Science.gov

Sample records for optical calibration progress

  1. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  2. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  3. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  4. Optical Calibration of SNO+

    NASA Astrophysics Data System (ADS)

    Maneira, J.; Peeters, S.; Sinclair, J.

    2015-04-01

    SNO is being upgraded to SNO+, which has as its main goal the search for neutrinoless double-beta decay. The upgrade is defined by filling with a novel scintillator mixture containing 130Te. With a lower energy threshold than SNO, SNO+ will be sensitive to other exciting new physics. Here we are describing new optical calibration system that meets new, more stringent radiopurity requirements has been developed.

  5. Spinning angle optical calibration apparatus

    DOEpatents

    Beer, Stephen K.; Pratt, II, Harold R.

    1991-01-01

    An optical calibration apparatus is provided for calibrating and reproducing spinning angles in cross-polarization, nuclear magnetic resonance spectroscopy. An illuminated magnifying apparatus enables optical setting an accurate reproducing of spinning "magic angles" in cross-polarization, nuclear magnetic resonance spectroscopy experiments. A reference mark scribed on an edge of a spinning angle test sample holder is illuminated by a light source and viewed through a magnifying scope. When the "magic angle" of a sample material used as a standard is attained by varying the angular position of the sample holder, the coordinate position of the reference mark relative to a graduation or graduations on a reticle in the magnifying scope is noted. Thereafter, the spinning "magic angle" of a test material having similar nuclear properties to the standard is attained by returning the sample holder back to the originally noted coordinate position.

  6. Optical Tweezer Assembly and Calibration

    NASA Technical Reports Server (NTRS)

    Collins, Timothy M.

    2004-01-01

    An Optical Tweezer, as the name implies, is a useful tool for precision manipulation of micro and nano scale objects. Using the principle of electromagnetic radiation pressure, an optical tweezer employs a tightly focused laser beam to trap and position objects of various shapes and sizes. These devices can trap micrometer and nanometer sized objects. An exciting possibility for optical tweezers is its future potential to manipulate and assemble micro and nano sized sensors. A typical optical tweezer makes use of the following components: laser, mirrors, lenses, a high quality microscope, stage, Charge Coupled Device (CCD) camera, TV monitor and Position Sensitive Detectors (PSDs). The laser wavelength employed is typically in the visible or infrared spectrum. The laser beam is directed via mirrors and lenses into the microscope. It is then tightly focused by a high magnification, high numerical aperture microscope objective into the sample slide, which is mounted on a translating stage. The sample slide contains a sealed, small volume of fluid that the objects are suspended in. The most common objects trapped by optical tweezers are dielectric spheres. When trapped, a sphere will literally snap into and center itself in the laser beam. The PSD s are mounted in such a way to receive the backscatter after the beam has passed through the trap. PSD s used with the Differential Interference Contrast (DIC) technique provide highly precise data. Most optical tweezers employ lasers with power levels ranging from 10 to 100 miliwatts. Typical forces exerted on trapped objects are in the pico-newton range. When PSDs are employed, object movement can be resolved on a nanometer scale in a time range of milliseconds. Such accuracy, however, can only by utilized by calibrating the optical tweezer. Fortunately, an optical tweezer can be modeled accurately as a simple spring. This allows Hook s Law to be used. My goal this summer at NASA Glenn Research Center is the assembly and

  7. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  8. Optical Calibration For Jefferson Lab HKS Spectrometer

    SciTech Connect

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  9. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  10. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  11. Slab coupled optical fiber sensor calibration

    NASA Astrophysics Data System (ADS)

    Whitaker, B.; Noren, J.; Chadderdon, S.; Wang, W.; Forber, R.; Selfridge, R.; Schultz, S.

    2013-02-01

    This paper presents a method for calibrating slab coupled optical fiber sensors (SCOS). An automated system is presented for selecting the optimal laser wavelength for use in SCOS interrogation. The wavelength calibration technique uses a computer sound card for both the creation of the applied electric field and the signal detection. The method used to determine the ratio between the measured SCOS signal and the applied electric field is also described along with a demonstration of the calibrated SCOS involving measuring the dielectric breakdown of air.

  12. Simplified stereo-optical ultrasound plane calibration

    NASA Astrophysics Data System (ADS)

    Hoßbach, Martin; Noll, Matthias; Wesarg, Stefan

    2013-03-01

    Image guided therapy is a natural concept and commonly used in medicine. In anesthesia, a common task is the injection of an anesthetic close to a nerve under freehand ultrasound guidance. Several guidance systems exist using electromagnetic tracking of the ultrasound probe as well as the needle, providing the physician with a precise projection of the needle into the ultrasound image. This, however, requires additional expensive devices. We suggest using optical tracking with miniature cameras attached to a 2D ultrasound probe to achieve a higher acceptance among physicians. The purpose of this paper is to present an intuitive method to calibrate freehand ultrasound needle guidance systems employing a rigid stereo camera system. State of the art methods are based on a complex series of error prone coordinate system transformations which makes them susceptible to error accumulation. By reducing the amount of calibration steps to a single calibration procedure we provide a calibration method that is equivalent, yet not prone to error accumulation. It requires a linear calibration object and is validated on three datasets utilizing di erent calibration objects: a 6mm metal bar and a 1:25mm biopsy needle were used for experiments. Compared to existing calibration methods for freehand ultrasound needle guidance systems, we are able to achieve higher accuracy results while additionally reducing the overall calibration complexity. Ke

  13. Automated Attitude Sensor Calibration: Progress and Plans

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph; Hashmall, Joseph

    2004-01-01

    This paper describes ongoing work a NASA/Goddard Space Flight Center to improve the quality of spacecraft attitude sensor calibration and reduce costs by automating parts of the calibration process. The new calibration software can autonomously preview data quality over a given time span, select a subset of the data for processing, perform the requested calibration, and output a report. This level of automation is currently being implemented for two specific applications: inertial reference unit (IRU) calibration and sensor alignment calibration. The IRU calibration utility makes use of a sequential version of the Davenport algorithm. This utility has been successfully tested with simulated and actual flight data. The alignment calibration is still in the early testing stage. Both utilities will be incorporated into the institutional attitude ground support system.

  14. Progress in Using Continuum radiation for AXAF Calibration

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Austin, R. A.; Elsner, R. F.; O'Dell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.; Zhao, P.

    1998-01-01

    X-ray calibration of the AXAF observatory at MSFC's X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis. Further verification of AXAF response models will be presented.

  15. Optical tweezers calibration with Bayesian inference

    NASA Astrophysics Data System (ADS)

    Türkcan, Silvan; Richly, Maximilian U.; Le Gall, Antoine; Fiszman, Nicolas; Masson, Jean-Baptiste; Westbrook, Nathalie; Perronet, Karen; Alexandrou, Antigoni

    2014-09-01

    We present a new method for calibrating an optical-tweezer setup that is based on Bayesian inference1. This method employs an algorithm previously used to analyze the confined trajectories of receptors within lipid rafts2,3. The main advantages of this method are that it does not require input parameters and is insensitive to systematic errors like the drift of the setup. Additionally, it exploits a much larger amount of the information stored in the recorded bead trajectory than standard calibration approaches. The additional information can be used to detect deviations from the perfect harmonic potential or detect environmental influences on the bead. The algorithm infers the diffusion coefficient and the potential felt by a trapped bead, and only requires the bead trajectory as input. We demonstrate that this method outperforms the equipartition method and the power-spectrum method in input information required (bead radius and trajectory length) and in output accuracy. Furthermore, by inferring a higher order potential our method can reveal deviations from the assumed second-order potential. More generally, this method can also be used for magnetic-tweezer calibration.

  16. Optics of progressive addition lenses.

    PubMed

    Sheedy, J E; Buri, M; Bailey, I L; Azus, J; Borish, I M

    1987-02-01

    The optical characteristics of the major progressive addition lenses were measured using an automated lensometer with a specially designed lens holder to simulate eye rotation. Measurements were made every 3 degrees (about 1.5 mm) and graphs of isospherical equivalent lines and isocylinder lines were developed. Generally the near zone of these lenses is narrower and lower than in bifocal or trifocal lenses. Distinct differences exist between the various progressive lenses. The width of the near zone, rate of power progression, amount of unwanted cylinder (level with the distance center), and clarity of the distance zone are compared for the various lenses. The optical measurements demonstrate an apparent trade-off between the size of the cylinder-free area of the lens and the amount of the cylinder. PMID:3826294

  17. Experimental Calibration of VUV Ring Optics

    NASA Astrophysics Data System (ADS)

    Safranek, J.; Kramer, S. L.

    1997-05-01

    The individual quadrupole gradients, undulator focusing, beam position monitor (BPM) gains, and orbit steering magnet calibrations in the NSLS VUV Ring were determined by analyzing the measured orbit response matrix with the computer code LOCO (J. Safranek, Beam-based Modeling and Control of Storage Rings, these proceedings.). The measured orbit response matrix is the change in orbit at the BPMs with changes in steering magnet excitation. The analysis showed beta function distortions of 25 and 35 percent horizontally and vertically. The design periodicity of the optics was restored by adjusting the quadrupole gradients to restore the periodicity of the response matrix. This lead to an increase of about 18 percent in the beam lifetime at 500 mA with a slight (3 and 7 percent) decrease in both the horizontal and vertical electron emittances as determined from the beam sizes measured using a synchrotron light monitor.

  18. [Spectral calibration for space-borne differential optical absorption spectrometer].

    PubMed

    Zhou, Hai-Jin; Liu, Wen-Qing; Si, Fu-Qi; Zhao, Min-Jie; Jiang, Yu; Xue, Hui

    2012-11-01

    Space-borne differential optical absorption spectrometer is used for remote sensing of atmospheric trace gas global distribution. This instrument acquires high accuracy UV/Vis radiation scattered or reflected by air or earth surface, and can monitor distribution and variation of trace gases based on differential optical absorption spectrum algorithm. Spectral calibration is the premise and base of quantification of remote sensing data of the instrument, and the precision of calibration directly decides the level of development and application of the instrument. Considering the characteristic of large field, wide wavelength range, high spatial and spectral resolution of the space-borne differential optical absorption spectrometer, a spectral calibration method is presented, a calibration device was built, the equation of spectral calibration was calculated through peak searching and regression analysis, and finally the full field spectral calibration of the instrument was realized. The precision of spectral calibration was verified with Fraunhofer lines of solar light. PMID:23387142

  19. Virtual camera calibration using optical design software.

    PubMed

    Poulin-Girard, Anne-Sophie; Dallaire, Xavier; Thibault, Simon; Laurendeau, Denis

    2014-05-01

    Camera calibration is a critical step in many vision applications. It is a delicate and complex process that is highly sensitive to environmental conditions. This paper presents a novel virtual calibration technique that can be used to study the impact of various factors on the calibration parameters. To highlight the possibilities of the method, the calibration parameters' behavior has been studied regarding the effects of tolerancing and temperature for a specific lens. This technique could also be used in many other promising areas to make calibration in the laboratory or in the field easier. PMID:24921866

  20. Progress in optical parametric oscillators

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Byer, R. L.

    1984-01-01

    It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.

  1. One step geometrical calibration method for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Stritzel, Jenny; Rahlves, Maik; Majdani, Omid; Reithmeier, Eduard; Ortmaier, Tobias; Roth, Bernhard

    2016-01-01

    We present a novel one-step calibration methodology for geometrical distortion correction for optical coherence tomography (OCT). A calibration standard especially designed for OCT is introduced, which consists of an array of inverse pyramidal structures. The use of multiple landmarks situated on four different height levels on the pyramids allow performing a 3D geometrical calibration. The calibration procedure itself is based on a parametric model of the OCT beam propagation. It is validated by experimental results and enables the reduction of systematic errors by more than one order of magnitude. In future, our results can improve OCT image reconstruction and interpretation for medical applications such as real time monitoring of surgery.

  2. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  3. Calibration procedure for Slocum glider deployed optical instruments.

    PubMed

    Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H

    2009-08-31

    Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper. PMID:19724540

  4. Near-Infrared Camera Calibration for Optical Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Lin, Qinyong; Liu, Sujuan; Chen, Huazhou; Ou, Shanxing; Huang, Wenhua; Zhou, Jing

    2016-03-01

    Near-infrared optical tracking devices, which are important components of surgical navigation systems, need to be calibrated for effective tracking. The calibration results has a direct influence on the tracking accuracy of an entire system. Therefore, the study of calibration techniques is of theoretical significance and practical value. In the present work, a systematic calibration method based on movable plates is established, which analyzes existing calibration theories and implements methods using calibration reference objects. First, the distortion model of near-infrared cameras (NICs) is analyzed in the implementation of this method. Second, the calibration images from different positions and orientations are used to establish the required linear equations. The initial values of the NIC parameters are calculated with the direct linear transformation method. Finally, the accurate internal and external parameters of the NICs are obtained by conducting nonlinear optimization. Analysis results show that the relative errors of the left and right NICs in the tracking system are 0.244 and 0.282 % for the focal lengths and 0.735 and 1.111 % for the principal points, respectively. The image residuals of the left and right image sets are both less than 0.01 pixel. The standard error of the calibration result is lower than 1, and the measurement error of the tracking system is less than 0.3 mm. The experimental data show that the proposed method of calibrating NICs is effective and can generate favorable calibration results. PMID:26728393

  5. Fast calibration of high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  6. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  7. Optical computed tomography liquid calibration phantom

    NASA Astrophysics Data System (ADS)

    Jordan, K.

    2013-06-01

    Fluorinated ethylene propylene tubing is investigated as a method of preparing a contrast-resolution phantom for quantitative characterization of optical CT scanners and hydrogel dosimeters. Two sizes of tubing were examined: 6 and 13 mm inner diameter with 0.75 and 0.5 mm wall thicknesses, respectively. Water solutions of carbon black, nanoparticles in micelles provided continuously adjustable absorption contrast. Cross-sectional slices from two phantoms scanned with two different optical CT scanners are presented. Reconstructions from these simple phantoms can be used to identify scanner artefacts and improve instrument design. These phantoms represent a more reproducible approach than casting "gel fingers" into gel phantoms for system characterization. The thinner walled tubes have fewer optical artefacts.

  8. Strain calibration of optical FBG-based strain sensors

    NASA Astrophysics Data System (ADS)

    Roths, Johannes; Wilfert, Andre; Kratzer, Peter; Jülich, Florian; Kuttler, Rolf

    2010-09-01

    A facility for strain sensitivity calibration of optical FBG-based strain sensors according to the German VDI/VDE 2660 guideline was established and characterized. Statistical analysis of several calibration measurement series performed with one single type of FBG strain sensor and application technique showed a reproducibility of 0.15%. Strain sensitivities for FBGs inscribed in two different types of optical fibres (GF1B and PR2008) showed significantly different strain sensitivities of k = 0.7885+/-0.0026 and k = 0.7758+/-0.0024, respectively.

  9. Optical model and calibration of a sun tracker

    NASA Astrophysics Data System (ADS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-09-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker.

  10. Calibration and imaging algorithms for full-Stokes optical interferometry

    NASA Astrophysics Data System (ADS)

    Elias, Nicholas M.; Mozurkewich, David; Schmidt, Luke M.; Jurgenson, Colby A.; Edel, Stanislav S.; Jones, Carol E.; Halonen, Robert J.; Schmitt, Henrique R.; Jorgensen, Anders M.; Hutter, Donald J.

    2012-07-01

    Optical interferometry and polarimetry have separately provided new insights into stellar astronomy, especially in the fields of fundamental parameters and atmospheric models. Optical interferometers will eventually add full-Stokes polarization measuring capabilities, thus combining both techniques. In this paper, we: 1) list the observables, calibration quantities, and data acquisition strategies for both limited and full optical interferometric polarimetry (OIP); 2) describe the masking interferometer AMASING and its polarization measuring enhancement called AMASING-POL; 3) show how a radio interferometry imaging package, CASA, can be used for optical interferometry data reduction; and 4) present imaging simulations for Be stars.

  11. AVIRIS foreoptics, fiber optics and on-board calibrator

    NASA Technical Reports Server (NTRS)

    Chrisp, Michael P.; Chrien, Thomas G.; Steimle, L.

    1987-01-01

    The foreoptics, fiber optic system and calibration source of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) are described. The foreoptics, based on a modified Kennedy scanner, is coupled by optical fibers to the four spectrometers. The optical fibers allow convenient positioning of the spectrometers in the limited space and enable simple compensation of the scanner's thermal defocus (at the -23 C operating temp) by active control of the fiber focal plane position. A challenging requirement for the fiber optic system was the transmission to the spectral range 1.85 to 2.45 microns at .45 numerical aperture. This was solved with custom fluoride glass fibers from Verre Fluore. The onboard calibration source is also coupled to the spectrometers by the fibers and provides two radiometric levels and a reference spectrum to check the spectrometers' alignment. Results of the performance of the assembled subsystems are presented.

  12. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T.

    1994-05-02

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  13. Optical calibration and test of the VLT Deformable Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  14. Recent Progress in Optical Chemical Sensors

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Akram, Muhammad

    2012-01-01

    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described. PMID:23443392

  15. MERTIS: using diffractive optical elements for geometrical calibration

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Griessbach, D.; Säuberlich, T.; Scheele, M.; Schischmanow, A.

    2010-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for MERTIS. The goal is the determination of interiour sensor parameters. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles which define the line of sight of a pixel a manipulator construction is used. A new method for geometrical sensor calibration is presented using Diffractive Optical Elements (DOE) in connection with laser beam equipment. This method is especially used for 2D-sensor array systems but can also be applied to the thermal infrared push-broom imaging spectrometer MERTIS. Diffractive optical elements (DOE) are optical microstructures which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the object to be imaged is similar to the starry sky which gives an image invariant against translation. This particular feature allows a complete geometrical sensor calibration with one image avoiding complex adjustment procedures which means a significant reduction of calibration effort.

  16. Progress in optics. Volume 22

    NASA Astrophysics Data System (ADS)

    Wolf, E.

    Among the topics discussed are: optical and electronic processing of medical images; quantum fluctuations in vision; and spectral and temporal fluctuations of broad-band laser radiation. Consideration is also given to: holographic methods of plasma diagnostics; fringe formations in deformation and vibration measurements using laser light; a systems approach to wave propagation in random media; and the interaction of radiation with a rough surface immersed in a random medium. A glossary of symbols and useful formulas for practical optics problems is given.

  17. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  18. Accurate projector calibration method by using an optical coaxial camera.

    PubMed

    Huang, Shujun; Xie, Lili; Wang, Zhangying; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2015-02-01

    Digital light processing (DLP) projectors have been widely utilized to project digital structured-light patterns in 3D imaging systems. In order to obtain accurate 3D shape data, it is important to calibrate DLP projectors to obtain the internal parameters. The existing projector calibration methods have complicated procedures or low accuracy of the obtained parameters. This paper presents a novel method to accurately calibrate a DLP projector by using an optical coaxial camera. The optical coaxial geometry is realized by a plate beam splitter, so the DLP projector can be treated as a true inverse camera. A plate having discrete markers on the surface is used to calibrate the projector. The corresponding projector pixel coordinate of each marker on the plate is determined by projecting vertical and horizontal sinusoidal fringe patterns on the plate surface and calculating the absolute phase. The internal parameters of the DLP projector are obtained by the corresponding point pair between the projector pixel coordinate and the world coordinate of discrete markers. Experimental results show that the proposed method can accurately calibrate the internal parameters of a DLP projector. PMID:25967789

  19. TweezPal - Optical tweezers analysis and calibration software

    NASA Astrophysics Data System (ADS)

    Osterman, Natan

    2010-11-01

    Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional

  20. Recent progress on polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Kobayashi, Junya

    2008-02-01

    Intensive research on optical interconnection over flexible optical circuit boards has been undertaken for such applications as high-end routers, servers and cellular phones. And these flexible optical circuit boards are expected to be used for polymer optical waveguides. This paper reports recent progress on polymer optical waveguides. It also describes a flexible stamping method, which employs a flexible film stamp made of polymeric materials. Unlike conventional hard stamps, the flexible film stamp does not require either the stamp or its substrate to be perfectly flat, which means large area stamping is easy to achieve at reduced cost. We confirmed this by replicating 50 μm multi-mode optical polymer waveguides. The propagation loss of the waveguide is fairly low at 0.06 dB/cm at a wavelength of 850 nm. This loss is sufficiently small to meet the basic requirement for optical circuit boards, and the waveguide was used to fabricate a flexible optical circuit board with MT connectors.

  1. Degradation of MODIS Optics and its Reflective Solar Bands Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Sun, J.; Esposito, J.; Pan, C.; Xiong, S.; Guenther, B.; Barnes, W. L.; Degnan, John (Technical Monitor)

    2001-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) has 36 spectral bands with wavelength ranging from 0.41 micron to 14.5 micron and spatial resolution between 0.25, 0.5, and 1.0 km at Nadir. Its ProtoFlight Model (PFM) on the NASA EOS Terra spacecraft has been providing global coverage of the Land, Ocean, and Atmosphere for the science community since the instrument opened its Nadir door on 24 February 2000. The MODIS optical system consists of a 2-sided paddle wheel scan mirror, a fold mirror, a primary mirror, and other aft optics. The sensor's 20 reflective solar bands from 0.41 to 2.1 micron are calibrated on-orbit by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition to SD, degradation of the MODIS optics in the reflective solar bands has been observed, including variations in degradation between the two sides of the MODIS scan mirror. During MODIS first year of on-orbit operation, the overall degradations at the shortest wavelength (0.41 micron) are about 3% for SD, and in excess of 10% for the MODIS system. In this paper, we will present our degradation analysis results and discuss their impact on the reflective solar bands' on-orbit calibration.

