Science.gov

Sample records for optical cluster detections

  1. Optical Cluster Detection in the Post-SDSS Era

    NASA Astrophysics Data System (ADS)

    Koester, Benjamin

    2011-01-01

    Near the conclusion of the first Sloan Digital Sky Survey, the development of optical cluster detection algorithms, quantification of their selection functions, and mass and redshift calibration hit full swing. Catalogs typically include thousands of massive (>1x1014 Msun) clusters reaching z 0.5, with selection functions that are routinely calibrated with realistic mock galaxy simulations, and cluster mass proxies that are cross-calibrated against X-ray, weak-lensing, dynamical, and SZ observations. All of this is folded into analyses that offer cosmological constraints competitive with catalogs created at other wavelengths. In this talk, these developments are reviewed from the perspective of the MaxBCG cluster catalog. The lessons learned from optical cluster-finding efforts are then turned to the next generation of optical/NIR surveys soon to come online, using the Dark Energy Survey (DES) as an example. In DES, this past experience guides the coordination of vast resources that will culminate in well-understood cluster catalogs specifically tailored to cosmological applications reaching z 1.

  2. Optical galaxy cluster detection across a wide redshift range

    SciTech Connect

    Hao, Jiangang

    2009-04-01

    The past decade is one of the most exciting period in the history of physics and astronomy. The discovery of cosmic acceleration dramatically changed our understanding about the evolution and constituents of the Universe. To accommodate the new acceleration phase into our well established Big Bang cosmological scenario under the frame work of General Relativity, there must exist a very special substance that has negative pressure and make up about 73% of the total energy density in our Universe. It is called Dark Energy. For the first time people realized that the vast majority of our Universe is made of things that are totally different from the things we are made of. Therefore, one of the major endeavors in physics and astronomy in the coming years is trying to understand, if we can, the nature of dark energy. Understanding dark energy cannot be achieved from pure logic. We need empirical evidence to finally determine about what is dark energy. The better we can constrain the energy density and evolution of the dark energy, the closer we will get to the answer. There are many ways to constrain the energy density and evolution of dark energy, each of which leads to degeneracy in certain directions in the parameter space. Therefore, a combination of complimentary methods will help to reduce the degeneracies and give tighter constraints. Dark energy became dominate over matter in the Universe only very recently (at about z ~ 1.5) and will affect both the cosmological geometry and large scale structure formation. Among the various experiments, some of them constrain the dark energy mainly via geometry (such as CMB, Supernovae) while some others provides constraints from both structures and geometry (such as BAO, Galaxy Clusters) Galaxy clusters can be used as a sensitive probe for cosmology. A large cluster catalog that extends to high redshift with well measured masses is indispensable for precisely constraining cosmological parameters. Detecting clusters in optical

  3. Optical protein detection based on magnetic clusters rotation.

    PubMed

    Ramiandrisoa, Donatien; Brient-Litzler, Elodie; Daynes, Aurélien; Compain, Eric; Bibette, Jérôme; Baudry, Jean

    2015-09-25

    In this paper we present a simple method to quantify aggregates of 200nm magnetic particles. This method relies on the optical and magnetic anisotropy of particle aggregates, whereas dispersed particles are optically isotropic. We orientate aggregates by applying short pulses of a magnetic field, and we measure optical density variation directly linked to this reorientation. By computing the scattering efficiency of doublets and singlets, we demonstrate the absolute quantification of a few % of doublets in a well dispersed suspension. More generally, these optical variations are related to the aggregation state of the sample. This method can be easily applied to an agglutination assay, where target proteins induce aggregation of colloidal particles. By observing only aligned clusters, we increase sensitivity and we reduce the background noise as compared to a classical agglutination assay: we obtain a detection limit on the C-reactive protein of less than 3pM for a total assay time of 10min. PMID:25849116

  4. The Morphology and Characteristics of the Planck ESZ Detected Clusters of Galaxies Compared to X-ray and Optically Selected Cluster Samples

    NASA Astrophysics Data System (ADS)

    Jones, Christine; Forman, William R.; Andrade-Santos, Felipe; Murray, Stephen S.; Churazov, Eugene; Chandra-Planck XVP Cluster Consortium

    2015-01-01

    We examine samples of galaxy clusters selected through their SZ decrements, through the presence of a hot intracluster medium or by their galaxy overdensities to determine the impact of biases in cluster selection. In particular, for each cluster sample, we use X-ray observations to determine cluster morphologies and we use X-ray luminosities as a mass proxy. For each cluster sample, we determine the fractions of merging and regular clusters, as well as the number of cool core clusters and the number of clusters with cavities in their X-ray gas, likely produced by AGN outbursts. For the SZ cluster sample, we use Chandra observations of 169 Planck detected ESZ clusters with redshifts < 0.35. We compare the fractions of merging, regular and cool core clusters found in the Planck ESZ sample with the populations of these clusters in the X-ray selected HIFLUGCS and B55 cluster catalogs and in the optically selected Abell clusters. We do not find significant differences in the percentages of merging and regular clusters based on the different selection methods. However we do find a higher fraction of cool core clusters, and thus a higher fraction of clusters with X-ray cavities, in the X-ray selected cluster samples compared to the Planck SZ selected cluster sample. Since the X-ray emission in cool core clusters is centrally peaked, a higher fraction of these clusters is to be expected in X-ray-selected samples. This work was supported in part by a Chandra Observatory grant and by the Smithsonian Astrophysical Observatory.

  5. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters.

    PubMed

    Chistiakova, M V; Armani, A M

    2014-10-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. PMID:25189292

  6. Detecting alternative graph clusterings.

    PubMed

    Mandala, Supreet; Kumara, Soundar; Yao, Tao

    2012-07-01

    The problem of graph clustering or community detection has enjoyed a lot of attention in complex networks literature. A quality function, modularity, quantifies the strength of clustering and on maximization yields sensible partitions. However, in most real world networks, there are an exponentially large number of near-optimal partitions with some being very different from each other. Therefore, picking an optimal clustering among the alternatives does not provide complete information about network topology. To tackle this problem, we propose a graph perturbation scheme which can be used to identify an ensemble of near-optimal and diverse clusterings. We establish analytical properties of modularity function under the perturbation which ensures diversity. Our approach is algorithm independent and therefore can leverage any of the existing modularity maximizing algorithms. We numerically show that our methodology can systematically identify very different partitions on several existing data sets. The knowledge of diverse partitions sheds more light into the topological organization and helps gain a more complete understanding of the underlying complex network. PMID:23005495

  7. Detecting alternative graph clusterings

    NASA Astrophysics Data System (ADS)

    Mandala, Supreet; Kumara, Soundar; Yao, Tao

    2012-07-01

    The problem of graph clustering or community detection has enjoyed a lot of attention in complex networks literature. A quality function, modularity, quantifies the strength of clustering and on maximization yields sensible partitions. However, in most real world networks, there are an exponentially large number of near-optimal partitions with some being very different from each other. Therefore, picking an optimal clustering among the alternatives does not provide complete information about network topology. To tackle this problem, we propose a graph perturbation scheme which can be used to identify an ensemble of near-optimal and diverse clusterings. We establish analytical properties of modularity function under the perturbation which ensures diversity. Our approach is algorithm independent and therefore can leverage any of the existing modularity maximizing algorithms. We numerically show that our methodology can systematically identify very different partitions on several existing data sets. The knowledge of diverse partitions sheds more light into the topological organization and helps gain a more complete understanding of the underlying complex network.

  8. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  9. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  10. Possible Very Distant or Optically Dark Cluster of Galaxies

    NASA Technical Reports Server (NTRS)

    Vikhlinin, Alexey; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    The goal of this proposal was an XMM followup observation of the extended X-ray source detected in our ROSAT PSPC cluster survey. Approximately 95% of extended X-ray sources found in the ROSAT data were optically identified as clusters of galaxies. However, we failed to find any optical counterparts for C10952-0148. Two possibilities remained prior to the XMM observation: (1) This is was a very distant or optically dark cluster of galaxies, too faint in the optical, in which case XMM would easily detect extended X-ray emission and (2) this was a group of point-like sources, blurred to a single extended source in the ROSAT data, but easily resolvable by XMM due to a better energy resolution. The XMM data have settled the case --- C10952-0148 is a group of 7 relatively bright point sources located within 1 square arcmin. All but one source have no optical counterparts down to I=22. Potentially, this can be an interesting group of quasars at a high redshift. We are planning further optical and infrared followup of this system.

  11. HIV detection by optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Doria, M.; Medina, Honorio

    2001-10-01

    Reliable and economical Human Immnodeficiency Virus (HIV) testing was achieved by optical absorption spectroscopy of the core of the hair in the range of 400 nm to 800 nm. In HIV+ patients, extra optical active material is deposited in the core and optical absorption spectra, recorded in polarized radiation reveal special features, which can be used for guidance, detection, monitoring and control.

  12. Optical Detection of Tunneling Ionization

    SciTech Connect

    Verhoef, Aart J.; Mitrofanov, Alexander V.; Kartashov, Daniil V.; Baltuska, Andrius

    2010-04-23

    We have experimentally detected optical harmonics that are generated due to a tunneling-ionization-induced modulation of the electron density. The optical signature of electron tunneling can be isolated from concomitant optical responses by using a noncollinear pump-probe setup. Whereas previously demonstrated tools for attosecond metrology of gases, plasmas, and surfaces rely on direct detection of charged particles, detection of the background-free time-resolved optical signal, which uniquely originates from electron tunneling, offers an interesting alternative that is especially suited for systems in which free electrons cannot be directly measured.

  13. Optical inverse-Compton emission from clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Loeb, Abraham

    2015-10-01

    Shocks around clusters of galaxies accelerate electrons which upscatter the cosmic microwave background photons to higher energies. We use an analytical model to calculate this inverse-Compton (IC) emission, taking into account the effects of additional energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32-34 mag arcsec-2, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.

  14. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Erben, T.; Lamer, G.; Schneider, P.; Schwope, A.; Hartlap, J.; Maturi, M.

    2007-08-01

    The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters. Most of these cluster candidates were not previously known. The present catalog will be a solid foundation for studying possible selection effects in either method. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 170.A-0789, 70.A-0529, 71.A-0110, 072.A-0061, 073.A-0050. The cluster catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg/cgi-bin/qcat?J/A+A/470/821

  15. A Bayesian model for cluster detection.

    PubMed

    Wakefield, Jonathan; Kim, Albert

    2013-09-01

    The detection of areas in which the risk of a particular disease is significantly elevated, leading to an excess of cases, is an important enterprise in spatial epidemiology. Various frequentist approaches have been suggested for the detection of "clusters" within a hypothesis testing framework. Unfortunately, these suffer from a number of drawbacks including the difficulty in specifying a p-value threshold at which to call significance, the inherent multiplicity problem, and the possibility of multiple clusters. In this paper, we suggest a Bayesian approach to detecting "areas of clustering" in which the study region is partitioned into, possibly multiple, "zones" within which the risk is either at a null, or non-null, level. Computation is carried out using Markov chain Monte Carlo, tuned to the model that we develop. The method is applied to leukemia data in upstate New York. PMID:23476026

  16. Hanle Detection for Optical Clocks

    PubMed Central

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  17. Hanle detection for optical clocks.

    PubMed

    Zhang, Xiaogang; Zhang, Shengnan; Pan, Duo; Chen, Peipei; Xue, Xiaobo; Zhuang, Wei; Chen, Jingbiao

    2015-01-01

    Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard. PMID:25734183

  18. The Detection of Clusters with Spatial Heterogeneity

    ERIC Educational Resources Information Center

    Zhang, Zuoyi

    2011-01-01

    This thesis consists of two parts. In Chapter 2, we focus on the spatial scan statistics with overdispersion and Chapter 3 is devoted to the randomized permutation test for identifying local patterns of spatial association. The spatial scan statistic has been widely used in spatial disease surveillance and spatial cluster detection. To apply it, a…

  19. TEST TO DETECT CLUSTERS OF DISEASE

    EPA Science Inventory

    A test is given to detect clustering in disease incidence or mortality data. he test statistic is the mean distance between all pairs of disease cases. ts null mean and variance and its asymptotic normality are derived under assumptions that accommodate differences in population ...

