Science.gov

Sample records for optical alignment techniques

  1. Innovative optical alignment technique for CMP wafers

    NASA Astrophysics Data System (ADS)

    Sugaya, Ayako; Kanaya, Yuho; Nakajima, Shinichi; Nagayama, Tadashi; Shiraishi, Naomasa

    2002-07-01

    Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.

  2. Passive alignment and soldering technique for optical components

    NASA Astrophysics Data System (ADS)

    Faidel, Heinrich; Gronloh, Bastian; Winzen, Matthias; Liermann, Erik; Esser, Dominik; Morasch, Valentin; Luttmann, Jörg; Leers, Michael; Hoffmann, Dieter

    2012-03-01

    The passive-alignment-packaging technique presented in this work provides a method for mounting tolerance-insensitive optical components e.g. non-linear crystals by means of mechanical stops. The requested tolerances for the angle deviation are +/-100 μrad and for the position tolerance +/-100 μm. Only the angle tolerances were investigated, because they are more critical. The measurements were carried out with an autocollimator. Fused silica components were used for test series. A solder investigation was carried out. Different types of solder were tested. Due to good solderability on air and low induced stress in optical components, Sn based solders were indicated as the most suitable solders. In addition several concepts of reflow soldering configuration were realized. In the first iteration a system with only the alignment of the yaw angle was implemented. The deviation for all materials after the thermal and mechanical cycling was within the tolerances. The solderability of BBO and LBO crystals was investigated and concepts for mounting were developed.

  3. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  4. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hicks, Samantha L.; Kubalak, Dave; Mclean, Kyle F.; McMann, Joseph; Redman, Kevin; Wenzel, Greg; Young, Jerrod

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  5. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  6. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  7. Characterization and bioactivity study of nanohydroxyapatite on superhydrophilic vertically aligned carbon nanotubes using optical techniques

    NASA Astrophysics Data System (ADS)

    Ferreira Irineu, Joao Anderson; Marsi, Teresa C.; Santos, Tiago G.; Santo, Ana Maria E.; Rangel, Joao L.; Mengui, Ursula A.; Martin, Airton A.; Corat, Evaldo J.; Marciano, Fernanda R.; Lobo, Anderson O.

    2012-03-01

    Vertically-aligned multi-walled carbon nanotubes (VACNT) is of particular interest in regenerative medicine. Templateinduced hydroxyapatite (HA) has broad prospects in applied fields of bone regenerative medicine. Thus, it becomes very attractive a combination these two excellent materials to bone tissue engineering applications. In this study the HA/VACNT nanocomposites were used as scaffolds to Human osteoblast cells culture. Superhydrophilic VACNT films were obtained by CVD method and funcionalized by oxygen plasma. The fabrication of HA/VACNT nanocomposites was performed with a direct electrodeposition of the thin HA films on the VACNT films. The bioactivity and biomineralization in vitro process of superhydrophilic HA/VACNT nanocomposites were investigated using simulated body fluid (SBF) and optical techniques. The characterization of of HA/VACNT nanocomposites was performed before and after soaking 21 days in SBF and compared to superydrophilic VACNT films. Fourier transform infrared spectroscopy, micro X-ray fluorescence spectrometer by energy-dispersive and X-ray difractogram were employed to investigate the structural and chemical properties. The morphology was investigated by FEG-SEM analysis. After 21 days was identified that others biological apatites were formed only on HA/VACNT nanocomposites. Optical techniques showing a powerful tool to characterizated and investigated the bioactivity in vitro process. These findings were very atractive to application of this new nanocomposite to bone tissue regeneration.

  8. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  9. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  10. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  11. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  12. Optical alignments of the Cosmic Background Explorer (COBE) observatory

    NASA Technical Reports Server (NTRS)

    Sampler, Henry P.

    1990-01-01

    The angular alignments and stabilities of multiple components in a single coordinate system were determined using various alignment tooling techniques. These techniques use autocollimation measurements with a first order theodolite and transformation of coordinates to determine the relative alignment between various components with respect to a common set of COBE spacecraft coordinate axes. Optical-mechanical alignment techniques were also used to integrate the flight COBE observatory attitude control system module that consists of gyros, reaction wheels, and a momentum wheel. Particular attention is given to the techniques for alignments and stabilities of the earth scanners, sun sensors, far IR absolute spectrophotometer, Diffuse Infrared Background Experiment, and differential microwave radiometer antenna horn boresights.

  13. Optical Alignment Techniques for Line-Imaging Velocity Interferometry and Line-Imaging Self-Emission of Targets at the National Ignition Facility (NIF)

    SciTech Connect

    Malone, R M; Celeste, J R; Celliers, P M; Frogget, B .; Guyton, R L; Kaufman, M I; Lee, T L; MacGowan, B J; Ng, E W; Reinbachs, I P; Robinson, R B; Tunnell, T W; Watts, P W

    2007-07-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 meters. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  14. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)

    SciTech Connect

    Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

    2007-08-01

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  15. Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

    SciTech Connect

    Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Thomas W. Tunnell, Robert L. Guyton, Imants P. Reinbachs, Phillip W. Watts, et al.

    2007-08-31

    The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created by the orange and red alignment lasers. Optical elements include 1- to 15-inch-diameter mirrors, lenses with up to 10.5-inch diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

  16. Optical alignment of pixelated 4f optical system using multiplexed filter.

    PubMed

    Manivannan, N; Neil, M A A; Balachandran, W

    2013-11-10

    Novel optical alignment techniques to perform precise alignment of a typical pixelated 4f optical system are presented in this paper. These techniques use optical multiplexed matched filters, which were designed using a simple, efficient iterative optimization algorithm, known as direct binary search. Three alignment challenges are identified: positioning, focusing, and magnification. The first two alignments were performed using the optical multiplexed matched filtering technique, and the last one was performed using a new optical arrangement. Experimental results of the new alignment techniques and a simple optical pattern recognition problem to demonstrate the benefits of the new alignment techniques are also presented. Two pixelated, electrically addressed spatial light modulators (128 × 128 pixels and one pixel width is 80 μm) were used to represent the input and filter planes. The results clearly show that the new alignment techniques allow the 4f system to be aligned to a precision of 80 μm in the x-y direction and 0.716 mm in the z direction. PMID:24216742

  17. High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique

    NASA Astrophysics Data System (ADS)

    Leclerc, D.; Brosson, P.; Pommereau, F.; Ngo, R.; Doussiere, P.; Mallecot, F.; Gavignet, P.; Wamsler, I.; Laube, G.; Hunziker, W.

    1995-05-01

    A high performance four-tilted stripe semiconductor optical amplifier array, with low polarization sensitivity and very low-gain ripple, compatible with self-aligned flip-chip mounting on a Si motherboard is reported. Up to 32 dB of internal gain with 2-dB polarization sensitivity is obtained. A multifiber module has been realized, following an almost static optical alignment procedure, showing no degradation of the SOA array performances. Fiber-to-fiber gain, measured on the four stripes, is 14.4 +/- 1.3 dB with a gain ripple below +/- 0.1 dB.

  18. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  19. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Panda, J.; Sasmal, I.; Nath, T. K.

    2016-03-01

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn2+ state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  20. Smart and precise alignment of optical systems

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

    2013-09-01

    For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

  1. Optical Alignment Device For Laser Communication

    NASA Technical Reports Server (NTRS)

    Casey, William L.

    1988-01-01

    Optical alignment device under development enables continuous tracking and coalignment of two beams of light. Intended primarily for laser-communication station, in which transmitted beam must be aligned with received beam to ensure transmitted beam falls on receiver at other station. Expected to consume less power and be smaller and less complicated than alignment shutter and drive previously used. Prism and filter separate two overlapping collimated light beams of different wavelength or polarization. Coordinates of two beams tracked on charge-coupled device to determine degree of directional misalignment between two beams.

  2. Optical fiber alignment using cleaved-edge diffracted light

    NASA Astrophysics Data System (ADS)

    Brun, Louis C.; Bergeron, Patrick; Duguay, Michel A.; Ouellette, Francois; Tetu, Michel

    1993-08-01

    We describe a simple technique for aligning optical fibers prior to fusion splicing. The technique relies on the fact that well-cleaved fiber ends have extremely sharp edges. By making the narrow pencil of light emerging from one fiber scan laterally over the entrance face of a second fiber, and by monitoring the light diffracted past its sharp edges, we can locate precisely the geometric center of the output fiber. With this technique, we have aligned fiber cores with a mean lateral offset of 0.81 micrometers , the major part of this offset caused by the eccentricity of the core relative to the cladding's circular perimeter.

  3. High precision geometrical characterization and alignment of miniaturized optics

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Dumitrescu, Eugen

    2012-03-01

    Miniaturized optical systems like endoscopy or cell phone lenses systems comprise several optical elements like lenses, doublets and plane optics. To receive a good imaging quality the distances and angles between the different optical elements have to be as accurate as possible. In the first step we will describe how the distances and angles between different elements can be monitored and finally we will describe a technique to actively align small optics (diameter approx. 1mm and smaller) with respect to each other. For the measurement electronic autocollimators combined with white-light-interferometers are used. The electronic autocollimator reveals the exact centration errors between optical elements and the low coherence interferometer reveals the distances between surfaces. The accuracy of the centration error measurement is in the range of 0.1μm and the accuracy of the distance measurement is 1μm. Both methods can be applied to assembled multi-element optics. That means geometrical positions of all single surfaces of the final optical system can be analysed without loss of information. Both measurement techniques complement one another. Once the exact x,y,z - Position of each optical surface and element is known computer controlled actuators will be used to improve the alignment of the optics. For this purpose we use piezo-electric-actuators. This method had been applied to cement e.g. doublets for endoscope optics. In this case the optical axis of one lens has been aligned with respect to the optical axis of a second reference lens. Traditional techniques usually rely on an uncertain mechanical reference.

  4. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    NASA Technical Reports Server (NTRS)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  5. Optical-precision alignment of diffraction grating mold in moire interferometry

    NASA Technical Reports Server (NTRS)

    Joh, D.

    1992-01-01

    A high-precision optical method is presented for aligning diffraction grating molds with the edges of specimens in moire interferometry. The alignment fixture is simple and convenient to operate. The conventional method of grating-mold alignment has a wide band of uncertainty in the range of error which is not compatible with the required precision of high-sensitivity moire interferometry. Following a description of the alignment technique, both the single-edge and parallel-edge guide bar optical alignment methods are introduced and compared.

  6. Optical alignment of Centaur's inertial guidance system

    NASA Technical Reports Server (NTRS)

    Gordan, Andrew L.

    1987-01-01

    During Centaur launch operations the launch azimuth of the inertial platform's U-accelerometer input axis must be accurately established and maintained. This is accomplished by using an optically closed loop system with a long-range autotheodolite whose line of sight was established by a first-order survey. A collimated light beam from the autotheodolite intercepts a reflecting Porro prism mounted on the platform azimuth gimbal. Thus, any deviation of the Porro prism from its predetermined heading is optically detected by the autotheodolite. The error signal produced is used to torque the azimuth gimbal back to its required launch azimuth. The heading of the U-accelerometer input axis is therefore maintained automatically. Previously, the autotheodolite system could not distinguish between vehicle sway and rotational motion of the inertial platform unless at least three prisms were used. One prism was mounted on the inertial platform to maintain azimuth alignment, and two prisms were mounted externally on the vehicle to track sway. For example, the automatic azimuth-laying theodolite (AALT-SV-M2) on the Saturn vehilce used three prisms. The results of testing and modifying the AALT-SV-M2 autotheodolite to simultaneously monitor and maintain alignment of the inertial platform and track the sway of the vehicle from a single Porro prism.

  7. Corrective optics space telescope axial replacement alignment system

    NASA Astrophysics Data System (ADS)

    Slusher, Robert B.; Satter, Michael J.; Kaplan, Michael L.; Martella, Mark A.; Freymiller, Ed D.; Buzzetta, Victor

    1993-10-01

    To facilitate the accurate placement and alignment of the corrective optics space telescope axial replacement (COSTAR) structure, mechanisms, and optics, the COSTAR Alignment System (CAS) has been designed and assembled. It consists of a 20-foot optical bench, support structures for holding and aligning the COSTAR instrument at various stages of assembly, a focal plane target fixture (FPTF) providing an accurate reference to the as-built Hubble Space Telescope (HST) focal plane, two alignment translation stages with interchangeable alignment telescopes and alignment lasers, and a Zygo Mark IV interferometer with a reference sphere custom designed to allow accurate double-pass operation of the COSTAR correction optics. The system is used to align the fixed optical bench (FOB), the track, the deployable optical bench (DOB), the mechanisms, and the optics to ensure that the correction mirrors are all located in the required positions and orientations on-orbit after deployment. In this paper, the layout of the CAS is presented and the various alignment operations are listed along with the relevant alignment requirements. In addition, calibration of the necessary support structure elements and alignment aids is described, including the two-axis translation stages, the latch positions, the FPTF, and the COSTAR-mounted alignment cubes.

  8. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  9. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  10. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  11. Low cost, high performance, self-aligning miniature optical systems

    PubMed Central

    Kester, Robert T.; Christenson, Todd; Kortum, Rebecca Richards; Tkaczyk, Tomasz S.

    2009-01-01

    The most expensive aspects in producing high quality miniature optical systems are the component costs and long assembly process. A new approach for fabricating these systems that reduces both aspects through the implementation of self-aligning LIGA (German acronym for lithographie, galvanoformung, abformung, or x-ray lithography, electroplating, and molding) optomechanics with high volume plastic injection molded and off-the-shelf glass optics is presented. This zero alignment strategy has been incorporated into a miniature high numerical aperture (NA = 1.0W) microscope objective for a fiber confocal reflectance microscope. Tight alignment tolerances of less than 10 μm are maintained for all components that reside inside of a small 9 gauge diameter hypodermic tubing. A prototype system has been tested using the slanted edge modulation transfer function technique and demonstrated to have a Strehl ratio of 0.71. This universal technology is now being developed for smaller, needle-sized imaging systems and other portable point-of-care diagnostic instruments. PMID:19543344

  12. Evaluation of microRNA alignment techniques.

    PubMed

    Ziemann, Mark; Kaspi, Antony; El-Osta, Assam

    2016-08-01

    Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164

  13. A Technique for determining the director pretilt angle in cells with hybrid or homeotropic alignment of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vakulin, D. A.

    2015-12-01

    A new technique for determining the director pretilt angle in cells with hybrid or homeotropic alignment of a nematic liquid crystal has been developed. To use this technique, it is necessary to experimentally determine the transmission of an optical system in parallel polarizers and maximum transmission of a cell in crossed polarizers. The technique makes it possible to locally control the liquid crystal director alignment on an aligning surface.

  14. Optically Probed Laser-Induced Field-Free Molecular Alignment

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Lavorel, B.; Hertz, E.; Chaussard, F.

    Molecular alignment induced by laser fields has been investigated in research laboratories for over two decades. It led to a better understanding of the fundamental processes at play in the interaction of strong laser fields with molecules, and also provided significant contributions to the fields of high harmonic generation, laser spectroscopy, and laser filamentation. In this chapter, we discuss molecular alignment produced under field-free conditions, as resulting from the interaction of a laser pulse of duration shorter than the rotational period of the molecule. The experimental results presented will be confined to the optically probed alignment of linear as well as asymmetric top molecules. Special care will be taken to describe and compare various optical methods that can be employed to characterize laser-induced molecular alignment. Promising applications of optically probed molecular alignment will be also demonstrated.

  15. Auto-aligning stimulated emission depletion microscope using adaptive optics

    PubMed Central

    Gould, Travis J.; Kromann, Emil B.; Burke, Daniel; Booth, Martin J.; Bewersdorf, Joerg

    2013-01-01

    Stimulated emission depletion (STED) microscopy provides diffraction-unlimited resolution in fluorescence microscopy. Imaging at the nanoscale, however, requires precise alignment of the depletion and excitation laser foci of the STED microscope. We demonstrate here that adaptive optics can be implemented to automatically align STED and confocal images with a precision of 4.3 ± 2.3 nm. PMID:23722769

  16. Oil-damped mercury pool makes precise optical alignment tool

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1965-01-01

    Mercury pool with a cover layer of high viscosity oil provides a reference reflector for precise alignment of optical instruments. The cover layer effectively damps any ripples in the mercury from support structure vibrations.

  17. Robust optical alignment systems using geometric invariants

    NASA Astrophysics Data System (ADS)

    Ho, Tzung-Hsien; Rzasa, John; Milner, Stuart D.; Davis, Christopher C.

    2007-09-01

    Traditional coarse pointing, acquisition, and tracking (CPAT) systems are pre-calibrated to have the center pixel of the camera aligned to the laser pointing vector and the center pixel is manually moved to the target of interest to complete the alignment process. Such a system has previously demonstrated its capability in aligning with distant targets and the pointing accuracy is on the order of sensor resolution. However, aligning with targets at medium range where the distance between angular sensor and transceiver is not negligible is its Achilles Heel. This limitation can be resolved by imposing constraints, such as the trifocal tensor (TT), which is deduced from the geometrical dependence between cameras and transceivers. Two autonomous CPAT systems are introduced for FSO transceiver alignment in mid- and long-range scenarios. This work focuses on experimental results that validate the pointing performance for targets at different distances, backed up by the theoretical derivations. A mid-range CPAT system, applying a trifocal tensor as its geometric invariant, includes two perspective cameras as sensors to perceive target distances. The long-range CPAT system, applying linear mapping as the invariant, requires only one camera to determine the pointing angle. Calibration procedures for both systems are robust to measurement noise and the resulting system can autonomously point to a target of interest with a high accuracy, which is also on the order of sensor resolution. The results of this work are not only beneficial to the design of CPAT systems for FSO transceiver alignment, but also in new applications such as surveillance and navigation.

  18. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  19. Optical techniques in optogenetics

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  20. Backup Alignment Devices on Shuttle: Heads-Up Display or Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Chavez, Melissa A.

    2011-01-01

    NASA s Space Shuttle was built to withstand multiple failures while still keeping the crew and vehicle safe. Although the design of the Space Shuttle had a great deal of redundancy built into each system, there were often additional ways to keep systems in the best configuration if a failure were to occur. One such method was to use select pieces of hardware in a way for which they were not primarily intended. The primary function of the Heads-Up Display (HUD) was to provide the crew with a display of flight critical information during the entry phase. The primary function of the Crew Optical Alignment Sight (COAS) was to provide the crew an optical alignment capability for rendezvous and docking phases. An alignment device was required to keep the Inertial Measurement Units (IMUs) well aligned for a safe Entry; nominally this alignment device would be the two on-board Star Trackers. However, in the event of a Star Tracker failure, the HUD or COAS could also be used as a backup alignment device, but only if the device had been calibrated beforehand. Once the HUD or COAS was calibrated and verified then it was considered an adequate backup to the Star Trackers for entry IMU alignment. There were procedures in place and the astronauts were trained on how to accurately calibrate the HUD or COAS and how to use them as an alignment device. The calibration procedure for the HUD and COAS had been performed on many Shuttle missions. Many of the first calibrations performed were for data gathering purposes to determine which device was more accurate as a backup alignment device, HUD or COAS. Once this was determined, the following missions would frequently calibrate the HUD in order to be one step closer to having the device ready in case it was needed as a backup alignment device.