  2. Computer-automated program for calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Taylor, C. D.; Foley, T. W.; Chang, A. N.; Mowa, S.; Burris, J. L.; Hester, B. C.

    2012-10-01

    An optical tweezers (OT) system uses focused laser light to contain and manipulate nano-scale to micro-scale particles. Trap stiffness is the quantitative measurement of the ability to trap a particle. For some techniques, this measurement depends on an accurate knowledge of the particle's position in time. A position sensing detector (PSD) is used to track particle motion by detecting laser light from the trapping region. The PSD outputs voltages corresponding to the x- and y-coordinates of particle motion, providing a means of knowing the location of the particle in time. An OT system requires a calibration to convert the measured voltages into accurate distances. This process is time-consuming and frequently needs to be repeated, however, with the growing availability of computer-aided data acquisition and control, the complete process can now be automated, reducing time spent by researchers and increasing level of accuracy of future measurements. We have developed a program written in LabVIEW that will, after initialization, 1) via image processing, calibrate the pixel size of the camera, 2) calibrate the optical tweezer position detector by controlling a motorized mirror to move a trapped bead through a detection laser with simultaneous position detector signal measurements, 3) re-align the trap beam and the detection beam by motorized mirror control, 4) measure position data for the same trapped particle being illuminated by the detection beam, and 5) analyze the position signal via the power spectrum method and equipartition method to give two trap stiffness values for comparison. Previous automated calibration methods require additional and sometimes costly equipment as well as some precalibration of stage motion or pixel size. Here, the user only needs to input the known size of the bead (provided by the manufacturer) into the program, insert their prepared slide into their microscope, input some parameters and make selections, and click "start" in order

  3. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  4. Self-calibration in optical/infrared interferometry

    NASA Astrophysics Data System (ADS)

    Millour, Florentin; Dalla Vedova, Gaetan

    2015-08-01

    Optical interferometry produces nowadays images of the observed stars. However, the image quality of the current facilities (VLTI, CHARA) is impaired by the lack of phases measurements. We will describe here a method used to improve the image reconstruction that takes profit of a badly used observable: the wavelength differential phase. This phase shares some properties with the interferometric phase. That method is parent to the self-calibration which was developed in the 80's for radio astronomy to get rid of calibratioon artifacts, and produces a significant improvement on image quality over the current available methods.

  5. Optical testing of progressive ophthalmic glasses based on galvo mirrors

    NASA Astrophysics Data System (ADS)

    Stuerwald, S.; Schmitt, R.

    2014-03-01

    In production of ophthalmic freeform optics like progressive eyeglasses, the specimens are tested according to a standardized method which is based on the measurement of the vertex power on usually less than 10 points. For a better quality management and thus to ensure more reliable and valid tests, a more comprehensive measurement approach is required. For Shack Hartmann Sensors (SHS) the dynamic range is defined by the number of micro-lenses and the resolution of the imaging sensor. Here, we present an approach for measuring wavefronts with increased dynamic range and lateral resolution by the use of a scanning procedure. Therefore, the proposed innovative setup is based on galvo mirrors that are capable of measuring the vertex power with a lateral resolution below one millimeter since this is sufficient for a functional test of progressive eyeglasses. Expressed in a more abstract way, the concept is based on a selection and thereby encoding of single sub-apertures of the wave front under test. This allows measuring the wave fronts slope consecutively in a scanning procedure. The use of high precision galvo systems allows a lateral resolution below one millimeter as well as a significant fast scanning ability. The measurement concept and performance of this method will be demonstrated for different spherical and freeformed specimens like progressive eye glasses. Furthermore, approaches for calibration of the measurement system will be characterized and the optical design of the detector will be discussed.

  6. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  7. Fibre optics wavemeters calibration using a self-referenced optical frequency comb

    SciTech Connect

    Galindo-Santos, J.; Velasco, A. V.; Corredera, P.

    2015-01-15

    Self-referenced optical frequency combs enable the measurement of optical frequencies with a very high accuracy, achieving uncertainties close to the atomic clock used as reference (<10{sup −13} s). In this paper, we present the technique for the measurement of laser frequencies for optical communications followed at IO-CSIC and its application to the calibration of two wavemeters in the 1.5 μm optical communication window. Calibration uncertainties down to 12 MHz and 59 MHz were obtained, respectively, for each of the devices. Furthermore, the long-term behaviour of the higher resolution wavemeter was studied during a 750 h period of sustained operation, exhibiting a dispersion in the measurements of 7.72 MHz. Temperature dependence of the device was analysed, enabling to further reduce dispersion down to a 2.15 MHz range, with no significant temporal deviations.

  8. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  9. Transfer of multivariate calibration models between spectrometers: A progress report

    SciTech Connect

    Haaland, D.; Jones, H.; Rohrback, B.

    1994-12-31

    Multivariate calibration methods are extremely powerful for quantitative spectral analyses and have myriad uses in quality control and process monitoring. However, when analyses are to be completed at multiple sites or when spectrometers drift, recalibration is required. Often a full recalibration of an instrument can be impractical: the problem is particularly acute when the number of calibration standards is large or the standards chemically unstable. Furthermore, simply using Instrument A`s calibration model to predict unknowns on Instrument B can lead to enormous errors. Therefore, a mathematical procedure that would allow for the efficient transfer of a multivariate calibration model from one instrument to others using a small number of transfer standards is highly desirable. In this study, near-infrared spectral data have been collected from two sets of statistically designed round-robin samples on multiple FT-IR and grating spectrometers. One set of samples encompasses a series of dilute aqueous solutions of urea, creatinine, and NaCl while the second set is derived from mixtures of heptane, monochlorobenzene, and toluene. A systematic approach has been used to compare the results from four published transfer algorithms in order to determine parameters that affect the quality of the transfer for each class of sample and each type of spectrometer.

  10. Progress in BRDF calibration measurements in the SWIR

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.

    2009-08-01

    Satellite instruments operating in the reflective solar wavelength region often require accurate and precise determination of the Bidirectional Reflectance Distribution Function (BRDF). Laboratory-based diffusers are used in their pre-flight calibrations and at ground-based support of on-orbit remote sensing instruments. The Diffuser Calibration Lab at NASA's Goddard Space Flight Center is a secondary diffuser calibration standard after NIST for over two decades, providing numerous NASA projects with BRDF data in the UV, Visible and the NIR spectral regions. The Diffuser Calibration Lab works on extending the covered spectral range from 900 nm up to 1.7 microns. The measurements are made using the existing scatterometer by replacing the Si photodiode based receiver with an InGaAs-based one. The BRDF data was recorded at normal incidence and scatter zenith angles from 10 to 60 deg. Tunable coherent light source was used at this setup. Monochromator based broadband light source application is also under development. The results are discussed and compared to empirically generated BRDF data from simple model based on 6 deg directional/hemispherical measurements and experimental data in the 900 - 1100 nm spectral range.

  11. Absolute calibration of optical power for PDT: report of AAPM TG140.

    PubMed

    Zhu, Timothy C; Bonnerup, Chris; Colussi, Valdir C; Dowell, Marla L; Finlay, Jarod C; Lilge, Lothar; Slowey, Thomas W; Sibata, Claudio

    2013-08-01

    This report is primarily concerned with methods for optical calibration of laser power for continuous wave (CW) light sources, predominantly used in photodynamic therapy (PDT). Light power calibration is very important for PDT, however, no clear standard has been established for the calibration procedure nor the requirements of power meters suitable for optical power calibration. The purposes of the report are to provide guidance for establishing calibration procedures for thermopile type power meters and establish calibration uncertainties for most commercially available detectors and readout assemblies. The authors have also provided a review of the use of various power meters for CW and pulsed optical sources, and provided recommended temporal frequencies for optical power meter calibrations and guidance for routine quality assurance procedure. PMID:23927297

  12. Progress with the lick adaptive optics system

    SciTech Connect

    Gavel, D T; Olivier, S S; Bauman, B; Max, C E; Macintosh, B

    2000-03-01

    Progress and results of observations with the Lick Observatory Laser Guide Star Adaptive Optics System are presented. This system is optimized for diffraction-limited imaging in the near infrared, 1-2 micron wavelength bands. We describe our development efforts in a number of component areas including, a redesign of the optical bench layout, the commissioning of a new infrared science camera, and improvements to the software and user interface. There is also an ongoing effort to characterize the system performance with both natural and laser guide stars and to fold this data into a refined system model. Such a model can be used to help plan future observations, for example, predicting the point-spread function as a function of seeing and guide star magnitude.

  13. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  14. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  15. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration.

    PubMed

    Hanes, Richard D L; Jenkins, Matthew C; Egelhaaf, Stefan U

    2009-08-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 degrees, smaller angles give a full 2pi phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method. PMID:19725658

  16. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    SciTech Connect

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-08-15

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 deg., smaller angles give a full 2{pi} phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  17. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; DiFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-01-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  18. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy.

    PubMed

    Mastanduno, Michael A; Jiang, Shudong; Diflorio-Alexander, Roberta; Pogue, Brian W; Paulsen, Keith D

    2012-10-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  19. Self-calibration approach for optical long-baseline interferometry imaging.

    PubMed

    Meimon, Serge; Mugnier, Laurent M; Le Besnerais, Guy

    2009-01-01

    Current optical interferometers are affected by unknown turbulent phases on each telescope. In the field of radio interferometry, the self-calibration technique is a powerful tool to process interferometric data with missing phase information. This paper intends to revisit the application of self-calibration to optical long-baseline interferometry (OLBI). We cast rigorously the OLBI data processing problem into the self-calibration framework and demonstrate the efficiency of the method on a real astronomical OLBI data set. PMID:19109607

  20. Progress on the Big Optical Array (BOA)

    NASA Astrophysics Data System (ADS)

    Armstrong, John T.

    1994-06-01

    The Navy Prototype Optical Interferometer (NPOI) is nearing the completion of the first phase of construction at the Lowell Observatory on Anderson Mesa, AZ. The NPOI comprises two sub- arrays, the Big Optical Array (BOA) and the USNO Astrometric Interferometer (AI), which share delay lines, the optics laboratory, the control system, and parts of the feed optics. We describe the design of and progress on the BOA, the imaging component of the NPOI. The AI is described elsewhere (Hutter, these proceedings). As of the date of this symposium, most of the civil engineering is complete, including the control and laboratory buildings and the concrete piers for the initial array. Three AI siderostats and associated feed pipes, three delay lines, the initial three-way beam combiner, and much of the control system are in place. First fringes are anticipated in April. By the end of 1994, four AI and two BOA siderostats, as well as three more delay lines, will be installed, making imaging with all six siderostats possible. The complete BOA will consist of six 50 cm siderostats and 30 siderostat stations in a Y with 251 m arms, with baseline lengths from 4 m to 437 m. Nearly redundant baseline lengths will allow fringe tracking on long baselines on which the visibilities are too low for detection in real time. A six-way beam combiner (Mozurkewich, these proceedings) will allow simultaneous measurements of 15 visibilities and nine of 10 independent closure phases. The output beams will feed 32-channel spectrometers covering the range from 450 to 900 nm. We anticipate tracking fringes on stars brighter than 10(superscript m), imaging surfaces of stars brighter than 4(superscript m), measuring stellar diameters to 0.18 milliarcsec (mas), and measuring binary orbits with major axes as small as 0.4 mas.

  1. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation

  2. ESO adaptive optics facility progress report

    NASA Astrophysics Data System (ADS)

    Arsenault, Robin; Madec, Pierre-Yves; Paufique, Jerome; La Penna, Paolo; Stroebele, Stefan; Vernet, Elise; Pirard, Jean-Francois; Hackenberg, Wolfgang; Kuntschner, Harald; Jochum, Lieselotte; Kolb, Johann; Muller, Nicolas; Le Louarn, Miska; Amico, Paola; Hubin, Norbert; Lizon, Jean-Louis; Ridings, Rob; Abad, Jose A.; Fischer, Gert; Heinz, Volker; Kiekebusch, Mario; Argomedo, Javier; Conzelmann, Ralf; Tordo, Sebastien; Donaldson, Robert; Soenke, Christian; Duhoux, Philippe; Fedrigo, Enrico; Delabre, Bernard; Jost, Andreas; Duchateau, Michel; Downing, Mark; Moreno, Javier R.; Dorn, Reinhold; Manescau, Antonio; Bonaccini Calia, Domenico; Quattri, Marco; Dupuy, Christophe; Guidolin, Ivan M.; Comin, Mauro; Guzman, Ronald; Buzzoni, Bernard; Quentin, Jutta; Lewis, Steffan; Jolley, Paul; Kraus, Maximilian; Pfrommer, Thomas; Biasi, Roberto; Gallieni, Daniele; Bechet, Clementine; Stuik, Remko

    2012-07-01

    The ESO Adaptive Optics Facility (AOF) consists in an evolution of one of the ESO VLT unit telescopes to a laser driven adaptive telescope with a deformable mirror in its optical train. The project has completed the procurement phase and several large structures have been delivered to Garching (Germany) and are being integrated (the AO modules GRAAL and GALACSI and the ASSIST test bench). The 4LGSF Laser (TOPTICA) has undergone final design review and a pre-production unit has been built and successfully tested. The Deformable Secondary Mirror is fully integrated and system tests have started with the first science grade thin shell mirror delivered by SAGEM. The integrated modules will be tested in stand-alone mode in 2012 and upon delivery of the DSM in late 2012, the system test phase will start. A commissioning strategy has been developed and will be updated before delivery to Paranal. A substantial effort has been spent in 2011-2012 to prepare the unit telescope to receive the AOF by preparing the mechanical interfaces and upgrading the cooling and electrical network. This preparation will also simplify the final installation of the facility on the telescope. A lot of attention is given to the system calibration, how to record and correct any misalignment and control the whole facility. A plan is being developed to efficiently operate the AOF after commissioning. This includes monitoring a relevant set of atmospheric parameters for scheduling and a Laser Traffic control system to assist the operator during the night and help/support the observing block preparation.

  3. Clumped isotope calibration data for lacustrine carbonates: A progress report

    NASA Astrophysics Data System (ADS)

    Tripati, A.

    2015-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of reconstructions of past climates. Lake sediments provide important archives of terrestrial climate change, and represent an important tool for reconstructing paleohydrology, paleoclimate, paleoenvironment, and paleoaltimetry. Unfortunately, while multiple methods for constraining marine temperature exist, quantitative terrestrial proxies are scarcer - tree rings, speleothems, and leaf margin analyses have all been used with varying degrees of accuracy. Clumped isotope thermometry has the potential to be a useful instrument for determining terrestrial climates: multiple studies have shown the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed. We have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of carbonate minerals in phosphoric acid in modern lake samples and comparing results to independently known estimates of lake water temperature. Here we discuss an extensive calibration dataset comprised of 132 analyses of 97 samples from 44 localities, including microbialites, tufas, and micrites endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  4. Optical geometry calibration method for free-form digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Hartman, Allison; Shan, Jing; Lee, Yueh Z.; Zhou, Otto; Lu, Jianping

    2016-03-01

    Digital tomosynthesis is a type of limited angle tomography that allows 3D information to be reconstructed from a set of x-ray projection images taken at various angles using an x-ray tube, a mechanical arm to rotate the tube about the object, and a digital detector. Tomosynthesis reconstruction requires the precise location of the detector with respect to each x-ray source, forcing all current clinical tomosynthesis systems to use a physically coupled source and detector so the geometry is always known and is always the same. This limits the imaging geometries and its large size is impractical for mobile or field operations. To counter this, we have developed a free form tomosynthesis with a decoupled, free-moving source and detector that uses a novel optical method for accurate and real-time geometry calibration to allow for manual, hand-held tomosynthesis and even CT imaging. We accomplish this by using a camera, attached to the source, to track the motion of the source relative to the detector. Attached to the detector is an optical pattern and the image captured by the camera is then used to determine the relative camera/pattern position and orientation by analyzing the pattern distortion and calculating the source positions for each projection, necessary for 3D reconstruction. This allows for portable imaging in the field and also as an inexpensive upgrade to existing 2D systems, such as in developing countries, to provide 3D image data. Here we report the first feasibility demonstrations of free form digital tomosynthesis systems using the method.

  5. Optical relative calibration and stability monitoring for the Auger fluorescence detector

    SciTech Connect

    Aramo, Carla; Brack, J.; Caruso, R.; D'Urso, D.; Fazio, D.; Fonte, R.; Gemmeke, H.; Kleifges, M.; Knapik, R.; Insolia, A.; Matthews, J.A.J.; Menshikov, A.; Miller, W.; Privitera, P.; Rodriguez Martino, J.

    2005-07-01

    The stability of the fluorescence telescopes of the Pierre Auger Observatory is monitored with the optical relative calibration setup. Optical fibers distribute light pulses to three different diffuser groups within the optical system. The total charge per pulse is measured for each pixel and compared with reference calibration measurements. This allows monitoring the short and long term stability with respect of the relative timing between pixels and the relative gain for each pixel. The designs of the LED calibration unit (LCU) and of the Xenon flash lamp used for relative calibration, are described and their capabilities to monitor the stability of the telescope performances are studied. We report the analysis of relative calibration data recorded during 2004. Fluctuations in the relative calibration constants provide a measure of the stability of the FD.

  6. Flux density calibration in diffuse optical tomographic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M.

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (U) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  7. Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.

  8. Calibration and operation of a large space-based optical interferometer

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Breckenridge, W. G.; Shao, M.; Redding, D. C.

    1990-01-01

    The on-orbit calibration of the optics, structure, and control systems of the CSI Focus Mission Interferometer (FMI) is described. The calibration involves the estimation and propagation of both positional and rotational parameters and the propagation of both positional and rotational parameters at the nanometer/nanoradian level. It is shown that, given a nanometer class metrology system to monitor positional changes of critical optical elements, this calibration procedure should enable the FMI to perform 50 picoradian astrometry. The same Kalman filter that implements the initializing calibration of the interferometer baselines and internal pathlengths will also participate in the astrometric measurements of stellar positions.

  9. Aspects of the optical system relevant for the KM3NeT timing calibration

    NASA Astrophysics Data System (ADS)

    Kieft, Gerard

    2016-04-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  10. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  11. Recent Progress in Distributed Fiber Optic Sensors

    PubMed Central

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  12. Recent progress in distributed fiber optic sensors.

    PubMed

    Bao, Xiaoyi; Chen, Liang

    2012-01-01

    Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices. PMID:23012508

  13. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  14. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  15. Calibration of digital optical phase conjugation setups based on orthonormal rectangular polynomials.

    PubMed

    Azimipour, Mehdi; Atry, Farid; Pashaie, Ramin

    2016-04-10

    Digital optical phase conjugation (DOPC) has proven to be a promising technique in deep tissue fluorescence imaging. Nonetheless, DOPC optical setups require precise alignment of all optical components to accurately read the wavefront of scattered light in a turbid medium and playback the conjugated beam toward the sample. Minor misalignments and possible imperfections in the arrangement or the structure of the optical components significantly reduce the performance of the method. In this paper, a calibration procedure based on orthogonal rectangular polynomials is introduced to compensate major imperfections including the optical aberration in the wavefront of the reference beam and the substrate curvature of the spatial light modulator without adding extra optical components to the original setup. The proposed algorithm also provides a systematic calibration procedure for mechanical fine tuning of DOPC systems. It is shown experimentally that the proposed calibration process improves the peak-to-background ratio when focusing light after passing through a highly scattering medium. PMID:27139849

  16. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  17. SAMPLING AND CALIBRATION REQUIREMENTS FOR OPTICAL REFLECTANCE SOIL PROPERTY SENSORS FOR KOREAN PADDY SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical diffuse reflectance sensing has potential for rapid and reliable on-site estimation of soil properties. For good results, proper calibration to measured soil properties is required. One issue is whether it is necessary to develop calibrations using samples from the specific area or areas (e....

  18. Special report, cross calibration of JHU test equipment with GSFC vacuum optical bench

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    Tests were conducted to confirm the validity of the absolute calibrations which have been performed with the Apollo 17 ultraviolet spectrometer (UVS) in the calibration test equipment (CTE) which were constructed for that purpose. To accomplish this the prototype UV spectrometer SN/01 was retrofitted to be substantially identical to the qualification unit and to the two flight units. It was renamed the cross calibration unit (CCU). The instrument was first calibrated in the JHU calibration test equipment (CTE), then installed in the vacuum optical bench (VOB) at Goddard Space Flight Center and calibrated. The following day a second CTE calibration was conducted which provided substantially the same calibration values as were obtained on the first CTE calibration, and showed remarkably close agreement with the VOB calibration values at two of the wavelengths which were studied. The VOB results at the third wavelength (1216 A) indicate the CTE calibration at 1216 A is 15% too low. This apparent discrepancy is discussed and presents a very important result of the cross calibration effort.

  19. Hodoscope for spectrometer optics calibration in APEX dark matter search

    NASA Astrophysics Data System (ADS)

    Goeckner-Wald, Neil; Price, Tyson; Wojtsekhowski, Bogdan

    2012-03-01

    The A' Experiment (APEX) to be conducted in Hall A of Jefferson Lab (JLab) is a high sensitivity search for a proposed dark matter A' boson. To improve sensitivity APEX will make use of a new High Resolution Spectrometer (HRS) calibration method using a scintillating fiber (SciFi) hodoscope. A prototype SciFi hodoscope is developed to evaluate and improve the characteristics of the hodoscope design. The use of an active detector to calibrate the HRS is expected to allow for direct spectrometer calibration at any momentum setting without the use of special beam energies and improve scattering angle resolution by approximately 30%.

