major source of genetic variation in humans. In large-scale studies of complex diseases, CNVs are usually detected from data generated by single nucleotide polymorphism (SNP) genotyping arrays. In this paper, we develop an integrative segmentation method, SegCNV, for detecting CNVs integrating both log R ratio (LRR) and B allele frequency (BAF). Based on simulation studies, SegCNV had modestly better power to detect deletions and substantially better power to detect duplications compared with circular binary segmentation (CBS) that relies purely on LRRs; and it had better power to detect deletions and a comparable performance to detect duplications compared with PennCNV and QuantiSNP. In two Hapmap subjects with deep sequence data available as a gold standard, SegCNV detected more true short deletions than PennCNV and QuantiSNP. For 21 short duplications validated experimentally in the AGRE dataset, SegCNV, QuantiSNP, and PennCNV detected all of them while CBS detected only three. SegCNV is much faster than the HMM-based (where HMM is hidden Markov model) methods, taking only several seconds to analyze genome-wide data for one subject. PMID:22539397

  18. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  19. Spectroscopic benzene detection using a broadband monolithic DFB-QCL array

    NASA Astrophysics Data System (ADS)

    Lewicki, Rafał; Witinski, Mark; Li, Biao; Wysocki, Gerard

    2016-03-01

    Quantitative laser spectroscopic measurements of complex molecules that have a broad absorption spectra require broadly tunable laser sources operating preferably in the mid-infrared molecular fingerprint region. In this paper a novel broadband mid-infrared laser source comprising of an array of single-mode distributed feedback quantum cascade lasers was used to target a broadband absorption feature of benzene (C6H6), a toxic and carcinogenic atmospheric pollutant. The DFB-QCL array is a monolithic semiconductor device with no opto-mechanical components, which eliminates issues with mechanical vibrations. The DFB-QCLs array used in this work provides spectral coverage from 1022.5 cm-1 to 1053.3 cm-1, which is sufficient to access the absorption feature of benzene at 1038 cm-1 (9.64 μm). A sensor prototype based on a 76 m multipass cell (AMAC-76LW, Aerodyne Research) and a dispersive DFB-QCL array beam combiner was developed and tested. The Allan deviation analysis of the retrieved benzene concentration data yields a short-term precision of 100 ppbv/Hz1/2 and a minimum detectable concentration of 12 ppbv for 200 s averaging time. The system was also tested by sampling atmospheric air as well as vapors of different chemical products that contained traces of benzene.

  20. Robust snow avalanche detection using machine learning on infrasonic array data

    NASA Astrophysics Data System (ADS)

    Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg

    2014-05-01

    Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially

  1. Label-free electrical detection of ovarian cancer biomarker CA-125 with a novel nanoscale coaxial array

    NASA Astrophysics Data System (ADS)

    Archibald, Michelle; Rizal, Binod; Cai, Dong; Connolly, Timothy; Burns, Michael; Naughton, Michael; Chiles, Thomas

    2013-03-01

    Technologies to detect early stage cancer would provide significant benefit to cancer disease patients. Clinical measurement of biomarkers offers the promise of a noninvasive and cost effective screening for early stage detection. We have developed a novel 3-dimensional nanocavity array for the detection of human cancer biomarkers. This all-electronic diagnostic sensor is based on a nanoscale coaxial array architecture that enables molecular-level detection. Each individual sensor in the array is a vertically-oriented coaxial capacitor, whose capacitance is measurably changed when target molecules enter the coax annulus. The coaxial array facilitates electrical-based detection in response to antibody or molecular imprint based recognition of a specific cancer biomarker, thereby providing a label-free, non-optical measurement. Here, we describe this nanoscale 3D architecture and its application to the detection of the ovarian cancer biomarker CA-125. We report our efforts on the development of molecular detection of CA-125 based on antibody-functionalized nanocoax arrays as well as molecular imprints. The results demonstrate the feasibility of using these arrays as ultrasensitive devices to detect a wide range of molecular targets, including disease biomarkers. Supported by the NIH grants NCI CA137681 and NIAID AI100216.

  2. Bead-based suspension array for simultaneous differential detection of five major swine viruses.

    PubMed

    Chen, Ru; Yu, Xiao-Lu; Gao, Xiao-Bo; Xue, Cun-Yi; Song, Chang-Xu; Li, Yan; Cao, Yong-Chang

    2015-01-01

    A novel multiplex detection array based on Luminex xMAP technology was developed and validated for simultaneous detection of five major viruses causing swine reproductive diseases. By combining one-step asymmetric multiplex reverse transcription polymerase chain reaction (RT-PCR) with xMAP bead-based hybridization and flow cytometry analysis, the resulting multiplex assay was capable of detecting single and mixed infections of PRRSV, PCV-2, PRV, CSFV, and PPV in a single reaction. The assay accurately detected and differentiated 23 viral strains used in this study. The low detection limit was determined as 2.2-22 copies/μL (corresponding to 0.5-6.8 fg/μL DNA template) on plasmid constructs containing viral fragments. The intra-assay and inter-assay variances (CV%) were low that ranged from 2.5 to 5.4 % and 4.1 to 7.6 %, respectively. The assay was applied to test field samples and detected single and mixed viral infections. The detection rate was higher than that of uniplex conventional PCR and RT-PCR methods. The detection of PRRSV by the bead-based multiplex assay was comparable with a commercially available real time RT-PCR kit. The test procedure on purified DNA or RNA samples could be completed within 2 h. In conclusion, the bead-based suspension array presented here proved to be a high-throughput practical tool that provided highly specific and sensitive identification of single and multiple infections of five major viruses in pigs and boar semen. PMID:25557628

  3. Detecting Volcano-Tectonic Earthquakes at the Tatun Volcano Group in Taiwan with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Sun, W. F.; Lin, C. H.; Chang, W. Y.

    2015-12-01

    The Tatun Volcano Group (TVG) is located at the northernmost tip of the island of Taiwan. Although TVG have been erupted 0.1-0.2 Ma ago and are considered being extinct, some recent studies suggest that they are active or dormant volcanos. We perform a systematic detection of volcano-tectonic earthquakes beneath TVG using three dense, small-aperture seismic arrays, which were deployed for six months in 2012. We use broadband frequency-wavenumber beam forming and moving-window grid-search methods to compute array parameters for all nearly continuous data and identify volcano-tectonic earthquakes. We detect much more events than that listed in the TVG volcano-tectonic earthquake catalog, about 50 events per month. Our results suggest that dense array techniques are capable of capturing detailed spatiotemporal evolution of volcano-tectonic earthquake behaviours at TVG, and also help to better understand the source mechanism of the brittle, uppermost part of the crust to the combined effect of the local hydrothermal fluid pressure and the regional stress field in the volcanic environment.

  4. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  5. Flow-enhanced detection of biological pathogens using piezoelectric microcantilever arrays

    NASA Astrophysics Data System (ADS)

    McGovern, John-Paul

    The piezoelectric microcantilever sensor (PEMS) is an all-electrical resonant oscillator biosensor system capable of in-situ and label-free detection. With various insulation and antibody immobilization schemes, it is well-suited for sensitive, specific pathogen detection applications with limits of detection on the order of relevant lethal infectious dosages. Initial PEMS implementation demonstrated biodetection of just 36 total Bacillus anthracis (BA) spores in 0.8 ml of liquid. However, concerns of cross reactivity between the antibody and closely related species of the target pathogens casts doubts on the usefulness of antibody-based assays in terms of the specificity of detection. The goal of this thesis is to develop the PEMS as a method for in-situ, label-free, pathogen detection with better limits of detection than current antibody-based methods as well as high sensitivity and specificity, by exploring PEMS array detection and engineered fluidics specificity augmentation. Experimentation in an 8 mm wide channel revealed that optimal discriminatory detection of BA spores among close cousins (B. cereus (BC), thuringiensis (BT) and subtilis (BS)) was achieved at 14 ml/min. At this flow rate, the detection signals of BC, BT, and BS all fell to within the noise level of the sensor, while that of BA was still nearly optimal. Thus, it was deduced that the interaction forces of BC, BT, and BS were 100 pN. Implementation of array sensing systems enabled real-time, redundant biosensor assays and concurrent background determination by a reference PEMS. Consequentially, successful real-time detection of 10 BA spores/ml was achieved, and single Cryptosporidium parvum (CP) oocyst detection at 0.1 oocysts/ml was accomplished with step-wise resonance frequency shifts of 290 Hz and signal to noise ratios (SNR) greater than 5. In a 19 mm wide flow channel, optimal single oocyst detection efficiency was achieved at 2 ml/min. Optimal discrimination of CP from C. muris (CM

  6. Weapon detection using a wideband millimeter-wave linear array imaging technique

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Collins, H. D.; Hall, Thomas E.

    1994-03-01

    A wideband millimeter-wave imaging technique has been developed by the Pacific Northwest Laboratory (PNL) for the detection of concealed weapons carried by personnel through high- security areas, such as airports. A practical airport system based on this technique should be capable of real-time image frame rate of 10 to 30 frames per second. This technique, similar to an extremely high-resolution radar system, actively probes the target with millimeter-waves and reconstructs an image from the backscattered phase and amplitude data. The primary goal of the system is the detection of weapons and the placement of the detected weapon on the body. An important additional goal is the identification of detected items, which requires a high resolution imaging technique. An experimental system has been developed at PNL which has gathered millimeter wave imagery from clothed mannequins and human beings carrying concealed weapons. This system is capable of forming images in excess of 1 meter by 2 meters at resolutions on the order of 1 cm, and is capable of scanning in less than 5 seconds. This experimental system could be enhanced to function in real time by eliminating the relatively slow mechanical scan. A sequentially switched linear array of transceiver antennas would allow real-time gathering of the imaging information, since the data would be electronically scanned in the lateral direction and electronically swept in frequency. This allows formation of a 2D image from a 1D array of transceiver antennas.

  7. Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut.

    PubMed

    Wang, Ying; Ning, Baoan; Peng, Yuan; Bai, Jialei; Liu, Ming; Fan, Xianjun; Sun, Zhiyong; Lv, Zhiqiang; Zhou, Caihong; Gao, Zhixian

    2013-03-15

    Mycotoxins are highly toxic contaminants in foodstuffs and feedstuffs. The study presents a novel suspension array technology for quantifying four mycotoxins, namely, aflatoxin B1, deoxynivalenol, T-2 toxin, and zearalenone, in corn and peanut. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, the complete antigens of the mycotoxins became attached to the microspheres with viable activity. The optimal concentrations of each antibody and biotin-rabbit anti-goat IgG were obtained through chessboard titration. The four mycotoxins were detected simultaneously and quantitatively in corn and peanut using indirect competitive immunoassay. Multi-channel standard curves with appropriate logistic correlation (R(2)>0.9819) were respectively plotted. The broad working ranges with three to four orders of magnitude were calculated, and limits of detection at the pg level were found to be better than those obtained using high-performance liquid chromatography. The recovery rates in the actual samples generally ranged from 80.16% to 117.65%, with an intra-assay coefficient of variation lower than 15%, which indicated high accuracy and repeatability. A suspension array method for the simultaneous detection of the four mycotoxins within 4h was successfully developed using minimal samples; the method was proven to have high throughput, flexibility, accuracy and reproducibility. The approach could detect multiple contaminants in actual samples. PMID:23017676

  8. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Zhi-Yuan; Yamaguchi, Kohei; Tanemura, Masaki; Huang, Zhengren; Jiang, Dongliang; Chen, Yuhui; Zhou, Fei; Nogami, Masayuki

    2012-03-01

    Novel surface-enhanced Raman scattering (SERS) substrates with high SERS-activity are ideal for novel SERS sensors, detectors to detect illicitly sold narcotics and explosives. The key to the wider application of SERS technique is to develop plasmon resonant structure with novel geometries to enhance Raman signals and to control the periodic ordering of these structures over a large area to obtain reproducible Raman enhancement. In this work, a simple Ar+-ion sputtering route has been developed to fabricate silver nanoneedles arrays on silicon substrates for SERS-active substrates to detect trace-level illicitly sold narcotics. These silver nanoneedles possess a very sharp apex with an apex diameter of 15 nm and an apex angle of 20°. The SERS enhancement factor of greater than 1010 was reproducibly achieved by the well-aligned nanoneedles arrays. Furthermore, ketamine hydrochloride molecules, one kind of illicitly sold narcotics, can be detected down to 27 ppb by using our SERS substrate within 3 s, indicating the sensitivity of our SERS substrates for trace amounts of narcotics and that SERS technology can become an important analytical technique in forensic laboratories because it can provide a rapid and nondestructive method for trace detection.

  9. Towards a peptide-based suspension array for the detection of pestivirus antibodies in swine.

    PubMed

    van der Wal, Fimme J; Jelsma, Tinka; Fijten, Helmi; Achterberg, René P; Loeffen, Willie L A

    2016-09-01

    Classical swine fever (CSF) is a highly contagious and lethal disease in swine. Serological tests for the diagnosis of CSF need not only to detect antibodies against CSFV, but also need to differentiate these from antibodies against other pestiviruses. To investigate the possibilities of specific peptide-based serology, various synthetic peptides that represent a well-described linear epitope of the CSFV E2 protein (TAVSPTTLR) were used to test the viability of a peptide-based suspension array for the detection of antibodies against pestiviruses in swine. The results show that N-terminally biotinylated peptides can bind to avidin conjugated beads, and function in detection of the corresponding monoclonal antibody WH303. There are indications that the length of the spacer between epitope and biotin affect the efficiency of the peptide-antibody interaction. A protocol was established that enables probing for antibodies in porcine sera, where neutravidin-blocking of serum and the use of empty control beads for normalization was crucial. With a set of porcine sera with antibodies against various pestiviruses, the proof of concept of a peptide-based suspension array for specific detection of antibodies against pestiviruses in porcine sera was demonstrated. PMID:27166561

  10. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dhiman; Smith, York R.; Misra, Mano; Mohanty, Swomitra K.

    2015-02-01

    Sensing and detection of volatile organic compounds (VOCs) from exhaled breath is a possible method for early diagnosis of several pulmonary diseases. The use of solid-state TiO2 nanotube array sensors for VOC sensing applications has been of great interest. In this study, titania nanotubular arrays (TNAs) were synthesized through electrochemical anodization and used for the electrochemical detection of methyl nicotinate biomarker vapor. Functionalization of the TNA with cobalt was found to be necessary for methyl nicotinate detection. Titanium dioxide films synthesized through high temperature oxidation and functionalized with cobalt were also compared with cobalt functionalized TNA. The ordered TNA demonstrated itself to be an effective substrate for cobalt deposition and subsequent biomarker detection over thin titanium dioxide films. Surface analysis of the cobalt functionalized TNA by x-ray photoelectron spectroscopy (XPS) studies observed cobalt deposits exist as cobalt hydroxide on the surface. Exposure of the sensor surface to methyl nicotinate vapor results in the reduction of cobalt hydroxide to cobalt metal on the surface. Two mechanisms have been proposed to describe the binding of the nicotinate biomarker to cobalt functionalized TNA consistent with the XPS studies and band theory.

  11. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection.

    PubMed

    Lu, Yanli; Zhang, Diming; Zhang, Qian; Huang, Yixuan; Luo, Senbiao; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-05-15

    Human odorant-binding proteins (hOBPs) not only can bind and transport odorants in the surrounding environment for sensing smells, but also play important roles in transmitting lots of biomolecules in different organs. Utilizing the properties of hOBPs, an electrochemical biosensor with nanopore array was developed to detect specific biomolecular ligands, such as aldehydes and fatty acids. The highly ordered nanopores of anodic aluminum oxide with diameter of 20-40 nm were fabricated with two-step oxidation. Through 2-carboxyethyl phosphonic acid, hOBPs were self-assembled on nanopores as the sensing membrane. With nanopore arrays, the impedance spectra showed quite different electron transfer processes in the frequency spectra, which could be characterized by the electron transfer resistance and electrical resistance of the porous membrane. Under stimulation of biomolecular ligands, series resistance of nanopores and hOBPs increased and showed a concentration-dependence feature, while the electron transfer resistance hardly changed. The nanopore based biosensor could sensitively detect biological ligands of benzaldehyde, docosahexaenoic acid, and lauric acid, which were closely related to or were potential biomarkers for cancers and other serious diseases. Equipped with hOBPs, the sensor exhibited promising potentials both in odorant and biomolecule detection for olfactory biosensing and in disease diagnosis and evaluation for biochemical detection. PMID:26710343

  12. A high-accuracy optical linear algebra processor for finite element applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.; Taylor, B. K.

    1984-01-01

    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.

  13. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  14. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports. PMID:22649939

  15. A Sensor Array for the Detection and Discrimination of Methane and Other Environmental Pollutant Gases.

    PubMed

    Hannon, Ami; Lu, Yijiang; Li, Jing; Meyyappan, M

    2016-01-01

    We address the sensitive detection and discrimination of gases impacting the environment, such as CH₄, NH₃, SO₂, and CO, using a sensor array and aided by principal component analysis (PCA). A 32-element chemiresistive sensor array consisting of nine different sensor materials including seven types of modified single-walled carbon nanotubes and two types of polymers has been constructed. PCA results demonstrate excellent discriminating ability of the chemiresistor sensor chip in the 1-30 ppm concentration range. The accuracy of the sensor was verified against data collected using cavity ring down spectroscopy. The sensor chip has also been integrated with a smartphone and has been shown to reproduce the sensing performance obtained with the laboratory measurement system. PMID:27463716

  16. Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection.

    PubMed

    Ge, Baoliang; Wang, Yifan; Huang, Yujia; Kuang, Cuifang; Fang, Yue; Xiu, Peng; Rong, Zihao; Liu, Xu

    2016-05-01

    What we believe is a novel method for improving confocal microscopy's resolution and contrast in 3D space is proposed. Based on a conventional confocal microscopy setup, we use an array detector composed of 32 photomultiplier tubes (PMTs) to replace one point-detector, where the location offset of each PMT caused a different effective point spread function (PSF). By applying array detection and the fluorescence emission difference method of an image with a solid PSF and another with a donut-shaped PSF, we can enhance lateral resolution about 27% in real time with only one scan, and improve the axial resolving ability by about 22% simultaneously. Experimental results of both fluorescent beads and living cells are presented to verify the applicability and effectiveness of our method. PMID:27128062

  17. Breath analysis system for early detection of lung diseases based on multi-sensor array

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-Young; Yu, Joon-Boo; Shin, Jeong-Suk; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Expiratory breath contains various VOCs(Volatile Organic Compounds) produced from the human. When a certain disease exists, the exhalation has specific VOCs which may be generated from diseases. Many researchers have been actively working to find different types of biomarkers which are characteristic for particular diseases. Research regarding the identification of specific diseases from exhalation is still in progress. The aim of this research is to implement early detection of lung disease such as lung cancer and COPD(Chronic Obstructive Pulmonary Disease), which was nominated on the 6th of domestic death rate in 2010, based on multi-sensor array system. The system has been used to acquire sampled expiratory gases data and PCA(Principle Component Analysis) technique was applied to analyze signals from multi-sensor array. Throughout the experimental trials, a clearly distinguishable difference between lung disease patients and healthy controls was found from the measurement and analysis of their respective expiratory gases.

  18. Study on Damage Detection for a Satellite Solar Array Panel Using Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Sekine, Kazushi; Takeya, Hajime; Seko, Hiromi; Kobayashi, Yuki; Takahashi, Masato; Utsunomiya, Shin

    2012-07-01

    It is important to reveal the relation between on-orbit failures of solar cells and the influence of thermal strain of solar array panel because it may be a factor of them. In this study, structural health monitoring based on the strain measuring of solar array panel using fiber bragg grating (FBG) sensors is proposed. In this paper, we manufactured the specimen of substrate with FBG sensors embedded in adhesive layer between carbon fiber reinforced plastics (CFRP) faceskin and aluminum honeycomb core and measured the strain of faceskin near the middle of honeycomb cell during cooling. In consequence, measurement results of the strain agreed with finite element method (FEM) analysis results of it. Moreover, we manufactured the specimen of panel that a cover glass was bonded instead of a solar cell and measured the strain also. As a result, the possibility of damage detection by the present health monitoring was shown.

  19. The Auger Engineering Radio Array and multi-hybrid cosmic ray detection

    NASA Astrophysics Data System (ADS)

    Holt, E. M.; Pierre Auger Collaboration

    2016-05-01

    The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Since the radio emission is induced purely by the electromagnetic component of the shower, in combination with the AMIGA muon counters, AERA is perfect for separate measurements of the electrons and muons in the shower, if combined with a muon counting detector like AMIGA. In addition to the depth of the shower maximum, the ratio of the electron and muon number serves as a measure of the primary particle mass.

  20. Compressive sensing based spinning mode detections by in-duct microphone arrays

    NASA Astrophysics Data System (ADS)

    Yu, Wenjun; Huang, Xun

    2016-05-01

    This paper presents a compressive sensing based experimental method for detecting spinning modes of sound waves propagating inside a cylindrical duct system. This method requires fewer dynamic pressure sensors than the number required by the Shannon–Nyquist sampling theorem so long as the incident waves are sparse in spinning modes. In this work, the proposed new method is firstly validated by preparing some of the numerical simulations with representative set-ups. Then, a duct acoustic testing rig with a spinning mode synthesiser and an in-duct microphone array is built to experimentally demonstrate the new approach. Both the numerical simulations and the experiment results are satisfactory, even when the practical issue of the background noise pollution is taken into account. The approach is beneficial for sensory array tests of silent aeroengines in particular and some other engineering systems with duct acoustics in general.

  1. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  2. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  3. IDENTIFICATION AND QUANTITATION OF ALKYLATED NUCLEOBASIS BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH UV PHOTODIODE ARRAY DETECTION

    EPA Science Inventory

    The application of UV diode array detection in high-performance liquid chromatographic (HPLC) identification and quantitation of several classes of synthetic and commercially available alkylated nucleobases is investigated. uantitative spectral overlays of these compounds to meth...

  4. Simultaneous and rapid detection of multiple pesticide and veterinary drug residues by suspension array technology.

    PubMed

    Liu, Nan; Gao, Zhixian; Ma, Hongwei; Su, Pu; Ma, Xinhua; Li, Xiaoli; Ou, Guorong

    2013-03-15

    Suspension array technology is proposed for the simultaneous quantitative determination of seven kinds of pesticide and veterinary drug residues, namely, atrazine, chloramphenicol, carbaryl, clenbuterol, 17-β-estradiol, imidacloprid, and tylosin. The assay is simple and can be accomplished within 2h without repeated pumping and washing steps unlike conventional suspension arrays. The hapten-protein conjugate-coated beads bind to their complementary biotinylated antibodies using a competitive immunoassay format. The coefficients of determination R(2) for six targets were greater than 0.992, whereas that for atrazine was 0.961, which indicate good logistic correlations. The dynamic ranges for the seven targets in the 7-plex assay ranged from 2 log units to 4 log units(1.60×10(0)-1.64×10(3), 5.12×10(-2)-1.60×10(2), 1.00×10(0)-3.13×10(3), 4.00×10(-1)-4.10×10(2), 4.00×10(-1)-4.10×10(2), 5.12×10(-2)-1.60×10(2), and 2.00×10(0)-4.00×10(2)ngmL(-1)). The minimum detection concentrations of chloramphenicol, carbaryl, clenbuterol and 17-β-estradiol in the suspension array (0.05, 1.00, 0.40 and 0.40 ng mL(-1)) were lower than the corresponding limits of detection (0.25, 6.60, 24.23 and 13.96 ng mL(-1)) of using an indirect competitive enzyme-linked immunosorbent assay. Environmental scanning electron microscope was employed to characterize the bead surface, which directly confirmed the reactions on the beads. The suspension array is more flexible and feasible than ELISA for the fast quantitative analysis of pesticide and veterinary drug residues. PMID:23084755

  5. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array.

    PubMed

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-Beom; Choi, Heon-Jin

    2016-12-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes. PMID:27448026

  6. Holographic method for site-resolved detection of a 2D array of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Hoffmann, Daniel Kai; Deissler, Benjamin; Limmer, Wolfgang; Hecker Denschlag, Johannes

    2016-08-01

    We propose a novel approach to site-resolved detection of a 2D gas of ultracold atoms in an optical lattice. A near-resonant laser beam is coherently scattered by the atomic array, and after passing a lens its interference pattern is holographically recorded by superimposing it with a reference laser beam on a CCD chip. Fourier transformation of the recorded intensity pattern reconstructs the atomic distribution in the lattice with single-site resolution. The holographic detection method requires only about two hundred scattered photons per atom in order to achieve a high reconstruction fidelity of 99.9 %. Therefore, additional cooling during detection might not be necessary even for light atomic elements such as lithium. Furthermore, first investigations suggest that small aberrations of the lens can be post-corrected in imaging processing.

  7. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-beom; Choi, Heon-Jin

    2016-07-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes.

  8. Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection.

    PubMed

    Zhang, Kun; Zhao, Jingjing; Xu, Huiying; Li, Yixin; Ji, Ji; Liu, Baohong

    2015-08-01

    A smart and multifunctional paper-based SERS sensing card is generated through patterning self-assembled interfacial arrays of gold nanoparticles (AuNPs) on the tip of an arrow-shaped paper strip. It is found that the closely packed monolayer of AuNPs is evenly distributed on the paper surface, resulting in a multitude of SERS hot spots over the detection zone. The paper card, with its inherent ability to separate and preconcentrate analytes by the capillary force and polarity difference between sample components, was exploited successfully as an integrated platform, allowing for sub-attomolar (50 × 10(-18) M) detection from microliter-volume (10 μL) samples. Furthermore, the simple preparation (lithography-free process), fast detection (<5 min), and low cost (<3 cents) demonstrate that the paper card is a practical and portable sensing interface for wide application in environmental and food analysis. PMID:26186409

  9. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays

    PubMed Central

    Mak, Angel C. Y.; Lai, Yvonne Y. Y.; Lam, Ernest T.; Kwok, Tsz-Piu; Leung, Alden K. Y.; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R.; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W. C.; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J. K.; Li, Catherine M. L.; Li, Jing-Woei; Yim, Aldrin K. Y.; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y.; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. PMID:26510793

  10. Ultrasensitive Voltammetric Detection of Trace Heavy Metal Ions Using Carbon Nanotube Nanoelectrode Array

    SciTech Connect

    Liu, Guodong; Lin, Yuehe; Tu, Yi; Ren, Zhifeng

    2005-06-20

    We describe an ultrasensitive voltammetric detection of trace heavy metal ions using nanoelectrode arrays (NEAs) that are based on low-site density carbon nanotubes (CNTs). The NEAs were prepared by sealing the side-walls of CNTs with an epoxy passive layer that reduces the current leakage and eliminates the electrode capacitance, leading to a low background current. This provides a high signal-to-noise ratio. The CNTs-NEAs coated with a bismuth film were used successfully for voltammetric detection of trace cadmium and lead (II) at the sub-ppb level. The detection limit of 0.04 {micro}g/L was obtained under optimum experimental conditions. The attractive behavior of the new carbon NEA sensing platform holds great promise for onsite environmental monitoring and biomonitoring of toxic metals.

  11. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-04-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  12. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-02-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  13. Detection of chromothripsis‐like patterns with a custom array platform for chronic lymphocytic leukemia

    PubMed Central

    Salaverria, Itziar; Martín‐Garcia, David; López, Cristina; Clot, Guillem; García‐Aragonés, Manel; Navarro, Alba; Delgado, Julio; Baumann, Tycho; Pinyol, Magda; Martin‐Guerrero, Idoia; Carrió, Ana; Costa, Dolors; Queirós, Ana C.; Jayne, Sandrine; Aymerich, Marta; Villamor, Neus; Colomer, Dolors; González, Marcos; López‐Guillermo, Armando; Campo, Elías; Dyer, Martin J. S.; Siebert, Reiner; Armengol, Lluís

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is a common disease with highly variable clinical course. Several recurrent chromosomal alterations are associated with prognosis and may guide risk‐adapted therapy. We have developed a targeted genome‐wide array to provide a robust tool for ascertaining abnormalities in CLL and to overcome limitations of the 4‐marker fluorescence in situ hybridization (FISH). DNA from 180 CLL patients were hybridized to the qChip®Hemo array with a high density of probes covering commonly altered loci in CLL (11q22‐q23, 13q14, and 17p13), nine focal regions (2p15‐p16.1, 2p24.3, 2q13, 2q36.3‐q37.1, 3p21.31, 8q24.21, 9p21.3, 10q24.32, and 18q21.32‐q21.33) and two larger regions (6q14.1‐q22.31 and 7q31.33‐q33). Overall, 86% of the cases presented copy number alterations (CNA) by array. There was a high concordance of array findings with FISH (84% sensitivity, 100% specificity); all discrepancies corresponded to subclonal alterations detected only by FISH. A chromothripsis‐like pattern was detected in eight cases. Three showed concomitant shattered 5p with gain of TERT along with isochromosome 17q. Presence of 11q loss was associated with shorter time to first treatment (P = 0.003), whereas 17p loss, increased genomic complexity, and chromothripsis were associated with shorter overall survival (P < 0.001, P = 0.001, and P = 0.02, respectively). In conclusion, we have validated a targeted array for the diagnosis of CLL that accurately detects, in a single experiment, all relevant CNAs, genomic complexity, chromothripsis, copy number neutral loss of heterozygosity, and CNAs not covered by the FISH panel. This test may be used as a practical tool to stratify CLL patients for routine diagnostics or clinical trials. © 2015 The Authors. Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc. PMID:26305789

  14. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    PubMed Central

    Weishaupt, Sonja U.; Rupp, Steffen

    2013-01-01

    MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells. PMID:24078866

  15. DETECTION RATES FOR SURVEYS FOR FAST TRANSIENTS WITH NEXT GENERATION RADIO ARRAYS

    SciTech Connect

    Macquart, Jean-Pierre

    2011-06-10

    We relate the underlying properties of a population of fast radio-emitting transient events to its expected detection rate in a survey of finite sensitivity. The distribution of the distances of the detected events is determined in terms of the population luminosity distribution and survey parameters, for both extragalactic and Galactic populations. The detection rate as a function of Galactic position is examined to identify regions that optimize survey efficiency in a survey whose field of view is limited. The impact of temporal smearing caused by scattering in the interstellar medium has a large and direction-dependent bearing on the detection of impulsive signals, and we present a model for the effects of scattering on the detection rate. We show that the detection rate scales as {Omega}S{sup -3/2+{delta}}{sub 0}, where {Omega} is the field of view, S{sub 0} is the minimum detectable flux density, and 0 < {delta} {<=} 3/2 for a survey of Galactic transients in which interstellar scattering or the finite volume of the Galaxy is important. We derive formal conditions on the optimal survey strategy to adopt under different circumstances for fast transient surveys on next generation large-element, wide-field arrays, such as ASKAP, LOFAR, the MWA, and the SKA, and show how interstellar scattering and the finite spatial extent of a Galactic population modify the choice of optimal strategy.

  16. The Microbial Detection Array for Detection of Emerging Viruses in Clinical Samples - A Useful Panmicrobial Diagnostic Tool

    PubMed Central

    Rosenstierne, Maiken W.; McLoughlin, Kevin S.; Olesen, Majken Lindholm; Papa, Anna; Gardner, Shea N.; Engler, Olivier; Plumet, Sebastien; Mirazimi, Ali; Weidmann, Manfred; Niedrig, Matthias; Fomsgaard, Anders; Erlandsson, Lena

    2014-01-01

    Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travel, climate change and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. Many of these viruses cause similar disease symptoms as other emerging viruses or common infections, making these unexpected pathogens difficult to diagnose. Broad-spectrum pathogen detection microarrays containing probes for all sequenced viruses and bacteria can provide rapid identification of viruses, guiding decisions about treatment and appropriate case management. We report a modified Whole Transcriptome Amplification (WTA) method that increases unbiased amplification, particular of RNA viruses. Using this modified WTA method, we tested the specificity and sensitivity of the Lawrence Livermore Microbial Detection Array (LLMDA) against a wide range of emerging viruses present in both non-clinical and clinical samples using two different microarray data analysis methods. PMID:24963710

  17. The microbial detection array for detection of emerging viruses in clinical samples--a useful panmicrobial diagnostic tool.

    PubMed

    Rosenstierne, Maiken W; McLoughlin, Kevin S; Olesen, Majken Lindholm; Papa, Anna; Gardner, Shea N; Engler, Olivier; Plumet, Sebastien; Mirazimi, Ali; Weidmann, Manfred; Niedrig, Matthias; Fomsgaard, Anders; Erlandsson, Lena

    2014-01-01

    Emerging viruses are usually endemic to tropical and sub-tropical regions of the world, but increased global travel, climate change and changes in lifestyle are believed to contribute to the spread of these viruses into new regions. Many of these viruses cause similar disease symptoms as other emerging viruses or common infections, making these unexpected pathogens difficult to diagnose. Broad-spectrum pathogen detection microarrays containing probes for all sequenced viruses and bacteria can provide rapid identification of viruses, guiding decisions about treatment and appropriate case management. We report a modified Whole Transcriptome Amplification (WTA) method that increases unbiased amplification, particular of RNA viruses. Using this modified WTA method, we tested the specificity and sensitivity of the Lawrence Livermore Microbial Detection Array (LLMDA) against a wide range of emerging viruses present in both non-clinical and clinical samples using two different microarray data analysis methods. PMID:24963710

  18. Bacteria detection based on its blockage effect on silicon nanopore array.

    PubMed

    Tang, Yanyan; Li, Zhen; Luo, Qiaohui; Liu, Jingqing; Wu, Jianmin

    2016-05-15

    Bacteria detection plays an important role in the guarantee of food and water safety. This work proposed a new sensing strategy for the rapid detection of bacteria based on its blockage effect on nanopore array, which was prepared from electrochemically etched silicon. With the assistance of microfluidic technology, the nanopore array attached with Escherichia coli antibody can selectively and rapidly capture E. coli bacteria, resulting in the decrease of pore accessibility. The signal of pore blockage can be measured by in-direct Fourier Transformed Reflectometric Interference Spectroscopy (FT-RIS). The pore blockage signal has a linear relationship with the logarithm of bacterial density in aqueous sample within the range from 10(3) to 10(7)cfuml(-1). Due to the specific interaction between the antibody and target bacteria, only the E. coli sample displayed significant pore blockage effect, whereas the non-target bacteria, Nox and P17, almost did not show any pore blockage effect. The strategy established in this work might be pervasively applied in the rapid detection of target bacteria and cell in a label-free manner. PMID:26774087

  19. Broad spectrum detection and "barcoding" of water pollutants by a genome-wide bacterial sensor array.

    PubMed

    Elad, Tal; Belkin, Shimshon

    2013-07-01

    An approach for the rapid detection and classification of a broad spectrum of water pollutants, based on a genome-wide reporter bacterial live cell array, is proposed and demonstrated. An array of ca. 2000 Escherichia coli fluorescent transcriptional reporters was exposed to 25 toxic compounds as well as to unpolluted water, and its responses were recorded after 3 h. The 25 toxic compounds represented 5 pollutant classes: genotoxicants, metals, detergents, alcohols, and monoaromatic hydrocarbons. Identifying unique gene expression patterns, a nearest neighbour-based model detected pollutant presence and predicted class attribution with an estimated accuracy of 87%. Sensitivity and positive predictive values varied among classes, being higher for pollutant classes that were defined by mode of action than for those defined by structure only. Sensitivity for unpolluted water was 0.90 and the positive predictive value was 0.79. All pollutant classes induced the transcription of a statistically significant proportion of membrane associated genes; in addition, the sets of genes responsive to genotoxicants, detergents and alcohols were enriched with genes involved in DNA repair, iron utilization and the translation machinery, respectively. Following further development, a methodology of the type described herein may be suitable for integration in water monitoring schemes in conjunction with existing analytical and biological detection techniques. PMID:23726715

  20. Contrast-based moving target detection with the randomized linear receive array

    NASA Astrophysics Data System (ADS)

    Ranney, Kenneth; Martone, Anthony; Innocenti, Roberto; Nguyen, Lam

    2012-06-01

    The Army Research Laboratory (ARL) has, in the past, demonstrated the effectiveness of low frequency, ultrawideband radar for detection of slow-moving targets located behind walls. While these initial results were promising, they also indicated that sidelobe artifacts produced by moving target indication (MTI) processing could pose serious problems. Such artifacts induced false alarms and necessitated the introduction of a tracker stage to eliminate them. Of course, the tracker algorithm was also imperfect, and it tended to pass any persistent, nearly collocated false alarms. In this work we describe the incorporation of a sidelobe-reduction technique-the randomized linear receiver array (RA)-into our MTI processing chain. To perform this investigation, we leverage data collected by ARL's synchronous impulse reconstruction (SIRE) radar. We begin by calculating MTI imagery using both the non-random and randomized array methods. We then compare the sidelobe levels in each image and quantify the differences. Finally, we apply a local-contrast target detection algorithm based on constant false alarm rate (CFAR) principles, and we analyze probabilities of detection and false alarm for each MTI image.