  20. Advances in Significance Testing for Cluster Detection

    NASA Astrophysics Data System (ADS)

    Coleman, Deidra Andrea

    Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic

  1. Schlieren optics for leak detection

    NASA Technical Reports Server (NTRS)

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  2. Detecting complex network modularity by dynamical clustering

    NASA Astrophysics Data System (ADS)

    Boccaletti, S.; Ivanchenko, M.; Latora, V.; Pluchino, A.; Rapisarda, A.

    2007-04-01

    Based on cluster desynchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN) on a generic graph with N nodes and K links.

  3. Optically detected magnetic resonance imaging

    SciTech Connect

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  4. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  5. The XMM Cluster Survey: optical analysis methodology and the first data release

    NASA Astrophysics Data System (ADS)

    Mehrtens, Nicola; Romer, A. Kathy; Hilton, Matt; Lloyd-Davies, E. J.; Miller, Christopher J.; Stanford, S. A.; Hosmer, Mark; Hoyle, Ben; Collins, Chris A.; Liddle, Andrew R.; Viana, Pedro T. P.; Nichol, Robert C.; Stott, John P.; Dubois, E. Naomi; Kay, Scott T.; Sahlén, Martin; Young, Owain; Short, C. J.; Christodoulou, L.; Watson, William A.; Davidson, Michael; Harrison, Craig D.; Baruah, Leon; Smith, Mathew; Burke, Claire; Mayers, Julian A.; Deadman, Paul-James; Rooney, Philip J.; Edmondson, Edward M.; West, Michael; Campbell, Heather C.; Edge, Alastair C.; Mann, Robert G.; Sabirli, Kivanc; Wake, David; Benoist, Christophe; da Costa, Luiz; Maia, Marcio A. G.; Ogando, Ricardo

    2012-06-01

    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we present the first data release from the XMM Cluster Survey (XCS-DR1). This consists of 503 optically confirmed, serendipitously detected, X-ray clusters. Of these clusters, 256 are new to the literature and 357 are new X-ray discoveries. We present 463 clusters with a redshift estimate (0.06 < z < 1.46), including 261 clusters with spectroscopic redshifts. The remainder have photometric redshifts. In addition, we have measured X-ray temperatures (TX) for 401 clusters (0.4 < TX < 14.7 keV). We highlight seven interesting subsamples of XCS-DR1 clusters: (i) 10 clusters at high redshift (z > 1.0, including a new spectroscopically confirmed cluster at z= 1.01); (ii) 66 clusters with high TX (>5 keV) (iii) 130 clusters/groups with low TX (<2 keV) (iv) 27 clusters with measured TX values in the Sloan Digital Sky Survey (SDSS) ‘Stripe 82’ co-add region; (v) 77 clusters with measured TX values in the Dark Energy Survey region; (vi) 40 clusters detected with sufficient counts to permit mass measurements (under the assumption of hydrostatic equilibrium); (vii) 104 clusters that can be used for applications such as the derivation of cosmological parameters and the measurement of cluster scaling relations. The X-ray analysis methodology used to construct and analyse the XCS-DR1 cluster sample has been presented in a companion paper, Lloyd-Davies et al.

  6. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  7. A Test for Cluster Bias: Detecting Violations of Measurement Invariance across Clusters in Multilevel Data

    ERIC Educational Resources Information Center

    Jak, Suzanne; Oort, Frans J.; Dolan, Conor V.

    2013-01-01

    We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…

  8. The optical detection unit for Baikal-GVD neutrino telescope

    NASA Astrophysics Data System (ADS)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannash, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Konstantinov, E. N.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Ljashuk, V. I.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Perevalov, A. A.; Pliskovsky, E. N.; Rozanov, M. I.; Rubtzov, V. Yu.; Rjabov, E. V.; Shaybonov, B. A.; Sheifler, A. A.; Skurihin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-07-01

    The first stage of the GVD-cluster composed of five strings was deployed in April 2014. Each string consists of two sections with 12 optical modules per section. A section is the basic detection unit of the Baikal neutrino telescope. We will describe the section design, review its basic elements - optical modules, FADC readout units, slow control and calibration systems, and present selected results for section in-situ tests in Lake Baikal.

  9. Fiber optic hydrogen detection system

    NASA Astrophysics Data System (ADS)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    1999-12-01

    Commercial and military launch vehicles are designed to use hydrogen as the main propellant, which is very volatile, extremely flammable, and highly explosive. Current detection systems uses Teflon transfer tubes at a large number of vehicle locations through which gas samples are drawn and the stream analyzed by a mass spectrometer. A concern with this approach is the high cost of the system. Also, the current system does not provide leak location and is not in real-time. This system is very complex and cumbersome for production and ground support measurement personnel. The fiber optic micromirror sensor under development for cryogenic environment relies on a reversible chemical interaction causing a change in reflectivity of a thin film of coated Palladium. The magnitude of the reflectivity change is correlated to hydrogen concentration. The sensor uses only a tiny light beam, with no electricity whatsoever at the sensor, leading to devices that is intrinsically safe from explosive ignition. The sensor, extremely small in size and weight detects, hydrogen concentration using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and a photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor (or PC) to perform the data analysis and storage, as well as trending and set alarm function. As it is a low cost system with a fast response, many more detection sensors can be used that will be extremely helpful in determining leak location for safety of crew and vehicles during launch operations.

  10. Resource-efficient generation of linear cluster states by linear optics with postselection

    DOE PAGESBeta

    Uskov, D. B.; Alsing, P. M.; Fanto, M. L.; Kaplan, L.; Kim, R.; Szep, A.; Smith, A. M.

    2015-01-30

    Here we report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneousmore » detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4m-1.« less

  11. Resource-efficient generation of linear cluster states by linear optics with postselection

    SciTech Connect

    Uskov, D. B.; Alsing, P. M.; Fanto, M. L.; Kaplan, L.; Kim, R.; Szep, A.; Smith, A. M.

    2015-01-30

    Here we report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4m-1.

  12. Capillary Electrophoresis - Optical Detection Systems

    SciTech Connect

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  13. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  14. Optical Follow-Up Observations for the High-z COBRA (Clusters Occupied by Bent Radio AGN) Survey

    NASA Astrophysics Data System (ADS)

    Golden-Marx, Emmet; Blanton, Elizabeth L.; Paterno-Mahler, Rachel; Wing, Joshua; Ashby, Matthew; Brodwin, Mark

    2015-01-01

    Galaxy clusters are unique laboratories for exploring galaxy formation and evolution. Relatively few galaxy clusters have been spectroscopically confirmed beyond a redshift of 1. Different methods of searching for galaxy clusters are adding to these numbers, including detecting regions with a high-density of galaxies in the optical and IR regimes, detecting the hot intracluster medium in the X-ray, and measuring the Sunyaev-Zel'dovich effect. Another promising method for discovering high-redshift galaxy clusters uses radio observations of AGN. In particular, we use bent-double lobed radio sources, known often to reside in nearby clusters, as markers for distant galaxy clusters. We present initial results from the high-redshift COBRA (Clusters Occupied by Bent Radio AGN) survey. We have Spitzer IRAC observations of 653 bent-double radio sources with hosts too faint to be detected in the SDSS. Since the host galaxies for these radio sources are usually giant ellipticals, lack of detection in the SDSS means they are likely at z > 0.7. We have begun deep follow-up optical observations using the 4.3 m Discovery Channel Telescope and have determined from these initial optical observations that ~50% of the observed fields are overdense and thus good cluster candidates. Additionally, we have created optical-IR color magnitude diagrams to estimate the redshifts of our cluster candidates by identifying the red sequence. The distribution of galaxies on the red sequence can be used to limit galaxy formation models.

  15. Searching for galaxy clusters in X-ray and optical sky surveys

    NASA Astrophysics Data System (ADS)

    Boschin, W.

    2003-04-01

    The last decade has seen a poderous progress in the research of galaxy clusters. In fact, the application of modern technologies (CCDs, optical fibers, large aperture optical and X-ray telescopes, etc.) in the field of astrophysical observations has allowed fundamental studies of nearby galaxy clusters, both of the optical component of such objects, i.e. galaxies, and the X-ray emitting intracluster gas. Moreover, systematic searches of these objects done by new generation optical and X-ray telescopes have produced valuable samples of medium-distant clusters, helping us to shed light on the evolution of their physical properties (abundance, mass, temperature, etc.), with particular reference to the distribution functions of such quantities. In particular, the cluster abundance distribution in function of redshift is very important since it is strictly connected to the cosmological parameters. From these consideration it is clear that the search for galaxy systems at different redshifts is a fundamental task in modern observational astrophysics. In this work I discuss the topic of searching for galaxy clusters both in X-ray surveys and in optical data. In particular, the main result is the building of a new galaxy cluster catalog based on a serendipitous search in Chandra X-ray archival data. The first chapter describes the general properties of galaxy systems with emphasis on their scientific relevance and the methods used to identify them in the sky. In the second chapter I describe the Chandra X-ray observatory and explain why it is a good instrument to detect clusters. In chapter three I present the characteristics of my survey, the reduction of data, the technique of detection of X-ray sources and the catalog of detected clusters. By computing the sky coverage of the survey I also present a first determination of the cluster cumulative log N-log S relation and show that it is in agreement with results from previous deep ROSAT-based surveys. Finally, in chapter

  16. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    SciTech Connect

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul; Morrison, Heather L.; Feldmeier, John J.; Janowiecki, Steven

    2010-09-01

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.

  17. Visual verification and analysis of cluster detection for molecular dynamics.

    PubMed

    Grottel, Sebastian; Reina, Guido; Vrabec, Jadran; Ertl, Thomas

    2007-01-01

    A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will help to optimize energy efficiency and avoid problems with droplets of macroscopic size. The key properties of these processes are the nucleation rate and the critical cluster size. For the calculation of these properties it is essential to make use of a meaningful definition of molecular clusters, which currently is a not completely resolved issue. In this paper a framework capable of interactively visualizing molecular datasets of such nucleation simulations is presented, with an emphasis on the detected molecular clusters. To check the quality of the results of the cluster detection, our framework introduces the concept of flow groups to highlight potential cluster evolution over time which is not detected by the employed algorithm. To confirm the findings of the visual analysis, we coupled the rendering view with a schematic view of the clusters' evolution. This allows to rapidly assess the quality of the molecular cluster detection algorithm and to identify locations in the simulation data in space as well as in time where the cluster detection fails. Thus, thermodynamics researchers can eliminate weaknesses in their cluster detection algorithms. Several examples for the effective and efficient usage of our tool are presented. PMID:17968118

  18. Cluster optical coding: from biochips to counterfeit security

    NASA Astrophysics Data System (ADS)

    Haglmueller, Jakob; Alguel, Yilmaz; Mayer, Christian; Matyushin, Viacheslav; Bauer, Georg; Pittner, Fritz; Leitner, Alfred; Aussenegg, Franz R.; Schalkhammer, Thomas G.