  20. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  1. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%). PMID:27131714

  2. Vision ray calibration for the quantitative geometric description of general imaging and projection optics in metrology

    SciTech Connect

    Bothe, Thorsten; Li Wansong; Schulte, Michael; von Kopylow, Christoph; Bergmann, Ralf B.; Jueptner, Werner P. O.

    2010-10-20

    Exact geometric calibration of optical devices like projectors or cameras is the basis for utilizing them in quantitative metrological applications. The common state-of-the-art photogrammetric pinhole-imaging-based models with supplemental polynomial corrections fail in the presence of nonsymmetric or high-spatial-frequency distortions and in describing caustics efficiently. These problems are solved by our vision ray calibration (VRC), which is proposed in this paper. The VRC takes an optical mapping system modeled as a black box and directly delivers corresponding vision rays for each mapped pixel. The underlying model, the calibration process, and examples are visualized and reviewed, demonstrating the potential of the VRC.

  3. Optical and electronic design of a calibrated multichannel electronic interferometer for quantitative flow visualization

    NASA Astrophysics Data System (ADS)

    Upton, T. D.; Watt, D. W.

    1995-09-01

    Calibrated multichannel electronic interferometry is an electro-optic technique for performing phase shifting of transient phenomena. The design of an improved system for calibrated multichannel electronic interferometry is discussed. This includes a computational method for alignment of three phase-shifted interferograms and determination of the pixel correspondence. During calibration the phase, modulation, and bias of the optical system are determined. These data are stored electronically and used to compensate for errors associated with the path differences in the interferometer, the separation of the phase-shifted interferograms, and the measurement of the phase shift.

  4. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  5. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    SciTech Connect

    Ong, H.L.; Meyer, R.B.; Hurd, A.J.; Karn, A.J.; Arakelian, S.M.; Shen, Y.R.; Sanda, P.N.; Dove, D.B.; Jansen, S.A.; Hoffmann, R.

    1989-01-01

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition. 50 refs.

  6. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  7. In-progress Absolute Radiometric Inflight Calibration of the LANDSAT-4 Sensors. [New Mexico

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Dinguirard, M.; Ezra, C. E.; Holm, R. G.; Jackson, R. D.; Kastner, C. J.; Palmer, J. M.; Savage, R.; Slater, P. N.

    1985-01-01

    Using selected instrumented areas at White Sands Missile Range, New Mexico as reference, radiometric calibration is to be effected on the sensors of LANDSAT 4, particularly the thematic mapper. Optical measurements made during a TM overpass are discussed. The radiances of selected large ground areas are measured in the spectral bandpasses of the TM; the total optical thickness of the atmosphere is measured in nine narrow spectral intervals. Ground truth in the form of reflectances collected for the alkalai flat region of gypsum and for the snow at White Sands is described.

  8. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  9. Mach-zehnder based optical marker/comb generator for streak camera calibration

    SciTech Connect

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  10. A Study for Efficient Methods of System Calibration between Optical and Range Sensors

    NASA Astrophysics Data System (ADS)

    Choi, W.; Kim, C.; Kim, Y.

    2015-06-01

    Recently, interests in 3D indoor modeling and positioning have been growing. Data fusion by using different sensors data is one of the 3D model producing methods. For a data fusion between two kinds of sensors, precise system calibration is essential. If relative geometric location of each sensor can be accurately measured with a system-calibration, it is possible to locate a pixel that corresponds to the same object in two different images, and thus, produce a more precise data-fusion. Purpose of this study is finding more efficient method of system calibration between optical and range sensor. For this purpose, experiment was designed by considering following variables, i) system calibration method, ii) testbed type, iii) and distance data(whether use it or not). So, In this study, test-bed for system calibration was designed by considering the characteristics of sensors. Also, precise simulation was done to find efficient method of system calibration, and its results were reflected in real experiment. Results of simulation show that the bundle adjustment method is more efficient than single photo resection in system calibration between range and optical sensors. And the most efficient case was when using i) the bundle adjustment with ii) the simulated data set which were obtained between 2m to 4m away from the test-bed. These results of simulation were reflected in real system calibration. Finally, real system calibration were performed and its results were compared to results of simulation. And accuracy of system calibration was evaluated by producing fusion data between range and optical sensors.

  11. Recent progress in polymer optical fibre gratings

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Carroll, K.; Webb, D. J.; Bennion, I.; Kalli, K.; Emiliyanov, G.; Bang, O.; Kjær, E.; Peng, G. D.

    2008-04-01

    We describe our recent progress in polymer fibre Bragg grating technology, including the writing of the first FBGs in TOPAS cyclic olefin copolymer, enhancements to photosensitivity brought about by dopants and studies on grating annealing.

  12. Research progress of stem cells on glaucomatous optic nerve injury.

    PubMed

    Zhou, Ya-Sha; Xu, Jian; Peng, Jun; Li, Ping; Wen, Xiao-Juan; Liu, Yue; Chen, Ke-Zhu; Liu, Jia-Qi; Wang, Ying; Peng, Qing-Hua

    2016-01-01

    Glaucoma, the second leading cause of blindness, is an irreversible optic neuropathy. The mechanism of optic nerve injury caused by glaucoma is undefined at present. There is no effective treatment method for the injury. Stem cells have the capacity of self-renewal and differentiation. These two features have made them become the research focus on improving the injury at present. This paper reviews the application progress on different types of stem cells therapy for optic nerve injury caused by glaucoma. PMID:27588279

  13. Research progress of stem cells on glaucomatous optic nerve injury

    PubMed Central

    Zhou, Ya-Sha; Xu, Jian; Peng, Jun; Li, Ping; Wen, Xiao-Juan; Liu, Yue; Chen, Ke-Zhu; Liu, Jia-Qi; Wang, Ying; Peng, Qing-Hua

    2016-01-01

    Glaucoma, the second leading cause of blindness, is an irreversible optic neuropathy. The mechanism of optic nerve injury caused by glaucoma is undefined at present. There is no effective treatment method for the injury. Stem cells have the capacity of self-renewal and differentiation. These two features have made them become the research focus on improving the injury at present. This paper reviews the application progress on different types of stem cells therapy for optic nerve injury caused by glaucoma. PMID:27588279

  14. Progress in Evaluating Quantitative Optical Gas Imaging

    EPA Science Inventory

    Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...

  15. Calibration of a dual-trap optical tweezers for single molecule force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Hu, Chunguang; Gao, Xiaoqing; Su, Chenguang; Wang, Sirong; Lei, Hai; Hu, Xiaodong; Li, Hongbin; Hu, Xiaotang

    2015-10-01

    Optical tweezers has shown its significant advantages in applying pico-Newton force on micro beads and handling them with nanometer-level precision, and becomes a powerful tool for single-molecule biology. Many excellent researching results in use of the optical tweezers have been reported. Most of them focus on the single-trap optical tweezers experiments. However, when a single-trap optical tweezers is applied to biological molecule, there is often an obvious noise from the sample chamber holder to which one end of the sample molecule is tethered. In contrast, a dual-trap optical tweezers can intrinsically avoid this problem because both ends of the sample tethered to microspheres are manipulated with two separate optical traps. In order to force the molecule precisely, it is of importance to do calibrations for both traps. Many approaches have been studied to obtain the stiffness and sensitivity of the trap, but those are not quite suitable for making calibration during experiment. Here, we use a modified method of power spectrum density (PSD) for the calibrations of the stiffness and sensitivity of the traps, which combines a sinusoidal motion of the sample stage. The main strength of the method is that the beads used for the calibration also can be used in experiment later. In addition, the calibration can be performed during experiment. Finally, an experiment using a dsDNA molecule to test the system is presented. The results show that the calibration approach for the dual-trap optical tweezers is efficient and accurate.

  16. Cross calibration of telescope optical throughput efficiencies using reconstructed shower energies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Mitchell, A. M. W.; Parsons, R. D.; Hofmann, W.; Bernlöhr, K.

    2016-02-01

    For reliable event reconstruction of Imaging Atmospheric Cherenkov Telescopes (IACTs), calibration of the optical throughput efficiency is required. Within current facilities, this is achieved through the use of ring shaped images generated by muons. Here, a complementary approach is explored, achieving cross calibration of elements of IACT arrays through pairwise comparisons between telescopes, focussing on its applicability to the upcoming Cherenkov Telescope Array (CTA). Intercalibration of telescopes of a particular type using eventwise comparisons of shower image amplitudes has previously been demonstrated to recover the relative telescope optical responses. A method utilising the reconstructed energy as an alternative to image amplitude is presented, enabling cross calibration between telescopes of varying types within an IACT array. Monte Carlo studies for two plausible CTA layouts have shown that this calibration procedure recovers the relative telescope response efficiencies at the few per cent level.

  17. Calibrating oscillation response of a piezo-stage using optical tweezers.

    PubMed

    Zhou, Jin-Hua; Li, Di; Hu, Xin-Yao; Zhong, Min-Cheng; Wang, Zi-Qiang; Gong, Lei; Liu, Wei-Wei; Li, Yin-Mei

    2015-09-21

    In optical tweezers, a piezo-stage (PZT) is widely used to precisely position samples for force clamp, calibrating optical trap and stretching DNA. For a trapped bead in solution, the oscillation response of PZT is vital for all kinds of applications. A coupling ratio, actual amplitude to nominal amplitude, can be calibrated by power spectral density during sinusoidal oscillations. With oscillation frequency increasing, coupling ratio decreases in both x- and y-directions, which is also confirmed by the calibration with light scattering of scanning two aligned beads on slide. Those oscillation responses are related with deformability of chamber and the intrinsic characteristics of PZT. If we take nominal amplitude as actual amplitude for sinusoidal oscillations at 50 Hz, the amplitude is overestimated ~2 times in x-direction and ~3 times in y-direction. That will lead to huge errors for subsequent calibrations. PMID:26406617

  18. Model Calibration and Optics Correction Using Orbit Response Matrix in the Fermilab Booster

    SciTech Connect

    Lebedev, V.A.; Prebys, E.; Petrenko, A.V.; Kopp, S.E.; McAteer, M.J.; /Texas U.

    2012-05-01

    We have calibrated the lattice model and measured the beta and dispersion functions in Fermilab's fast-ramping Booster synchrotron using the Linear Optics from Closed Orbit (LOCO) method. We used the calibrated model to implement ramped coupling, dispersion, and beta-beating corrections throughout the acceleration cycle, reducing horizontal beta beating from its initial magnitude of {approx}30% to {approx}10%, and essentially eliminating vertical beta-beating and transverse coupling.

  19. Calibrating Single-Ended Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    PubMed Central

    Hausner, Mark B.; Suárez, Francisco; Glander, Kenneth E.; van de Giesen, Nick; Selker, John S.; Tyler, Scott W.

    2011-01-01

    Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies. PMID:22346676

  20. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Huang, Meizhen Zou, Ye; Wang, Yang; Sun, Zhenhua; Cao, Zhuangqi

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines, the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.

  1. The optical field angle distortion calibration feasibility study for the Hubble Space Telescope fine guidance sensors

    NASA Technical Reports Server (NTRS)

    Luchetti, K.; Abshire, G.; Hallock, L.; Mccutcheon, R.

    1988-01-01

    The results of an analytical study to investigate the feasibility of calibrating the Hubble Space Telescope's (HST's) fine guidance sensors (FGSs) within HST mission accuracy limits are presented. The study has two purposes: (1) to determine the mathematical feasibility of the optical field angle distortion (OFAD) calibration algorithm and (2) to confirm that the OFAD, plate scale, and FGS-to-FGS alignment calibration algorithms produced a calibration of the FGSs that satisfied mission requirements. The study concluded that the mathematical specification of the OFAD algorithm is adequate and permits a determination of the FGS calibration parameters (accurate to better than 0.003 arc-second) sufficient to meet the mission requirements. The algorithms implemented, the characteristics of the simulated data and procedures for data analysis, and the study's results are discussed. In addition, several useful techniques for improving the stability and accuracy of the OFAD solution are outlined.

  2. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  3. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  4. Optical system error analysis and calibration method of high-accuracy star trackers.

    PubMed

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  5. Transmission and division of total optical depth method: A universal calibration method for Sun photometric measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Gong, Wei; Ma, Yingying; Wang, Lunche; Chen, Zhongyong

    2016-03-01

    Sun photometric measurements, which provide accurate and timely information on atmospheric components such as aerosols, clouds, and gases are important to climate research. For regions with heavy and variable aerosol loading, the traditional Langley plot method cannot be applied for Sun photometric instrument calibration, as almost no suitable prolonged periods with stable atmosphere and low-aerosol loading occurs. An improved calibration method, namely, the transmission and division of total optical depth method, is proposed in this study. Atmospheric total optical depth variation information obtained via other methods is transmitted, and period groups with similar atmospheric extinction effects are selected for Langley regression. This method is validated through calibration of a multifilter rotating shadowband radiometer under heavy aerosol-loading conditions. The obtained aerosol optical depth (AOD) compares well with the interpolated AOD from a Cimel Sun-sky radiometer.

  6. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the

  7. Calibration of the Solar-B x-ray optics

    NASA Astrophysics Data System (ADS)

    Cosmo, Mario L.; DeLuca, Edward E.; Golub, Leon; Austin, Gerald K.; Chappell, Jon H.; Barbera, Marco; Bookbinder, Jay A.; Cheimets, Peter N.; Cirtain, Jonathan; Podgorski, William A.; Davis, William; Varisco, Salvatore; Weber, Mark A.

    2005-08-01

    The Solar-B X-ray telescope (XRT) is a grazing-incidence modified Wolter I X-ray telescope, of 35 cm inner diameter and 2.7 m focal length. XRT, designed for full sun imaging over the wavelength 6-60 Angstroms, will be the highest resolution solar X-Ray telescope ever flown. Images will be recorded by a 2048 X 2048 back-illuminated CCD with 13.5 μm pixels (1 arc-sec/pixel ) with full sun field of view. XRT will have a wide temperature sensitivity in order to observe and discriminate both the high (5-10 MK) and low temperature (1-5 MK) phenomena in the coronal plasma. This paper presents preliminary results of the XRT mirror calibration performed at the X-ray Calibration Facility, NASA-MSFC, Huntsville, Alabama during January and February 2005. We discuss the methods and the most significant results of the XRT mirror performance, namely: characteristics of the point response function (PSF), the encircled energy and the effective area. The mirror FWHM is 0.8" when corrected for 1-g, finite source distance, and CCD pixelization. With the above corrections the encircled energy at 27 μm and 1keV is 52%. The effective area is greater than 2cm2 at 0.5keV and greater than 1.7cm2 at 1.0keV.

  8. Calibration and testing of the 6.5 m MMT adaptive optics system

    NASA Astrophysics Data System (ADS)

    Johnson, Robert Lee

    2001-10-01

    This dissertation describes the development, calibration, and testing of the adaptive optics system for the 6.5 m Multiple Mirror Telescope. By employing a deformable secondary mirror, the MMT adaptive optics system uniquely solves several problems typical of astronomical adaptive optics systems. Extra components are eliminated, improving throughput and reducing emissivity. Since the adaptive secondary is integral to the telescope, a corrected beam is presented to any instrument mounted at Cassegrain focus. The testing of an adaptive mirror, which is large and convex, poses a new and difficult problem. I present a test apparatus that allows complete calibration and operation, in closed-loop, of the entire adaptive optics system in the laboratory. The test apparatus replicates the optical path of the telescope with a wavefront error of less than 500 nm RMS. To simulate atmospheric turbulence, machined acrylic plates are included. A phase-shifting interferometer allows calibration of the Shack-Hartmann wavefront sensor and reconstruction algorithms; comparisons agree to one-third of the root-mean-square wavefront. First, techniques were developed to align the apparatus and measure residual aberration. Then, the wavefront sensor was calibrated by measuring its response to introduced tilt. Lastly, a Fourier wave-optics approach was used to produce a modal wavefront reconstructor. The adaptive secondary mirror uses electro-magnetic force actuators. Capacitive position sensors are placed at each actuator to permit control of the mirror shape without measuring the reflected wavefront. These sensors have nanometer resolution, but require calibration. To calibrate the sensors, I developed a small optical instrument which measures the thickness of transparent films to an absolute accuracy of 5 nm with a precision of 2 nm. The device has applications far beyond the scope of this research. Twenty-four of these optical gap sensors have been built to calibrate the 336 capacitive

  9. Preliminary results of calibration for ALOS optical sensors and validation of generated PRISM DSM

    NASA Astrophysics Data System (ADS)

    Tadono, Takeo; Shimada, Masanobu; Murakami, Hiroshi; Mukaida, Akira; Takaku, Junichi; Kawamoto, Sachi

    2006-09-01

    The Advanced Land Observing Satellite (ALOS) was successfully launched on January 24 th, 2006. This paper introduces the preliminary results of calibration and validation for two optical sensors of ALOS i.e., the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and Near Infrared Radiometer type-2 (AVNIR-2). PRISM consists of three independent panchromatic radiometers, and is used to derive a digital surface model (DSM) with high spatial resolution, which is also an objective of the ALOS mission. So, the geometric calibration is important in generating a highly accurate DSM by stereo pair image of PRISM. The radiometric calibration is also important for AVNIR-2 as well as PRISM. The relative radiometric calibration is carrying out using acquired images over homogeneous targets such as ocean, deserts, ice and snow areas and the nighttime observation. The absolute radiometric calibration is applied the cross calibration method using calibrated satellite images i.e., MODIS onboard Terra/Aqua satellites, ASTER, SPOT-5 etc. In this paper, results of the first images acquisition and preliminary analysis for calibration and validation are described.

  10. The Optical Field Angle Distortion Calibration of HST Fine Guidance Sensors 1R and 3

    NASA Technical Reports Server (NTRS)

    McArthur, B.; Benedict, G. F.; Jefferys, W. H.; Nelan, E.

    2006-01-01

    To date five OFAD (Optical Field Angle Distortion) calibrations have been performed with a star field in M35, four on FGS3 and one on FGS1, all analyzed by the Astrometry Science Team. We have recently completed an improved FGS1R OFAD calibration. The ongoing Long Term Stability Tests have also been analyzed and incorporated into these calibrations, which are time-dependent due to on-orbit changes in the FGS. Descriptions of these tests and the results of our OFAD modeling are given. Because all OFAD calibrations use the same star field, we calibrate FGS 1 and FGS 3 simultaneously. This increases the precision of our input catalog,resulting in an improvement in both the FGS 1 and FGS 3 calibrations. A redetermination of the proper motions,using 12 years of HST data has significantly improved our calibration. Residuals to our OFAD modeling indicate that FGS 1 will provide astrometry superior to FGS 3 by approx. 20%. Past and future FGS astrometric science supported by these calibrations is briefly reviewed.

  11. Development of an optical fiber standard for OTDRs distance scale calibration

    NASA Astrophysics Data System (ADS)

    Bermudez, J. C.

    2006-02-01

    The development of a single mode optical fiber standard, for the distance scale calibration of Optical Time Domain Reflectometers (ODTRs) is presented. The configuration of the standard is based on a Recirculating Delay Line (RDL) which generates a series of reflections at constant intervals of time; such reflections are used as distance references using a nominal group index of the fiber. The optical modulation-phase-shift technique was used to characterize the transit time of the reference fiber, at the 1310 nm and 1550 nm communications windows. The characterization method provides the sensibility coefficients of the two dominant influence quantities, optical signal wavelength and temperature of the fiber.

  12. Fibre optic systems for gas detection principals, progress and prospects

    NASA Astrophysics Data System (ADS)

    Culshaw, Brian

    2010-11-01

    Gas sensing is evolving into an important application contributing particularly to environmental and safety monitoring. Fibre optic sensing will have an important role to play as the need for gas measurements increase. This paper seeks to overview of the optical techniques which are compatible with fibre optic technology and present a limited snapshot of the applications. Fibre optic techniques offer intrinsic safety, reliability and very long interrogation distances over the fibre link together with prospects for highly multiplexed and distributed systems. There are two basic approaches for fibre sensing targeted at gas measurements. The first involves some intermediate compound in contact with the end of the fibre (or deposited along the fibre) whose optical properties change with the presence of the gas of interest, usually measured spectroscopically. The second involves direct absorption spectroscopy typically in the near infrared. Former techniques are invariably responsive to a number of gas species and are usually difficult to calibrate accurately. The latter techniques are highly gas specific and can be accurately calibrated. However both approaches have their application sectors depending upon particular measurement requirements. The paper presents a brief overview of the principles of both these techniques and analyses some of their applications.

  13. Progress in optical strain measurement system development

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Qaqish, Walid

    1987-01-01

    A laser speckle strain measurement system has been built and tested for the NASA Lewis Research Center. The system is based on a speckle shift technique, which automatically corrects for error due to rigid body motion, and provides a near real time measure of strain. The first stage of a multiphase effort to develop an optical strain gauge capable of mapping in two dimensions the strain on the surface of a hot specimen is discussed. The objectives of this first phase have been to provide a noncontact, one-dimensional, differential strain gauge for experimental purposes, and to determine the maximum open air temperature limit of the system.

  14. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called “comb” pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  15. Fabrication of high quality optical coherence tomography (OCT) calibration artefacts using femtosecond inscription

    NASA Astrophysics Data System (ADS)

    Lee, Graham C. B.; Rasakanthan, Janarthanan; Woolliams, Peter D.; Sugden, Kate

    2012-06-01

    Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

  16. A Precision Optical Calibration Module (POCAM) for IceCube-Gen2

    NASA Astrophysics Data System (ADS)

    Jurkovič, M.; Abraham, K.; Holzapfel, K.; Krings, K.; Resconi, E.; Veenkamp, J.