  1. Detection of atmospheric acoustic-gravity waves through ionospheric measurements using dense GPS arrays

    NASA Astrophysics Data System (ADS)

    Calais, E.; Haase, J. S.; Minster, B.

    2003-12-01

    The Global Positioning System (GPS) is now widely used to measure ionospheric electron content at both global and regional scales. It is also capable of detecting small-scale high-frequency ionospheric disturbances caused by atmospheric acoustic-gravity waves. We show examples of ionospheric perturbations caused by earthquakes, rocket launches, and large surface explosions. The neutral atmospheric waves triggered by these events couple with the motion of free electrons and ionized plasma at ionospheric heights and induce coherent fluctuations of electron densities and ionization layer boundaries that are detectable with GPS. In all cases, the ionospheric perturbations match fairly well observations made through other techniques as well as numerical models. The development of permanent networks of densely spaced and continuously recording GPS stations open up new opportunities for the study of infrasonic waves in the atmosphere and their coupling with small scale processes in the ionosphere. We show examples of infrasonic waves detected using the 250-station GPS network that covers the Los Angeles area (SCIGN). Although the signal-to-noise ratio of these perturbations is relatively small, we show that it can be considerably improved by multi-station array processing techniques derived from seismic array analysis. These techniques can also be used to determine the perturbation propagation azimuth and velocity and, eventually, to recover information about the sources of these perturbations.

  2. Automatic microfluidic fluorescence-array measurement system for detecting organic phosphate.

    PubMed

    Chang, Hsing-Cheng; Lin, Jung-Chin; Lin, Shyan-Lung; Chang, I-Nan; Lin, Chern-Sheng; Chen, Shi-Yao

    2015-01-01

    In this study, an automatic microfluidic fluorescence-array measurement system is developed to detect the concentration of organic phosphate based on the luminol-hydrogen peroxide catalytic fluorescent mechanism. Not only sample quantity and cost can be reduced, but also detection time, accuracy and precision can be improved in the system. The system is composed of a CCD image module, a stepper motor with driver, a microfluidic fluorescence array, a background light elimination module, and a dynamic image-analyzed interface. The pesticides of chlorpyrifos and fenitrothion of organic phosphate are chosen as experimental samples. Only a 2.5 μ l quantity of sample is required to have a fast response time of 1.4 second. Experimental results show that the sensitivities of chlorpyrifos and fenitrothion are 1.88 V/ppm in the range of 0.166 ∼ 10 ppm with averaged error of 1.66% and 0.32 V/ppm in the range of 0.03 ∼ 10 ppm with averaged error of 1.68% respectively. The organophosphorus effective detection range of the developed system covers the legal prescription for pesticide residues. PMID:26409537

  3. Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array.

    PubMed

    Eberhardt, William C; Wakefield, Brendan F; Murphy, Christin T; Casey, Caroline; Shakhsheer, Yousef; Calhoun, Benton H; Reichmuth, Colleen

    2016-01-01

    Nature has shaped effective biological sensory systems to receive complex stimuli generated by organisms moving through water. Similar abilities have not yet been fully developed in artificial systems for underwater detection and monitoring, but such technology would enable valuable applications for military, commercial, and scientific use. We set out to design a fluid motion sensor array inspired by the searching performance of seals, which use their whiskers to find and follow underwater wakes. This sensor prototype, called the Wake Information Detection and Tracking System (WIDTS), features multiple whisker-like elements that respond to hydrodynamic disturbances encountered while moving through water. To develop and test this system, we trained a captive harbor seal (Phoca vitulina) to wear a blindfold while tracking a remote-controlled, propeller-driven submarine. After mastering the tracking task, the seal learned to carry the WIDTS adjacent to its own vibrissal array during active pursuit of the target. Data from the WIDTS sensors describe changes in the deflection angles of the whisker elements as they pass through the hydrodynamic trail left by the submarine. Video performance data show that these detections coincide temporally with WIDTS-wake intersections. Deployment of the sensors on an actively searching seal allowed for the direct comparison of our instrument to the ability of the biological sensory system in a proof-of-concept demonstration. The creation of the WIDTS provides a foundation for instrument development in the field of biomimetic fluid sensor technology. PMID:27580063

  4. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; de Rosny, J.; Brenguier, F.; Landès, M.

    2016-03-01

    Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ˜15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ˜0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.

  5. Sniper detection using a helmet array: first tests in urban environment

    NASA Astrophysics Data System (ADS)

    Hengy, S.; Demezzo, S.; Hamery, P.

    2007-04-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Institute of Saint-Louis (ISL) and Rheinmetall Defence Electronics GmbH (RDE) work together under the hospice of the German MOD to develop a helmet integrated acoustic array for the detection and localization of snipers. This paper summarizes the results obtained during the collaboration between RDE and the ISL concerning the detection and the localization of the Mach and muzzle waves generated by rifle shots. It summarizes the technical choices that have been made and explains the algorithms that have been used in October 2006 in Lehnin (proving ground of the German MOD), where some measurements in an urban environment have been made. The estimation of the distance between the shooter and the arrays is made with one head equipment alone. In the first tests that have been made with the algorithms developed in ISL, more than 2000 shots have been detected and localized successfully in real-time in non-urban environment. No false alarms have been observed. This paper will present the first results that have been obtained in urban environment.

  6. Ultrasensitive Detection of Cancer Biomarkers in the Clinic using a Nanostructured Microfluidic Array

    PubMed Central

    Malhotra, Ruchika; Patel, Vyomesh; Chikkaveeraiah, Bhaskara V.; Munge, Bernard S.; Cheong, Sok Ching; Zain, Rosnah B.; Abraham, Mannil T.; Dey, Dipak K.; Gutkind, J. Silvio; Rusling, James F.

    2012-01-01

    Multiplexed biomarker protein detection holds unrealized promise for clinical cancer diagnostics due to lack of suitable measurement devices and lack of rigorously validated protein panels. Here we report an ultrasensitive electrochemical microfluidic array optimized to measure a four-protein panel of biomarker proteins, and we validate the protein panel for accurate oral cancer diagnostics. Unprecedented ultralow detection into the 5–50 fg mL−1 range was achieved for simultaneous measurement of proteins IL-6, IL-8, VEGF and VEGF-C in diluted serum. The immunoarray achieves high sensitivity in 50 min assays by using off-line protein capture by magnetic beads carrying 400,000 enzyme labels and 120,000 antibodies. After capturing the proteins and washing to inhibit non-specific binding, the beads are magnetically separated and injected into the array for selective capture by antibodies on eight nanostructured sensors. Good correlations with ELISA for protein determinations in conditioned cancer cell media confirmed the accuracy of this approach. Normalized means of the 4-protein levels in 78 oral cancer patient serum samples and 49 controls gave clinical sensitivity 89% and specificity 98% for oral cancer detection, demonstrating high diagnostic utility. The low cost, easily fabricated immunoarray provides a rapid serum test for diagnosis and personalized therapy of oral cancer. The device is readily adaptable to clinical diagnostics of other cancers. PMID:22697359

  7. Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays

    PubMed Central

    Muthmann, Jens-Oliver; Amin, Hayder; Sernagor, Evelyne; Maccione, Alessandro; Panas, Dagmara; Berdondini, Luca; Bhalla, Upinder S.; Hennig, Matthias H.

    2015-01-01

    An emerging generation of high-density microelectrode arrays (MEAs) is now capable of recording spiking activity simultaneously from thousands of neurons with closely spaced electrodes. Reliable spike detection and analysis in such recordings is challenging due to the large amount of raw data and the dense sampling of spikes with closely spaced electrodes. Here, we present a highly efficient, online capable spike detection algorithm, and an offline method with improved detection rates, which enables estimation of spatial event locations at a resolution higher than that provided by the array by combining information from multiple electrodes. Data acquired with a 4096 channel MEA from neuronal cultures and the neonatal retina, as well as synthetic data, was used to test and validate these methods. We demonstrate that these algorithms outperform conventional methods due to a better noise estimate and an improved signal-to-noise ratio (SNR) through combining information from multiple electrodes. Finally, we present a new approach for analyzing population activity based on the characterization of the spatio-temporal event profile, which does not require the isolation of single units. Overall, we show how the improved spatial resolution provided by high density, large scale MEAs can be reliably exploited to characterize activity from large neural populations and brain circuits. PMID:26733859

  8. Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection.

    PubMed

    Gao, Yongkang; Xin, Zheming; Zeng, Beibei; Gan, Qiaoqiang; Cheng, Xuanhong; Bartoli, Filbert J

    2013-12-21

    A plasmonic interferometric biosensor that consists of arrays of circular aperture-groove nanostructures patterned on a gold film for phase-sensitive biomolecular detection is demonstrated. The phase and amplitude of interfering surface plasmon polaritons (SPPs) in the proposed device can be effectively engineered by structural tuning, providing flexible and efficient control over the plasmon line shape observed through SPP interference. Spectral fringes with high contrast, narrow linewidth, and large amplitude have been experimentally measured and permit the sensitive detection of protein surface coverage as low as 0.4 pg mm(-2). This sensor resolution compares favorably with commercial prism-based surface plasmon resonance systems (0.1 pg mm(-2)) but is achieved here using a significantly simpler collinear transmission geometry, a miniaturized sensor footprint, and a low-cost compact spectrometer. Furthermore, we also demonstrate superior sensor performance using the intensity interrogation method, which can be combined with CCD imaging to upscale our platform to high-throughput array sensing. A novel low-background interferometric sensing scheme yields a high sensing figure of merit (FOM*) of 146 in the visible region, surpassing that of previous plasmonic biosensors and facilitating ultrasensitive high-throughput detection. PMID:24173621

  9. Simultaneous detection of five antibiotics in milk by high-throughput suspension array technology.

    PubMed

    Su, Pu; Liu, Nan; Zhu, Maoxiang; Ning, Baoan; Liu, Ming; Yang, Zhihua; Pan, Xiujie; Gao, Zhixian

    2011-08-15

    A new suspension array technology is proposed for the simultaneous quantitative determination of five antibiotics-tylosin, tetracycline, gentamicin, streptomycin, and chloramphenicol in milk. A novel treatment of milk samples for suspension array with diethyl ether was performed which greatly reduced the interference of the disturbing components in milk on the reaction results with no significant effect on detection sensitivity. Compared with using biotin labeled monoclonal antibody, using of secondary antibody-biotin make the detection sensitivity further improved. The minimum detectable concentration in samples of tylosin, tetracycline, gentamicin, streptomycin, and chloramphenicol were 0.3, 1.5, 4, 20, and 25 ng/ml, respectively, and the working ranges of samples were 6-400, 7-300, 8-200, 90-3000 and 70-8000 ng/ml, respectively. The mean recovery was 89.38-113.73% with a standard deviation within 16.62%. The suspension assay technology is powerful for the fast quantitative analysis of multi-antibiotics residue in milk. PMID:21726753

  10. RAPID DETECTION OF ANTIBODIES IN SERA USING MULTIPLEXED SELF-ASSEMBLING BEAD ARRAYS

    PubMed Central

    Wong, Jessica; Sibani, Sahar; Lokko, Naa Norkor; LaBaer, Joshua; Anderson, Karen S.

    2009-01-01

    Rapid detection of antibody immunity in serum or plasma, whether to pathogenic antigens, tumor antigens, or autoimmune antigens, is critical for diagnosis, monitoring, and biomarker assessment of the immune response. Individual or multiplexed ELISAs that use purified recombinant proteins are dependent on a priori protein purification, a labor-intensive process that may take months to obtain proteins of sufficient purity and stability for serologic assays. We developed a programmable multiplexed immunoassay for the rapid monitoring of humoral immunity using the Luminex suspension bead array platform. In this approach, epitope-tagged antigens (GST- or FLAG-tagged) are expressed using in vitro transcription and translation, and captured onto anti-epitope-coupled Luminex SeroMap beads. The antigen-loaded beads are mixed, serum is added, and human IgG detected with standard secondary detection reagents. By coupling high-throughput DNA preparation of cDNA ORFs with antigen expression/capture, we demonstrate that 71/72 (98.6%) of GST-tagged proteins can be expressed and specifically detected on the bead ELISA. Detection of antibodies to the test viral antigen EBNA-1 in human sera is highly reproducible, with intra-assay variation of 3–8%, inter-assay variation of 5%, and with stability over 11 months. The specificity and limits of detection of the bead ELISAs for the tumor antigen p53 are comparable to both standard protein ELISAs and plate-based programmable (RAPID) ELISAs, and are also comparable to the detection of directly-conjugated p53 protein. Multiplexing a panel of analytes does not impair the sensitivity of antibody detection. Immunity to a panel of EBV-derived antigens (EBNA-1, EBNA-3A, EBNA-3B, and LMP-2) is specifically and differentially detected within healthy donor sera. This method allows for rapid conversion of ORFeome-derived cDNAs to a multiplexed bead ELISA to detect antibody immunity to both infectious and tumor antigens. PMID:19732778

  11. Long range detection of line-array multi-pulsed coding lidar by combining the Accumulation coherence and Subpixel-energy detection method.

    PubMed

    Su, Jinshan; Wang, Yuanqing; Liang, Dongdong

    2015-06-15

    This paper presents a multi-pulsed line-array push broom lidar, the pixel array scale reaches Geiger mode detectors in time-of-flight (TOF) depth imaging: by using time and space correlation between array elements of array avalanche photo detector (APD), light coding technology and a diode pumped solid-state laser with 10kHz repetition rate and 5µJ per pulses. Two signal enhancement methods, accumulation-coherence and high accuracy energy detection were combined improves the decode effect and realizes further long detection range. Experimental results and theory analysis indicating that the retrieval and denoising results of both simulated and real signals demonstrate that our method is practical and effective; what's more, the increasing scale of array sensor and the code bits can further improve system performance. PMID:26193500

  12. Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters

    PubMed Central

    Soga, Naoki; Watanabe, Rikiya; Noji, Hiroyuki

    2015-01-01

    We present an attolitre-sized arrayed lipid bilayer chamber system (aL-ALBiC) for rapid and massively parallel single-molecule assay of membrane transporter activity. Because of the small reaction volume (200 aL), the aL-ALBiC performed fast detection of single transporter activity, thereby enhancing the sensitivity, throughput, and accuracy of the analysis. Thus, aL-ALBiC broadens the opportunities for single-molecule analysis of various membrane transporters and can be used in pharmaceutical applications such as drug screening. PMID:26052065

  13. 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles

    NASA Astrophysics Data System (ADS)

    Davitt, Kristina; Song, Yoon-Kyu; Patterson, William R., III; Nurmikko, Arto V.; Gherasimova, Maria; Han, Jung; Pan, Yong-Le; Chang, Richard K.

    2005-11-01

    We demonstrate a compact system, incorporating a 32-element linear array of ultraviolet (290 nm and 340 nm) light-emitting diodes (LEDs) and a multi-anode photomultiplier tube, to the in-flight fluorescence detection of aerosolized particles, here containing the biological molecules tryptophan and NADH. This system illustrates substantial advances in the growth and fabrication of new semiconductor UV light emitting devices and an evolution in packaging details for LEDs tailored to the bio-aerosol warning problem. Optical engineering strategies are employed which take advantage of the size and versatility of light-emitting diodes to develop a truly compact fluorescence detector.

  14. 290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles.

    PubMed

    Davitt, Kristina; Song, Yoon-Kyu; Patterson Iii, William; Nurmikko, Arto; Gherasimova, Maria; Han, Jung; Pan, Yong-Le; Chang, Richard

    2005-11-14

    We demonstrate a compact system, incorporating a 32-element linear array of ultraviolet (290 nm and 340 nm) light-emitting diodes (LEDs) and a multi-anode photomultiplier tube, to the in-flight fluorescence detection of aerosolized particles, here containing the biological molecules tryptophan and NADH. This system illustrates substantial advances in the growth and fabrication of new semiconductor UV light emitting devices and an evolution in packaging details for LEDs tailored to the bio-aerosol warning problem. Optical engineering strategies are employed which take advantage of the size and versatility of light-emitting diodes to develop a truly compact fluorescence detector. PMID:19503158

  15. Low frequency gravitational wave detection with ground-based atom interferometer arrays

    NASA Astrophysics Data System (ADS)

    Chaibi, W.; Geiger, R.; Canuel, B.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2016-01-01

    We propose a new detection strategy for gravitational waves (GWs) below a few hertz based on a correlated array of atom interferometers (AIs). Our proposal allows us to reduce the Newtonian noise (NN), which limits all ground based GW detectors below a few hertz, including previous atom interferometry-based concepts. Using an array of long baseline AI gradiometers yields several estimations of the NN, whose effect can thus be reduced via statistical averaging. Considering the km baseline of current optical detectors, a NN rejection of a factor of 2 could be achieved and tested with existing AI array geometries. Exploiting the correlation properties of the gravity acceleration noise, we show that a tenfold or more NN rejection is possible with a dedicated configuration. Considering a conservative NN model and the current developments in cold atom technology, we show that strain sensitivities below 1 ×10-19/√{Hz } in the 0.3 -3 Hz frequency band can be within reach, with a peak sensitivity of 3 ×10-23/√{Hz } at 2 Hz . Our proposed configuration could extend the observation window of current detectors by a decade and fill the gap between ground-based and space-based instruments.

  16. Low Frequency Phased Array Application for Crack Detection in Cast Austenitic Piping

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2006-10-01

    As part of a multi-year program funded by the United States Nuclear Regulatory Commission (US NRC) to address nondestructive examination (NDE) reliability of inservice inspection (ISI) programs, studies conducted at the Pacific N¬orthwest National Laboratory (PNNL) in Richland, Washington, have focused on assessing novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the US NRC on the utility, effec¬tiveness and reliability of ultrasonic testing (UT) as related to the ISI of primary piping components in US commercial nuclear power plants. This paper describes progress, recent developments and results from an assessment of a portion of the work relating to the ultrasonic low frequency phased array inspection technique. Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks, PNNL samples containing thermal fatigue cracks and several blank vintage specimens having very coarse grains that are representative of early centrifugally cast piping installed in PWRs, were used for assessing the inspection method. The phased array approach was implemented using an R/D Tech Tomoscan III system operating at 1.0 MHz and 500 kHz, providing composite volumetric images of the samples. Several dual, transmit-receive, custom designed low-frequency arrays were employed in laboratory trials. Results from laboratory studies for assessing detection, localization and length sizing effectiveness are discussed.

  17. TaqMan probe array for quantitative detection of DNA targets

    PubMed Central

    Liu, Heping; Wang, Hong; Shi, Zhiyang; Wang, Hua; Yang, Chaoyong; Silke, Spering; Tan, Weihong; Lu, Zuhong

    2006-01-01

    To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.

  18. A technique for detection of PeV neutrinos using a phased radio array

    NASA Astrophysics Data System (ADS)

    Vieregg, A. G.; Bechtol, K.; Romero-Wolf, A.

    2016-02-01

    The detection of high energy neutrinos (1015-1020 eV) is an important step toward understanding the most energetic cosmic accelerators and would enable tests of fundamental physics at energy scales that cannot easily be achieved on Earth. In this energy range, there are two expected populations of neutrinos: the astrophysical flux observed with IceCube at lower energies (~1 PeV) and the predicted cosmogenic flux at higher energies (~1018 eV) . Radio detector arrays such as RICE, ANITA, ARA, and ARIANNA exploit the Askaryan effect and the radio transparency of glacial ice, which together enable enormous volumes of ice to be monitored with sparse instrumentation. We describe here the design for a phased radio array that would lower the energy threshold of radio techniques to the PeV scale, allowing measurement of the astrophysical flux observed with IceCube over an extended energy range. Meaningful energy overlap with optical Cherenkov telescopes could be used for energy calibration. The phased radio array design would also provide more efficient coverage of the large effective volume required to discover cosmogenic neutrinos.

  19. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein.

    PubMed

    Li, Wanbo; Jiang, Xueqin; Xue, Jiancai; Zhou, Zhangkai; Zhou, Jianhua

    2015-06-15

    Localized surface plasmon resonance (LSPR) combined with immunoassay shows greatly potential in fast detection of tumor markers. In this paper, a highly sensitive LSPR substrate has been fabricated and modified for direct detection of alpha-fetoprotein (AFP). The biosensor was prepared by interference lithography, and modified by covalently immobilizing anti-AFP on the surface of gold nano-mushroom arrays (GNMA). The modification process was investigated by Vis-NIR reflectance spectra and cyclic voltammogram measurements. We revealed the optical properties of the modified GNMA by measuring the Vis-NIR reflectance spectra and simulating its electric intensity field distribution under light illumination. The GNMA substrate was highly sensitive, with a refractive index sensitivity of ~465 nm/RIU. The substrate can be applied to label-free detection of AFP, with the linear range and the limit of detection determined to be 20-200 ng/mL and 24 ng/mL (S/N=3), respectively. We also demonstrated its clinical application by directly detecting AFP in human serum samples. It is expected that our biosensor could be integrated on microfluidic chips for high-throughput detection in portable early diagnosis, post-operative and point-of-care (POC) in clinical applications. PMID:25621998

  20. Real-time Detection of Breast Cancer Cells Using Peptide-functionalized Microcantilever Arrays

    PubMed Central

    Etayash, Hashem; Jiang, Keren; Azmi, Sarfuddin; Thundat, Thomas; Kaur, Kamaljit

    2015-01-01

    Ligand-directed targeting and capturing of cancer cells is a new approach for detecting circulating tumor cells (CTCs). Ligands such as antibodies have been successfully used for capturing cancer cells and an antibody based system (CellSearch®) is currently used clinically to enumerate CTCs. Here we report the use of a peptide moiety in conjunction with a microcantilever array system to selectively detect CTCs resulting from cancer, specifically breast cancer. A sensing microcantilever, functionalized with a breast cancer specific peptide 18-4 (WxEAAYQrFL), showed significant deflection on cancer cell (MCF7 and MDA-MB-231) binding compared to when exposed to noncancerous (MCF10A and HUVEC) cells. The peptide-functionalized microcantilever allowed efficient capture and detection of cancer cells in MCF7 spiked human blood samples emulating CTCs in human blood. A detection limit of 50–100 cancer cells mL−1 from blood samples was achieved with a capture yield of 80% from spiked whole blood samples. The results emphasize the potential of peptide 18-4 as a novel peptide for capturing and detecting cancer cells in conjunction with nanomechanical cantilever platform. The reported peptide-based cantilever platform represents a new analytical approach that can lead to an alternative to the various detection platforms and can be leveraged to further study CTCs. PMID:26434765

  1. Organic transistors with ordered nanoparticle arrays as a tailorable platform for selective, in situ detection.

    PubMed

    Hammock, Mallory L; Sokolov, Anatoliy N; Stoltenberg, Randall M; Naab, Benjamin D; Bao, Zhenan

    2012-04-24

    The use of organic transistors as sensing platforms provides a number of distinct advantages over conventional detection technologies, including their tunability, portability, and ability to directly transduce binding events without tedious and expensive labeling procedures. However, detection efforts using organic transistors lack a general method to uniquely specify and detect a target of interest. While highly sensitive liquid- and vapor-phase sensors have been previously reported, detection has been restricted either to the serendipitous interaction of the analyte molecules with the organic semiconductor or to the covalent functionalization of the semiconductor with receptor groups to enhance specificity. However, the former technique cannot be regularly relied upon for tailorable sensing while the latter may result in unpredictable decreases in electronic performance. Thus, a method to provide modular receptor sites on the surface of an organic transistor without damaging the device will significantly advance the field, especially regarding biological species detection. In this work, we utilized a block copolymer to template ordered, large-area arrays of gold nanoparticles, with sub-100 nm center-to-center spacing onto the surface of an organic transistor. This highly modular platform is designed for orthogonal modification with a number of available chemical and biological functional groups by taking advantage of the well-studied gold-thiol linkage. Herein, we demonstrate the functionalization of gold nanoparticles with a mercury-binding oligonucleotide sequence. Finally, we demonstrate the highly selective and robust detection of mercury(II) using this platform in an underwater environment. PMID:22397363

  2. PROSPECTS FOR THE DETECTION OF FAST RADIO BURSTS WITH THE MURCHISON WIDEFIELD ARRAY

    SciTech Connect

    Trott, Cathryn M.; Tingay, Steven J.; Wayth, Randall B.

    2013-10-10

    Fast radio bursts (FRBs) are short timescale (<<1 s) astrophysical radio signals, presumed to be a signature of cataclysmic events of extragalactic origin. The discovery of six high-redshift events at ∼1400 MHz from the Parkes radio telescope suggests that FRBs may occur at a high rate across the sky. The Murchison Widefield Array (MWA) operates at low radio frequencies (80-300 MHz) and is expected to detect FRBs due to its large collecting area (∼2500 m{sup 2}) and wide field-of-view (FOV, ∼ 1000 deg{sup 2} at ν = 200 MHz). We compute the expected number of FRB detections for the MWA assuming a source population consistent with the reported detections. Our formalism properly accounts for the frequency-dependence of the antenna primary beam, the MWA system temperature, and unknown spectral index of the source population, for three modes of FRB detection: coherent; incoherent; and fast imaging. We find that the MWA's sensitivity and large FOV combine to provide the expectation of multiple detectable events per week in all modes, potentially making it an excellent high time resolution science instrument. Deviations of the expected number of detections from actual results will provide a strong constraint on the assumptions made for the underlying source population and intervening plasma distribution.

  3. Hypergeometric analysis of tiling-array and sequence data: detection and interpretation of peaks.

    PubMed

    Taskesen, Erdogan; Hoogeboezem, Remco; Delwel, Ruud; Reinders, Marcel Jt

    2013-01-01

    Probing protein-deoxyribonucleic acid (DNA) is gaining popularity as it sheds light on molecular mechanisms that regulate the expression of genes. Currently, tiling-arrays and next-generation sequencing technology can be used to measure these interactions. Both methods generate a signal over the genome in which contiguous regions of peaks on the genome represent the presence of an interacting molecule. Many methods do exist to identify functional regions of interest (ROIs) on the genome. However the detection of ROIs are often not an end-point in research questions and it therefore requires data dragging between tools to relate the ROIs to information present in databases, such as gene-ontology, pathway information, or enrichment of certain genomic content. We introduce hypergeometric analysis of tiling-array and sequence data (HATSEQ), a powerful tool that accurately identifies functional ROIs on the genome where a genomic signal significantly deviates from the general genome-wide behavior. HATSEQ also includes a number of built-in post-analyses with which biological meaning can be attached to the detected ROIs in terms of gene pathways and de-novo motif analysis, and provides different visualizations and statistical summaries for the detected ROIs. In addition, HATSEQ has an intuitive graphic user interface that lowers the barrier for researchers to analyze their data without the need of scripting languages. We compared the results of HATSEQ against two other popular chromatin immunoprecipitation sequencing (ChIP-Seq) methods and observed overlap in the detected ROIs but HATSEQ is more specific in delineating the peak boundaries. We also discuss the versatility of HATSEQ by using a Signal Transducer and Activator of Transcription 1 (STAT1) ChIP-Seq data-set, and show that the detected ROIs are highly specific for the expected STAT1 binding motif. HATSEQ is freely available at: http://hema13.erasmusmc.nl/index.php/HATSEQ. PMID:24187504

  4. Hypergeometric analysis of tiling-array and sequence data: detection and interpretation of peaks

    PubMed Central

    Taskesen, Erdogan; Hoogeboezem, Remco; Delwel, Ruud; Reinders, Marcel JT

    2013-01-01

    Probing protein-deoxyribonucleic acid (DNA) is gaining popularity as it sheds light on molecular mechanisms that regulate the expression of genes. Currently, tiling-arrays and next-generation sequencing technology can be used to measure these interactions. Both methods generate a signal over the genome in which contiguous regions of peaks on the genome represent the presence of an interacting molecule. Many methods do exist to identify functional regions of interest (ROIs) on the genome. However the detection of ROIs are often not an end-point in research questions and it therefore requires data dragging between tools to relate the ROIs to information present in databases, such as gene-ontology, pathway information, or enrichment of certain genomic content. We introduce hypergeometric analysis of tiling-array and sequence data (HATSEQ), a powerful tool that accurately identifies functional ROIs on the genome where a genomic signal significantly deviates from the general genome-wide behavior. HATSEQ also includes a number of built-in post-analyses with which biological meaning can be attached to the detected ROIs in terms of gene pathways and de-novo motif analysis, and provides different visualizations and statistical summaries for the detected ROIs. In addition, HATSEQ has an intuitive graphic user interface that lowers the barrier for researchers to analyze their data without the need of scripting languages. We compared the results of HATSEQ against two other popular chromatin immunoprecipitation sequencing (ChIP-Seq) methods and observed overlap in the detected ROIs but HATSEQ is more specific in delineating the peak boundaries. We also discuss the versatility of HATSEQ by using a Signal Transducer and Activator of Transcription 1 (STAT1) ChIP-Seq data-set, and show that the detected ROIs are highly specific for the expected STAT1 binding motif. HATSEQ is freely available at: http://hema13.erasmusmc.nl/index.php/HATSEQ. PMID:24187504

  5. Development of a bead-based suspension array for the detection of pathogens in acute respiratory tract infections.

    PubMed

    Chen, Yu-Sheng; Li, Hong-Ru; Zhang, Wei; Hua, Zhi-Dan; Lin, Xiao-Hong; Lin, Meng-Qing; Huang, Wen-Sen; Huang, Li-Ping; Yu, Xiao-Li; Xu, Neng-Luan; Lin, Ming; Xie, Bao-Song; Shen, Xiao-Na; Xie, Jian-Feng; Wang, Yi; Huang, Meng; Wu, Yan-An; Hu, Xin-Lan

    2016-08-01

    We developed a high-throughput bead-based suspension array for simultaneous detection of 20 respiratory tract pathogens in clinical specimens. Pathogen-specific genes were amplified and hybridized to probes coupled to carboxyl-encoded microspheres. Fluorescence intensities generated via the binding of phycoerythrin-conjugated streptavidin with biotin-labeled targets were measured by the Luminex 100 bead-based suspension array system. The bead-based suspension array detected bacteria in a significantly higher number of samples compared to the conventional culture. There was no significant difference in the detection rate of atypical pathogensatypical pathogens or viruses between the bead-based suspension array and real-time PCR. This technology can play a significant role in screening patients with pneumonia. PMID:27190247

  6. Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Frechette, Jonathan; Grossmann, Peter J.; Busacker, David E.; Jordy, George J.; Duerr, Erik K.; McIntosh, K. Alexander; Oakley, Douglas C.; Bailey, Robert J.; Ruff, Albert C.; Brattain, Michael A.; Funk, Joseph E.; MacDonald, Jason G.; Verghese, Simon

    2012-06-01

    An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by a finite state machine that actively quenches an APD upon a photon detection event, and re-biases the device into Geiger mode after a programmable hold-off time. While an individual APD is in hold-off mode, other elements in the array are biased and available to detect photons. This approach enables high pixel refresh frequency (PRF), making the device suitable for applications including optical communications and frequency-agile ladar. A built-in electronic shutter that de-biases the whole array allows the detector to operate in a gated mode or allows for detection to be temporarily disabled. On-chip data reduction reduces the high bandwidth requirements of simultaneous detection and readout. Additional features include programmable single-pixel disable, region of interest processing, and programmable output data rates. State-based on-chip clock gating reduces overall power draw. ROIC operation has been demonstrated with hybridized InP APDs sensitive to 1.06-μm and 1.55-μm wavelength, and fully packaged focal plane arrays (FPAs) have been assembled and characterized.

  7. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source.

    PubMed

    Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming

    2009-03-01

    A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol. PMID:19224025

  8. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described. PMID:20531907

  9. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays

    NASA Astrophysics Data System (ADS)

    Huber, F.; Lang, H. P.; Backmann, N.; Rimoldi, D.; Gerber, Ch.

    2013-02-01

    Malignant melanoma, the deadliest form of skin cancer, is characterized by a predominant mutation in the BRAF gene. Drugs that target tumours carrying this mutation have recently entered the clinic. Accordingly, patients are routinely screened for mutations in this gene to determine whether they can benefit from this type of treatment. The current gold standard for mutation screening uses real-time polymerase chain reaction and sequencing methods. Here we show that an assay based on microcantilever arrays can detect the mutation nanomechanically without amplification in total RNA samples isolated from melanoma cells. The assay is based on a BRAF-specific oligonucleotide probe. We detected mutant BRAF at a concentration of 500 pM in a 50-fold excess of the wild-type sequence. The method was able to distinguish melanoma cells carrying the mutation from wild-type cells using as little as 20 ng µl-1 of RNA material, without prior PCR amplification and use of labels.