    2004-07-01

    Spatially tuned resonant nano-clusters allow high local field enhancement when exited by electromagnetic radiation. A number of phenomena had been described and subsequently applied to novel nano- and bionano-devices. Decisive for these types of devices and sensors is the precise nanometric assembly, coupling the local field surrounding a cluster to allow resonance with other elements interacting with this field. In particular, the distance cluster-mirror or cluster-fluorophore gives rise to a variety of enhancement phenomena. High throughput transducers using metal cluster resonance technology are based on surface-enhancement of metal cluster light absorption (SEA). The optical property for the analytical application of metal cluster films is the so-called anomalous absorption. At a well defined nanometric distance of a cluster to a mirror the reflected electromagnetic field has the same phase at the position of the absorbing cluster as the incident fields. This feedback mechanism strongly enhances the effective cluster absorption coefficient. The system is characterised by a narrow reflection minimum. Based on this SEA-phenomenon (licensed to and further developed and optimized by NovemberAG, Germany Erlangen) a number of commercial products have been constructed. Brandsealing(R) uses the patented SEA cluster technology to produce optical codings. Cluster SEA thin film systems show a characteristic color-flip effect and are extremely mechanically and thermally robust. This is the basis for its application as an unique security feature. The specific spectroscopic properties as e.g. narrow band multi-resonance of the cluster layers allow the authentication of the optical code which can be easily achieved with a mobile hand-held reader developed by november AG and Siemens AG. Thus, these features are machine-readable which makes them superior to comparable technologies. Cluster labels are available in two formats: as a label for tamper-proof product packaging, and

  19. The RedGOLD cluster detection algorithm and its cluster candidate catalogue for the CFHT-LS W1

    NASA Astrophysics Data System (ADS)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik

    2016-01-01

    We present RedGOLD (Red-sequence Galaxy Overdensity cLuster Detector), a new optical/NIR galaxy cluster detection algorithm, and apply it to the CFHT-LS W1 field. RedGOLD searches for red-sequence galaxy overdensities while minimizing contamination from dusty star-forming galaxies. It imposes an Navarro-Frenk-White profile and calculates cluster detection significance and richness. We optimize these latter two parameters using both simulations and X-ray-detected cluster catalogues, and obtain a catalogue ˜80 per cent pure up to z ˜ 1, and ˜100 per cent (˜70 per cent) complete at z ≤ 0.6 (z ≲ 1) for galaxy clusters with M ≳ 1014 M⊙ at the CFHT-LS Wide depth. In the CFHT-LS W1, we detect 11 cluster candidates per deg2 out to z ˜ 1.1. When we optimize both completeness and purity, RedGOLD obtains a cluster catalogue with higher completeness and purity than other public catalogues, obtained using CFHT-LS W1 observations, for M ≳ 1014 M⊙. We use X-ray-detected cluster samples to extend the study of the X-ray temperature-optical richness relation to a lower mass threshold, and find a mass scatter at fixed richness of σlnM|λ = 0.39 ± 0.07 and σlnM|λ = 0.30 ± 0.13 for the Gozaliasl et al. and Mehrtens et al. samples. When considering similar mass ranges as previous work, we recover a smaller scatter in mass at fixed richness. We recover 93 per cent of the redMaPPer detections, and find that its richness estimates is on average ˜40-50 per cent larger than ours at z > 0.3. RedGOLD recovers X-ray cluster spectroscopic redshifts at better than 5 per cent up to z ˜ 1, and the centres within a few tens of arcseconds.

  20. Sunyaev-Zel'dovich effect or not? Detecting the main foreground effect of most galaxy clusters

    NASA Astrophysics Data System (ADS)

    Xiao, Weike; Chen, Chen; Zhang, Bin; Wu, Yongfeng; Dai, Mi

    2013-05-01

    Galaxy clusters are the most massive objects in the Universe and comprise a high-temperature intracluster medium of about 107 K, believed to offer a main foreground effect for cosmic microwave background (CMB) data in the form of the thermal Sunyaev-Zel'dovich (SZ) effect. This assumption has been confirmed by SZ signal detection in hundreds of clusters but, in comparison with the huge numbers of clusters within optically selected samples from Sloan Digital Sky Survey (SDSS) data, this only accounts for a few per cent of clusters. Here we introduce a model-independent new method to confirm the assumption that most galaxy clusters can offer the thermal SZ signal as their main foreground effect. For the Wilkinson Microwave Anisotropy Probe (WMAP) seven-year data (and a given galaxy cluster sample), we introduced a parameter d1 as the nearest-neighbour cluster angular distance of each pixel, then we classified data pixels as `to be' (d1 → 0 case) or `not to be' (d1 large enough) affected by the sample clusters. By comparing the statistical results of these two kinds of pixels, we can see how the sample clusters affect the CMB data directly. We find that the Planck Early Sunyaev-Zel'dovich (ESZ) sample and X-ray samples (˜102 clusters) can lead to obvious temperature depression in the WMAP seven-year data, which confirms the SZ effect prediction. However, each optically selected sample (>104 clusters) shows an opposite result: the mean temperature rises to about 10 μK. This unexpected qualitative scenario implies that the main foreground effect of most clusters is not always the expected SZ effect. This may be the reason why the SZ signal detection result is lower than expected from the model.

  1. Fiber optic sensors for corrosion detection

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1993-01-01

    The development of fiber optic sensors for the detection of a variety of material parameters has grown tremendously over the past several years. Additionally, the potential for analytical applications of fiber optic sensors have become more widely used. New pH sensors have also been developed using fiber optic techniques to detect fluorescence characteristics from immobilized fluorogenic reagent chemicals. The primary purpose of this research was to investigate the feasibility of using fiber optic sensors to detect the presence of Al(sup 3+) ions made in the process of environmental corrosion of aluminum materials. The Al(sup 3+) ions plus a variety of other type of metal ions can be detected using analytical techniques along with fiber optic sensors.

  2. Optical galaxy clusters in the Deep Lens Survey

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Wittman, D.; Dawson, W.

    2014-04-01

    We present the first sample of 882 optically selected galaxy clusters in the Deep Lens Survey (DLS), selected with the Bayesian Cluster Finder. We create mock DLS data to assess completeness and purity rates, and find that both are at least 70 per cent within 0.1 ≤ z ≤ 1.2 for clusters with M200 ≥ 1.2 × 1014 M⊙. We verified the integrity of the sample by performing several comparisons with other optical, weak lensing, X-ray and spectroscopic surveys which overlap the DLS footprint: the estimated redshifts are consistent with the spectroscopic redshifts of known clusters (for z > 0.25 where saturation in the DLS is not an issue); our richness estimates in combination with a previously calibrated richness-mass relation yield individual cluster mass estimates consistent with available Smithsonian Hectospec Lensing Survey dynamical mass estimates; synthetic mass maps made from the optical mass estimates are correlated (>3σ significance) with the weak lensing mass maps; and the mass function thus derived is consistent with theoretical predictions for the cold dark matter scenario. With the verified sample, we investigated correlations between the brightest cluster galaxy (BCG) properties and the host cluster properties within a broader range in redshift (0.25 ≤ z ≤ 0.8) and mass (≥2.4 × 1014 M⊙) than in previous work. We find that the slope of the BCG magnitude-redshift relation throughout this redshift range is consistent with that found at lower redshifts. This result supports an extrapolation to higher redshift of passive evolution of the BCG within the hierarchical scenario.

  3. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  4. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  5. Performance map of a cluster detection test using extended power

    PubMed Central

    2013-01-01

    Background Conventional power studies possess limited ability to assess the performance of cluster detection tests. In particular, they cannot evaluate the accuracy of the cluster location, which is essential in such assessments. Furthermore, they usually estimate power for one or a few particular alternative hypotheses and thus cannot assess performance over an entire region. Takahashi and Tango developed the concept of extended power that indicates both the rate of null hypothesis rejection and the accuracy of the cluster location. We propose a systematic assessment method, using here extended power, to produce a map showing the performance of cluster detection tests over an entire region. Methods To explore the behavior of a cluster detection test on identical cluster types at any possible location, we successively applied four different spatial and epidemiological parameters. These parameters determined four cluster collections, each covering the entire study region. We simulated 1,000 datasets for each cluster and analyzed them with Kulldorff’s spatial scan statistic. From the area under the extended power curve, we constructed a map for each parameter set showing the performance of the test across the entire region. Results Consistent with previous studies, the performance of the spatial scan statistic increased with the baseline incidence of disease, the size of the at-risk population and the strength of the cluster (i.e., the relative risk). Performance was heterogeneous, however, even for very similar clusters (i.e., similar with respect to the aforementioned factors), suggesting the influence of other factors. Conclusions The area under the extended power curve is a single measure of performance and, although needing further exploration, it is suitable to conduct a systematic spatial evaluation of performance. The performance map we propose enables epidemiologists to assess cluster detection tests across an entire study region. PMID:24156765

  6. Optical detection of pores in adipocyte membrane

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  7. Optical Detection Of Flameout In A Combustor

    NASA Technical Reports Server (NTRS)

    Borg, Stephen E.; West, James W.; Harper, Samuel E.; Alderfer, David W.; Lawrence, Robert M.

    1994-01-01

    Fuel supply shut down in time to prevent explosion. Optical flameout detector designed to signal control system of facility to cut off supply of fuel into combustion chamber if flame goes out. Combustor which optical flameout detector designed burns methane in air to provide hot gases for 8-ft high-temperature test chamber. Acoustical flameout detector for same combustor described in "Acoustical Detection of Flameout in Combustor" (LAR-14900). Fiber optic probes mounted to fuel-spray bar upstream of flame. No focusing optics used, and probes aimed across flow of gases at spot on combustion chamber wall downstream from spray bar. Arrangement enables flameout detection system to respond quickly to potential loss of flame since it detects movement of flame front away from spray bar face. Overall response time of detection system under 10 milliseconds.

  8. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate).

    PubMed

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Schmidegg, K; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P

    2011-07-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means. PMID:21597154

  9. Optical and near infrared photometry of Butcher-Oemler clusters

    NASA Technical Reports Server (NTRS)

    Shier, Lisa M.; Rieke, Marcia J.

    1993-01-01

    Rich clusters of galaxies at moderate redshifts (z approx. .3) have a larger proportion of optically blue galaxies than their low redshift counterparts. Spectroscopic examination of the blue galaxies by various authors has shown that the blue galaxies are generally Seyferts, show evidence for recent star formation, or are foreground objects. Unfortunately, spectroscopy is too time consuming to be used on large samples. Thus, we have looked for a way to separate Seyferts, starbursts, ellipticals and nonmembers using photometry alone. Five moderate redshift clusters, Abell numbers 777, 963, 1758, 1961 and 2218, have been observed in the V, R and K bands. We model the spectral energy distributions of various kinds of galaxies found in clusters and derive observed colors. We have modeled the spectral energy distributions (SED) of several kinds of galaxies and compute their colors as a function of redshift. We expect to see ellipticals, spirals, starbursts, post-starburst and Seyfert galaxies. The SED of elliptical and Sbc galaxies was observed by Rieke and Rieke. The SEDs for the starburst galaxies was created by adding a reddened 10(exp 8) year old burst to a spiral galaxy SED. The post-starburst (E+A) galaxy SEDs are composed of a slightly reddened 10(exp 9) year old burst and elliptical galaxy SED. SEDs for the Seyferts were created by adding a v(exp -1.1) power law, and a hot dust thermal spectrum to the Sbc. From the SEDs the colors of galaxies at various redshifts with assorted filters were computed. Lilly & Gunn (1985) have optical and infrared photometry for a sample of galaxies in CL0024+1654 observed spectroscopically by Dressler, Gunn and Schneider (1985). We have used this data to choose the most appropriate SEDs for our starburst and post-starburst models. The most likely explanation for the optically blue colors in most cluster galaxies is star formation. Very few galaxies lie in the Seyfert locus. Abel 1758 has more Seyfert candidates than the other

  10. Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

    NASA Astrophysics Data System (ADS)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.; Metcalf, R. B.

    2016-06-01

    We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect H I clustering and weak gravitational lensing of 21 cm emission in auto- and cross-correlation. Our forecasts show that high-precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the H I density Ω _{H I}, the H I bias b_{H I} and the galaxy-H I correlation coefficient r_{H I-g}.

  11. Detecting data fabrication in clinical trials from cluster analysis perspective.

    PubMed

    Wu, Xiaoru; Carlsson, Martin

    2011-01-01

    Detecting data fabrication is of great importance in clinical trials. As the role of statisticians in detecting abnormal data patterns has grown, a large number of statistical procedures have been developed, most of which are based on descriptive statistics. Based upon the fact that substantial data fabrication cases have certain clustering structures, this paper discusses the potential for the use of statistical clustering method in fraud detection. Three clustering patterns, angular, neighborhood and repeated measurements clustering, are identified and explored. Correspondingly, simple and efficient test statistics are proposed and randomization tests are carried out. The proposed methods are applied to a 12-week multi-center study for illustration. Extensive simulations are conducted to validate the effectiveness of the procedures. PMID:20936626

  12. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  13. Combined hostile fire and optics detection

    NASA Astrophysics Data System (ADS)

    Brännlund, Carl; Tidström, Jonas; Henriksson, Markus; Sjöqvist, Lars

    2013-10-01

    Snipers and other optically guided weapon systems are serious threats in military operations. We have studied a SWIR (Short Wave Infrared) camera-based system with capability to detect and locate snipers both before and after shot over a large field-of-view. The high frame rate SWIR-camera allows resolution of the temporal profile of muzzle flashes which is the infrared signature associated with the ejection of the bullet from the rifle. The capability to detect and discriminate sniper muzzle flashes with this system has been verified by FOI in earlier studies. In this work we have extended the system by adding a laser channel for optics detection. A laser diode with slit-shaped beam profile is scanned over the camera field-of-view to detect retro reflection from optical sights. The optics detection system has been tested at various distances up to 1.15 km showing the feasibility to detect rifle scopes in full daylight. The high speed camera gives the possibility to discriminate false alarms by analyzing the temporal data. The intensity variation, caused by atmospheric turbulence, enables discrimination of small sights from larger reflectors due to aperture averaging, although the targets only cover a single pixel. It is shown that optics detection can be integrated in combination with muzzle flash detection by adding a scanning rectangular laser slit. The overall optics detection capability by continuous surveillance of a relatively large field-of-view looks promising. This type of multifunctional system may become an important tool to detect snipers before and after shot.