  1. Optical assembly and alignment for the National Ignition Facility project

    SciTech Connect

    Hurst, P.A.; Grasz, E.L.; Wong, H.; Schmitt, E.H.; Simmons, M.R.

    1997-12-23

    The National Ignition Facility (NIF) will use about 8,000 large optics to carry a high-power laser through a stadium-size building, and will do so on a very tight schedule and budget. The collocated Optics Assembly Building (OAB) will assemble and align, in a clean-room environment, the NIF`s large optics, which are the biggest optics ever assembled in such an environment. In addition, the OAB must allow for just-in-time processing and clean transfer to the areas where the optics will be used. By using a mixture of off-the-shelf and newly designed equipment and by working with industry, we have developed innovative handling systems to perform the clean assembly and precise alignment required for the full variety of optics, as well as for postassembly inspection. We have also developed a set of loading mechanisms that safely get the clean optics to their places in the main NIF building.

  2. Radio-Optical Alignments in a Low Radio Luminosity Sample

    NASA Technical Reports Server (NTRS)

    Lacy, Mark; Ridgway, Susan E.; Wold, Margrethe; Lilje, Per B.; Rawlings, Steve

    1999-01-01

    We present an optically-based study of the alignment between the radio axes and the optical major axes of eight z approximately 0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are approximately 20-times less radio luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest-frame wavelengths just longward of the 4000A break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST (Hubble Space Telescope) archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15 kpc scale are not. We discuss these results in the context of popular models for the alignment effect.

  3. The art of planning for optical systems integration and alignment

    NASA Astrophysics Data System (ADS)

    Sullivan, Joseph F.

    2015-09-01

    This will address Lessons Learned on the approaches that worked or did not work over various programs when integrating and aligning elements into fairly complex optical systems. The appropriate planning can prevent many unnecessary headaches and achieve the desired optical performance while optimizing integration efficiency.

  4. Focal Plane Alignment Utilizing Optical CMM

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Meras, Patrick L.; Clark, Gerald J.; Sedaka, Jack J.; Kaluzny, Joel V.; Hirsch, Brian; Decker, Todd A.; Scholtz, Christopher R.

    2012-01-01

    In many applications, an optical detector has to be located relative to mechanical reference points. One solution is to specify stringent requirements on (1) mounting the optical detector relative to the chip carrier, (2) soldering the chip carrier onto the printed circuit board (PCB), and (3) installing the PCB to the mechanical structure of the subsystem. Figure 1 shows a sketch of an optical detector mounted relative to mechanical reference with high positional accuracy. The optical detector is typically a fragile wafer that cannot be physically touched by any measurement tool. An optical coordinate measuring machine (CMM) can be used to position optical detectors relative to mechanical reference points. This approach will eliminate all requirements on positional tolerances. The only requirement is that the PCB is manufactured with oversized holes. An exaggerated sketch of this situation is shown in Figure 2. The sketch shows very loose tolerances on mounting the optical detector in the chip carrier, loose tolerance on soldering the chip carrier to the PCB, and finally large tolerance on where the mounting screws are located. The PCB is held with large screws and oversized holes. The PCB is mounted loosely so it can move freely around. The optical CMM measures the mechanical reference points. Based on these measurements, the required positions of the optical detector corners can be calculated. The optical CMM is commanded to go to the position where one detector corner is supposed to be. This is indicated with the cross-hairs in Figure 2(a). This figure is representative of the image of the optical CMM monitor. Using a suitable tapping tool, the PCB is manually tapped around until the corner of the optical detector is at the crosshairs of the optical CMM. The CMM is commanded to another corner, and the process is repeated a number of times until all corners of the optical detector are within a distance of 10 to 30 microns of the required position. The situation

  5. Implant alignment in total elbow arthroplasty: conventional vs. navigated techniques

    NASA Astrophysics Data System (ADS)

    McDonald, Colin P.; Johnson, James A.; King, Graham J. W.; Peters, Terry M.

    2009-02-01

    Incorrect selection of the native flexion-extension axis during implant alignment in elbow replacement surgery is likely a significant contributor to failure of the prosthesis. Computer and image-assisted surgery is emerging as a useful surgical tool in terms of improving the accuracy of orthopaedic procedures. This study evaluated the accuracy of implant alignment using an image-based navigation technique compared against a conventional non-navigated approach. Implant alignment error was 0.8 +/- 0.3 mm in translation and 1.1 +/- 0.4° in rotation for the navigated alignment, compared with 3.1 +/- 1.3 mm and 5.0 +/- 3.8° for the non-navigated alignment. Five (5) of the 11 non-navigated alignments were malaligned greater than 5° while none of the navigated alignments were placed with an error of greater than 2.0°. It is likely that improved implant positioning will lead to reduced implant loading and wear, resulting in fewer implantrelated complications and revision surgeries.

  6. Breaking through 1D layout limitations and regaining 2D design freedom Part I: 2D layout decomposition and stitching techniques for hybrid optical and self-aligned multiple patterning

    NASA Astrophysics Data System (ADS)

    Liu, Hongyi; Zhou, Jun; Chen, Yijian

    2015-03-01

    To break through 1-D IC layout limitations, we develop computationally efficient 2-D layout decomposition and stitching techniques which combine the optical and self-aligned multiple patterning (SAMP) processes. A polynomial time algorithm is developed to decompose the target layout into two components, each containing one or multiple sets of unidirectional features that can be formed by a SAMP+cut/block process. With no need of connecting vias, the final 2-D features are formed by directly stitching two components together. This novel patterning scheme is considered as a hybrid approach as the SAMP processes offer the capability of density scaling while the stitching process creates 2-D design freedom as well as the multiple-CD/pitch capability. Its technical advantages include significant reduction of via steps and avoiding the interdigitating types of multiple patterning (for density multiplication) to improve the processing yield. The developed decomposition and synthesis algorithms are tested using 2-D layouts from NCSU open cell library. Statistical and computational characteristics of these public layout data are investigated and discussed.

  7. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  8. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  9. VISA UNDULATOR RE-ALIGNMENT USING AN OPTICAL MONITORING SYSTEM.

    SciTech Connect

    TREMAINE,A.; MUROKH,A.; WANG,X.J.

    2001-01-01

    The VISA experiment is designed to reach and study saturation in a high gain 800nm SASE FEL at the Brookhaven Accelerator Test Facility (ATF). To do this, the undulator must be aligned at first to within 20 {micro}m with use of a laser interferometric system. Once aligned, any small movements from the aligned position will greatly detriment the SASE FEL performance thus making continuous monitoring of the undulator position necessary. This is quite a complicated task since the 4m undulator is made up of four 1m sections enclosed in a vacuum chamber. We have developed an in situ optical system to monitor the undulator position with an accuracy better than 10 {micro}m. In addition, we have demonstrated the accuracy of this system by bringing the grossly misaligned VISA undulator ({approximately} 500 {micro}m in some locations) into alignment and attaining very high gain of the SASE FEL.

  10. Alignment and focusing tolerance influences on optical performance

    SciTech Connect

    Cross, E.W.

    1982-01-01

    Alignment errors among components of an optical system may substantially degrade the image quality. Focus errors also affect system performance. The potential for serious degradation of image quality is substantial and requires that the tolerances for these errors receive significant attention early in system design. The image quality and reconnaissance performance of an all-reflecting Cassegrain is compared to an all-refractive optical system under conditions of zero and anticipated real world misalignments.

  11. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the

  12. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  13. Aligning Arrays of Lenses and Single-Mode Optical Fibers

    NASA Technical Reports Server (NTRS)

    Liu, Duncan

    2004-01-01

    A procedure now under development is intended to enable the precise alignment of sheet arrays of microscopic lenses with the end faces of a coherent bundle of as many as 1,000 single-mode optical fibers packed closely in a regular array (see Figure 1). In the original application that prompted this development, the precise assembly of lenses and optical fibers serves as a single-mode spatial filter for a visible-light nulling interferometer. The precision of alignment must be sufficient to limit any remaining wavefront error to a root-mean-square value of less than 1/10 of a wavelength of light. This wavefront-error limit translates to requirements to (1) ensure uniformity of both the lens and fiber arrays, (2) ensure that the lateral distance from the central axis of each lens and the corresponding optical fiber is no more than a fraction of a micron, (3) angularly align the lens-sheet planes and the fiber-bundle end faces to within a few arc seconds, and (4) axially align the lenses and the fiber-bundle end faces to within tens of microns of the focal distance. Figure 2 depicts the apparatus used in the alignment procedure. The beam of light from a Zygo (or equivalent) interferometer is first compressed by a ratio of 20:1 so that upon its return to the interferometer, the beam will be magnified enough to enable measurement of wavefront quality. The apparatus includes relay lenses that enable imaging of the arrays of microscopic lenses in a charge-coupled-device (CCD) camera that is part of the interferometer. One of the arrays of microscopic lenses is mounted on a 6-axis stage, in proximity to the front face of the bundle of optical fibers. The bundle is mounted on a separate stage. A mirror is attached to the back face of the bundle of optical fibers for retroreflection of light. When a microscopic lens and a fiber are aligned with each other, the affected portion of the light is reflected back by the mirror, recollimated by the microscopic lens, transmitted

  14. ACCELERATORS: Alignment techniques for DRAGON-I LIA

    NASA Astrophysics Data System (ADS)

    Dai, Zhi-Yong; Xie, Yu-Tong; Li, Hong; Zhang, Wen-Wei; Liu, Yun-Long; Pan, Hai-Feng; Zhang, Lin-Wen; Deng, Jian-Jun

    2009-09-01

    DRAGON-I designed and manufactured by CAEP is a linear induction accelerator which can produce a 20 MeV-3 kA-60 ns electron beam. The high performance required for the machine is determined by the beam quality and thus is greatly dependent on the accelerator alignment. In order to reduce the chromatic effect of the beam, the stretched wire technique has been developed to measure magnetic axes of the cells precisely, and the dipole steering magnets have been equipped into each cell to correct its magnetic axis misalignment. Finally, the laser tracker has been used to examine the installation error of the accelerator. In this paper, different alignment techniques and the primary results are presented and discussed.

  15. Improved Synthesis of Aligned Carbon Nanotube Arrays for Optical Applications

    NASA Astrophysics Data System (ADS)

    Paudel, Trilochan; Gao, Yantao; Lan, Yucheng; Macmohan, Gregs; Kempa, Krzysztof; Naughton, Michael; Ren, Zhifeng

    2009-03-01

    Vertically aligned carbon nanotubes were grown on the high temperature glass (Aluminosilicate, Corning 1737) substrates with improved characteristics compared to previous attempts. The glass substrates were first coated with a buffer layer of either Chromium or Titanium, thick enough to facilitate CNT growth, but thin enough as to be largely transparent. On the top of the buffer layer, a monolayer of polystyrene spheres was deposited with close compaction, and then a Nickel catalyst film was evaporated. The polystyrene spheres were then removed to obtain honeycomb Ni patterns. On top of the Ni patterns, vertically aligned carbon nanotubes were grown by the direct current plasma enhanced chemical vapor deposition (dc PECVD). These aligned carbon nanotubes, which can range in height from 0.5 to 10 microns, and in diameter from 50 to 350 nm, can then be coated with various dielectrics to function as components in optical waveguides, including solar cells.

  16. Optical digital techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.

  17. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    SciTech Connect

    Ong, H.L.; Meyer, R.B.; Hurd, A.J.; Karn, A.J.; Arakelian, S.M.; Shen, Y.R.; Sanda, P.N.; Dove, D.B.; Jansen, S.A.; Hoffmann, R.

    1989-01-01

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.

  18. Alignment and integration of large optical systems based on advanced metrology.

    NASA Astrophysics Data System (ADS)

    Aliverti, M.; Riva, M.; Moschetti, M.; Pariani, G.; Genoni, M.; Zerbi, F. M.

    Optical alignment is a key activity in opto-mechanical system Integration. Traditional techniques require adjustable mounting, driven by optical references that allows the tuning of the optics position along all 6 Degree of Freedom. Nevertheless, the required flexibility imposes reduced stiffness and consequently less stability of the system. The Observatory of Brera (OAB) started few years ago a research activity focused onto the overcoming of this limits exploiting the high metrology performances of Coordinate Measuring Machines (CMM) with the main objectives of relax the manufacturing tolerances and maximize mounting stiffness. Through the T-REX grants, OAB acquired all the instrumentation needed for that activity furthermore considering the ESPRESSO project training and testing also oriented to large scale instrumentation like the E-ELT one. We will present in this paper the definition of the VLTs convergence point and the feasibility study of large mirrors alignment done by mechanical measurements methods. skip=8pt

  19. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  20. A Concept for Zero-Alignment Micro Optical Systems

    SciTech Connect

    DESCOUR, MICHAEL R.; KOLOLUOMA,TERHO; LEVEY,RAVIV; RANTALA,JUHA T.; SHUL,RANDY J.; WARREN,MIAL E.; WILLISON,CHRISTI LEE

    1999-09-16

    We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).

  1. Molecular alignment relaxation in polymer optical fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Cetinkaya, Onur; Schukar, Marcus; Mergo, Pawel; Webb, David J.; Krebber, Katerina

    2016-03-01

    A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.

  2. Optical alignment of the SPICE EUV imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Caldwell, Martin; Eccleston, Paul; Griffin, Doug; Greenway, Paul; Fludra, Andrzej; Middleton, Kevin; Tosh, Ian; Richards, Tony; Phillipon, Anne; Schühle, Udo

    2015-09-01

    SPICE is a high resolution imaging spectrometer operating at extreme ultraviolet wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the ESA Solar Orbiter mission. SPICE will address the key science goals of Solar Orbiter by providing the quantitative knowledge of the physical state and composition of the plasmas in the solar atmosphere, in particular investigating the source regions of outflows and ejection processes which link the solar surface and corona to the heliosphere. By observing the intensities of selected spectral lines and line profiles, SPICE will derive temperature, density, flow and composition information for the plasmas in the temperature range from 10,000 K to 10MK. The optical components of the instrument consist of an off axis parabolic mirror mounted on a mechanism with a scan range of 8 arc minutes. This allows the rastering of an image of the spectrometer slit, which is interchangeable defining the instrument resolution, on the sky. A concave toroidal variable line space grating disperses, magnifies, and re-images incident radiation onto a pair of photocathode coated microchannel plate image intensifiers, coupled to active pixel sensors. For the instrument to meet the scientific and engineering objectives these components must be tightly aligned with each other and the mechanical interface to the spacecraft. This alignment must be maintained throughout the environmental exposure of the instrument to vibration and thermal cycling seen during launch, and as the spacecraft orbits around the sun. The built alignment is achieved through a mixture of dimensional metrology, autocollimation, interferometry and imaging tests. This paper shall discuss the requirements and the methods of optical alignment.

  3. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  4. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    SciTech Connect

    Moseev, D.; Meo, F.; Korsholm, S. B.; Leipold, F.; Michelsen, P. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Bindslev, H.; Furtula, V.; Kantor, M.

    2012-10-15

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic on TEXTOR without a source of probing radiation in discharges with sawtooth oscillations, an elevation angle misalignment of 0.9 Degree-Sign was found with an accuracy of 0.25 Degree-Sign .

  5. High contrast and metal-less alignment process for all-polymer optical interconnect devices

    NASA Astrophysics Data System (ADS)

    Ge, Tao; Yang, Jilin; Summitt, Chris; Wang, Sunglin; Johnson, Lee; Zaverton, Melissa; Milster, Tom; Takashima, Yuzuru

    2015-03-01

    A polymer-based flat, flexible and parallel optical interconnect has become an attractive approach for short-range data transfer. For such a device, a low cost fabrication technique is required for light couplers to redirect light from source to waveguides. Recently, we demonstrated a mask-less gray scale lithography process, which used a CMOS compatible polymer for a 45-degree mirror coupler. Polymer materials such as epoclad and AP2210B can be used to fabricate flexible substrates and waveguides, respectively. We propose an all-photopolymer lithography process to fabricate the flexible and parallel optical interconnect in conjunction with the mirror couplers. In the process, a buried polymer structure is used to precisely align the mirror coupler to waveguides, which make it possible to avoid an additional metallization process. However, the contrast of such buried fiducial mark is low since such the structure is a phase structure. As a result, it is not feasible to use the buried polymer structure as an alignment mark with conventional amplitude based imaging modalities. To increase the contrast of these buried alignment marks, we propose a feature specific alignment system for which the shape and depth of the buried alignment marks are optimized for phase-based imaging such as phase contrast and Schlieren imaging. Our results show that an optimized alignment mark provides a significant contrast enhancement while using a phase contrast imaging system compared to that of a conventional imaging system. In addition, we have fabricated an optimized alignment mark specifically for use with a Schlieren imaging system.

  6. Mapping techniques for aligning sulci across multiple brains☆

    PubMed Central

    Tosun, Duygu; Rettmann, Maryam E.; Prince, Jerry L.

    2015-01-01

    Visualization and mapping of function on the cortical surface is difficult because of its sulcal and gyral convolutions. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in the literature. This makes visualization and measurement possible, but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. In this paper, we describe two methods that map each hemisphere of the cortex to a portion of a sphere in a standard way. To quantify how accurately the geometric features of the cortex – i.e., sulci and gyri – are mapped into the same location, sulcal alignment across multiple brains is analyzed, and probabilistic maps for different sulcal regions are generated to be used in automatic labelling of segmented sulcal regions. PMID:15450224

  7. CWDM based HDMI interconnect incorporating passively aligned POF linked optical subassembly modules

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Soon; Lee, Sang-Shin; Son, Yung-Sung

    2011-08-01

    A four-channel transmitter OSA (TOSA) and a receiver optical sub-assembly (ROSA) module were presented. They take advantage of a coarse WDM (CWDM) scheme, employing two types of VCSELs at 780 and 850 nm, where no wavelength filters are involved in the TOSA. The ROSA and TOSA were constructed through a fully passive alignment process using components produced by virtue of a cost effective plastic injection molding technique. In order to build a high quality optical HDMI interconnect, four channel optical links between these modules ware established via two graded-index plastic optical fibers (GI-POFs). The HDMI interconnect was thoroughly evaluated in terms of the alignment tolerance, the light beam propagation, and the data transmission capability. For the ROSA, the measured tolerance, as affected by the photodiode alignment, was ~45 μm and over 200 μm for the transverse and longitudinal directions, respectively. For the TOSA, the tolerance, which is mostly dependent upon the VCSEL alignment, was ~20 μm and more than 200 μm for the transverse and longitudinal directions, respectively. The beam profiles for the TOSA and ROSA were monitored to confirm their feasibility from the optical coupling perspective. A digital signal at 2.5 Gb/s was efficiently transmitted through the HDMI interconnect with a bit error ratio of below 10-16. A 1080p HDMI signal from a Blu-ray player was delivered through the interconnect to an LCD monitor and successfully displayed a high quality video.

  8. Beam-based alignment technique for the SLC (Stanford Linear Collider) linac

    SciTech Connect

    Adolphsen, C.E.; Lavine, T.L.; Atwood, W.B.; Himel, T.M.; Lee, M.J.; Mattison, T.S.; Pitthan, R.; Seeman, J.T.; Williams, S.H.; Trilling, G.H.