  10. Detection of meat-borne trimethylamine based on nanoporous colorimetric sensor arrays.

    PubMed

    Xiao-wei, Huang; Zhi-hua, Li; Xiao-bo, Zou; Ji-yong, Shi; Han-ping, Mao; Jie-wen, Zhao; Li-min, Hao; Mel, Holmes

    2016-04-15

    Trimethylamine (TMA) is a key measurement indicator for meat spoilage. In order to develop simple, cheap, and sensitive sensors for TMA detection, a nanoporous colorimetric sensor array (NCSA) was developed. A sol-gel method has been used to obtain TiO2 nanoporous film as substrate material to improve the sensitivity and stability of the CSA. The sensor enabled the visual detection of TMA gas from the permissible exposure limits (PEL) 10 ppm to 60 ppb concentrations with significant response. Principal component analysis (PCA) was used to characterize the functional relationship between the color difference data and TMA concentrations. Furthermore, the NCSA was used to predict the presence of TMA in Yao-meat. A partial least square (PLS) prediction model was obtained with the correlation coefficients of 0.896 and 0.837 in calibration and prediction sets, respectively. This research suggested that the NCSA offers a useful technology for quality evaluation of TMA in meat. PMID:26617036

  11. An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection

    SciTech Connect

    Hatab, Nahla A.; Rouleau, Christopher; Retterer, Scott T; Eres, Gyula; Hatzinger, Paul B.; Gu, Baohua

    2011-01-01

    An integrated field-portable surface enhaned Raman scattering (SERS) sensing system has been developed and evaluated for quantitative analysis of energetics such as perchlorate (ClO4-) and trinitrotoluene (TNT) at environmentally-relevant concentrations and conditions. The detection system consists of a portable Raman spectrometer equipped with an optical fiber probe that is coupled with novel elevated gold bowtie nanostructural arrays as a sensitive and reproducible SERS substrate. Using the standard addition technique, we show that ClO4- and TNT can be quantified at concentrations as low as 0.66 mg/L (or ~6.6 M) and 0.20 mg/L (~0.9 M), respectively, in groundwater samples collected from selected military sites. This research represents the first step toward the development of a field SERS sensor which may permit rapid, in-situ screening and analysis for various applications including national security, chemical, biological and environmental detection.

  12. Detection of localized retinal malfunction in retinal degeneration model using a multielectrode array system.

    PubMed

    Homma, Kohei; Osakada, Fumitaka; Hirami, Yasuhiko; Jin, Zi-Bing; Mandai, Michiko; Takahashi, Masayo

    2009-07-01

    Light stimulation inhibits the retinal dark current through phototransduction signals in the photoreceptors. Electroretinography (ERG) detects the blockage of the dark current as the a-wave of the ERG. However, standard ERGs represent the summed neural activity of the retina, and information on localized functions cannot be obtained. In this study, we used a multielectrode array (MEA) system and directly recorded the focal activities of the photoreceptors of the retina. Retinas were isolated from dark-adapted rodents and were draped over the electrode array with vitreal surface of the retina on the electrode array. After light stimulation, negative waves were recorded from each electrode. Adding aminobutyric acid, a selective agonist of mGluR6 expressed on ON-bipolar cells, to the media did not block the generation of the responses. The amplitude of the response increased with increasing retinal development. When the retina was locally injured, light-elicited responses were diminished only in the injured areas of the retina. Retinas isolated from rats given N-methyl-N-nitrosourea (MNU) were also tested. In central retinas of MNU-treated rats, the responses were progressively decreased following injection of MNU. In contrast, in the peripheral retinas, amplitude of the responses was relatively retained, consistent with the retinal thickness observed by immunohistochemistry. In conclusion, light-evoked responses were recorded with the MEA system. The MEA system was useful for detecting subtle and focal activation of photoreceptors. This spatial information should be valuable in investigating local functional recovery in therapeutically treated areas, such as in gene transfer or cell transplantation. PMID:19224574

  13. Real-time calibration of the AARTFAAC array for transient detection

    NASA Astrophysics Data System (ADS)

    Prasad, P.; Wijnholds, S. J.; Huizinga, F.; Wijers, R. A. M. J.

    2014-08-01

    The search for transient phenomena at low radio frequencies is now coming of age with the development of radio sky monitors with a large field of view, which are made feasible by new developments in calibration algorithms and computing. However, accurate calibration of such arrays is challenging, especially within the latency requirements of near real-time transient monitors, and is the main cause of limiting their sensitivities. This paper describes a strategy for real-time, wide-field direction-dependent calibration of the Amsterdam-ASTRON Radio Transients Facility and Analysis Center (AARTFAAC) array, which is a sensitive, continuously available all-sky monitor based on the LOw Frequency ARray (LOFAR). The monitor operates in a zenith pointing, snapshot imaging mode for image plane detection of bright radio transients. We show that a tracking calibration approach with solution propagation satisfies our latency, computing, and calibration accuracy constraints. We characterize the instrument and verify the calibration strategy under a variety of observing conditions. This brings out several phenomena, which can bias the calibration. The real-time nature of the application further imposes strict latency and computational constraints. We find that although ionosphere-induced phase errors present a major impediment to accurate calibration, these can be corrected in the direction of the brightest few sources to significantly improve image quality. Our real-time calibration pipeline implementation processes a single spectral channel of a snapshot observation in ~0.2 s on test hardware, which is well within its latency budget. Autonomously calibrating and imaging one second snapshots, our approach leads to a typical image noise of ~10 Jy for a ~90 kHz channel, reaching dynamic ranges of ~2000:1. We also show that difference imaging allows thermal-noise limited transient detection, despite the instrument being confusion-noise limited.

  14. LOW-FREQUENCY PHASED-ARRAY METHODS FOR CRACK DETECTION IN CAST AUSTENITIC PIPING COMPONENTS

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Diaz, Aaron A.; Doctor, Steven R.

    2008-01-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examination (NDE) approaches for inspecting coarse-grained, austenitic stainless steel reactor components. The work provides information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness, limitations, and reliability of advanced inspection techniques for application on safety-related components in commercial nuclear power plants. This paper describes results from recent assessments using a low-frequency phased-array methodology for detecting cracks in cast austenitic piping welds. Piping specimens that contain thermal and mechanical fatigue cracks located adjacent to welds were examined. The specimens have surface geometrical conditions and weld features that simulate portions of primary piping systems in many U.S. pressurized water reactors (PWRs). In addition, segments of vintage centrifugally cast piping were examined to assess inherent acoustic noise and scattering due to grain structures and determine consistency of ultrasonic (UT) responses from varied circumferential locations. The phased-array UT methods were applied from the outside surface of the specimens using automated scanning devices and water coupling, and employed a modified instrument operating between 500 kHz and 1.0 MHz. Composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection and sizing effectiveness are discussed, including acoustic parameters observed in centrifugally cast piping base materials.

  15. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection.

    PubMed

    Stoop, Ralph L; Wipf, Mathias; Müller, Steffen; Bedner, Kristine; Wright, Iain A; Martin, Colin J; Constable, Edwin C; Fanget, Axel; Schönenberger, Christian; Calame, Michel

    2016-01-01

    Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride- and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species. PMID:27164151

  16. Pulsed arrays: A new method of flaw detection by generating a frequency dependent angle of propagation

    NASA Astrophysics Data System (ADS)

    Hill, S. J.; Dixon, S. M.

    2012-05-01

    A new method of using an array of generation sources, pulsed simultaneously to generate a wavefront with a frequency dependant angle of propagation, has been developed. If pulsed arrays are used to generate a wave with a frequency dependent angle of propagation, the angle at which the wave was launched can be identified by measuring the frequency of the detected wave. In an isotropic material this means that it is possible use a second transducer to locate the position of the scatterer, whereas with a conventional single element generator method, it can only be located onto an ellipse. In addition to an increased scan speed, the resolution of detection should also be improved. A theoretical framework is put forward to explain how the wavefront is created from the superposition of the waves from the individual elements, and how the frequency varies along the wavefront. Finite element models and experimental measurements were also carried out, and both agreed with the analytic model. This method will have applications within NDE, but could also extend to sonar and radar techniques.

  17. Pt-Pb nanowire array electrode for enzyme-free glucose detection.

    PubMed

    Bai, Yu; Sun, Yingying; Sun, Changqing

    2008-12-01

    Pt-Pb nanowire array was directly synthesized by electrochemical deposition of Pt-Pb alloy into the pores of microporous polycarbonate template and subsequent chemical etching of the template. The morphology and the composition of the Pt-Pb nanowires were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Pt-Pb nanowire array electrode (Pt-PbNAE). Direct glucose oxidation on Pt-PbNAE was investigated in detail by discussing the effect of the structure and materials of the electrode on electrocatalytic oxidation of glucose. As a result, we found that the Pt-PbNAE with a three-dimensional structure exhibited high electrocatalytic activity to glucose oxidation in neutral condition and could be used for the development of nonenzymatic glucose sensor. To effectively avoid the interference coming from ascorbic acid, a negative potential of -0.20V was chosen for glucose detection, and the sensitivity of the sensor to glucose oxidation was 11.25 microAmM(-1)cm(-2) with a linearity up to 11 mM, and a detection limit of 8 microM (signal-to-noise ratio of 3). PMID:18619831

  18. Microsphere Suspension Array Assays for Detection and Differentiation of Hendra and Nipah Viruses

    PubMed Central

    Foord, Adam J.; White, John R.; Colling, Axel; Heine, Hans G.

    2013-01-01

    Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were developed targeting multiple sites within the nucleoprotein (N) and phosphoprotein (P) encoding genes. The relative specificities and sensitivities of the assays were determined using reference isolates of each virus type, samples from experimentally infected horses, and archival veterinary diagnostic submissions. Results were assessed in direct comparison with an established qPCR. The microsphere array assays achieved unequivocal differentiation of HeV and NiV and the sensitivity of HeV detection was comparable to qPCR, indicating high analytical and diagnostic specificity and sensitivity. PMID:23509705

  19. Lenslet Array to Further Suppress Star Light for Direct Exoplanet Detection

    NASA Technical Reports Server (NTRS)

    Gong, Qian; McElwain, Michael; Shiri, Ron

    2016-01-01

    Direct imaging plays a key role in the detection and characterization of exoplanets orbiting within its host star's habitable zone. Many innovative ideas for starlight suppression and wavefront control have been proposed and developed over the past decade. However, several technological challenges still lie ahead to achieve the required contrast, including controlling the observatory pointing performance, fabricating occulting masks with tight optical tolerances, developing wavefront control algorithms, controlling stray light, advancing single photon detecting detectors, and integrated system-level issues. This paper explores how a lenslet array and pinhole mask may be implemented to further suppress uncorrected starlight that leaks through the occulting mask. An external occulter, or star shade, is simulated to demonstrate this concept, although this approach can be implemented for internal coronagraphs as well. We describe how to use simple relay optics to control the scene near the inner working angle and the level of the suppression expected. Furthermore, if the lenslet array is the input to an integral field spectrograph, as planned for the WFIRST mission, the spectral content of the exoplanet atmospheres can be obtained to determine if the observed planet is habitable and ultimately, if it is inhabited.

  20. Microsphere suspension array assays for detection and differentiation of Hendra and Nipah viruses.

    PubMed

    Foord, Adam J; White, John R; Colling, Axel; Heine, Hans G

    2013-01-01

    Microsphere suspension array systems enable the simultaneous fluorescent identification of multiple separate nucleotide targets in a single reaction. We have utilized commercially available oligo-tagged microspheres (Luminex MagPlex-TAG) to construct and evaluate multiplexed assays for the detection and differentiation of Hendra virus (HeV) and Nipah virus (NiV). Both these agents are bat-borne zoonotic paramyxoviruses of increasing concern for veterinary and human health. Assays were developed targeting multiple sites within the nucleoprotein (N) and phosphoprotein (P) encoding genes. The relative specificities and sensitivities of the assays were determined using reference isolates of each virus type, samples from experimentally infected horses, and archival veterinary diagnostic submissions. Results were assessed in direct comparison with an established qPCR. The microsphere array assays achieved unequivocal differentiation of HeV and NiV and the sensitivity of HeV detection was comparable to qPCR, indicating high analytical and diagnostic specificity and sensitivity. PMID:23509705

  1. Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection

    PubMed Central

    Stoop, Ralph L.; Wipf, Mathias; Müller, Steffen; Bedner, Kristine; Wright, Iain A.; Martin, Colin J.; Constable, Edwin C.; Fanget, Axel; Schönenberger, Christian; Calame, Michel

    2016-01-01

    Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride- and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species. PMID:27164151

  2. A Multiplex PCR-coupled Liquid Bead Array for the Simultaneous Detection of Four Biothreat Agents

    SciTech Connect

    Wilson, W J; Erler, A M; Nasarabadi, S L; Skowronski, E W; McCready, P M

    2004-02-04

    We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species -specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high- throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3,000 individual data points within a single 8-hour shift for approximately $1.20 per sample in a 10-plexed assay.

  3. High sensitive immunoassay for multiplex mycotoxin detection with photonic crystal microsphere suspension array.

    PubMed

    Deng, Guozhe; Xu, Kun; Sun, Yue; Chen, Yu; Zheng, Tiesong; Li, Jianlin

    2013-03-01

    A novel, sensitive, and high throughput competitive immunoassay for multiplex mycotoxins was established by immobilizing the artificial antigens (Ags) of mycotoxins on the surfaces of three kinds of silica photonic crystal microsphere (SPCM) suspension arrays. The SPCMs were encoded by their reflectance peak positions. Aflatoxin B1 (AFB1), fumonisin B1 (FB1), and citrinin (CIT) spiked in the cereals were extracted, and the fluorescein isothiocyanate (FITC) labeled antibodies (Abs) of these mycotoxins were added into the centrifuge tube which contained the SPCMs of the modified artificial antigens (Ags). The fluorescence signal was collected by an array fluorescent scanner. The limit of detection (LOD) was as low as 0.5, 1, and 0.8 pg/mL for AFB1, FB1, and CIT, respectively. The new method provided a wide linear detection range from 0.001 to 10, 0.001 to 10, and 0.001 to 1 ng/mL for AFB1, FB1, and CIT, respectively. The mean recovery rates are in range of 74.7 ± 4.0% to 127.9 ± 4.4% for the three mycotoxins in corn, peanuts, and wheat. The developed method for mycotoxins was used to assay the AFB1, FB1, and CIT level in 10 naturally contaminated cereal samples, and the results of detection were in agreement with that of a classic enzyme-linked immunosorbent assay (ELISA) method. This method saves a large amount of reagents (10 μL volume) and detection time (<3 h) for multiplex mycotoxin assay. PMID:23350906

  4. The clinical application of array CGH for the detection of chromosomal defects in 20,126 unselected newborns

    PubMed Central

    2013-01-01

    Background Array comparative genomic hybridization (CGH) is a powerful tool for detecting unbalanced chromosomal alterations. To validate the usefulness of array CGH in newborn screening, we examined 20,126 unselected infants. In addition, the number of newborns analyzed with array CGH is the largest one ever reported. Findings A total of 20,126 unselected newborns were investigated with array CGH and cytogenetic analyses. The analyses revealed 87 cases with chromosome abnormalities. Of these, 53 cases had significant chromosome aneuploidies, including trisomy 13, trisomy 21, 47,XXY or 45,X, and the other 34 cases presented partial chromosomal deletions or duplications. Conclusions In this study, we show that array CGH is an appropriate tool for the screening of chromosomal abnormalities in newborns, especially for the infants without distinct clinical features. PMID:23725218

  5. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection

    NASA Astrophysics Data System (ADS)

    Duan, Bo; Zhou, Jiajing; Fang, Zheng; Wang, Chenxu; Wang, Xiujuan; Hemond, Harold F.; Chan-Park, Mary B.; Duan, Hongwei

    2015-07-01

    We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of the tGO nanospacer and the stealth properties of PEG coating on the plasmonic nanoparticles collectively lead to preferential positioning of selective targets such as aromatic molecules and single-stranded DNA at the SERS-active nanogap hotspots. We have demonstrated that an SERS assay based on the PEGylated trilayered substrate, in combination with magnetic separation, allows for sensitive, multiplexed ``signal-off'' detection of DNA sequences of bacterial pathogens.We have developed a new type of surface enhanced Raman scattering (SERS) substrate with thiolated graphene oxide (tGO) nanosheets sandwiched between two layers of closely packed plasmonic nanoparticles. The trilayered substrate is built up through alternative loading of interfacially assembled plasmonic nanoparticle arrays and tGO nanosheets, followed by coating the nanoparticle surfaces with poly(ethylene glycol) (PEG). Here tGO plays multifunctional roles as a 2D scaffold to immobilized interfacially assembled plasmonic nanoparticles, a nanospacer to create SERS-active nanogaps between two layers of nanoparticle arrays, and a molecule harvester to enrich molecules of interest via π-π interaction. In particular, the molecule harvesting capability of

  6. Detection and classification of gaseous sulfur compounds by solid electrolyte cyclic voltammetry of cermet sensor array.

    PubMed

    Kramer, Kirsten E; Rose-Pehrsson, Susan L; Hammond, Mark H; Tillett, Duane; Streckert, Holger H

    2007-02-12

    Electrochemical sensors composed of a ceramic-metallic (cermet) solid electrolyte are used for the detection of gaseous sulfur compounds SO(2), H(2)S, and CS(2) in a study involving 11 toxic industrial chemical (TIC) compounds. The study examines a sensor array containing four cermet sensors varying in electrode-electrolyte composition, designed to offer selectivity for multiple compounds. The sensors are driven by cyclic voltammetry to produce a current-voltage profile for each analyte. Raw voltammograms are processed by background subtraction of clean air, and the four sensor signals are concatenated to form one vector of points. The high-resolution signal is compressed by wavelet transformation and a probabilistic neural network is used for classification. In this study, training data from one sensor array was used to formulate models which were validated with data from a second sensor array. Of the 11 gases studied, 3 that contained sulfur produced the strongest responses and were successfully analyzed when the remaining compounds were treated as interferents. Analytes were measured from 10 to 200% of their threshold-limited value (TLV) according to the 8-h time weighted average (TWA) exposure limits defined by the National Institute of Occupational Safety and Health (NIOSH). True positive classification rates of 93.3, 96.7, and 76.7% for SO(2), H(2)S, and CS(2), respectively, were achieved for prediction of one sensor unit when a second sensor was used for modeling. True positive rates of 83.3, 90.0, and 90.0% for SO(2), H(2)S, and CS(2), respectively, were achieved for the second sensor unit when the first sensor unit was used for modeling. Most of the misclassifications were for low concentration levels (such 10-25% TLV) in which case the compound was classified as clean air. Between the two sensors, the false positive rates were 2.2% or lower for the three sulfur compounds, 0.9% or lower for the interferents (eight remaining analytes), and 5.8% or lower for

  7. Pyroelectric IR sensor arrays for fall detection in the older population

    NASA Astrophysics Data System (ADS)

    Sixsmith, A.; Johnson, N.; Whatmore, R.

    2005-09-01

    Uncooled pyroelectric sensor arrays have been studied over many years for their uses in thermal imaging applications. These arrays will only detect changes in IR flux and so systems based upon them are very good at detecting movements of people in the scene without sensing the background, if they are used in staring mode. Relatively-low element count arrays (16 x 16) can be used for a variety of people sensing applications, including people counting (for safety applications), queue monitoring etc. With appropriate signal processing such systems can be also be used for the detection of particular events such as a person falling over. There is a considerable need for automatic fall detection amongst older people, but there are important limitations to some of the current and emerging technologies available for this. Simple sensors, such as 1 or 2 element pyroelectric infra-red sensors provide crude data that is difficult to interpret; the use of devices worn on the person, such as wrist communicator and motion detectors have potential, but are reliant on the person being able and willing to wear the device; video cameras may be seen as intrusive and require considerable human resources to monitor activity while machine-interpretation of camera images is complex and may be difficult in this application area. The use of a pyroelectric thermal array sensor was seen to have a number of potential benefits. The sensor is wall-mounted and does not require the user to wear a device. It enables detailed analysis of a subject's motion to be achieved locally, within the detector, using only a modest processor. This is possible due to the relative ease with which data from the sensor can be interpreted relative to the data generated by alternative sensors such as video devices. In addition to the cost-effectiveness of this solution, it was felt that the lack of detail in the low-level data, together with the elimination of the need to transmit data outside the detector

  8. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    PubMed

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection. PMID:24357010

  9. Pupil and Glint Detection Using Wearable Camera Sensor and Near-Infrared LED Array

    PubMed Central

    Wang, Jianzhong; Zhang, Guangyue; Shi, Jiadong

    2015-01-01

    This paper proposes a novel pupil and glint detection method for gaze tracking system using a wearable camera sensor and near-infrared LED array. A novel circular ring rays location (CRRL) method is proposed for pupil boundary points detection. Firstly, improved Otsu optimal threshold binarization, opening-and-closing operation and projection of 3D gray-level histogram are utilized to estimate rough pupil center and radius. Secondly, a circular ring area including pupil edge inside is determined according to rough pupil center and radius. Thirdly, a series of rays are shot from inner to outer ring to collect pupil boundary points. Interference points are eliminated by calculating gradient amplitude. At last, an improved total least squares is proposed to fit collected pupil boundary points. In addition, the improved total least squares developed is utilized for the solution of Gaussian function deformation to calculate glint center. The experimental results show that the proposed method is more robust and accurate than conventional detection methods. When interference factors such as glints and natural light reflection are located on pupil contour, pupil boundary points and center can be detected accurately. The proposed method contributes to enhance stability, accuracy and real-time quality of gaze tracking system. PMID:26633416

  10. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    NASA Astrophysics Data System (ADS)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  11. Innovative optical power detection array system for relative positioning of inner-formation flying system

    NASA Astrophysics Data System (ADS)

    Hou, Zhendong; Wang, Zhaokui; Zhang, Yulin

    2016-09-01

    The Inner-formation flying system (IFFS) is conceived to feature a spherical proof mass falling freely within a large cavity for space gravity detection, of which first application focuses on the Earth's gravity field recovery. For the IFFS, it is the relative position of the proof mass to its surrounding cavity that is feedback into thrusters for tracking control, even as part of data to detect gravity. Since the demonstration and verification of demanding technologies using small satellite platforms is a very sensible choice prior to detection mission, an optical power detection array system (OPDAS) is proposed to measure the relative position with advantages of low cost and high adaptability. Besides that, its large dynamic range can reduce the requirement for satellite platform and releasing mechanism, which is also an attracting trait for small satellite application. The concept of the OPDAS is firstly presented, followed by the algorithm to position the proof mass. Then the radiation pressure caused by the measuring beam is modeled, and its disturbance on the proof mass is simulated. The experimental system to test the performance of a prototype of the OPDAS is established, and the preliminary results show that a precision of less than 0.4 mm across a dynamic range of several centimeters can be reached by the prototype of the OPDAS.

  12. Low-frequency phased-array 2D fluorescence localization in breast cancer detection

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Chen, Yu; Chance, Britton; Luo, Qingming

    2003-12-01

    A method for rapid, non-invasive 2D fluorescence localization of breast cancer using low frequency phased array near-infrared technique is presented in this article. In our study, we have developed a dual-channel fluorescence detection system to locate breast cancer. This system consists two pair of in-phase and out-of-phase light emitting diodes (LEDs) as the light sources and Photomultiplier Tube (PMT) as the detector. Two null planes generated by cancellation of diffusion photon density waves (DPDW) will indicate the 2D position of breast cancer with exogenous contrast agents. The fluorescent contrast agent used in this study is Indocyanine Green (ICG) and the minimum amount of ICG detected by our system is 0.5 μM. With the 2 cm separation of sources and detector, the maximum depth our system can detect is 10 mm. The whole system is in compact size and portable. Phantom experiments show that the system can provide real time detection and localization of small hidden absorbing-fluorescent objects inside the highly scattering medium with high accuracy of +/-3 mm. The potential application is that it is low-cost and can be used for breast cancer localization as operation aid and self-examination.

  13. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology. PMID:19501500

  14. Effects of topography on upper mantle discontinuities for array detections of PP precursors

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Lessing, S.; Rost, S.; Vanacore, E. A.; Schmerr, N. C.

    2014-12-01

    PP underside reflections off upper mantle discontinuities are frequently used to map discontinuity topography, impedance contrasts and to interpret these with respect to thermal and/or mineralogical variations. While the seismic discontinuities at 410 km and 660 km depth should be a global feature, several events show no detections or reduced amplitudes of the precursors. In this study, we investigate effects of topography on upper mantle discontinuities on array detections of PP precursors. Using the 2.5-D axisymmetric finite difference technique PSVaxi, we compute P-SV synthetic seismograms for two-dimensional model geometries with correct 3-D geometrical spreading. Retaining dominant periods of ~ 2 s, we investigate Gaussian-shaped upward or downward deflections of the 660 km discontinuity with varying lateral dimensions. Furthermore, we investigate effects of double discontinuities at ~660 km depth which are due to phase transformations in the non-olivine component of the mantle at subduction zone temperatures. Analyses of travel residuals indicate that topography of downward deflections of discontinuities is underestimated by 10 to 20 km while upward deflections are recovered within 10 km. Amplitude measurements show focussing and defocussing of PP precursor amplitudes by 60-70%. Reduced amplitudes of PP precursors are close or below the average noise level at seismic arrays and could result in non-detections. Double discontinuities at 660 km depth are recovered for lateral dimensions larger than 10° and if the two discontinuities are separated by at least 20 km. The observed effects in synthetic seismograms raise caution for interpretation of PP precursors in terms of impedance contrasts as well as thermal and mineralogical variations in the mantle.

  15. Digital array gas radiometer (DAGR): a sensitive and reliable trace gas detection concept

    NASA Astrophysics Data System (ADS)

    Gordley, Larry L.; McHugh, Martin J.; Marshall, B. T.; Thompson, Earl

    2009-05-01

    The Digital Array Gas Radiometer (DAGR) concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR) for remote trace gas detection and monitoring. GFCR sensors have been successful in many infrared remote sensing applications. Historically however, solar backscatter measurements have not been as successful because instrument designs have been susceptible to natural variations in surface albedo, which induce clutter and degrade the sensitivity. DAGR overcomes this limitation with several key innovations. First, a pupil imaging system scrambles the received light, removing nearly all spatial clutter and permitting a small calibration source to be easily inserted. Then, by using focal plane arrays rather than single detectors to collect the light, dramatic advances in dynamic range can be achieved. Finally, when used with the calibration source, data processing approaches can further mitigate detector non-uniformity effects. DAGR sensors can be made as small as digital cameras and are well suited for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Easily integrated into a satellite platform, a space-based DAGR would provide near-global sensing of climatically important species such as such as CO, CH4, and N2O. Aircraft and UAV measurements with a DAGR could be used to monitor agricultural and industrial emissions. Ground-based or portable DAGRs could augment early warning systems for chemical weapons or toxic materials. Finally, planetary science applications include detection and mapping of biomarkers such as CH4 in the Martian atmosphere.

  16. 6-Plex microsphere immunoassay with imaging planar array detection for mycotoxins in barley.

    PubMed

    Peters, Jeroen; Cardall, Alice; Haasnoot, Willem; Nielen, Michel W F

    2014-08-21

    Mycotoxins are produced by fungi as secondary metabolites. They often multi-contaminate food and feed commodities posing a health risk to humans and animals. A fast and easy to apply multiplex screening of these commodities could be useful to detect multi-contamination. For this, we developed a semi-quantitative 6-plex immunoassay using a suspension array of paramagnetic colour-coded microspheres combined with imaging planar array detection for the mycotoxins aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, T2-toxin, HT-2 toxin and fumonisin B1. Mycotoxin specific monoclonal antibodies were coupled to different sets of microspheres and mycotoxins conjugated to the fluorescent protein R-phycoerythrin served as reporter molecules. Competition between free mycotoxins in the sample and mixed reporter molecules for antibody binding sites on mixed microspheres created a multiplex direct inhibition immunoassay. The reagents were selected for no or low cross-interactions between the assays and cross-reactions with metabolites and possible masked forms were determined. A within-laboratory validation was carried out using blank and spiked barley samples. Furthermore, the 6-plex was used to screen available barley, and malted barley, reference materials. The validation showed very high inter and intra-day precision for all samples with a maximum relative standard deviation value of 10%. The screening assay allows easy and rapid multiplex detection of the target mycotoxins in barley according to EU legislation. With a cut off factor of 50%, based on the EU maximum levels, we were able to screen at 2 μg kg(-1) for aflatoxin B1, 2.5 μg kg(-1) for ochratoxin A, 625 μg kg(-1) for deoxynivalenol, 50 μg kg(-1) for zearalenone, 1000 μg kg(-1) for fumonisin B1 and 25 μg kg(-1) for T-2 toxin. Thanks to the transportable planar array system, the developed 6-plex has potential for future on-site testing. Future implementation of this method as a pre-screening tool, prior to

  17. Molecular detection of harmful algal blooms (HABs) using locked nucleic acids and bead array technology

    PubMed Central

    Diaz, Mara R.; Jacobson, James W.; Goodwin, Kelly D.; Dunbar, Sherry A.; Fell, Jack W.

    2010-01-01

    Harmful algal blooms (HABs) are a serious public health risk in coastal waters. As the intensity and frequency of HABs continue to rise, new methods of detection are needed for reliable identification. Herein, we developed a high-throughput, multiplex, bead array technique for the detection of the dinoflagellates Karenia brevis and Karenia mikimotoi. The method combined the Luminex detection system with two novel technologies: locked nucleic acid–modified oligonucleotides (LNA) and Mirus Label IT® nucleic acid technology. To study the feasibility of the method, we evaluated the performance of modified and unmodified LNA probes with amplicon targets that were biotin labeled with two different strategies: direct chemical labeling (Mirus Label IT) versus enzymatic end-labeling (single biotinylated primer). The results illustrated that LNA probes hybridized to complementary single-stranded DNA with better affinity and displayed higher fluorescence intensities than unmodified oligonucleotide DNA probes. The latter effect was more pronounced when the assay was carried out at temperatures above 53°C degree. As opposed to the enzymatic 5′ terminal labeling technique, the chemical-labeling method enhanced the level of fluorescence by as much as ~83%. The detection limits of the assay, which were established with LNA probes and Mirus Label IT system, ranged from 0.05 to 46 copies of rRNA. This high-throughput method, which represents the first molecular detection strategy to integrate Luminex technology with LNA probes and Mirus Label IT, can be adapted for the detection of other HABs and is well suited for the monitoring of red tides at pre-blooming and blooming conditions. PMID:21165155

  18. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection.

    PubMed

    Ng, Elaine; Nadeau, Kari C; Wang, Shan X

    2016-06-15

    Current common allergen detection methods, including enzyme-linked immunosorbent assays (ELISAs) and dip-stick methods, do not provide adequate levels of sensitivity and specificity for at-risk allergic patients. A method for performing highly sensitive and specific detection of multiple food allergens is thus imperative as food allergies are becoming increasingly recognized as a major healthcare concern, affecting an estimated 4% of the total population. We demonstrate first instance of sensitive and specific multiplexed detection of major peanut allergens Ara h 1 and Ara h 2, and wheat allergen Gliadin using giant magnetoresistive (GMR) sensor arrays. Commercialized ELISA kits for Ara h 1 and Ara h 2 report limits of detection (LODs) at 31.5 ng/mL and 0.2 ng/mL, respectively. In addition, the 96-well-based ELISA developed in-house for Gliadin was found to have a LOD of 40 ng/mL. Our multiplexed GMR-based assay demonstrates the ability to perform all three assays on the same chip specifically and with sensitivities at LODs about an order of magnitude lower than those of 96-well-based ELISAs. LODs of GMR-based assays developed for Ara h 1, Ara h 2, and Gliadin were 7.0 ng/mL, 0.2 ng/mL, and 1.5 ng/mL, respectively, with little to no cross-reactivity. These LODs are clinically important as some patients could react strongly against such low allergen levels. Given the limitations of current industrial detection technology, multiplexed GMR-based assays provide a method for highly sensitive and specific simultaneous detection of any combination of food-product allergens, thus protecting allergic patients from life-threatening events, including anaphylaxis, by unintentional consumption. PMID:26859787

  19. Comprehensive arrayed primer extension array for the detection of 59 sequence variants in 15 conditions prevalent among the (Ashkenazi) Jewish population.

    PubMed

    Schrijver, Iris; Külm, Maigi; Gardner, Phyllis I; Pergament, Eugene P; Fiddler, Morris B

    2007-04-01

    In the Ashkenazi Jewish population, serious and lethal genetic conditions occur with relatively high frequency. A single test that encompasses the majority of population-specific mutations is not currently available. For comprehensive carrier screening and molecular diagnostic purposes, we developed a population-specific and inclusive microarray. The arrayed primer extension genotyping microarray carries 59 sequence variant detection sites, of which 53 are detectable bi-directionally. These sites represent the most common variants in Tay-Sachs disease, Bloom syndrome, Canavan disease, Niemann-Pick A, familial dysautonomia, torsion dystonia, mucolipidosis type IV, Fanconi anemia, Gaucher disease, factor XI deficiency, glycogen storage disease type 1a, maple syrup urine disease, nonsyndromic sensorineural hearing loss, familial Mediterranean fever, and glycogen storage disease type III. Several mutations in the selected disorders that are not prevalent per se in the Ashkenazi Jewish populations, as well pseudodeficiency alleles, are also included in the array. The initial technical evaluation of this microarray demonstrates that it is comprehensive, robust, sensitive, specific, and easily modifiable. This cost-effective array is based on a diversely applied platform technology and is suitable for both carrier screening and disease detection in Ashkenazi and Sephardic Jewish populations. PMID:17384215

  20. Low Frequency Phased Array Techniques for Crack Detection in Cast Austenitic Piping Welds: A Feasibility Study

    SciTech Connect

    Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.

    2007-01-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington have focused on developing and evaluating the reliability of nondestructive testing (NDT) approaches for coarse-grained stainless steel reactor components. The objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the utility, effectiveness and limitation of NDT techniques as related to inservice testing of primary system piping components in pressurized water reactors. We examined cast stainless steel pipe specimens containing thermal and mechanical fatigue cracks located close to the weld roots and having inner and outer diameter surface geometrical conditions that simulate several water reactor primary piping configurations. In addition, segments of vintage centrifugally cast piping were examined to characterize the inherent acoustic noise and scattering caused by grain structures and to determine the consistency of ultrasonic responses when propagating through differing microstructures. Advanced ultrasonic phased array techniques were applied from the outside surface of these specimens using automated scanning devices and water coupling. The phased array approach was implemented with a modified instrument operating at low frequencies, and composite volumetric images of the specimens were generated. Results from laboratory studies for assessing crack detection effectiveness in cast stainless steel as a function of frequency are discussed in this paper.