    2016-04-01

    We present here a new concept of an in-situ self-calibrated isotropic light source for the future IceCube-Gen2 neutrino detector called the Precision Optical Calibration Module (POCAM). IceCube-Gen2 will be a matrix of light sensors buried deep in the ice at the geographic South Pole. The timing, the location, and the amount of Cherenkov light deposited by the secondary charged particles are used to reconstruct the properties of the incident neutrinos. The reconstruction relies on a detailed detector model that includes the response of optical modules to the Cherenkov light, as well as the optical properties of the detector medium - the natural Antarctic ice. To understand these properties, both natural, and artificial light sources are already used for calibration. New calibration devices are being developed in order to improve the precision of these measurements, and reduce systematic errors. The POCAM concept is based on the principle of an inverted integrating sphere. The main components are LEDs emitting light at several wavelengths and solid-state light sensors e.g. calibrated photodiode or silicon photomultipliers to monitor the emitted light intensity. We report on the current status of the POCAM R&D.

  17. Progress in reliability of silica optical fibres

    NASA Astrophysics Data System (ADS)

    Severin, Irina; Poulain, M.; El Abdi, R.

    2008-04-01

    Silica optical fibres that were developed for telecommunication networks extend their use for sensors and smart structures. Their reliability and expected lifetime has appeared as a major concern. Series of experiments were implemented in order to assess fibre behaviour in different environmental conditions, including chemical corrosion and mechanical stress. Optical fibres were aged in water under controlled stress overlapping microwave energy for different durations. Fibre samples were wound on different diameter mandrels applying consequently a non-uniform tensile, respectively compression stress in function of the fibre's section. Different experimental combinations were implemented in order to separate aging factor effects. Then, these aged / stretched fibres were dynamic tensile tested at different strain rates and results were statistically treated using Weibull theory. In certain cases and testing conditions, comparison with as received fibres has revealed strength increase with a generally mono-modal defect distribution on the fibre surface. Base on previous and current results, the structural relaxation phenomenon at the silica cladding - polymer coating interface might be evidenced.

  18. Functional optical coherence tomography: principles and progress.

    PubMed

    Kim, Jina; Brown, William; Maher, Jason R; Levinson, Howard; Wax, Adam

    2015-05-21

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  19. Functional Optical Coherence Tomography: Principles and Progress

    PubMed Central

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  20. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data

    PubMed Central

    van de Giesen, Nick; Steele-Dunne, Susan C.; Jansen, Jop; Hoes, Olivier; Hausner, Mark B.; Tyler, Scott; Selker, John

    2012-01-01

    Over the past five years, Distributed Temperature Sensing (DTS) along fiber optic cables using Raman backscattering has become an important tool in the environmental sciences. Many environmental applications of DTS demand very accurate temperature measurements, with typical RMSE < 0.1 K. The aim of this paper is to describe and clarify the advantages and disadvantages of double-ended calibration to achieve such accuracy under field conditions. By measuring backscatter from both ends of the fiber optic cable, one can redress the effects of differential attenuation, as caused by bends, splices, and connectors. The methodological principles behind the double-ended calibration are presented, together with a set of practical considerations for field deployment. The results from a field experiment are presented, which show that with double-ended calibration good accuracies can be attained in the field. PMID:22778596

  1. Progress in NEXT Ion Optics Modeling

    NASA Technical Reports Server (NTRS)

    Emhoff, Jerold W.; Boyd, Iain D.

    2004-01-01

    Results are presented from an ion optics simulation code applied to the NEXT ion thruster geometry. The error in the potential field solver of the code is characterized, and methods and requirements for reducing this error are given. Results from a study on electron backstreaming using the improved field solver are given and shown to compare much better to experimental results than previous studies. Results are also presented on a study of the beamlet behavior in the outer radial apertures of the NEXT thruster. The low beamlet currents in this region allow over-focusing of the beam, causing direct impingement of ions on the accelerator grid aperture wall. Different possibilities for reducing this direct impingement are analyzed, with the conclusion that, of the methods studied, decreasing the screen grid aperture diameter eliminates direct impingement most effectively.

  2. Optical calibration of pressure sensors for high pressures and temperatures

    SciTech Connect

    Goncharov, A F; Gregoryanz, E; Zaug, J M; Crowhurst, J C

    2004-10-04

    We present the results of Raman scattering measurements of diamond ({sup 12}C) and of cubic boron nitride (cBN), and fluorescence measurements of ruby, Sm:YAG, and SrB{sub 4}O{sub 7}:Sm{sup 2+} in the diamond anvil cell (DAC) at high pressures and temperatures. These measurements were accompanied by synchrotron x-ray diffraction measurements on gold. We have extended the room-temperature calibration of Sm:YAG in a quasihydrostatic regime up to 100 GPa. The ruby scale is shown to systematically underestimate pressure at high pressures and temperatures compared with all other sensors. On this basis, we propose a new high-temperature ruby pressure scale that should be valid to at least 100 GPa and 850 K. Historically, the accurate determination of pressure at high temperature and ultrahigh pressure has been extremely difficult. In fact, the lack of a general pressure scale nullifies, to a significant extent, the great innovations that have been made in recent years in DAC experimental techniques [1]. Now, more than ever a scale is required whose accuracy is comparable with that of the experimental data. Since pressure in the DAC is dependent on temperature (due to thermal pressure and also to changes in the properties of the materials that constitute the DAC) such a scale requires quantitative, and separate measurements of pressure and temperature.

  3. Progress towards quantum-gas experiments in optical lattices

    NASA Astrophysics Data System (ADS)

    Pertot, Daniel; Greif, Daniel; Schiller, Rebekah; Schneble, Dominik

    2008-05-01

    We present our progress towards quantum simulation experiments with ultracold bosonic atoms in an optical lattice. We have achieved Bose-Einstein condensation of rubidium-87 in a transporter apparatus featuring a moving-coil TOP trap (McTOP). Quasi-pure condensates containing up to one million atoms are routinely produced with high stability. As atomic micro-motion in TOP traps precludes the direct loading of condensates into a single quasimomentum state of an optical lattice, we are in the process of implementing a loading scheme involving evaporation of nearly-condensed thermal clouds in a crossed optical dipole trap. We will discuss our recent experimental results.

  4. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  5. DC calibration of the strain sensitivity of a single mode optical fiber interferometer

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Cantrell, J. H., Jr.

    1981-01-01

    The strain sensitivity of an optical fiber interferometer developed for the detection of pulsed ultrasonic waves in solids has been calibrated. The optical paths in both signal and reference arms of the interferometer are through similar 2 m lengths of ITT-110 single mode fibers mode stripped by index matching at both ends and attached to opposite sides of a 30 cm plexiglas bar 0.3 cm thick. Light from the output ends of both fibers was superimposed to form an interference fringe pattern that was interrogated in the far field to give a signal proportional to the differential optical fiber path length. Strain sensitivity was determined by comparing data obtained by clamping and bending the bar at different lengths to simple cantilever beam theory. Calibration indicates a minimum theoretical detectable strain of less than 10 to the -10.

  6. Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation

    NASA Astrophysics Data System (ADS)

    Benítez-Buelga, Javier; Rodríguez-Sinobas, Leonor; Sánchez Calvo, Raul; Gil-Rodríguez, María.; Sayde, Chadi; Selker, John S.

    2016-04-01

    The heat pulse probe method can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses measured by Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported applications have been calibrated to homogeneous soils in a laboratory, while inexpensive efficient in situ calibration procedures useful in heterogeneous soils are lacking. Here we employed the Hydrus 2-D/3-D code to define a soil-specific calibration curve. We define a 2-D geometry of the fiber optic cable and the surrounding soil media, and simulate heat pulses to capture the soil thermal response at different soil water contents. The model was validated in an irrigated field using DTS data from two locations along the FO deployment in which reference moisture sensors were installed. Results indicate that θ was measured with the model-based calibration with accuracy better than 0.022 m3 m-3.

  7. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  8. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    SciTech Connect

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-15

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 {mu}m) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ('hotspot') was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm{sup 2}/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  9. Testing and calibration of phase plates for JWST optical simulator

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David

    2011-10-01

    Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 μm to 300 μm, intermediate being 0.4 μm to 10 μm, and fine being below 0.4 μm. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2π uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.

  10. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  11. Testing and Calibration of Phase Plates for JWST Optical Simulator

    NASA Technical Reports Server (NTRS)

    Gong, Qian; Chu, Jenny; Tournois, Severine; Eichhorn, William; Kubalak, David

    2011-01-01

    Three phase plates were designed to simulate the JWST segmented primary mirror wavefront at three on-orbit alignment stages: coarse phasing, intermediate phasing, and fine phasing. The purpose is to verify JWST's on-orbit wavefront sensing capability. Amongst the three stages, coarse alignment is defined to have piston error between adjacent segments being 30 m to 300 m, intermediate being 0.4 m to 10 m, and fine is below 0.4 m. The phase plates were made of fused silica, and were assembled in JWST Optical Simulator (OSIM). The piston difference was realized by the thickness difference of two adjacent segments. The two important parameters to phase plates are piston and wavefront errors. Dispersed Fringe Sensor (DFS) method was used for initial coarse piston evaluation, which is the emphasis of this paper. Point Diffraction Interferometer (PDI) is used for fine piston and wavefront error. In order to remove piston's 2 pi uncertainty with PDI, three laser wavelengths, 640nm, 660nm, and 780nm, are used for the measurement. The DHS test setup, analysis algorithm and results are presented. The phase plate design concept and its application (i.e. verifying the JWST on-orbit alignment algorithm) are described. The layout of JWST OSIM and the function of phase plates in OSIM are also addressed briefly.

  12. Performance of polarization modulation and calibration optics for the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Elmore, David F.; Sueoka, Stacey R.; Casini, Roberto

    2014-07-01

    The Daniel K. Inouye Solar Telescope (formerly Advanced Technology Solar Telescope) will be the world's largest solar telescope and polarimeter when completed in 2019. Efficient use of the telescope to address key science priorities calls for polarization measurements simultaneously over broad wavelength ranges and calibration of the telescope and polarimeters to high accuracy. Broadband polarization modulation and calibration optics utilizing crystal optics have been designed for this application. The performance of polarization modulators and calibration retarders is presented along with a discussion of the unique challenges of this application. Polarimeters operate over the ranges of 0.38-1.1 microns, 0.5-2.5 microns, and 1.0-5.0 microns. Efficient polarization modulation over these broad ranges led to modulators utilizing multiple wave plates and that are elliptical, rather than linear, retarders. Calibration retarders are linear retarders and are constructed from the same sub-component wave plate pairs as the polarization modulators. Polarization optics must address efficiency over broad wavelength ranges while meeting beam deflection, transmitted wave front error, and thermal constraints and doing so with designs that, though large in diameter, can be affordably manufactured.

  13. Calibration strategy of optical measurement network for large-scale and shell-like objects

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; Peng, Xiang; Liu, Xiaoli; Li, Ameng; Qu, Xinghua

    2012-04-01

    It can be difficult to calibrate the three-dimensional (3D) optical measurement network (OMN) designed to inspect large-scale and shell-like objects. One of the challenges is how to in situ build up a large and precise calibration target, which can be adapted to the desired measurement volume. In this paper, a strategy for in situ calibration of the OMN is presented. First, one of the said objects is chosen to fabricate a large-scale and shell-like calibration target thereon the coded marks are pasted and their coordinates are calculated by using a technique of auto-reconstruction. This results in a highly accurate benchmark-data-set that can cover the large-scale and shell-like measurement volume. Next, all the node 3D sensors of the OMN are calibrated with the established benchmark-data-set. Thus the extrinsic parameters of all node sensors can be unified into a common coordinate system so that the structure parameters and poses of node sensors in the OMN can be determined accurately. The proposed calibration strategy is verified by a group of experiments and a case study for inspecting a large size crucible.

  14. Fiber optic microphone having a pressure sensing reflective membrane and a voltage source for calibration purpose

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Cuomo, Frank W. (Inventor); Robbins, William E. (Inventor)

    1993-01-01

    A fiber optic microphone is provided for measuring fluctuating pressures. An optical fiber probe having at least one transmitting fiber for transmitting light to a pressure-sensing membrane and at least one receiving fiber for receiving light reflected from a stretched membrane is provided. The pressure-sensing membrane may be stretched for high frequency response. Further, a reflecting surface of the pressure-sensing membrane may have dimensions which substantially correspond to dimensions of a cross section of the optical fiber probe. Further, the fiber optic microphone can be made of materials for use in high temperature environments, for example greater than 1000 F. A fiber optic probe is also provided with a back plate for damping membrane motion. The back plate further provides a means for on-line calibration of the microphone.

  15. Quantitative nonlinear optical assessment of atherosclerosis progression in rabbits.

    PubMed

    Mostaço-Guidolin, Leila B; Kohlenberg, Elicia K; Smith, Michael; Hewko, Mark; Major, Arkady; Sowa, Michael G; Ko, Alex C-T

    2014-07-01

    Quantification of atherosclerosis has been a challenging task owing to its complex pathology. In this study, we validated a quantitative approach for assessing atherosclerosis progression in a rabbit model using a numerical matrix, optical index for plaque burden, derived directly from the nonlinear optical microscopic images captured on the atherosclerosis-affected blood vessel. A positive correlation between this optical index and the severity of atherosclerotic lesions, represented by the age of the rabbits, was established based on data collected from 21 myocardial infarction-prone Watanabe heritable hyperlipidemic rabbits with age ranging between new-born and 27 months old. The same optical index also accurately identified high-risk locations for atherosclerotic plaque formation along the entire aorta, which was validated by immunohistochemical fluorescence imaging. PMID:24892226

  16. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    PubMed Central

    Xu, Guiling; Liang, Cai; Chen, Xiaoping; Liu, Daoyin; Xu, Pan; Shen, Liu; Zhao, Changsui

    2013-01-01

    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0 to packed bed concentration. The effects of particle properties (particle size, sphericity and color) on the calibration results were comprehensively investigated. The results show that the output voltage has a tendency to increase with the decreasing particle size, and the effect of particle color on calibration result is more predominant than that of sphericity. PMID:23867745

  17. Geometric Calibration of the Orion Optical Navigation Camera using Star Field Images

    NASA Astrophysics Data System (ADS)

    Christian, John A.; Benhacine, Lylia; Hikes, Jacob; D'Souza, Christopher

    2016-07-01

    The Orion Multi Purpose Crew Vehicle will be capable of autonomously navigating in cislunar space using images of the Earth and Moon. Optical navigation systems, such as the one proposed for Orion, require the ability to precisely relate the observed location of an object in a 2D digital image with the true corresponding line-of-sight direction in the camera's sensor frame. This relationship is governed by the camera's geometric calibration parameters — typically described by a set of five intrinsic parameters and five lens distortion parameters. While pre-flight estimations of these parameters will exist, environmental conditions often necessitate on-orbit recalibration. This calibration will be performed for Orion using an ensemble of star field images. This manuscript provides a detailed treatment of the theory and mathematics that will form the foundation of Orion's on-orbit camera calibration. Numerical results and examples are also presented.

  18. An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration.

    PubMed

    Stone, Jack A; Egan, Patrick

    2010-01-01

    Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10(-8) and never below 10(-12), very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794

  19. An Optical Frequency Comb Tied to GPS for Laser Frequency/Wavelength Calibration

    PubMed Central

    Stone, Jack A.; Egan, Patrick

    2010-01-01

    Optical frequency combs can be employed over a broad spectral range to calibrate laser frequency or vacuum wavelength. This article describes procedures and techniques utilized in the Precision Engineering Division of NIST (National Institute of Standards and Technology) for comb-based calibration of laser wavelength, including a discussion of ancillary measurements such as determining the mode order. The underlying purpose of these calibrations is to provide traceable standards in support of length measurement. The relative uncertainty needed to fulfill this goal is typically 10−8 and never below 10−12, very modest requirements compared to the capabilities of comb-based frequency metrology. In this accuracy range the Global Positioning System (GPS) serves as an excellent frequency reference that can provide the traceable underpinning of the measurement. This article describes techniques that can be used to completely characterize measurement errors in a GPS-based comb system and thus achieve full confidence in measurement results. PMID:27134794

  20. Optical studies of dynamical processes in disordered systems. Progress report

    SciTech Connect

    Yen, W.M.

    1994-05-01

    The authors present an abbreviated summary of the progress they have attained in the course of the abbreviated first year of the present three-year grant. The focus of their research continues to be on studies which help them understand various dynamical processes which affect the structure and the optical properties of disordered and amorphous materials. They continue to make significant progress in their attempts to understand the factors which affect, for example, the efficiencies of activated glasses. This report contains a brief description of the work they have carried out during the present grant period and an outline of the initiatives they are presently undertaking or continuing during the second period.

  1. Study on low-cost calibration-free pH sensing with disposable optical sensors.

    PubMed

    Ge, Xudong; Kostov, Yordan; Tolosa, Leah; Rao, Govind

    2012-07-13

    As labor costs become more expensive, less labor-intensive disposable devices have become more ubiquitous. Similarly, the disposable optical pH sensor developed in our lab could provide a convenient yet cost-effective way for pH sensing in processes that require stringent pH control. This optical pH sensor is prepared in uniform individual lots of 100-200 sensors per lot. Calibration is accomplished on a few randomly selected sensors out of each lot. We show that all others in the same lot can then be used directly without requiring individual calibration. In this paper, a calibration model is derived to include all the factors that affect the signal of the disposable sensor. Experimental results show that the derived calibration model fits the experimental data. The readings of 28 randomly selected disposable sensors with 4 sensors from each of the 7 lots show an error less than 0.1 pH units in the useful sensing range of the sensor. The calibration model indicates that if further improvement on precision is desired, more uniform porous material and more advanced coating techniques will be required. When it comes to the effects of the varying coasters, house-made low-cost fluorometers, the variability in the brightness ratio of the blue-to-violet LEDs is the primary reason for the lack of precision. Other factors like LED light intensity distribution, optical properties of the filters and electronics also contribute to the coaster-to-coaster difference, but to a lesser extent. Two different methods for correcting the instrument variations were introduced. After correction, the collective reading errors for all the tested instruments were reduced to less than 0.2 pH units within the sensor's useful sensing range. Based on this result, our lab is currently implementing further improvements in modifying the coasters to equalize the ratios of blue-to-violet LED brightness. PMID:22704475

  2. Optical Comb from a Whispering Gallery Mode Resonator for Spectroscopy and Astronomy Instruments Calibration

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Yu, Nam; Thompson, Robert J.

    2012-01-01

    The most accurate astronomical data is available from space-based observations that are not impeded by the Earth's atmosphere. Such measurements may require spectral samples taken as long as decades apart, with the 1 cm/s velocity precision integrated over a broad wavelength range. This raises the requirements specifically for instruments used in astrophysics research missions -- their stringent wavelength resolution and accuracy must be maintained over years and possibly decades. Therefore, a stable and broadband optical calibration technique compatible with spaceflights becomes essential. The space-based spectroscopic instruments need to be calibrated in situ, which puts forth specific requirements to the calibration sources, mainly concerned with their mass, power consumption, and reliability. A high-precision, high-resolution reference wavelength comb source for astronomical and astrophysics spectroscopic observations has been developed that is deployable in space. The optical comb will be used for wavelength calibrations of spectrographs and will enable Doppler measurements to better than 10 cm/s precision, one hundred times better than the current state-of-the- art.

  3. A method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-06-01

    A phase fluctuation calibration method is presented for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method consists of the generation of a continuous triggered tone-burst waveform rather than an asynchronous waveform by use of a function generator and the removal of the global phases of the measured Jones matrices by use of matrix normalization. This could remove the use of auxiliary optical components for the phase fluctuation compensation in the system, which reduces the system complexity. Phase fluctuation calibration is necessary to obtain the reference Jones matrix by averaging the measured Jones matrices at sample surfaces. Measurements on an equine tendon sample were made by the PS-SS-OCT system to validate the proposed method.

  4. Progress toward the development of manufacturable integrated optical data buses

    NASA Astrophysics Data System (ADS)

    Pugliano, Nick; Chiarroto, Nancy; Fisher, John; Heiks, Noel; Ho, Tuan; Khanarian, Garo; Moynihan, Matthew; Pawlowski, Nathan; Shelnut, Jim; Sherrer, David; Sicard, Bruno; Zheng, Hai-Bin

    2004-06-01

    The drive to faster data transmission speeds, more integration, smaller form factors and higher signal integrity all favor the eventual adoption of optical transmission schemes in data buses. This contribution will discuss emerging technologies from Shipley Company, LLC to address the needs of optoelectronic signal transmission. In particular, the discussion will focus on materials and processes that are in development to function within existing printed circuit board (PCB) & microelectronic manufacturing schemes. One topic that is described in detail involves photo-patternable, polymer interconnect technologies. Another topic describes progress in Shipley"s ability to integrate these interconnects into prototypical PCB processes. Progress in connecting the planar waveguides to connectorization schemes will be also be described. Other topics include lithographic and patterning metrics, optical characteristics of interconnects, morphological features of patterned waveguides, integration and coupling considerations, thermal and mechanical properties of the system and general assembly processes..

  5. Self-calibrated dynamical optical biochip system using surface plasmon resonance imaging: application to genotyping

    NASA Astrophysics Data System (ADS)

    Hottin, Jérôme; Moreau, Julien; Spadavecchia, Jolanda; Bellemain, Alain; Lecerf, Laure; Goossens, Michel; Canva, Michael

    2008-04-01

    The present paper summarizes some of our work in the field of genetic diagnosis using Surface Plasmon Resonance Imaging. The optical setup and its capability are presented, as well as the gold surface functionalization used. Results obtained with oligonucleotides targets, specific to Cystic Fibrosis disease, in high and low concentration are shown. The self-calibration method we have developed to reduce data dispersion in genetic diagnosis applications is described.