    1989-03-01

    Misalignment of quadrupole magnets and beam position monitors (BPMs) in the linac of the SLAC Linear Collider (SLC) cause the electron and positron beams to be steered off-center in the disk-loaded waveguide accelerator structures. Off-center beams produce wakefields which limit the SLC performance at high beam intensities by causing emittance growth. Here, we present a general method for simultaneously determining quadrupole magnet and BPM offsets using beam trajectory measurements. Results from the application of the method to the SLC linac are described. The alignment precision achieved is approximately 100 ..mu..m, which is significantly better than that obtained using optical surveying techniques. 2 refs., 4 figs.

  9. Panoramic alignment system for optical wireless communication systems

    NASA Astrophysics Data System (ADS)

    Shen, Thomas C.; Drost, Robert J.; Rzasa, John; Sadler, Brian M.; Davis, Christopher C.

    2015-03-01

    Free space optical communication may provide a viable adjunct to radio frequency (RF) technology for mobile communications, especially in "RF-denied" settings in which RF-based communication may be prohibited or impractical. These settings may include military tactical environments or settings which suffer from RF jamming or interference. Unlike many RF communication systems, point-to-point optical communications between mobile nodes typically require establishing and maintaining alignment, which requires each node to have awareness of the locations of neighboring nodes. We propose a method to create this situational awareness between nodes using purely optical means. This method uses a camera that is focused on a hyperboloidal mirror, thus providing a 360-degree view of the surrounding environment. The camera and mirror are used to detect light emitted from the beacon transmitters from neighboring nodes, with the location of the beacon image in the sensor plane of the camera yielding elevation and azimuth information of the beacon. The beacon transmitter itself is modulated, allowing it to be distinguished from the environment. In discussing our experimental realization of this system, we assess its performance.

  10. Electro-optical Synergy Technique

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.

    2010-01-01

    Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352

  11. Optical aberrations and alignment of the eye with age.

    PubMed

    Berrio, Esther; Tabernero, Juan; Artal, Pablo

    2010-01-01

    We explored the relative changes in ocular, corneal, and internal aberrations associated with normal aging with special emphasis in the role of ocular alignment and lens shape factor in the balance of aberrations. Ocular and corneal aberrations together with the angle kappa were measured for a 5-mm pupil diameter in 46 eyes with low refractive errors and ages ranging between 20 and 77 years. The root mean square (RMS) of the higher order ocular and corneal aberrations increased with age at a rate of 0.0032 μm/year and 0.0015 μm/year, respectively. While in young eyes the partial compensation of aberrations by the internal surfaces was clear, no significant difference was found between corneal and ocular RMS in the older group. The ocular spherical aberration (0.0011 μm/year) and horizontal coma (0.0017 μm/year) increased moderately with age. This is not due to changes in the optical alignment, since angle kappa did not vary significantly with age. Age-related variations in the radii of curvature of the crystalline lens modify slightly its shape factor, reducing the compensation of lateral coma. This suggests that geometrical changes in the crystalline lens with age contribute to modify its aberration structure, reducing the compensation mechanism and explaining most of the measured increment of ocular aberrations with age. PMID:21196516

  12. Single-mode array optoelectronic packaging based on actively aligned planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Kalman, Robert F.; Silva, Edward R.; Knapp, Daniel F.

    1996-03-01

    Packaging of integrated optoelectronic devices (e.g., laser diode arrays and OEICs) is motivated by potential cost savings and the increased functionality of more highly integrated devices. To date, attempts to package integrated optoelectronic devices with arrays of single- mode fibers have tended to exhibit high optical losses. We have developed a single-mode array packaging process based on the use of an intermediate silica-on-silicon planar optical waveguides (POWs) assembly to which optical fibers are attached using V-grooves. By lensing the POWs, we have achieved coupling efficiencies of greater than 50%. The photolithographic registration of the POWs allows a large (greater than or equal to 8) array of POWs with attached fibers to be aligned to an array of optoelectronic devices in a single active alignment procedure. This single active alignment step is well-suited to automation, and our approach is thus well-suited to achieving low cost in a manufacturing environment. We also discuss our positioning and mounting techniques, which provide high-stability coupling in adverse temperature and vibration environments and are compatible with hermetic packaging.

  13. ALINET: neural net automatic alignment of high-energy laser resonator optical elements

    NASA Astrophysics Data System (ADS)

    Hart, George A.; Bailey, Adam W.; Palumbo, Louis J.; Kuperstein, Michael

    1993-10-01

    A novel neural net approach has successfully solved the time consuming practical problem of aligning the many optical elements used in the resonator of high power chemical lasers. Moreover, because the neural net can achieve optimal performance in only 2 - 4 steps, as compared with 50 for other techniques, the important ability to effect real time control is gained. This represents a significant experimental breakthrough because of the difficulty previously associated with this alignment process. Use of either near or far field image information produces excellent performance. The method is very robust in the presence of noise. For cases where the initial misalignment falls outside the regime encompassed by the training set, a hybrid approach utilizing an advanced conventional method can bring the optical system within the capture range of the neural net. This reported use of a neural net to rapidly convert imagery information into high precision control information is of broad applicability to optical, acoustic, or electromagnetic alignment, positioning, and control problems.

  14. Theoferometer for High Accuracy Optical Alignment and Metrology

    NASA Technical Reports Server (NTRS)

    Toland, Ronald; Leviton, Doug; Koterba, Seth

    2004-01-01

    The accurate measurement of the orientation of optical parts and systems is a pressing problem for upcoming space missions, such as stellar interferometers, requiring the knowledge and maintenance of positions to the sub-arcsecond level. Theodolites, the devices commonly used to make these measurements, cannot provide the needed level of accuracy. This paper describes the design, construction, and testing of an interferometer system to fill the widening gap between future requirements and current capabilities. A Twyman-Green interferometer mounted on a 2 degree of freedom rotation stage is able to obtain sub-arcsecond, gravity-referenced tilt measurements of a sample alignment cube. Dubbed a 'theoferometer,' this device offers greater ease-of-use, accuracy, and repeatability than conventional methods, making it a suitable 21st-century replacement for the theodolite.

  15. Nanophotonics of vertically aligned carbon nanotubes: Two-dimensional photonic crystals and optical dipole antennas

    NASA Astrophysics Data System (ADS)

    Wang, Yang

    Carbon nanotubes (CNTs) and related nanostructures represent a novel class of condensed matters with intriguing properties due to their unique atomic structures and nanoscale morphologies. It is of particular interest to examine the interaction behavior and mechanism between the free electron gas within carbon nanotubes and the external electromagnetic wave, which may greatly facilitate the understanding of the physics of nanophotonics at the fundamental level. This dissertation is committed to investigate the optical responses of arrays of vertically aligned CNTs in different configurations, based on their fabrication by Plasma-Enhanced Chemical Vapor Deposition (PECVD) and other techniques involved therein. The mechanisms of the photonic results are categorized into inter-CNT and intra-CNT contributions through data analysis on periodic and random CNT arrays, which then give rise to practical applications in photonic crystals and optical antennas. The growth and fabrication procedure of vertically aligned CNTs with optimized morphology and well-defined arrangement is first elaborated in this dissertation, owing to the tremendous difficulties encountered and efforts paid during the sample fabrication and optimization process, and the dominant effect of sample quality on the final results at the optical characterization stage. To fabricate periodic CNT arrays, a microsphere self-assembly technique is first adopted for catalyst patterning and a parametric study is carried out systematically for CNT growth by PECVD method. For random CNT arrays, the growth conditions are also modified so that small diameter CNTs can be grown and an IC industry-compatible procedure can be developed for practical application purposes. The inter-scatterer optical responses are studied by using hexagonal lattices of vertically aligned CNTs with various lattice constants and CNT morphologies. The diffraction patterns of theses CNT arrays are recorded and compared to theoretical

  16. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  17. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires

  18. Neural nets for aligning optical components in harsh environments: Beam smoothing spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.

    1991-01-01

    The goal is to develop an approach to automating the alignment and adjustment of optical measurement, visualization, inspection, and control systems. Classical controls, expert systems, and neural networks are three approaches to automating the alignment of an optical system. Neural networks were chosen for this project and the judgements that led to this decision are presented. Neural networks were used to automate the alignment of the ubiquitous laser-beam-smoothing spatial filter. The results and future plans of the project are presented.

  19. Alignment and integration of ASSIST: a test bench for VLT adaptive optics facility

    NASA Astrophysics Data System (ADS)

    Deep, Atul; Arsenault, Robin; Boland, Wilfried; Delabre, Bernard; Hubin, Norbert; La Penna, Paolo; Madec, Pierre-Yves; Molster, Frank; Stuik, Remko; Tordo, Sebastien; Wiegers, Emiel

    2010-08-01

    ASSIST, The Adaptive Secondary Setup and Instrument STimulator, is being developed to provide a testing facility for the ESO Adaptive Optics Facility (AOF). It will allow the off-telescope testing of three elements of the VLT AOF; the Deformable Secondary Mirror (DSM) and the AO systems for MUSE and HAWK-I (GALACSI and GRAAL). The core of ASSIST consists of a 2-mirror setup (AM1-AM2) allowing the on-axis test of the DSM in interferometric mode. However, during the initial stages of ASSIST integration, DSM would not be present. This makes the task of aligning AM1-AM2 to within an accuracy of 0.05mm/1 arcmin rather challenging. A novel technique known as Shack-Hartmann method has been developed and tested in the lab for this purpose. A Shack Hartmann wavefront sensor will be used to measure the mis-alignment between AM1-AM2 by recording the coma and astigmatism in the presence of large spherical aberration introduced because of tilt/decenter of AM2 with respect to AM1. Thereafter, 20 optical components including lenses, flat mirrors and beam-splitter cubes divided into five sub-assemblies should be aligned to AM1-AM2- DSM axis which ultimately passes through the mechanical axis of large AMOS rotator.

  20. Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance.

    PubMed

    Lee, Hak-Soon; Park, Jun-Young; Cha, Sang-Mo; Lee, Sang-Shin; Hwang, Gyo-Sun; Son, Yung-Sung

    2011-02-28

    Ribbon plastic optical fiber (POF) linked four-channel optical transmitter (Tx) and receiver (Rx) modules have been proposed and realized featuring an excellent alignment tolerance. The two modules share a common configuration involving an optical sub-assembly (OSA) with vertical cavity surface emitting lasers (VCSELs)/photodetectors (PDs), and their driver ICs, which are integrated onto a single printed circuit board (PCB) substrate. The OSA includes an alignment structure, a beam router and a fiber guide, which were produced by using plastic injection molding. We have accomplished a fully passive alignment between the VCSELs/PDs and the ribbon POF by taking advantage of the alignment structure that serves as a reference during the alignment of the constituent parts of the OSA. The electrical link, which largely determines the operation speed, has been remarkably shortened, due to a direct wire-bonding between the VCSELs/PDs and the driver circuits. The light sources and the detectors can be individually positioned, thereby overcoming the pitch limitations of the ribbon POF, which is made up of perfluorinated graded-index (GI) POF with a 62.5 μm core diameter. The overall alignment tolerance was first assessed by observing the optical coupling efficiency in terms of VCSEL/PD misalignment. The horizontal and vertical 3-dB alignment tolerances were about 20 μm and 150 μm for the Tx and 50 μm and over 200 μm for the Rx, respectively. The VCSEL-to-POF coupling loss for the Tx and the POF-to-PD loss for the Rx were 3.25 dB and 1.35 dB at a wavelength of 850 nm, respectively. Subsequently, a high-speed signal at 3.2 Gb/s was satisfactorily delivered via the Tx and Rx modules over a temperature range of -30 to 70°C with no significant errors; the channel crosstalk was below -30 dB. Finally, the performance of the prepared modules was verified by transmitting a 1080p HDMI video supplied by a Bluelay player to an LCD TV. PMID:21369260

  1. Electronic implementation of optical burst switching techniques

    NASA Astrophysics Data System (ADS)

    Albanese, Ilijc; Darcie, Thomas E.; Ganti, Sudhakar

    2013-10-01

    Extensive research effort is ongoing in energy-efficient Internet-based communications. Optical Flow Switching (OFS) and Optical Burst Switching (OBS) offer potentially efficient alternatives to IP-router-based networks for large data transactions, but significant challenges remain. OFS requires each user to install expensive core network technology, limiting application to highly specialized nodes. OBS can achieve higher scalability but burst assembly/disassembly procedures reduce power efficiency. Finally both OFS and OBS use all-optical switching technologies for which energy efficiency and flexibility remain subject to debate. Our study aims at combining the advantages of both OBS and OFS while avoiding their shortcomings. We consider using a two-way resource reservation protocol for periodic concatenations of large (e.g. 1 Mb) packets or Media Frames (MFs). These chains of MFs (MFCs) are semi-transparent with a periodicity referred to as the "transparency degree". Each MFC is assembled and stored at an end-user machine during the resource reservation procedure and is then switched and buffered electronically along its path. The periodic configuration of each MFC enables interleaving of several chains using buffering only to align the MFs in each MFC in time, largely reducing the buffer requirements with respect to OBS. This periodicity also enables a simple scheduling algorithm to schedule large transactions with minimal control plane processing, achieving link utilization approaching 99.9%. In summary, results indicate that implementing optical burst switching techniques in the electronic domain is a compelling path forward to high-throughput power-efficient networking.

  2. A rapid protein structure alignment algorithm based on a text modeling technique

    PubMed Central

    Razmara, Jafar; Deris, Safaai; Parvizpour, Sepideh

    2011-01-01

    Structural alignment of proteins is widely used in various fields of structural biology. In order to further improve the quality of alignment, we describe an algorithm for structural alignment based on text modelling techniques. The technique firstly superimposes secondary structure elements of two proteins and then, models the 3D-structure of the protein in a sequence of alphabets. These sequences are utilized by a step-by-step sequence alignment procedure to align two protein structures. A benchmark test was organized on a set of 200 non-homologous proteins to evaluate the program and compare it to state of the art programs, e.g. CE, SAL, TM-align and 3D-BLAST. On average, the results of all-against-all structure comparison by the program have a competitive accuracy with CE and TM-align where the algorithm has a high running speed like 3D-BLAST. PMID:21814392

  3. Minimal-effort planning of active alignment processes for beam-shaping optics

    NASA Astrophysics Data System (ADS)

    Haag, Sebastian; Schranner, Matthias; Müller, Tobias; Zontar, Daniel; Schlette, Christian; Losch, Daniel; Brecher, Christian; Roßmann, Jürgen

    2015-03-01

    In science and industry, the alignment of beam-shaping optics is usually a manual procedure. Many industrial applications utilizing beam-shaping optical systems require more scalable production solutions and therefore effort has been invested in research regarding the automation of optics assembly. In previous works, the authors and other researchers have proven the feasibility of automated alignment of beam-shaping optics such as collimation lenses or homogenization optics. Nevertheless, the planning efforts as well as additional knowledge from the fields of automation and control required for such alignment processes are immense. This paper presents a novel approach of planning active alignment processes of beam-shaping optics with the focus of minimizing the planning efforts for active alignment. The approach utilizes optical simulation and the genetic programming paradigm from computer science for automatically extracting features from a simulated data basis with a high correlation coefficient regarding the individual degrees of freedom of alignment. The strategy is capable of finding active alignment strategies that can be executed by an automated assembly system. The paper presents a tool making the algorithm available to end-users and it discusses the results of planning the active alignment of the well-known assembly of a fast-axis collimator. The paper concludes with an outlook on the transferability to other use cases such as application specific intensity distributions which will benefit from reduced planning efforts.

  4. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    First ever Multi-Conjugate Adaptive Optics at the VLT Achieves First Light On the evening of 25 March 2007, the Multi-Conjugate Adaptive Optics Demonstrator (MAD) achieved First Light at the Visitor Focus of Melipal, the third Unit Telescope of the Very Large Telescope (VLT). MAD allowed the scientists to obtain images corrected for the blurring effect of atmospheric turbulence over the full 2x2 arcminute field of view. This world premiere shows the promises of a crucial technology for Extremely Large Telescopes. ESO PR Photo 19a/07 ESO PR Photo 19a/07 The MCAO Demonstrator Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. However, with Adaptive Optics (AO) techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e., approaching space conditions. Adaptive Optics systems work by means of a computer-controlled deformable mirror (DM) that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a 'wavefront sensor' (a special camera) at very high speed, many hundreds of times each second. The concept is not new. Already in 1989, the first Adaptive Optics system ever built for Astronomy (aptly named "COME-ON") was installed on the 3.6-m telescope at the ESO La Silla Observatory, as the early fruit of a highly successful continuing collaboration between ESO and French research institutes (ONERA and Observatoire de Paris). Ten years ago, ESO initiated an Adaptive Optics program to serve the needs for its frontline VLT project. Today, the Paranal Observatory is without any doubt one of the most advanced of its kind with respect to AO with no less than 7 systems currently installed (NACO, SINFONI, CRIRES and

  5. Holographic Weapons Sight as Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Merancy, Nujoud; Dehmlow, Brian; Brazzel, Jack P.

    2011-01-01

    Crew Optical Alignment Sights (COAS) are used by spacecraft pilots to provide a visual reference to a target spacecraft for lateral relative position during rendezvous and docking operations. NASA s Orion vehicle, which is currently under development, has not included a COAS in favor of automated sensors, but the crew office has requested such a device be added for situational awareness and contingency support. The current Space Shuttle COAS was adopted from Apollo heritage, weighs several pounds, and is no longer available for procurement which would make re-use difficult. In response, a study was conducted to examine the possibility of converting a commercially available weapons sight to a COAS for the Orion spacecraft. The device used in this study was the XPS series Holographic Weapon Sight (HWS) procured from L-3 EOTech. This device was selected because the targeting reticule can subtend several degrees, and display a graphic pattern tailored to rendezvous and docking operations. Evaluations of the COAS were performed in both the Orion low-fidelity mockup and rendezvous simulations in the Reconfigurable Operational Cockpit (ROC) by crewmembers, rendezvous engineering experts, and flight controllers at Johnson Space Center. These evaluations determined that this unit s size and mounting options can support proper operation and that the reticule visual qualities are as good as or better than the current Space Shuttle COAS. The results positively indicate that the device could be used as a functional COAS and supports a low-cost technology conversion solution.

  6. Holographic weapons sight as a crew optical alignment sight

    NASA Astrophysics Data System (ADS)

    Merancy, Nujoud; Dehmlow, Brian; Brazzel, Jack P.

    2011-06-01

    Crew Optical Alignment Sights (COAS) are used by spacecraft pilots to provide a visual reference to a target spacecraft for lateral relative position during rendezvous and docking operations. NASA's Orion vehicle, which is currently under development, has not included a COAS in favor of automated sensors, but the crew office has requested such a device be added for situational awareness and contingency support. The current Space Shuttle COAS was adopted from Apollo heritage, weighs several pounds, and is no longer available for procurement which would make re-use difficult. In response, a study was conducted to examine the possibility of converting a commercially available weapons sight to a COAS for the Orion spacecraft. The device used in this study was the XPS series Holographic Weapon Sight (HWS) procured from L-3 EOTech. This device was selected because the targeting reticule can subtend several degrees, and display a graphic pattern tailored to rendezvous and docking operations. Evaluations of the COAS were performed in both the Orion low-fidelity mockup and rendezvous simulations in the Reconfigurable Operational Cockpit (ROC) by crewmembers, rendezvous engineering experts, and flight controllers at Johnson Space Center. These evaluations determined that this unit's size and mounting options can support proper operation and that the reticule visual qualities are as good as or better than the current Space Shuttle COAS. The results positively indicate that the device could be used as a functional COAS and supports a low-cost technology conversion solution.