  1. Analysis of selected stilbenes in Polygonum cuspidatum by HPLC coupled with CoulArray detection.

    PubMed

    Benová, Blanka; Adam, Martin; Onderková, Katerina; Královský, Josef; Krajícek, Milan

    2008-07-01

    The roots of three varieties of Polygonum cuspidatum were analyzed for resveratrol and its analogs. The powder of the dried roots was extracted with aqueous ethanol (60% v/v) and the extracts obtained were analyzed using RP HPLC with coulometric detection. A simple HPLC method with a multichannel CoulArray detector was developed for the determination of four stilbenes: resveratrol, its glucoside piceid, piceatannol, and its glucoside astringin. Analyses were carried out on a LiChrospher C18 (125 x 4.6 mm id, particle size 5 microm) column with a mobile phase of ammonium acetate (pH 3) and ACN in gradient mode. Four compounds were monitored by a CoulArray electrochemical detector. Potentials of eight electrochemical cells in series were set in the range of 200-900 mV. Optimization of the mobile phase pH was performed. Calibration curves showed good linearity with correlation coefficients (r(2))--more than 0.9975. PMID:18646269

  2. A compact array calibrator to study the feasibility of acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  3. Robot Printing of Reverse Dot Blot Arrays for Human Mutation Detection

    PubMed Central

    Lappin, Stephen; Cahlik, Jeff; Gold, Bert

    2001-01-01

    We report on a generally useful, partially automated, human mutation detection method based upon printing moderate density oligonucleotide arrays using a biorobot on activated nylon membranes. The Beckman Biomek 2000 was adapted to this task through fabrication of aluminum membrane filter holders and the development of an addressable Tool Command Language (Tcl) program, which can be invoked through BioScript. During program execution, a robot arm is moved along the x, y, and z axes to expel liquid, without dripping, from disposable barrier pipette tips and then to touch the drops on preactivated membranes. Printed arrays consist of alternating rows of oligonucleotides containing normal and mutant sequences. Hybridization of biotin labeled polymerase chain reaction products derived from human patient genomic DNA samples are visualized using chemiluminescent or chromogenic indicators. This technique allows unequivocal genotyping of 32 mutations at the β-thalassemia locus (11p15.5) and of 34 mutations and one polymorphism at the cystic fibrosis transconductance membrane regulator locus (7p35). PMID:11687602

  4. TARA: Forward-scattered radar detection of UHECR at the telescope array

    NASA Astrophysics Data System (ADS)

    Belz, J.; Abu Bakr Othman, M.; Allen, C.; Barcikowski, E.; Besson, D.; Farhang-Boroujeny, B.; Ikeda, D.; Hanlon, W.; Kunwar, S.; Lundquist, J. P.; Kravchenko, I.; Larson, S.; Myers, I.; Nakamura, T.; Rankin, J. S.; Sagawa, H.; Sokolsky, P.; Takai, H.; Terasawa, T.; Thomson, G. B.

    2013-06-01

    Increased event statistics will be required to definitively answer the question of the origin(s) of Ultra-High Energy Cosmic Rays (UHECR). Using current technologies however, achieving the necessary statistics may be financially and practically impossible. We describe the status and plans of the TARA project, an effort to detect Ultra-High-Energy Cosmic Rays by their forward scattered or "bistatic" radar signature. Bistatic radar holds promise as a new remote sensing technique for UHECR, without the duty cycle limitations of nitrogen fluorescence detectors. Such a technique could prove key in advancing the study of UHECR beyond the constraints of the current generation of cosmic ray observatories. TARA consists of a low-VHF television transmitter illuminating the air above the Telescope Array (TA), and a set of radio receivers on the far side of TA approximately 50 km distant from the transmitter. We have collected radar data since April 2011 using a 2 kW transmitter at 54.1 MHz. Recently, we received permission to increase our broadcast power to 40 kW and our effective radiated power (ERP) to 6 MW. On the receiver end, we are employing software-defined radio receivers and developing real-time trigger algorithms based on the expected air shower radar echo. In addition to presenting an overview of the project status and future plans, we will present the most recent results of searches for coincidences between radar echoes and Telescope Array air shower events.

  5. Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas Detection

    NASA Astrophysics Data System (ADS)

    Andio, Mark A.

    Methane and carbon monoxide are two hazardous gases which require continuous monitoring by gas sensors in underground coal mines for explosion prevention and toxicity, respectively. This work explored implementing miniaturized gas sensors in this area to simultaneously detect both gases for benefits of increased portability and reduced power consumption of the chemiresistive gas sensor device. The focus of this research was to understand how the particle size, morphology, and microstructure of the metaloxide film affected the gas sensor performance to the two gases of interest on miniaturized gas sensor devices in the form of microhotplate platforms. This was done through three main research studies. The first was conducted by growing SnO2 nanowires from SnO 2 particles using an Au-catalyst. Growth conditions including temperature, time, and oxygen partial pressure were explored to determine the formation aspects of the SnO2 nanowires. Gas sensor studies were completed that provided evidence that the SnO2 nanowires increased detection to a fixed concentration of carbon monoxide compared to SnO2 particles without nano-structure formation. A second research study was performed to compare the gas sensor performance of SnO2 nanoparticles, hierarchical particles, and micron-size particles. The nanoparticles were developed into an ink and deposited via ink-jet printing on the microhotplate substrates to control the microstructure of the metal-oxide film. By preventing agglomeration of the nanoparticle film, the SnO2 nanoparticles displayed similar gas sensor performance to methane and carbon monoxide as the hierarchical particles. Both nano-structures had much higher gas sensor response than the micron-size particles which confirms the surface area of the metal-oxide film is critical for reaction of the analyte gas at the surface. The last research study presented in the dissertation describes an oxide nanoparticle array developed for detecting methane and carbon

  6. Development of a radio-detection array for the observation of UHE neutrino-induced showers

    NASA Astrophysics Data System (ADS)

    Ardouin, Daniel; Charrier, Didier; Lautridou, Pascal; Martineau-Huynh, Olivier; Ravel, Olivier; Wu, Xiang-Ping; Zhao, Meng

    2009-06-01

    The recent demonstration by the CODALEMA collaboration of the ability of the radio-detection technique for the characterization of ultra-high-energy cosmic-rays (UHECR) calls for the use of this powerful method for the observation of UHE neutrinos. For this purpose, an adaptation of the already existing 21CM-Array (CMA) in China, is presently under achievement. In an exceptionally low electromagnetic noise level, 10160 log-periodic 50-200 MHz antennas sit along two high-altitude valleys, surrounded by mountain chains. This layout results in 30-60 km effective rock thicknesses for ν interactions with low incidence trajectories along the direction of two 4-6 km baselines. We will present first in-situ radio measurements demonstrating that this environment shows particularly favourable physical conditions for the observation of electromagnetic decay signals of τ's leptons originating from the interaction of 1017-20 eV ντ neutrinos.

  7. Determination of phenolic compounds in Prunella L. by liquid chromatography-diode array detection.

    PubMed

    Sahin, Saliha; Demir, Cevdet; Malyer, Hulusi

    2011-07-15

    Four species of Prunella L. (Prunella vulgaris L., Prunella laciniata L., Prunella grandiflora L. and Prunella orientalis Bornm.) belong to the family of Lamiaceae and representing popular Western and Chinese herbal medicine were examined for the content of phenolic compounds. Phenolic acids (rosmarinic acid, caffeic acid, ferulic acid, chlorogenic acid, protocatechuic acid), flavonoids (rutin, quercetin) in different quantitative proportions depending on extracts were determined by the rapid, selective and accurate method combining solvent/acid hydrolysis extraction and high performance liquid chromatography-diode array detection (HPLC-DAD). Water, methanol, butanol, acetonitrile, ethyl acetate, hexane and their acidic solutions were used to examine the efficiency of different solvent systems for the extraction of phenolic compounds. Acid hydrolysis extraction was established as the most suitable extraction method for phenolic compounds. PMID:21498022

  8. Spatial and spectral detection of protein monolayers with deterministic aperiodic arrays of metal nanoparticles

    PubMed Central

    Lee, Sylvanus Y.; Amsden, Jason J.; Boriskina, Svetlana V.; Gopinath, Ashwin; Mitropolous, Alexander; Kaplan, David L.; Omenetto, Fiorenzo G.; Negro, Luca Dal

    2010-01-01

    Light scattering phenomena in periodic systems have been investigated for decades in optics and photonics. Their classical description relies on Bragg scattering, which gives rise to constructive interference at specific wavelengths along well defined propagation directions, depending on illumination conditions, structural periodicity, and the refractive index of the surrounding medium. In this paper, by engineering multifrequency colorimetric responses in deterministic aperiodic arrays of nanoparticles, we demonstrate significantly enhanced sensitivity to the presence of a single protein monolayer. These structures, which can be readily fabricated by conventional Electron Beam Lithography, sustain highly complex structural resonances that enable a unique optical sensing approach beyond the traditional Bragg scattering with periodic structures. By combining conventional dark-field scattering micro-spectroscopy and simple image correlation analysis, we experimentally demonstrate that deterministic aperiodic surfaces with engineered structural color are capable of detecting, in the visible spectral range, protein layers with thickness of a few tens of Angstroms. PMID:20566892

  9. Damage Detection in Plate Structures Using Sparse Ultrasonic Transducer Arrays and Acoustic Wavefield Imaging

    SciTech Connect

    Michaels, T.E.; Michaels, J.E.; Mi, B.; Ruzzene, M.

    2005-04-09

    A methodology is presented for health monitoring and subsequent inspection of critical structures. Algorithms have been developed to detect and approximately locate damaged regions by analyzing signals recorded from a permanently mounted, sparse array of transducers. Followup inspections of suspected flaw locations are performed using a dual transducer ultrasonic approach where a permanently mounted transducer is the source and an externally scanned transducer is the receiver. Scan results are presented as snapshots of the propagating ultrasonic wavefield radiating out from the attached transducers. This method, referred to here as Acoustic Wavefield Imaging (AWI), provides an excellent visual representation of the interaction of propagating ultrasonic waves with the structure. Pre-flaw and post-flaw ultrasonic waveforms are analyzed from an aluminum plate specimen with artificially induced damage, and the AWI results show the location and spatial extent of all of the defects.

  10. Profiling and Quantitation of Bacterial Carotenoids by Liquid Chromatography and Photodiode Array Detection

    PubMed Central

    Nelis, H. J.; De Leenheer, A. P.

    1989-01-01

    An analytical method for the profiling and quantitative determination of carotenoids in bacteria is described. Exhaustive extraction of the pigments from four selected bacterial strains required treatment of the cells with potassium hydroxide or liquefied phenol or both before the addition of the extracting solvent (methanol or diethyl ether). The carotenoids in the extracts were separated by nonaqueous reversed-phase liquid chromatography in conjunction with photodiode array absorption detection. The identity of a peak was considered definitive only when both its retention time and absorption spectrum, before and after chemical reactions, matched those of a reference component. In the absence of the latter, most peaks could be tentatively identified. Two examples illustrate how in the analysis of pigmented bacteria errors may result from using nonchromatographic procedures or liquid chromatographic methods lacking sufficient criteria for peak identification. Carotenoids of interest were determined quantitatively when the authentic reference substance was available or, alternatively, were determined semiquantitatively. PMID:16348068

  11. Statistical Analysis of the Performance of MDL Enumeration for Multiple-Missed Detection in Array Processing

    PubMed Central

    Du, Fei; Li, Yibo; Jin, Shijiu

    2015-01-01

    An accurate performance analysis on the MDL criterion for source enumeration in array processing is presented in this paper. The enumeration results of MDL can be predicted precisely by the proposed procedure via the statistical analysis of the sample eigenvalues, whose distributive properties are investigated with the consideration of their interactions. A novel approach is also developed for the performance evaluation when the source number is underestimated by a number greater than one, which is denoted as “multiple-missed detection”, and the probability of a specific underestimated source number can be estimated by ratio distribution analysis. Simulation results are included to demonstrate the superiority of the presented method over available results and confirm the ability of the proposed approach to perform multiple-missed detection analysis. PMID:26295232

  12. Determination of dissociation constants of pharmacologically active xanthones by capillary zone electrophoresis with diode array detection.

    PubMed

    Wu, Xiaomu; Gong, Suxuan; Bo, Tao; Liao, Yiping; Liu, Huwei

    2004-12-24

    In this article, the dissociation constants (pKa) of 10 pharmacologically active xanthones isolated from herbal medicine Securidaca inappendiculata were determined by capillary zone electrophoresis with diode array detection. The pKa values determined by the method based on the electrophoretic mobilities (calculated from migration times) have been proved by the method based on UV absorbance calculated from the online spectra corresponding peaks. No conspicuous difference was observed between the two methods with acceptable reproducibility. Two pKa values (pKa1 and pKa2) were found for four xanthones while generally the 10 compounds possess the pKa values ranging from 6.4 to 9.2. PMID:15641365

  13. Modification of Graphene on Ultramicroelectrode Array and Its Application in Detection of Dissolved Oxygen

    PubMed Central

    Wang, Jinfen; Bian, Chao; Tong, Jianhua; Sun, Jizhou; Li, Yang; Hong, Wen; Xia, Shanhong

    2015-01-01

    This paper investigated two different modification methods of graphene (GN) on ultramicroelectrode array (UMEA) and applied the GN modified UMEA for the determination of dissolved oxygen (DO). The UMEAs were fabricated by Micro Electro-Mechanical System (MEMS) technique and the radius of each ultramicroelectrode is 10 μm. GN-NH2 and GN-COOH were modified on UMEA by using self-assembling method. Compared with GN-NH2 modified UMEA, the GN-COOH modified UMEA showed better electrochemical reduction to DO, owing to better dispersing and more active sites. The GN-COOH on UMEA was electroreduced to reduced GN-COOH (rGN-COOH) to increase the conductivity and the catalysis performance. Finally, the palladium nanoparticles/rGN-COOH composite was incorporated into DO microsensor for the detection of DO. PMID:25549176

  14. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  15. Gas leak localization and detection method based on a multi-point ultrasonic sensor array with TDOA algorithm

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Dongying, Wang; Yu, Pei; Wei, Fan

    2015-09-01

    To resolve the measured target position to determine and locate leak problems with current gas leak detection and localization systems based on ultrasonic technology, this paper presents an improved multi-array ultrasonic gas leak TDOA (time difference of arrival) localization and detection method. This method involves arranging ultrasonic transducers at equal intervals in a high-sensitivity detector array, using small differences in ultrasonic sound intensity to determine the scope of the leak and generate a rough localization, and then using an array TDOA localization algorithm to determine the precise leak location. This method is then implemented in an ultrasonic leak detection and localization system. Experimental results showed that the TDOA localization method, using auxiliary sound intensity factors to avoid dependence on a single sound intensity to determine the leak size and location, achieved a localization error of less than 2 mm. The validity and correctness of this approach were thus verified.

  16. Multiplexed cancer biomarker detection using chip-integrated silicon photonic sensor arrays.

    PubMed

    Washburn, Adam L; Shia, Winnie W; Lenkeit, Kimberly A; Lee, So-Hyun; Bailey, Ryan C

    2016-09-21

    The analysis of disease-specific biomarker panels holds promise for the early detection of a range of diseases, including cancer. Blood-based biomarkers, in particular, are attractive targets for minimally-invasive disease diagnosis. Specifically, a panel of organ-specific biomarkers could find utility as a general disease surveillance tool enabling earlier detection or prognostic monitoring. Using arrays of chip-integrated silicon photonic sensors, we describe the simultaneous detection of eight cancer biomarkers in serum in a relatively rapid (1 hour) and fully automated antibody-based sandwich assay. Biomarkers were chosen for their applicability to a range of organ-specific cancers, including disease of the pancreas, liver, ovary, breast, lung, colorectum, and prostate. Importantly, we demonstrate that selected patient samples reveal biomarker "fingerprints" that may be useful for a personalized cancer diagnosis. More generally, we show that the silicon photonic technology is capable of measuring multiplexed panels of protein biomarkers that may have broad utility in clinical diagnostics. PMID:27400767

  17. A microfluidic platform with integrated arrays for immunologic assays for biological pathogen detection

    NASA Astrophysics Data System (ADS)

    Klemm, Richard; Becker, Holger; Hlawatsch, Nadine; Julich, Sandra; Miethe, Peter; Moche, Christian; Schattschneider, Sebastian; Tomaso, Herbert; Gärtner, Claudia

    2014-05-01

    The ability to integrate complete assays on a microfluidic chip helps to greatly simplify instrument requirements and allows the use of lab-on-a-chip technology in the field. A core application for such field-portable systems is the detection of pathogens in a CBRN scenario such as permanent monitoring of airborne pathogens, e.g. in subway stations or hospitals etc. An immunological assay was chosen as method for the pathogen identification. The conceptual approach was its realization as a lab-on-a-chip system, enabling an easy handling of the sample in an automated manner. The immunological detection takes place on an antibody array directly implemented in the microfluidic network. Different immobilization strategies will be presented showing the performance of the system. Central elements of the disposable microfluidic device like fluidic interface, turning valves, liquid introduction and waste storage, as well as the architecture of measurement and control fluidic network, will be introduced. Overall process times of about 30 minutes were achieved and assays for the detection of Francisella tularensis and Yersinia pestis are presented. An important feature of the integrated lab-on-a-chip approach is that all waste liquids remain on-chip and contamination risks can be avoided.

  18. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection.

    PubMed

    Chen, Zhijun; Yan, Xiaomei

    2009-10-14

    This article describes the development of a simple analytical approach for the simultaneous determination of melamine and 5-hydroxymethylfurfural (HMF) in milk samples using capillary electrophoresis (CE) with diode array detection (DAD) for the first time. Ultraviolet absorption at wavelengths of 214 and 280 nm was applied for the detection of melamine and HMF, respectively. Milk samples were extracted with 1% trichloroacetic acid using a high-speed blender and ultrasonication. After centrifugation and filtration, the extract was analyzed by CE-DAD directly. Micellar electrokinetic capillary chromatography was employed as the separation mode by adding sodium dodecyl sulfate (SDS) to the electrolyte. Under optimal separation conditions, melamine, HMF, and interferents were well resolved. The linear dynamic ranges were 0.05-100 microg/mL for melamine (R(2) = 0.9996) and 0.1-100 microg/mL for HMF (R(2) = 0.9997). The assay detection limits were 0.047 microg/mL and 0.067 microg/mL for melamine and HMF, respectively. Satisfactory results were obtained for the assay recovery rate and repeatability. The proposed method was successfully applied for the analysis of melamine and HMF in real milk samples, and the results of melamine were comparable to those obtained using HPLC-UV reference method. PMID:19761188

  19. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    NASA Astrophysics Data System (ADS)

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-04-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe.

  20. The radio environment of the 21 Centimeter Array: RFI detection and mitigation

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wu, Xiang-Ping; Zheng, Qian; Gu, Jun-Hua; Xu, Haiguang

    2016-02-01

    Detection and mitigation of radio frequency interference (RFI) is the first and also the key step for data processing in radio observations, especially for ongoing low frequency radio experiments towards the detection of the cosmic dawn and epoch of reionization (EoR). In this paper we demonstrate the technique and efficiency of RFI identification and mitigation for the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of EoR. For terrestrial, man-made RFI, we concentrate mainly on a statistical approach by identifying and then excising non-Gaussian signatures, in the sense that the extremely weak cosmic signal is actually buried under thermal and therefore Gaussian noise. We also introduce the so-called visibility correlation coefficient instead of conventional visibility, which allows a further suppression of rapidly time-varying RFI. Finally, we briefly discuss removals of the sky RFI, the leakage of sidelobes from off-field strong radio sources with time-invariant power and a featureless spectrum. It turns out that state of the art technique should allow us to detect and mitigate RFI to a satisfactory level in present low frequency interferometer observations such as those acquired with the 21CMA, and the accuracy and efficiency can be greatly improved with the employment of low-cost, high-speed computing facilities for data acquisition and processing.

  1. Supercritical fluid chromatography with photodiode array detection for pesticide analysis in papaya and avocado samples.

    PubMed

    Pano-Farias, Norma S; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Jurado, José M; Muñiz-Valencia, Roberto

    2015-04-01

    To improve the analysis of pesticides in complex food matrices with economic importance, alternative chromatographic techniques, such as supercritical fluid chromatography, can be used. Supercritical fluid chromatography has barely been applied for pesticide analysis in food matrices. In this paper, an analytical method using supercritical fluid chromatography coupled to a photodiode array detection has been established for the first time for the quantification of pesticides in papaya and avocado. The extraction of methyl parathion, atrazine, ametryn, carbofuran, and carbaryl was performed through the quick, easy, cheap, effective, rugged, and safe methodology. The method was validated using papaya and avocado samples. For papaya, the correlation coefficient values were higher than 0.99; limits of detection and quantification ranged from 130-380 and 220-640 μg/kg, respectively; recovery values ranged from 72.8-94.6%; precision was lower than 3%. For avocado, limit of detection values were ˂450 μg/kg; precision was lower than 11%; recoveries ranged from 50.0-94.2%. Method feasibility was tested for lime, banana, mango, and melon samples. Our results demonstrate that the proposed method is applicable to methyl parathion, atrazine, ametryn, and carbaryl, toxics pesticides used worldwide. The methodology presented in this work could be applicable to other fruits. PMID:25641906

  2. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  3. Detection and localization of continuous gravitational waves with pulsar timing arrays: the role of pulsar terms

    NASA Astrophysics Data System (ADS)

    Zhu, X.-J.; Wen, L.; Xiong, J.; Xu, Y.; Wang, Y.; Mohanty, S. D.; Hobbs, G.; Manchester, R. N.

    2016-09-01

    A pulsar timing array is a Galactic-scale detector of nanohertz gravitational waves (GWs). Its target signals contain two components: the `Earth term' and the `pulsar term' corresponding to GWs incident on the Earth and pulsar, respectively. In this work we present a Frequentist method for the detection and localization of continuous waves that takes into account the pulsar term and is significantly faster than existing methods. We investigate the role of pulsar terms by comparing a full-signal search with an Earth-term-only search for non-evolving black hole binaries. By applying the method to synthetic data sets, we find that (i) a full-signal search can slightly improve the detection probability (by about five per cent); (ii) sky localization is biased if only Earth terms are searched for and the inclusion of pulsar terms is critical to remove such a bias; (iii) in the case of strong detections (with signal-to-noise ratio ≳30), it may be possible to improve pulsar distance estimation through GW measurements.

  4. Disordered array of Au covered Silicon nanowires for SERS biosensing combined with electrochemical detection

    PubMed Central

    Convertino, Annalisa; Mussi, Valentina; Maiolo, Luca

    2016-01-01

    We report on highly disordered array of Au coated silicon nanowires (Au/SiNWs) as surface enhanced Raman scattering (SERS) probe combined with electrochemical detection for biosensing applications. SiNWs, few microns long, were grown by plasma enhanced chemical vapor deposition on common microscope slides and covered by Au evaporated film, 150 nm thick. The capability of the resulting composite structure to act as SERS biosensor was studied via the biotin-avidin interaction: the Raman signal obtained from this structure allowed to follow each surface modification step as well as to detect efficiently avidin molecules over a broad range of concentrations from micromolar down to the nanomolar values. The metallic coverage wrapping SiNWs was exploited also to obtain a dual detection of the same bioanalyte by electrochemical impedance spectroscopy (EIS). Indeed, the SERS signal and impedance modifications induced by the biomolecule perturbations on the metalized surface of the NWs were monitored on the very same three-electrode device with the Au/SiNWs acting as both working electrode and SERS probe. PMID:27112197

  5. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assemblies.

    PubMed

    Kan, Cheuk W; Rivnak, Andrew J; Campbell, Todd G; Piech, Tomasz; Rissin, David M; Mösl, Matthias; Peterça, Andrej; Niederberger, Hans-Peter; Minnehan, Kaitlin A; Patel, Purvish P; Ferrell, Evan P; Meyer, Raymond E; Chang, Lei; Wilson, David H; Fournier, David R; Duffy, David C

    2012-03-01

    We report a method for isolating individual paramagnetic beads in arrays of femtolitre-sized wells and detecting single enzyme-labeled proteins on these beads using sequential fluid flows in microfabricated polymer array assemblies. Arrays of femtolitre-sized wells were fabricated in cyclic olefin polymer (COP) using injection moulding based on DVD manufacturing. These arrays were bonded to a complementary fluidic structure that was also moulded in COP to create an enclosed device to allow delivery of liquids to the arrays. Enzyme-associated, paramagnetic beads suspended in aqueous solutions of enzyme substrate were delivered fluidically to the array such that one bead per well was loaded by gravity. A fluorocarbon oil was then flowed into the device to remove excess beads from the surface of the array, and to seal and isolate the femtolitre-sized wells containing beads and enzyme substrate. The device was then imaged using standard fluorescence imaging to determine which wells contained single enzyme molecules. The analytical performance of this device as the detector for digital ELISA compared favourably to the standard method, i.e., glass arrays mechanically sealed against a silicone gasket; prostate specific antigen (PSA) could be detected from 0.011 pg mL(-1) up to 100 pg mL(-1). The use of an enclosed fluidic device to isolate beads in single-molecule arrays offers a multitude of advantages for low-cost manufacturing, ease of automation, and instrument development to enable applications in biomarker validation and medical diagnosis. PMID:22179487

  6. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  7. A method for detecting and locating geophysical events using groups of arrays

    NASA Astrophysics Data System (ADS)

    de Groot-Hedlin, Catherine D.; Hedlin, Michael A. H.

    2015-11-01

    We have developed a novel method to detect and locate geophysical events that makes use of any sufficiently dense sensor network. This method is demonstrated using acoustic sensor data collected in 2013 at the USArray Transportable Array (TA). The algorithm applies Delaunay triangulation to divide the sensor network into a mesh of three-element arrays, called triads. Because infrasound waveforms are incoherent between the sensors within each triad, the data are transformed into envelopes, which are cross-correlated to find signals that satisfy a consistency criterion. The propagation azimuth, phase velocity and signal arrival time are computed for each signal. Triads with signals that are consistent with a single source are bundled as an event group. The ensemble of arrival times and azimuths of detected signals within each group are used to locate a common source in space and time. A total of 513 infrasonic stations that were active for part or all of 2013 were divided into over 2000 triads. Low (0.5-2 Hz) and high (2-8 Hz) catalogues of infrasonic events were created for the eastern USA. The low-frequency catalogue includes over 900 events and reveals several highly active source areas on land that correspond with coal mining regions. The high-frequency catalogue includes over 2000 events, with most occurring offshore. Although their cause is not certain, most events are clearly anthropogenic as almost all occur during regular working hours each week. The regions to which the TA is most sensitive vary seasonally, with the direction of reception dependent on the direction of zonal winds. The catalogue has also revealed large acoustic events that may provide useful insight into the nature of long-range infrasound propagation in the atmosphere.

  8. Multiband array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  9. Possible gamma-ray burst radio detections by the Square Kilometre Array. New perspectives

    NASA Astrophysics Data System (ADS)

    Ruggeri, Alan Cosimo; Capozziello, Salvatore

    2016-09-01

    The next generation interferometric radio telescope, the Square Kilometre Array (SKA), which will be the most sensitive and largest radio telescope ever constructed, could greatly contribute to the detection, survey and characterization of Gamma Ray Bursts (GRBs). By the SKA, it will be possible to perform the follow up of GRBs even for several months. This approach would be extremely useful to extend the Spectrum Energetic Distribution (SED) from the gamma to the to radio band and would increase the number of radio detectable GRBs. In principle, the SKA could help to understand the physics of GRBs by setting constraints on theoretical models. This goal could be achieved by taking into account multiple observations at different wavelengths in order to obtain a deeper insight of the sources. Here, we present an estimation of GRB radio detections, showing that the GRBs can really be observed by the SKA. The approach that we present consists in determining blind detection rates derived by a very large sample consisting of merging several GRB catalogues observed by current missions as Swift, Fermi, Agile and INTEGRAL and by previous missions as BeppoSAX, CGRO, GRANAT, HETE-2, Ulysses and Wind. The final catalogue counts 7516 distinct sources. We compute the fraction of GRBs that could be observed by the SKA at high and low frequencies, above its observable sky. Considering the planned SKA sensitivity and through an extrapolation based on previous works and observations, we deduce the minimum fluence in the range 15-150 keV. This is the energy interval where a GRB should emit to be detectable in the radio band by the SKA. Results seem consistent with observational capabilities.

  10. Multi-band array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-02-01

    We present a new methodology for detection and space-time location of seismic sources based on multi-scale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multi-scale non-stationary statistical characteristics, through multi-band higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g., earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time series of 3D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  11. Design and realization of a contact-less interaction system based on infrared reflection photoelectric detection array

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Lei, Bing; Feng, Ying

    2015-10-01

    Due to the good performance of high sensitivity, quick response and low cost, infrared reflection detection technology is widely used in various fields. In this work, we present a novel contact-less interaction system which is based on infrared reflection detection technology. The system is mainly composed of a Micro Controller Unit (MCU), upper computer and photoelectric detection module. The MCU is utilized to control the photoelectric detection module and to make sure that the sensing unit is lighted one by one in a given order. When the interactive object appears upon the infrared reflection photoelectric detection array, its position information will be ensured and sent to the upper computer through MCU. In this system, every sensing unit is lighted for 1ms, and the detection array includes 8×8 units. It means that the photoelectric detection array will scan 15.6 times per-second. The experimental research results indicate that the factors affecting the detection range including the working current of transmitting diode, modulation frequency, and the reflectivity of the interactive object. When the working current is 10mA, and the modulation frequency is 80 KHz, the system has a detection range of 20 cm. Moreover, efficient modulation and demodulation of optical signal is quite necessary to remove the influence of surrounding light.

  12. A Single-Array-Based Method for Detecting Copy Number Variants Using Affymetrix High Density SNP Arrays and its Application to Breast Cancer

    PubMed Central

    Li, Ming; Wen, Yalu; Fu, Wenjiang

    2014-01-01

    Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease. PMID:26279618

  13. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea.

    PubMed

    Ahmad, Rafiq; Tripathy, Nirmalya; Park, Jin-Ho; Hahn, Yoon-Bong

    2015-08-01

    We report a novel straightforward approach for simultaneous and highly-selective detection of multi-analytes (i.e. glucose, cholesterol and urea) using an integrated field-effect transistor (i-FET) array biosensor without any interference in each sensor response. Compared to analytically-measured data, performance of the ZnO nanorod based i-FET array biosensor is found to be highly reliable for rapid detection of multi-analytes in mice blood, and serum and blood samples of diabetic dogs. PMID:26111656

  14. Automatic detection and tracking of the weld area on erw pipes using phased-array inspection technology

    NASA Astrophysics Data System (ADS)

    Zottig, Federico; Zhang, Jinchi; Imbert, Christophe

    2012-05-01

    This paper presents a phased-array method for tracking the scarfing area on ERW pipes. The time-of-flight C-Scan image generated by the phased-array system is processed by an algorithm that detects the center of the scarfing area. The weld centerline, which is of interest to the inspection, is identified and tracked. The information relative to the position of the weld line is used to control the position of the PA probes, which automatically track the weld seam during flaw inspection. If loss of detection occurs, the algorithm disengages tracking of the weld, and the operator is prompted to continue the task manually.

  15. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  16. Stable, ligand-doped, poly(bis-SorbPC) lipid bilayer arrays for protein binding and detection.

    PubMed

    Joubert, James R; Smith, Kathryn A; Johnson, Erin; Keogh, John P; Wysocki, Vicki H; Gale, Bruce K; Conboy, John C; Saavedra, S Scott

    2009-06-01

    A continuous-flow microspotter was used to generate planar arrays of stabilized bilayers composed of the polymerizable lipid bis-SorbPC and dopant lipids bearing ligands for proteins. Fluorescence microscopy was used to determine the uniformity of the bilayers and to detect protein binding. After UV-initiated polymerization, poly(lipid) bilayer microarrays were air-stable. Cholera toxin subunit b (CTb) bound to an array of poly(lipid) bilayers doped with GM(1), and the extent of binding was correlated to the mole percentage of GM(1) in each spot. A poly(lipid) bilayer array composed of spots doped with GM(1) and spots doped with biotin-DOPE specifically bound CTb and streptavidin to the respective spots from a dissolved mixture of the two proteins. Poly(bis-SorbPC)/GM(1) arrays retained specific CTb binding capacity after multiple regenerations with a protein denaturing solution and also after exposure to air. In addition, these arrays are stable in vacuum, which allows the use of MALDI-TOF mass spectrometry to detect specifically bound CTb. This work demonstrates the considerable potential of poly(lipid) bilayer arrays for high-throughput binding assays and lipidomics studies. PMID:20355927

  17. OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS

    SciTech Connect

    Ellis, J. A.; Siemens, X.; Creighton, J. D. E.

    2012-09-10

    Supermassive black hole binaries (SMBHBs) are expected to emit a continuous gravitational wave signal in the pulsar timing array (PTA) frequency band (10{sup -9} to 10{sup -7} Hz). The development of data analysis techniques aimed at efficient detection and characterization of these signals is critical to the gravitational wave detection effort. In this paper, we leverage methods developed for LIGO continuous wave gravitational searches and explore the use of the F-statistic for such searches in pulsar timing data. Babak and Sesana have used this approach in the context of PTAs to show that one can resolve multiple SMBHB sources in the sky. Our work improves on several aspects of prior continuous wave search methods developed for PTA data analysis. The algorithm is implemented fully in the time domain, which naturally deals with the irregular sampling typical of PTA data and avoids spectral leakage problems associated with frequency domain methods. We take into account the fitting of the timing model and have generalized our approach to deal with both correlated and uncorrelated colored noise sources. We also develop an incoherent detection statistic that maximizes over all pulsar-dependent contributions to the likelihood. To test the effectiveness and sensitivity of our detection statistics, we perform a number of Monte Carlo simulations. We produce sensitivity curves for PTAs of various configurations and outline an implementation of a fully functional data analysis pipeline. Finally, we present a derivation of the likelihood maximized over the gravitational wave phases at the pulsar locations, which results in a vast reduction of the search parameter space.

  18. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  19. Array analysis methods for detection, classification and location of seismic sources: a first evaluation for aftershock analysis using dense temporary post-seismic array network

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Satriano, C.; Vilotte, J.; Bernard, P.

    2012-12-01

    Detection, separation, classification and location of distributed non stationary seismic sources in broadband noisy environment is an important problem in seismology, in particular for monitoring the high-level post-seismic activity following large subduction earthquakes, like the off-shore Maule (Mw 8.8, 2010) earthquake in Central Chile. Multiple seismic arrays, and local antenna, distributed over a region allow exploiting frequency selective coherence of the signals that arrive at widely-separated array stations, leading to improved detection, convolution blind source separation, and location of distributed non stationary sources. We present here first results on the investigation of time-frequency adaptive array analysis techniques for detection and location of broadband distributed seismic events recorded by the dense temporary seismic network (International Maule Aftershock Deployment, IMAD) installed for monitoring the high-level seismic activity following the 27 February 2010 Maule earthquake (Mw 8.8). This seismic network is characterized by a large aperture, with variable inter-station distances, corroborated with a high level of distributed near and far field seismic source activity and noise. For this study, we first extract from the post-seismic network a number of seismic arrays distributed over the region covered by this network. A first aspect is devoted to passive distributed seismic sources detection, classification and separation. We investigate a number of narrow and wide band signal analysis methods both in time and time-frequency domains for energy arrival detection and tracking, including time adaptive higher order statistics, e.g. like kurtosis, and multiband band-pass filtering, together with adaptive time-frequency transformation and extraction techniques. We demonstrate that these techniques provide superior resolution and robustness than classical STA/LTA techniques in particular in the case of distributed sources with potential signal

  20. MagArray Biochips for Protein and DNA Detection with Magnetic Nanotags: Design, Experiment, and Signal-to-Noise Ratio

    NASA Astrophysics Data System (ADS)

    Osterfeld, Sebastian J.; Wang, Shan X.