  6. Fiber optic medical pressure-sensing system employing intelligent self-calibration

    NASA Astrophysics Data System (ADS)

    He, Gang

    1996-01-01

    In this article, we describe a fiber-optic catheter-type pressure-sensing system that has been successfully introduced for medical diagnostic applications. We present overall sensors and optoelectronics designs, and highlight product development efforts that lead to a reliable and accurate disposable pressure-sensing system. In particular, the incorporation of an intelligent on-site self-calibration approach allows limited sensor reuses for reducing end-user costs and for system adaptation to wide sensor variabilities associated with low-cost manufacturing processes. We demonstrate that fiber-optic sensors can be cost-effectively produced to satisfy needs of certain medical market segments.

  7. DC calibration of the strain sensitivity of a single mode optical fiber interferometer

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Cantrell, J. H., Jr.

    1981-01-01

    The strain sensitivity of an optical fiber interferometer developed for the detection of pulsed ultrasonic waves in solids was calibrated. Light from the output ends of both fibers was superimposed to form an interference fringe pattern that was interrogated in the far field to give a signal proportional to the differential optical fiber path length. Strain sensitivity is determined by comparing data obtained by clamping and bending the bar at different lengths to simple cantilever beam theory. A minimum theoretical detectable strain of less than 10 to the minus 10th power is indicated.

  8. Progress Toward Light Weight High Angular Resolution Multilayer Coated Optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, M. E.; Vaynman, S.; Echt, J.; Farber, M.; Ehlert, S.; Varlese, S.

    2005-12-01

    We have been working on 3 separate projects that together will give us the ability to make 1 arc second, light weightWolter I optics that work above 40 keV. The three separate tasks are: (a) plasma spraying of metal-coated micro-balloons; (b) coating of the inside of Wolter I mirrors, (c) actuator designs for improving figure quality.We give a progress report on our work on all three areas.

  9. Calibration of passive remote observing optical and microwave instrumentation; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    NASA Technical Reports Server (NTRS)

    Guenther, Bruce W. (Editor)

    1991-01-01

    Various papers on the calibration of passive remote observing optical and microwave instrumentation are presented. Individual topics addressed include: on-board calibration device for a wide field-of-view instrument, calibration for the medium-resolution imaging spectrometer, cryogenic radiometers and intensity-stabilized lasers for EOS radiometric calibrations, radiometric stability of the Shuttle-borne solar backscatter ultraviolet spectrometer, ratioing radiometer for use with a solar diffuser, requirements of a solar diffuser and measurements of some candidate materials, reflectance stability analysis of Spectralon diffuse calibration panels, stray light effects on calibrations using a solar diffuser, radiometric calibration of SPOT 23 HRVs, surface and aerosol models for use in radiative transfer codes. Also addressed are: calibrated intercepts for solar radiometers used in remote sensor calibration, radiometric calibration of an airborne multispectral scanner, in-flight calibration of a helicopter-mounted Daedalus multispectral scanner, technique for improving the calibration of large-area sphere sources, remote colorimetry and its applications, spatial sampling errors for a satellite-borne scanning radiometer, calibration of EOS multispectral imaging sensors and solar irradiance variability.

  10. Operations manual for DOE/METC's second generation fiber optic alkali monitor and calibration device

    NASA Astrophysics Data System (ADS)

    Logan, R. G.; Hensel, J. P.; Wachter, J. K.; Signor, R. B.; Crane, R. W.

    1988-05-01

    The DOE/METC fiber optic alkali monitor is an integrated hardware and software system developed to monitor alkali concentrations in process gas streams. A slipstream of the process gas is introduced into a controlled flame and the concentrations of sodium and potassium are monitored using flame emission spectroscopy. The system consists of three basic sections: the light gathering and distribution section, the light filtering and detection section, and the computer-controlled signal processing section. The light gathering and distribution section consists of four components: a lens arrangement, an optical shutter, a bifurcated fiber optic, and two beam splitters. The purpose of the lens arrangement is to reduce flame noise by spreading the image of the center of the flame and focusing it through the optical shutter onto the fiber optic. This technique serves to eliminate the adverse effects of flame movements. The optical shutter is a means to block out all light from the fiber optic bundle while performing dark calibrations. When the shutter is open, the gathered light travels through a bifurcated fiber optic to the sodium and potassium channels, where it is divided by the beam splitters. This beam-splitting technique distributes equal amounts of light between each of the two channels' foreground and background subchannels. The divided light beam then enters the filtering and detection section.

  11. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the first six months of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on analyzing and testing factors that impact performance degradation of the initially designed sensor prototype, including sensing element movement within the sensing probe and optical signal quality degradation. Based these results, a new version of the sensing system was designed by combining the sapphire disk sensing element and the single crystal zirconia right angle light reflector into one novel single crystal sapphire right angle prism. The new sensor prototype was tested up to 1650 C.

  12. The Navy Precision Optical Interferometer for SSA: A Progress Report

    NASA Astrophysics Data System (ADS)

    Restaino, S.; Andrews, J. R.; Armstrong, J. T.; Baines, E. K.; Clark, J. H.; Schmitt, H. R.

    2014-09-01

    The Navy Precision Optical Interferometer (NPOI) has been involved in studying how a long-baseline optical interferometer can be used to deliver high angular resolution imagery of geostationary satellites and other deep space man-made objects. We have previously reported on the first ever measurements of a geosatellite glint with an optical interferometer. In this paper we report the progress that has been made in the past year. We have commissioned more imaging stations, both for longer baselines to obtain increased resolution, and for shorter baselines for measuring the lower spatial frequencies. We have also implemented beam combiner improvements that will enable multiple-baseline bootstrapping. This technique is essential for integrating the signal on the longest baselines where the fringe visibilities, especially for man-made objects, are so low that direct fringe tracking is impossible.

  13. The Laboratory Radiometric Calibration of the CCD Stereo Camera for the Optical Payload of the Lunar Explorer Project

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Li, Chun-Lai; Zhao, Bao-Chang

    2007-03-01

    The system of the optical payload for the Lunar Explorer includes a CCD stereo camera and an imaging interferometer. The former is devised to get the solid images of the lunar surface with a laser altimeter. The camera working principle, calibration purpose, and content, nude chip detection, and the process of the relative and absolute calibration in the laboratory are introduced.

  14. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  15. CPAC moisture study: Phase 1 report on the study of optical spectra calibration for moisture

    SciTech Connect

    Veltkamp, D.

    1993-12-16

    This report discusses work done to investigate the feasibility of using optical spectroscopic methods, combined with multivariate Partial Least Squares (PLS) calibration modeling, to quantitatively predict the moisture content of the crust material in Hanford`s waste tank materials. Experiments were conducted with BY-104 simulant material for the 400--1100 nm (VIS), 1100--2500 (NIR), and 400-4000 cm{sup {minus}1}(IR) optical regions. The test data indicated that the NIR optical region, with a single PLS calibration factor, provided the highest accuracy response (better than 0.5 wt %) over a 0--25 wt % moisture range. Issues relating to the preparation of moisture samples with the BY-104 materials and the potential implementation within hot cell and waste tanks are also discussed. The investigation of potential material interferences, including physical and chemical properties, and the scaled demonstration of fiber optic and camera types of applications with simulated waste tanks are outlined as future work tasks.

  16. A calibration method for optical trap force by use of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Yu, Youli; Zhang, Zhenxi; Zhang, Xiaolin

    2006-09-01

    An experimental method for calibration of optical trap force upon cells by use of electrokinetic phenomena is demonstrated. An electronkinetic sample chamber system (ESCS) is designed instead of a common sample chamber and a costly automatism stage, thus the experimental setup is simpler and cheaper. Experiments indicate that the range of the trap force measured by this method is piconewton and sub-piconewton, which makes it fit for study on non-damage interaction between light and biological particles with optical tweezers especially. Since this method is relevant to particle electric charge, by applying an alternating electric field, the new method may overcome the problem of correcting drag force and allow us to measure simultaneously optical trap stiffness and particle electric charge.

  17. Minilink II: Prototype of a miniature self-calibrating fiber optic analog data link

    NASA Astrophysics Data System (ADS)

    Holder, J. D.

    1990-06-01

    The purpose of developing a fiber optic analog data link is to make possible the monitoring of test article function during the exposure of that article to severe environmental conditions. The use of fiber optics to transmit the signal monitored yields immunity to electromagnetic interference (EMI) and similar potential sources of measurement interference. This report details the design and performance of a proof-of-principle prototype of such a system. The system consists of an Analog Board, a Digital Board, and a Power Assembly. The function of the Analog Board is to monitor the test point. The Digital Board is to perform automatic setting of the bias point of the fiber optic transmitter and to control the above signal switching so that automatic calibration may be achieved.

  18. Java-Library for the Access, Storage and Editing of Calibration Metadata of Optical Sensors

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Kresse, W.

    2016-06-01

    The standardization of the calibration of optical sensors in photogrammetry and remote sensing has been discussed for more than a decade. Projects of the German DGPF and the European EuroSDR led to the abstract International Technical Specification ISO/TS 19159-1:2014 "Calibration and validation of remote sensing imagery sensors and data - Part 1: Optical sensors". This article presents the first software interface for a read- and write-access to all metadata elements standardized in the ISO/TS 19159-1. This interface is based on an xml-schema that was automatically derived by ShapeChange from the UML-model of the Specification. The software interface serves two cases. First, the more than 300 standardized metadata elements are stored individually according to the xml-schema. Secondly, the camera manufacturers are using many administrative data that are not a part of the ISO/TS 19159-1. The new software interface provides a mechanism for input, storage, editing, and output of both types of data. Finally, an output channel towards a usual calibration protocol is provided. The interface is written in Java. The article also addresses observations made when analysing the ISO/TS 19159-1 and compiles a list of proposals for maturing the document, i.e. for an updated version of the Specification.

  19. Calibration of optical tweezers with positional detection in the back focal plane

    SciTech Connect

    Tolic-Noerrelykke, Simon F.; Schaeffer, Erik; Howard, Jonathon; Pavone, Francesco S.; Juelicher, Frank; Flyvbjerg, Henrik

    2006-10-15

    We explain and demonstrate a new method of force and position calibrations for optical tweezers with back-focal-plane photodetection. The method combines power spectral measurements of thermal motion and the response to a sinusoidal motion of a translation stage. It consequently does not use the drag coefficient of the trapped object as an input. Thus, neither the viscosity, nor the size of the trapped object, nor its distance to nearby surfaces needs to be known. The method requires only a low level of instrumentation and can be applied in situ in all spatial dimensions. It is both accurate and precise: true values are returned, with small error bars. We tested this experimentally, near and far from surfaces in the lateral directions. Both position and force calibrations were accurate to within 3%. To calibrate, we moved the sample with a piezoelectric translation stage, but the laser beam could be moved instead, e.g., by acousto-optic deflectors. Near surfaces, this precision requires an improved formula for the hydrodynamical interaction between an infinite plane and a microsphere in nonconstant motion parallel to it. We give such a formula.

  20. Calibration method for division of focal plane polarimeters in the optical and near-infrared regime

    NASA Astrophysics Data System (ADS)

    York, Timothy; Gruev, Viktor

    2011-06-01

    Advances in nanofabrication allow for the creation of metallic nanowires acting as linear polarizers in the visible and near infrared regime. The monolithic integration of silicon detectors and pixelated nanowire metallic polarization filters allows for an efficient realization of high resolution polarization imaging sensors. These silicon sensors, known as division of focal plane polarimeters, capture polarization information of the imaged environment from ~400nm to 1050nm wavelength. The performance of the polarization sensor can be degraded by both irregularities in the fabrication of the nanowires and possible misalignment errors during the final deposition of the optical nanowire filters on the surface of the imaging sensor. In addition, electronic offsets due to the readout circuitry, electronic crosstalk, and optical crosstalk will also negatively affect the quality of the polarization information. Partial compensation for many of these post-fabrication errors can be accomplished through the use of a camera calibration routine. This paper will describe one such routine, and show how its application can increase the quality of measurements in both the degree of linear polarization and angle of polarization in the visible spectrum. The imaging array of the division of focal plane polarimeter is segmented into two by two blocks of superpixels. The calibration method chooses one of the four pixels as a reference, and then a gain and offset for each of the remaining three is computed based on this reference. The output is a calibration matrix for each pixel in the image array.

  1. Calibrating an optical scanner for quality assurance of large area radiation detectors

    NASA Astrophysics Data System (ADS)

    Karadzhinova, A.; Hildén, T.; Berdova, M.; Lauhakangas, R.; Heino, J.; Tuominen, E.; Franssila, S.; Hæggström, E.; Kassamakov, I.

    2014-11-01

    A gas electron multiplier (GEM) is a particle detector used in high-energy physics. Its main component is a thin copper-polymer-copper sandwich that carries Ø =70  ±  5 µm holes. Quality assurance (QA) is needed to guarantee both long operating life and reading fidelity of the GEM. Absence of layer defects and conformity of the holes to specifications is important. Both hole size and shape influence the detector’s gas multiplication factor and hence affect the collected data. For the scanner the required lateral measurement tolerance is ± 5 µm. We calibrated a high aspect ratio optical scanning system (OSS) to allow ensuring the quality of large GEM foils. For the calibration we microfabricated transfer standards, which were imaged with the OSS and which were compared to corresponding scanning electron microscopy (SEM) images. The calibration fulfilled the ISO/IEC 17025 and UKAS M3003 requirements: the calibration factor was 1.01  ±  0.01, determined at 95% confidence level across a 950  ×  950 mm2 area. The proposed large-scale scanning technique can potentially be valuable in other microfabricated products too.

  2. Interferometric 30 m bench for calibrations of 1D scales and optical distance measuring instruments

    NASA Astrophysics Data System (ADS)

    Unkuri, J.; Rantanen, A.; Manninen, J.; Esala, V.-P.; Lassila, A.

    2012-09-01

    During construction of a new metrology building for MIKES, a 30 m interferometric bench was designed. The objective was to implement a straight, stable, adjustable and multifunctional 30 m measuring bench for calibrations. Special attention was paid to eliminating the effects of thermal expansion and inevitable concrete shrinkage. The linear guide, situated on top of a monolithic concrete beam, comprises two parallel round shafts with adjustable fixtures every 1 m. A carriage is moved along the rail and its position is followed by a reference interferometer. Depending on the measurement task, one or two retro-reflectors are fixed on the carriage. A microscope with a CCD camera and a monitor can be used to detect line mark positions on different line standards. When calibrating optical distance measuring instruments, various targets can be fixed to the carriage. For the most accurate measurements an online Abbe-error correction based on simultaneous carriage pitch measurement by a separate laser interferometer is applied. The bench is used for calibrations of machinist scales, tapes, circometers, electronic distance meters, total stations and laser trackers. The estimated expanded uncertainty for 30 m displacement for highest accuracy calibrations is 2.6 µm.

  3. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized. PMID:26601030

  4. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  5. Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings.

    PubMed

    Eom, Tae Joong; Ahn, Yeh-Chan; Kim, Chang-Seok; Chen, Zhongping

    2011-03-01

    We present a calibration protocol to obtain the alignment factors of a custom-made spectrometer and the nonlinear fitting function between the measured CCD pixel domain and the wavelength domain to apply to the spectral-domain optical coherence tomography (SD-OCT) using fiber Bragg gratings. We have used five gratings with different center wavelengths covering the broadband source spectral range. All have a narrow spectral bandwidth (0.05 nm) and the same reflectivity (92%) to calibrate and align the custom-made spectrometer. The implemented SD-OCT system following the proposed protocol showed the alignment factors as 44.37 deg incident angle, 53.11 deg diffraction angle, and 70.0-mm focal length. The spectral resolution of 0.187 nm was recalculated from the alignment factors. PMID:21456856

  6. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  7. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  8. Empirical calibrations of optical absorption-line indices based on the stellar library MILES

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Thomas, Daniel; Maraston, Claudia

    2010-07-01

    Stellar population models of absorption-line indices are an important tool for the analysis of stellar population spectra. They are most accurately modelled through empirical calibrations of absorption-line indices with the stellar parameters such as effective temperature, metallicity and surface gravity, which are the so-called fitting functions. Here we present new empirical fitting functions for the 25 optical Lick absorption-line indices based on the new stellar library Medium resolution INT Library of Empirical Spectra (MILES). The major improvements with respect to the Lick/IDS library are the better sampling of stellar parameter space, a generally higher signal-to-noise ratio and a careful flux calibration. In fact, we find that errors on individual index measurements in MILES are considerably smaller than in Lick/IDS. Instead, we find the rms of the residuals between the final fitting functions and the data to be dominated by errors in the stellar parameters. We provide fitting functions for both Lick/IDS and MILES spectral resolutions and compare our results with other fitting functions in the literature. A FORTRAN 90 code is available online in order to simplify the implementation in stellar population models. We further calculate the offsets in index measurements between the Lick/IDS system to a flux-calibrated system. For this purpose, we use the three libraries MILES, ELODIE and STELIB. We find that offsets are negligible in some cases, most notably for the widely used indices Hβ, Mgb, Fe5270 and Fe5335. In a number of cases, however, the difference between the flux-calibrated library and Lick/IDS is significant with the offsets depending on index strengths. Interestingly, there is no general agreement between the three libraries for a large number of indices, which hampers the derivation of a universal offset between the Lick/IDS and flux-calibrated systems.

  9. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang

    2004-04-01

    This report summarizes technical progress over the third six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on sensor probe design and machining, sensor electronics design, software algorithm design, sensor field installation procedures, and sensor remote data access and control. Field testing will begin in the next several weeks.

  10. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2005-11-01

    This report summarizes technical progress April-September 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report. The sensing system will be installed and tested at TECO's Polk Power Station. Following a site visit in June 2005, our efforts have been focused on preparing for that field test, including he design of the sensor mechanical packaging, sensor electronics, the data transfer module, and the necessary software codes to accommodate this application.. We are currently ready to start sensor fabrication.

  11. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-11-01

    This report summarizes technical progress over the second six month period of the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Research efforts were focused on evaluating corrosion effects in single crystal sapphire at temperatures up to 1400 C, and designing the sensor mechanical packaging with input from Wabash River Power Plant. Upcoming meetings will establish details for the gasifier field test.

  12. ON-LINE SELF-CALIBRATING SINGLE CRYSTAL SAPPHIRE OPTICAL SENSOR INSTRUMENTATION FOR ACCURATE AND RELIABLE COAL GASIFIER TEMPERATURE MEASUREMENT

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang; Zhengyu Huang; Yizheng Zhu

    2005-04-01

    This report summarizes technical progress October 2004-March 2005 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. The objective of this program is to bring the BPDI sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. Due to the difficulties described on the last report, field testing of the BPDI system has not continued to date. However, we have developed an alternative high temperature sensing solution, which is described in this report.

  13. On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement

    SciTech Connect

    Kristie Cooper; Anbo Wang

    2007-03-31

    This report summarizes technical progress October 2006 - March 2007 on the Phase II program ''On-Line Self-Calibrating Single Crystal Sapphire Optical Sensor Instrumentation for Accurate and Reliable Coal Gasifier Temperature Measurement'', funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The outcome of the first phase of this program was the selection of broadband polarimetric differential interferometry (BPDI) for further prototype instrumentation development. This approach is based on the measurement of the optical path difference (OPD) between two orthogonally polarized light beams in a single-crystal sapphire disk. During the second phase, an alternative high temperature sensing system based on Fabry-Perot interferometry was developed that offers a number of advantages over the BPDI solution. The objective of this program is to bring the sensor technology, which has already been demonstrated in the laboratory, to a level where the sensor can be deployed in the harsh industrial environments and will become commercially viable. The sapphire wafer-based interferometric sensing system that was installed at TECO's Polk Power Station remained in operation for seven months. Our efforts have been focused on monitoring and analyzing the real-time data collected, and preparing for a second field test.

  14. Improved calibration of the nonlinear regime of a single-beam gradient optical trap.

    PubMed

    Wilcox, Jamianne C; Lopez, Benjamin J; Campàs, Otger; Valentine, Megan T

    2016-05-15

    We report an improved method for calibrating the nonlinear region of a single-beam gradient optical trap. Through analysis of the position fluctuations of a trapped object that is displaced from the trap center by controlled flow we measure the local trap stiffness in both the linear and nonlinear regimes without knowledge of the magnitude of the applied external forces. This approach requires only knowledge of the system temperature, and is especially useful for measurements involving trapped objects of unknown size, or objects in a fluid of unknown viscosity. PMID:27177009

  15. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  16. LEPTON ACCELERATORS AND COLLIDERS: Linear optics calibration and nonlinear optimization during the commissioning of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Tian, Shun-Qiang; Zhang, Wen-Zhi; Li, Hao-Hu; Zhang, Man-Zhou; Hou, Jie; Zhou, Xue-Mei; Liu, Gui-Min

    2009-06-01

    Phase I commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007. A lot of encouraging results have been obtained so far. In this paper, calibrations of the linear optics during the commissioning are discussed, and some measured results about the nonlinearity given. Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit (LOCO) technique. After fitting the closed orbit response matrix, the linear optics of the four test modes is substantially corrected, and the measured physical parameters agree well with the designed ones.