  7. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  8. Triangulation technique in optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Brenci, Massimo; Mencaglia, Andrea A.; Mignani, Anna G.

    1990-08-01

    Optical triangulation is a very well-known classical technique which can be advantageously performed by optical fibers, taking profit from their geometrical versatility, intrinsic safety and good transmission properties. The exploitation of different optical architectures provides spatial information over single or multiple sensing zones, so that a wide class of intensity-modulated optical fiber sensors can be achieved.

  9. A Fast and Scalable Kymograph Alignment Algorithm for Nanochannel-Based Optical DNA Mappings

    PubMed Central

    Noble, Charleston; Nilsson, Adam N.; Freitag, Camilla; Beech, Jason P.; Tegenfeldt, Jonas O.; Ambjörnsson, Tobias

    2015-01-01

    Optical mapping by direct visualization of individual DNA molecules, stretched in nanochannels with sequence-specific fluorescent labeling, represents a promising tool for disease diagnostics and genomics. An important challenge for this technique is thermal motion of the DNA as it undergoes imaging; this blurs fluorescent patterns along the DNA and results in information loss. Correcting for this effect (a process referred to as kymograph alignment) is a common preprocessing step in nanochannel-based optical mapping workflows, and we present here a highly efficient algorithm to accomplish this via pattern recognition. We compare our method with the one previous approach, and we find that our method is orders of magnitude faster while producing data of similar quality. We demonstrate proof of principle of our approach on experimental data consisting of melt mapped bacteriophage DNA. PMID:25875920

  10. Daytime Polar Alignment of Telescope Mountings Using GPS and Internal Reference Optics

    NASA Astrophysics Data System (ADS)

    Mellon, R. R.; Scheld, D.; Stencel, R. E.

    1998-12-01

    A technique is presented for performing polar alignment of astronomical telescope mountings to high precision during daylight hours. This work originated in the requirement to erect a truck mounted astronomical telescope at multiple locations during the day in order to measure the atmospheric convective turbulence Fried Parameter r0 by tracking stars at various zenith angles. The custom equatorial mounting built for this project incorporates a surveyor's theodolite, which is used to establish an optical line of sight to the North Celestial Pole (NCP). The elevation angle of this line of sight is set directly by adjusting the theodolite tube elevation angle to that of the local geographic latitude obtained from a Global Positioning System (GPS) receiver. The theodolite is set into the azimuth of the Pole by observing an object on the horizon of known bearing angle or by observing the Sun=92s known azimuth at a specified time. Once the theodolite line of sight to the NCP is established, an optical target projector contained within and aligned with the polar axis provides an illuminated pattern, which is viewed by the theodolite. Subsequent adjustments of the elevation and azimuth of the polar axis bring the projected pattern onto the intersection of the crosshairs in the theodolite reticule, thereby bringing the polar axis into close coincidence with the NCP. Denver University astronomers are interested in this application for their proposed Fully Adaptive Segmented Telescope (FAST) instrument, a meter-class instrument which can be transported among high altitude sites (see www. adaptive-optics.com). Equinox Interscience (303-843-0313) can provide this daytime polar alignment capability to interested users for equatorial mountings.

  11. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    NASA Astrophysics Data System (ADS)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  12. Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph

    2007-01-01

    The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.

  13. Substrate patterning for liquid crystal alignment by optical interference

    SciTech Connect

    Lu Xuemin; Lee, Fuk Kay; Sheng, Ping; Kwok, H.S.; Chigrinov, V.; Tsui, Ophelia K.C.

    2006-06-12

    Inhomogeneous liquid crystal (LC) alignment surfaces comprising a succession of microdomains favoring different LC alignment directions have been demonstrated for a number of optoelectronic applications. However, the prevalent method used to fabricate these surfaces is time consuming and produce functional areas that are too small for practical use. Here, we demonstrate a simple method based on photopatterning of an azodye layer with an interference pattern produced by intercepting two coherent UV beams. This method can produce alignment patterns within seconds with a practical size of {approx}(0.5 cm){sup 2}.

  14. Null test fourier domain alignment technique for phase-shifting point diffraction interferometer

    DOEpatents

    Naulleau, Patrick; Goldberg, Kenneth Alan

    2000-01-01

    Alignment technique for calibrating a phase-shifting point diffraction interferometer involves three independent steps where the first two steps independently align the image points and pinholes in rotation and separation to a fixed reference coordinate system, e.g, CCD. Once the two sub-elements have been properly aligned to the reference in two parameters (separation and orientation), the third step is to align the two sub-element coordinate systems to each other in the two remaining parameters (x,y) using standard methods of locating the pinholes relative to some easy to find reference point.

  15. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  16. Automated Optical Extraction from Line Arrays of the Alignment Between Microfabricated Layers

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo

    1997-01-01

    Machine reading of layer alignment from line arrays in fully fabricated wafers is demonstrated. Misalignment is calculated from the correlation funcation of optical intensity scans through arrays in the two layers.

  17. The technique of coital alignment and its relation to female orgasmic response and simultaneous orgasm.

    PubMed

    Eichel, E W; Eichel, J D; Kule, S

    1988-01-01

    To enhance male-female sexual compatibility, principles of physical alignment were formulated to make clitoral contact possible in coitus. The Coital Alignment technique combines (a) the "riding high" variation of the "missionary" coital posture, with (b) genitally focused pressure-counterpressure stimulus applied in the coordination of sexual movement. It was hypothesized that the Alignment technique would correlate with high frequency of female orgasm and partner simultaneity. A questionnaire was given to a group of males and females (n = 43) who had learned the Alignment technique, and to a volunteer group (n = 43) who had no knowledge of the Alignment concept. The mean age for the experimental females (n = 22) was 39.7, and for the control females (n = 22) was 38.7. Analysis of variance and post-hoc LSD procedures conducted on the key dependent variables showed significant differences (p less than .05, two-tailed) between experimental and control females, favoring experimental females on the orgasmic attainment criteria of coital orgasm, simultaneous orgasm, and orgasm experienced as "complete and satisfying." Pearson Product Correlations were conducted across all four groups, experimental and control males and females combined (N = 86). Greater adherence to behaviors associated with the Coital Alignment technique--learned and incidental--had a significant positive correlation with the above and additional sexual satisfaction variables (p less than .01). The Alignment technique may be an important option for a majority of women that have difficulty in attaining orgasm in coitus. PMID:3204637

  18. Optical Modeling of the Alignment and Test of the NASA James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Hayden, Bill; Keski-Kuha, Ritva; Feinberg, Lee

    2007-01-01

    Optical modeling challenges of the ground alignment plan and optical test and verification of the NASA James Webb Space Telescope are discussed. Issues such as back-out of the gravity sag of light-weighted mirrors, as well as the use of a sparse-aperture auto-collimating flat system are discussed. A walk-through of the interferometer based alignment procedure is summarized, and sensitivities from the sparse aperture wavefront test are included as examples.'

  19. A No-Buff Technique to Produce Surfaces That Induce Alignment in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Harrison, Daniel; Fisch, Michael R.; Petschek, Rolfe G.; Li, J.-F.; Harris, Frank; Korns, Heather

    2002-04-01

    Alignment layers for liquid crystal cells were prepared by directional deposition of high molecular weight rigid-rod ionomers on glass and indium-tin-oxide substrates. Several deposition techniques were developed and tested. Material type, concentration, temperature, and application technique were systematically varied and the resultant alignment of the liquid crystals studied. Three different methods of applying the alignment layer were investigated: directional spray deposition, brushing, and directional deposition using a squeegee (doctor bar). The application temperature ranged from 30 to 80°C. The best results were obtained using a squeegee to perform directional deposition at temperature of less than 60°C. The alignment layers obtained in this way are robust, exhibit excellent alignment, and have pretilt angles of a few degrees.

  20. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  1. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge

    NASA Astrophysics Data System (ADS)

    Korobenko, A.; Milner, V.

    2016-05-01

    We use an optical centrifuge to align asymmetric top SO2 molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.

  2. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints.

    PubMed

    Campos, Ricard; Gracias, Nuno; Ridao, Pere

    2016-01-01

    Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL) systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project. PMID:26999144

  3. Underwater Multi-Vehicle Trajectory Alignment and Mapping Using Acoustic and Optical Constraints

    PubMed Central

    Campos, Ricard; Gracias, Nuno; Ridao, Pere

    2016-01-01

    Multi-robot formations are an important advance in recent robotic developments, as they allow a group of robots to merge their capacities and perform surveys in a more convenient way. With the aim of keeping the costs and acoustic communications to a minimum, cooperative navigation of multiple underwater vehicles is usually performed at the control level. In order to maintain the desired formation, individual robots just react to simple control directives extracted from range measurements or ultra-short baseline (USBL) systems. Thus, the robots are unaware of their global positioning, which presents a problem for the further processing of the collected data. The aim of this paper is two-fold. First, we present a global alignment method to correct the dead reckoning trajectories of multiple vehicles to resemble the paths followed during the mission using the acoustic messages passed between vehicles. Second, we focus on the optical mapping application of these types of formations and extend the optimization framework to allow for multi-vehicle geo-referenced optical 3D mapping using monocular cameras. The inclusion of optical constraints is not performed using the common bundle adjustment techniques, but in a form improving the computational efficiency of the resulting optimization problem and presenting a generic process to fuse optical reconstructions with navigation data. We show the performance of the proposed method on real datasets collected within the Morph EU-FP7 project. PMID:26999144

  4. The optical wing aligning device of the Langley Field tunnel

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1921-01-01

    Described here is a convenient and accurate method of aligning the wing chord with the airflow. The device was developed to permit rapid and accurate alignment of airfoils and models with the airstream passing through the tunnel. It consists of three main parts: a projector, a reflector, and a target. The arrangement, which is shown in a figure, has proven satisfactory in operation. It is far better than the old method of sighting across a long batten, as the operator of a balance may see the target and correctly judge the accuracy of his alignment. Whereas the old method required two operators and several minutes time to align to within 1/10 degree, this method enables one operator to align a wing to within 1/100 of a degree in a few seconds. This method also has the advantage of being able to measure the angle of the wing while the tunnel is running. Thus, the true angle of incidence is shown.

  5. Field-free long-lived alignment of molecules with a two-dimensional optical centrifuge

    NASA Astrophysics Data System (ADS)

    Milner, A. A.; Korobenko, A.; Milner, V.

    2016-05-01

    We introduce an optical tool—a "two-dimensional optical centrifuge"—capable of aligning molecules in extreme rotational states. The alignment is studied in oxygen under ambient conditions, and in a cold jet of nitrogen. Unlike the conventional centrifuge, which confines the molecules in the plane of their rotation, its two-dimensional version aligns the molecules along a well-defined axis, similar to the effect of a single linearly polarized laser pulse, but at a much higher level of rotational excitation. We observe long lifetimes of the created alignment due to the increased robustness of ultrahigh rotational states with respect to collisions. The adiabatic nature of the centrifuge excitation provides a means of generating stationary aligned states.

  6. Optical Omega network: a compact implementation technique

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Cheng, L. M.

    1995-10-01

    We propose a technique for the compact implementation of an optical Omega network. This technique utilizes the concept that both the perfect-shuffle interconnection and the switching stages can be realized by the same procedures, i.e., duplicate, shift, superimpose, and mask. As a result, a single set of optics is sufficient to realize the whole Omega network in a time-multiplexed recursive manner. Optical setups were designed and a proof-of-principle experiment was performed.

  7. The deterministic optical alignment of the HERMES spectrograph

    NASA Astrophysics Data System (ADS)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  8. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

    PubMed

    Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

    2016-05-16

    We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1. PMID:27409898

  9. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering.

    PubMed

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with 8 degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis on the simulated data set to obtain Karhunen-Loève modes, which form the basis set whose weights are the system measurements. A model function, which maps the state to the measurement, is learned using nonlinear least-squares fitting and serves as the measurement function for the nonlinear estimator (extended and unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss simulated and experimental results of the full system in operation. PMID:27505378

  10. Automated alignment of a reconfigurable optical system using focal-plane sensing and Kalman filtering

    NASA Astrophysics Data System (ADS)

    Fang, Joyce; Savransky, Dmitry

    2016-08-01

    Automation of alignment tasks can provide improved efficiency and greatly increase the flexibility of an optical system. Current optical systems with automated alignment capabilities are typically designed to include a dedicated wavefront sensor. Here, we demonstrate a self-aligning method for a reconfigurable system using only focal plane images. We define a two lens optical system with eight degrees of freedom. Images are simulated given misalignment parameters using ZEMAX software. We perform a principal component analysis (PCA) on the simulated dataset to obtain Karhunen-Lo\\`eve (KL) modes, which form the basis set whose weights are the system measurements. A model function which maps the state to the measurement is learned using nonlinear least squares fitting and serves as the measurement function for the nonlinear estimator (Extended and Unscented Kalman filters) used to calculate control inputs to align the system. We present and discuss both simulated and experimental results of the full system in operation.

  11. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Steincamp, James; Taylor, Jaime

    2003-01-01

    A reduced surrogate, one point crossover genetic algorithm with random rank-based selection was used successfully to estimate the multiple phases of a segmented optical system modeled on the seven-mirror Systematic Image-Based Optical Alignment testbed located at NASA's Marshall Space Flight Center.

  12. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  13. Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation.

    PubMed

    Yan, Lu; Zhao, Bingxin; Liu, Xiaohong; Li, Xuan; Zeng, Chao; Shi, Haiyan; Xu, Xiaoxue; Lin, Tong; Dai, Liming; Liu, Yong

    2016-03-23

    The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes. PMID:26926578

  14. Ultra-high-precision alignment technology for lens manufacturing used for high-end optics

    NASA Astrophysics Data System (ADS)

    Schiffner, Sebastian; Sure, Thomas

    2013-09-01

    This article describes the progress in the area of modern centration technology by using digital image processing. This work is motivated by the continuously increasing demand for high-end optics. During the last years the surface lens quality has been continuously improved. Today the image quality is more determined by the manufacturing tolerances for the mechanical interface which is responsible for decenter and tilt of the lenses respectively the subgroups. Some of the aberrations are directly linked to the decenter of the lenses, Coma for example. Hence it is necessary to realize the subgroups with tolerances below lpm. To determine the decenter of a lens an auto collimation telescope is used to image the reflex of the lens surfaces onto a detector, commonly a half covert photodiode. Rotating the lens generates a sinusoidal signal, which is evaluated by a lock-in amplifier to drive two actuators to adjust the alignment chuck. Typical internal reflections caused by stray light for example disturb the current procedure in such a way that it is impossible to get a stable alignment process. Digital image processing allows us to fix these problems with image recognition. We will demonstrate how a modified auto collimation telescope in combination with the developed software algorithms made the manufacturing process more accurate, faster and useable for a broad spectrum of lenses. It has been proofed by some thousand diverse lenses that with these new technique subgroups can be centered within 0.25μm.

  15. Optical tweezers technique and its applications

    NASA Astrophysics Data System (ADS)

    Guo, HongLian; Li, ZhiYuan

    2013-12-01

    Since their advent in the 1980s, optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics, biology, chemistry, medical science and nanoscience. In this paper, we introduce the basic principle, the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique. We will discuss in detail several technological issues, including high precision displacement and force measurement in single-trap and dual-trap optical tweezers, multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator, and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers. We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins. Finally we present application of the optical tweezers technique for trapping, transporting, and patterning of metallic nanoparticles, which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.

  16. Techniques used in the alignment of TJNAF's accelerators and experimental halls

    SciTech Connect

    C.J. Curtis; J.C. Dahlberg; W.A. Oren; K.J. Tremblay

    1997-10-13

    With the successful completion of the main accelerator in 1994 the alignment emphasis at the Thomas Jefferson National Accelerator Facility (formerly CEBAF) switched to the continuing installation and upgrades in the three experimental halls. This presentation examines the techniques used in completing the CEBAF machine and also gives an update on the alignment of the new accelerator, a 1 kW free-electron laser, currently being built at the facility.

  17. All-optical signal processing technique for secure optical communication

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  18. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  19. [The alignment of the optical system for 216 coude focus echelle spectrometer].

    PubMed

    Zhu, Y; Pan, J

    1997-04-01

    This paper gives a brief introduction about the structure of the echelle spectrometer which was installed at coude focus of the chinese 2. 16 meter astronomical telescope. According to the design requirment of this echelle spectrometer, the main points and steps of alignment of optical system are analysed. Authors work out a practical alignment scheme in which the fewest auxiliary tools are used. PMID:15810402

  20. Alignment techniques required by precise measurement of effective focal length

    NASA Technical Reports Server (NTRS)

    Wise, T. D.

    1980-01-01

    The characteristics of false color imagery produced by instrumentation on earth resource mapping satellites are examined. The spatial fidelity of the imagery is dependent upon the geometric accuracy (GA) and the band-to-band registration (BBR) with which the telescope instrument is assembled. BBR and GA require knowledge of telescope effective focal length (EFL) to one part in 10,000 in order that the next generation of earth mappers be able to carry out their missions. The basis for this level of precision is briefly considered, and a description is given of the means by which such precise EFL measurements have been carried out. Attention is given to accuracy requirements, the technique used to measure effective focal length, possible sources of error in the EFL measurement, approaches for eliminating errors, and the results of the efforts to control measurement errors in EFL determinations.

  1. Large Volume, Optical and Opto-Mechanical Metrology Techniques for ISIM on JWST

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo

    2015-01-01

    The final, flight build of the Integrated Science Instrument Module (ISIM) element of the James Webb Space Telescope is the culmination of years of work across many disciplines and partners. This paper covers the large volume, ambient, optical and opto-mechanical metrology techniques used to verify the mechanical integration of the flight instruments in ISIM, including optical pupil alignment. We present an overview of ISIM's integration and test program, which is in progress, with an emphasis on alignment and optical performance verification. This work is performed at NASA Goddard Space Flight Center, in close collaboration with the European Space Agency, the Canadian Space Agency, and the Mid-Infrared Instrument European Consortium.

  2. Mounting, alignment and integration of large optics in China's high power laser

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xiong, Zhao; Yuan, Xiaodong

    2016-05-01

    SG-III, a high-power laser facility of China, is constructed to produce 0.18MJ energy for physical experiments under controlled laboratory conditions. Each laser beam requires the ability to align to a millimeter-sized target with a precision of 30 μm (RMS) and the single-beam energy will be up to 3.75 KJ. Arrayed along each beam-path, hundreds of optics must be positioned to stringent tolerances. Therefore, this paper introduces the approaches used by engineers to overcome the technical challenges on precise mounting, alignment and integration of large optics in china's high power laser facility.

  3. Automated self-alignment procedure for optical correlators

    NASA Astrophysics Data System (ADS)

    Montes-Usategui, Mario; Monroe, Stanley E.; Juday, Richard D.