    MagArray™ chips contain arrays of magnetic sensors, which can be used to detect surface binding reactions of biological molecules that have been labeled with 10 to 100 nm sized magnetic particles. Although MagArray chips are in some ways similar to fluorescence-based DNA array chips, the use of magnetic labeling tags leads to many distinct advantages, such as better background rejection, no label bleaching, inexpensive chip readers, potentially higher sensitivity, ability to measure multiple binding reactions in homogeneous assays simultaneously and in real-time, and seamless integration with magnetic separation techniques. So far, the technology of MagArray chips has been successfully used to perform quantitative analytic bioassays of both protein and nucleic acid targets. The potential of this technology, especially for point-of-care testing (POCT) and portable molecular diagnostics, appears promising, and it is likely that this technology will see significant further performance gains in the near future.

  1. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    SciTech Connect

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  2. Sensitivity improved plasmonic gold nanoholes array biosensor by coupling quantum-dots for the detection of specific biomolecular interactions.

    PubMed

    Niu, Lihong; Cheng, Ke; Wu, Yangqing; Wang, Tian; Shi, Qing; Liu, Dan; Du, Zuliang

    2013-12-15

    In this paper, we focused on the large-scale fabrication of gold nanoholes array capable of supporting surface plasmonic resonance (SPR) via the developed nanosphere lithography (NSL) technique, which could be used as high performance biosensor for the detection of specific streptavidin-biotin interactions. Direct UV-vis absorption mode measurement was used to monitor the SPR peak shift. For the better immobilization of biotin, the surface of gold nanoholes array was functionalized with 3-mercaptopropyl trimethoxysilane (MPTS) and 3-aminopropyl triethoxysilane (APTES). After the streptavidin binding to the biotin, the SPR peak position showed an 11 nm wavelength shift due to the refractive index change caused by the biotin-streptavidin binding. The sealing treatment was performed by using bovine serum albumin (BSA) to eliminate the influences of nonspecific adsorption for more accurate detection. Interestingly, the detection sensitivity of the gold nanoholes array could be further enhanced by coupling the water-soluble CdSe/ZnS quantum dots (QDs), which showed four-fold improvement in detection sensitivity as compared to the gold nanoholes array biosensor without the coupling of QDs. The mechanisms for the enhancement of detection sensitivity were also discussed. This would provide new capabilities for the highly sensitive measurements of biomolecular binding. PMID:23850779

  3. Systolic arrays

    SciTech Connect

    Moore, W.R.; McCabe, A.P.H.; Vrquhart, R.B.

    1987-01-01

    Selected Contents of this book are: Efficient Systolic Arrays for the Solution of Toeplitz Systems, The Derivation and Utilization of Bit Level Systolic Array Architectures, an Efficient Systolic Array for Distance Computation Required in a Video-Codec Based Motion-Detection, On Realizations of Least-Squares Estimation and Kalman Filtering by Systolic Arrays, and Comparison of Systolic and SIMD Architectures for Computer Vision Computations.

  4. Detection and estimation of ZY-3 three-line array image distortions caused by attitude oscillation

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohua; Li, Lingyun; Liu, Shijie; Xu, Yusheng; Ye, Zhen; Jin, Yanmin; Wang, Fengxiang; Xie, Huan

    2015-03-01

    ZY-3 is China's first civilian high-resolution stereo surveying and mapping satellite, which is equipped with a three-line array panchromatic stereo camera. However, high-resolution satellite images (HRSIs) often suffer from satellite attitude oscillation, which can cause image distortions, and thus affect the geo-positioning accuracy. This paper presents an approach based on three-line array stereo images to detect and estimate the periodic distortions of ZY-3 that are caused by attitude oscillation. The proposed approach includes three main components, as follows: (1) A comprehensive image matching strategy, which combines the algorithms of the scale-invariant-feature-transform (SIFT), relative orientation, geometrically constrained cross-correlation (GC3), normalized cross-correlation (NCC) and least squares matching (LSM), is presented to generate dense conjugate points in multiple images. (2) A detection method is proposed to examine the relative image distortion, based on the back-projection residuals of the stereo pairs. By the use of the conjugate points, the corresponding elevation plane of each conjugate point is determined on the basis of the forward intersection. The conjugate points in an image are then forward-projected to the elevation plane to obtain their coordinates in the ground space, with the aid of the RPCs provided with the imagery. Furthermore, these ground points are back-projected to the other images. Therefore, the relative image distortions are detected by calculating the residuals between the back-projected points and the corresponding conjugate points in the image space. (3) The sum of the sinusoidal functions is presented to model the periodic distortions caused by the attitude oscillation. Based on the constructed distortion model, the absolute image distortions in the across-track direction are estimated by the use of the steepest descent algorithm. Three experiments were conducted to assess the proposed method for estimation of the

  5. Two-color excitation system for fluorescence detection in DNA sequencing by capillary array electrophoresis.

    PubMed

    Xue, Gang; Yeung, Edward S

    2002-05-01

    Two computer-controlled galvanometer scanners are adapted for two-dimensional step scanning across a 96-capillary array for laser-induced fluorescence detection. 488 nm and 514 nm laser lines from the same Ar(+) laser were alternately coupled for two-color excitation in each capillary. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries and the excitation wavelengths. Based on the differences in absorption spectra for the dyes, the peak-height ratios in the 488 nm and 514 nm excitation electropherograms were used for peak identification for multiplexed capillary electrophoresis. Successful base calling for 24-capillary DNA sequencing was achieved to 450 bp with 99% accuracy. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components and flexibility due to the independent paths for excitation and emission. PMID:12116160

  6. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis

    SciTech Connect

    Qingbro, Li; Liu, Zhaowei; Monroe, Heidi M; Culiat, Cymbeline T

    2002-08-01

    We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants. The sequencing mode is then used to determine the exact location of the mutation/SNPs in the DNA variants. The first two modes allow the rapid identification of variants from the screening of a large number of samples. Only the variants need to be sequenced. The third mode utilizes multiplexed single-base extensions (SBEs) to survey mutations and SNPs at the known sites of DNA sequence. The TGCE approach combined with sequencing and SBE is fast and cost-effective for high-throughput mutation/SNP detection.

  7. Detecting gravitational waves with pulsar-timing arrays: a case of astrophysical forensics

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele

    2016-03-01

    Pulsar-timing arrays have recently reached maturity as the ``third way'' to gravitational-wave (GW) detection, besides ground-based interferometers and future space-based observatories. PTA campaigns target the very-low-frequency band centered around 10- 8 Hz, so they will yield science complementary to the other two programs. For this speaker, much of the fascination with PTAs lies in the fact that they represent a grand experiment in precision measurement that was set up by Nature herself, so we have rather little control on it, and few knobs to turn. Improvements in sensitivity will come as much from ever more powerful radiotelescopes as from a better understanding of the ``detectors'' (neutron stars, their dynamics in binaries, the interstellar medium, ...), and from deeper, more probing analyses of the data we already have. A positive GW detection claim will require making a watertight case of astrophysical forensics, proving beyond any reasonable doubt that systematics are under control, and designing the complex inference chain that points to the presence GWs in its most unequivocal and defensible form. I discuss how these goals and concerns informed the development of recently published constraints on the astrophysical population of supermassive black-hole binaries.

  8. Guided wave phased array sensor tuning for improved defect detection and characterization

    NASA Astrophysics Data System (ADS)

    Philtron, Jason H.; Rose, Joseph L.

    2014-03-01

    Ultrasonic guided waves are finding increased use in a variety of Nondestructive Evaluation and Structural Health Monitoring applications due to their efficiency in defect detection using a sensor at a single location to inspect a large area of a structure and an ability to inspect hidden and coated areas for example. With a thorough understanding of guided wave mechanics, researchers can predict which guided wave modes will have a high probability of success in a particular nondestructive evaluation application. For example, in a sample problem presented here to access bond integrity, researchers may choose to use a guided wave mode which has high in-plane displacement, stress, or other feature at the interface. However, since material properties used for modeling work may not be precise for the development of dispersion curves, in many cases guided wave mode and frequency selection should be adjusted for increased inspection efficiency in the field. In this work, a phased array comb transducer is used to sweep over phase velocity - frequency space to tune mode excitation for improved defect characterization performance. A thin polycarbonate layer bonded to a thick metal plate is considered with a contaminated surface prior to bonding. Physicallybased features are used to correlate wave signals with defect detection. Features assessed include arrival time and the frequency of maximum amplitude. A pseudo C-scan plot is presented which can be used to simplify data analysis. Excellent results are obtained.

  9. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging.

    PubMed

    Lin, Long; Xie, Yannan; Wang, Sihong; Wu, Wenzhuo; Niu, Simiao; Wen, Xiaonan; Wang, Zhong Lin

    2013-09-24

    We report an innovative, large-area, and self-powered pressure mapping approach based on the triboelectric effect, which converts the mechanical stimuli into electrical output signals. The working mechanism of the triboelectric active sensor (TEAS) was theoretically studied by both analytical method and numerical calculation to gain an intuitive understanding of the relationship between the applied pressure and the responsive signals. Relying on the unique pressure response characteristics of the open-circuit voltage and short-circuit current, we realize both static and dynamic pressure sensing on a single device for the first time. A series of comprehensive investigations were carried out to characterize the performance of the TEAS, and high sensitivity (0.31 kPa(-1)), ultrafast response time (<5 ms), long-term stability (30,000 cycles), as well as low detection limit (2.1 Pa) were achieved. The pressure measurement range of the TEAS was adjustable, which means both gentle pressure detection and large-scale pressure sensing were enabled. Through integrating multiple TEAS units into a sensor array, the as-fabricated TEAS matrix was capable of monitoring and mapping the local pressure distribution applied on the device with distinguishable spatial profiles. This work presents a technique for tactile imaging and progress toward practical applications of nanogenerators, providing potential solutions for accomplishment of artificial skin, human-electronic interfacing, and self-powered systems. PMID:23957827

  10. Chemically Selective Coated Quartz Crystal Microbalance (QCM) Array for Detection of Volatile Organic Chemicals

    SciTech Connect

    Bohuszewicz, T.V.; Frye-Mason, G.C.; Martin, S.J.; Osbourn, G.C. Bartholomew, J.W.; Schneider, T.W.; Spates, J.J.

    1998-11-04

    Liquid flow cells have been fabricated to prepare an array of QCMS operating simultaneously for detection and identification of VOCS in water. TWO signals, a tlequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCS were examined for each coating with four chemicals in each class. The three classes of VOCS are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence (VERI), was used to cluster the responses in n-dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicak were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

  11. A high density COX1 barcode oligonucleotide array for identification and detection of species of Penicillium subgenus Penicillium.

    PubMed

    Chen, W; Seifert, K A; Lévesque, C A

    2009-05-01

    We developed a COX1 barcode oligonucleotide array based on 358 sequences, including 58 known and two new species of Penicillium subgenus Penicillium, and 12 allied species. The array was robotically spotted at near microarray density on membranes. Species and clade-specific oligonucleotides were selected using the computer programs SigOli and Array Designer. Robotic spotting allowed 768 spots with duplicate sets of perfect match and the corresponding mismatch and positive control oligonucleotides, to be printed on 2 × 6 cm(2) nylon membranes. The array was validated with hybridizations between the array and digoxigenin (DIG)-labelled COX1 polymerase chain reaction amplicons from 70 pure DNA samples, and directly from environmental samples (cheese and plants) without culturing. DNA hybridization conditions were optimized, but undesired cross-reactions were detected frequently, reflecting the relatively high sequence similarity of the COX1 gene among Penicillium species. Approximately 60% of the perfect match oligonucleotides were rejected because of low specificity and 76 delivered useful group-specific or species-specific reactions and could be used for detecting certain species of Penicillium in environmental samples. In practice, the presence of weak signals on arrays exposed to amplicons from environmental samples, which could have represented weak detections or weak cross reactions, made interpretation difficult for over half of the oligonucleotides. DNA regions with very few single nucleotide polymorphisms or lacking insertions/deletions among closely related species are not ideal for oligonucleotide-based diagnostics, and supplementing the COX1-based array with oligonucleotides derived from additional genes would result in a more robust hierarchical identification system. PMID:21564971

  12. Clinical Utility of Array Comparative Genomic Hybridization for Detection of Chromosomal Abnormalities in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Rabin, Karen R.; Man, Tsz-Kwong; Yu, Alexander; Folsom, Matthew R.; Zhao, Yi-Jue; Rao, Pulivarthi H.; Plon, Sharon E.; Naeem, Rizwan C.

    2014-01-01

    Background Accurate detection of recurrent chromosomal abnormalities is critical to assign patients to risk-based therapeutic regimens for pediatric acute lymphoblastic leukemia (ALL). Procedure We investigated the utility of array comparative genomic hybridization (aCGH) for detection of chromosomal abnormalities compared to standard clinical evaluation with karyotype and fluorescent in-situ hybridization (FISH). Fifty pediatric ALL diagnostic bone marrows were analyzed by bacterial artificial chromosome (BAC) array, and findings compared to standard clinical evaluation. Results Sensitivity of aCGH was 79% to detect karyotypic findings other than balanced translocations, which cannot be detected by aCGH because they involve no copy number change. aCGH also missed abnormalities occurring in subclones constituting less than 25% of cells. aCGH detected 44 additional abnormalities undetected or misidentified by karyotype, 21 subsequently validated by FISH, including abnormalities in 4 of 10 cases with uninformative cytogenetics. aCGH detected concurrent terminal deletions of both 9p and 20q in three cases, in two of which the 20q deletion was undetected by karyotype. A narrow region of loss at 7p21 was detected in two cases. Conclusions An array with increased BAC density over regions important in ALL, combined with PCR for fusion products of balanced translocations, could minimize labor- and time-intensive cytogenetic assays and provide key prognostic information in the approximately 35% of cases with uninformative cytogenetics. PMID:18253961

  13. Impedance biosensor based on interdigitated electrode array for detection of E.coli O157:H7 in food products

    NASA Astrophysics Data System (ADS)

    Ghosh Dastider, Shibajyoti; Barizuddin, Syed; Dweik, Majed; Almasri, Mahmoud F.

    2012-05-01

    An impedance biosensor was designed, fabricated and tested for detection of viable Escherichia coli O157:H7 in food samples. This device consists of interdigitated microelectrode array (IDEA) fabricated using thin layer of sputtered gold, embedded under a polydimethylsiloxane (PDMS) microchannel. The array of electrodes is designed to detect viable EColi in different food products. The active surface area of the detection array was modified using goat anti-E.coli polyclonal IgG antibody. Contaminated food samples were tested by infusing the supernatant containing bacteria over the IDEA's, through the microchannel. Antibody-antigen binding on the electrodes results in impedance change. Four serial concentrations of E.coli contaminated food samples (3x102 CFUmL-1 to 3x105 CFUmL-1) were tested. The biosensor successfully detected the E.coli samples, with the lower detection limit being 3x103 CFUmL-1 (up to 3cells/μl). Comparing the test results with an IDEA impedance biosensor without microchannel (published elsewhere) indicates that this biosensor have two order of magnitude times higher sensitivity. The proposed biosensor provides qualitative and quantitative detection, and potentially could be used for detection of other type of bacteria by immobilizing the specific type of antibody.

  14. Development and Evaluation of Functional Gene Arrays for Detection of Selected Genes in the Environment

    PubMed Central

    Wu, Liyou; Thompson, Dorothea K.; Li, Guangshan; Hurt, Richard A.; Tiedje, James M.; Zhou, Jizhong

    2001-01-01

    To determine the potential of DNA array technology for assessing functional gene diversity and distribution, a prototype microarray was constructed with genes involved in nitrogen cycling: nitrite reductase (nirS and nirK) genes, ammonia mono-oxygenase (amoA) genes, and methane mono-oxygenase (pmoA) genes from pure cultures and those cloned from marine sediments. In experiments using glass slide microarrays, genes possessing less than 80 to 85% sequence identity were differentiated under hybridization conditions of high stringency (65°C). The detection limit for nirS genes was approximately 1 ng of pure genomic DNA and 25 ng of soil community DNA using our optimized protocol. A linear quantitative relationship (r2 = 0.89 to 0.94) was observed between signal intensity and target DNA concentration over a range of 1 to 100 ng for genomic DNA (or genomic DNA equivalent) from both pure cultures and mixed communities. However, the quantitative capacity of microarrays for measuring the relative abundance of targeted genes in complex environmental samples is less clear due to divergent target sequences. Sequence divergence and probe length affected hybridization signal intensity within a certain range of sequence identity and size, respectively. This prototype functional gene array did reveal differences in the apparent distribution of nir and amoA and pmoA gene families in sediment and soil samples. Our results indicate that glass-based microarray hybridization has potential as a tool for revealing functional gene composition in natural microbial communities; however, more work is needed to improve sensitivity and quantitation and to understand the associated issue of specificity. PMID:11722935

  15. Dual-mode wavefront detection sensor based on liquid crystal microlens array

    NASA Astrophysics Data System (ADS)

    Li, Hui; Pan, Fan; Liu, Kan; Wu, Yuntao; Zhang, Yanduo; Xie, Xiaolin

    2014-10-01

    Based on a proposed electrically tunable liquid crystal (LC) micro-lens array (MLA) instead of a commonly used microlens array with fixed focal length in a conventional type, a new prototyped Shack-Hartmann sensor is reported. The LCMLA with 128 × 128 elements is fabricated by the methods of photolithography and hydrochloric acid etching. Composed of the proposed LC-MLA and a CCD, a new type Shack-Hartmann wavefront sensor is got. This kind sensor can solve problems of the tradition wavefront sensor that the larger measurement range and high measurement accurate can't be realized by the same device. Except for adaptive switching the two working modes, this wavefront sensor also has a dual-mode imaging feature with obtaining wavefront information of the target and it's two-dimensional optical intensity image at the same time. In order to verify it's characteristics, an extreme experiment is designed, which introduces a distortion wavefront. At this circumstanc, the traditional wavefront sensor can't get anything. However, with proposed wavefront sensor, this situation can be solved by adjusting the applied voltage of LC-MLA to change it's focal length. With a reconstruction method, the three-dimensional information of the wavefront can be got. At the same time, the two-dimensional optical intensity image is also got. From the experiments, we can prove that it can effectively improve detection sensitivity and dynamic measurement range of wavefront. Results of the prototype demonstrated qualitatively verify this feasibility. This kind new type wavefront sensor will have a wide variety of applications in adaptive optics.

  16. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. PMID:25624226

  17. Detection of Brominated By-Products Using a Sensor Array Based on Nanostructured Thin Films of Conducting Polymers

    PubMed Central

    Carvalho, Eduarda Regina; Filho, Nelson Consolin; Venancio, Everaldo Carlos; Osvaldo, N. O.; Mattoso, Luiz H. C.; Martin-Neto, Ladislau

    2007-01-01

    The detection of the carcinogenic trihalomethanes (THM) in public water supply systems using low-cost equipment has become an essential feature, since these compounds may be generated as by-products of water-treatment processes. Here we report on a sensor array that extends the concept of an “electronic tongue” to detect small amounts of bromoform, bromodichloromethane and dibromochloromethane, with detection limits as low as 0.02 mg L-1. The sensor array was made up of 10 sensing units, in which nanostructured films of conducting and natural polymers were deposited onto gold interdigitated electrodes. The principle of detection was impedance spectroscopy, with measurements carried out in the range between 1 Hz to 1 MHz. Using data at 1 kHz, at which the electrical response varied considerably by changing the analyte, we demonstrated with principal component analysis (PCA) that samples with the 3 brominated trihalomethanes can be distinguished from each other and for various concentrations.

  18. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar.

    PubMed

    Shi, Nuannuan; Li, Ming; Deng, Ye; Zhang, Lihong; Sun, Shuqian; Tang, Jian; Li, Wei; Zhu, Ninghua

    2016-06-27

    An X-band optically-steered phased array radar is developed to demonstrate high resolution multi-target detection. The beam forming is implemented based on wavelength-swept true time delay (TTD) technique. The beam forming system has a wide direction tuning range of ± 54 degree, low magnitude ripple of ± 0.5 dB and small delay error of 0.13 ps/nm. To further verify performance of the proposed optically-steered phased array radar, three experiments are then carried out to implement the single and multiple target detection. A linearly chirped X-band microwave signal is used as radar signal which is finally compressed at the receiver to improve the detection accuracy. The ranging resolution for multi-target detection is up to 2 cm within the measuring distance over 4 m and the azimuth angle error is less than 4 degree. PMID:27410597

  19. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection

    NASA Astrophysics Data System (ADS)

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-03-01

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution.We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08370b

  20. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays.

    PubMed

    Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A; Lu, Karen; Witkin, Steven S; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K; Shirley, Natalie N; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A

    2006-01-15

    A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057

  1. The Distributed Biological Observatory (DBO): A Change Detection Array in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2012-12-01

    The Pacific region of the Arctic Ocean is experiencing major reductions in seasonal sea ice extent and increases in sea surface temperatures. One of the key uncertainties in this region is how the marine ecosystem will respond to seasonal shifts in the timing of spring sea ice retreat and/or delays in fall sea ice formation. Climate changes are likely to result in shifts in species composition and abundance, northward range expansions, and changes in lower trophic level productivity that can directly cascade and affect the life cycles of higher trophic level organisms. The developing Distributed Biological Observatory (DBO) is composed of focused biological and oceanographic sampling at biological "hot spot" sites for lower and higher trophic organisms on a latitudinal S-to-N array. The DBO is being developed by an international consortium of scientists in the Pacific Arctic as a change detection array to systematically track the broad biological response to sea ice retreat and associated environmental change. Coordinated ship-based observations over various seasons, together with satellite and mooring data collections at the designated sites, can provide an early detection system for biological and ecosystem response to climate warming. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walrus and polar bears. As a ramp up to a fully operational observatory, hydrographic transects and select

  2. Detection and Genotyping of Arcobacter and Campylobacter Isolates from Retail Chicken Samples by Use of DNA Oligonucleotide Arrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To explore the use of DNA microarrays for pathogen detection in food, we have produced DNA oligonucleotide arrays to identify the presence of Arcobacter and Campylobacter in retail chicken. Probes were selected that target housekeeping and virulence-associated genes in both Arcobacter butzleri and ...

  3. Use of the FilmArray System for Detection of Zaire ebolavirus in a Small Hospital in Bo, Sierra Leone

    PubMed Central

    Ansumana, Rashid; Taitt, Chris R.; Lamin, Joseph M.; Bangura, Umaru; Lahai, Joseph; Mbayo, George; Kanneh, Mohamed B.; Bawo, Ben; Bockarie, Alfred S.; Scullion, Matt; Phillips, Cynthia L.; Horner, Cynthia P.; Jacobsen, Kathryn H.; Stenger, David A.

    2015-01-01

    Laboratories associated with small hospitals often have limited expertise, personnel, and equipment to rapidly identify rare and emerging infectious diseases. We describe the successful use of the FilmArray system for rapid detection of Ebola virus directly from clinical samples in 6 out of 83 tested subjects in a small health care center in Sierra Leone. PMID:25972415

  4. Use of the FilmArray System for Detection of Zaire ebolavirus in a Small Hospital in Bo, Sierra Leone.

    PubMed

    Leski, Tomasz A; Ansumana, Rashid; Taitt, Chris R; Lamin, Joseph M; Bangura, Umaru; Lahai, Joseph; Mbayo, George; Kanneh, Mohamed B; Bawo, Ben; Bockarie, Alfred S; Scullion, Matt; Phillips, Cynthia L; Horner, Cynthia P; Jacobsen, Kathryn H; Stenger, David A

    2015-07-01

    Laboratories associated with small hospitals often have limited expertise, personnel, and equipment to rapidly identify rare and emerging infectious diseases. We describe the successful use of the FilmArray system for rapid detection of Ebola virus directly from clinical samples in 6 out of 83 tested subjects in a small health care center in Sierra Leone. PMID:25972415

  5. A high performance three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection.

    PubMed

    Xu, Chenlong; Song, Zhiqian; Xiang, Qun; Jin, Jian; Feng, Xinjian

    2016-04-14

    We describe here a high performance oxygen-rich three-phase enzyme electrode based on superhydrophobic mesoporous silicon nanowire arrays for glucose detection. We demonstrate that its linear detection upper limit is 30 mM, more than 15 times higher than that can be obtained on the normal enzyme-electrode. Notably, the three-phase enzyme electrode output is insensitive to the significant oxygen level fluctuation in analyte solution. PMID:26983941

  6. A novel device based on a fluorescent cross-responsive sensor array for detecting lung cancer related volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lei, Jin-can; Hou, Chang-jun; Huo, Dan-qun; Luo, Xiao-gang; Bao, Ming-ze; Li, Xian; Yang, Mei; Fa, Huan-bao

    2015-02-01

    In this paper, a novel, simple, rapid, and low-cost detection device for lung cancer related Volatile Organic Compounds (VOCs) was constructed. For this task, a sensor array based on cross-responsive mechanism was designed. A special gas chamber was made to insure sensor array exposed to VOCs sufficiently and evenly, and FLUENT software was used to simulate the performance of the gas chamber. The data collection and processing system was used to detect fluorescent changes of the sensor arrays before and after reaction, and to extract unique patterns of the tested VOCs. Four selected VOCs, p-xylene, styrene, isoprene, and hexanal, were detected by the proposed device. Unsupervised pattern recognition methods, hierarchical cluster analysis and principal component analysis, were used to analyze data. The results showed that the methods could 100% discriminate the four VOCs. What is more, combined with artificial neural network, the correct rate of quantitative detection was up to 100%, and the device obtained responses at concentrations below 50 ppb. In conclusion, the proposed detection device showed excellent selectivity and discrimination ability for the VOCs related to lung cancer. Furthermore, our preliminary study demonstrated that the proposed detection device has brilliant potential application for early clinical diagnosis of lung cancer.

  7. Evaluation and Implementation of FilmArray Version 1.7 for Improved Detection of Adenovirus Respiratory Tract Infection

    PubMed Central

    Lacey, Damon; Huang, Rong; Haag, Crissie

    2013-01-01

    The BioFire FilmArray respiratory panel is a multiplex PCR technology capable of detecting a number of bacteria and viruses that cause respiratory tract infection. The assay is technically simple to perform and provides rapid results, making it an appealing option for physicians and laboratorians. The initial product released by BioFire (version 1.6) was reported to have poor sensitivity for adenovirus detection and was therefore of concern when testing immunocompromised patients. This study evaluates the redesigned FilmArray assay (version 1.7) for detection of adenovirus. In this evaluation, we performed both retrospective and prospective verification studies, as well as a detailed serotype analysis. We found that version 1.7 demonstrated improved adenovirus sensitivity. In retrospective studies, sensitivity improved from 66.6% to 90.5%, and in prospective studies, it improved from 42.7% to 83.3%. In addition, when 39 clinically relevant serotypes were tested, 8 were not detected by version 1.6 and only 1 was not detected by version 1.7. The limit of detection remained the same when tested against serotype 4 but improved by 2 log units for serotype 7. Lastly, turnaround time analyses showed that the FilmArray assay was completed 3 h and 9 min after collection, which was more than a 37-h improvement over the previous multiplex PCR assay performed in our laboratory. PMID:24068007

  8. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  9. Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products.

    PubMed

    Charlermroj, Ratthaphol; Makornwattana, Manlika; Grant, Irene R; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2016-05-01

    This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings showed that the immunobead array method was capable of detecting as low as 1CFU of the pathogens spiked in the culture media after being cultured for 24h for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1CFU of the pathogens spiked in the food samples after being cultured for 24h in the case of Salmonella spp., and L. monocytogenes and 48 h in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 h, whereas the conventional ISO protocols for the same pathogens take 90-144 h. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing. PMID:26950032

  10. Increasing lifetimes of fiber-optic sensor arrays for chemical warfare detection

    NASA Astrophysics Data System (ADS)

    Bencic, Sandra; Walt, David R.

    2004-03-01

    We are exploring the ability of cross reactive sensor arrays to monitor the presence of chemical warfare agents. The sensing platform developed in our lab uses a variety of fluorescent microbead sensors, either 3 or 5 microns in diameter. The sensors have a wide range of surface functionalities and are coated with fluorescent dyes that change their emission properties upon interaction with analyte vapors. Every time the sensors are interrogated with light they photobleach which leads to signal loss and a decreased array lifetime. In order to monitor for long periods of time, a strategy has been developed that extends the array lifetime. Here, we implement a method to increase the lifetime of an array by up to 10-fold, as we incrementally expose small sections of the array at a time. We divide the array into sections by moving an optical slit across the face of the fiber.

  11. SiMPl—An avalanche diode array with bulk integrated quench resistors for single photon detection

    NASA Astrophysics Data System (ADS)

    Ninković, Jelena; Andriček, Ladislav; Liemann, Gerhard; Lutz, Gerhard; Moser, Hans-Günther; Richter, Rainer; Schopper, Florian

    2010-05-01

    The so-called silicon photomultipliers (SiPMs, MPPCs, etc.) are already replacing photomultiplier tubes in many applications. Still the reproducibility and the cost requirements are not at the level required for the coverage of many square meters of detector area. Therefore a simple technology is desired which allows a high yield and keeps the detector costs in a reasonable range. In the existing devices the need of high ohmic polysilicon for the quench resistors is one of the most yield and cost driving technological issues. We are proposing a front-side illuminated detector structure with quench resistors integrated into the silicon bulk. In this concept other obstacles for light like metal lines or contacts can be omitted and therefore the fill factor is only limited by the gaps necessary for optical cross-talk suppression. Within the array the entire surface area remains non-structured and can be easily coated with an anti-reflective layer. Compared to existing devices the proposed detector has the potential of higher photon detection efficiency especially in the blue and the UV range, an improved hardness against ionizing radiation and a much simpler processing resulting in a higher production yield and lower costs. The quenching mechanism has been demonstrated in a proof-of-principle production performed in house. The second prototype fabrication on silicon on isolator substrates has been done and allows testing of the device performance. The results from the first measurements are presented.

  12. Experiment on interface separation detection of concrete-filled steel tubular arch bridge using accelerometer array

    NASA Astrophysics Data System (ADS)

    Pan, Shengshan; Zhao, Xuefeng; Zhao, Hailiang; Mao, Jian

    2015-04-01

    Based on the vibration testing principle, and taking the local vibration of steel tube at the interface separation area as the study object, a real-time monitoring and the damage detection method of the interface separation of concrete-filled steel tube by accelerometer array through quantitative transient self-excitation is proposed. The accelerometers are arranged on the steel tube area with or without void respectively, and the signals of accelerometers are collected at the same time and compared under different transient excitation points. The results show that compared with the signal of compact area, the peak value of accelerometer signal at void area increases and attenuation speed slows down obviously, and the spectrum peaks of the void area are much more and disordered and the amplitude increases obviously. whether the input point of transient excitation is on void area or not is irrelevant with qualitative identification results. So the qualitative identification of the interface separation of concrete-filled steel tube based on the signal of acceleration transducer is feasible and valid.

  13. A chemical-detecting system based on a cross-reactive optical sensor array

    NASA Astrophysics Data System (ADS)

    Dickinson, Todd A.; White, Joel; Kauer, John S.; Walt, David R.

    1996-08-01

    THE vertebrate olfactory system has long been recognized for its extraordinary sensitivity and selectivity for odours. Chemical sensors have been developed recently that are based on analogous distributed sensing properties1-4, but although an association between artificial devices and the olfactory system has been made explicit in some previous studies4,5, none has incorporated comparable mechanisms into the mode of detection. Here we describe a multi-analyte fibre-optic sensor modelled directly on the olfactory system, in the sense that complex, time-dependent signals from an array of sensors provide a 'signature' of each analyte. In our system, polymer-immobilized dye molecules on the fibre tips give different fluorescent response patterns (including spectral shifts, intensity changes, spectral shape variations6 and temporal responses) on exposure to organic vapours, depending on the physical and chemical nature (for example, polarity, shape and size) of both the vapour and the polymer. We use video images of temporal responses of the multi-fibre tip as the input signals to train a neural network for vapour recognition. The system is able to identify individual vapours at different concentrations with great accuracy. 'Artificial noses' such as this should have wide potential application, most notably in environmental and medical monitoring.

  14. A further case of the recurrent 15q24 microdeletion syndrome, detected by array CGH.

    PubMed

    Klopocki, Eva; Graul-Neumann, Luitgard M; Grieben, Ulrike; Tönnies, Holger; Ropers, Hans-Hilger; Horn, Denise; Mundlos, Stefan; Ullmann, Reinhard

    2008-08-01

    We report on a 10-year-old patient with developmental delay, craniofacial dysmorphism, digital and genital abnormalities. In addition, muscular hypotonia, strabism, and splenomegaly were observed; inguinal and umbilical hernias were surgically corrected. Mucopolysaccharidoses and CDG syndromes could not be found. Chromosome analysis revealed a normal male karyotype (46,XY). A more detailed investigation of the patient's genomic DNA by microarray-based comparative genomic hybridization (array CGH) detected an interstitial 3.7 Mb deletion ranging from 15q24.1 to 15q24.3 which was shown to be de novo. Interstitial deletions involving 15q24 are rare. Sharp et al. (Hum Mol Genet 16:567-572, 2007) recently characterized a recurrent 15q24 microdeletion syndrome with breakpoints in regions of segmental duplications. The de novo microdeletion described here colocalizes with the minimal deletion region of the 15q24 microdeletion syndrome. The distinct clinical phenotype associated with this novel microdeletion syndrome is similar to the phenotype of our patient with respect to specific facial features, developmental delay, microcephaly, digital abnormalities, and genital abnormalities in males. We present a genotype-phenotype correlation and comparison with patients from the literature. PMID:17932688

  15. Label-Free Detection of Cardiac Troponin-I Using Carbon Nanofiber Based Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Periyakaruppan, Adaikkappan; Koehne, Jessica Erin; Gandhiraman, Ram P.; Meyyappan, M.

    2013-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. A carbon nanofiber (CNF) multiplexed array has been fabricated with 9 sensing pads, each containing 40,000 carbon nanofibers as nanoelectrodes. Here, we report the use of vertically aligned CNF nanoelectrodes for the detection of cardiac Troponin-I for the early diagnosis of myocardial infarction. Antibody, antitroponin, probe immobilization and subsequent binding to human cardiac troponin-I were characterized using electrochemical impedance spectroscopy and cyclic voltammetry techniques. Each step of the modification process resulted in changes in electrical capacitance or resistance to charge transfer due to the changes at the electrode surface upon antibody immobilization and binding to the specific antigen. This sensor demonstrates high sensitivity, down to 0.2 ng/mL, and good selectivity making this platform a good candidate for early stage diagnosis of myocardial infarction.