  17. Methods for optical calibration of the BigBite hadron spectrometer

    NASA Astrophysics Data System (ADS)

    Mihovilovič, M.; Širca, S.; Allada, K.; Anderson, B. D.; Annand, J. R. M.; Averett, T.; Camsonne, A.; Chan, R. W.; Chen, J.-P.; Chirapatpimol, K.; de Jager, C. W.; Gilad, S.; Hamilton, D. J.; Hansen, J.-O.; Higinbotham, D. W.; Huang, J.; Jiang, X.; Jin, G.; Korsch, W.; LeRose, J. J.; Lindgren, R. A.; Liyanage, N.; Long, E.; Michaels, R.; Moffit, B.; Monaghan, P.; Nelyubin, V.; Norum, B. E.; Piasetzky, E.; Qian, X.; Qiang, Y.; Riordan, S.; Ron, G.; Rosner, G.; Sawatzky, B.; Shabestari, M.; Shahinyan, A.; Shneor, R.; Subedi, R.; Sulkosky, V.; Watson, J. W.; Zhang, Y.-W.

    2012-09-01

    The techniques for the optical calibration of Jefferson Lab's large-acceptance magnetic hadron spectrometer, BigBite, have been examined. The most consistent and stable results were obtained using a method based on singular value decomposition. In spite of the complexity of the optics, the particles' positions and momenta at the target have been precisely reconstructed from the coordinates measured in the detectors by means of a single back-tracing matrix. The technique is applicable to any similar magnetic spectrometer and any particle type. For 0.55 GeV/c protons, we have established a vertex resolution of 1.2 cm, angular resolutions of 7 mrad and 13 mrad (in-plane and out-of-plane, respectively), and a relative momentum resolution of 1.6%.

  18. Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-07-01

    We present a phase fluctuation calibration method for polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) using continuous polarization modulation. The method uses a low-voltage broadband polarization modulator driven by a synchronized sinusoidal burst waveform rather than an asynchronous waveform, together with the removal of the global phases of the measured Jones matrices by the use of matrix normalization. This makes it possible to average the measured Jones matrices to remove the artifact due to the speckle noise of the signal in the sample without introducing auxiliary optical components into the sample arm. This method was validated on measurements of an equine tendon sample by the PS-SS-OCT system.

  19. SAXO, the eXtreme Adaptive Optics System of SPHERE: overview and calibration procedure

    NASA Astrophysics Data System (ADS)

    Sauvage, J.-F.; Fusco, T.; Petit, C.; Meimon, S.; Fedrigo, E.; Suarez Valles, M.; Kasper, M.; Hubin, N.; Beuzit, J.-L.; Charton, J.; Costille, A.; Rabou, P., .; Mouillet, D.; Baudoz, P.; Buey, T.; Sevin, A.; Wildi, F.; Dohlen, K.

    2010-07-01

    The direct imaging of exoplanet is a challenging goal of todays astronomy. The light transmitted by exoplanet atmosphere is of a great interest as it may witness for life sign. SPHERE is a second generation instrument for the VLT, dedicated to exoplanet imaging, detection, and characterisation. SPHERE is a global project of an European consortium of 11 institutes from 5 countries. We present here the state of the art of the AIT of the Adaptive Optics part of the instrument. In addition we present fine calibration procedures dedicated to eXtreme Adaptive Optics systems. First we emphasized on vibration and turbulence identification for optimization of the control law. Then, we describe a procedure able to measure and compensate for NCPA with a coronagraphic system.

  20. Beam-based Calibration of the Linear Optics Model of ELSA

    NASA Astrophysics Data System (ADS)

    Keil, J.; Husmann, D.

    1997-05-01

    The Electron Stretcher Accelerator (ELSA) of Bonn University is used to provide an external electron beam of high duty factor in the energy range from 0.5--3.5 GeV for fixed target experiments. In the near future polarized electron beams will be accelerated up to the highest energies. In order to avoid depolarisation of the polarized beam by imperfection and intrinsic resonances the control of the closed orbit and the symmetry of the ring lattice has to be improved. For calibration of the optics model of ELSA the orbit response matrix has been measured and fitted with help of the program CALIF. The strengths of the two quadrupole families and the relative scaling factors for the beam position monitors and corrector magnets have been determined in this way. The results of the fits and a comparison with measurements of the optical functions of ELSA will be presented.

  1. Methods for Optical Calibration of the BigBite Hadron Spectrometer

    SciTech Connect

    M. Mihovilovic, K. Allada, B.D. Anderson, J.R.M. Annand, T. Averett, A. Camsonne, R.W. Chan, J.-P. Chen, K. Chirapatpimol, C.W. de Jager, S. Gilad, D.J. Hamilton, J.-O. Hansen, D.W. Higinbotham, J. Juang, X. Jiang, G. Jin, W. Korsch, J.J. LeRose, R.A. Lindgren, N. Liyanage, E. Long, R. Michaels, B. Moffit, P. Monaghan, V. Nelyubin, B.E. Norum, E. Piasetzky, X. Qian, Y. Qiang, S. Riordan, G. Ron, G. Rosner, B. Sawatzky, M. Shabestari, A. Shahinyan, R. Shneor, S. Sirca, R. Subedi, V. Sulkosky, J.W. Watson, B. Wojtsekhowski, Y.-W. Zhang

    2012-09-01

    The techniques for optical calibration of Jefferson Lab's large-acceptance magnetic hadron spectrometer, BigBite, have been examined. The most consistent and stable results were obtained by using a method based on singular value decomposition. In spite of the complexity of the optics, the particles positions and momenta at the target have been precisely reconstructed from the coordinates measured in the detectors by means of a single back-tracing matrix. The technique is applicable to any similar magnetic spectrometer and any particle type. For 0.55 GeV/c protons, we have established the vertex resolution of 1.2 cm, angular resolutions of 7 mrad and 16 mrad (in-plane and out-of-plane, respectively), and a relative momentum resolution of 1.6%.

  2. Pre-Flight Calibration Results for the Space Telescope Imaging Spectrograph, III. Optical Performance

    NASA Astrophysics Data System (ADS)

    Bowers, C.; Gull, T.; Kimble, R.; Woodgate, B.; Kaiser, M.; Hartig, G.; Valenti, J.; Hood, D.; Sullivan, J.; Standley, C.; Beck, T.; Plait, P.; Sandoval, J.

    1996-12-01

    The Space Telescope Imaging Spectrograph (STIS) is a versatile, multi-purpose instrument which operates from the ultraviolet to near infrared (115-1000nm) aboard the Hubble Space Telescope (HST). An internal, two mirror relay system replaces COSTAR correcting the spherical aberration and astigmatism present at the STIS field position, about 6 arcminutes from the HST field center. The various STIS modes permit low and medium spectroscopy throughout the spectral range and over the 25 arc-second ultraviolet and 52 arcsecond visible fields. High resolution (30-100,000) echelle spectroscopy capability is provided in the ultraviolet (115-310nm). Broad band imaging is also possible over the complete spectral range and fields and a small selection of narrow and passband filters is available. A wide selection of slits and apertures permits various resolution and spatial scales to be selected in all modes. Coronagraphic stops are provided to permit observations in the visible (310 - 1000nm). On board calibration lamps permit wavelength calibration and flat fields to be obtained. Pre-flight calibration of STIS has been completed. We summarize the optical performance of STIS including measured resolution, scattering and encircled energy characterization in this paper.

  3. Actively Heated Fiber Optics for Distributed Soil Moisture Measurements: Addressing Field Calibration and Spatial Variability

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Moreno, D.; Benitez-buelga, J.; Dong, J.; Ochsner, T. E.; Steele-Dunne, S. C.; Rodriguez-Sinobas, L.; Selker, J. S.

    2015-12-01

    The Actively Heated Fiber Optics (AHFO) method has the potential to measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. This game-changing method can capture soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m). However, many challenges remain to resolve for the practical applicability of the AHFO at the field scale. In particular, cost effective distributed calibration method that accounts for the spatial variability of the soil thermal properties is still lacking. In fact, AHFO infers soil water content from observing the thermal response of the soil to a heat pulse injected along the fiber optic cable. For a particular location, the temporal variation of the soil thermal response depends mainly on the soil moisture content. Across the field the variability of thermal response will also be a function of the soil thermal properties which change with the soil mineralogy and bulk density. Here we present various strategies for distributed calibration of the AHFO method based on numerical simulation, direct field observation, and/or laboratory experimentation. In particular we will present a novel approach for mapping the soil thermal behavior by conducting AHFO measurements at strategic soil water conditions such as near saturation and dry conditions. We will show results from a large scale deployment at the MOISST site in Stillwater, Oklahoma where 4900 m of fiber optic soil moisture sensing cables are providing daily soil moisture measurements at >39,000 locations in the field. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views

  4. Progress toward board-level optical interconnect technology

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew L.; Sicard, Bruno; Ho, Tuan; Little, Luke; Pugliano, Nick; Shelnut, James G.; Zheng, Hai Bin; Knudsen, Phil; Lundy, Dan; Chiarotto, Nancy; Lustig, Curtis; Allen, Craig

    2005-03-01

    Bandwidth demand is still growing and it is becoming more difficult for copper based interconnect technologies to meet system requirements. Considerable progress is being made in the development of optical interconnect technology. Recent publications have shown improved integration of turning mirrors and connectors for board level applications. This paper presents recent work on a siloxane-based waveguide material that is optimized for 850nm board level optical interconnect applications. The material under development is a negative acting photoimageable material that can be processed with conventional Printed Wire Board (PWB) or CMOS processing techniques and chemistries. Meter long waveguides have been fabricated on both silicon and FR4 substrates with optical loss performance of 0.027dB/cm and 0.067dB/cm respectively. Data illustrating the effect of bend radii and splitter performance is reported. Lastly, the ability of the siloxane material to withstand PWB fabrication and assembly processes such as lamination, metallization and reliability is demonstrated.

  5. Corneal-Imaging Calibration for Optical See-Through Head-Mounted Displays.

    PubMed

    Plopski, Alexander; Itoh, Yuta; Nitschke, Christian; Kiyokawa, Kiyoshi; Klinker, Gudrun; Takemura, Haruo

    2015-04-01

    In recent years optical see-through head-mounted displays (OST-HMDs) have moved from conceptual research to a market of mass-produced devices with new models and applications being released continuously. It remains challenging to deploy augmented reality (AR) applications that require consistent spatial visualization. Examples include maintenance, training and medical tasks, as the view of the attached scene camera is shifted from the user's view. A calibration step can compute the relationship between the HMD-screen and the user's eye to align the digital content. However, this alignment is only viable as long as the display does not move, an assumption that rarely holds for an extended period of time. As a consequence, continuous recalibration is necessary. Manual calibration methods are tedious and rarely support practical applications. Existing automated methods do not account for user-specific parameters and are error prone. We propose the combination of a pre-calibrated display with a per-frame estimation of the user's cornea position to estimate the individual eye center and continuously recalibrate the system. With this, we also obtain the gaze direction, which allows for instantaneous uncalibrated eye gaze tracking, without the need for additional hardware and complex illumination. Contrary to existing methods, we use simple image processing and do not rely on iris tracking, which is typically noisy and can be ambiguous. Evaluation with simulated and real data shows that our approach achieves a more accurate and stable eye pose estimation, which results in an improved and practical calibration with a largely improved distribution of projection error. PMID:26357098

  6. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    NASA Astrophysics Data System (ADS)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  7. A Catalog of Stellar Targets and Calibrators for Next Generation Optical Interferometers

    NASA Astrophysics Data System (ADS)

    Swihart, Sam; Muterspaugh, M. W.; Garcia, E.; van Belle, G.; Stassun, K.

    2014-01-01

    The Visible Imaging System for Interferometric Observations at the Navy Precision Optical Interferometer (VISION) outside Flagstaff, Arizona is a high-resolution, six-telescope beam combiner. VISION is capable of sub-milliarcsecond resolution in visible wavelengths allowing for images of stellar surface features, such as spots and granulation. Here we present a list of the first potential science targets as well as their respective calibrators. Approximately 2900 potential science target stars in the northern hemisphere fit the criteria of being ideal for VISION having angular sizes between 2 and 4 milliarcseconds and brighter than V=6. In order to obtain good interferometric data on these targets, it is vital to establish the system response of the instrument. This is done by observing unresolved calibrator stars with visibilities near unity. The angular sizes of these calibrators must be very accurate to obtain good visibility contrast. We used a spectral energy distribution fitting code, SEDfit, which modeled each star’s angular size based on a template of the spectral type of the star obtained from the Skiff Catalogue of Stellar Spectral Classification (2009-2013). Of the nearly 2000 possible calibrators, 1485 stars have relative errors of their angular sizes less than 10%, 664 have errors less than 5%, and 37 stars have relative errors less than 2%. With this precision, our catalog will be a valuable resource for the interferometric imaging community leading to great opportunities for imaging the surface of a star other than the Sun. We acknowledge the Vanderbilt Physics and Astronomy NSF REU Program.

  8. Toward a Calibration-Free Model for Optical Remote Sensing of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Sadeghi, M.; Jones, S. B.; Tuller, M.

    2015-12-01

    A recently developed physically-based model to retrieve soil moisture from optical images was evaluated in this study. The model was derived based on a simple two-flux radiative transfer model describing diffuse reflectance from a uniform, optically thick, absorbing and scattering medium. The model exhibited an unprecedented linear relationship between a novel transformed reflectance and the surface soil moisture in the shortwave infrared bands such as bands 6 and 7 of Landsat 8. Accuracy of the model was tested based on laboratory-measured spectral reflectance data of a broad range of Arizona soils in the optical domain (400 - 2500 nm). Additionally, the original model was further simplified by combining bands 6 and 7 data which reduced the number of model parameters from two to one. The remaining physically-significant parameter was directly measured for the Arizona soils, exhibiting little variability among those varied soil textures. New findings in this study significantly advance this new method toward its application without the need for ground-based model calibration. Further study of potentials and limitations of this model for large-scale application using optical satellite data (e.g. Landsat, MODIS) remains a goal of future research.

  9. Progress toward traceable nanoscale optical critical dimension metrology for semiconductors

    NASA Astrophysics Data System (ADS)

    Patrick, Heather J.; Germer, Thomas A.

    2007-09-01

    Non-imaging optical critical dimension (OCD) techniques have rapidly become a preferred method for measuring nanoscale features in semiconductors. OCD relies upon the measurement of an optical reflectance signature from a grating target as a function of angle, wavelength and/or polarization. By comparing the signature with theoretical simulations, parameters of the grating lines such as critical dimension (CD) linewidth, sidewall angle, and line height can be obtained. Although the method is sensitive and highly repeatable, there are many issues to be addressed before OCD can be considered a traceable metrology. We report on progress towards accurate, traceable measurement, modeling, and analysis of OCD signatures collected on the NIST goniometric optical scatter instrument (GOSI), focusing on recent results from grating targets fabricated using the single-crystal critical dimension reference materials (SCCDRM) process. While we demonstrate good correlation between linewidth extracted from OCD and that measured by scanning electron microscopy (SEM), we also find systematic deviations between the experimentally obtained optical signatures and best fit theoretical signatures that limit our ability to determine uncertainty in OCD linewidth. We then use the SCCDRM line profile model and a χ2 goodness-of-fit analysis on simulated signatures to demonstrate the theoretical confidence limits for the grating line parameters in the case of normally distributed noise. This analysis shows that for the current SCCDRM implementation, line height and oxide layer undercut are highly correlated parameters, and that the 3-σ confidence limits in extracted linewidth depend on the target pitch. Prospects for traceable OCD metrology will be discussed.

  10. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  11. Progress in the development of scintillating optical fibers

    SciTech Connect

    Borenstein, S.R.; Strand, R.C.

    1984-02-01

    Starting with 1 inch diameter PVT scintillator as a preform, the authors have drawn fibers of several diameters ranging from 1 to 4 mm. These fibers have been coated in line with the draw to form optical fibers. Several cladding materials whose index of refraction ranges from 1.35 to 1.55 have been used. The most successful fiber has been obtained with an extra thick (200 micron) cladding of silicone in combination with a linear draw, as opposed to a spool draw. This fiber is acceptable, but it is extremely fragile and its quality is difficult to control. The authors are currently constructing a 12 channel hodoscope with 1 mm spatial resolution using 4 mm diameter fibers. An account is also given of the progress made in using the Avalanche Photo Diode (APD) operated in the Geiger mode as the photo detector.

  12. Progress in Atom Chips and the Integration of Optical Microcavities

    NASA Astrophysics Data System (ADS)

    Hinds, E. A.; Trupke, M.; Darquie, B.; Goldwin, J.; Dutier, G.

    2008-04-01

    We review recent progress at the Centre for Cold Matter in developing atom chips. An important advantage of miniaturizing atom traps on a chip is the possibility of obtaining very tight trapping structures with the capability of manipulating atoms on the micron length scale. We recall some of the pros and cons of bringing atoms close to the chip surface, as is required in order to make small static structures, and we discuss the relative merits of metallic, dielectric and superconducting chip surfaces. We point out that the addition of integrated optical devices on the chip can enhance its capability through single atom detection and controlled photon production. Finally, we review the status of integrated microcavities that have recently been demonstrated at our Centre and discuss their prospects for future development.

  13. Progress in the development of scintillating optical fibers

    SciTech Connect

    Borenstein, S.R.; Strand, R.C.

    1983-01-01

    Starting with 1 inch diameter PVT scintillator as a preform, the authors have drawn fibers of several diameters ranging from 1 to 4 mm. These fibers have been coated in line with the draw to form optical fibers. Several cladding materials whose index of refraction ranges from 1.35 to 1.55 have been used. The most successful fiber has been obtained with an extra thick (200 micron) cladding of silicone in combination with a linear draw, as opposed to a spool draw. This fiber is acceptable, but it is extremely fragile and its quality is difficult to control. The authors are currently constructing a 12 channel hodoscope with 1 mm spatial resolution using 4 mm diameter fibers. An account is also given of the progress made in using the Avalanche Photo Diode (APD) operated in the Geiger mode as the photo detector.

  14. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. II - Calibration and data analysis

    NASA Technical Reports Server (NTRS)

    Sroga, J. T.; Eloranta, E. W.; Roesler, F. L.; Shipley, S. T.; Tryon, P. J.

    1983-01-01

    The high spectral resolution lidar (HSRL) measures optical properties of atmospheric aerosols by interferometically separating the elastic aerosol backscatter from the Doppler broadened molecular contribution. Calibration and data analysis procedures developed for the HSRL are described. Data obtained during flight evaluation testing of the HSRL system are presented with estimates of uncertainties due to instrument calibration. HSRL measurements of the aerosol scattering cross section are compared with in situ integrating nephelometer measurements.

  15. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  16. Subjective Evaluation of a Semi-Automatic Optical See-Through Head-Mounted Display Calibration Technique.

    PubMed

    Moser, Kenneth; Itoh, Yuta; Oshima, Kohei; Swan, J Edward; Klinker, Gudrun; Sandor, Christian

    2015-04-01

    With the growing availability of optical see-through (OST) head-mounted displays (HMDs) there is a present need for robust, uncomplicated, and automatic calibration methods suited for non-expert users. This work presents the results of a user study which both objectively and subjectively examines registration accuracy produced by three OST HMD calibration methods: (1) SPAAM, (2) Degraded SPAAM, and (3) Recycled INDICA, a recently developed semi-automatic calibration method. Accuracy metrics used for evaluation include subject provided quality values and error between perceived and absolute registration coordinates. Our results show all three calibration methods produce very accurate registration in the horizontal direction but caused subjects to perceive the distance of virtual objects to be closer than intended. Surprisingly, the semi-automatic calibration method produced more accurate registration vertically and in perceived object distance overall. User assessed quality values were also the highest for Recycled INDICA, particularly when objects were shown at distance. The results of this study confirm that Recycled INDICA is capable of producing equal or superior on-screen registration compared to common OST HMD calibration methods. We also identify a potential hazard in using reprojection error as a quantitative analysis technique to predict registration accuracy. We conclude with discussing the further need for examining INDICA calibration in binocular HMD systems, and the present possibility for creation of a closed-loop continuous calibration method for OST Augmented Reality. PMID:26357099

  17. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors

    SciTech Connect

    Cosnefroy, H.; Briottet, X.; Leroy, M.

    1996-10-01

    Desert areas are good candidates for the assessment of multitemporal, multiband, or multiangular calibration of optical satellite sensors. This article describes a selection procedure of desert sites in North Africa and Saudi Arabia, of size 100 x 100 km{sup 2}, using a criterion of spatial uniformity in a series of Meteosat-4 visible data. Twenty such sites are selected with a spatial uniformity better than 3% in relative value in a multitemporal series of cloud-free images. These sites are among the driest sites in the world. Their meteorological properties are here described in terms of cloud cover with ISCCP data and precipitation using data from a network of meteorological stations. Most of the selected sites are large sand seas, the geomorphology of which can be characterized with Spot data. The temporal stability of the spatially averaged reflectance of each selected site is investigated at seasonal and hourly time scales with multitemporal series of Meteosat-4 data. It is found that the temporal variations, of typical peak-to-peak amplitude 8--15% in relative value, are mostly controlled by directional effects. Once the directional effects are removed, the residual rms variations, representative of random temporal variability, are on the order of 1--2% in relative value. The suitability of use of these selected sites in routine operational calibration procedures is briefly discussed.

  18. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    PubMed Central

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  19. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  20. Recent progress in X-ray optics at the ESRF

    NASA Astrophysics Data System (ADS)

    Freund, A.

    2003-03-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.

  1. Optimized calibration strategy for high order adaptive optics systems in closed-loop: the slope-oriented Hadamard actuation.