  14. Developments in distributed optical fiber detection technology

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  15. Point detection and positioning system of the target based on surface cluster eyes

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Zhang, Hao; Wang, Keyi

    2010-10-01

    The research of target detection and position is a challenge task in the fields where machine vision was used to develop various systems. However, monocular vision and binocular vision traditionally are difficult to meet the applications for high resolution and high sensitivity. Because compound eye imaging system is capacity of the large field of view for moving target detection with high sensitivity, the optical system has the potential to meet the applications above mentioned. In this paper, a preliminary exploration of the surface imaging system for the characteristics of cluster eyes was made and the optical signal processing methods of cluster eyes were introduced in detail. First the structure of the cluster eyes was described and the imaging channels of cluster eyes were ray traced with Zemax. Then based on the surface imaging mechanism with clusters eyes, the center of gravity of image space for target was extracted. Subsequently by the neural networks training based on LM (Levenberg-Marquardt) algorithm, the non-linear relationship between target and image was effectively calibrated. Finally, the corresponding relationship between target point and its image point among the various channels was established. The experimental results show that the multicast visual imaging systems are capable of providing the information of target azimuth and distance. Some attempts to study the systems were made to achieve high resolution, high sensitivity of target detection and positioning tasks. At the same time the surface imaging system also laid a solid foundation for the large compound eye imaging system from theory to practical application.

  16. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Christian, H. J.

    1999-01-01

    Two primary detection techniques (optical and RF) have a proven capability for detecting lightning from low earth orbit. However, the lightning processes that generate the optical and RF signals are vastly different providing significantly different information content from each sensor type. Because of the intervening ionosphere, low frequency RF components do not reach satellite altitudes. As a consequence, many of the processes associated with the major energy release of a lightning event (i.e. return strokes, k-changes, recoil streamers, etc), in all likelihood contribute little to the RF signal arriving at the satellite. The optical output from lighting, on the other hand, has been shown to be highly correlated with the energetic, charge-transferring processes mentioned above. On the down side, the optical energy, while essentially unaffected by the atmosphere once it emerges from the cloud, is heavily scattered within the cloud. While there is little absorption by the cloud, the great optical depth makes the total light energy emerging from the cloud to be dependent on where in the cloud the lightning occurred. Analyses suggest that when lightning is confined to the lowest regions of the cloud, the light is strongly attenuated and detection becomes problematic. Fortunately, the vast majority of lightning flashes are comprised of channels that propagate through the middle of the cloud and higher. These flashes produce bright signals at the top of a cloud and are readily detectable. Presently, we have two optical instruments in orbit. The Optical Transient Detector (OTD) has been orbiting the earth since April, 1995, while the Lightning Imaging Sensor (LIS) was launched on the Tropical Rainfall Measuring Mission (TRMM) in November of 1997. Both instruments are relatively small, solid state optical imagers, designed specifically to detect and locate lightning activity from low earth orbit with high detection efficiency and location accuracy.

  17. An optical analysis of the merging cluster Abell 3888

    NASA Astrophysics Data System (ADS)

    Shakouri, S.; Johnston-Hollitt, M.; Dehghan, S.

    2016-05-01

    In this paper we present new AAOmega spectroscopy of 254 galaxies within a 30 arcmin radius around Abell 3888. We combine these data with the existing redshifts measured in a one degree radius around the cluster and performed a substructure analysis. We confirm 71 member galaxies within the core of A3888 and determine a new average redshift and velocity dispersion for the cluster of 0.1535 ± 0.0009 and 1181 ± 197 km s-1, respectively. The cluster is elongated along an East-West axis and we find the core is bimodal along this axis with two subgroups of 26 and 41 members detected. Our results suggest that A3888 is a merging system putting to rest the previous conjecture about the morphological status of the cluster derived from X-ray observations. In addition to the results on A3888 we also present six newly detected galaxy overdensities in the field, three of which we classify as new galaxy clusters.

  18. Detection of Sphingomyelin Clusters by Raman Spectroscopy.

    PubMed

    Shirota, Koichiro; Yagi, Kiyoshi; Inaba, Takehiko; Li, Pai-Chi; Murata, Michio; Sugita, Yuji; Kobayashi, Toshihide

    2016-09-01

    Sphingomyelin (SM) is a major sphingolipid in mammalian cells that forms specific lipid domains in combination with cholesterol (Chol). Using molecular-dynamics simulation and density functional theory calculation, we identified a characteristic Raman band of SM at ∼1643 cm(-1) as amide I of the SM cluster. Experimental results indicate that this band is sensitive to the hydration of SM and the presence of Chol. We showed that this amide I Raman band can be utilized to examine the membrane distribution of SM. Similarly to SM, ceramide phosphoethanolamine (CerPE) exhibited an amide I Raman band in almost the same region, although CerPE lacks three methyl groups in the phosphocholine moiety of SM. In contrast to SM, the amide I band of CerPE was not affected by Chol, suggesting the importance of the methyl groups of SM in the SM-Chol interaction. PMID:27602727

  19. Heatwaves detection, clustering and future projections

    NASA Astrophysics Data System (ADS)

    Arakelian, Ara; D'Andrea, Fabio; Yiou, Pascal

    2016-04-01

    Impacts of heatwaves on infrastructure,particularly nuclear power plants, can be significant and is brought to evolve in the future. As part of the project SEEN (scenario extreme nuclear energy), we evaluated, both in reanalysis and in a set of 10 Euro-Cordex simulations, the frequency and distribution of heatwaves. The results shows the ability of models, GCM associated with RCM, to represent historical events, in terms of frequency and patterns. The study was accompanied by the elaboration of a metric value to assess the ability of a model to correctly represent the classifications and determine the number of significant cluster for reanalysis and climate projections. The increase in frequency and duration of these events varies from one data set to another, but indicates preferential tendency for the various European regions.

  20. Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Honyoung; Jang, Haegyu; Lee, Hak-Seung; Chae, Heeyeop

    2015-09-01

    Plasma etching process is the core process in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist, dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0% oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD. Plasma Etch, EPD, K-means Cluster Analysis.

  1. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  2. Community detection using Kernel Spectral Clustering with memory

    NASA Astrophysics Data System (ADS)

    Langone, Rocco; Suykens, Johan A. K.

    2013-02-01

    This work is related to the problem of community detection in dynamic scenarios, which for instance arises in the segmentation of moving objects, clustering of telephone traffic data, time-series micro-array data etc. A desirable feature of a clustering model which has to capture the evolution of communities over time is the temporal smoothness between clusters in successive time-steps. In this way the model is able to track the long-term trend and in the same time it smooths out short-term variation due to noise. We use the Kernel Spectral Clustering with Memory effect (MKSC) which allows to predict cluster memberships of new nodes via out-of-sample extension and has a proper model selection scheme. It is based on a constrained optimization formulation typical of Least Squares Support Vector Machines (LS-SVM), where the objective function is designed to explicitly incorporate temporal smoothness as a valid prior knowledge. The latter, in fact, allows the model to cluster the current data well and to be consistent with the recent history. Here we propose a generalization of the MKSC model with an arbitrary memory, not only one time-step in the past. The experiments conducted on toy problems confirm our expectations: the more memory we add to the model, the smoother over time are the clustering results. We also compare with the Evolutionary Spectral Clustering (ESC) algorithm which is a state-of-the art method, and we obtain comparable or better results.

  3. Crowd Event Detection on Optical Flow Manifolds.

    PubMed

    Rao, Aravinda S; Gubbi, Jayavardhana; Marusic, Slaven; Palaniswami, Marimuthu

    2016-07-01

    Analyzing crowd events in a video is key to understanding the behavioral characteristics of people (humans). Detecting crowd events in videos is challenging because of articulated human movements and occlusions. The aim of this paper is to detect the events in a probabilistic framework for automatically interpreting the visual crowd behavior. In this paper, crowd event detection and classification in optical flow manifolds (OFMs) are addressed. A new algorithm to detect walking and running events has been proposed, which uses optical flow vector lengths in OFMs. Furthermore, a new algorithm to detect merging and splitting events has been proposed, which uses Riemannian connections in the optical flow bundle (OFB). The longest vector from the OFB provides a key feature for distinguishing walking and running events. Using a Riemannian connection, the optical flow vectors are parallel transported to localize the crowd groups. The geodesic lengths among the groups provide a criterion for merging and splitting events. Dispersion and evacuation events are jointly modeled from the walking/running and merging/splitting events. Our results show that the proposed approach delivers a comparable model to detect crowd events. Using the performance evaluation of tracking and surveillance 2009 dataset, the proposed method is shown to produce the best results in merging, splitting, and dispersion events, and comparable results in walking, running, and evacuation events when compared with other methods. PMID:26219100

  4. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  5. Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique

    NASA Astrophysics Data System (ADS)

    Vicari, L.

    2002-11-01

    We present a new pump probe laser beams configuration for the nonlinear optical characterization of microemulsions. We detect the variation of the on-axis optical intensity of the probe beam as generated by the concentration profile induced in an optically thin film of microemulsion by the pump beam. A mathematical model has been introduced to describe the phenomenon. The technique allows the determination of both Kerr-like optical nonlinearity and time constants and, therefore, it gives information both on cluster dimension and their shape. We discuss its application to WAD (water/AOT/decane, where AOT denotes sodium-bis-di-ethyl-sulfosuccinate) with the application of a strong electric field of optical source. Comparison between theoretical predictions and experimental results confirms the presence of giant optical nonlinearity in the absence of turbidity divergence. Chainlike shape of clusters, of the kind already reported with the application of strong electric field, could justify this result.

  6. Nonlinear optical characterization of cluster dynamic in water in oil microemulsion by a pump probe laser beam technique.

    PubMed

    Vicari, L

    2002-11-01

    We present a new pump probe laser beams configuration for the nonlinear optical characterization of microemulsions. We detect the variation of the on-axis optical intensity of the probe beam as generated by the concentration profile induced in an optically thin film of microemulsion by the pump beam. A mathematical model has been introduced to describe the phenomenon. The technique allows the determination of both Kerr-like optical nonlinearity and time constants and, therefore, it gives information both on cluster dimension and their shape. We discuss its application to WAD (water/AOT/decane, where AOT denotes sodium-bis-di-ethyl-sulfosuccinate) with the application of a strong electric field of optical source. Comparison between theoretical predictions and experimental results confirms the presence of giant optical nonlinearity in the absence of turbidity divergence. Chainlike shape of clusters, of the kind already reported with the application of strong electric field, could justify this result. PMID:15010903

  7. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  8. Spectral efficiency of optical direct detection

    NASA Astrophysics Data System (ADS)

    Martinez, Alfonso

    2007-04-01

    The spectral efficiency (channel capacity) of the optical direct-detection channel is studied. The modeling of the optical direct-detection channel as a discrete-time Poisson channel is reviewed. Closed-form integral representations for the entropy of random variables with Poisson and negative binomial distributions are derived. The spectral efficiency achievable with an arbitrary input gamma density is expressed in closed integral form. Simple, nonasymptotic upper and lower bounds to the channel capacity are computed. Numerical results are presented and compared with previous bounds and approximations.

  9. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect

    SciTech Connect

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.