  16. Multichannel quartz crystal microbalance array: Fabrication, evaluation, application in biomarker detection.

    PubMed

    Tao, Wenyan; Lin, Peng; Ai, Yanqing; Wang, Hairui; Ke, Shanming; Zeng, Xierong

    2016-02-01

    A multichannel quartz crystal microbalance array (MQCM) with three pairs of gold electrodes was fabricated for detection of two biomarkers: acetone and nitric oxide (NO). The gold electrodes were deposited symmetrically on an AT-cut 10 MHz circular quartz plate using photolithography, sputtering, and lift-off technologies. The effect of gold layer thickness on MQCM performance was investigated and the optimized thickness was 101 nm. The simulation values of the electric parameters C0, Cq, Lq, and Rq in the Butterworth-Van Dike equivalent circuit for the MQCM device were 97 pF, 1.3 pF, 1.05 mH, and 9.8 Ω, respectively. Simulation values were in the theoretical range, which indicated that the fabricated MQCM device had good resonance performance. Two types of nanocomposites, titanium dioxide-multiwalled carbon nanotubes and cobalt (II)phthalocyanine-silica, were synthesized as sensing materials. The sensing mechanism is based on coordination adsorption of target molecules onto the sensing material, resulting in a resonant frequency shift of modified QCM sensor. A linear range from 4.33 to 129.75 ppmv for acetone was obtained and one from 5.75 to 103.45 ppbv for NO. PMID:26582433

  17. Simultaneous determination of five aluminum lake dyes in chewing gum by HPLC with photodiode array detection.

    PubMed

    Yang, Yi; Yin, Jie; Shao, Bing

    2011-09-01

    A simple and rapid method has been developed and validated for the determination of five food aluminum lake dyes (Tartrazine Al lake, Sunset Yellow Al lake, Ponceau 4R Al lake, Allura Red Al lake and Brilliant Blue Al lake) in chewing gum. The dye portions of the target aluminum lakes were simultaneous extracted with 0.25 M NaOH and cleaned up by liquid-liquid extraction with dichloromethane, followed by further purification using Oasis WAX solid-phase extraction (SPE) cartridges. Analytes were separated by HPLC using an Inertsil ® ODS-3 column coupled to a photodiode array detector. The amounts of the aluminum lake dyes were finally quantified and indicated as their dye portions using corresponding calibration curves over ranges of 0.5 to 50 µg ml(-1), with correlation coefficients >0.9999. Recoveries of the dye parts in aluminum lake dyes (spiked at levels of 1, 5, 25 µg g(-1)) ranged from 72.5 to 116.4%, with relative standard deviations between 0.9 and 6.5%. Limits of detection and limits of quantification for all analytes were 0.15 and 0.50 µg g(-1), respectively. This method was successfully applied in real samples of chewing gum. PMID:21707267

  18. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-01

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT. PMID:27214001

  19. Velocity-resolved Hot Water Emission Detected toward HL Tau with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Kristensen, Lars E.; Brown, Joanna M.; Wilner, David; Salyk, Colette

    2016-05-01

    Using the Submillimeter Array (SMA) on Mauna Kea, the {{{H}}}216{{O}} {10}{2,9}–9{}{3,6} transition ({E}{{up}} = 1863 K) at 321.2 GHz has been detected toward the embedded low-mass protostar HL Tau. The line centroid is blueshifted by 20 km s‑1 with respect to the source velocity, and it has a FWHM of 25 km s‑1. The emission is tentatively resolved and extends ∼3″–4″ over the sky (∼2 beams), or ∼500 au at the distance of Taurus. The velocity offset, and to a lesser degree the spatial extent of the emission, show that the line originates in the protostellar jet or wind. This result suggests that at least some water emission observed with Herschel and Spitzer toward embedded sources, and perhaps also disk sources, contains a wind or jet component, which is crucial for interpreting these data. These pathfinder observations done with the SMA open a new window into studying the origin of water emission with e.g., ALMA, thus providing new insights into where water is in protostellar systems.

  20. Controllable synthesis of branched hierarchical ZnO nanorod arrays for highly sensitive hydrazine detection

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Zhao, Zhenting; Sun, Yongjiao; Wang, Ying; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2016-02-01

    In this paper, three different kinds of ZnO nanostructures were successfully synthesized on Au/Glass (Au/G) substrate by electrochemical deposition method. The morphology and crystalline structures of the obtained samples were characterized using SEM, XRD and HRTEM. Electrochemical responses of the as-prepared ZnO based sensors to hydrazine in 0.1 M phosphate buffer solution (PBS, pH 7.4) were analyzed by cyclic voltammetry and single-potential amperometry. The results confirmed that the electrochemical performances of ZnO sensors are strongly dependent on the specific surface area. Especially, the branched hierarchical ZnO nanorod arrays shows the highest sensitivity of 5.35 μA μM-1 cm-2, a short response time of 3 s, a low detection limit of 0.08 μM with a linear hydrazine concentration response range from 0.8 μM to 101 μM, and it also exhibits excellent anti-interference, stability and reproducibility abilities, which provide great potential method of ZnO branched hierarchical structures in the development of high-performance electrochemical sensor.

  1. Genomic Characterization of Prenatally Detected Chromosomal Structural Abnormalities Using Oligonucleotide Array Comparative Genomic Hybridization

    PubMed Central

    Li, Peining; Pomianowski, Pawel; DiMaio, Miriam S.; Florio, Joanne R.; Rossi, Michael R.; Xiang, Bixia; Xu, Fang; Yang, Hui; Geng, Qian; Xie, Jiansheng; Mahoney, Maurice J.

    2013-01-01

    Detection of chromosomal structural abnormalities using conventional cytogenetic methods poses a challenge for prenatal genetic counseling due to unpredictable clinical outcomes and risk of recurrence. Of the 1,726 prenatal cases in a 3-year period, we performed oligonucleotide array comparative genomic hybridization (aCGH) analysis on 11 cases detected with various structural chromosomal abnormalities. In nine cases, genomic aberrations and gene contents involving a 3p distal deletion, a marker chromosome from chromosome 4, a derivative chromosome 5 from a 5p/7q translocation, a de novo distal 6q deletion, a recombinant chromosome 8 comprised of an 8p duplication and an 8q deletion, an extra derivative chromosome 9 from an 8p/9q translocation, mosaicism for chromosome 12q with added material of initially unknown origin, an unbalanced 13q/15q rearrangement, and a distal 18q duplication and deletion were delineated. An absence of pathogenic copy number changes was noted in one case with a de novo 11q/14q translocation and in another with a familial insertion of 21q into a 19q. Genomic characterization of the structural abnormalities aided in the prediction of clinical outcomes. These results demonstrated the value of aCGH analysis in prenatal cases with subtle or complex chromosomal rearrangements. Furthermore, a retrospective analysis of clinical indications of our prenatal cases showed that approximately 20% of them had abnormal ultrasound findings and should be considered as high risk pregnancies for a combined chromosome and aCGH analysis. PMID:21671377

  2. Determination of Tyrian purple by high performance liquid chromatography with diode array detection.

    PubMed

    Vasileiadou, Athina; Karapanagiotis, Ioannis; Zotou, Anastasia

    2016-05-27

    Indigotin, indirubin, 6-bromoindigotin, 6'-bromoindirubin, 6-bromoindirubin, 6,6'-dibromoindigotin and 6,6'-dibromoindirubin, the colouring components of Tyrian purple, are quantified by an efficient HPLC method coupled to a diode array detector. The compounds were separated using gradient elution, on a RP-column (Alltima C18, 250mm×3.0mm i.d., 5μm), thermostated at 35°C, with a mobile phase consisting of solvents (Α) H2O+0.1% (v/v) trifluoroacetic acid and (Β) acetonitrile+0.1% (v/v) trifluoroacetic acid, at a flow rate of 0.5mLmin(-1). The method was validated in terms of linearity, detection and quantification limits, precision, accuracy, ruggedness and robustness, the latter with respect to small changes in column temperature and in flow-rate, pH- and solvent composition of the mobile phase. Under optimal conditions, the developed analytical scheme offers limits of detection in the range 0.02-0.05μgmL(-1) and satisfactory linearity up to 2.5μgmL(-1) for all analytes. Four samples produced from the hypobranchial glands of Hexaplex (Murex) trunculus molluscs, collected in the coastlines of Tunisia and Croatia, were treated with hot DMSO and analysed by the established HPLC method, using the standards addition approach. To evaluate the matrix effect, a comparison of the slopes of the standards in solvent regression curves with those of the standard addition method's calibration curves, using the Student's t-test was carried out. The accuracy was evaluated by recovery experiments. Amounts of indigotin, indirubin, and their mono- and dibrominated derivatives ranging between 0.01 to 12.2μgmg(-1) were found in the DMSO extracts of the four molluscan samples. PMID:27125189

  3. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  4. Design and characterisation of a thin-film electrode array with shared reference/counter electrodes for electrochemical detection.

    PubMed

    Uludag, Yildiz; Olcer, Zehra; Sagiroglu, Mahmut Samil

    2014-07-15

    In the current study, a novel electrode array and integrated microfluidics have been designed and characterised in order to create a sensor chip which is not only easy, rapid and cheaper to produce but also have a smaller imprint and good electrochemical sensing properties. The current study includes the assessment of the effects of an Au quasi-reference electrode and the use of shared reference/counter electrodes for the array, in order to obtain a small array that can be produced using a fine metal mask. In the study, it is found that when Au is used as the quasi-reference electrode, the arrays with shared reference and counter electrodes result in faster electron transfer kinetics and prevent the potential change with respect to scan rate, and hence is advantageous with respect to conventional electrodes. In addition, the resulting novel electrode array has been shown to result in higher current density (10.52 µA/cm(2); HRP detection assay) and measured diffusion coefficient (14.40×10(-12) cm(2)/s; calculated from the data of cyclic voltammetry with 1mM potassium ferricyanide) with respect to conventional electrodes tested in the study. Using the new electrode arrays, the detection limits obtained from horse radish peroxidase (HRP) and bisphenol A assays were 12.5 ng/ml (2.84×10(-10) M ) and 10 ng/ml (44×10(-9) M), respectively. Performing the HRP detection assay in a flow injection system using array integrated microfluidics provided 25 times lower detection limit (11.36×10(-12) M), although Ti has been used as electrode material instead of Au. In short, incorporation of this new electrode array to lab-on-a-chip or MEMs (micro-electro mechanic systems) technologies may pave the way for easy to use automated biosensing devices that could be used for a variety of applications from diagnostics to environmental monitoring, and studies will continue to move forward in this direction. PMID:24561521

  5. Aircraft Aerodynamic Parameter Detection Using Micro Hot-Film Flow Sensor Array and BP Neural Network Identification

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2012-01-01

    Air speed, angle of sideslip and angle of attack are fundamental aerodynamic parameters for controlling most aircraft. For small aircraft for which conventional detecting devices are too bulky and heavy to be utilized, a novel and practical methodology by which the aerodynamic parameters are inferred using a micro hot-film flow sensor array mounted on the surface of the wing is proposed. A back-propagation neural network is used to model the coupling relationship between readings of the sensor array and aerodynamic parameters. Two different sensor arrangements are tested in wind tunnel experiments and dependence of the system performance on the sensor arrangement is analyzed. PMID:23112638

  6. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    PubMed Central

    Madrigal, I; Rodríguez-Revenga, L; Armengol, L; González, E; Rodriguez, B; Badenas, C; Sánchez, A; Martínez, F; Guitart, M; Fernández, I; Arranz, JA; Tejada, MI; Pérez-Jurado, LA; Estivill, X; Milà, M

    2007-01-01

    Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients. PMID:18047645

  7. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide.

    PubMed

    Hu, Xiaoye; Zheng, Peng; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Han, Fangming; Huang, Zhulin; Li, Zhongbo; Wang, Zhaoming; Wu, Nianqiang

    2016-09-23

    An ordered array of hierarchically-structured core-nanosphere@space-layer@shell-nanoparticles has been fabricated for surface-enhanced Raman scattering (SERS) detection. To fabricate this hierarchically-structured chip, a long-range ordered array of Au/Ag-nanospheres is first patterned in the nano-bowls on the planar surface of ordered nanoporous anodic titanium oxide template. A ultra-thin alumina middle space-layer is then conformally coated on the Au/Ag-nanospheres, and Ag-nanoparticles are finally deposited on the surface of the alumina space-layer to form an ordered array of Au/Ag-nanosphere@Al2O3-layer@Ag-nanoparticles. Finite-difference time-domain simulation shows that SERS hot spots are created between the neighboring Ag-nanoparticles. The ordered array of hierarchical nanostructures is used as the SERS-substrate for a trial detection of methyl parathion (a pesticide) in water and a limit of detection of 1 nM is reached, indicating its promising potential in rapid monitoring of organic pollutants in aquatic environment. PMID:27528554

  8. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    primarily the result of spurious identification and incorrect association of phases, and of excessive variability in estimates for the velocity and direction of incoming seismic phases. The mitigation of these causes has led to the development of two complimentary techniques for classifying seismic sources by testing detected signals under mutually exclusive event hypotheses. Both of these techniques require appropriate calibration data from the region to be monitored, and are therefore ideally suited to mining areas or other sites with recurring seismicity. The first such technique is a classification and location algorithm where a template is designed for each site being monitored which defines which phases should be observed, and at which times, for all available regional array stations. For each phase, the variability of measurements (primarily the azimuth and apparent velocity) from previous events is examined and it is determined which processing parameters (array configuration, data window length, frequency band) provide the most stable results. This allows us to define optimal diagnostic tests for subsequent occurrences of the phase in question. The calibration of templates for this project revealed significant results with major implications for seismic processing in both automatic and analyst reviewed contexts: • one or more fixed frequency bands should be chosen for each phase tested for. • the frequency band providing the most stable parameter estimates varies from site to site and a frequency band which provides optimal measurements for one site may give substantially worse measurements for a nearby site. • slowness corrections applied depend strongly on the frequency band chosen. • the frequency band providing the most stable estimates is often neither the band providing the greatest SNR nor the band providing the best array gain. For this reason, the automatic template location estimates provided here are frequently far better than those obtained by

  9. Resolution and signal-to-noise ratio improvement in confocal fluorescence microscopy using array detection and maximum-likelihood processing

    NASA Astrophysics Data System (ADS)

    Kakade, Rohan; Walker, John G.; Phillips, Andrew J.

    2016-08-01

    Confocal fluorescence microscopy (CFM) is widely used in biological sciences because of its enhanced 3D resolution that allows image sectioning and removal of out-of-focus blur. This is achieved by rejection of the light outside a detection pinhole in a plane confocal with the illuminated object. In this paper, an alternative detection arrangement is examined in which the entire detection/image plane is recorded using an array detector rather than a pinhole detector. Using this recorded data an attempt is then made to recover the object from the whole set of recorded photon array data; in this paper maximum-likelihood estimation has been applied. The recovered object estimates are shown (through computer simulation) to have good resolution, image sectioning and signal-to-noise ratio compared with conventional pinhole CFM images.

  10. Parallel detection of harmful algae using reverse transcription polymerase chain reaction labeling coupled with membrane-based DNA array.

    PubMed

    Zhang, Chunyun; Chen, Guofu; Ma, Chaoshuai; Wang, Yuanyuan; Zhang, Baoyu; Wang, Guangce

    2014-03-01

    Harmful algal blooms (HABs) are a global problem, which can cause economic loss to aquaculture industry's and pose a potential threat to human health. More attention must be made on the development of effective detection methods for the causative microalgae. The traditional microscopic examination has many disadvantages, such as low efficiency, inaccuracy, and requires specialized skill in identification and especially is incompetent for parallel analysis of several morphologically similar microalgae to species level at one time. This study aimed at exploring the feasibility of using membrane-based DNA array for parallel detection of several microalgae by selecting five microaglae, including Heterosigma akashiwo, Chaetoceros debilis, Skeletonema costatum, Prorocentrum donghaiense, and Nitzschia closterium as test species. Five species-specific (taxonomic) probes were designed from variable regions of the large subunit ribosomal DNA (LSU rDNA) by visualizing the alignment of LSU rDNA of related species. The specificity of the probes was confirmed by dot blot hybridization. The membrane-based DNA array was prepared by spotting the tailed taxonomic probes onto positively charged nylon membrane. Digoxigenin (Dig) labeling of target molecules was performed by multiple PCR/RT-PCR using RNA/DNA mixture of five microalgae as template. The Dig-labeled amplification products were hybridized with the membrane-based DNA array to produce visible hybridization signal indicating the presence of target algae. Detection sensitivity comparison showed that RT-PCR labeling (RPL) coupled with hybridization was tenfold more sensitive than DNA-PCR-labeling-coupled with hybridization. Finally, the effectiveness of RPL coupled with membrane-based DNA array was validated by testing with simulated and natural water samples, respectively. All of these results indicated that RPL coupled with membrane-based DNA array is specific, simple, and sensitive for parallel detection of microalgae which

  11. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens.

    PubMed

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Gajanandana, Oraprapai; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2014-07-15

    The global seed market is considered to be an important industry with a total value of $10,543 million US dollars in 2012. Because plant pathogens such as bacteria and viruses cause a significant economic loss to both producers and exporters, the seed export industry urgently requires rapid, sensitive, and inexpensive testing for the pathogens to prevent disease spreading worldwide. This study developed an antibody array in a multiwell plate format to simultaneously detect four crucial plant pathogens, namely, a bacterial fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), Chilli veinal mottle virus (ChiVMV, potyvirus), Watermelon silver mottle virus (WSMoV, tospovirus serogroup IV), and Melon yellow spot virus (MYSV, tospovirus). The capture antibodies specific to the pathogens were immobilized on each well at preassigned positions by an automatic microarrayer. The antibodies on the arrays specifically captured the corresponding pathogens present in the sample extracts. The presence of pathogens bound on the capture antibodies was subsequently detected by a cocktail of fluorescently conjugated secondary antibodies. The limits of detection of the developed antibody array for the detection of Aac, ChiVMV, WSMoV, and MYSV were 5 × 10(5) CFU/mL, 30 ng/mL, 1000 ng/mL, and 160 ng/mL, respectively, which were very similar to those of the conventional ELISA method. The antibody array in a multiwell plate format accurately detected plant pathogens in single and multiple detections. Moreover, this format enables easy handling of the assay at a higher speed of operation. PMID:24945525

  12. Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds.

    PubMed

    Valdivia, Pablo; Martin, Matt; LeFew, William R; Ross, James; Houck, Keith A; Shafer, Timothy J

    2014-09-01

    Spontaneous activity in neuronal cultures on microelectrode arrays (MEAs) is sensitive to effects of drugs, chemicals, and particles. Multi-well MEA (mwMEA) systems have increased throughput of MEAs, enabling their use for chemical screening. The present experiments examined a subset of EPA's ToxCast compounds for effects on spontaneous neuronal activity in primary cortical cultures using 48-well MEA plates. A first cohort of 68 compounds was selected from the ToxCast Phase I and II libraries; 37 were positive in one or more of 20 individual ToxCast Novascreen assays related to ion channels (NVS_IC), with the remainder selected based on known neuroactivity. A second cohort of 25 compounds was then tested with 20 originating from the ToxCast Phase I and II libraries (not hits in NVS_IC assays) and 5 known negatives from commercial vendors. Baseline activity (1h) was recorded prior to exposing the networks to compounds for 1h, and the weighted mean firing rate (wMFR) was determined in the absence and presence of each compound. Compounds that altered activity by greater than the weighted change of DMSO-treated wells plus 2SD were considered "hits". Of the first set of 68 compounds, 54 altered wMFR by more than the threshold, while in the second set, 13/25 compounds were hits. MEAs detected 30 of 37 (81.1%) compounds that were hits in NVS_IC assays, as well as detected known neurotoxicants that were negative in NVS_IC assays, primarily pyrethroids and GABAA receptor antagonists. Conversely, wMFR of cortical neuronal networks on MEAs was insensitive to nicotinic compounds, as only one neonicotinoid was detected by MEAs; this accounts for the bulk of non-concordant compounds between MEA and NVS_IC assays. These data demonstrate that mwMEAs can be used to screen chemicals efficiently for potential neurotoxicity, and that the results are concordant with predictions from ToxCast NVS_IC assays for interactions with ion channels. PMID:24997244

  13. Detection of baleen whales on an ocean-bottom seismometer array in the Lau Basin

    NASA Astrophysics Data System (ADS)

    Brodie, D.; Dunn, R.

    2011-12-01

    Long-term deployment of ocean-bottom seismometer arrays provides a unique opportunity for identifying and tracking whales in a manner not usually possible in biological studies. Large baleen whales emit low frequency (>5Hz) sounds called 'calls' or 'songs' that can be detected on either the hydrophone or vertical channel of the instrument at distances in excess of 50 km. The calls are distinct to individual species and even geographical groups among species, and are thought to serve a variety of purposes. Distinct repeating calls can be automatically identified using matched-filter processing, and whales can be located in a manner similar to that of earthquakes. Many baleen whale species are endangered, and little is known about their geographic distribution, population dynamics, and basic behaviors. The Lau back-arc basin, a tectonically active, elongated basin bounded by volcanic shallows, lies in the southwestern Pacific Ocean between Fiji and Tonga. Although whales are known to exist around Fiji and Tonga, little is understood about the population dynamics and migration patterns throughout the basin. Twenty-nine broadband ocean-bottom seismometers deployed in the basin recorded data for approximately ten months during the years 2009-2010. To date, four species of whales have been identified in the data: Blue (one call type), Humpback (two call types, including long-lasting 'songs'), Bryde's (one call type), and Fin whales (three call types). Three as-yet-unknown call types have also been identified. After the calls were identified, idealized spectrograms of the known calls were matched against the entire data set using an auto-detection algorithm. The auto-detection output provides the number of calls and times of year when each call type was recorded. Based on the results, whales migrate seasonally through the basin with some overlapping of species. Initial results also indicate that different species of whales are more common in some parts of the basin than

  14. Single-nucleotide polymorphism-array improves detection rate of genomic alterations in core-binding factor leukemia.

    PubMed

    Costa, Ana Rosa da Silveira; Vasudevan, Anupama; Krepischi, Ana; Rosenberg, Carla; Chauffaille, Maria de Lourdes L F

    2013-01-01

    Acute myeloid leukemia (AML) is a group of clonal diseases, resulting from two classes of mutation. Investigation for additional abnormalities associated with a well-recognized subtype, core-binding factor AML (CBF-AML) can provide further understanding and discrimination to this special group of leukemia. In order to better define genetic alterations in CBF-AML and identify possible cooperating lesions, a single-nucleotide polymorphism-array (SNP-array) analysis was performed, combined to KIT mutation screening, in a set of cases. Validation of SNP-array results was done by array comparative genomic hybridization and FISH. Fifteen cases were analyzed. Three cases had microscopic lesions better delineated by arrays. One case had +22 not identified by arrays. Submicroscopic abnormalities were mostly non-recurrent between samples. Of relevance, four regions were more frequently affected: 4q28, 9p11, 16q22.1, and 16q23. One case had an uncovered unbalanced inv(16) due to submicroscopic deletion of 5´MYH11 and 3´CBFB. Telomeric and large copy number neutral loss of heterozygosity (CNN-LOH) regions (>25 Mb), likely representing uniparental disomy, were detected in four out of fifteen cases. Only three cases had mutation on KIT gene, enhancing the role of abnormalities by SNP-array as presumptive cooperating alterations. Molecular karyotyping can add valuable information to metaphase karyotype analysis, emerging as an important tool to uncover and characterize microscopic, submicroscopic genomic alterations, and CNN-LOH events in the search for cooperating lesions. PMID:23636907

  15. Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; McWilliams, Sean T.; Gair, Jonathan R.; Taylor, Stephen R.

    2015-09-01

    We present a detailed analysis of the expected signal-to-noise ratios of supermassive black hole binaries on eccentric orbits observed by pulsar timing arrays. We derive several analytical relations that extend the results of Peters and Mathews [Phys. Rev. D 131, 435 (1963)] to quantify the impact of eccentricity in the detection of single resolvable binaries in the pulsar timing array band. We present ready-to-use expressions to compute the increase/loss in signal-to-noise ratio of eccentric single resolvable sources whose dominant harmonic is located in the low/high frequency sensitivity regime of pulsar timing arrays. Building upon the work of Phinney (arXiv:astro-ph/0108028) and Enoki and Nagashima [Prog. Theor. Phys. 117, 241 (2007)], we present an analytical framework that enables the construction of rapid spectra for a stochastic gravitational-wave background generated by a cosmological population of eccentric sources. We confirm previous findings which indicate that, relative to a population of quasicircular binaries, the strain of a stochastic, isotropic gravitational-wave background generated by a cosmological population of eccentric binaries will be suppressed in the frequency band of pulsar timing arrays. We quantify this effect in terms of signal-to-noise ratios in a pulsar timing array.

  16. Chromosomal copy number changes in patients with non‐syndromic X linked mental retardation detected by array CGH

    PubMed Central

    Lugtenberg, D; de Brouwer, A P M; Kleefstra, T; Oudakker, A R; Frints, S G M; Schrander‐Stumpel, C T R M; Fryns, J P; Jensen, L R; Chelly, J; Moraine, C; Turner, G; Veltman, J A; Hamel, B C J; de Vries, B B A; van Bokhoven, H; Yntema, H G

    2006-01-01

    Several studies have shown that array based comparative genomic hybridisation (CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder. In this study, 40 patients with non‐specific X linked mental retardation were analysed with full coverage, X chromosomal, bacterial artificial chromosome arrays. Copy number changes were validated by multiplex ligation dependent probe amplification as a fast method to detect duplications and deletions in patient and control DNA. This approach has the capacity to detect copy number changes as small as 100 kb. We identified three causative duplications: one family with a 7 Mb duplication in Xp22.2 and two families with a 500 kb duplication in Xq28 encompassing the MECP2 gene. In addition, we detected four regions with copy number changes that were frequently identified in our group of patients and therefore most likely represent genomic polymorphisms. These results confirm the power of array CGH as a diagnostic tool, but also emphasise the necessity to perform proper validation experiments by an independent technique. PMID:16169931

  17. Parallel acquisition of Raman spectra from a 2D multifocal array using a modulated multifocal detection scheme

    NASA Astrophysics Data System (ADS)

    Kong, Lingbo; Chan, James W.

    2015-03-01

    A major limitation of spontaneous Raman scattering is its intrinsically weak signals, which makes Raman analysis or imaging of biological specimens slow and impractical for many applications. To address this, we report the development of a novel modulated multifocal detection scheme for simultaneous acquisition of full Raman spectra from a 2-D m × n multifocal array. A spatial light modulator (SLM), or a pair of galvo-mirrors, is used to generate m × n laser foci. Raman signals generated within each focus are projected simultaneously into a spectrometer and detected by a CCD camera. The system can resolve the Raman spectra with no crosstalk along the vertical pixels of the CCD camera, e.g., along the entrance slit of the spectrometer. However, there is significant overlap of the spectra in the horizontal pixel direction, e.g., along the dispersion direction. By modulating the excitation multifocal array (illumination modulation) or the emitted Raman signal array (detection modulation), the superimposed Raman spectra of different multifocal patterns are collected. The individual Raman spectrum from each focus is then retrieved from the superimposed spectra using a postacquisition data processing algorithm. This development leads to a significant improvement in the speed of acquiring Raman spectra. We discuss the application of this detection scheme for parallel analysis of individual cells with multifocus laser tweezers Raman spectroscopy (M-LTRS) and for rapid confocal hyperspectral Raman imaging.

  18. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    PubMed

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  19. A Pt-Doped TiO2 Nanotube Arrays Sensor for Detecting SF6 Decomposition Products

    PubMed Central

    Zhang, Xiaoxing; Tie, Jing; Zhang, Jinbin

    2013-01-01

    The detection of partial discharge and analysis of SF6 gas components in gas-insulated switchgear (GIS) is important for the diagnosis and operating state assessment of power equipment. The use of a Pt-doped TiO2 nanotube arrays sensor for detecting sulfur hexafluoride (SF6) decomposition products is proposed in this paper. The electrochemical pulse deposition method is employed to prepare the sensor array. The sensor's response to the main characteristic gaseous decomposition products of SF6 is evaluated. The gas sensing characteristic curves of the Pt-doped TiO2 nanotube sensor and intrinsic TiO2 nanotube arrays sensor are compared. The mechanism of the sensitive response is discussed. Test results showed that the Pt-doped nanoparticles not only change the gas sensing selectivity of the TiO2 nanotube arrays sensor with respect to the main characteristic SF6 decomposition products, but also reduce the operating temperature of the sensor. PMID:24177728

  20. High-Precision Dispensing of Nanoliter Biofluids on Glass Pedestal Arrays for Ultrasensitive Biomolecule Detection.

    PubMed

    Chen, Xiaoxiao; Liu, Yang; Xu, QianFeng; Zhu, Jing; Poget, Sébastien F; Lyons, Alan M

    2016-05-01

    Precise dispensing of nanoliter droplets is necessary for the development of sensitive and accurate assays, especially when the availability of the source solution is limited. Conventional approaches are limited by imprecise positioning, large shear forces, surface tension effects, and high costs. To address the need for precise and economical dispensing of nanoliter volumes, we developed a new approach where the dispensed volume is dependent on the size and shape of defined surface features, thus freeing the dispensing process from pumps and fine-gauge needles requiring accurate positioning. The surface we fabricated, called a nanoliter droplet virtual well microplate (nVWP), achieves high-precision dispensing (better than ±0.5 nL or ±1.6% at 32 nL) of 20-40 nL droplets using a small source drop (3-10 μL) on isolated hydrophilic glass pedestals (500 μm on a side) bonded to arrays of polydimethylsiloxane conical posts. The sharp 90° edge of the glass pedestal pins the solid-liquid-vapor triple contact line (TCL), averting the wetting of the glass sidewalls while the fluid is prevented from receding from the edge. This edge creates a sufficiently large energy barrier such that microliter water droplets can be poised on the glass pedestals, exhibiting contact angles greater >150°. This approach relieves the stringent mechanical alignment tolerances required for conventional dispensing techniques, shifting the control of dispensed volume to the area circumscribed by the glass edge. The effects of glass surface chemistry and dispense velocity on droplet volume were studied using optical microscopy and high-speed video. Functionalization of the glass pedestal surface enabled the selective adsorption of specific peptides and proteins from synthetic and natural biomolecule mixtures, such as venom. We further demonstrate how the nVWP dispensing platform can be used for a variety of assays, including sensitive detection of proteins and peptides by fluorescence

  1. Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Ravi, V.; Wyithe, J. S. B.; Shannon, R. M.; Hobbs, G.

    2015-03-01

    Large-area sky surveys show that massive galaxies undergo at least one major merger in a Hubble time. Ongoing pulsar timing array (PTA) experiments are aimed at measuring the gravitational-wave (GW) emission from binary supermassive black holes (SMBHs) at the centres of galaxy merger remnants. In this paper, using the latest observational estimates for a range of galaxy properties and scaling relations, we predict the amplitude of the GW background generated by the binary SMBH population. We also predict the numbers of individual binary SMBH GW sources. We predict the characteristic strain amplitude of the GW background to lie in the range 5.1 × 10-16 < Ayr < 2.4 × 10-15 at a frequency of (1 yr)-1, with 95 per cent confidence. Higher values within this range, which correspond to the more commonly preferred choice of galaxy merger time-scale, will fall within the expected sensitivity ranges of existing PTA projects in the next few years. In contrast, we find that a PTA consisting of at least 100 pulsars observed with next-generation radio telescopes will be required to detect continuous-wave GWs from binary SMBHs. We further suggest that GW memory bursts from coalescing SMBH pairs are not viable sources for PTAs. Both the GW background and individual GW source counts are dominated by binaries formed in mergers between early-type galaxies of masses ≳5 × 1010 M⊙ at redshifts ≲1.5. Uncertainties in the galaxy merger time-scale and the SMBH mass-galaxy bulge mass relation dominate the uncertainty in our predictions.

  2. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure.

    PubMed

    Zhang, C; Jiang, S Z; Huo, Y Y; Liu, A H; Xu, S C; Liu, X Y; Sun, Z C; Xu, Y Y; Li, Z; Man, B Y

    2015-09-21

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/silicon pyramid arrays structure (GO/Ag/PSi). The SERS behaviors are discussed and compared by the detection of R6G. Based on the contrast experiments with PSi, GO/PSi, Ag/PSi and GO/AgA/PSi as SERS substrate, the perfect bio-compatibility, good homogeneity and chemical stability were confirmed. We also calculated the electric field distributions using Finite-difference time-domain (FDTD) analysis to further understand the GO/Ag/PSi structure as a perfect SERS platform. These experimental and theoretical results imply that the GO/Ag/PSi with regular pyramids array is expected to be an effective substrate for label-free sensitive SERS detections in areas of medicine, food safety and biotechnology. PMID:26406681

  3. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array

    NASA Astrophysics Data System (ADS)

    Hansen, Steven M.; Schmandt, Brandon

    2015-09-01

    In the summer of 2014 a dense array of 904 geophones was deployed at Mount St. Helens along the road and trail system within 15 km distance of the summit crater. The array recorded continuous data for approximately 2 weeks and presents an unprecedented seismic observation of an active volcano. A reverse-time imaging method is applied to short-term-average over long-term-average time series data to automatically detect and locate microseismicity. These efforts resulted in an order of magnitude increase in earthquake detections over the normal monitoring operations of the Pacific Northwest Seismic Network. Earthquake locations resolve a narrow, ≤1 km wide, vertical lineament of seismicity which extends from the surface to 4 km depth directly beneath the summit crater. This feature is interpreted as a fracture network that acts as a conduit connecting an underlying magma chamber to the surface.

  4. High-speed dual-wavelength demultiplexing and detection in a monolithic superlattice p-i-n waveguide detector array

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Andrekson, P. A.; Andersson, P.; Eng, S. T.; Salzman, J.

    1986-01-01

    High-speed (1 Gbit/x) dual-wavelength demultiplexing and detection in a monolithic linear array of superlattice p-i-n photodetectors in a waveguide configuration is demonstrated. A crosstalk attenuation of 28 dB was achieved between two digital transmission channels with an interchannel wavelength spacing of 30 nm. The device performance is a result of an enhanced electroabsorption due to the quantum-confined Stark effect in the superlattice p-i-n diodes.