    PubMed

    Meimon, Serge; Petit, Cyril; Fusco, Thierry

    2015-10-19

    The accurate calibration of the interaction matrix affects the performance of an adaptive optics system. In the case of high-order systems, when the number of mirror modes is worth a few thousands, the calibration strategy is critical to reach the maximum interaction matrix quality in the minimum time. This is all the more true for the future European Extremely Large Telescope. Here, we propose a novel calibration scheme, the Slope-Oriented Hadamard strategy. We then build a tractable interaction matrix quality criterion, and show that our method tends to optimize it. We demonstrate that for a given level of quality, the calibration time needed using the Slope-Oriented Hadamard method is seven times less than with a classical Hadamard scheme. These analytic and simulation results are confirmed experimentally on the SPHERE XAO system (SAXO). PMID:26480374

  2. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters.

    PubMed

    Xu, Y; Wuu, Cheng-Shie; Maryanski, Marek J

    2010-02-01

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4 x 4 cm2 photon fields or 6 x 6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6 x 6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752 +/- 3%, 0.0756 +/- 3%, 0.0767 +/- 3%, and 0.0759 +/- 3% cm(-1) Gy(-1)) and the PDD matching methods (0.0768 +/- 3% and 0.0761 +/- 3% cm(-1) Gy(-1)) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6 x 6 cm2 electron field. Three-dimensional dose distributions from the gel measurement

  3. Progress in Insect-Inspired Optical Navigation Sensors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Chahl, Javaan; Zometzer, Steve

    2005-01-01

    Progress has been made in continuing efforts to develop optical flight-control and navigation sensors for miniature robotic aircraft. The designs of these sensors are inspired by the designs and functions of the vision systems and brains of insects. Two types of sensors of particular interest are polarization compasses and ocellar horizon sensors. The basic principle of polarization compasses was described (but without using the term "polarization compass") in "Insect-Inspired Flight Control for Small Flying Robots" (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate: Bees use sky polarization patterns in ultraviolet (UV) light, caused by Rayleigh scattering of sunlight by atmospheric gas molecules, as direction references relative to the apparent position of the Sun. A robotic direction-finding technique based on this concept would be more robust in comparison with a technique based on the direction to the visible Sun because the UV polarization pattern is distributed across the entire sky and, hence, is redundant and can be extrapolated from a small region of clear sky in an elsewhere cloudy sky that hides the Sun.

  4. The Magneto-optical Filter, Working Principles and Recent Progress

    NASA Technical Reports Server (NTRS)

    Cacciani, A.; Rhodes, E. J., Jr.

    1984-01-01

    The Magneto-Optical Filter is described which allows simultaneous magnetic and velocity measurements (in both imaging and non-imaging modes) without the need for a spectrograph. In this way the stability and alignment problems of the spectrograph are completely overcome. Its major advantages are: wavelength absolute reference and stability, high signal to noise ratio and independence of the transmission profile from the incidence angle of the solar beam. It is an imaging instrument allowing high wave number analysis in the solar oscillation spectrum and a continuous monitoring of the image position through the chromospheric facular structures. The apparatus in use at Mt. Wilson is assembled in a modular form. The most important part of it is a glass cell containing the sodium vapor. The filter is easy to use but the cell is not easy to construct in an optimal way. The technology is in progress both to use Na and K together and to prevent the windows from becoming coated during a long-term operation.

  5. Progress of calibration and validation for quantitative remote sensing in China

    NASA Astrophysics Data System (ADS)

    Li, Chuanrong; Tang, Lingli; Ma, Lingling; Zhou, Yongsheng; Wang, Ning; Gao, Caixia; Wang, Xinhong

    2014-11-01

    Calibration and validation (Cal and Val) is one of the most important quality assurance means for satellite payload performance and data quality which has actually restricted RS applicable scope. It has aroused various attentions from academia and industries in recent few decades. The challenges include the lack of consistent RS assessment standard, the uncertainties introduced by atmospheric effect, as well as the gaps in non-synchronous measurements between satellite and field observation. As one of the countries which launched the largest number of earth observation satellites/payloads in last five years, China engaged to solve various challenges of Cal and Val for quantitative RS applications. Several reprehensive works were introduced, including the development of remote sensing technology standardization, the stepwise Cal and Val system, China's Baotou comprehensive Cal/Val site, automatic in-situ calibration exploration, etc. All these works mitigated the uncertainties of RS measurement and enhanced the precision of quantitative remote sensing.

  6. In-progress absolute radiometric inflight calibration of the LANDSAT-4 sensors

    NASA Technical Reports Server (NTRS)

    Castle, K.; Dinguirard, M.; Ezra, C. E.; Holm, R. G.; Jackson, R. J.; Kastner, C. J.; Palmer, J. M.; Savage, R.; Slater, P. N.

    1983-01-01

    An approach is described for providing periodic inflight absolute radiometric calibrations of the LANDSAT-4 sensors by reference to selected, instrumented ground areas. Results of some early ground measurements and computer simulations are presented. Selection of a suitable ground reference site, accurate measurement of the spectral reflectance of the selected area, determination of atmospheric characteristics during the morning of the sensor overpass, reduction of the measured data and their use in an appropriate atmospheric radiative transfer program, and comparison of the radiance level data with the digital counts of for the images of the selected areas are discussed. Preliminary measurements of gypsum are being made as an aid in defining the characteristics of field equipment to be constructed and calibrated for use over the White Sands Missile Range.

  7. A First Calibration of SBF using Mulit-Conjugate Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Gibson, Zachary; Jensen, Joseph B.; Blakeslee, John; Schirmer, Mischa

    2016-01-01

    We measured Surface Brightness Fluctuations (SBF) in three galaxies, ESO137-G006, NGC 3309, and NGC 5128, using the GeMS Multi-Conjugate Adaptive Optics (MCAO) system on the Gemini South telescope. ESO137-G006 is located in the Norma Cluster, NGC 3309 is located in the Hydra Cluster, while NGC 5128, also known as Centaurus A, is a nearby galaxy with numerous other distance measurements, including Cepheids. These galaxies were observed as a pathfinder to establish the SBF technique using the MCAO system.The J and K-band images taken with MCAO were astrometrically corrected and combined using the THELI software. This method allowed us to accurately account for the distortions of the focal plane when combining the images. The foreground stars as well as the globular clusters were measured to account for their contribution to the SBF. J-K color measurements were made to calibrate SBF and determine the stellar populations of the galaxies.The results of these measurements give us an SBF calibration that we can use to measure the distances to much more distant galaxies. Accurate distances are needed to determine the true spatial motions of galaxies and measure the mass distribution and density of the Universe. We now live in the era of "precision cosmology" in which distance measurements have transformed our understanding of the composition of the Universe and revealed the presence of Dark Matter and Dark Energy, the two dominant (but still unidentified) components of the Universe. The origins and nature of Dark Matter and Dark Energy are among the most important unsolved mysteries in physics.

  8. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  9. The influence of temperature calibration on the OC-EC results from a dual optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-04-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the NIOSH 5040 and IMPROVE protocols. Application of the oven calibration procedure to our dual optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the wide-spread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  10. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  11. Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    NASA Technical Reports Server (NTRS)

    Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.

    2010-01-01

    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.

  12. High-Accuracy Self-Calibration for Smart, Optical Orbiting Payloads Integrated with Attitude and Position Determination.

    PubMed

    Li, Jin; Xing, Fei; Chu, Daping; Liu, Zilong

    2016-01-01

    A high-accuracy space smart payload integrated with attitude and position (SSPIAP) is a new type of optical remote sensor that can autonomously complete image positioning. Inner orientation parameters (IOPs) are a prerequisite for image position determination of an SSPIAP. The calibration of IOPs significantly influences the precision of image position determination of SSPIAPs. IOPs can be precisely measured and calibrated in a laboratory. However, they may drift to a significant degree because of vibrations during complicated launches and on-orbit functioning. Therefore, laboratory calibration methods are not suitable for on-orbit functioning. We propose an on-orbit self-calibration method for SSPIAPs. Our method is based on an auto-collimating dichroic filter combined with a micro-electro-mechanical system (MEMS) point-source focal plane. A MEMS procedure is used to manufacture a light transceiver focal plane, which integrates with point light sources and a complementary metal oxide semiconductor (CMOS) sensor. A dichroic filter is used to fabricate an auto-collimation light reflection element. The dichroic filter and the MEMS point light sources focal plane are integrated into an SSPIAP so it can perform integrated self-calibration. Experiments show that our method can achieve micrometer-level precision, which is good enough to complete real-time calibration without temporal or spatial limitations. PMID:27472339

  13. Master-Slave optical coherence tomography for parallel processing, calibration free and dispersion tolerance operation

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Podoleanu, Adrian G.

    2015-03-01

    We present further improvements on the Master Slave (MS) interferometry method since our first communication [1]. In this paper, we present more data collection and additionally demonstrate an important feature of the MS method, that of tolerance to dispersion. MS interferometry produces the interference of a selected point in depth based on principles of spectral domain (SD) interferometry, but without the need of a Fast Fourier transformation (FFT). The method can be used to directly produce en-face optical coherence tomography (OCT) images but also as a tool to accurately measure distances in low coherence interferometry for sensing applications [1]. In the MS-OCT method, cross-correlation is applied to both methods of SD-OCT, spectrometer based (SP) or swept source (SS) OCT. The channelled spectrum provided by an OCT system is correlated with the signal produced by reading a stored mask. Several such masks can be used simultaneously. The masks operate as adaptive filters. Each mask (filter) determines recognition in the measured channelled spectrum delivered by the interferometer, of the pattern corresponding to each optical path difference to be recognized. The method presents net advantages in comparison with the classical method of producing axial reflectivity profiles by FFT: no need for resampling of data, possibility to tailor the trade-off between depth resolution and sensitivity. Here, using a swept source, the MS method is used to obtain axial reflectivity profiles, which are compared to the axial profiles obtained by calibration of data and FFT. The tolerance to dispersion of the MS method was assumed in [1] but not demonstrated. Here, measurements are performed to demonstrate its axial resolution independence on dispersion.

  14. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Zhang, Xiaoye; Chen, Hongbin; Damiri, Bahaiddin; Goloub, Philippe; Li, Zhengqiang; Zhang, Xiaochun; Wei, Yao; Zhou, Huaigang; Dong, Fan; Li, Deping; Zhou, Tianming

    2009-02-01

    This paper introduced the calibration of the CE-318 sunphotometer of the China Aerosol Remote Sensing Network (CARSNET) and the validation of aerosol optical depth (AOD) by AOD module of ASTPWin software compared with the simultaneous measurements of the Aerosol Robotic Network (AERONET)/Photométrie pour le Traitement Opérationnel de Normalization Satellitaire (PHOTONS) and PREDE skyradiometer. The results show that the CARSNET AOD measurements have the same accuracy as the AERONET/PHOTONS. On the basis of a comparison between CARSNET and AERONET, the AODs from CARSNET at 1020, 870, 670, and 440 nm are about 0.03, 0.01, 0.01, and 0.01 larger than those from AERONET, respectively. The aerosol optical properties over Beijing acquired through the CE-318 sunphotometers of one AERONET/PHOTONS site and two CARSNET sites were analyzed on the basis of 4-year measurements. It was obvious that the AOD of the Shangdianzi site (rural site) was lower than that of the two urban sites (the Institute of Atmospheric Physics (IAP) site (north urban site) and the Beijing Meteorological Observatory (BJO) site (south urban site)). The AOD of BJO was about 0.05, 0.04, 0.05, and 0.06 larger than that of IAP at 1020, 870, 670, and 440 nm, respectively, indicating that there is more local pollution in the south part of Beijing. The highest AOD was found in summer because of the stagnation planetary boundary layer and transport of pollutants from large pollution centers south of Beijing. The high temperature and relative humidity in summer also favor the production of aerosol precursor and the hygroscopic growth of the existing particles locally, which results in high AOD. In contrast, the lowest AOD at the two urban sites and one rural site in Beijing occurred in winter as the frequent cold air masses help pollutants diffuse easily.

  15. First on-sky calibration of an high order adaptive optics system

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Quirós-Pacheco, F.; Riccardi, A.; Briguglio, R.; Puglisi, A.; Busoni, L.; Arcidiacono, C.; Argomedo, J.; Xompero, M.; Marchetti, E.; Esposito, S.

    2012-07-01

    The AO system calibration is usually done with a dedicated setup during daytime. Here we present results of two alternative techniques as the synthetic and the on-sky interaction matrix calibration. In both cases we created matrices controlling 400 modes of the LBT-FLAO system. We present here the performances reached on-sky at LBT compared with those obtained with the standard calibration. The described techniques allow calibrating the AO system without any dedicated hardware. This is particularly attractive for systems that require complex calibration setup such as those with a convex adaptive secondary like the MMT and the planned VLT AOF.

  16. Submicron fiber optic sensors for calcium ions and pH with internal calibration

    NASA Astrophysics Data System (ADS)

    Plaschke, Markus; Geyer, Michael; Reichert, Johannes; Ache, Hans-Joachim

    1997-05-01

    Submicron optical sensors can be prepared by immobilization of fluorescent indicators on tapered fiber tips. However, fluorescence intensity based sensing depends on many parameters (e.g. light source, collection geometry, quenching effects, etc.) and therefore quantification is usually complicated. Ratio measurements are established as a common method to quantify fluorescence signals using a sensing and a reference dye. The sensors described in this work are based on a new immobilization concept which consists of the encapsulation of dextran-linked fluorescence indicators in an organic hydrogel. This concept allows co-immobilization and stable encapsulation of different indicators. The calcium- and pH-sensors presented contain dextran-coupled fluorescein- derivatives as indicators (Calcium GreenTM and fluorescein) and a rhodamine-derivative (Texas RedR) as reference dye, co-immobilized in PolyHEMA. These sensors exhibit a signal stability of several weeks (when stored in buffer solution), fast response times and calibration curves which are not affected by immobilization. Due to the ratio measurement signal reproducibility was less than or equal to 5%. The working lifetime of submicron sensors was limited only by photobleaching of the indicators which can be minimized by reduction of the laser power. The dynamic range and short response times of these sensors suggest applications in physiological fluids, cell cultures or micro-bioreactors.

  17. An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration

    PubMed Central

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity. PMID:22164039

  18. Adaptive optics self-calibration using differential OTF (dOTF)

    NASA Astrophysics Data System (ADS)

    Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier

    2015-09-01

    We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.

  19. An optical sensor network for vegetation phenology monitoring and satellite data calibration.

    PubMed

    Eklundh, Lars; Jin, Hongxiao; Schubert, Per; Guzinski, Radoslaw; Heliasz, Michal

    2011-01-01

    We present a network of sites across Fennoscandia for optical sampling of vegetation properties relevant for phenology monitoring and satellite data calibration. The network currently consists of five sites, distributed along an N-S gradient through Sweden and Finland. Two sites are located in coniferous forests, one in a deciduous forest, and two on peatland. The instrumentation consists of dual-beam sensors measuring incoming and reflected red, green, NIR, and PAR fluxes at 10-min intervals, year-round. The sensors are mounted on separate masts or in flux towers in order to capture radiation reflected from within the flux footprint of current eddy covariance measurements. Our computations and model simulations demonstrate the validity of using off-nadir sampling, and we show the results from the first year of measurement. NDVI is computed and compared to that of the MODIS instrument on-board Aqua and Terra satellite platforms. PAR fluxes are partitioned into reflected and absorbed components for the ground and canopy. The measurements demonstrate that the instrumentation provides detailed information about the vegetation phenology and variations in reflectance due to snow cover variations and vegetation development. Valuable information about PAR absorption of ground and canopy is obtained that may be linked to vegetation productivity. PMID:22164039

  20. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  1. Real-time and high-performance calibration method for high-speed swept-source optical coherence tomography

    PubMed Central

    Azimi, Ehsan; Liu, Bin; Brezinski, Mark E.

    2010-01-01

    For high-speed swept-source optical coherence tomography (SS-OCT), the real-time calibration process to convert the OCT signal to wave number space is highly essential. A novel calibration process∕algorithm using a genetic algorithm and precise interpolation is developed. This algorithm is embedded and validated in a SS-OCT system with 16-kHz A-scan rate. The performance of the new algorithm is evaluated by measuring point spread functions at two distinct locations in the entire imaging range. The data is compared to the same system but embedded with a regular calibration algorithm, which demonstrates about 20% improvement in the axial resolution. The steady improvement at different locations of the range suggests the strong robustness of the algorithm, which will ultimately optimize the operation performance of this SS-OCT system in terms of resolution and dynamic range and improves details in biological tissues. PMID:20210451

  2. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  3. Fiber Optic Repair and Maintainability (FORM) Program Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advanced aircraft will employ fiber-optic interconnection components to transmit information from airframe and propulsion sensors to the flight control computers. Although these optical interconnects have been rigorously tested under laboratory conditions to determine their operating and environmental limits, there is concern as to their repairability and maintainability when placed in actual service. The Fiber Optic Repair and Maintainability (FORM) flight test program will provide data to enable designers to improve these fiber-optic interconnection systems for the next generation of aircraft. FORM is identifying critical problems in installing, maintaining, testing, and repairing fiber-optic interconnection systems in an operational avionics environment. This program is a cooperative Government/industry effort to evaluate optical component acceptability and installation techniques for aircraft.

  4. NMR and optical studies of piezoelectric polymers. Annual progress report, April 1, 1990--September 30, 1992

    SciTech Connect

    Schmidt, V.H.; Tuthill, G.F.

    1993-04-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF{sub 2}) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done.

  5. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-12-01

    We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100 mL-1·min-1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=-0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy.

  6. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration

    NASA Astrophysics Data System (ADS)

    Portuondo-Campa, E.; Bennès, J.; Balet, L.; Kundermann, S.; Merenda, F.; Boer, G.; Lecomte, S.

    2016-07-01

    Two commercial femtosecond laser sources have been used to implement a dual-comb spectrometer tuneable across a spectral range from 1.5 to 2.2 μm. The optical linewidth of the comb modes was characterized for different time scales in order to estimate the achievable spectral resolution for an optimal acquisition time. The transmission spectra of three different gas samples were recorded, demonstrating good agreement with reference data. Frequency axis calibration was provided via the parallel monitoring of a reference sample. This technique allows an accurate calibration of the frequency axis of the spectrometer, with no need for stabilization or optical referencing of the frequency combs. Our set-up represents a good compromise for a compact and versatile dual-comb spectrometer based on commercially available parts with possible applications in trace-gas monitoring, remote sensing and spectroscopy of short-lived processes.

  7. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    On 2013 September 21-22, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope flew as a balloon payload from Ft. Sumner, NM. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 h flight. In this paper, we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources and applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray Light Facility (SLF) in Huntsville, AL, and using ray traces. We describe the application of our calibration measurements to in-flight observations of the Crab Nebula.

  8. On-Orbit Geometric Calibration Approach for High-Resolution Geostationary Optical Satellite GaoFen-4

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Cheng, Yufeng; Long, Xiaoxiang; Yang, Bo

    2016-06-01

    The GaoFen-4 (GF-4) remote sensing satellite is China's first civilian high-resolution geostationary optical satellite, which has been launched at the end of December 2015. To guarantee the geometric quality of imagery, this paper presents an on-orbit geometric calibration method for the area-array camera of GF-4. Firstly, we introduce the imaging features of area-array camera of GF-4 and construct a rigorous imaging model based on the analysis of the major error sources from three aspects: attitude measurement error, orbit measurement error and camera distortion. Secondly, we construct an on-orbit geometric calibration model by selecting and optimizing parameters of the rigorous geometric imaging model. On this basis, the calibration parameters are divided into two groups: external and internal calibration parameters. The external parameters are installation angles between the area-array camera and the star tracker, and we propose a two-dimensional direction angle model as internal parameters to describe the distortion of the areaarray camera. Thirdly, we propose a stepwise parameters estimation method that external parameters are estimated firstly, then internal parameters are estimated based on the generalized camera frame determined by external parameters. Experiments based on the real data of GF-4 shows that after on-orbit geometric calibration, the geometric accuracy of the images without ground control points is significantly improved.

  9. tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine

    2006-10-01

    New version program summaryTitle of program: tweezercalib Catalogue identifier:ADTV_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:no No. of lines in distributed program, including test data, etc.: 134 188 No. of bytes in distributed program, including test data, etc.: 1 050 368 Distribution format: tar.gz Programming language: MatLab (Mathworks Inc.), standard license Computer:General computer running MatLab (Mathworks Inc.) Operating system:Windows2000, Windows-XP, Linux RAM:Of order four times the size of the data file Classification:3, 4.14, 18, 23 Catalogue identifier of previous version: ADTV_v2_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 518 Does the new version supersede the previous version?: yes Nature of problem:Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. The theoretical underpinnings of the procedure may be found in Ref. [3]. Solution method:Elimination of cross-talk between quadrant photo-diodes, output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects; Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting with custom written

  10. The progress in optic nerve regeneration, where are we?

    PubMed Central

    Shum, Jennifer Wei Huen; Liu, Kai; So, Kwok-fai

    2016-01-01

    Optic nerve regeneration is an important area of research. It can be used to treat patients suffering from optic neuropathy and provides insights into the treatment of numerous neurodegenerative diseases. There are many hurdles impeding optic regeneration in mammals. The mammalian central nervous system is non-permissive to regeneration and intrinsically lacks the capacity for axonal regrowth. Any axonal injury also triggers a vicious cycle of apoptosis. Understanding these hurdles provides us with a rough framework to appreciate the essential steps to bring about optic nerve regeneration: enhancing neuronal survival, axon regeneration, remyelination and establishing functional synapses to the original neuronal targets. In this review article, we will go through current potential treatments for optic nerve regeneration, which includes neurotrophic factor provision, inflammatory stimulation, growth inhibition suppression, intracellular signaling modification and modeling of bridging substrates. PMID:26981073

  11. Calibration of Optical Back Scatterance for Suspended Sediment Concentration With San Francisco Bay Sediment

    NASA Astrophysics Data System (ADS)

    Keller, B.