    2011-08-18

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  10. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected Via the Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Wollack, Ed

    2010-01-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  11. THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT

    SciTech Connect

    Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Das, Sudeep; Dunkley, Joanna; Ade, Peter A. R.; Aguirre, Paula; Barrientos, L. Felipe; Duenner, Rolando; Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Appel, John W.; Essinger-Hileman, Thomas; Bond, J. Richard; Brown, Ben; Chervenak, Jay; Doriese, W. Bertrand

    2011-05-01

    We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected (SZ-selected) galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of nine optically confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 deg{sup 2} of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a four-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially flat wCDM cosmological model with Wilkinson Microwave Anisotropy Probe (WMAP) seven-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP seven-year constraints alone. Fixing the scaling relation between the cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP7 plus baryon acoustic oscillations plus Type Ia supernova which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.

  12. Optical properties of pentacene clusters and ultra-thin films (*)

    NASA Astrophysics Data System (ADS)

    He, Rui; Tassi, Nancy G.; Pinczuk, Aron

    2005-03-01

    Photoluminescene spectra of pentacene clusters and films of few monolayer in thickness reveal two fundamental excitations that are assigned to the Davydov doublets of the lowest singlet exciton. While the energy splittings of the doublets have minor dependence on cluster thickness, their bandwidths become narrower as the pentacene clusters grow larger and into continuous ultra-thin films. The marked similarity of these Davydov doublets to those in optical absorption spectra of thicker pentacene films and crystals suggests a similarity in molecular arrangements. Luminescence of self-trapped excitons is quenched in the few monolayer clusters and ultra-thin films. Asymmetric 0-0 and 1-0 resonance Raman scattering excitation profiles are observed in these samples. (*) Supported primarily by the Nanoscale Science and Engineering Initiative of the NSF under NSF Award Number CHE- 0117752 and by the NYSTAR, and by a research grant of the W. M. Keck Foundation. We thank I. Dujovne and C. F. Hirjibehedin for their helpful discussions.

  13. Optical spectroscopy and velocity dispersions of galaxy clusters from the SPT-SZ survey

    SciTech Connect

    Ruel, J.; Bayliss, M.; Bazin, G.; Bocquet, S.; Brodwin, M.; Foley, R. J.; Stalder, B.; Ashby, M. L. N.; Aird, K. A.; Armstrong, R.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; and others

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (≲ 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ∼30% log-normal scatter in dispersion at fixed mass, and a ∼10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.

  14. Optical Spectroscopy and Velocity Dispersions of Galaxy Clusters from the SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    Ruel, J.; Bazin, G.; Bayliss, M.; Brodwin, M.; Foley, R. J.; Stalder, B.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Chapman, S. C.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Šuhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Starsk, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2014-09-01

    We present optical spectroscopy of galaxies in clusters detected through the Sunyaev-Zel'dovich (SZ) effect with the South Pole Telescope (SPT). We report our own measurements of 61 spectroscopic cluster redshifts, and 48 velocity dispersions each calculated with more than 15 member galaxies. This catalog also includes 19 dispersions of SPT-observed clusters previously reported in the literature. The majority of the clusters in this paper are SPT-discovered; of these, most have been previously reported in other SPT cluster catalogs, and five are reported here as SPT discoveries for the first time. By performing a resampling analysis of galaxy velocities, we find that unbiased velocity dispersions can be obtained from a relatively small number of member galaxies (lsim 30), but with increased systematic scatter. We use this analysis to determine statistical confidence intervals that include the effect of membership selection. We fit scaling relations between the observed cluster velocity dispersions and mass estimates from SZ and X-ray observables. In both cases, the results are consistent with the scaling relation between velocity dispersion and mass expected from dark-matter simulations. We measure a ~30% log-normal scatter in dispersion at fixed mass, and a ~10% offset in the normalization of the dispersion-mass relation when compared to the expectation from simulations, which is within the expected level of systematic uncertainty.

  15. Microstructure and Optics of Laser Ablation Grown Si Clusters

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S.; Federici, J.; Grebel, H.; Iqbal, Z.

    1998-03-01

    Nanoclusters of silicon grown by laser ablation on aluminum,quartz and KBr substrates were studied by micro-Raman spectroscopy at a spatial resolution of 1 micron. The cluster films consist of islands composed of nanocrystalline and microcrystalline silicon separated by a matrix showing the Raman spectrum of amorphous silicon.The crystallite sizes determined from the position of the Raman frequency ranged from below 10 nm to above this value(Z. Iqbal & S. Veprek, J.Phys. C15, 377 (1982)). HRTEM studies on clusters deposited on KBr confirmed this picture - and in addition revealed interesting architectures at the boundaries between the amorphous and crystalline domains, which may be relevant to the growth process. The results will be compared with AFM studies and correlated with the observed large optical non-linearity of the films (S. Vijayalakshmi, M. George & H. Grebel, Appl.Phys.Lett. 70, 708 (1997)).

  16. Cancer detection based on Raman spectra super-paramagnetic clustering

    NASA Astrophysics Data System (ADS)

    González-Solís, José Luis; Guizar-Ruiz, Juan Ignacio; Martínez-Espinosa, Juan Carlos; Martínez-Zerega, Brenda Esmeralda; Juárez-López, Héctor Alfonso; Vargas-Rodríguez, Héctor; Gallegos-Infante, Luis Armando; González-Silva, Ricardo Armando; Espinoza-Padilla, Pedro Basilio; Palomares-Anda, Pascual

    2016-08-01

    The clustering of Raman spectra of serum sample is analyzed using the super-paramagnetic clustering technique based in the Potts spin model. We investigated the clustering of biochemical networks by using Raman data that define edge lengths in the network, and where the interactions are functions of the Raman spectra's individual band intensities. For this study, we used two groups of 58 and 102 control Raman spectra and the intensities of 160, 150 and 42 Raman spectra of serum samples from breast and cervical cancer and leukemia patients, respectively. The spectra were collected from patients from different hospitals from Mexico. By using super-paramagnetic clustering technique, we identified the most natural and compact clusters allowing us to discriminate the control and cancer patients. A special interest was the leukemia case where its nearly hierarchical observed structure allowed the identification of the patients's leukemia type. The goal of this study is to apply a model of statistical physics, as the super-paramagnetic, to find these natural clusters that allow us to design a cancer detection method. To the best of our knowledge, this is the first report of preliminary results evaluating the usefulness of super-paramagnetic clustering in the discipline of spectroscopy where it is used for classification of spectra.

  17. Fibre optic sensors for mine hazard detection

    NASA Astrophysics Data System (ADS)

    Liu, T.; Wang, C.; Wei, Y.; Zhao, Y.; Huo, D.; Shang, Y.; Wang, Z.; Ning, Y.

    2009-07-01

    We report the development of a comprehensive safety monitoring solution for coal mines. A number of fibre optic sensors have been developed and deployed for safety monitoring of mine roof integrity and hazardous gases. The FOS-based mine hazard detection system offers unique advantages of intrinsic safety, multi-location and multi-parameter monitoring. They can be potentially used to build expert systems for mine hazard early detection and prevention.

  18. Integrated Micro-Optics for Microfluidic Detection.

    PubMed

    Kazama, Yuto; Hibara, Akihide

    2016-01-01

    A method of embedding micro-optics into a microfluidic device was proposed and demonstrated. First, the usefulness of embedded right-angle prisms was demonstrated in microscope observation. Lateral-view microscopic observation of an aqueous dye flow in a 100-μm-sized microchannel was demonstrated. Then, the embedded right-angle prisms were utilized for multi-beam laser spectroscopy. Here, crossed-beam thermal lens detection of a liquid sample was applied to glucose detection. PMID:26753713

  19. OPAD data analysis. [Optical Plumes Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.; Kraft, Richard; Whitaker, Kevin; Cooper, Anita E.; Powers, W. T.; Wallace, Tim L.

    1993-01-01

    Data obtained in the framework of an Optical Plume Anomaly Detection (OPAD) program intended to create a rocket engine health monitor based on spectrometric detections of anomalous atomic and molecular species in the exhaust plume are analyzed. The major results include techniques for handling data noise, methods for registration of spectra to wavelength, and a simple automatic process for estimating the metallic component of a spectrum.

  20. Detectivity comparison of bolometric optical antennas

    NASA Astrophysics Data System (ADS)

    Cuadrado, Alexander; López-Alonso, José M.; Martínez-Antón, Juan C.; Ezquerro, Jose M.; González, Francisco J.; Alda, Javier

    2015-08-01

    The practical application of optical antennas in detection devices strongly depends on its ability to produce an acceptable signal-to-noise ratio for the given task. It is known that, due to the intrinsic problems arising from its sub-wavelength dimensions, optical antennas produce very small signals. The quality of these signals depends on the involved transduction mechanism. The contribution of different types of noise should be adapted to the transducer and to the signal extraction regime. Once noise is evaluated and measured, the specific detectivity, D*, becomes the parameter of interest when comparing the performance of antenna coupled devices with other detectors. However, this parameter involves some magnitudes that can be defined in several ways for optical antennas. In this contribution we are interested in the evaluation and comparison of D_ values for several bolometric optical antennas working in the infrared and involving two materials. At the same time, some material and geometrical parameters involved in the definition of noise and detectivity will be discussed to analyze the suitability of D_ to properly account for the performance of optical antennas.

  1. Hunting for Optical Companions to Binary Msps in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2009-07-01

    Here we present a proposal which exploits the re-newed potential of HST after the Service Mission 4 for probing the population of binary Millisecond Pulsars {MSPs} in Globular Clusters. In particular we intend to: {1} extend the search for optical counterparts in Terzan 5, by pushing the performance of the WFC3 IR channel to sample the entire MS extension down to M=0.1 Mo; {2} perform a deep multi-band search of MSP companions with the WFC3, in 3 clusters {namely NGC6440, M28 and M5}, where recent radio observations have found particularly interesting objects; {3} derive an accurate radial velocity {with STIS} of the puzzling optical companion COM6266B recently discovered by our group, to firmly assess its cluster membership.This program is the result of a large collaboration among the three major groups {lead by Freire, Ransom and Possenti} which are performing extensive MSP search in GCs in the radio bands, and our group which has a large experience in performing accurate stellar photometry in crowded environments. This collaboration has produced a number of outstanding discoveries. In fact, three of the 6 optical counterparts to binary MSP companions known to date in GCs have been discovered by our group. The observations here proposed would easily double/triple the existing sample of known MSP companions, allowing the first meaningful approach to the study of the formation, evolution and recycling process of pulsar in GCs. Moreover, since most of binary MSPs in GCs are thought to form via stellar interactions in the high density core regions, the determination of the nature of the companion and the incidence of this collisionally induced population has a significant impact on our knowledge of the cluster dynamics. Even more interesting, the study of the optical companions to NSs in GCs allows one to derive tighter constraints {than those obtainable for NS binaries in the Galactic field} on the system properties. This has, in turn, an intrisic importance for

  2. On the Origin of Optical Filaments in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mohr, R. D., Jr.; Dupke, R. A.; White, R. E., III

    1997-05-01

    We present preliminary results of a test of competing scenarios for the formation of dusty optical filaments in the dominant galaxies at the centers of some cluster cooling flows. Two models are compared: the capture or disruption of gas-rich galaxies (Sparks, Ford & Kinney 1993) and the standard cooling flow condensate model (Mathews & Bregman 1978). The pros and cons of each model are discussed based on detailed morphological analysis of filaments and their possible association with galaxies in Abell 1795 and Abell 426.

  3. Reset Tree-Based Optical Fault Detection

    PubMed Central

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  4. Reset tree-based optical fault detection.

    PubMed

    Lee, Dong-Geon; Choi, Dooho; Seo, Jungtaek; Kim, Howon

    2013-01-01

    In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit's reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool. PMID:23698267

  5. Supersoft X-ray transient leads to the discovery of the second optical nova in a M 31 globular cluster

    NASA Astrophysics Data System (ADS)

    Henze, M.; Pietsch, W.; Burwitz, V.; Lloyd, J.; Hornoch, K.; Nishiyama, K.; Kabashima, F.; Kaur, A.; Hartmann, D. H.; Milne, P.; Williams, G.