  5. Three-in-one enzyme assay based on single molecule detection in femtoliter arrays.

    PubMed

    Liebherr, Raphaela B; Hutterer, Albert; Mickert, Matthias J; Vogl, Franziska C; Beutner, Andrea; Lechner, Alfred; Hummel, Helmut; Gorris, Hans H

    2015-09-01

    Large arrays of femtoliter-sized chambers are important tools for single molecule research as well as bioanalytical applications. We have optimized the design and fabrication of two array types consisting of 250 × 250 (62 500) femtoliter chambers either by surface etching of fused silica slides or by polydimethylsiloxane (PDMS) molding. Highly diluted solutions of β-galactosidase were enclosed in such arrays to monitor the fluorogenic reactions of hundreds of individual enzyme molecules in parallel by wide-field fluorescence microscopy. An efficient mechanical sealing procedure was developed to prevent diffusion of the fluorescent reaction product out of the chambers. Different approaches for minimizing non-specific surface adsorption were explored. The signal acquisition was optimized to grant both a large field of view and an efficient signal acquisition from each femtoliter chamber. The optimized femtoliter array has enabled a three-in-one enzyme assay system: First, the concentration of active enzyme can be determined in a digital way by counting fluorescent chambers in the array. Second, the activity of the enzyme bulk solution is given by averaging many individual substrate turnover rates without the need for knowing the exact enzyme concentration. Third-unlike conventional enzyme assays-the distribution of individual substrate turnover rates yields insight into the conformational heterogeneity in an enzyme population. The substrate turnover rates of single β-galactosidase molecules were found to be broadly distributed and independent of the type of femtoliter array. In general, both types of femtoliter arrays are highly sensitive platforms for enzyme analysis at the single molecule level and yield consistent results. Graphical Abstract Isolation and analysis of individual enzyme molecules in large arrays of femtoliter-sized chambers. PMID:26253226

  6. Fluorescent polymer sensor array for detection and discrimination of explosives in water.

    PubMed

    Woodka, Marc D; Schnee, Vincent P; Polcha, Michael P

    2010-12-01

    A fluorescent polymer sensor array (FPSA) was made from commercially available fluorescent polymers coated onto glass beads and was tested to assess the ability of the array to discriminate between different analytes in aqueous solution. The array was challenged with exposures to 17 different analytes, including the explosives trinitrotoluene (TNT), tetryl, and RDX, various explosive-related compounds (ERCs), and nonexplosive electron-withdrawing compounds (EWCs). The array exhibited a natural selectivity toward EWCs, while the non-electron-withdrawing explosive 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) produced no response. Response signatures were visualized by principal component analysis (PCA), and classified by linear discriminant analysis (LDA). RDX produced the same response signature as the sampled blanks and was classified accordingly. The array exhibited excellent discrimination toward all other compounds, with the exception of the isomers of nitrotoluene and aminodinitrotoluene. Of particular note was the ability of the array to discriminate between the three isomers of dinitrobenzene. The natural selectivity of the FPSA toward EWCs, plus the ability of the FPSA to discriminate between different EWCs, could be used to design a sensor with a low false alarm rate and an excellent ability to discriminate between explosives and explosive-related compounds. PMID:21069967

  7. SAW arrays using dendrimers and pattern recognition to detect volatile organics

    SciTech Connect

    Ricco, A.J.; Osbourn, G.C.; Bartholomew, J.W.; Martinez, R.F.; Crooks, R.M.; Garcia, M.E.; Peez, R.; Spindler, R.; Kaiser, M.E.

    1998-08-01

    chemical sensor arrays eliminate the need to develop a high-selectivity material for every analyte. The application of pattern recognition to the simultaneous responses of different microsensors enables the identification and quantification of multiple analytes with a small array. Maximum materials diversity is the surest means to create an effective array for many analytes, but using a single material family simplifies coating development. Here the authors report the successful combination of an array of six dendrimer films with mass-sensitive SAW (surface acoustic wave) sensors to correctly identify 18 organic analytes over wide concentration ranges, with 99.5% accuracy. The set of materials for the array is selected and the results evaluated using Sandia`s Visual-Empirical Region of Influence (VERI) pattern recognition (PR) technique. The authors evaluated eight dendrimer films and one self-assembled monolayer (SAM) as potential SAW array coatings. The 18 organic analytes they examined were: cyclohexane, n-hexane, i-octane, kerosene, benzene, toluene, chlorobenzene, carbon tetrachloride, trichloroethylene, methanol, n-propanol, pinacolyl alcohol, acetone, methyl isobutyl ketone, dimethylmethylphosphate, diisopropylmethylphosphonate, tributylphosphate, and water.

  8. Are We There Yet? Time to Detection of Nanohertz Gravitational Waves Based on Pulsar-timing Array Limits

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Vallisneri, M.; Ellis, J. A.; Mingarelli, C. M. F.; Lazio, T. J. W.; van Haasteren, R.

    2016-03-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (˜10-15 strain at f = 1 yr-1). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates, deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ˜80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.

  9. Carbon nanofiber multiplexed array and Wireless Instantaneous Neurotransmitter Concentration Sensor for simultaneous detection of dissolved oxygen and dopamine

    PubMed Central

    Marsh, Michael P.; Koehne, Jessica E.; Andrews, Russell J.; Meyyappan, M.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Purpose While the mechanism of Deep Brain Stimulation (DBS) remains poorly understood, previous studies have shown that it evokes release of neurochemicals and induces activation of functional magnetic resonance imaging (fMRI) blood oxygen level-dependent signal in distinct areas of the brain. Therefore, the main purpose of this paper is to demonstrate the capabilities of the Wireless Instantaneous Neurotransmitter Concentration Sensor system (WINCS) in conjunction with a carbon nanofiber (CNF) multiplexed array electrode as a powerful tool for elucidating the mechanism of DBS through the simultaneous detection of multiple bioactive-molecules. Methods Patterned CNF nanoelectrode arrays were prepared on a 4-inch silicon wafer where each device consists of 3 × 3 electrode pads, 200 μm square, that contain CNFs spaced at 1μm intervals. The multiplexed carbon nanofiber CNF electrodes were integrated with WINCS to detect mixtures of dopamine (DA) and oxygen (O2) using fast scan cyclic voltammetry (FSCV) in vitro. Results First, simultaneous detection of O2 at two spatially different locations, 200 um apart, was demonstrated. Second, simultaneous detection of both O2 and DA at two spatially different locations, using two different decoupled waveforms was demonstrated. Third, controlled studies demonstrated that the waveform must be interleaved to avoid electrode crosstalk artifacts in the acquired data. Conclusions Multiplexed CNF nanoelectrode arrays for electrochemical detection of neurotransmitters show promise for the detection of multiple analytes with the application of time independent decoupled waveforms. Electrochemistry on CNF electrodes may be helpful in elucidating the mechanism of DBS, and may also provide the precision and sensitivity required for future applications in feedback modulated DBS neural control systems. PMID:24688800

  10. Real-time photoacoustic tomograpghy using linear array probe and detection of line structure using Hough transform.

    PubMed

    Shin, Seung-Won; Park, Jaebyung; Shin, Dong Ho; Song, Chul-Gyu; Kim, Kyeong-Seop

    2015-01-01

    A real-time photoacoustic tomography (PAT) system is developed using a linear array probe and phantom images are acquired with a pattern of line structure. Moreover, it is attempted to detect line structures from the acquired images by Hough transform. This effort leads to the measurement of a process of magenta passing through a tube and acquisition of images at a speed of about 2 frame/sec. Besides, it is confirmed that the Hough transform applied on the acquired PAT images has the detection rate of about 50% for delineating a line structure. PMID:26405912

  11. Portable e-Tongue based on Multi-channel LAPS Array with PVC Membrane for Rapid Environment Detection

    NASA Astrophysics Data System (ADS)

    Ha, D.; Yu, H.; Hu, N.; Wu, C. X.; Zhou, J.; Kirsanov, Dmitry; Legin, Andrey; Wang, P.

    2011-09-01

    A new kind of portable e-Tongue based on multi-channel LAPS array with PVC membrane has been designed for the rapid detection of environment situation, especially the seawater. It has the great advantages of depositing membranes which are offered by Chemistry Department, Saint-Petersburg State University on the sensors artificially with convenience and efficiency. To detect various heavy metal ions (Pb2+, Cd2+, Zn2+) simultaneously, respective Polyvinyl Chloride (PVC) membrane could be prepared on the surface of the silicon-based sensor in different channel.

  12. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes.

    PubMed

    Wang, Chao; Ye, Min; Cheng, Liang; Li, Rui; Zhu, Wenwen; Shi, Zhen; Fan, Chunhai; He, Jinkang; Liu, Jian; Liu, Zhuang

    2015-06-01

    The development of sensitive and convenient methods for detection, enrichment, and analysis of circulating tumor cells (CTCs), which serve as an importance diagnostic indicator for metastatic progression of cancer, has received tremendous attention in recent years. In this work, a new approach characteristic of simultaneous CTC capture and detection is developed by integrating a microfluidic silicon nanowire (SiNW) array with multifunctional magnetic upconversion nanoparticles (MUNPs). The MUNPs were conjugated with anti-EpCAM antibody, thus capable to specifically recognize tumor cells in the blood samples and pull them down under an external magnetic field. The capture efficiency of CTCs was further improved by the integration with a microfluidic SiNW array. Due to the autofluorescence free nature in upconversion luminescence (UCL) imaging, our approach allows for highly sensitive detection of small numbers of tumor cells, which afterward could be collected for further analysis and re-culturing. We have further demonstrated that this approach can be applied to detect CTCs in clinical blood samples from lung cancer patients, and obtained consistent results by analyzing the UCL signals and the clinical outcomes of lung cancer metastasis. Therefore our approach represents a promising platform in CTC capture and detection with potential clinical utilization in cancer diagnosis and prognosis. PMID:25907039

  13. Sensitive high-performance liquid chromatographic method for profiling phytoestrogens using coulometric electrode array detection: application to plasma analysis.

    PubMed

    Nurmi, T; Adlercreutz, H

    1999-10-01

    An HPLC method for profiling 13 phytoestrogens and their metabolites using coulometric electrode array detection was developed. Sensitivity of the method was slightly less than that of our GC-MS method, but significantly higher compared to the HPLC methods using diode-array or UV detection. Detection limits varied from 3.4 (secoisolariciresinol) to 40.3 (genistin) pg on column. Signal linearities ranged from the detection limits to 61 ng on column. Resolution values for the peak pairs varied from 1.1 (O-desmethylangolensin-anhydrosecoisolariciresinol) to 16 (daidzin-genistin). Intra- and interassay retention time variations were negligible and detector response variation was eliminated by frequent calibration. Chromatographic method was applied to plasma analyses and 6 of the 13 compounds were detected. Method accuracy for those six analytes varied from 69% (enterodiol) to 118% (genistein). Intraassay precision CVs ranged from 1.5% (enterolactone, 12.4 nmol/liter) to 14% (genistein, 245 nmol/liter) and interassay precision CVs ranged from 9.9% (daidzein, 67.4 nmol/liter) to 44% (enterodiol, 1.20 nmol/liter). PMID:10527503

  14. Ultrahigh Detective Heterogeneous Photosensor Arrays with In-Pixel Signal Boosting Capability for Large-Area and Skin-Compatible Electronics.

    PubMed

    Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu

    2016-04-01

    An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. PMID:26928606

  15. The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Sector

    NASA Astrophysics Data System (ADS)

    Grebmeier, J. M.; Moore, S. E.; Cooper, L. W.; Frey, K. E.; Pickart, R. S.

    2011-12-01

    latitudinal gradient. Hydrographic transects occupied from spring to fall in 2010 and 2011 at two pilot sites in the SE Chukchi Sea and Barrow Canyon provide repeat collections of water parameters over the seasons that are unavailable from single cruises. This sampling indicates freshening and warming as Pacific seawater transits northward over the spring to fall seasons, with impacts on both plankton and benthic prey bases for larger marine mammals and seabirds. The intent of the DBO is to serve as a change detection array for the identification and consistent monitoring of biophysical responses. This network of spatially explicit DBOs is being organized through the Pacific Arctic Group (PAG), a collaborative network endorsed by the International Arctic Science Committee. Our presentation will provide new information to evaluate the status and developing trends of the marine biological system as it responds to the rapid environmental change.

  16. Microfluidic Biosensor Array with Integrated Poly(2,7-Carbazole)/Fullerene-Based Photodiodes for Rapid Multiplexed Detection of Pathogens

    PubMed Central

    Pires, Nuno Miguel Matos; Dong, Tao

    2013-01-01

    A multiplexed microfluidic biosensor made of poly(methylmethacrylate) (PMMA) was integrated into an array of organic blend heterojunction photodiodes (OPDs) for chemiluminescent detection of pathogens. Waterborne Escherichia coli O157:H7, Campylobacter jejuni and adenovirus were targeted in the PMMA chip, and detection of captured pathogens was conducted by poly(2,7-carbazole)/fullerene OPDs which showed a responsivity over 0.20 A/W at 425 nm. The limits of chemiluminescent detection were 5 × 105 cells/mL for E. coli, 1 × 105 cells/mL for C. jejuni, and 1 × 10−8 mg/mL for adenovirus. Parallel analysis for all three analytes in less than 35 min was demonstrated. Further recovery tests illustrated the potential of the integrated biosensor for detecting bacteria in real water samples. PMID:24287522

  17. Automated Flaw Detection Scheme For Cast Austenitic Stainless Steel Weld Specimens Using Hilbert Huang Transform Of Ultrasonic Phased Array Data

    SciTech Connect

    Khan, T.; Majumdar, Shantanu; Udpa, L.; Ramuhalli, Pradeep; Crawford, Susan L.; Diaz, Aaron A.; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize the flaws using NDE ultrasonic data. Data was collected using cast austenitic stainless steel (CASS) weld specimens on-loan from the U.S. nuclear power industry’s Pressurized Water Reactor Owners Group (PWROG) specimen set. Each specimen consists of a centrifugally cast stainless steel (CCSS) pipe section welded to a statically cast (SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection signals in the weld and heat affected zone of the base materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.

  18. Quantum Dot and Polymer Composite Cross-Reactive Array for Chemical Vapor Detection.

    PubMed

    Bright, Collin J; Nallon, Eric C; Polcha, Michael P; Schnee, Vincent P

    2015-12-15

    A cross-reactive chemical sensing array was made from CdSe Quantum Dots (QDs) and five different organic polymers by inkjet printing to create segmented fluorescent composite regions on quartz substrates. The sensor array was challenged with exposures from two sets of analytes, including one set of 14 different functionalized benzenes and one set of 14 compounds related to security concerns, including the explosives trinitrotoluene (TNT) and ammonium nitrate. The array was broadly responsive to analytes with different chemical functionalities due to the multiple sensing mechanisms that altered the QDs' fluorescence. The sensor array displayed excellent discrimination between members within both sets. Classification accuracy of more than 93% was achieved, including the complete discrimination of very similar dinitrobenzene isomers and three halogenated, substituted benzene compounds. The simple fabrication, broad responsivity, and high discrimination capacity of this type of cross-reactive array are ideal qualities for the development of sensors with excellent sensitivity to chemical and explosive threats while maintaining low false alarm rates. PMID:26548712

  19. Noncoder: a web interface for exon array-based detection of long non-coding RNAs

    PubMed Central

    Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka

    2013-01-01

    Due to recent technical developments, a high number of long non-coding RNAs (lncRNAs) have been discovered in mammals. Although it has been shown that lncRNAs are regulated differently among tissues and disease statuses, functions of these transcripts are still unknown in most cases. GeneChip Exon 1.0 ST Arrays (exon arrays) from Affymetrix, Inc. have been used widely to profile genome-wide expression changes and alternative splicing of protein-coding genes. Here, we demonstrate that re-annotation of exon array probes can be used to profile expressions of tens of thousands of lncRNAs. With this annotation, a detailed inspection of lncRNAs and their isoforms is possible. To allow for a general usage to the research community, we developed a user-friendly web interface called ‘noncoder’. By uploading CEL files from exon arrays and with a few mouse clicks and parameter settings, exon array data will be normalized and analysed to identify differentially expressed lncRNAs. Noncoder provides the detailed annotation information of lncRNAs and is equipped with unique features to allow for an efficient search for interesting lncRNAs to be studied further. The web interface is available at http://noncoder.mpi-bn.mpg.de. PMID:23012263

  20. Adhesive defect detection in composite adhesive joints using phased array transducers

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  1. A 0.18-µm CMOS Array Sensor for Integrated Time-Resolved Fluorescence Detection

    PubMed Central

    Huang, Ta-chien D.; Sorgenfrei, Sebastian; Gong, Ping; Levicky, Rastislav; Shepard, Kenneth L.

    2010-01-01

    This paper describes the design of an active, integrated CMOS sensor array for fluorescence applications which enables time-gated, time-resolved fluorescence spectroscopy. The 64-by-64 array is sensitive to photon densities as low as 8.8 × 106 photons/cm2 with 64-point averaging and, through a differential pixel design, has a measured impulse response of better than 800 ps. Applications include both active microarrays and high-frame-rate imagers for fluorescence lifetime imaging microscopy. PMID:20436922

  2. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    PubMed

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay. PMID:25970032

  3. Detecting relic gravitational waves by pulsar timing arrays: Effects of cosmic phase transitions and relativistic free-streaming gases

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jin; Zhao, Wen; Zhang, Yang; Zhu, Zong-Hong

    2016-01-01

    Relic gravitational waves (RGWs) generated in the early universe form a stochastic GW background, which can be directly probed by measuring the timing residuals of millisecond pulsars. In this paper, we investigate the constraints on the RGWs and on the inflationary parameters by the observations of current and potential future pulsar timing arrays. In particular, we focus on effects of various cosmic phase transitions (e.g., e+e- annihilation, QCD transition, and supersymmetry breaking) and relativistic free-streaming gases (neutrinos and dark fluids) in the general scenario of the early universe, which have been neglected in the previous works. We find that the phase transitions can significantly damp the RGWs in the sensitive frequency range of pulsar timing arrays, and the upper limits of the tensor-to-scalar ratio r increase by a factor ˜2 for both current and future observations. However, the effects of free-steaming neutrinos and dark fluids are all too small to be detected. Meanwhile, we find that, if the effective equation of state w in the early universe is larger than 1 /3 , i.e., deviating from the standard hot big bang scenario, the detection of RGWs by pulsar timing arrays becomes much more promising.

  4. Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase-functionalized silica nanosphere tags.

    PubMed

    Lai, Guosong; Wu, Jie; Leng, Chuan; Ju, Huangxian; Yan, Feng

    2011-05-15

    An ultrasensitive multiplexed electrochemical immunoassay method was developed for the detection of tumor markers by combining a newly designed trace tag and a disposable immunosensor array. The array was prepared by immobilizing capture antibodies on gold nanoparticles which were assembled on carbon nanotubes-chitosan modified screen-printed carbon electrodes. The trace tag was prepared by loading signal antibodies and high-content glucose oxidase on amino-functionalized silica nanosphere. With a sandwich-type immunoassay format, ultrahigh sensitivity was achieved by the enzymatic signal amplification with ferrocenecarboxylic acid as electron transfer mediator and the accelerated electron transfer by carbon nanotubes. Using carcinoembryonic antigen and α-fetoprotein as model analytes, this method showed wide linear ranges with the detection limits down to 3.2 and 4.0 pg/mL, respectively. The proposed immunosensor array exhibited acceptable stability and reproducibility. The assay results of serum samples were in acceptable agreement with the reference values. This method excluded completely the effect of dissolved oxygen and showed potential application for multianalyte determination in clinical diagnostics. PMID:21411307

  5. Protocol for the use of a bead array for the multiple detection of genotype of Chlamydia trachomatis.

    PubMed

    Huang, Chung-Te; Li, Shu-Ying

    2012-01-01

    The identification of Chlamydia trachomatis genotypes is important for both molecular epidemiology and infection control such as contact tracing and identification of high-risk groups. Currently, at least 19 human serovars have been recognized by using polyclonal and monoclonal antibodies against the major outer membrane protein. In sexually transmitted diseases, multiple pathogens or genotype infections are not uncommon. Hence, detection of multiple gene targets in one reaction is becoming increasingly important. Here, we describe the multiplex detection of eight genotypes of C. trachomatis by a combination of a PCR amplification with a multiplex bead array detection. The bead array system comprises distinct bead sets, which are color coded by different fluorescent intensities and a dual-laser flow cytometer analyzer to identify the identity of the bead and the intensity of the reporter dye that binds to the target molecules. The DNA sequences of the variable segments (VS2 or VS1-VS2) in outer membrane protein (omp1) gene are PCR amplified and biotin labeled and used as a gene target for the genotyping of C. trachomatis. Genotype-specific probes coupled to beads are used for capturing the labeled target amplicons through specific hybridization. Thus, multiple genotypes are detected and differentiated simultaneously by yielding quantitative data. PMID:22782819

  6. Appraisal of an Array TEM Method in Detecting a Mined-Out Area Beneath a Conductive Layer

    NASA Astrophysics Data System (ADS)

    Li, Hai; Xue, Guo-qiang; Zhou, Nan-nan; Chen, Wei-ying

    2015-10-01

    The transient electromagnetic method has been extensively used for the detection of mined-out area in China for the past few years. In the cases that the mined-out area is overlain by a conductive layer, the detection of the target layer is difficult with a traditional loop source TEM method. In order to detect the target layer in this condition, this paper presents a newly developed array TEM method, which uses a grounded wire source. The underground current density distribution and the responses of the grounded wire source TEM configuration are modeled to demonstrate that the target layer is detectable in this condition. The 1D OCCAM inversion routine is applied to the synthetic single station data and common middle point gather. The result reveals that the electric source TEM method is capable of recovering the resistive target layer beneath the conductive overburden. By contrast, the conductive target layer cannot be recovered unless the distance between the target layer and the conductive overburden is large. Compared with inversion result of the single station data, the inversion of common middle point gather can better recover the resistivity of the target layer. Finally, a case study illustrates that the array TEM method is successfully applied in recovering a water-filled mined-out area beneath a conductive overburden.

  7. Establishment and application of a multiplex genetic mutation-detection method of lung cancer based on MassARRAY platform

    PubMed Central

    Tian, Hong-Xia; Zhang, Xu-Chao; Wang, Zhen; Chen, Jian-Guang; Chen, Shi-Liang; Guo, Wei-Bang; Wu, Yi-Long

    2016-01-01

    Objective: This study aims to establish a method for highly parallel multiplexed detection of genetic mutations in Chinese lung cancer samples through Agena iPLEX chemistry and matrix-assisted laser desorption ionization time-of-flight analysis on MassARRAY mass spectrometry platform. Methods: We reviewed the related literature and data on lung cancer treatments. We also identified 99 mutation hot spots in 13 target genes closely related to the pathogenesis, drug resistance, and metastasis of lung cancer. A total of 297 primers, composed of 99 paired forward and reverse amplification primers and 99 matched extension primers, were designed using Assay Design software. The detection method was established by analyzing eight cell lines and six lung cancer specimens. The proposed method was then validated through comparisons by using a LungCartaTM kit. The sensitivity and specificity of the proposed method were evaluated by directly sequencing EGFR and KRAS genes in 100 lung cancer cases. Results: The proposed method was able to detect multiplex genetic mutations in lung cancer cell lines. This finding was consistent with the observations on previously reported mutations. The proposed method can also detect such mutations in clinical lung cancer specimens. This result was consistent with the observations with LungCartaTM kit. However, an FGFR2 mutation was detected only through the proposed method. The measured sensitivity and specificity were 100% and 96.3%, respectively. Conclusions: The proposed MassARRAY technology-based multiplex method can detect genetic mutations in Chinese lung cancer patients. Therefore, the proposed method can be applied to detect mutations in other cancer tissues. PMID:27144063

  8. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints.

    PubMed

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group's properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  9. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    NASA Astrophysics Data System (ADS)

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-04-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.

  10. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  11. Gold nanoparticles-peptide based gas sensor arrays for the detection of food aromas.

    PubMed

    Compagnone, D; Fusella, G C; Del Carlo, M; Pittia, P; Martinelli, E; Tortora, L; Paolesse, R; Di Natale, C

    2013-04-15

    A gas sensor array based on peptide modified gold nanoparticles deposited onto 20MHz quartz crystal microbalances has been realized. Glutathione and its constituting aminoacids and dipeptides have been used as ligands. A great increase in sensitivity (2 orders of magnitude) was achieved using gold nanoparticles versus monolayer modified QCMs. The sensors have been characterised in terms of sensitivity for hexane, water, trimethylammine and ethanol. Highest sensitivity was found for water. The ability to discriminate typical food aromas as cis-3-hexenol, isopentylacetate, ethylacetate, and terpinen-4-ol dissolved in different solvents was studied using a gas sensor array constituted by gold nanoparticles modified with the glutathione peptides, thioglycolic acid and an heptapeptide. The array was found able to discriminate the food aromas, the response being dependent on the polarity of the solvent used. Tests on real olive oil samples gave a satisfactory separation among samples having defects versus non defected samples demonstrating that this approach has high potential for the development of gas sensor arrays to be used in real samples. PMID:23261699

  12. Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification o...

  13. Comparison of reconstruction algorithms for sparse-array detection photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Chaudhary, G.; Roumeliotis, M.; Carson, J. J. L.; Anastasio, M. A.

    2010-02-01

    A photoacoustic tomography (PAT) imaging system based on a sparse 2D array of detector elements and an iterative image reconstruction algorithm has been proposed, which opens the possibility for high frame-rate 3D PAT. The efficacy of this PAT implementation is highly influenced by the choice of the reconstruction algorithm. In recent years, a variety of new reconstruction algorithms have been proposed for medical image reconstruction that have been motivated by the emerging theory of compressed sensing. These algorithms have the potential to accurately reconstruct sparse objects from highly incomplete measurement data, and therefore may be highly suited for sparse array PAT. In this context, a sparse object is one that is described by a relatively small number of voxel elements, such as typically arises in blood vessel imaging. In this work, we investigate the use of a gradient projection-based iterative reconstruction algorithm for image reconstruction in sparse-array PAT. The algorithm seeks to minimize an 1-norm penalized least-squares cost function. By use of computer-simulation studies, we demonstrate that the gradient projection algorithm may further improve the efficacy of sparse-array PAT.

  14. Robust myoelectric signal detection based on stochastic resonance using multiple-surface-electrode array made of carbon nanotube composite paper

    NASA Astrophysics Data System (ADS)

    Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki

    2016-04-01

    We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.

  15. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    SciTech Connect

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Straub, Tim M.; Victry, Kristin D.; Hutchison, Janine R.; Valentine, Nancy B.; Bruckner-Lea, Cindy J.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samples tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.

  16. The use of waveform cross correlation at a three-component seismic array for detection, location, and magnitude estimation

    NASA Astrophysics Data System (ADS)

    Kitov, Ivan; Sanina, Irina

    2016-04-01

    Using the waveform cross-correlation technique, we have re-estimated relative locations and magnitudes of 200 events detected by an array consisting of seven 3-C sensors. All these events were quarry blasts conducted at several local/regional mines, which were detected and identified in the course of regional seismotectonic monitoring. From all detected signals we selected those having the highest quality and created a set of three-component templates for further cross correlation study. By changing the length of correlation window and the frequency band of the templates we selected optimal parameters for robust estimates of cross correlation coefficients and relative amplitudes/magnitudes of all signals. The relative locations and magnitude estimates obtained by cross correlation are compared to those in the catalog created in standard interactive analysis.

  17. Incorporation of Slow Off-Rate Modified Aptamers Reagents in Single Molecule Array Assays for Cytokine Detection with Ultrahigh Sensitivity.

    PubMed

    Wu, Danlu; Katilius, Evaldas; Olivas, Edgar; Dumont Milutinovic, Milena; Walt, David R

    2016-09-01

    Slow off-rate modified aptamers (SOMAmers) are attractive protein recognition reagents due to their high binding affinities, stable chemical structures, easy production, and established selection process. Here, biotinylated SOMAmer reagents were incorporated into single molecule array (Simoa)-based assays in place of traditional detection antibodies for six cytokine targets. Optimization and validation were conducted for TNF-α as a demonstration using a capture antibody/detection-SOMAmer detection scheme to highlight the performance of this approach. The optimized assay has a broad dynamic range (>4 log10 units) and an ultralow detection limit of 0.67 fM (0.012 pg/mL). These results show comparable sensitivity to our antibody pair-based Simoa assays, and tens to thousands-fold enhancement in sensitivity compared with conventional ELISAs. High recovery percentages were observed in a spike-recovery test using human sera, demonstrating the feasibility of this novel Simoa assay in detecting TNF-α in clinically relevant samples. Detection SOMAmers were also used to detect other cytokines, such as IFN-γ, IL-1β, IL-2, IL-6, and IL-10, in human samples. Although not yet demonstrated, in principle it should be possible to eventually replace both the capture and detector antibodies with corresponding SOMAmer pairs in sandwich immunoassays. The combination of the ultrasensitive Simoa platform with the higher reliability of SOMAmer binding reagents will greatly benefit both biomarker discovery and disease diagnostic fields. PMID:27529794

  18. A coherent method for the detection and parameter estimation of continuous gravitational wave signals using a pulsar timing array

    SciTech Connect

    Wang, Yan; Mohanty, Soumya D.; Jenet, Fredrick A.

    2014-11-01

    The use of a high precision pulsar timing array is a promising approach to detecting gravitational waves in the very low frequency regime (10{sup –6}-10{sup –9} Hz) that is complementary to ground-based efforts (e.g., LIGO, Virgo) at high frequencies (∼10-10{sup 3} Hz) and space-based ones (e.g., LISA) at low frequencies (10{sup –4}-10{sup –1} Hz). One of the target sources for pulsar timing arrays is individual supermassive black hole binaries which are expected to form in galactic mergers. In this paper, a likelihood-based method for detection and parameter estimation is presented for a monochromatic continuous gravitational wave signal emitted by such a source. The so-called pulsar terms in the signal that arise due to the breakdown of the long-wavelength approximation are explicitly taken into account in this method. In addition, the method accounts for equality and inequality constraints involved in the semi-analytical maximization of the likelihood over a subset of the parameters. The remaining parameters are maximized over numerically using Particle Swarm Optimization. Thus, the method presented here solves the monochromatic continuous wave detection and parameter estimation problem without invoking some of the approximations that have been used in earlier studies.

  19. Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection.

    PubMed

    Cui, Jiewu; Adeloju, Samuel B; Wu, Yucheng

    2014-01-27

    A highly sensitive amperometric nanobiosensor has been developed by integration of glucose oxidase (GO(x)) with a gold nanowires array (AuNWA) by cross-linking with a mixture of glutaraldehyde (GLA) and bovine serum albumin (BSA). An initial investigation of the morphology of the synthesized AuNWA by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) revealed that the nanowires array was highly ordered with rough surface, and the electrochemical features of the AuNWA with/without modification were also investigated. The integrated AuNWA-BSA-GLA-GO(x) nanobiosensor with Nafion membrane gave a very high sensitivity of 298.2 μA cm(-2) mM(-1) for amperometric detection of glucose, while also achieving a low detection limit of 0.1 μM, and a wide linear range of 5-6000 μM. Furthermore, the nanobiosensor exhibited excellent anti-interference ability towards uric acid (UA) and ascorbic acid (AA) with the aid of Nafion membrane, and the results obtained for the analysis of human blood serum indicated that the device is capable of glucose detection in real samples. PMID:24418144

  20. Photoelectrochemical properties and the detection mechanism of Bi2WO6 nanosheet modified TiO2 nanotube arrays.

    PubMed

    Pang, Yajun; Xu, Guangqing; Zhang, Xu; Lv, Jun; Shi, Kai; Zhai, Pengbo; Xue, Qianyun; Wang, Xuedong; Wu, Yucheng

    2015-10-28

    Bi2WO6 nanosheet modified TiO2 nanotube arrays were synthesized by an anodization method combined with sequential chemical bath deposition for enhancement of the photoelectrochemical detection performance. The structures, morphologies and elemental compositions of the nanotube arrays were characterized with X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectrometry. Bi2WO6 nanosheets were successfully deposited on the tube walls of TiO2 nanotubes. The photoelectrochemical property of Bi2WO6/TiO2 NTAs was determined with chronoamperometry and cyclic voltammetry using an electrochemical workstation equipped with a UV LED light (365 nm). The optimum detection sensitivity of glucose in water was determined to be 0.244 μA mM(-1) in the linear range from 0 to 2500 μM. Bi2WO6 modification on TiO2 NTAs simultaneously decreased the background photocurrent and increased the current response to organics, resulting in the enhancement of photoelectrochemical detection properties. Mechanisms of the Bi2WO6 modification are discussed by analyzing the photoelectrochemical processes, including optical absorption, charges transfer and surface electrochemical reactions. Direct oxidation by holes rather than indirect oxidation by ˙OH radicals is believed to be a key role in this enhancement. PMID:26400480

  1. VERY LARGE ARRAY DETECTION OF THE 36 GHz ZEEMAN EFFECT IN DR21W REVISITED

    SciTech Connect

    Momjian, Emmanuel; Sjouwerman, Lorant O.; Fish, Vincent L.

    2012-09-20

    We report on the observation of the 36 GHz methanol maser line in the star-forming region DR21W to accurately measure the Zeeman effect. The Zeeman signature reported by Fish et al. became suspicious after an instrumental effect was discovered in the early days of the commissioning of the Very Large Array Wide-band Digital Architecture correlator. We conclude that the previously reported magnetic field strength of 58 mG (1.7 Hz mG{sup -1}/z) is instrumental in nature and thus incorrect. With the improved performance of the array, we now deduce a 3{sigma} limit of -4.7 to +0.4 mG (1.7 Hz mG{sup -1}/z) for the line-of-sight component of the magnetic field strength in DR21W.

  2. Field evaluation of a multipoint fiber optic sensor array for methane detection (OMEGA)

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Jane; Pride, Russell; Tandy, Chris; Moodie, David G.; Stewart, George

    2000-08-01

    A multi-point fiber optic sensor array for methane detector (`OMEGA') has been developed and tested under semi- quantitative field conditions. The new system employed wavelength modulation spectroscopy using a DFB laser source scanned across the Q6 methane line at 1.665 micrometers . A branched fiber network connected the single source to up to 64 sensor heads. Controlled releases of natural gas were provided for test purposes within an array of four optical sensors and four pellistor reference sensors. An automated system delivered standard gases to each sensor, to enable routine calibration checks to be carried out. Agreement between the conventional and optical systems was excellent in the range 0 - 100% LEL (lower explosion limit). The optical system offers a simple, intrinsically safe design with a low cost of ownership per sensor head.

  3. Optical Fiber Infrasound Sensor Arrays: Signal Detection and Characterization Capabilities in Light Wind Environments

    NASA Astrophysics Data System (ADS)

    Walker, K.; Zumberge, M.; Berger, J.; Matoza, R.; Hedlin, M.; Shearer, P.

    2006-12-01

    Optical fiber infrasound sensors (OFIS) are long compliant tubes wrapped with two optical fibers that measure pressure variation with laser interferometry. Initial work suggested that this sensor has, in low-wind conditions, a lower noise floor above 1 Hz than a traditional microbarometer sensor with a pipe-array wind filter. More recent progress has been made in two other practical areas. First, we have increased reliability and the recorded signal fidelity. Noise caused by ambient temperature changes has been reduced by burial of the OFIS beneath a foot of coarse gravel and by employing a polarization diversity detector. We are currently experimenting with a thermally-controlled OFIS that would eliminate the need for burial of an OFIS. Second, we have been developing OFIS configurations, techniques, and software for signal phase velocity determination. Because the pressure variation is integrated along the length of the tube, the instrument response is a function of the orientation of the OFIS relative to that of the signal wavefront. We show with synthetic data and real data recorded at Pinion Flat Observatory in southern California how to exploit this spectral property to determine the phase velocity of infrasound signals. This type of analysis allows us to use an array that has a smaller surface area than typical microbarometer arrays with wind filters. For signals with very low signal to noise ratios, using circular OFIS in a traditional triangular array geometry works better. We also present preliminary evidence that the response of linear and circular OFIS to light wind is less pronounced than that of traditional sensors connected to a circular porous-hose wind filter.