    2005-12-01

    Optical back scatterance (OBS) is used by USGS to indirectly quantify suspended sediment concentration in the waters of San Francisco Bay. The use of one of the types of OBS instruments that is used in the Bay was evaluated for quantification of discharge water from sand yards, where dredged bay floor sand is brought on land for commercial purposes. The instrument response was calibrated with synthetic samples prepared from settled, previously suspended fine sediment, collected on various dates and derived from the same general area of central San Francisco Bay. The sediment samples were washed with fresh water, oven dried, sieved, and mixed into water in a test chamber. The responses of various sediment samples were compared with that of silica flour, a commercially available industrial material with similar particle size and density, that is white in color. Multiple tests with sediment samples from individual dates yielded extremely repeatable, almost linear instrument responses as a function of varying concentration. Sediment samples from different dates yielded varying responses, ranging from 2.0 to 2.8 times the response of silica flour. This response difference, a factor of approximately 1.4, is interpreted to be due to small differences in the darkness ("color") of the sediment samples. In a comparison with an EPA test method that uses filtration and weighing, performed at commercial laboratories, the "total suspended solids" (TSS, used synonymously with the term "suspended sediment concentration") analyses of the mixed synthetic sample waters yielded very poor results. Saline water samples were often associated with TSS test results that were higher than the known synthetic sample concentrations, indicating that the lab tests were often measuring dissolved salt rather than suspended sediment.

  12. Calibrating Ultracool Dwarfs: Optical Template Spectra, Bolometric Corrections, and χ Values

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah J.; West, Andrew A.; Bochanski, John J.; Hawley, Suzanne L.; Kielty, Collin

    2014-07-01

    We present optical template spectra, bolometric corrections, and χ values for ultracool dwarfs. The templates are based on spectra from the Sloan Digital Sky Survey (SDSS) and the Astrophysical Research Consortium 3.5 m telescope. The spectral features and overall shape of the L dwarf templates are consistent with previous spectroscopic standards and the templates have a radial velocity precision of ~10-20 km s-1. We calculate bolometric fluxes (accurate to 10-20%) for 101 late-M and L dwarfs from SDSS, 2MASS, and WISE photometry, SDSS spectra, and BT-Settl model spectra. We find that the z-band and J-band bolometric corrections for late-M and L dwarfs have a strong correlation with z-J and J-KS colors, respectively. The new χ values, which can be used to convert Hα equivalent widths to activity strength, are based on spectrophotometrically calibrated SDSS spectra and the new bolometric fluxes. While the measured χ values have typical uncertainties of ~20%, ultracool dwarf models show the continuum surrounding Hα can vary by up to an order of magnitude with changing surface gravity. Our semiempirical χ values are one to two orders of magnitude larger than previous χ values for mid-to-late L dwarfs, indicating that the upper limits for Hα activity strength on the coolest L dwarfs have been underestimated. This publication is partially based on observations obtained with the Apache Point Observatory 3.5 meter telescope, which is owned and operated by the Astrophysical Research Consortium.

  13. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum.

    PubMed

    Brainard, M S; Knudsen, E I

    1998-05-15

    Previous studies have identified sensitive periods for the developing barn owl during which visual experience has a powerful influence on the calibration of sound localization behavior. Here we investigated neural correlates of these sensitive periods by assessing developmental changes in the capacity of visual experience to alter the map of auditory space in the optic tectum of the barn owl. We used two manipulations. (1) We equipped owls with prismatic spectacles that optically displaced the visual field by 23 degrees to the left or right, and (2) we restored normal vision to prism-reared owls that had been raised wearing prisms. In agreement with previous behavioral experiments, we found that the capacity of abnormal visual experience to shift the tectal auditory space map was restricted to an early sensitive period. However, this period extended until later in life (approximately 200 d) than described previously in behavioral studies (approximately 70 d). Furthermore, unlike the previous behavioral studies that found that the capacity to recover normal sound localization after restoration of normal vision was lost at approximately 200 d of age, we found that the capacity to recover a normal auditory space map was never lost. Finally, we were able to reconcile the behaviorally and neurophysiologically defined sensitive periods by taking into account differences in the richness of the environment in the two sets of experiments. We repeated the behavioral experiments and found that when owls were housed in a rich environment, the capacity to adjust sound localization away from normal extended to later in life, whereas the capacity to recover to normal was never lost. Conversely, when owls were housed in an impoverished environment, the capacity to recover a normal auditory space map was restricted to a period ending at approximately 200 d of age. The results demonstrate that the timing and even the existence of sensitive periods for plasticity of a neural circuit

  14. Flexible geometrical calibration for fringe-reflection optical three-dimensional shape measurement.

    PubMed

    Yuan, Ting; Zhang, Feng; Tao, Xiaoping; Zhang, Xuejun; Zhou, Run

    2015-11-01

    Accurate geometrical calibration is the basis of a fringe-reflection testing system, especially the calibration of reflection ray directions. However, such a calibration procedure is challenging because of two reasons: first of all, the common method of reflection ray directions calibration, which is based on the pinhole camera imaging model, fails in the presence of the pupil imaging aberration. What's more, although using a camera lens with an external stop in front can remove the pupil imaging aberration, it is difficult to achieve the exact geometrical measurement of the camera pinhole and the calibration of the reflection ray directions into the camera because of the low signal-to-noise ratio of images. In this paper, we introduce a new calibration method by finding the points on the liquid crystal display in front of the camera with different positions corresponding to the same camera pixels through correspondence matching. The calibration process and the results from the experiments on fringe-reflection testing demonstrate that the calibration method presented in this paper is simple, practical, and flexible. PMID:26560561

  15. Commercialization and Standardization Progress Towards an Optical Communications Earth Relay

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard L.; Israel, David J.

    2015-01-01

    NASA is planning to launch the next generation of a space based Earth relay in 2025 to join the current Space Network, consisting of Tracking and Data Relay Satellites in space and the corresponding infrastructure on Earth. While the requirements and architecture for that relay satellite are unknown at this time, NASA is investing in communications technologies that could be deployed to provide new communications services. One of those new technologies is optical communications. The Laser Communications Relay Demonstration (LCRD) project, scheduled for launch in 2018 as a hosted payload on a commercial communications satellite, is a critical pathfinder towards NASA providing optical communications services on the next generation space based relay. This paper will describe NASA efforts in the on-going commercialization of optical communications and the development of inter-operability standards. Both are seen as critical to making optical communications a reality on future NASA science and exploration missions. Commercialization is important because NASA would like to eventually be able to simply purchase an entire optical communications terminal from a commercial provider. Inter-operability standards are needed to ensure that optical communications terminals developed by one vendor are compatible with the terminals of another. International standards in optical communications would also allow the space missions of one nation to use the infrastructure of another.

  16. Development of a High-Pressure Gaseous Burner for Calibrating Optical Diagnostic Techniques

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    In this work-in-progress report, we show the development of a unique high-pressure burner facility (up to 60 atm) that provides steady, reproducible premixed flames with high precision, while having the capability to use multiple fuel/oxidizer combinations. The highpressure facility has four optical access ports for applying different laser diagnostic techniques and will provide a standard reference flame for the development of a spectroscopic database in high-pressure/temperature conditions. Spontaneous Raman scattering (SRS) was the first diagnostic applied, and was used to successfully probe premixed hydrogen-air flames generated in the facility using a novel multi-jet micro-premixed array burner element. The SRS spectral data include contributions from H2, N2, O2, and H2O and were collected over a wide range of equivalence ratios ranging from 0.16 to 4.9 at an initial pressure of 10-atm via a spatially resolved point SRS measurement with a high-performance optical system. Temperatures in fuel-lean to stoichiometric conditions were determined from the ratio of the Stokes to anti-Stokes scattering of the Q-branch of N2, and those in fuel-rich conditions via the rotational temperature of H2. The SRS derived temperatures using both techniques were consistent and indicated that the flame temperature was approximately 500 K below that predicted by adiabatic equilibrium, indicating a large amount of heat-loss at the measurement zone. The integrated vibrational SRS signals show that SRS provides quantitative number density data in high-pressure H2-air flames.

  17. Open loop liquid crystal adaptive optics systems: progresses and results

    NASA Astrophysics Data System (ADS)

    Cao, Zhao-liang; Mu, Quan-quan; Xu, Huan-yu; Zhang, Pei-guang; Yao, Li-shuang; Xuan, Li

    2015-10-01

    Liquid crystal wavefront corrector (LCWFC) is one of the most attractive wavefront correction devices for adaptive optics system. The main disadvantages for conventional nematic LCWFC are polarization dependence and narrow working waveband. In this paper, a polarized beam splitter (PBS) based open loop optical design and an optimized energy splitting method was used to overcome these problems respectively. The results indicate that the open loop configuration was suitable for LCWFC and the novel energy splitting method can significantly improve the detection capability of the liquid crystal adaptive optics system.

  18. The influence of temperature calibration on the OC-EC results from a dual-optics thermal carbon analyzer

    NASA Astrophysics Data System (ADS)

    Pavlovic, J.; Kinsey, J. S.; Hays, M. D.

    2014-09-01

    Thermal-optical analysis (TOA) is a widely used technique that fractionates carbonaceous aerosol particles into organic and elemental carbon (OC and EC), or carbonate. Thermal sub-fractions of evolved OC and EC are also used for source identification and apportionment; thus, oven temperature accuracy during TOA analysis is essential. Evidence now indicates that the "actual" sample (filter) temperature and the temperature measured by the built-in oven thermocouple (or set-point temperature) can differ by as much as 50 °C. This difference can affect the OC-EC split point selection and consequently the OC and EC fraction and sub-fraction concentrations being reported, depending on the sample composition and in-use TOA method and instrument. The present study systematically investigates the influence of an oven temperature calibration procedure for TOA. A dual-optical carbon analyzer that simultaneously measures transmission and reflectance (TOT and TOR) is used, functioning under the conditions of both the National Institute of Occupational Safety and Health Method 5040 (NIOSH) and Interagency Monitoring of Protected Visual Environment (IMPROVE) protocols. The application of the oven calibration procedure to our dual-optics instrument significantly changed NIOSH 5040 carbon fractions (OC and EC) and the IMPROVE OC fraction. In addition, the well-known OC-EC split difference between NIOSH and IMPROVE methods is even further perturbed following the instrument calibration. Further study is needed to determine if the widespread application of this oven temperature calibration procedure will indeed improve accuracy and our ability to compare among carbonaceous aerosol studies that use TOA.

  19. Design and calibration of a digital Fourier holographic microscope for particle sizing via goniometry and optical scatter imaging in transmission.

    PubMed

    Rossi, Vincent M; Jacques, Steven L

    2016-06-13

    Goniometry and optical scatter imaging have been used for optical determination of particle size based upon optical scattering. Polystyrene microspheres in suspension serve as a standard for system validation purposes. The design and calibration of a digital Fourier holographic microscope (DFHM) are reported. Of crucial importance is the appropriate scaling of scattering angle space in the conjugate Fourier plane. A detailed description of this calibration process is described. Spatial filtering of the acquired digital hologram to use photons scattered within a restricted angular range produces an image. A pair of images, one using photons narrowly scattered within 8 - 15° (LNA), and one using photons broadly scattered within 8 - 39° (HNA), are produced. An image based on the ratio of these two images, OSIR = HNA/LNA, following Boustany et al. (2002), yields a 2D Optical Scatter Image (OSI) whose contrast is based on the angular dependence of photon scattering and is sensitive to the microsphere size, especially in the 0.5-1.0µm range. Goniometric results are also given for polystyrene microspheres in suspension as additional proof of principle for particle sizing via the DFHM. PMID:27410298

  20. Heterodyne and coherent optical fiber communications - Recent progress

    NASA Astrophysics Data System (ADS)

    Okoshi, T.

    1982-08-01

    It is pointed out that the present optical fiber communications are in a sense as primitive as the radio communications prior to 1930. The modulation/demodulation scheme being employed in the present standard optical fiber communications is often called the intensity-modulation/direct-detection (IM/DD) scheme. According to this scheme, no attention is paid to the phase of the carrier. On the other hand, in the history of radio communications, the heterodyne scheme became common since 1930, and coherent modulations such as FM, PM, FSK, and PSK are currently widely used. The question arises whether a similar development might occur in optical communications. The IM/DD system has a great advantage in system simplicity and low cost. However, for certain applications a heterodyne/coherent system would provide distinct improvements. An investigation indicates that, despite technical difficulties, and heterodyne/coherent system is a promising and interesting technical target.

  1. Progress with MEMS x-ray micro pore optics

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Horade, Mitsuhiro; Sugiyama, Susumu; Riveros, Raul E.; Yamaguchi, Hitomi; Kanamori, Yoshiaki; Morishita, Kohei; Nakajima, Kazuo; Maeda, Ryutaro

    2012-09-01

    Our development of ultra light-weight X-ray micro pore optics based on MEMS (Micro Electro Mechanical System) technologies is described. Using dry etching or X-ray lithography and electroplating, curvilinear sidewalls through a flat wafer are fabricated. Sidewalls vertical to the wafer surface are smoothed by use of high temperature annealing and/or magnetic field assisted finishing to work as X-ray mirrors. The wafer is then deformed to a spherical shape. When two spherical wafers with different radii of curvature are stacked, the combined system will be an approximated Wolter type-I telescope. This method in principle allows high angular resolution and ultra light-weight X-ray micro pore optics. In this paper, performance of a single-stage optic, coating of a heavy metal on sidewalls with atomic layer deposition, and assembly of a Wolter type-I telescope are reported.

  2. Progress with collision optics of the Fermilab Tevatron collider

    SciTech Connect

    Valishev, A.; Alexahin, Y.; Annala, J.; Lebedev, V.; Nagaslaev, V.; Sajaev, V.; /Argonne

    2006-06-01

    Recent advances in the measurement and modeling of the machine parameters and lattice functions at the Tevatron allowed modifications of the collision optics to be performed in order to increase the collider luminosity. As the result, beta functions in the two collision points were decreased from 35cm to 29cm which resulted in {approx}10% increase of the peak luminosity. In this report we describe the results of optics measurements and corrections. We also discuss planned improvements, including the new betatron tune working point and correction of the beta function chromaticity.

  3. Progress Towards a Compact Optical Clock at JPL

    NASA Astrophysics Data System (ADS)

    Sullivan, Scott; Rellergert, Wade; Grudinin, Ivan; Baumgartel, Lukas; Yu, Nan

    2014-05-01

    The unprecedented stability and accuracy provided by optical clocks allows improved navigation and planetary science in space applications as well as more precise tests of fundamental laws of physics. However, technological advances towards the miniaturization of the physical volume and reduced power consumption of these clocks must be made to suit space-based application. We will describe JPL's effort towards the development of a compact, low-power optical clock based on 171Yb+. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Partial support from NASA Fundamental Physics Program is acknowledged.

  4. Egs Exploration Methodology Development Using the Dixie Valley Geothermal Wellfield as a Calibration Site, a Progress Report

    NASA Astrophysics Data System (ADS)

    Iovenitti, J. L.; Blackwell, D. D.; Sainsbury, J.; Tibuleac, I. M.; Waibel, A.; Cladouhos, T. T.; Karlin, R. E.; Kennedy, B. M.; Isaaks, E.; Wannamaker, P. E.; Clyne, M.; Callahan, O.

    2011-12-01

    An Engineered Geothermal System (EGS) exploration methodology is being developed using the Dixie Valley geothermal system in Nevada as a field laboratory. This area was chosen as the test site because its has an extensive public domain database and deep geothermal wells allowing for calibration of the developed methodology. The calibration effort is focused on the Dixie Valley Geothermal Wellfield (DVGW), an area with 30 geothermal wells. Calibration will be based on cross-correlation of qualitative and quantitative results with known well conditions. This project is structured in the following manner (Task 1) review and assess existing public domain and other available data (baseline data); (Task 2) develop and populate a GIS-database; (Task 3) develop a baseline (existing public domain data) geothermal conceptual model, evaluate the geostatistical relationships between the various data sets, and generate a Baseline EGS favorability map from the surface to a 5-km depth focused on identifying EGS drilling targets; (Task 4) collect new gravity, seismic, magneto-tellurics (MT), geologic, and geochemical data to fill in data gaps and improve model resolution; and (Task 5) update the GIS-database for the newly acquired data and repeating the elements of Task 3 incorporating the baseline and new data to generate an Enhanced EGS Favorability Map. Innovative aspects of this project include: (1) developing interdisciplinary method(s) for synthesizing, integrating, and evaluating geoscience data both qualitatively and quantitatively; (2) demonstrating new seismic techniques based on ambient noise which is a passive survey not requiring local earthquakes and is a relatively inexpensive method to image seismic velocity, attenuation, and density; (3) determining if seismic data can infer temperature and lithology at depth; (4) extending 2D MT modeling/mapping to 3D MT; (5) generating a MT derived temperature map; and (6) jointly analyzing gravity, magnetic, seismic, and MT

  5. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  6. Histologically benign, clinically aggressive: Progressive non-optic pathway pilocytic astrocytomas in adults with NF1.

    PubMed

    Strowd, Roy E; Rodriguez, Fausto J; McLendon, Roger E; Vredenburgh, James J; Chance, Aaron B; Jallo, George; Olivi, Alessandro; Ahn, Edward S; Blakeley, Jaishri O

    2016-06-01

    Although optic pathway gliomas are the most common brain tumors associated with neurofibromatosis type 1 (NF1), extra-optic gliomas occur and may behave more aggressively with outcomes that differ by age. A retrospective case-control study was designed to describe the clinical course of adult NF1 patients with progressive extra-optic pilocytic astrocytomas (PAs) and compare to a pediatric cohort. Data for patients treated at the Johns Hopkins Comprehensive Neurofibromatosis Center from 2003 to 2013 were reviewed to identify cases (adults, age >18) and controls (pediatric, age <18) with clinically or radiographically progressive extra-optic PAs. Demographic, clinical, histologic, and radiographic data were collected. Three adult NF1 cases and four pediatric NF1 controls were identified. Mean age was 32.3 ± 9.5 years, 66% male (cases); 12.8 ± 4.2 years, 100% male (controls). Symptomatic progression occurred in two-of-three adults (67%) while the majority of pediatric patients presented with isolated radiographic progression (n = 3, 75%). Onset tended to be more rapid in adults (4 ± 1 vs. 14 ± 8.3 months, P = 0.10). Subtotal resection was the treatment for all pediatric patients. Radiotherapy (n = 2), chemotherapy (n = 2), and targeted, biologic agents (n = 2) were administered in adults. Although all pediatric patients are living, outcomes were universally poor in adults with progression to death in all (median survival 17.1 months, range 6.6-30.3). In conclusion, despite grade I histology, all three adult NF1 patients with progressive extra-optic PAs suffered an aggressive clinical course which was not seen in pediatric patients. Clinicians should be aware of this clinico-histologic discrepancy when counseling and managing adult NF1 patients with progressive extra-optic PAs. © 2016 Wiley Periodicals, Inc. PMID:26992069

  7. Histologically Benign, Clinically Aggressive: Progressive Non-Optic Pathway Pilocytic Astrocytomas in Adults with NF1

    PubMed Central

    Strowd, Roy E.; Rodriguez, Fausto J.; McLendon, Roger E.; Vredenburgh, James J.; Chance, Aaron B.; Jallo, George; Olivi, Alessandro; Ahn, Edward S.; Blakeley, Jaishri O.

    2016-01-01

    Although optic pathway gliomas are the most common brain tumors associated with neurofibromatosis type 1 (NF1), extra-optic gliomas occur and may behave more aggressively with outcomes that differ by age. A retrospective case-control study was designed to describe the clinical course of adult NF1 patients with progressive extra-optic pilocytic astrocytomas (PAs) and compare to a pediatric cohort. Data for patients treated at the Johns Hopkins Comprehensive Neurofibromatosis Center from 2003 to 2013 were reviewed to identify cases (adults, age >18) and controls (pediatric, age <18) with clinically or radiographically progressive extra-optic PAs. Demographic, clinical, histologic, and radiographic data were collected. Three adult NF1 cases and four pediatric NF1 controls were identified. Mean age was 32.3 ± 9.5 years, 66% male (cases); 12.8±4.2 years, 100% male (controls). Symptomatic progression occurred in two-of-three adults (67%) while the majority of pediatric patients presented with isolated radiographic progression (n=3, 75%). Onset tended to be more rapid in adults (4±1 vs. 14±8.3 months, P=0.10). Subtotal resection was the treatment for all pediatric patients. Radiotherapy (n=2), chemotherapy (n=2), and targeted, biologic agents (n=2) were administered in adults. Although all pediatric patients are living, outcomes were universally poor in adults with progression to death in all (median survival 17.1 months, range 6.6–30.3). In conclusion, despite grade I histology, all three adult NF1 patients with progressive extra-optic PAs suffered an aggressive clinical course which was not seen in pediatric patients. Clinicians should be aware of this clinico-histologic discrepancy when counseling and managing adult NF1 patients with progressive extra-optic PAs. PMID:26992069

  8. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    SciTech Connect

    Quinlan, F.; Diddams, S. A.; Ycas, G.; Osterman, S.

    2010-06-15

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. The comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.

  9. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration.

    PubMed

    Quinlan, F; Ycas, G; Osterman, S; Diddams, S A

    2010-06-01

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is approximately 350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR. PMID:20590223

  10. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    NASA Astrophysics Data System (ADS)

    Quinlan, F.; Ycas, G.; Osterman, S.; Diddams, S. A.

    2010-06-01

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is ~350 kHz at 1550 nm. The comb frequency uncertainty is bounded by +/-30 kHz (corresponding to a radial velocity of +/-5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.