    2010-11-01

    Alerted by the detection of a transient supersoft X-ray source (SSS) in the M 31 globular cluster (GC) Bol 126 (see ATel #3013), we investigated the long-term optical light curve of Bol 126 based on our monitoring of M 31 with the robotic 60cm telescope with an E2V CCD (2kx2k, 13.5 micron sq. pixels) of the Livermore Optical Transient Imaging System (Super- LOTIS, located at Steward Observatory, Kitt Peak, Arizona, USA).

  6. Optical detection of radon decay in air

    PubMed Central

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-01-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber. PMID:26867800

  7. Optical detection of radon decay in air

    NASA Astrophysics Data System (ADS)

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Toivonen, Harri; Toivonen, Juha

    2016-02-01

    An optical radon detection method is presented. Radon decay is directly measured by observing the secondary radiolumines cence light that alpha particles excite in air, and the selectivity of coincident photon detection is further enhanced with online pulse-shape analysis. The sensitivity of a demonstration device was 6.5 cps/Bq/l and the minimum detectable concentration was 12 Bq/m3 with a 1 h integration time. The presented technique paves the way for optical approaches in rapid radon detec tion, and it can be applied beyond radon to the analysis of any alpha-active sample which can be placed in the measurement chamber.

  8. XMM-Newton Observations of Optically Selected Sloan Digital Sky Survey Clusters

    NASA Astrophysics Data System (ADS)

    Plionis, M.; Basilakos, S.; Georgantopoulos, I.; Georgakakis, A.

    2005-03-01

    We explore the X-ray properties of a subset of the optically selected Sloan Digital Sky Survey (SDSS) cluster sample of Goto et al. by analyzing seven public XMM-Newton pointings, with exposure times ranging from ~4 to 46 ks. There are in total 17 SDSS clusters out of which only eight are detected at X-ray wavelengths with f0.5-2keV>~1.2×10-14 ergs cm-2 s-1. For the remaining nine SDSS clusters, we estimate their 3 σ luminosity upper limits (corresponding to LX<~5×1042 ergs s-1 in the 0.5-2 keV band). This relatively low luminosity suggests that if they are real structures, these galaxy aggregations correspond to poor groups of galaxies. Using the SDSS photometric catalog, we also derive the cluster optical r-band luminosities. The resulting scaling relations (Lopt-LX, Lopt-TX) are consistent with those of other recent studies.

  9. Optical sensor for rapid microbial detection

    NASA Astrophysics Data System (ADS)

    Al-Adhami, Mustafa; Tilahun, Dagmawi; Rao, Govind; Kostov, Yordan

    2016-05-01

    In biotechnology, the ability to instantly detect contaminants is key to running a reliable bioprocess. Bioprocesses are prone to be contaminated by cells that are abundant in our environment; detection and quantification of these cells would aid in the preservation of the bioprocess product. This paper discusses the design and development of a portable kinetics fluorometer which acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye, and plots it. Resazurin is used as an indicator dye since the viable contaminant cells reduce Resazurin toResorufin, the latter being strongly fluorescent. A photodiode detects fluorescence change by generating current proportional to the intensity of the light that reached it, and a trans-impedance differential op-amp ensures amplification of the photodiodes' signal. A microfluidic chip was designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the Resazurin reduction rate. E. coli in LB media, along with Resazurin were injected into the microfluidic chip. The optical sensor detected the presence of E. coli in the media based on the fluorescence change that occurred in the indicator dye in concentrations as low as 10 CFU/ml. A method was devised to detect and determine an approximate amount of contamination with this device. This paper discusses application of this method to detect and estimate sample contamination. This device provides fast, accurate, and inexpensive means to optically detect the presence of viable cells.

  10. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sonjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySenseTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  11. Distributed fiber optic fuel leak detection system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Kempen, C.; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    With the increase worldwide demand for hydrocarbon fuels and the vast development of new fuel production and delivery infrastructure installations around the world, there is a growing need for reliable fuel leak detection technologies to provide safety and reduce environmental risks. Hydrocarbon leaks (gas or liquid) pose an extreme danger and need to be detected very quickly to avoid potential disasters. Gas leaks have the greatest potential for causing damage due to the explosion risk from the dispersion of gas clouds. This paper describes progress towards the development of a fast response, high sensitivity, distributed fiber optic fuel leak detection (HySensTM) system based on the use of an optical fiber that uses a hydrocarbon sensitive fluorescent coating to detect the presence of fuel leaks present in close proximity along the length of the sensor fiber. The HySenseTM system operates in two modes, leak detection and leak localization, and will trigger an alarm within seconds of exposure contact. The fast and accurate response of the sensor provides reliable fluid leak detection for pipelines, tanks, airports, pumps, and valves to detect and minimize any potential catastrophic damage.

  12. Comparison of X-ray and optically selected galaxy clusters in the XXL-N field

    NASA Astrophysics Data System (ADS)

    Alis, Sinan; Pacaud, Florian; Pierre, Marguerite; Benoist, Christophe; Maurogordato, Sophie; Clerc, Nicolas; Faccioli, Lorenzo; Sadibekova, Tatyana

    2016-07-01

    Optically selected clusters from the CFHTLS and X-ray selected clusters from the intersecting XXL Survey are compared. We first compare the properties of the ˜100 galaxy clusters common to both catalogues in the redshift range of 0.1 < z < 1.2. Then we focus on the properties of the missed clusters on both sides and stress the impact of AGN contamination in this comparison. Finally scaling relations involving optical and X-ray quantities will be presented.

  13. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  14. Competitive SWIFT cluster templates enhance detection of aging changes

    PubMed Central

    Rebhahn, Jonathan A.; Roumanes, David R.; Qi, Yilin; Khan, Atif; Thakar, Juilee; Rosenberg, Alex; Lee, F. Eun‐Hyung; Quataert, Sally A.; Sharma, Gaurav

    2015-01-01

    Abstract Clustering‐based algorithms for automated analysis of flow cytometry datasets have achieved more efficient and objective analysis than manual processing. Clustering organizes flow cytometry data into subpopulations with substantially homogenous characteristics but does not directly address the important problem of identifying the salient differences in subpopulations between subjects and groups. Here, we address this problem by augmenting SWIFT—a mixture model based clustering algorithm reported previously. First, we show that SWIFT clustering using a “template” mixture model, in which all subpopulations are represented, identifies small differences in cell numbers per subpopulation between samples. Second, we demonstrate that resolution of inter‐sample differences is increased by “competition” wherein a joint model is formed by combining the mixture model templates obtained from different groups. In the joint model, clusters from individual groups compete for the assignment of cells, sharpening differences between samples, particularly differences representing subpopulation shifts that are masked under clustering with a single template model. The benefit of competition was demonstrated first with a semisynthetic dataset obtained by deliberately shifting a known subpopulation within an actual flow cytometry sample. Single templates correctly identified changes in the number of cells in the subpopulation, but only the competition method detected small changes in median fluorescence. In further validation studies, competition identified a larger number of significantly altered subpopulations between young and elderly subjects. This enrichment was specific, because competition between templates from consensus male and female samples did not improve the detection of age‐related differences. Several changes between the young and elderly identified by SWIFT template competition were consistent with known alterations in the elderly, and additional

  15. Detecting space-time cancer clusters using residential histories

    NASA Astrophysics Data System (ADS)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  16. Clustering and community detection in directed networks: A survey

    NASA Astrophysics Data System (ADS)

    Malliaros, Fragkiskos D.; Vazirgiannis, Michalis

    2013-12-01

    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges nonsymmetric as the source node transmits some property to the target one but not vice versa. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of relevant application domains. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method sought and the primary tool for community detection and evaluation. The goal of this paper is to offer an in-depth comparative review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.

  17. Frequency skewed optical pulses for range detection

    NASA Astrophysics Data System (ADS)

    Ozharar, Sarper; Gee, Sangyoun; Quinlan, Franklyn; Delfyett, Peter J., Jr.

    2007-04-01

    Frequency skewed optical pulses are generated via both a composite cavity structure in a fiberized semiconductor optical amplifier ring laser and a frequency skew loop outside the laser cavity. The composite cavity technique is similar to rational harmonic mode-locking, however it is based on cavity detuning rather than frequency detuning. These frequency skewed pulses are ideal for range detection applications since their interference results in a range dependent RF signal. The intracavity frequency skewed pulse train showed superior performance in both stability and signal quality.

  18. Nanoscale Cluster Detection in Massive Atom Probe Tomography Data

    SciTech Connect

    Seal, Sudip K; Yoginath, Srikanth B; Miller, Michael K

    2014-01-01

    Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.

  19. Gaseous hydrogen leakage optical fibre detection system

    NASA Astrophysics Data System (ADS)

    Trouillet, Alain; Veillas, Colette; Sigronde, E.; Gagnaire, Henri; Clement, Michel

    2004-06-01

    Liquid hydrogen has been intensively used in aerospace applications during the past forty years and is of great interest for fuel cells technologies and future automotive applications. Following upon major explosive risks due to the use of hydrogen in air, previous studies were carried out in our laboratory in order to develop optical fiber sensors for the detection of hydrogen leakage. This communication is aimed towards a prototype optical fiber system designed for the detection of gaseous hydrogen leakage near the conecting flanges of the liquid hydrogen pipes on the test bench of the engine Vulcain of the rocket ARIANE V. Depending on the configuration, the prototype sensor provides a two-level alarm signal and the detection of gaseous hydrogen leakage is possible for concentrations lower than the lower explosive limit in air (between 0.1 and 4%) with alarm response times lower than 10 seconds in a wide range of temperatures between -35°C and 300°C. The sensing principle based on palladium-hydrogen interaction is presented as well as the detection system composed of an optical fiber probe and an optoelectronic device.

  20. The Atacama Cosmology Telescope: Relation Between Galaxy Cluster Optical Richness and Sunyaev-Zel'dovich Effect

    NASA Technical Reports Server (NTRS)

    Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Kosowsky, Arthur; Lin, Yen-Ting; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menateau, Felipe; Moodley, Kavilan; Wollack, Ed

    2012-01-01

    We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the

  1. Optical and X-ray profiles in the REXCESS sample of galaxy clusters*

    NASA Astrophysics Data System (ADS)

    Holland, John G.; Böhringer, Hans; Chon, Gayoung; Pierini, Daniele

    2015-04-01

    Galaxy clusters' structure, dominated by dark matter, is traced by member galaxies in the optical and hot intracluster medium (ICM) in X-rays. We compare the radial distribution of these components and determine the mass-to-light ratio versus system mass relation. We use 14 clusters from the REXCESS sample which is representative of clusters detected in X-ray surveys. Photometric observations with the Wide Field Imager on the 2.2 m Max-Planck-Gesellschaft/European Southern Observatory telescope are used to determine the number density profiles of the galaxy distribution out to r200. These are compared to electron density profiles of the ICM obtained using XMM-Newton, and dark matter profiles inferred from scaling relations and a Navarro-Frenk-White model. While red sequence galaxies trace the total matter profile, the blue galaxy distribution is much shallower. We see a deficit of faint galaxies in the central regions of massive and regular clusters, and strong suppression of bright and faint blue galaxies in the centres of cool-core clusters, attributable to ram pressure stripping of gas from blue galaxies in high-density regions of ICM and disruption of faint galaxies due to galaxy interactions. We find a mass-to-light ratio versus mass relation within r200 of (3.0 ± 0.4) × 10^2 h M_{⊙} L_{⊙}^{-1} at 1015 M⊙ with slope 0.16 ± 0.14, consistent with most previous results.

  2. Automatic detection of clustered microcalcifications in digitized mammogram films

    NASA Astrophysics Data System (ADS)

    Yu, Songyang; Guan, Ling; Brown, Stephen

    1999-01-01

    The existence of clustered microcalcifications is one of the important early signs of breast cancer. This paper presents an image processing procedure for the automatic detection of clustered microcalcifications in digitized mammograms. In particular, a sensitivity range of around one false positive per image is targeted. The proposed method consists of two main steps. First, possible microcalcification pixels in the mammograms are segmented out using wavelet features or both wavelet features and gray level statistical features, and labeled into potential individual microcalcification objects by their spatial connectivity. Second, individual microcalcifications are detected by using the structure features extracted from the potential microcalcification objects. The classifiers used in these two steps are feedforward neutral networks. The method is applied to a database of 40 mammograms (Nijmegen database) containing 105 clusters of microcalcifications. A free response operating characteristics curve is used to evaluate the performance. Results show that the proposed procedure gives quite satisfactory detection performance. In particular, a 93% mean true positive detection rate is achieved at the price of one false positive per image when both wavelet features and gray level statistical features are used in the first step.