  4. MMBGX: a method for estimating expression at the isoform level and detecting differential splicing using whole-transcript Affymetrix arrays

    PubMed Central

    Turro, Ernest; Lewin, Alex; Rose, Anna; Dallman, Margaret J.; Richardson, Sylvia

    2010-01-01

    Affymetrix has recently developed whole-transcript GeneChips—‘Gene’ and ‘Exon’ arrays—which interrogate exons along the length of each gene. Although each probe on these arrays is intended to hybridize perfectly to only one transcriptional target, many probes match multiple transcripts located in different parts of the genome or alternative isoforms of the same gene. Existing statistical methods for estimating expression do not take this into account and are thus prone to producing inflated estimates. We propose a method, Multi-Mapping Bayesian Gene eXpression (MMBGX), which disaggregates the signal at ‘multi-match’ probes. When applied to Gene arrays, MMBGX removes the upward bias of gene-level expression estimates. When applied to Exon arrays, it can further disaggregate the signal between alternative transcripts of the same gene, providing expression estimates of individual splice variants. We demonstrate the performance of MMBGX on simulated data and a tissue mixture data set. We then show that MMBGX can estimate the expression of alternative isoforms within one experimental condition, confirming our results by RT-PCR. Finally, we show that our method for detecting differential splicing has a lower error rate than standard exon-level approaches on a previously validated colon cancer data set. PMID:19854940

  5. Detection of the Odor Signature of Ovarian Cancer using DNA-Decorated Carbon Nanotube Field Effect Transistor Arrays

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher; Kybert, Nicholas; Yodh, Jeremy; Johnson, A. T. Charlie

    Carbon nanotubes are low-dimensional materials that exhibit remarkable chemical and bio-sensing properties and have excellent compatibility with electronic systems. Here, we present a study that uses an electronic olfaction system based on a large array of DNA-carbon nanotube field effect transistors vapor sensors to analyze the VOCs of blood plasma samples collected from patients with malignant ovarian cancer, patients with benign ovarian lesions, and age-matched healthy subjects. Initial investigations involved coating each CNT sensor with single-stranded DNA of a particular base sequence. 10 distinct DNA oligomers were used to functionalize the carbon nanotube field effect transistors, providing a 10-dimensional sensor array output response. Upon performing a statistical analysis of the 10-dimensional sensor array responses, we showed that blood samples from patients with malignant cancer can be reliably differentiated from those of healthy control subjects with a p-value of 3 x 10-5. The results provide preliminary evidence that the blood of ovarian cancer patients contains a discernable volatile chemical signature that can be detected using DNA-CNT nanoelectronic vapor sensors, a first step towards a minimally invasive electronic diagnostic technology for ovarian cancer.

  6. Detection of Chromosomal Structural Alterations in Single Cells by SNP Arrays: A Systematic Survey of Amplification Bias and Optimized Workflow

    PubMed Central

    Iwamoto, Kazuya; Bundo, Miki; Ueda, Junko; Nakano, Yoko; Ukai, Wataru; Hashimoto, Eri; Saito, Toshikazu; Kato, Tadafumi

    2007-01-01

    Background In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. Methodology/Principal Findings We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. Conclusions/Significance Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells. PMID:18074030

  7. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    NASA Astrophysics Data System (ADS)

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-01

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  8. A six-channel pediatric coil array for detection of children spinal pathologies by MRI at 1.5 Tesla

    SciTech Connect

    López Terrones, Marcos Alonso; Solís-Nájera, Sergio Enrique

    2014-11-07

    Nowadays, magnetic resonance (MR) in Mexico has become a standard technique for clinical imaging. Although most of the times the MR systems contain only coils oriented for adults. Radiologists use these coils for children studies due to the non-availability of pediatric coils. Image quality is decreased due to the low signal to noise ratio delivered to the system. The development of RF coils is always focused towards increasing SNR and optimizing the RF penetration into the sample. Moreover, spinal pathologies in children, which are an important topic in pediatric care, cover congenital and neuromuscular disorders that occur in childhood. In this work, the design of a dedicated six-channel coil for detection of spinal pathologies at 1.5 Tesla is addressed. Numerical electromagnetic simulations were performed in order to evaluate their magnetic field performance at (63.6 MHz) 1.5 Tesla. The magnetic field uniformity as well as the RF penetration depth of the coil configurations was evaluated in order to find the best/optimized coil array configuration. The coil is comprised of three rows, one with 4 coil elements and two with only one coil element. Phantom and in vivo images were acquired with the six-channel pediatric coil array. The phantom images agree with the simulated data. In vivo images acquired with the 6-channel pediatric coil array have shown very good penetration depth and homogeneity, which allow better image quality throughout the whole FOV. In addition, the parallel imaging capabilities of the array allow the acceleration of the experiments avoiding possible motion artifacts.

  9. Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors

    PubMed Central

    Li, Guo; Xia, Jun; Wang, Kun; Maslov, Konstantin; Anastasio, Mark A.

    2015-01-01

    Background Linear-array-based photoacoustic computed tomography (PACT) suffers from a limited view. Circular scanning does increase the detection view angle but is time-consuming. Therefore, it is desirable to increase the detection view angle of linear-array-based PACT without sacrificing imaging speed. Methods Two planar acoustic reflectors placed at 120 degrees to each other were added to a linear-array-based PACT system. Each reflector redirects originally undetectable photoacoustic waves back to the transducer array elements, and together they triple the original detection view angle of the PACT system. Results Adding two reflectors increased the detection view angle from 80 to 240 degrees. As a comparison, a single-reflector PACT has a detection view angle of only 160 degrees. A leaf skeleton phantom with a rich vascular network was imaged with the double-reflector PACT, and most of its features were recovered. Conclusions The two acoustic reflectors triple the detection view angle of a linear-array-based PACT without compromising the original imaging speed. This nearly full-view detection capability produces higher-quality images than single-reflector PACT or conventional PACT without reflectors. PMID:25694954

  10. Determination of pyrethrin and pyrethroid pesticides in urine and water matrixes by liquid chromatography with diode array detection.

    PubMed

    Loper, Bobby L; Anderson, Kim A

    2003-01-01

    The following pyrethrin and pyrethroid pesticides were determined in urine and water matrixes by liquid chromatography with diode array detection (LC-DAD): pyrethrin I, pyrethrin II, tetramethrin, baythroid, bifenthrin, fenvalerate, phenothrin, allethrin, resmethrin, cis-permethrin, and trans-permethrin. In addition, 3-phenoxybenzyl alcohol, a metabolite of various pyrethroids, was also successfully determined by the analytical method. The matrix extraction was simple, inexpensive, and fast, using only sodium chloride and acetonitrile. The acetonitrile extract was filtered and analyzed by LC-DAD. The method detection limits for the pyrethrin pesticides in 5 mL urine were determined to range from 0.002 to 0.04 microg/mL, depending on the individual pyrethrin. Recoveries from spiked tap water ranged from 77 to 96%; recoveries from urine ranged from 80 to 117%. This method is especially well-suited to clinical investigations, in which rapid analysis of forensic samples is often required. PMID:14979708

  11. MEF2C-Related 5q14.3 Microdeletion Syndrome Detected by Array CGH: A Case Report

    PubMed Central

    Shim, Jae Sun; Min, Kyunghoon; Lee, Seung Hoon; Park, Ji Eun; Park, Sang Hee; Kim, MinYoung

    2015-01-01

    Genetic screening is being widely applied to trace the origin of global developmental delay or intellectual disability. The 5q14.3 microdeletion has recently been uncovered as a clinical syndrome presenting with severe intellectual disability, limited walking ability, febrile convulsions, absence of speech, and minor brain malformations. MEF2C was suggested as a gene mainly responsible for the 5q14.3 microdeletion syndrome. We present the case of a 6-year-old girl, who is the first patient in Korea with de novo interstitial microdeletions involving 5q14.3, showing the typical clinical features of 5q14.3 microdeletion syndrome with a smaller size of chromosomal involvement compared to the previous reports. The microdeletion was not detected by subtelomeric multiplex ligation-dependent probe amplification, but by array comparative genomic hybridization, which is advisable for the detection of a small-sized genetic abnormality. PMID:26161356

  12. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS).

    PubMed

    Li, Xiuru; Martin, Sharon J H; Chinoy, Zoeisha S; Liu, Lin; Rittgers, Brandon; Dluhy, Richard A; Boons, Geert-Jan

    2016-08-01

    A glyco-array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain-promoted azide-alkyne cycloaddition. Glycan-protein binding events can then be detected in a label-free manner employing surface-enhanced Raman spectroscopy (SERS). As proof of concept, we have analyzed the binding of Gal1, Gal3, and influenza hemagglutinins (HAs) to various glycans and demonstrated that binding partners can be identified with high confidence. The attraction of SERS for optical sensing is that it can provide unique spectral signatures for glycan-protein complexes, confirm identity through statistical validation, and minimizes false positive results common to indirect methods. Furthermore, SERS is very sensitive and has multiplexing capabilities thereby allowing the simultaneous detection of multiple analytes. PMID:27304194

  13. Prototype high detective quantum efficiency imaging panel based on a fiber-optic scintillation glass array (FOSGA) for megavoltage imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv; Baciak, Jim; Gopal, Arun

    2011-09-01

    Megavoltage imaging has applications in nondestructive imaging for homeland security, radiotherapy, and industrial manufacturing. Current commercial systems are limited by low image quality as measured by detective quantum efficiency (DQE). These systems yield measured DQE=0.01-0.02, limiting efficacy for detection based on automated signal processing. Past efforts to improve DQE have included novel scintillators and manufacturing of large crystal structures. An alternative novel design for a 2D x-ray imager, based on a modification of existing amorphous silicon (a:Si) or flat-panel imagers, is presented. The panel utilizes a fiber-optic scintillation glass array (FOSGA) consisting of scintillation fibers bundled within a pixilated thick sintered tungsten housing. The tungsten housing is constructed using a lithographic manufacturing technique for high fabrication accuracy. The Tb-doped fibers emit light in the 555-565nm range (matched to the sensitive region of current a:Si photodiodes), with a decay time of 2ms (100-to-40%). Monte Carlo simulations, linear cascaded systems analyses, and film studies have been carried out to validate and optimize image quality for radiation beams in the 1-6MV range. An 8cmx8cm prototype array was fabricated using Tb-doped fibers (9mm length, 0.9mm diameter) loaded into a tungsten matrix (1.1mm pixel pitch, 0.1mm septa), yielding measured DQE=0.05 (vs theoretical DQE=0.07) for 6MV imaging , an order of magnitude improvement in image quality over current commercial imagers. Design parameters of a large field-of-view FOSGA imager for cargo container security imaging are presented: 5cm thick FOSGA array, 0.4-1mm pixel pitch, 50-70% fill factor, DQE>0.2 for 1-6MV range.

  14. Development of uncooled antenna-coupled microbolometer arrays for explosive detection and identification

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Arnaud, A.; Castelein, P.; Goudon, V.; Imperinetti, P.; Lalanne Dera, J.; Meilhan, J.; Ouvier Buffet, J. L.; Pocas, S.; Maillou, T.; Hairault, L.; Gellie, P.; Barbieri, S.; Sirtori, C.

    2010-10-01

    Uncooled antenna-coupled microbolometer focal plane arrays have been specifically tailored for optimum performance in the 1-5 Terahertz range. A prototyping batch of 160 × 120 pixel chips has been designed and then processed above 8" silicon substrates. An actively illuminated system has been experimentally tested where Quantum Cascade Lasers (QCLs) are associated with the room-temperature operating 2D sensor. Whereas explosives samples were introduced in the THz beam optical path, the profile of the modified beam has been sensed by a unique pixel translated via an X-Y stage. These represent the first demonstration essays of explosive identification using our system.

  15. DNA sequencing by capillary electrophoresis: use of a two-laser-two-window intensified diode array detection system.

    PubMed

    Carson, S; Cohen, A S; Belenkii, A; Ruiz-Martinez, M C; Berka, J; Karger, B L

    1993-11-15

    This paper presents the principles of an instrument designed for DNA sequencing using the standard four-dye-labeled primer approach. The method is based on capillary electrophoresis with laser-induced fluorescence and an intensified diode array detector. An important goal of the instrument design has been a detection system that possesses high sensitivity and high spectral resolution. Based on an analysis of the spectral characteristics of the four standard dye-labeled primers, FAM, JOE, ROX, and TAMRA, the strategy has been to use a two-laser-two-window approach, in which a 488-nm argon ion laser illuminates one window, followed by a 543-nm helium-neon laser illuminating the second window. The two-window approach has no moving parts and permits continuous illumination. Spectral resolution is provided by a grating spectrograph and a cooled intensified diode array. The estimated limit of detection for the standard four dye-labeled primers was found to be in the sample concentration range of 1 x 10(-12) M. To achieve these low levels, complete free-radical polymerization of polyacrylamide has been found to be necessary in order to reduce background noise. In addition, reduction in background noise was accomplished by continual purging of the anodic reservoir in order to prevent electrolysis products from entering the capillary. Separation of DNA sequencing reaction products is demonstrated on a 9% T linear polyacrylamide column. PMID:8291673

  16. DNA sequencing by capillary electrophoresis. Use of a two-laser-two-window intensified diode array detection system

    SciTech Connect

    Carson, S.; Cohen, A.S.; Belenkii, A.; Ruiz-Martinez, M.C.; Berka, J.; Karger, B.L. )

    1993-11-15

    This paper presents the principles of an instrument designed for DNA sequencing using the standard four-dye-labeled primer approach. The method is based on capillary electrophoresis with laser-induced fluorescence and an intensified diode array detector. An important goal of the instrument design has been a detection system that possesses high sensitivity and high spectral resolution. Based on an analysis of the spectral characteristics of the four standard dye-labeled primers, FAM, JOE, ROX, and TAMRA, the strategy has been to use a two-laser-two-window approach, in which a 488-nm argon ion laser illuminates one window, followed by a 543-nm helium-neon laser illuminating the second window. The two-window approach has no moving parts and permits continuous illumination. Spectral resolution is provided by a grating spectrograph and a cooled intensified diode array. The estimated limit of detection for the standard four dye-labeled primers was found to be in the sample concentration range of 1 X 10[sup [minus]12] M. To achieve these low levels, complete free-radical polymerization of polyacrylamide has been found to be necessary in order to reduce background noise. In addition, reduction in background noise was accomplished by continual purging of the anodic reservoir in order to prevent electrolysis products from entering the capillary. Separation of DNA sequencing reaction products is demonstrated on a 9% T linear polyacrylamide column. 31 refs., 8 figs., 1 tab.

  17. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions.

    PubMed

    Smith, David G; Sajid, Naveed; Rehn, Simone; Chandramohan, Ramya; Carney, Isaac J; Khan, Misbahul A; New, Elizabeth J

    2016-08-01

    Detection of individual metal ions is of importance across a range of fields of chemistry including environmental monitoring, and health and disease. Fluorescence is a highly sensitive technique and small fluorescent molecules are widely used for the detection and quantification of metal ions in various applications. Achieving specificity for a single metal from a single sensor is always a challenge. An alternative to selective sensing is the use of a number of non-specific sensors, in an array, which together respond in a unique pattern to each analyte. Here we show that screening a library of compounds can give a small sensor set that can be used to identify a range of metal ions following PCA and LDA. We explore a method for screening the initial compounds to identify the best performing sensors. We then present our method for reducing the size of the sensor array, resulting in a four-membered system, which is capable of identifying nine distinct metal ion species in lake water. PMID:27291513

  18. First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array

    SciTech Connect

    Villadsen, Jackie; Hallinan, Gregg; Bourke, Stephen; Güdel, Manuel; Rupen, Michael

    2014-06-20

    We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in Ca II H and K lines. We observed these stars with the Karl G. Jansky Very Large Array with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 6.5, 5.2, and 4.5, respectively. 15.0 GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.6 for η Cas A, at the 95% confidence level. The measured 34.5 GHz flux densities correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. These and similar quality data on other nearby solar-type stars, when combined with Atacama Large Millimeter/Submillimeter Array observations, will enable the construction of temperature profiles of their chromospheres and lower transition regions.

  19. Sensitive and substrate-specific detection of metabolically active microorganisms in natural microbial consortia using community isotope arrays.

    PubMed

    Tourlousse, Dieter M; Kurisu, Futoshi; Tobino, Tomohiro; Furumai, Hiroaki

    2013-05-01

    The goal of this study was to develop and validate a novel fosmid-clone-based metagenome isotope array approach - termed the community isotope array (CIArray) - for sensitive detection and identification of microorganisms assimilating a radiolabeled substrate within complex microbial communities. More specifically, a sample-specific CIArray was used to identify anoxic phenol-degrading microorganisms in activated sludge treating synthetic coke-oven wastewater in a single-sludge predenitrification-nitrification process. Hybridization of the CIArray with DNA from the (14) C-phenol-amended sample indicated that bacteria assimilating (14) C-atoms, presumably directly from phenol, under nitrate-reducing conditions were abundant in the reactor, and taxonomic assignment of the fosmid clone end sequences suggested that they belonged to the Gammaproteobacteria. The specificity of the CIArray was validated by quantification of fosmid-clone-specific DNA in density-resolved DNA fractions from samples incubated with (13) C-phenol, which verified that all CIArray-positive probes stemmed from microorganisms that assimilated isotopically labeled carbon. This also demonstrated that the CIArray was more sensitive than DNA-SIP, as the former enabled positive detection at a phenol concentration that failed to yield a 'heavy' DNA fraction. Finally, two operational taxonomic units distantly related to marine Gammaproteobacteria were identified to account for more than half of 16S rRNA gene clones in the 'heavy' DNA library, corroborating the CIArray-based identification. PMID:23441921

  20. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays.

    PubMed

    Chua, Jay Huiyi; Chee, Ru-Ern; Agarwal, Ajay; Wong, She Mein; Zhang, Guo-Jun

    2009-08-01

    Arrays of highly ordered silicon nanowire (SiNW) clusters are fabricated using complementary metal-oxide semiconductor (CMOS) field effect transistor-compatible technology, and the ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented. The successful detection of human cardiac troponin-T (cTnT) has been demonstrated in an assay buffer solution of concentration down to 1 fg/mL, as well as in an undiluted human serum environment of concentration as low as 30 fg/mL. The high specificity, selectivity, and swift response time of the SiNWs to the presence of ultralow concentrations of a target protein in a biological analyte solution, even in the presence of a high total protein concentration, paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis. PMID:20337397

  1. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    NASA Astrophysics Data System (ADS)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  2. Femtomolar Detection of Silver Nanoparticles by Flow-Enhanced Direct-Impact Voltammetry at a Microelectrode Array

    PubMed Central

    2016-01-01

    We report the femtomolar detection of silver (Ag) nanoparticles by direct-impact voltammetry. This is achieved through the use of a random array of microelectrodes (RAM) integrated into a purpose-built flow cell, allowing combined diffusion and convection to the electrode surface. A coupled RAM-flow cell system is implemented and is shown to give reproducible wall-jet type flow characteristics, using potassium ferrocyanide as a molecular redox species. The calibrated flow system is then used to detect and quantitatively size Ag nanoparticles at femtomolar concentrations. Under flow conditions, it is found the nanoparticle impact frequency increases linearly with the volumetric flow rate. The resulting limit of detection is more than 2 orders of magnitude smaller than the previous detection limit for direct-impact voltammetry (900 fM) [J. Ellison et al. Sens. Actuators, B2014, 200, 47], and is more than 30 times smaller than the previous detection limit for mediated-impact voltammetry (83 fM) [T. M. Alligrant et al. Langmuir2014, 30, 13462]. PMID:27494652

  3. Femtomolar Detection of Silver Nanoparticles by Flow-Enhanced Direct-Impact Voltammetry at a Microelectrode Array.

    PubMed

    Sokolov, Stanislav V; Bartlett, Thomas R; Fair, Peter; Fletcher, Stephen; Compton, Richard G

    2016-09-01

    We report the femtomolar detection of silver (Ag) nanoparticles by direct-impact voltammetry. This is achieved through the use of a random array of microelectrodes (RAM) integrated into a purpose-built flow cell, allowing combined diffusion and convection to the electrode surface. A coupled RAM-flow cell system is implemented and is shown to give reproducible wall-jet type flow characteristics, using potassium ferrocyanide as a molecular redox species. The calibrated flow system is then used to detect and quantitatively size Ag nanoparticles at femtomolar concentrations. Under flow conditions, it is found the nanoparticle impact frequency increases linearly with the volumetric flow rate. The resulting limit of detection is more than 2 orders of magnitude smaller than the previous detection limit for direct-impact voltammetry (900 fM) [J. Ellison et al. Sens. Actuators, B 2014, 200, 47], and is more than 30 times smaller than the previous detection limit for mediated-impact voltammetry (83 fM) [T. M. Alligrant et al. Langmuir 2014, 30, 13462]. PMID:27494652

  4. Detection of Mycoplasma pneumoniae in Simulated and True Clinical Throat Swab Specimens by Nanorod Array-Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Hennigan, Suzanne L.; Driskell, Jeremy D.; Dluhy, Richard A.; Zhao, Yiping; Tripp, Ralph A.; Waites, Ken B.; Krause, Duncan C.

    2010-01-01

    The prokaryote Mycoplasma pneumoniae is a major cause of respiratory disease in humans, accounting for 20% of all community-acquired pneumonia and the leading cause of pneumonia in older children and young adults. The limitations of existing options for mycoplasma diagnosis highlight a critical need for a new detection platform with high sensitivity, specificity, and expediency. Here we evaluated silver nanorod arrays (NA) as a biosensing platform for detection and differentiation of M. pneumoniae in culture and in spiked and true clinical throat swab samples by surface-enhanced Raman spectroscopy (SERS). Three M. pneumoniae strains were reproducibly differentiated by NA-SERS with 95%–100% specificity and 94–100% sensitivity, and with a lower detection limit exceeding standard PCR. Analysis of throat swab samples spiked with M. pneumoniae yielded detection in a complex, clinically relevant background with >90% accuracy and high sensitivity. In addition, NA-SERS correctly classified with >97% accuracy, ten true clinical throat swab samples previously established by real-time PCR and culture to be positive or negative for M. pneumoniae. Our findings suggest that the unique biochemical specificity of Raman spectroscopy, combined with reproducible spectral enhancement by silver NA, holds great promise as a superior platform for rapid and sensitive detection and identification of M. pneumoniae, with potential for point-of-care application. PMID:21049032

  5. Use of array CGH to detect exonic copy number variants throughout the genome in autism families detects a novel deletion in TMLHE.

    PubMed

    Celestino-Soper, Patricia B S; Shaw, Chad A; Sanders, Stephan J; Li, Jian; Murtha, Michael T; Ercan-Sencicek, A Gulhan; Davis, Lea; Thomson, Susanne; Gambin, Tomasz; Chinault, A Craig; Ou, Zhishuo; German, Jennifer R; Milosavljevic, Aleksandar; Sutcliffe, James S; Cook, Edwin H; Stankiewicz, Pawel; State, Matthew W; Beaudet, Arthur L

    2011-11-15

    Autism is a neurodevelopmental disorder with increasing evidence of heterogeneous genetic etiology including de novo and inherited copy number variants (CNVs). We performed array comparative genomic hybridization using a custom Agilent 1 M oligonucleotide array intended to cover 197 332 unique exons in RefSeq genes; 98% were covered by at least one probe and 95% were covered by three or more probes with the focus on detecting relatively small CNVs that would implicate a single protein-coding gene. The study group included 99 trios from the Simons Simplex Collection. The analysis identified and validated 55 potentially pathogenic CNVs, categorized as de novo autosomal heterozygous, inherited homozygous autosomal, complex autosomal and hemizygous deletions on the X chromosome of probands. Twenty percent (11 of 55) of these CNV calls were rare when compared with the Database of Genomic Variants. Thirty-six percent (20 of 55) of the CNVs were also detected in the same samples in an independent analysis using the 1 M Illumina single-nucleotide polymorphism array. Findings of note included a common and sometimes homozygous 61 bp exonic deletion in SLC38A10, three CNVs found in lymphoblast-derived DNA but not present in whole-blood derived DNA and, most importantly, in a male proband, an exonic deletion of the TMLHE (trimethyllysine hydroxylase epsilon) that encodes the first enzyme in the biosynthesis of carnitine. Data for CNVs present in lymphoblasts but absent in fresh blood DNA suggest that these represent clonal outgrowth of individual B cells with pre-existing somatic mutations rather than artifacts arising in cell culture. GEO accession number GSE23765 (http://www.ncbi.nlm.nih.gov/geo/, date last accessed on 30 August 2011). Genboree accession: http://genboree.org/java-bin/gbrowser.jsp?refSeqId=1868&entryPointId=chr17&from=53496072&to=53694382&isPublic=yes, date last accessed on 30 August 2011. PMID:21865298

  6. Human pegivirus detected in a patient with severe encephalitis using a metagenomic pan-virus array.

    PubMed

    Fridholm, Helena; Østergaard Sørensen, Line; Rosenstierne, Maiken W; Nielsen, Henrik; Sellebjerg, Finn; Bengård Andersen, Åse; Fomsgaard, Anders

    2016-04-01

    We have used a metagenomic microarray to detect genomic RNA from human pegivirus in serum and cerebrospinal fluid from a patient suffering from severe encephalitis. No other pathogen was detected. HPgV in cerebrospinal fluid during encephalitis has never been reported before and its prevalence in cerebrospinal fluid needs further investigation. PMID:26872326

  7. Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array

    NASA Astrophysics Data System (ADS)

    Ozeki, Masaru; Heki, Kosuke

    2010-09-01

    A dense array of global positioning system (GPS) receivers is a useful tool to study ionospheric disturbances. Here we report observations by a Japanese GPS array of ionospheric holes, i.e., localized electron depletion. They were made by neutral molecules in exhaust plumes (e.g., water) of ballistic missiles from North Korea, Taepodong-1 and -2, launched on 31 August, 1998, and 5 April, 2009, respectively. Negative anomaly of electron density emerged ˜6 min after the launches in the middle of the Japan Sea, and extended eastward along the missile tracks. By comparing the numerical simulation of electron depletion and the observed change in ionospheric total electron content, we suggest that the exhaust plumes from the Taepodong-2 second stage effused up to ˜1.5 × 1026 water molecules per second. The ionospheric hole signature was used to constrain the Taepodong-2 trajectory together with other information, e.g., coordinates of the launch pad, time and coordinates of the first stage splashdown, and height and time of the second stage passage over Japan. The Taepodong-2 is considered to have reached the ionospheric F region in ˜6 min, flown above northeastern Japan ˜7 min after the launch, and crashed to the Pacific Ocean without attaining the first astronautical velocity. The ionospheric hole in the 1998 Taepodong-1 launch was much less in size, but it is difficult to compare directly the thrusts of the two missiles due to uncertainty of the Taepodong-1 trajectory.

  8. A Supramolecular Sensor Array Using Lanthanide-Doped Nanoparticles for Sensitive Detection of Glyphosate and Proteins.

    PubMed

    Wang, Meng; Ye, Hebo; You, Lei; Chen, Xueyuan

    2016-01-13

    Lanthanide (Ln(3+))-doped nanoparticles (NPs) are an intensive area of research in chemical and materials sciences. Herein a sensor array of Ln(3+)-doped NPs was developed for the first time toward sensitive molecular sensing based on a novel strategy of the hybridized time-resolved Förster resonance energy transfer (TR-FRET) with the indicator displacement assay (IDA) concept (TR-FRET-IDA). The sensor platform was generated in situ by binding a series of negatively charged indicators on the surface of ligand-free LiYF4:Ce/Tb NPs. The TR-FRET between NPs and dyes resulted in indicator emission and was employed as a means of removing undesired short-lived background luminescence from the indicator effectively. Displacement of indicators from the NP/indicator ensembles by glyphosate, a common herbicide, led to turn-off of the indicator emission. The sensor array was able to successfully discriminate 11 biologically relevant anions with high accuracy and sensitivity in pure aqueous buffer both qualitatively and quantitatively. Furthermore, the differentiation of six model proteins in the nM range was achieved with 100% accuracy for the classification, thereby demonstrating the versatility of this simple sensor platform. The study of the mechanism of binding and signal modulation further verified TR-FRET-IDA as a reliable sensing paradigm. PMID:26651854

  9. Detection of Multiple Autoantibodies in Patients with Ankylosing Spondylitis Using Nucleic Acid Programmable Protein Arrays*

    PubMed Central

    Wright, Cynthia; Sibani, Sahar; Trudgian, David; Fischer, Roman; Kessler, Benedikt; LaBaer, Joshua; Bowness, Paul

    2012-01-01

    Ankylosing spondylitis (AS) is a common, inflammatory rheumatic disease that primarily affects the axial skeleton and is associated with sacroiliitis, uveitis, and enthesitis. Unlike other autoimmune rheumatic diseases, such as rheumatoid arthritis or systemic lupus erythematosus, autoantibodies have not yet been reported to be a feature of AS. We therefore wished to determine whether plasma from patients with AS contained autoantibodies and, if so, characterize and quantify this response in comparison to patients with rheumatoid arthritis (RA) and healthy controls. Two high density nucleic acid programmable protein arrays expressing a total of 3498 proteins were screened with plasma from 25 patients with AS, 17 with RA, and 25 healthy controls. Autoantigens identified were subjected to Ingenuity Pathway Analysis to determine the patterns of signaling cascades or tissue origin. 44% of patients with ankylosing spondylitis demonstrated a broad autoantibody response, as compared with 33% of patients with RA and only 8% of healthy controls. Individuals with AS demonstrated autoantibody responses to shared autoantigens, and 60% of autoantigens identified in the AS cohort were restricted to that group. The autoantibody responses in the AS patients were targeted toward connective, skeletal, and muscular tissue, unlike those of RA patients or healthy controls. Thus, patients with AS show evidence of systemic humoral autoimmunity and multispecific autoantibody production. Nucleic acid programmable protein arrays constitute a powerful tool to study autoimmune diseases. PMID:22311593

  10. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Xu, Benlian; Xu, Huigang; Chen, Jingbo; Fu, Yadan

    2015-05-01

    When designing and evaluating the performance of laser radar system, maximum detection range achievable is an essential parameter. The purpose of this paper is to propose a theoretical model of maximum detection range for simulating the Geiger-mode laser radar's ranging performance. Based on the laser radar equation and the requirement of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons obey Poisson statistics, the maximum range theoretical model is established. By using the system design parameters, the influence of five main factors, namely emitted pulse energy, noise, echo position, atmospheric attenuation coefficient, and target reflectivity on the maximum detection range are investigated. The results show that stronger emitted pulse energy, lower noise level, more front echo position in the range gate, higher atmospheric attenuation coefficient, and higher target reflectivity can result in greater maximum detection range. It is also shown that it's important to select the minimum acceptable detection probability, which is equivalent to the system signal-to-noise ratio for producing greater maximum detection range and lower false-alarm probability.

  11. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  12. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.

    PubMed

    Xin, Yanmei; Li, Zhenzhen; Zhang, Zhonghai

    2015-11-01

    In this communication, a new photoelectrochemical aptasensor with Au nanoparticle functionalized self-doped TiO2 nanotube arrays (Au/SD-TiO2 NTs) as the core sensing unit and aptamers as the recognition unit was set up to accomplish the sensitive and selective detection of kanamycin with the lowest detection limit of 0.1 nM. PMID:26382019

  13. The Trace Analysis of DEET in Water using an On-line Preconcentration Column and Liquid Chromatography with UV Photodiode Array Detection

    EPA Science Inventory

    A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...

  14. Impedance biosensor for the rapid detection of Listeria spp. based on aptamer functionalized Pt-interdigitated microelectrodes array

    NASA Astrophysics Data System (ADS)

    Sidhu, R.; Rong, Y.; Vanegas, D. C.; Claussen, J.; McLamore, E. S.; Gomes, C.

    2016-05-01

    Listeria monocytogenes is one of the most common causes of food illness deaths worldwide, with multiple outbreaks in the United States alone. Current methods to detect foodborne pathogens are laborious and can take several hours to days to produce results. Thus, faster techniques are needed to detect bacteria within the same reliability level as traditional techniques. This study reports on a rapid, accurate, and sensitive aptamer biosensor device for Listeria spp. detection based on platinum interdigitated array microelectrodes (Pt-IDEs). Pt-IDEs with different geometric electrode gaps were fabricated by lithographic techniques and characterized by cyclic voltammetric (CV), electrochemical impedance spectroscopy (EIS), and potential amperometry (DCPA) measurements of reversible redox species. Based on these results, 50 μm Pt-IDE was chosen to further functionalize with a Listeria monocytogenes DNA aptamer selective to the cell surface protein internalin A, via metal-thiol self-assembly at the 5' end of the 47-mer's. EIS analysis was used to detect Listeria spp. without the need for label amplification and pre-concentration steps. The optimized aptamer concentration of 800 nM was selected to capture the bacteria through internalin A binding and the aptamer hairpin structure near the 3' end. The aptasensor was capable of detecting a wide range of bacteria concentration from 10 to 106 CFU/mL at lower detection limit of 5.39 +/- 0.21 CFU/mL with sensitivity of 268.1 +/- 25.40 (Ohms/log [CFU/mL]) in 17 min. The aptamer based biosensor offers a portable, rapid and sensitive alternative for food safety applications with one of the lowest detection limits reported to date.

  15. A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays

    NASA Astrophysics Data System (ADS)

    Li, Yansheng; Du, Hongwu; Wang, Wenqian; Zhang, Peixun; Xu, Liping; Wen, Yongqiang; Zhang, Xueji

    2016-05-01

    DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as inconstant programmable templates for assembly of biosensors. In this paper, a versatile, scalable and multiplex detection system is reported based on an extending fluorescent resonance energy transfer (FRET) cascades on a linear DNA assemblies. Seven combinations of three kinds of targets are successfully detected through the changes of fluorescence spectra because of the three-steps FRET or non-FRET continuity mechanisms. This nano-assembled FRET-based nanowire is extremely significant for the development of rapid, simple and sensitive detection system. The method used here could be extended to a general platform for multiplex detection through more-step FRET process.

  16. A Versatile Multiple Target Detection System Based on DNA Nano-assembled Linear FRET Arrays

    PubMed Central

    Li, Yansheng; Du, Hongwu; Wang, Wenqian; Zhang, Peixun; Xu, Liping; Wen, Yongqiang; Zhang, Xueji

    2016-01-01

    DNA molecules have been utilized both as powerful synthetic building blocks to create nanoscale architectures and as inconstant programmable templates for assembly of biosensors. In this paper, a versatile, scalable and multiplex detection system is reported based on an extending fluorescent resonance energy transfer (FRET) cascades on a linear DNA assemblies. Seven combinations of three kinds of targets are successfully detected through the changes of fluorescence spectra because of the three-steps FRET or non-FRET continuity mechanisms. This nano-assembled FRET-based nanowire is extremely significant for the development of rapid, simple and sensitive detection system. The method used here could be extended to a general platform for multiplex detection through more-step FRET process. PMID:27230484

  17. Single molecule detection using charge-coupled device array technology. Technical progress report

    SciTech Connect

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are