    1997-06-01

    We propose a general and fully automated procedure that enables the self-correction of the errors and performance losses produced by the misalignment of the components of an optical correlator. This method is simple, is carried out entirely by software, and has minimal operating constraints. There are no moving parts and no extra hardware is required.

  4. Aligning and testing non-null optical system with deflectometry

    NASA Astrophysics Data System (ADS)

    Zhao, Weirui; Huang, Run; Su, Peng; Burge, James H.

    2014-09-01

    We present our analysis methodology for a 20.3 cm prototype optical tracker to determine why instabilities occur below 50 Hz and suggest improvements. The Navy Precision Optical Interferometer makes use of six small optical telescope stations spaced along a Y-array to synthesize an equivalent single larger telescope. Piezoelectric-driven optical trackers steer 12.5 cm output beams from each station to an optics laboratory up to 700 m distant. A percentage of this starlight is split off and used in a closed-loop feedback to update the pointing of the telescope and steering of the tracker. Steering stabilizes atmospheric induced beam trajectory deviations, required for fringe generation. Because of closedloop feedback, we require all fundamental frequencies to be at least 3 times the desired operational frequency, or 150 Hz. These trackers are modified commercial aluminum gimbal mounts with flex-pivot axles and very small damping ratio. Steering is tip/tilt mirror rotation by push-only actuators and a return spring. It is critical contact be maintained between actuator, mirror mount and return spring. From our dynamic analysis, the 122 N return spring is 2.9 times that required, and has a natural frequency equal to 238 Hz. The range of steering, 140 microradian, is double that required and the 0.077 microradian precision is 2.6 times that required. The natural frequency of the tracker is 66 Hz and the tuned closed-loop operational frequency is only 22 Hz. We conclude the low fundamental frequency of the mount limits its performance below 50 Hz and stiffening the structure is required.

  5. Tear film measurement by optical reflectometry technique.

    PubMed

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519

  6. Techniques for Solution- Assisted Optical Contacting

    NASA Technical Reports Server (NTRS)

    DeVine, Glenn; Ware, Brent; Wuchenich, Danielle M.; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    A document discusses a solution-assisted contacting technique for optical contacting. An optic of surface flatness Lambda/20 was successfully contacted with one of moderate surface quality, or Lambda/4. Optics used were both ultra-low expansion (ULE) glass (Lambda/4 and Lambda/20) and fused silica (Lambda/20). A stainless steel template of the intended interferometer layout was designed and constructed with three contact points per optic. The contact points were all on a common side of the template. The entire contacting jig was tilted at about 30 . Thus, when the isopropanol was applied, each optic slid due to gravity, resting on the contact points. All of the contacting was performed in a relatively dusty laboratory. A number of successful contacts were achieved where up to two or three visible pieces of dust could be seen. These were clearly visible due to refraction patterns between the optic and bench. On a number of optics, the final step of dropping isopropyl between the surfaces was repeated until a successful contact was achieved. The new procedures realized in this work represent a simplification for optical contacting in the laboratory. They will both save time and money spent during the contacting process, and research and development phases. The techniques outlined are suitable for laboratory experiments, research, and initial development stages.

  7. Novel optical password security technique based on optical fractal synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Hu, Jiasheng; Wu, Xu

    2009-06-01

    A novel optical security technique for safeguarding user passwords based on an optical fractal synthesizer is proposed. A validating experiment has been carried out. In the proposed technique, a user password is protected by being converted to a fractal image. When a user sets up a new password, the password is transformed into a fractal pattern, and the fractal pattern is stored in authority. If the user is online-validated, his or her password is converted to a fractal pattern again to compare with the previous stored fractal pattern. The converting process is called the fractal encoding procedure, which consists of two steps. First, the password is nonlinearly transformed to get the parameters for the optical fractal synthesizer. Then the optical fractal synthesizer is operated to generate the output fractal image. The experimental result proves the validity of our method. The proposed technique bridges the gap between digital security systems and optical security systems and has many advantages, such as high security level, convenience, flexibility, hyper extensibility, etc. This provides an interesting optical security technique for the protection of digital passwords.

  8. Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.

    PubMed

    Korobenko, A; Milner, V

    2016-05-01

    We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light. PMID:27203318

  9. The extreme ultraviolet imager of solar orbiter: optical design and alignment scheme

    NASA Astrophysics Data System (ADS)

    Halain, J.-P.; Mazzoli, A.; Meining, S.; Rochus, P.; Renotte, E.; Auchère, F.; Schühle, U.; Delmotte, F.; Dumesnil, C.; Philippon, A.; Mercier, R.; Hermans, A.

    2015-09-01

    The Extreme Ultraviolet Imager (EUI) is one of the remote sensing instruments on-board the Solar Orbiter mission. It will provide dual-band full-Sun images of the solar corona in the extreme ultraviolet (17.1 nm and 30.4 nm), and high resolution images of the solar disk in both extreme ultraviolet (17.1 nm) and vacuum ultraviolet (Lyman-alpha 121.6 nm). The EUI optical design takes heritage of previous similar instruments. The Full Sun Imager (FSI) channel is a single mirror Herschel design telescope. The two High Resolution Imager (HRI) channels are based on a two-mirror optical refractive scheme, one Ritchey-Chretien and one Gregory optical design for the EUV and the Lyman-alpha channels, respectively. The spectral performances of the EUI channels are obtained thanks to dedicated mirror multilayer coatings and specific band-pass filters. The FSI channel uses a dual-band mirror coating combined with aluminum and zirconium band-pass filters. The HRI channels use optimized band-pass selection mirror coatings combined with aluminum band-pass filters and narrow band interference filters for Lyman-alpha. The optical performances result from accurate mirror manufacturing tolerances and from a two-step alignment procedure. The primary mirrors are first co-aligned. The HRI secondary mirrors and focal planes positions are then adjusted to have an optimum interferometric cavity in each of these two channels. For that purpose a dedicated alignment test setup has been prepared, composed of a dummy focal plane assembly representing the detector position. Before the alignment on the flight optical bench, the overall alignment method has been validated on the Structural and Thermal Model, on a dummy bench using flight spare optics, then on the Qualification Model to be used for the system verification test and qualifications.

  10. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  11. A new optical axle measuring instrument for wheel alignment in assembly-line production

    SciTech Connect

    Bruhn, H.; Felske, A.

    1985-01-01

    The newly developed optical measuring system allows adjustment of front and rear wheel angularities - toe, camber, caster - in assembly-line production. There is no need to align the car, since the measuring base for the angle alignment is formed by the car itself. Defined spring compression values and direct caster angle determination lead to higher accuracy. Adjustment is carried out directly on the assembly line. Measuring pits are not required. The working time for each car and the working area required, which are important cost factors, are markedly lower than with conventional instruments. The axle measuring system was developed for the VW Vanagon, but can also be used for passenger car chassis. The measuring principle, the optical and mechanical design of the device, and a statistical analysis of over 100 cars aligned by means of this system are described in comparison with conventional measuring instruments.

  12. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    SciTech Connect

    Bauke, W.; Clark, D.A.; Trujillo, P.B.

    1985-01-01

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results.

  13. The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey

    SciTech Connect

    Antonik, M. L.; Bacon, D. J.; Bridle, S.; Doel, P.; Brooks, D.; Worswick, S.; Bernstein, G.; Bernstein, R.; DePoy, D.; Flaugher, B.; Frieman, J. A.; Gladders, M.; Gutierrez, G.; Jain, B.; Jarvis, M.; Kent, S. M.; Lahav, O.; Parker, S. -. J.; Roodman, A.; Walker, A. R.

    2013-04-10

    Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E- and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important.

  14. Electro-optical effects in hybrid aligned flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, G.; Buczkowska, M.

    2013-11-01

    Liquid crystal cells with hybrid boundary anchoring, filled with nematic possessing flexoelectric properties, and subjected to external electric field, were studied numerically in order to find the influence of flexoelectricity on their behavior. Such layers may adopt three kinds of director structures: uniform planar, uniform homeotropic, and non-uniform which is intermediate between the former two. Stability of these structures depends on flexoelectric coefficients, anchoring strengths, thickness of the layer, dielectric anisotropy, and elastic constants. Changes of bias voltage cause transitions between them, which lead to electro-optical effects if the layers are placed between crossed polarizers. Three cases of transitions were considered: (i) transition between bright planar and dark non-uniform states, (ii) between dark planar and bright non-uniform states, and (iii) between dark homeotropic and bright non-uniform states. The director distributions in various states corresponding to various grey levels were calculated, and the electro-optic characteristics were obtained. The dynamics of the transitions between dark, bright, and intermediate states was determined taking into account the backflow effect. It was found that the transitions are faster when the nematic is devoid of flexoelectric properties.

  15. Enzyme-etching technique to fabricate micropatterns of aligned collagen fibrils

    PubMed Central

    Liu, Honghai; Chen, Ruikai; Yang, Huaxiao; Qin, Wan; Borg, Thomas K.; Dean, Delphine; Xu, Meifeng; Gao, Bruce Z.

    2014-01-01

    A technique to tailor-make pre-coated, pre-aligned bovine collagen fibrils, derived from neonatal cardiomyocytes, on the surface of a glass slide into a designated pattern is reported. The unwanted collagen-coated area was erased by a collagenase solution and the tailored area was retained by attaching a microfabricated polydimethylsiloxane stamp directly to the collagen-coated surface. Using this technique, collagen patterns with designated orientations and with clear pattern boundaries and defined shapes were fabricated. PMID:24562408

  16. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    SciTech Connect

    Borkar, Tushar; Chang, Won Seok; Hwang, Jun Yeon; Shepherd, Nigel D.; Banerjee, Rajarshi

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  17. Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope

    NASA Technical Reports Server (NTRS)

    Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will

    2007-01-01

    We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.

  18. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

    NASA Technical Reports Server (NTRS)

    Anderson, Richard

    1994-01-01

    The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

  19. Nonlinear optical techniques for surface studies. [Monolayers

    SciTech Connect

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed.

  20. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  1. Introduction to high-resolution accelerator alignment using x-ray optics.

    SciTech Connect

    Yang, B. X.; Friedsam, H.

    2006-01-01

    A novel alignment technique utilizing the x-ray beam of a dedicated alignment undulator in conjunction with pinholes and position-sensitive detectors for positioning accelerator components in an x-ray free-electron laser will be presented. In this concept two retractable pinholes at each end of the main undulator line define a stable and reproducible x-ray beam axis (XBA). Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable the direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy in the micron range for target pinholes in the transverse directions over long distances. It defines the beam axis for the electron-beam-based alignment with high reproducibility. This concept complements the electron-beam-based alignment and the existing survey methods advancing the alignment accuracy of long accelerators to an unprecedented level. Further improvements of the transverse accuracy using x-ray zone plates and a concurrent measurement scheme during accelerator operation, providing real-time feedback for transverse position corrections, will be discussed.

  2. Optical properties of hybrid aligned nematic cells with different pretilt angles.

    PubMed

    Belyaev, Victor V; Solomatin, Alexey S; Kurilov, Alexander D; Chausov, Denis N; Mazaeva, Vera G; Shoshin, Vadim M; Bobylev, Yuri P

    2014-10-10

    The phase retardation difference, ΔΦ, is calculated for hybrid liquid crystal (LC) cells as a function of LC pretilt angles, θ0(1), θ0(2), on the opposite substrates of the cell for the case of an arbitrary angle of light incidence in the range from 0 to 90°. An LC director configuration is suggested for its application in optical compensators. Design and fabrication methods of hybrid aligned nematic (HAN) cells with an arbitrary LC pretilt angle are described. The LC pretilt angle is measured in the HAN cells with a given planar or vertical LC alignment on one of the substrates. PMID:25322431

  3. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in

  4. Alignment performance comparison between MFR and MDCO for a TMA optical system

    NASA Astrophysics Data System (ADS)

    Kang, Hyukmo; Oh, Eunsong; Kim, Sug-Whan

    2015-09-01

    In this study, we performed alignment state estimation simulations and compared the performance of two Computer Aided Alignment (hereafter CAA) algorithms i.e. `Merit Function Regression (MFR)' and `Multiple Design Configuration Optimization (MDCO)' for a TMA optical system. The former minimizes the merit function using multi-field wavefront error measurements from single configuration, while the latter minimizes the merit function using single-field measured wavefront error from multiple configurations. The optical system used is an unobscured three-mirror anastigmat (TMA) optical system of 70mm in diameter, and F/5.0. It is designed for an unmanned aerial vehicle for coastal water remote sensing. The TMA consists of two aspherical mirrors, a spherical mirror and a flat folding mirror. Based on the sensitivity analysis, we set the tilt x, y of tertiary mirror as a compensator, and not considered decenter of tertiary mirror because of its spherical characteristic. For the simulation, we introduced Gaussian distribution of initial misalignment to M3. It has the mean value of zero and standard deviation of 0.5 mrad. The initial simulation result of alignment state estimation shows that both algorithms can meet the alignment requirement, λ/10 RMS WFE at 633nm. However, when we includes measurement noise, the simulation result of MFR shows greater standard deviation in RMS WFE than that of MDCO. As for the measurement, the MDCO requires single on-axis field while the MFR requires multiple fields, we concluded that the MDCO is more practical method to align the off-axis TMA optics than MFR.

  5. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  6. Implement of Digital Moire technique on DSP for alignment of partial compensation interferometer

    NASA Astrophysics Data System (ADS)

    Tian, Yuhan; QunHao; YaoHu; Wang, Shaopu; Li, Tengfei; Wang, Jingxian

    2016-01-01

    Digital Moiré technique is adopted in partial compensation interferometer (PCI) for high-precision testing of figure error of the aspheric surfaces. The figure error of the measured aspheric is obtained by a series of calculation with the real interferogram and ideal interferograms generated by computer. The dense interference fringes at the exit pupil make it difficult to align the PCI. On the contrary, digital Moire fringes composed from real and ideal interferograms are sparse and corresponding to the figure error of the measured aspheric, making it easier to align the PCI. Generally, digital Moire technique is processed on the computer, resulting in slow processing speed and difficult display in real time. Digital Signal Processor (DSP) can be used to implement digital Moire technique and display digital Moire fringes in real time with its powerful processing capacity. In this paper, digital Moire technique is implemented on the TMS320C6455 DSP. The hardware system consists of a DSP module, a CCD camera and a monitor. Finally we experimentally obtain the digital Moire image, and further analyze how to align the PCI theoretically.

  7. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  8. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation

    PubMed Central

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-01-01

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

  9. Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.

    PubMed

    Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei

    2014-06-16

    Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504

  10. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  11. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  12. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, Steve A.; Shannon, Robert R.

    1987-01-01

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  13. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, S.A.; Shannon, R.R.

    1985-01-18

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  14. Active alignment and vibration control system for a large airborne optical system

    NASA Astrophysics Data System (ADS)

    Kienholz, David A.

    2000-04-01

    Airborne optical or electro-optical systems may be too large for all elements to be mounted on a single integrating structure, other than the aircraft fuselage itself. An active system must then be used to maintain the required alignment between elements. However the various smaller integrating structures (benches) must still be isolated from high- frequency airframe disturbances that could excite resonances outside the bandwidth of the alignment control system. The combined active alignment and vibration isolation functions must be performed by flight-weight components, which may have to operate in vacuum. A testbed system developed for the Air Force Airborne Laser program is described. The payload, a full-scale 1650-lb simulated bench, is mounted in six degrees- of-freedom to a vibrating platform by a set of isolator- actuators. The mounts utilize a combination of pneumatics and magnetics to perform the dual functions of low-frequency alignment and high-frequency isolation. Test results are given and future directions for development are described.

  15. Application of holographic optical techniques to bulk memory.

    NASA Technical Reports Server (NTRS)

    Anderson, L. K.

    1971-01-01

    Current efforts to exploit the spatial redundancy and built-in imaging of holographic optical techniques to provide high information densities without critical alignment and tight mechanical tolerances are reviewed. Read-write-erase in situ operation is possible but is presently impractical because of limitations in available recording media. As these are overcome, it should prove feasible to build holographic bulk memories with mechanically replaceable hologram plates featuring very fast (less than 2 microsec) random access to large (greater than 100 million bit) data blocks and very high throughput (greater than 500 Mbit/sec). Using volume holographic storage it may eventually be possible to realize random-access mass memories which require no mechanical motion and yet provide very high capacity.

  16. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  17. Optical alignment influenced aberrations in laser beam delivery systems and their correction

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2015-03-01

    Industrial high power laser systems are often evaluated based upon spatial profile of the beam before they are brought to focus for processing materials. It is therefore often assumed that if the raw beam profile is good that the focus is equally as good. The possibility of having good optics and poor alignment or bad optics and good alignment and therefore not achieve a good focal spot is quite high due to the fact that a raw beam spatial profile does not manifest third order aberrations. In such instances the focal spot will contain aberrations when there are slightly misaligned, poor quality, high power optics in the system such as a beam expander or eye piece and objective of a 3-axis galvo. Likewise, if the beam itself is not on axis, the third order aberrations of astigmatism and coma are likely to appear but again not be seen in the unfocused beams spatial profile. The third order aberrations of astigmatism, coma and spherical aberration can significantly alter both the size and spatial profile at the focus resulting in out of spec performance. The impact of beam and zoom expanders and their alignment in beam delivery systems is investigated by measuring both the far field unfocused and the far field focus beams using an all passive beam waist analyzer system.

  18. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

    2007-01-01

    We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

  19. Alignment, Assembly and Testing of High Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian

    2005-01-01

    We are developing grazing-incidence x-ray imaging optics for a balloon-borne hard x-ray telescope (HERO). The HERO payload, scheduled for launch in May 2005, currently consists of 8 mirror modules each containing 12 mirror shells fabricated using electroform-nickel replication off super-polished cylindrical mandrels. An optical system developed for aligning and assembling the shells in the modules will be described. Sources for systematic errors associated with this process will be discussed and results from on-ground x-ray testing of each module will be presented.

  20. Tailoring the Optical Dipole Force for Molecules by Field-Induced Alignment

    NASA Astrophysics Data System (ADS)

    Purcell, S. M.; Barker, P. F.

    2009-10-01

    We report on the ability to tailor the optical dipole force for molecules by tuning their effective polarizability with strong field alignment using polarized fields. We have measured a difference of 20% in the dipole force on cold CS2 molecules when changing from linear to near-circular polarization using peak field intensities of 5.7×1011Wcm-2. A variation in the focal length with laser polarization of a molecular-optical lens formed by a single focused laser beam was also measured. This provides a new way of modifying this force for many molecules.

  1. Using a two-stage optimization strategy for the active alignment of multifiber optical devices

    NASA Astrophysics Data System (ADS)

    Lin, Tsung Yin

    2010-05-01

    The alignment of optical components is a key factor when designing and manufacturing multifiber optical systems. This problem can be treated as a standard multiobjective optimization problem and solved by numerical optimization methodologies. The core diameter of a single-mode fiber is ~9 μm, and any slight misalignment during manufacturing will cause signification optical losses in connections. Previous studies have shown that the currently used alignment methods for multifiber devices can increase the optical power summation of all fibers, but the results are not very accurate. This study first compares different numerical optimization methodologies that can be used to find the ideal connection position. Two indices are used to judge the performances of different methods: the required time and the optical power. Next, a two-stage optimization strategy is proposed to obtain a fast and accurate result. In the first stage, the Nelder-Mead simplex method is used to move toward the optimum position quickly. In the second stage, the steepest descent method with polynomial interpolation is applied to improve the accuracy because of the stability of the method.