  3. The Detection and Statistics of Giant Arcs behind CLASH Clusters

    NASA Astrophysics Data System (ADS)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Seitz, Stella; Zitrin, Adi; Merten, Julian; Maoz, Dani; Frye, Brenda; Umetsu, Keiichi; Zheng, Wei; Bradley, Larry; Vega, Jesus; Koekemoer, Anton

    2016-02-01

    We developed an algorithm to find and characterize gravitationally lensed galaxies (arcs) to perform a comparison of the observed and simulated arc abundance. Observations are from the Cluster Lensing And Supernova survey with Hubble (CLASH). Simulated CLASH images are created using the MOKA package and also clusters selected from the high-resolution, hydrodynamical simulations, MUSIC, over the same mass and redshift range as the CLASH sample. The algorithm's arc elongation accuracy, completeness, and false positive rate are determined and used to compute an estimate of the true arc abundance. We derive a lensing efficiency of 4 ± 1 arcs (with length ≥6″ and length-to-width ratio ≥7) per cluster for the X-ray-selected CLASH sample, 4 ± 1 arcs per cluster for the MOKA-simulated sample, and 3 ± 1 arcs per cluster for the MUSIC-simulated sample. The observed and simulated arc statistics are in full agreement. We measure the photometric redshifts of all detected arcs and find a median redshift zs = 1.9 with 33% of the detected arcs having zs > 3. We find that the arc abundance does not depend strongly on the source redshift distribution but is sensitive to the mass distribution of the dark matter halos (e.g., the c-M relation). Our results show that consistency between the observed and simulated distributions of lensed arc sizes and axial ratios can be achieved by using cluster-lensing simulations that are carefully matched to the selection criteria used in the observations.

  4. Optical imaging module for astigmatic detection system.

    PubMed

    Wang, Wei-Min; Cheng, Chung-Hsiang; Molnar, Gabor; Hwang, Ing-Shouh; Huang, Kuang-Yuh; Danzebrink, Hans-Ulrich; Hwu, En-Te

    2016-05-01

    In this paper, an optical imaging module design for an astigmatic detection system (ADS) is presented. The module is based on a commercial optical pickup unit (OPU) and it contains a coaxial illuminant for illuminating a specimen. Furthermore, the imaging module facilitates viewing the specimen and the detection laser spot of the ADS with a lateral resolution of approximately 1 μm without requiring the removal of an element of the OPU. Two polarizers and one infrared filter are used to eliminate stray laser light in the OPU and stray light produced by the illuminant. Imaging modules designed for digital versatile disks (DVDs) and Blu-ray DVDs were demonstrated. Furthermore, the module can be used for imaging a small cantilever with approximate dimensions of 2 μm (width) × 5 μm (length), and therefore, it has the potential to be used in high-speed atomic force microscopy. PMID:27250434

  5. Optic disc detection using ant colony optimization

    NASA Astrophysics Data System (ADS)

    Dias, Marcy A.; Monteiro, Fernando C.

    2012-09-01

    The retinal fundus images are used in the treatment and diagnosis of several eye diseases, such as diabetic retinopathy and glaucoma. This paper proposes a new method to detect the optic disc (OD) automatically, due to the fact that the knowledge of the OD location is essential to the automatic analysis of retinal images. Ant Colony Optimization (ACO) is an optimization algorithm inspired by the foraging behaviour of some ant species that has been applied in image processing for edge detection. Recently, the ACO was used in fundus images to detect edges, and therefore, to segment the OD and other anatomical retinal structures. We present an algorithm for the detection of OD in the retina which takes advantage of the Gabor wavelet transform, entropy and ACO algorithm. Forty images of the retina from DRIVE database were used to evaluate the performance of our method.

  6. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  7. Optical Detection of Life on Exoplanets

    NASA Technical Reports Server (NTRS)

    Heap, Sara

    2009-01-01

    We describe what is known about the atmospheric properties (Teff, lob g, [FelH]) and fundamental properties (mass, age, and metal content) of nearby stars and how they influence the habitable zones and habitable eras of these stars. We then take an observer's point of view to assess the ability of optical telescopes to detect photosynthetic or methanogenic life on planets orbiting these stars.

  8. A new detection algorithm for microcalcification clusters in mammographic screening

    NASA Astrophysics Data System (ADS)

    Xie, Weiying; Ma, Yide; Li, Yunsong

    2015-05-01

    A novel approach for microcalcification clusters detection is proposed. At the first time, we make a short analysis of mammographic images with microcalcification lesions to confirm these lesions have much greater gray values than normal regions. After summarizing the specific feature of microcalcification clusters in mammographic screening, we make more focus on preprocessing step including eliminating the background, image enhancement and eliminating the pectoral muscle. In detail, Chan-Vese Model is used for eliminating background. Then, we do the application of combining morphology method and edge detection method. After the AND operation and Sobel filter, we use Hough Transform, it can be seen that the result have outperformed for eliminating the pectoral muscle which is approximately the gray of microcalcification. Additionally, the enhancement step is achieved by morphology. We make effort on mammographic image preprocessing to achieve lower computational complexity. As well known, it is difficult to robustly achieve mammograms analysis due to low contrast between normal and lesion tissues, there are also much noise in such images. After a serious preprocessing algorithm, a method based on blob detection is performed to microcalcification clusters according their specific features. The proposed algorithm has employed Laplace operator to improve Difference of Gaussians (DoG) function in terms of low contrast images. A preliminary evaluation of the proposed method performs on a known public database namely MIAS, rather than synthetic images. The comparison experiments and Cohen's kappa coefficients all demonstrate that our proposed approach can potentially obtain better microcalcification clusters detection results in terms of accuracy, sensitivity and specificity.

  9. Relevance vector machine for automatic detection of clustered microcalcifications.

    PubMed

    Wei, Liyang; Yang, Yongyi; Nishikawa, Robert M; Wernick, Miles N; Edwards, Alexandra

    2005-10-01

    Clustered microcalcifications (MC) in mammograms can be an important early sign of breast cancer in women. Their accurate detection is important in computer-aided detection (CADe). In this paper, we propose the use of a recently developed machine-learning technique--relevance vector machine (RVM)--for detection of MCs in digital mammograms. RVM is based on Bayesian estimation theory, of which a distinctive feature is that it can yield a sparse decision function that is defined by only a very small number of so-called relevance vectors. By exploiting this sparse property of the RVM, we develop computerized detection algorithms that are not only accurate but also computationally efficient for MC detection in mammograms. We formulate MC detection as a supervised-learning problem, and apply RVM as a classifier to determine at each location in the mammogram if an MC object is present or not. To increase the computation speed further, we develop a two-stage classification network, in which a computationally much simpler linear RVM classifier is applied first to quickly eliminate the overwhelming majority, non-MC pixels in a mammogram from any further consideration. The proposed method is evaluated using a database of 141 clinical mammograms (all containing MCs), and compared with a well-tested support vector machine (SVM) classifier. The detection performance is evaluated using free-response receiver operating characteristic (FROC) curves. It is demonstrated in our experiments that the RVM classifier could greatly reduce the computational complexity of the SVM while maintaining its best detection accuracy. In particular, the two-stage RVM approach could reduce the detection time from 250 s for SVM to 7.26 s for a mammogram (nearly 35-fold reduction). Thus, the proposed RVM classifier is more advantageous for real-time processing of MC clusters in mammograms. PMID:16229415

  10. Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering.

    PubMed

    Boari de Lima, Elisa; Meira, Wagner; Melo-Minardi, Raquel Cardoso de

    2016-06-01

    As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem's complexity. Hence, this work's purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting

  11. Isofunctional Protein Subfamily Detection Using Data Integration and Spectral Clustering

    PubMed Central

    Boari de Lima, Elisa; Meira, Wagner; de Melo-Minardi, Raquel Cardoso

    2016-01-01

    As increasingly more genomes are sequenced, the vast majority of proteins may only be annotated computationally, given experimental investigation is extremely costly. This highlights the need for computational methods to determine protein functions quickly and reliably. We believe dividing a protein family into subtypes which share specific functions uncommon to the whole family reduces the function annotation problem’s complexity. Hence, this work’s purpose is to detect isofunctional subfamilies inside a family of unknown function, while identifying differentiating residues. Similarity between protein pairs according to various properties is interpreted as functional similarity evidence. Data are integrated using genetic programming and provided to a spectral clustering algorithm, which creates clusters of similar proteins. The proposed framework was applied to well-known protein families and to a family of unknown function, then compared to ASMC. Results showed our fully automated technique obtained better clusters than ASMC for two families, besides equivalent results for other two, including one whose clusters were manually defined. Clusters produced by our framework showed great correspondence with the known subfamilies, besides being more contrasting than those produced by ASMC. Additionally, for the families whose specificity determining positions are known, such residues were among those our technique considered most important to differentiate a given group. When run with the crotonase and enolase SFLD superfamilies, the results showed great agreement with this gold-standard. Best results consistently involved multiple data types, thus confirming our hypothesis that similarities according to different knowledge domains may be used as functional similarity evidence. Our main contributions are the proposed strategy for selecting and integrating data types, along with the ability to work with noisy and incomplete data; domain knowledge usage for detecting

  12. Renewable Surface Biosensors with Optical Detection

    SciTech Connect

    Bruckner-Lea, Cindy J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-04-30

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  13. Renewable Surface Biosensors With Optical Detection

    SciTech Connect

    Bruckner-Lea, Cynthia J.; Ackerman, Eric J.; Dockendorff, Brian P.; Holman, David A.; Grate, Jay W.

    2001-12-01

    One major challenge in the development of biosensors is the limited lifetime of a chemically selective surface that includes biomolecules. Renewable surface biosensors address this issue by using fresh aliquots of derivatized microbeads for each analysis. The analyte detection can then occur on the microbeads, or downstream from the microbeads. In this paper, we will describe two types of renewable surface biosensors. The first renewable biosensor system includes on-column optical detection for monitoring the binding of biomolecules onto protein or DNA-derivatized Sepharose beads. The second renewable biosensor system includes detection downstream from the microparticles and is based on the use of derivatized magnetic particles for selective binding. The magnetic particles are fluidically captured and released in a sequential injection system to allow the automation of an Enzyme Linked ImmunoSorbent Assay.

  14. Detecting multiatomic composite states in optical lattices

    NASA Astrophysics Data System (ADS)

    Kuklov, Anatoly; Moritz, Henning

    2007-01-01

    We propose and discuss methods for detecting quasimolecular complexes which are expected to form in strongly interacting optical lattice systems. Particular emphasis is placed on the detection of composite fermions forming in Bose-Fermi mixtures. We argue that, as an indirect indication of the composite fermions and a generic consequence of strong interactions, periodic correlations must appear in the atom shot noise of bosonic absorption images, similar to the bosonic Mott insulator [S. Fölling , Nature (London) 434, 481 (2005)]. The composites can also be detected directly and their quasimomentum distribution measured. This method—an extension of the technique of noise correlation interferometry [E. Altman , Phys. Rev. A 79, 013603 (2004)]—relies on measuring higher order correlations between the bosonic and fermionic shot noise in the absorption images. However, it fails above a certain number of the constituents due to a dramatic increase of uncorrelated noise.

  15. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    SciTech Connect

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G.; Rodríguez-Puebla, Aldo E-mail: riccardo@astro.cornell.edu E-mail: jonesmg@astro.cornell.edu

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  16. Optical imaging of individual biomolecules in densely packed clusters.

    PubMed

    Dai, Mingjie; Jungmann, Ralf; Yin, Peng

    2016-09-01

    Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10-20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumulation for imaging in nanoscale topography)-a super-resolution fluorescence microscopy technique that exploits programmable transient oligonucleotide hybridization-on synthetic DNA nanostructures. We examined the effects of a high photon count, high blinking statistics and an appropriate blinking duty cycle on imaging quality, and developed a software-based drift correction method that achieves <1 nm residual drift (root mean squared) over hours. This allowed us to image a densely packed triangular lattice pattern with ∼5 nm point-to-point distance and to analyse the DNA origami structural offset with ångström-level precision (2 Å) from single-molecule studies. By combining the approach with multiplexed exchange-PAINT imaging, we further demonstrated an optical nanodisplay with 5 × 5 nm pixel size and three distinct colours with <1 nm cross-channel registration accuracy. PMID:27376244

  17. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  18. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.