  2. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.

    2013-12-01

    In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

  3. Optical pupil relay design for SILEX - Optimising wavefront error and transmit/receive beams co-alignment

    NASA Astrophysics Data System (ADS)

    Jonas, Reginald P.

    1992-06-01

    This paper describes some of the key parameters that have been considered for the European Satellite Interorbital Link EXperiment (SILEX) optical relay lens design. Particular attention has been given to the specific requirement of transmit/receive beams co-alignment. The method of evaluating co-alignment errors is described and the effect of manufacturing tolerances and environmental long term stability on the co-alignment error investigated.

  4. A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices

    NASA Astrophysics Data System (ADS)

    Cho, Il-Joo; Yoon, Euisik

    2009-08-01

    In this paper, a new three-axis electromagnetically actuated micromirror structure has been proposed and fabricated. It is electromagnetically actuated at low voltage using an external magnetic field. The main purpose of this work was to obtain a three-axis actuated micromirror in a mechanically robust structure with large static angular and vertical displacement at low actuation voltage for fine alignment among optical components in an active alignment module as well as conventional optical systems. The mirror plate and torsion bars are made of bulk silicon using a SOI wafer, and the actuation coils are made of electroplated Au. The maximum static deflection angles were measured as ±4.2° for x-axis actuation and ±9.2° for y-axis actuation, respectively. The maximum static vertical displacement was measured as ±42 µm for z-axis actuation. The actuation voltages were below 3 V for all actuation. The simulated resonant frequencies are several kHz, and these imply that the fabricated micromirror can be operated in sub-millisecond order. The measured radius of curvature (ROC) of the fabricated micromirror is 7.72 cm, and the surface roughness of the reflector is below 1.29 nm which ensure high optical performance such as high directionality and reflectivity. The fabricated micromirror has demonstrated large actuated displacement at low actuation voltage, and it enables us to compensate a larger misalignment value when it is used in an active alignment module. The robust torsion bar and lifting bar structure formed by bulk silicon allowed the proposed micromirror to have greater operating stability. The additional degree of freedom with z-axis actuation can decrease the difficulty in the assembly of optical components and increase the coupling efficiency between optical components.

  5. Instrumentation techniques for the automatic alignment of large, tiled fixed matrix displays

    NASA Astrophysics Data System (ADS)

    Marshall, P.

    2005-09-01

    Modern display systems for simulation applications, be they for aviation, naval, automotive or even large visualization and educational/entertainment systems, are all using a tiled approach to achieve high resolution and large fields of view. The aviation applications are particularly demanding, as the fidelity of the matching and blending between the tiled segments needs to be of a high order for flight simulation. This paper looks at the measurement instrumentation techniques that can be used in order to align such large and critical systems. Ultimately such measurement systems allow a fully automatic alignment of color, color uniformity, blending between tiles and gamma to be made. While front- or rear-projected systems are the main references for the analysis, much, if not most, of the principles outlined can apply to tiled large flat panel displays as well.

  6. Optical interconnection for a polymeric PLC device using simple positional alignment.

    PubMed

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment. PMID:21643108

  7. Optical response from dual-frequency hybrid-aligned nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Vakulin, D. A.; Ivanova, N. L.; Gavrish, E. O.; Vasil'ev, V. N.

    2012-05-01

    Dual-frequency hybrid-aligned nematic liquid crystal cells and the influence of the parameters of a control electric field on their optical response are studied. It is found that the harmonic oscillations of the optical transmission in such cells are observed in the interval between low frequency-to-high frequency voltage switchings unlike in conventional twisted nematic cells. A V-shaped bistable optical response is obtained by successively applying sinusoidal electric fields with frequencies of 1 and 30 kHz to a twisted nematic cell. For a liquid crystal layer 8 μm thick and an applied voltage of 50 V, the response time is 10 ms. In a hybrid-aligned twisted-nematic cell with a large initial tilt angle of the director (about 70°), the V-shaped optical response is observed when the inclined homeotropic state is switched to the twisted state by applying a 30-kHz field. The initial structure of the layer recovers as a result of natural elastic relaxation, and the response time increases roughly fourfold.

  8. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.

    PubMed

    Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R

    2009-10-01

    Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis. PMID:20147041

  9. Using naturally occurring polysaccharides to align molecules with nonlinear optical activity

    NASA Technical Reports Server (NTRS)

    Prasthofer, Thomas

    1996-01-01

    The Biophysics and Advanced Materials Branch of the Microgravity Science and Applications Division at Marshall Space Flight Center has been investigating polymers with the potential for nonlinear optical (NLO) applications for a number of years. Some of the potential applications for NLO materials include optical communications, computing, and switching. To this point the branch's research has involved polydiacetylenes, phthalocyanins, and other synthetic polymers which have inherent NLO properties. The aim of the present research is to investigate the possibility of using naturally occurring polymers such as polysaccharides or proteins to trap and align small organic molecules with useful NLO properties. Ordering molecules with NLO properties enhances 3rd order nonlinear effects and is required for 2nd order nonlinear effects. Potential advantages of such a system are the flexibility to use different small molecules with varying chemical and optical properties, the stability and cost of the polymers, and the ability to form thin, optically transparent films. Since the quality of any polymer films depends on optimizing ordering and minimizing defects, this work is particularly well suited for microgravity experiments. Polysaccharide and protein polymers form microscopic crystallites which must align to form ordered arrays. The ordered association of crystallites is disrupted by gravity effects and NASA research on protein crystal growth has demonstrated that low gravity conditions can improve crystal quality.

  10. Computerized "drag-and-drop" alignment of GPC-based optical micromanipulation system.

    PubMed

    Dam, Jeppe Seidelin; Rodrigo, Peter John; Perch-Nielsen, Ivan R; Alonzo, Carlo Amadeo; Glückstad, Jesper

    2007-02-19

    In the past, aligning the counterpropagating beams in our 3D real-time generalized phase contrast (GPC) trapping system has been a task requiring moderate skills and prior experience with optical instrumentation. A ray transfer matrix analysis and computer-controlled actuation of mirrors, objective, and sample stage has made this process user friendly. The alignment procedure can now be done in a very short time with just a few drag-and-drop tasks in the user-interface. The future inclusion of an image recognition algorithm will allow the alignment process to be executed completely without any user interaction. An automated sample loading tray with a loading precision of a few microns has also been added to simplify the switching of samples under study. These enhancements have significantly reduced the level of skill and experience required to operate the system, thus making the GPC-based micromanipulation system more accessible to people with little or no technical expertise in optics. PMID:19532431

  11. Use of Rigid Liquid Crystalline Polypeptides as Alignment Matrices for Organic Nonlinear Optical Molecules.

    NASA Astrophysics Data System (ADS)

    Tokarski, Zbigniew

    The orientation of nonlinear optical (NLO) organic molecules is crucial for the existence of high values for the macroscopic susceptibilities. The orientation and interaction of several smaller NLO active molecules with an easily alignable polypeptide host was investigated to determine which functional groups and molecular shapes would produce the largest orientation with the host material; these parameters included aromatic vs aliphatic, polar vs nonpolar, saturate vs unsaturated hydrocarbons and the length of the guest molecule. The host materials were either poly ( gamma-benzyl-l-glutamate) (PBLG) or poly ( gamma-ethyl-l-glutamate) (PELG) lyotropic liquid crystals. These host polymers formed pseudo-hexagonal crystalline structures with long rigid alpha -helical backbones. The interstitial alignment of the guest molecules was dictated by the overall alignment of the host polypeptide rigid rods. Within these films many of the guest molecules existed in a metastable state that delayed phase separation for several hours. The rate of phase separation was influenced by the concentration of the guest molecule and on the side chain moiety of the polypeptide. Guest phase separation to a solid or a liquid occurred at a faster rate in PELG films, due to the lack of the side chain induced hindrance, than in PBLG films. An indicator of the occurrence of phase separation was with the onset of opaqueness in the films. The thin polypeptide films containing the aligned guest molecules became optically opaque as the incompatibilities between the side chains of the polypeptides and the guest molecules increased. The nonlinear optical susceptibility measurements were hampered by either the low guest solubility or the low concentration level required to avoid the guest -host incompatibility. Electro-optic and degenerate two and four wave mixing were done and produced signals in solutions but not in the doped films. The semiflexible aromatic guest molecules, such as the derivatives

  12. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  13. Computational chemistry modeling and design of photoswitchable alignment materials for optically addressable liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Marshall, K. L.; Sekera, E. R.; Xiao, K.

    2015-09-01

    Photoalignment technology based on optically switchable "command surfaces" has been receiving increasing interest for liquid crystal optics and photonics device applications. Azobenzene compounds in the form of low-molar-mass, watersoluble salts deposited either directly on the substrate surface or after dispersion in a polymer binder have been almost exclusively employed for these applications, and ongoing research in the area follows a largely empirical materials design and development approach. Recent computational chemistry advances now afford unprecedented opportunities to develop predictive capabilities that will lead to new photoswitchable alignment layer materials with low switching energies, enhanced bistability, write/erase fatigue resistance, and high laser-damage thresholds. In the work described here, computational methods based on the density functional theory and time-dependent density functional theory were employed to study the impact of molecular structure on optical switching properties in photoswitchable methacrylate and acrylamide polymers functionalized with azobenzene and spiropyran pendants.

  14. Well-aligned cellulose nanofiber-reinforced polyvinyl alcohol composite film: Mechanical and optical properties.

    PubMed

    Cai, Jie; Chen, Jingyao; Zhang, Qian; Lei, Miao; He, Jingren; Xiao, Anhong; Ma, Chengjie; Li, Sha; Xiong, Hanguo

    2016-04-20

    Uniaxially aligned cellulose nanofibers (CNFs), which are fabricated by electrospinning of cellulose acetate derived from bamboo cellulose (B-CA) followed by deacetylation, were used as reinforcements to make optically transparent composite films. We examined the effects of B-CA concentration and electrospinning parameters (e.g. spinning distance, and collection speed) on fiber morphology and orientation, which act on mechanical-to-optical properties of the CNFs-reinforced composites. Consequently, the resultant composite film exhibits high visible-light transmittance even with high fiber content, as well as improved mechanical properties. The understanding obtained from this study may facilitate the development of novel nanofibrous materials for various optical uses. PMID:26876850

  15. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light. PMID:20030391

  16. Accurate lifetime measurements for the noble gases by the electron beam alignment technique

    NASA Astrophysics Data System (ADS)

    Gorny, M. B.; Kazantsev, S. A.; Matisov, B. G.; Polezhaevs, N. T.

    1985-03-01

    Accurate lifetime measurement for the 41 P 1, 41 D 2, 51 D 2 helium and the atomic 2 p and 3 p states of other noble gases was performed by the low energy electron beam alignment technique. An account of the influence of magnetic field on the electron path was made to obtain the real Hanle signal shape. The influence of the radiation trapping in the collision chamber was analysed with regard to the metastables diffusion. The experimental data were compared with the results of other methods of the lifetime determination.

  17. Stack growth of aligned multiwalled carbon nanotubes using floating catalyst chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saheed, Mohamed Shuaib Mohamed; Mohamed, Norani Muti

    2015-04-01

    The Letter reports another approach to grow vertically aligned millimeter length multiwalled carbon nanotubes (MWCNT) using chemical vapor deposition technique. In this stack growth, the first grown MWCNT layer is observe to have been lift-off from the substrate surface by the newly grown underneath layer as a result of the diffusion of iron catalyst and carbon source through the first layer. The first grown layer acts as a permeable membrane allowing the catalyst vapor and carbon to reach the bottom layer and the top surface of the substrate, resulting in the growth of another layer of MWCNT underneath it.

  18. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  19. Space optical navigation techniques: an overview

    NASA Astrophysics Data System (ADS)

    Rebordão, J. M.

    2013-11-01

    Optical or vision-based navigation is an enabling technology for satellite autonomous navigation associated to different navigation approaches such as cruising, fly-by, terrain relative navigation, landing, rendezvous and docking between spacecrafts, rigidity of multi-satellite constellations. Since 2001, in many different ESA projects, the author and his team (at INETI and currently at FCUL) have been associated to most of the developments of the optical components of autonomous navigation, in cooperation with space primes or GNC subsystems suppliers. A unique experience related to seemingly simple photonic concepts associated to computational vision, photonic noises, camera tradeoffs and system concepts has emerged, and deserves a synthesis especially because some of these concepts are being implemented in the ESA Proba 3 mission and ESA is currently updating the technology in view of forthcoming planetary missions to Jupiter, Jupiter moons and asteroids. It is important to note that the US have already flown several missions relying on autonomous navigation and that NASA experience is at least one decade old. System approaches, sources of difficulty, some tradeoffs in both (and between) hardware and software, critical interface issues between the imaging and GNC (Guidance, Navigation and Control) subsystems, image processing techniques, utilization of apriori or to be estimated information, uncertainties, simulation of the imaging chain and non-cooperative environments will be addressed synthetically for both passive (optical) and active (lidar) systems.

  20. A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex

    PubMed Central

    HD, Lu; G, Chen; DY, Ts’o; AW, Roe

    2009-01-01

    In optical imaging experiments, it is often advantageous to map the field of view and to converge the eyes without electrophysiological recording. This occurs when limited space precludes placement of an electrode or in chronic optical chambers in which one may not want to introduce an electrode each session or for determining eye position in studies of ocular disparity response in visual cortex of anesthetized animals. For these purposes, we have developed a spot imaging method that can be conducted rapidly and repeatedly throughout an experiment. Using small 0.2° – 0.5° spots, the extent of the imaged field of view is mapped by imaging cortical response to single spots, placed at different positions (0.2° steps) in either the horizontal or vertical axes. By shifting the relative positions of two spots, one presented to each eye, eye convergence can be assessed to within 0.1° resolution. Once appropriate eye alignment is determined, stimuli for further optical imaging procedures (e.g. imaging random dot stimuli for study of disparity responses) can then be confidently placed. This procedure can be quickly repeated throughout the experiment to ensure maintained eye alignment. PMID:19013530

  1. Using a co-ordinate measuring machine to align multiple element large optical systems

    NASA Astrophysics Data System (ADS)

    Howick, Eleanor F.; Cochrane, David; Meier, David

    2007-09-01

    A high precision Co-ordinate Measuring Machine (CMM) is an ideal instrument for aligning mid to large (400 to 600 mm) diameter multiple element lens assemblies. The CMM has many advantages over simpler dial gauge and rotary table setups. For example, these traditional methods do not necessarily make it easy to separate the out-of-roundness of a lens or its mounting cell, from a misalignment of the lens and cell. With a CMM, the 'as made' geometry of both the lenses and their mounting cells can be determined before the mounting and alignment process begins. By considering the actual shape of the lenses and cells, adjustments can be made during the alignment process to ensure that the complete assembly meets the designer's tolerances. This paper discusses CMM alignment techniques used and experience gained while assembling large lens corrector assemblies (for example, the three element Prime Focus Unit for FMOS, the Subaru Fibre Multi-Object Spectrograph) destined for installation in astronomical telescopes.

  2. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an

  3. Rethinking Program Assessment through the Use of Program Alignment Mapping Technique

    ERIC Educational Resources Information Center

    Liu, Min; Wrobbel, Duff; Blankson, Isaac

    2010-01-01

    Curriculum mapping is a well-known assessment tool used to articulate and align a curriculum. The authors present an improved method of curriculum alignment that combines the traditional curriculum mapping with what is often called prerequisite mapping. This improved method of curriculum alignment mapping we label Program Alignment Mapping (PAM)…

  4. Pinned, optically aligned diagnostic dock for use on the Z facility.

    PubMed

    Gomez, M R; Rochau, G A; Bailey, J E; Dunham, G S; Kernaghan, M D; Gard, P; Robertson, G K; Owen, A C; Argo, J W; Nielsen, D S; Lake, P W

    2012-10-01

    The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented. PMID:23126888

  5. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System

    PubMed Central

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  6. Self-assembled coronene nanofibers: optical waveguide effect and magnetic alignment

    NASA Astrophysics Data System (ADS)

    Takazawa, Ken; Inoue, Jun-Ichi; Mitsuishi, Kazutaka

    2014-03-01

    To fabricate organic nanofibers that function as active optical waveguides with semiconductor properties, a facile procedure was developed to grow single crystalline nanofibers via π-π stacking of the polycyclic aromatic molecule, coronene, through solution evaporation on a substrate. The fabricated nanofibers with millimeter-scale lengths have well-defined shapes, smooth surfaces, and low-defect structures. The nanofibers are demonstrated to function as efficient active waveguides that propagate their fluorescence (FL) along the fiber axis over their entire length. We further demonstrate that the nanofibers can be highly aligned on the substrate when solution evaporation is conducted in a magnetic field of 12 T. The mechanism of the magnetic alignment can be elucidated by considering the anisotropy of the diamagnetic susceptibility of a single coronene molecule and the crystal structure of a nanofiber. Owing to the high degree of alignment, the nanofibers rarely cross each other, allowing for measurement of the waveguiding properties of single isolated nanofibers. The nanofibers propagate their FL of λ > 500 nm with a low propagation loss of 0-3 dB per 100 μm, indicating that the nanofibers function as sub-wavelength scale, low-loss waveguides. Thus, they are promising building blocks for miniaturized optoelectronic circuits.

  7. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  8. Wireless optical transceiver design, link analisys and alignment control for mobile communication

    NASA Astrophysics Data System (ADS)

    Zhou, Dayong

    Pointing, acquisition and tracking of a free-space optical node in a mobile network experiencing misalignment due to adverse factors including vibration, motion and atmospheric turbulence requires a different approach than traditional free-space optical transceivers. A recent fiber-bundle approach for beam steering at the transmitter was investigated to provide continuous beam coverage at the receiver without the application of mechanical devices. Utilizing multiple fibers-lenses sets at the receiver was also proposed to enhance the tolerance of optical link misalignment. In this work, both laboratory experiments and software simulation were implemented to evaluate the optical link performance for different fiber-bundle-based transceiver setups as the link parameters were varied. The performance was evaluated in terms of the coverage area at the receiver, which is a measure of misalignment tolerance and is dependent not only on wavelength but on other key parameters such as link length, transmitted power, the pattern of transmitters, beam divergence, and the receiver construction. The results showed that fiber-bindle-based transceivers reveal significant potential to maximize the up time of the link, and the results also provide guidance on the further development of the overall system. To incorporate the proposed transceiver designs, an alignment control system was developed and evaluated as well. The laboratory results show that the optical control system successfully recovered and maintained the link while the receiver was in motion and the signal coverage at the target area was enhanced significantly.

  9. Alignment issues, correlation techniques and their assessment for a visible light imaging-based 3D printer quality control system

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2016-05-01

    Quality control is critical to manufacturing. Frequently, techniques are used to define object conformity bounds, based on historical quality data. This paper considers techniques for bespoke and small batch jobs that are not statistical model based. These techniques also serve jobs where 100% validation is needed due to the mission or safety critical nature of particular parts. One issue with this type of system is alignment discrepancies between the generated model and the physical part. This paper discusses and evaluates techniques for characterizing and correcting alignment issues between the projected and perceived data sets to prevent errors attributable to misalignment.

  10. Automated alignment system for optical wireless communication systems using image recognition.

    PubMed

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s. PMID:24978803

  11. Optical replication techniques for image slicers

    NASA Astrophysics Data System (ADS)

    Schmoll, J.; Robertson, D. J.; Dubbeldam, C. M.; Bortoletto, F.; Pina, L.; Hudec, R.; Prieto, E.; Norrie, C.; Ramsay-Howat, S.

    2006-06-01

    The smart focal planes (SmartFP) activity is an European Joint Research Activity funded to develop novel optical technologies for future large telescope instrumentation [Cunningham C.R., et al., 2004. SPIE 5382, 718-726]. In this paper, we will discuss the image slicer developments being carried out as part of this initiative. Image slicing techniques have many applications in the plans for instrumentation on extremely large telescopes and will be central to the delivery of the science case. A study of a virtual multi-object multi-ifu spectrograph and imager (MOMSI) for a hypothetical OWL-class telescope reveals the need for focal plane splitting, deployable imagers and very small beam steering elements like deployable IFUs. The image slicer workpackage, lead from Durham University in collaboration with LFM Bremen, TNO Delft, UKATC Edinburgh, CRAL Lyon, LAM Marseille, Padua University and REFLEX Prague, is evaluating technologies for manufacturing micro optics in large numbers to enable multi-object integral field spectroscopy.

  12. FMCW optical ranging technique in turbid waters

    NASA Astrophysics Data System (ADS)

    Illig, David W.; Laux, Alan; Lee, Robert W.; Jemison, William D.; Mullen, Linda J.

    2015-05-01

    The performance of a frequency-modulated continuous-wave (FMCW) hybrid lidar-radar system will be presented in the context of an underwater optical ranging application. In adapting this technique from the radar community, a laser is intensity-modulated with a linear frequency ramp. A custom wideband laser source modulated by a new wideband digital synthesizer board is used to transmit an 800 MHz wide chirp into the underwater channel. The transmitted signal is mixed with a reference copy to obtain a "beat" signal representing the distance to the desired object. The expected form of the return signal is derived for turbid waters, a highly scattering environment, indicating that FMCW can detect both the desired object and the volumetric center of the backscatter "clutter" signal. This result is verified using both laboratory experiments and a realistic simulation model of the underwater optical channel. Ranging performance is explored as a function of both object position and water turbidity. Experimental and simulated results are in good agreement and performance out to ten attenuation lengths is reported, equivalent to 100 meters in open ocean or 5 meters in a turbid harbor condition.

  13. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  14. Fiber probes based optical techniques for biomedical diagnosis

    NASA Astrophysics Data System (ADS)

    Arce-Diego, José L.; Fanjul-Vélez, Félix

    2007-06-01

    Although fiber optics have been applied in optical communication and sensor systems for several years in a very successful way, their first application was developed in medicine in the early 20's. Manufacturing and developing of optical fibers for biomedical purposes have required a lot of research efforts in order to achieve a non-invasive, in-vivo, and real-time diagnosis of different diseases in human or animal tissues. In general, optical fiber probes are designed as a function of the optical measurement technique. In this work, a brief description of the main optical techniques for optical characterization of biological tissues is presented. The recent advances in optical fiber probes for biomedical diagnosis in clinical analysis and optical biopsy in relation with the different spectroscopic or tomographic optical techniques are described.

  15. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    NASA Astrophysics Data System (ADS)

    Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun

    2015-09-01

    Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  16. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Yumoto, Hirokatsu; Koyama, Takahisa; Matsuyama, Satoshi; Yamauchi, Kazuto; Ohashi, Haruhiko

    2016-01-01

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm2 in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. The wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.

  17. Spectroelectrochemistry: The Combination of Optical and Electrochemical Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.

    1983-01-01

    Two different techniques, electrochemistry and spectroscopy, can be combined for studying the redox chemistry of inorganic, organic, and biological molecules. Several commonly used spectroelectrochemical methods and their applications are described. Includes discussions of optically transparent electrodes, optical absorption/fluorescence…

  18. Raman spectroscopic investigation of the confined optical phonon modes in the aligned CdSe nanorod arrays

    NASA Astrophysics Data System (ADS)

    Nobile, Concetta; Carbone, Luigi; Kudera, Stefan; Manna, Liberato; Cingolani, Roberto; Krahne, Roman; Fonoberov, Vladimir A.; Balandin, Alexander A.; Chilla, Gerwin; Kipp, Tobias; Heitmann, Detlef

    2007-03-01

    Nanocrystal rods have emerged as promising nanostructured material for both fundamental studies of nanoscale effects and for optical and electronic device applications. We investigated the optical phonon excitations in laterally aligned CdSe nanocrystal rod arrays using resonant Raman scattering. Electric-field mediated alignment between interdigitated electrodes has been used to prepare the samples. We report Raman experiments that probe the optical lattice vibrations in ordered arrays of CdSe nanorods with respect to the nanorod orientation. The packing of nanorods into dense arrays leads to the suppression of the surface optical phonon modes. In the longitudinal-optical phonon peak we observe a fine structure that depends on the relative orientation of the nanorods with respect to the incident light polarization. Detailed comparison of the experimental data with the first-principle calculations for corresponding nanostructures, which reveal the symmetry of the phonon potentials for the Raman active modes, provides a qualitative explanation of the experimentally observed phonon modes.

  19. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  20. Surface diffusion studies by optical diffraction techniques

    SciTech Connect

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  1. Note: Non-invasive optical method for rapid determination of alignment degree of oriented nanofibrous layers.

    PubMed

    Pokorny, M; Klemes, J; Rebicek, J; Kotzianova, A; Velebny, V

    2015-10-01

    This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axis of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time. PMID:26521008

  2. Note: Non-invasive optical method for rapid determination of alignment degree of oriented nanofibrous layers

    NASA Astrophysics Data System (ADS)

    Pokorny, M.; Klemes, J.; Rebicek, J.; Kotzianova, A.; Velebny, V.

    2015-10-01

    This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axis of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time.

  3. Note: Non-invasive optical method for rapid determination of alignment degree of oriented nanofibrous layers

    SciTech Connect

    Pokorny, M.; Rebicek, J.; Klemes, J.; Kotzianova, A.; Velebny, V.

    2015-10-15

    This paper presents a rapid non-destructive method that provides information on the anisotropic internal structure of nanofibrous layers. A laser beam of a wavelength of 632.8 nm is directed at and passes through a nanofibrous layer prepared by electrostatic spinning. Information about the structural arrangement of nanofibers in the layer is directly visible in the form of a diffraction image formed on a projection screen or obtained from measured intensities of the laser beam passing through the sample which are determined by the dependency of the angle of the main direction of polarization of the laser beam on the axis of alignment of nanofibers in the sample. Both optical methods were verified on Polyvinyl alcohol (PVA) nanofibrous layers (fiber diameter of 470 nm) with random, single-axis aligned and crossed structures. The obtained results match the results of commonly used methods which apply the analysis of electron microscope images. The presented simple method not only allows samples to be analysed much more rapidly and without damaging them but it also makes possible the analysis of much larger areas, up to several square millimetres, at the same time.

  4. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications. PMID:26726580

  5. Optical alignment and testing of the Diffuse IR Background Experiment IR cryogenic telescope

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    1989-01-01

    Diffuse Infrared Background Experiment (DIRBE) optical alignment and testing methods are discussed. Using strobe videography, vibration and performance testing of a 32 hz tuning-fork chopper was carried out. The Cosmic Background explorer satellite provides improved microwave and IR all-sky maps of the cosmic background radiation from a polar orbit. A liquid helium cryostat houses the DIRBE and the Far IR Absolute Spectrophotometer (FIRAS) instruments at a temperature of 2 K. Differential MicRowave Radiometers (DMRs) provide large scale maps of anisotropy of the 3 K background at wavelengths of 3.3, 5.7, and 9.6 mm. The DIRBE telescope is an IR photometric instrument with 10 wavelength bands between 1 and 300 microns, designed to measure radiation from the epoch of galaxy formation. Stringent stray light requirements mean that the DIRBE flight instrument has to be built and tested in a class 100 environment.

  6. Use of the Abbe sine condition to quantify alignment aberrations in optical imaging systems

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Zhao, Chunyu; Lu, Sheng Huei

    2010-08-01

    Violation of Abbe's sine condition is well-known to cause coma in axisymmetric imaging systems, and generally any offense against the sine condition (OSC) will cause aberrations that have linear dependence on the field angle. A well-corrected imaging system must obey the Abbe sine condition. A misaligned optical system can have particular forms of the OSC which are evaluated here. The lowest order non-trivial effects of misalignment have quadratic pupil dependence which causes a combination of astigmatism and focus that have linear field dependence. Higher order terms can arise from complex systems, but the effects of misalignment are nearly always dominated by the lowest order effects which can be fully characterized by measuring images on axis and the on-axis offense against the sine condition. By understanding the form of the on-axis images and the OSC, the state of alignment can be determined.

  7. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications

    SciTech Connect

    Carr, E J; Olivier, S S; Solgaard, O

    2005-10-27

    A high-stroke micro-actuator array was designed, modeled, fabricated and tested. Each pixel in the 4x4 array consists of a self-aligned vertical comb drive actuator. This micro-actuator array was designed to become the foundation of a micro-mirror array that will be used as a deformable mirror for adaptive optics applications. Analytical models combined with CoventorWare{reg_sign} simulations were used to design actuators that would move up to 10{micro}m in piston motion with 100V applied. Devices were fabricated according to this design and testing of these devices demonstrated an actuator displacement of 1.4{micro}m with 200V applied. Further investigation revealed that fabrication process inaccuracy led to significantly stiffer mechanical springs in the fabricated devices. The increased stiffness of the springs was shown to account for the reduced displacement of the actuators relative to the design.

  8. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  9. Image Quality of the Evryscope: Method for On-Site Optical Alignment

    NASA Astrophysics Data System (ADS)

    Wulfken, Philip J.; Law, Nicholas M.; Ratzloff, Jeffrey; Fors, Octavi

    2015-01-01

    Previous wide field surveys have been conducted by taking many images each night to cover thousands of square degrees. The Evryscope is a new type of system designed to search for transiting exoplanets around nearby bright stars, M-dwarfs, white dwarfs, and other transients. The Evryscope is an array of 70 mm telescopes that will continuously image 10200 square degrees of the night sky at once. One of the image quality requirements is for the PSFs to be well-sampled at two pixels across and it was found that tilt caused by slight misalignment between the optics and the CCD increased the size of the FWHM towards the edges and corners of the image. Here we describe the image quality of the Evryscope cameras and the alignment procedure to achieve the required 2 pixel FWHM.

  10. Design and prototyping of self-centering optical single-mode fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s‑1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem

  11. Optical Modeling Activities for NASA's James Webb Space Telescope (JWST). 3; Wavefront Aberrations due to Alignment and Figure Compensation

    NASA Technical Reports Server (NTRS)

    Howard, Joseph

    2007-01-01

    This is part three of a series describing the ongoing optical modeling activities for James Webb Space Telescope (JWST). The first two discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, giving alignment control of the telescope. The tertiary mirror is fixed, however, as well as the location of the science instrumentation. Simulations are performed of various combinations of active alignment corrections of component figure errors, and of primary mirror figure corrections of alignment errors. Single field point and moderate field knowledge is assumed in the corrections. Aberrations over the field are reported for the varying cases, and examples presented.

  12. Optical Techniques for Low Noise Microwave Frequency Sources

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    Optical techniques and mathematical models are described for low noise microwave frequency sources. The contents include: 1) Why Optical Techniques; 2) Wavemixing: Advantages and Disadvantages; 3) Wavemixing with Feedback: The OEO; 4) Feedback in both loops: COEO; and 5) State of the Art and Future Prospects.

  13. Antifouling leaching technique for optical lenses

    USGS Publications Warehouse

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  14. Electro-Optical Sensor Fabricated Using a Bulk Cleavage Technique and Its Characteristics for Near-Field Intra-Body Communication

    NASA Astrophysics Data System (ADS)

    Furuya, Akinori; Sasaki, Ai-ichiro; Morimura, Hiroki; Aihara, Kimihisa; Shinagawa, Mitsuru

    2013-09-01

    This paper describes how to obtain a low cost electro-optical (EO) sensor module for the mass production of near-field intra-body communication devices. In this study, we used a bulk cleavage technique to fabricate EO modulators without the need for any optical polishing or washing processes, and clarified the feasibility of assembling optical components using only a passive alignment technique with a compact housing.

  15. Electro-optical systems to accurately align (boresight) laser designator, FLIR, and CCD on the ground before the mission

    NASA Astrophysics Data System (ADS)

    Cabib, Dario; Segal, Alon; Dolev, Jacob

    2008-10-01

    CI Systems has been involved in the development and production of in-flight boresight equipment since 19891,2, by pioneering the field with innovative laser-FLIR and laser-CCD alignment solutions. In addition, over the years we have developed a number of systems for use on the ground to align the various electro-optical instrumentation to a common Line of Sight (LOS) before the mission. This adjustment is very important for the success of the mission: the more accurate the alignment and its retention during the flight, the better the chance of a precise hit. In this paper we describe various systems developed and built at CI for use with EO pods mounted on aircraft, especially UAV's. The most important engineering tasks are design for small size and convenient mechano-optical interfaces for different pods allowing system compactness, low weight and easy operation. Some of the design considerations to meet these challenges will be given here.

  16. Intraocular lens alignment from an en face optical coherence tomography image Purkinje-like method

    NASA Astrophysics Data System (ADS)

    Sun, Mengchan; de Castro, Alberto; Ortiz, Sergio; Perez-Merino, Pablo; Birkenfeld, Judith; Marcos, Susana

    2014-06-01

    Measurement of intraocular lens (IOL) alignment implanted in patients in cataract surgery is important to understand their optical performance. We present a method to estimate tilt and decentration of IOLs based on optical coherence tomography (OCT) images. En face OCT images show Purkinje-like images that correspond to the specular reflections from the corneal and IOL surfaces. Unlike in standard Purkinje-imaging, the tomographic nature of OCT allows unequivocal association of the reflection with the corresponding surface. The locations of the Purkinje-like images are linear combinations of IOL tilt, IOL decentration, and eye rotation. The weighting coefficients depend on the individual anterior segment geometry, obtained from the same OCT datasets. The methodology was demonstrated on an artificial model eye with set amounts of lens tilt and decentration and five pseudophakic eyes. Measured tilt and decentration in the artificial eye differed by 3.7% and 0.9%, respectively, from nominal values. In patients, average IOL tilt and decentration from Purkinje were 3.30±4.68 deg and 0.16±0.16 mm, respectively, and differed on average by 0.5 deg and 0.09 mm, respectively, from direct measurements on distortion-corrected OCT images. Purkinje-based methodology from anterior segment en face OCT imaging provided, therefore, reliable measurements of IOL tilt and decentration.

  17. Micro-optics and lithography simulation are key enabling technologies for shadow printing lithography in mask aligners

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Noell, Wilfried

    2015-02-01

    Mask aligners are lithographic tools used to transfer a pattern of microstructures by shadow printing lithography onto a planar wafer. Contact lithography allows us to print large mask fields with sub-micron resolution, but requires frequent mask cleaning. Thus, contact lithography is used for small series of wafer production. Proximity lithography, where the mask is located at a distance of typically 30-100 μm above the wafer, provides a resolution of approximately 3-5 μm, limited by diffraction effects. Proximity lithography in mask aligners is a very cost-efficient method widely used in semiconductor, packaging and MEMS manufacturing industry for high-volume production. Micro-optics plays a key role in improving the performance of shadow printing lithography in mask aligners. Refractive or diffractive micro-optics allows us to efficiently collect the light from the light source and to precisely shape the illumination light (customized illumination). Optical proximity correction and phase shift mask technology allow us to influence the diffraction effects in the aerial image and to enhance resolution and critical dimension. The paper describes the status and future trends of shadow printing lithography in mask aligners and the decisive role of micro-optics as key enabling technology.

  18. Updates to the optical alignment and test plan for the James Webb Space Telescope integrated science instrument module

    NASA Astrophysics Data System (ADS)

    Ohl, R.

    2009-08-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of ~2.2x2.2x1.7m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical telescope element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using optomechanical metrology. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work updates the assembly and ambient and cryogenic optical alignment, test and verification plan for ISIM.

  19. Texture evolution of vertically aligned biaxial tungsten nanorods using RHEED surface pole figure technique.

    PubMed

    Krishnan, R; Liu, Y; Gaire, C; Chen, L; Wang, G-C; Lu, T-M

    2010-08-13

    Vertically aligned biaxial tungsten nanorods with cubic A15 crystal structure were deposited by DC magnetron sputtering on native oxide covered Si(100) substrates with glancing angle flux incidence (theta approximately 85 degrees) and a two-step substrate rotation mode at room temperature. These vertical nanorods were grown to different thicknesses (10, 25, 50 and 100 nm) and analyzed for biaxial texture evolution using a highly surface sensitive reflection high-energy electron diffraction (RHEED) pole figure technique. The initial polycrystalline film begins to show the inception of biaxial texture with a fiber background between 10 and 25 nm. Biaxial texture development is eventually completed between 50 and 100 nm thicknesses of the film. The out-of-plane crystallographic direction is [002] and the in-plane texture is selected so as to obtain maximum capture area. In a comparison with 100 nm thick inclined tungsten nanorods deposited at 85 degrees without substrate rotation, it is found that the selection of in-plane texture does not maintain maximum in-plane capture area. This anomalous behavior is observed when the [002] texture axis is tilted approximately 17 degrees from the substrate normal in the direction towards the glancing incident flux. PMID:20639581

  20. Texture evolution of vertically aligned biaxial tungsten nanorods using RHEED surface pole figure technique

    NASA Astrophysics Data System (ADS)

    Krishnan, R.; Liu, Y.; Gaire, C.; Chen, L.; Wang, G.-C.; Lu, T.-M.

    2010-08-01

    Vertically aligned biaxial tungsten nanorods with cubic A15 crystal structure were deposited by DC magnetron sputtering on native oxide covered Si(100) substrates with glancing angle flux incidence (θ ~ 85°) and a two-step substrate rotation mode at room temperature. These vertical nanorods were grown to different thicknesses (10, 25, 50 and 100 nm) and analyzed for biaxial texture evolution using a highly surface sensitive reflection high-energy electron diffraction (RHEED) pole figure technique. The initial polycrystalline film begins to show the inception of biaxial texture with a fiber background between 10 and 25 nm. Biaxial texture development is eventually completed between 50 and 100 nm thicknesses of the film. The out-of-plane crystallographic direction is [002] and the in-plane texture is selected so as to obtain maximum capture area. In a comparison with 100 nm thick inclined tungsten nanorods deposited at 85° without substrate rotation, it is found that the selection of in-plane texture does not maintain maximum in-plane capture area. This anomalous behavior is observed when the [002] texture axis is tilted ~ 17° from the substrate normal in the direction towards the glancing incident flux.

  1. Highly Aligned Poly(vinylidene fluoride-co-hexafluoro propylene) Nanofibers via Electrospinning Technique.

    PubMed

    Han, Tae-Hwan; Nirmala, R; Kim, Tae Woo; Navamathavan, R; Kim, Hak Yong; Park, Soo Jin

    2016-01-01

    We report on the simple way of obtaining aligned poly(vinylidiene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers by electrospinning process. The collector drum rotation speed was adjusted to prepare well aligned PVDF-HFP nanofibers. The degree of alignment and the orientation of PVDF-HFP nanofibers can be significantly altered by varying the speed of collector drum rotation. The resultant PVDF-HFP nanofibers were systematically characterized. From the scanning electron microscopy data, it was found that the electrospun PVDF-HFP nanofibers were formed with well-aligned nature. The X-ray diffraction results revealed that the electrospun PVDF-HFP nanofibers with β-phase can be formed by the increased collector drum rotation speed. Overall, the collector rotation speed during the electrospinning process plays an important role in obtaining well-aligned and improved characteristics of PVDF-HFP nanofibers. PMID:27398493

  2. Principles of optical-data processing techniques

    NASA Technical Reports Server (NTRS)

    Shulman, A. R.

    1968-01-01

    Document presents optical-data processing information on a level which will convey the basic principles involved to those having a general technical background. Mathematical discussions are included but are not required for a basic understanding.

  3. Optical fiber sensor technique for strain measurement

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  4. Photoresponsive carbohydrate-based giant surfactants: automatic vertical alignment of nematic liquid crystal for the remote-controllable optical device.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Kang, Dong-Gue; Park, Minwook; Choi, Yu-Jin; Jeong, Kwang-Un

    2015-03-25

    Photoresponsive carbohydrate-based giant surfactants (abbreviated as CELAnD-OH) were specifically designed and synthesized for the automatic vertical alignment (VA) layer of nematic (N) liquid crystal (LC), which can be applied for the fabrication of remote-controllable optical devices. Without the conventional polymer-based LC alignment process, a perfect VA layer was automatically constructed by directly adding the 0.1 wt % CELA1D-OH in the N-LC media. The programmed CELA1D-OH giant surfactants in the N-LC media gradually diffused onto the substrates of LC cell and self-assembled to the expanded monolayer structure, which can provide enough empty spaces for N-LC molecules to crawl into the empty zones for the construction of VA layer. On the other hand, the CELA3D-OH giant surfactants forming the condensed monolayer structure on the substrates exhibited a planar alignment (PA) rather than a VA. Upon tuning the wavelength of light, the N-LC alignments were reversibly switched between VA and PA in the remote-controllable LC optical devices. Based on the experimental results, it was realized that understanding the interactions between N-LC molecules and amphiphilic giant surfactants is critical to design the suitable materials for the automatic LC alignment. PMID:25738306

  5. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.

    2016-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  6. Optical Second Harmonic Generation in the BaTiO3 phase of magnetically aligned multiferroic nanofibers

    NASA Astrophysics Data System (ADS)

    Gasperi, Katia

    Multiferroic materials enable the exploration of electrical control of magnetic properties and vice versa. Their increasing interest is especially due to their potential applications in the industry of information storage. Thanks to recent progress in nanotechnology, they have also been found to have many other applications such as transducers and sensors, and they already occupy a unique place in the biomedical field. The objective of this project is to study multiferroic nanofibers made of cobalt ferrite CoFe2O 4 (CFO) and barium titanate BaTiO3 (BTO) with a specific focus in the characterization of the ferroelectric phase. We researched the state of knowledge concerning the size effects on phase transition for nanoparticles and polycrystals BTO. The ferroelectric phase transition of BTO occurs when it changes from a tetragonal (anisotropic) crystal structure to a cubic (isotropic) structure. This change suggests that optical second harmonic generation (SHG) is a good measurement technique for monitoring the phase transition of the BTO half of the nanofibers. We designed and prepared a temperature dependent SHG experiment on magnetically aligned fibers in transmission with the possibility to investigate the polarization dependence of the signal. We also prepared interdigital electrodes on glass for the future study of the fibers in an external electric field.

  7. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties

    NASA Astrophysics Data System (ADS)

    Lee, Won-Kyu; Hwang, Seung Jun; Cho, Min-Jae; Park, Hong-Gyu; Han, Jin-Woo; Song, Seogjeong; Jang, Jong Hyun; Seo, Dae-Shik

    2012-12-01

    We demonstrate self-aligned and high-performance liquid crystal (LC) systems doped with 1-dimensional (1D) chain-like clusters of CuInS2 (CIS)-ZnS core-shell quantum dots (QDs). By changing the cell fabrication method of the LC-QD composites, we can selectively control the orientation of the LC molecules between the homogeneous and homeotropic states without conventional LC alignment layers. The homeotropic alignment of LCs was achieved by random dropcasting and the homogeneous alignment was performed using a capillary injection of LC-QDs due to the random or linear diffusion of QD clusters into ITO defects. The electrically compensated bend (ECB)- and vertically aligned (VA) mode LC displays (LCDs) containing our LC-QD composite both showed superior electro-optic (EO) properties. A 37.1% reduction in the threshold voltage (Vth) and a 36.6% decrease in the response time were observed for ECB mode LCDs, and a 47.0% reduction in the Vth and a 38.3% decrease in the response time were observed for VA mode LCDs, meaning that the proposed LC-QD composites have a great potential for the production of advanced flexible LCDs.We demonstrate self-aligned and high-performance liquid crystal (LC) systems doped with 1-dimensional (1D) chain-like clusters of CuInS2 (CIS)-ZnS core-shell quantum dots (QDs). By changing the cell fabrication method of the LC-QD composites, we can selectively control the orientation of the LC molecules between the homogeneous and homeotropic states without conventional LC alignment layers. The homeotropic alignment of LCs was achieved by random dropcasting and the homogeneous alignment was performed using a capillary injection of LC-QDs due to the random or linear diffusion of QD clusters into ITO defects. The electrically compensated bend (ECB)- and vertically aligned (VA) mode LC displays (LCDs) containing our LC-QD composite both showed superior electro-optic (EO) properties. A 37.1% reduction in the threshold voltage (Vth) and a 36.6% decrease in

  8. A Study of Synchronization Techniques for Optical Communication Systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.

    1975-01-01

    The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.

  9. Building blocks for actively-aligned micro-optical systems in rapid prototyping and small series production

    NASA Astrophysics Data System (ADS)

    Böttger, Gunnar; Queisser, Marco; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, K.-D.

    2015-03-01

    In recent years there has been considerable progress in utilizing fully automated machines for the assembly of microoptical systems. Such systems integrate laser sources, optical elements and detectors into tight packages, and efficiently couple light to free space beams, waveguides in optical backplanes, or optical fibers for longer reach transmission. The required electrical-optical and optical components are placed and aligned actively in more than one respect. For one, all active components are actually operated in the alignment process, and, more importantly, the placing of all components is controlled actively by camera systems and power detectors with live feedback for an optimal coupling efficiency. The total number of optical components typically is in the range of 5 to 50, whereas the number of actors with gripping tools for the actual handling and aligning is limited, with little flexibility in the gripping width. The assembly process therefore is strictly sequential and, given that an automated tool changing has not been established in this class of machines yet, there are either limitations in the geometries of components that may be used, or time-consuming interaction by human operators is needed. As a solution we propose and present lasered glass building blocks with standardized gripping geometries that enclose optical elements of various shapes and functionalities. These are cut as free form geometries with green short pulse and CO2 lasers. What seems to add cost at first rather increases freedom of design and adds an economical flexibility to create very hybrid assemblies of various micro-optical assemblies also in small numbers.

  10. Use of field aberrations in the alignment of the Large Binocular Telescope optics

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Hill, J. M.; Biddick, C. J.; Miller, D. L.; Leibold, T.

    2008-07-01

    It is now well-known that measurement of field-aberration, and in particular the asymmetric field-astigmatism, is required to break the degeneracy of tip-induced and de-centre-induced aberration that exists when only on-axis misalignment aberrations are considered. This paper discusses the application of the measurement of field-aberrations to the alignment of LBT optics. This application ranges from the use of wide field out-of-focus images to determine corrector tip for the red and blue prime-focus correctors, to the use of data acquired by off-axis Shack-Hartman wavefront sensors to actively reposition the hexapod-mounted primary and secondary mirrors so as to simultaneously remove both de-centre and tip/tilt such that the only remaining field-astigmatism has rotational symmetry about the centre of the detector. Also introduced is a novel method to calculate the misalignment aberrations based on an extension of the plate-diagram analysis. It is shown that this method is readily applicable to the calculation of misalignment aberrations for systems of three-or-more powered mirrors, with almost no more computational difficulty than that of the two-mirror case. Results are discussed, as well as work in progress in this area.

  11. Recent flight-test results of optical airdata techniques

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.

    1993-01-01

    Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.

  12. Interference cancellation technique of optical AND gate receiver using optical thyristor.

    PubMed

    Kang, Tae-Gu

    2008-09-01

    We demonstrate an interference cancellation technique of optical AND gate receiver using optical thyristor for fiber-optic code division multiple access (FO-CDMA) systems. In particular, we fabricate the optical thyristor operating as optical hard-limiter and evaluate that the optical AND gate receiver using fabricated optical thyristor excludes the peaks of side-lobe and cross-correlation result in the system performance degradation. It found that the optical AND gate receiver using optical thyristor excludes the intensity of interference signal resulting in that the peaks of side-lobe and cross-correlation can be fully eliminated for any two users. Therefore, the optical AND gate receiver using optical thyristor is shown to be effective to accommodate more simultaneous users. PMID:18773033

  13. (Optical characterization techniques applied to ceramic oxides)

    SciTech Connect

    Abraham, M.M.

    1990-10-15

    The traveler collaborated with M.J.M. Leask, J.M. Baker, B. Bleaney, and others at the Clarendon Laboratory, Oxford University, Oxford, UK, to Study Tetragonal rare-earth phosphates and vanadates by optical and magnetic spectroscopy. This work is related to similar studies that have been performed at ORNL by the Synthesis and Properties of Novel Materials Group in the Solid State Division.

  14. Antares beam-alignment-system performance

    SciTech Connect

    Appert, Q.D.; Bender, S.C.

    1983-01-01

    The beam alignment system for the 24-beam-sector Antares CO/sub 2/ fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO/sub 2/ alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence.

  15. Superior optical properties of homogeneous liquid crystal alignment on a tin (IV) oxide surface sequentially modulated via ion beam irradiation.

    PubMed

    Kang, Young-Gu; Park, Hong-Gyu; Kim, Hyung-Jun; Kim, Young-Hwan; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Dai-Hyun; Seo, Dae-Shik

    2010-10-11

    We first investigated the alignment characteristics of tin (IV) oxide (SnO(2)) thin films deposited by radio-frequency (RF) magnetron sputtering. This study demonstrates that liquid crystal (LC) molecules could be aligned homogeneously by controlling the Ion Beam (IB) irradiation energy densities. We also show that the pretilt angle of the LC molecules has a close relation with the surface energy. X-ray photoelectron spectroscopy (XPS) indicates that a non-stoichiometric SnO(2-x) surface converted by ion beam irradiation can horizontally align the LC molecules. The measured electro-optical (EO) characteristics showed high performance, comparable with those of rubbed and ion-beam irradiated polyimide (PI) layers. PMID:20941057

  16. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, M.C.

    1989-03-28

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter. 18 figs.

  17. Techniques for optically compressing light intensity ranges

    DOEpatents

    Rushford, Michael C.

    1989-01-01

    A pin hole camera assembly for use in viewing an object having a relatively large light intensity range, for example a crucible containing molten uranium in an atomic vapor laser isotope separator (AVLIS) system is disclosed herein. The assembly includes means for optically compressing the light intensity range appearing at its input sufficient to make it receivable and decipherable by a standard video camera. A number of different means for compressing the intensity range are disclosed. These include the use of photogray glass, the use of a pair of interference filters, and the utilization of a new liquid crystal notch filter in combination with an interference filter.

  18. Optical modeling activities for NASA's James Webb Space Telescope (JWST): III. Wavefront aberrations due to alignment and figure compensation

    NASA Astrophysics Data System (ADS)

    Howard, Joseph M.

    2007-09-01

    This paper is part three of a series describing the ongoing optical modeling activities for the James Webb Space Telescope (JWST). The first two papers discussed modeling JWST on-orbit performance using wavefront sensitivities to predict line of sight motion induced blur, and stability during thermal transients [1-2]. The work here investigates the aberrations resulting from alignment and figure compensation of the controllable degrees of freedom (i.e. the primary and secondary mirrors), which may be encountered during ground alignment and on-orbit commissioning of the observatory. The optical design of the telescope is a three-mirror anastigmat, with an active fold mirror at the exit pupil for fine guiding. The primary mirror is over 6.5 meters in diameter, and is composed of 18 hexagonal segments that can individually positioned on hexapods, as well as compensated for radius of curvature. This architecture effectively gives both alignment and figure control of the primary mirror. The secondary mirror can be moved in rigid body only, and the tertiary mirror is fixed. Simulations are performed of various combinations of alignment and figure errors corrected by the primary and secondary mirrors. Single field point knowledge is assumed in the corrections, and aberrations over the field are reported for the varying cases.

  19. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties.

    PubMed

    Lee, Won-Kyu; Hwang, Seung Jun; Cho, Min-Jae; Park, Hong-Gyu; Han, Jin-Woo; Song, Seogjeong; Jang, Jong Hyun; Seo, Dae-Shik

    2013-01-01

    We demonstrate self-aligned and high-performance liquid crystal (LC) systems doped with 1-dimensional (1D) chain-like clusters of CuInS(2) (CIS)-ZnS core-shell quantum dots (QDs). By changing the cell fabrication method of the LC-QD composites, we can selectively control the orientation of the LC molecules between the homogeneous and homeotropic states without conventional LC alignment layers. The homeotropic alignment of LCs was achieved by random dropcasting and the homogeneous alignment was performed using a capillary injection of LC-QDs due to the random or linear diffusion of QD clusters into ITO defects. The electrically compensated bend (ECB)- and vertically aligned (VA) mode LC displays (LCDs) containing our LC-QD composite both showed superior electro-optic (EO) properties. A 37.1% reduction in the threshold voltage (V(th)) and a 36.6% decrease in the response time were observed for ECB mode LCDs, and a 47.0% reduction in the V(th) and a 38.3% decrease in the response time were observed for VA mode LCDs, meaning that the proposed LC-QD composites have a great potential for the production of advanced flexible LCDs. PMID:23142966

  20. Automatic inspection technique for optical surface flaws

    NASA Astrophysics Data System (ADS)

    Yang, GuoGuang; Gao, Wenliang; Cheng, Shangyi

    1991-01-01

    Industrial inspection of optical component surface flaws requires objective, high efficient and fast measurement methods and instruments. In this paper, a novel method, which is practical for on- line inspecting optical component surface flaws in manufacturing industry, is discribed. Laser beam goes through a lean- placed mirror with a slot in center onto the surface of the specimen. The imformation of surface flaws is obtained through analysing the frequency spectrum of reflective light which is detected by a photomultiplier, the specimen scanning control and signal processing are finished by a low - cost and handy single- board microcomputer. The theory that applies the scanning frequency spectrum method , the method for determining flaw size and measuring sensitivity as well as control model for various specimen are analysed in detail .A system has been built according to the idea discribed above. By using the system, several specimen are measured, the comparison and analysis between exprimental results and actual flaw conditions are given. The minimum detectable flaw is 3 micrometer, the measuring error is also given.

  1. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  2. Optical correlator techniques applied to robotic vision

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Reid, Max B.; Downie, John D.

    1991-01-01

    Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.

  3. Optical techniques for shock visualization and detection

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Johnson, D. K.

    1995-01-01

    While the classical methods of shadowgraph and schlieren do yield a shadow in the neighborhood of a shock, they often suffer from low power densities and the need for relatively long distances. Scanning methods may help in solving these problems. The paper describes various scanning techniques, presents experimental data obtained by mechanical scanning, and identifies conditions at which the data were taken.

  4. Optical metrology techniques and apparatus for lens assembly

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Zhang, Chi; Davis, Colleen; Alt, Mark; Ji, Zheng; Han, Yue; Gardner, Michael

    2014-11-01

    This paper presents the optical and lens design for alignment to meet the challenging position specifications. Fabrication of the prototypes and testing results and analysis are also presented. The system components as well as their interaction with each other were simulated with Zemax software and tested in an experimental setup in order to conduct tolerance study and provide specifications for the mechanical fixtures used in the system. The epoxy is used to affix the parts together in a cost effective manner for prototyping. The position accuracy of +/-3 μm compared to the golden unit has been achieved.

  5. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Young Sun; Jang, Jae-Hyung

    2016-02-01

    A low-cost packaging method utilizing a fully passive optical alignment and surface-mounting method is demonstrated for pluggable compact and slim multichannel optical interconnection modules using a VCSEL/PIN-PD chip array. The modules are based on a nonplanar bent right-angle electrical signal path on a silicon platform and direct-butt-optical coupling without a bulky and expensive microlens array. The measured optical direct-butt-coupling efficiencies of each channel without any bulky optics are as high as 33% and 95% for the transmitter and receiver, respectively. Excellent lateral optical alignment tolerance of larger than 60 μm for both the transmitter and receiver module significantly reduces the manufacturing and material costs as well as the packaging time. The clear eye diagrams, extinction ratios higher than 8 dB at 10.3 Gbps for the transmitter module, and receiver sensitivity of better than -13.1 dBm at 10.3 Gbps and a bit error rate of 10-12 for all channels are demonstrated. Considering that the optical output power of the transmitter is greater than 0 dBm, the module has a sufficient power margin of about 13 dB for 10.3 Gbps operations for all channels.

  6. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    NASA Astrophysics Data System (ADS)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  7. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  8. A novel scheme for DVL-aided SINS in-motion alignment using UKF techniques.

    PubMed

    Li, Wanli; Wang, Jinling; Lu, Liangqing; Wu, Wenqi

    2013-01-01

    In-motion alignment of Strapdown Inertial Navigation Systems (SINS) without any geodetic-frame observations is one of the toughest challenges for Autonomous Underwater Vehicles (AUV). This paper presents a novel scheme for Doppler Velocity Log (DVL) aided SINS alignment using Unscented Kalman Filter (UKF) which allows large initial misalignments. With the proposed mechanism, a nonlinear SINS error model is presented and the measurement model is derived under the assumption that large misalignments may exist. Since a priori knowledge of the measurement noise covariance is of great importance to robustness of the UKF, the covariance-matching methods widely used in the Adaptive KF (AKF) are extended for use in Adaptive UKF (AUKF). Experimental results show that the proposed DVL-aided alignment model is effective with any initial heading errors. The performances of the adaptive filtering methods are evaluated with regards to their parameter estimation stability. Furthermore, it is clearly shown that the measurement noise covariance can be estimated reliably by the adaptive UKF methods and hence improve the performance of the alignment. PMID:23322105

  9. Field results of antifouling techniques for optical instruments

    USGS Publications Warehouse

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  10. Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials.

    PubMed

    Yoshimura, Tetsuzo; Iida, Makoto; Nawata, Hideyuki

    2014-06-15

    Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers. PMID:24978520