    PubMed

    Philip, Reji; Chantharasupawong, Panit; Qian, Huifeng; Jin, Rongchao; Thomas, Jayan

    2012-09-12

    Atomic clusters of metals are an emerging class of extremely interesting materials occupying the intermediate size regime between atoms and nanoparticles. Here we report the nonlinear optical (NLO) characteristics of ultrasmall, atomically precise clusters of gold, which are smaller than the critical size for electronic energy quantization (∼2 nm). Our studies reveal remarkable features of the distinct evolution of the optical nonlinearity as the clusters progress in size from the nonplasmonic regime to the plasmonic regime. We ascertain that the smallest atomic clusters do not show saturable absorption at the surface plasmon wavelength of larger gold nanocrystals (>2 nm). Consequently, the third-order optical nonlinearity in these ultrasmall gold clusters exhibits a significantly lower threshold for optical power limiting. This limiting efficiency, which is superior to that of plasmonic nanocrystals, is highly beneficial for optical limiting applications. PMID:22845756

  19. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    SciTech Connect

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  20. Enhancement of optical detectability with polarization

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1999-07-01

    Low detectability is a major consideration for combat platforms. Exposed surfaces are painted or coated black to minimize optical or near infrared detectability; this is a fallacy in regard to polarization. The percent polarization of a diffuse (non specular) surface is inversely proportional to the surface reflectance (also known as albedo). Thus a dark surface with a reflectance of 2% can have a percent polarization of approximately 100%. (The percent polarization is the ratio of the difference between two orthogonal polarized measurements ratioed to the sum multiplied by 100). Experimental measurements of diffuse surfaces with albedos between 2% and 90% show this inverse relationship to be obeyed from the ultraviolet to the near infrared. Imagery has been obtained on various aircraft coatings that verify the inverse relationship between surface albedo and percent polarization in the green, red and near infrared wavelength bands. The imagery was obtained in the three bands with the Kodak digital cameras, which downloaded on to CD ROMs. Imagery has also been obtained on laboratory samples that verify the inverse relationship between albedo and polarization. The conclusion is that very high polarization of a dark aircraft enhances the detectability such that it is easily recognized optically using polarization. This effect has not been recognized in signature reduction. Imagery will be presented and the inverse relationship between surface albedo and percent polarization will be demonstrated.

  1. Optical and infrared detection using microcantilevers

    SciTech Connect

    Oden, P.I.; Datskos, P.G.; Warmack, R.J. |; Wachter, E.A.; Thundat, T.

    1996-05-01

    The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple means for developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. Bending is proportional to the amount of heat absorbed and can be detected using optical or electrical methods such as resistance changes in piezoresistive cantilevers. The microcantilever sensors exhibit two distinct thermal responses: a fast one ({theta}{sub 1}{sup thermal} < ms) and a slower one ({tau}{sub 2}{sup thermal} {approximately} 10 ms). A noise equivalent temperature difference, NEDT = 90 mK was measured. When uncoated microcantilevers were irradiated by a low-power diode laser ({lambda} = 786 nm) the noise equivalent power, NEP, was found to be 3.5nW/{radical}Hz which corresponds to a specific detectivity, D*, of 3.6 {times} 10{sup 7} cm {center_dot} {radical}Hz/W at a modulation frequency of 20 Hz.

  2. A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996 – 2003

    PubMed Central

    Wheeler, David C

    2007-01-01

    Background Spatial cluster detection is an important tool in cancer surveillance to identify areas of elevated risk and to generate hypotheses about cancer etiology. There are many cluster detection methods used in spatial epidemiology to investigate suspicious groupings of cancer occurrences in regional count data and case-control data, where controls are sampled from the at-risk population. Numerous studies in the literature have focused on childhood leukemia because of its relatively large incidence among children compared with other malignant diseases and substantial public concern over elevated leukemia incidence. The main focus of this paper is an analysis of the spatial distribution of leukemia incidence among children from 0 to 14 years of age in Ohio from 1996–2003 using individual case data from the Ohio Cancer Incidence Surveillance System (OCISS). Specifically, we explore whether there is statistically significant global clustering and if there are statistically significant local clusters of individual leukemia cases in Ohio using numerous published methods of spatial cluster detection, including spatial point process summary methods, a nearest neighbor method, and a local rate scanning method. We use the K function, Cuzick and Edward's method, and the kernel intensity function to test for significant global clustering and the kernel intensity function and Kulldorff's spatial scan statistic in SaTScan to test for significant local clusters. Results We found some evidence, although inconclusive, of significant local clusters in childhood leukemia in Ohio, but no significant overall clustering. The findings from the local cluster detection analyses are not consistent for the different cluster detection techniques, where the spatial scan method in SaTScan does not find statistically significant local clusters, while the kernel intensity function method suggests statistically significant clusters in areas of central, southern, and eastern Ohio. The

  3. A 2163: Merger events in the hottest Abell galaxy cluster. I. Dynamical analysis from optical data

    NASA Astrophysics Data System (ADS)

    Maurogordato, S.; Cappi, A.; Ferrari, C.; Benoist, C.; Mars, G.; Soucail, G.; Arnaud, M.; Pratt, G. W.; Bourdin, H.; Sauvageot, J.-L.

    2008-04-01

    Context: A 2163 is among the richest and most distant Abell clusters, presenting outstanding properties in different wavelength domains. X-ray observations have revealed a distorted gas morphology and strong features have been detected in the temperature map, suggesting that merging processes are important in this cluster. However, the merging scenario is not yet well-defined. Aims: We have undertaken a complementary optical analysis, aiming to understand the dynamics of the system, to constrain the merging scenario and to test its effect on the properties of galaxies. Methods: We present a detailed optical analysis of A 2163 based on new multicolor wide-field imaging and medium-to-high resolution spectroscopy of several hundred galaxies. Results: The projected galaxy density distribution shows strong subclustering with two dominant structures: a main central component (A), and a northern component (B), visible both in optical and in X-ray, with two other substructures detected at high significance in the optical. At magnitudes fainter than R=19, the galaxy distribution shows a clear elongation approximately with the east-west axis extending over 4~h70-1 Mpc, while a nearly perpendicular bridge of galaxies along the north-south axis appears to connect (B) to (A). The (A) component shows a bimodal morphology, and the positions of its two density peaks depend on galaxy luminosity: at magnitudes fainter than R = 19, the axis joining the peaks shows a counterclockwise rotation (from NE/SW to E-W) centered on the position of the X-ray maximum. Our final spectroscopic catalog of 512 objects includes 476 new galaxy redshifts. We have identified 361 galaxies as cluster members; among them, 326 have high precision redshift measurements, which allow us to perform a detailed dynamical analysis of unprecedented accuracy. The cluster mean redshift and velocity dispersion are respectively z= 0.2005 ± 0.0003 and 1434 ± 60 km s-1. We spectroscopically confirm that the northern

  4. Open cluster detection in extensive sky regions using astrometric parameters

    NASA Astrophysics Data System (ADS)

    Paíz, L. G.; De Biasi, M. S.; Orellana, R. B.

    2014-10-01

    We developed a non-parametric method for identifying open clusters in large areas of the sky using stellar position and proper motions. Two binary codes were established from the analysis of the empirical probability density functions in position and proper motion, after eliminating field stars contamination. For each star, these codes provided a parameter indicating the star belongingness to spatial and proper motion overdensities. The method was tested in a region of 4°×5° where Collinder 140 and Collinder 132 are located. 1300 stars up to the magnitude R=11 were obtained from UCAC2 and its supplement UCAC2 BSS catalogue. We detected six stellar groups having spatial and proper motion overdensities. A detailed analysis revealed that three of them could be open clusters. We confirmed that one of them is Collinder 140, for which mean coordinates (mathaccent α,mathaccent δ)=(110.8°,-32.0°), a radius of about 12' and mean proper motion components (mathaccent μ_{α} cosδ,mathaccent μ_{δ})=(9,4) mas/yr were obtained, in good agreement with the literature. The other two possible clusters have members fainter than magnitude 10.0 and they are not found in the literature. Related to Collinder 132, the low density of the data used in the area did not allow to detect it.

  5. Long-wave infrared polarimetric cluster-based vehicle detection.

    PubMed

    Dickson, Christopher N; Wallace, Andrew M; Kitchin, Matthew; Connor, Barry

    2015-12-01

    The sensory perception of other vehicles in cluttered environments is an essential component of situational awareness for a mobile vehicle. However, vehicle detection is normally applied to visible imagery sequences, while in this paper we investigate how polarized, infrared imagery can add additional discriminatory power. Using knowledge about the properties of the objects of interest and the scene environment, we have developed a polarimetric cluster-based descriptor to detect vehicles using long-wave infrared radiation in the range of 8-12 μm. Our approach outperforms both intensity and polarimetric image histogram descriptors applied to the infrared data. For example, at a false positive rate of 0.01 per detection window, our cluster approach results in a true positive rate of 0.63 compared to a rate of 0.05 for a histogram of gradient descriptor trained and tested on the same dataset. In conclusion, we discuss the potential of this new approach in comparison with state-of-the-art infrared and conventional video detection. PMID:26831384

  6. Multi-skin color clustering models for face detection

    NASA Astrophysics Data System (ADS)

    Zainuddin, Roziati; Naji, Sinan A.

    2010-02-01

    Automatic face detection in colored images is closely related to face recognition systems, as a preliminary critical required step, where it is necessary to search for the precise face location. We propose a reliable approach for skin color segmentation to detect human face in colored images under unconstrained scene conditions that overcoming the sensitivity to the variation in face size, pose, location, lighting conditions, and complex background. Our approach is based on building multi skin color clustering models using HSV color space, multi-level segmentation, and rule-based classifier. We proposed to use four skin color clustering models instead of single skin clustering model, namely: standard-skin model, shadow-skin model, light-skin model, high-red-skin model. We made an independent skin color clustering models by converting 3-D color space to 2-D without losing color information in order to find the classification boundaries for each skin color pattern class in 2-D. Once we find the classification boundaries, we process the input image with the first-level skin-color segmentation to produce four layers; each layer reflecting its skin-color clustering model. Then an iterative rule-based region grow is performed to create one solid region of interest which is presumed to be a face candidate region that will be passed to the second-level segmentation. In this approach we combine pixel-based segmentation and region-based segmentation using the four skin layers. We also propose skin-color correction (skin lighting) at shadow-skin layer to improve detection rate. In the second-level segmentation we use gray scale to segment the face candidate region into the most significant features using thresholding. Next step is to compute the X-Y-reliefs to locate the accurate position of facial features in each face candidate region and match it with our geometrical knowledge in order to classify the face candidate region to a face or non-face region. We present

  7. Ultraviolet light detection using an optical microcavity.

    PubMed

    Harker, Audrey; Mehrabani, Simin; Armani, Andrea M

    2013-09-01

    Ultraviolet (UV) light exposure is connected to both physical and psychological diseases. As such, there is significant interest in developing sensors that can detect UV light in the mW/cm2 intensity range with a high signal-to-noise ratio. In this Letter, we demonstrate a UV sensor based on a silica integrated optical microcavity that has a linear operating response in both the forward and backward directions from 14 to 53 mW/cm2. The sensor response agrees with the developed predictive theory based on a thermodynamic model. Additionally, the signal-to-noise ratio is above 100 at physiologically relevant intensity levels. PMID:23988974

  8. Flexible detection optics for light scattering

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1984-05-01

    We have designed and built a compact, modular apparatus for the collection, viewing, and detection of scattered light for less than 1200, based on a commercially available optical bench. The novelty of our instrument is that it has the flexibility of modular design while allowing the user to see exactly what is happening: both the real image of the sample and the spatial coherence of the scattered light can be examined. There is built-in control over polarization, filtering, magnification, and other parameters.

  9. Optical detection of microcystin produced by cyanobacteria

    NASA Astrophysics Data System (ADS)

    Al-Ammar, R.; Nabok, A.; Hashim, A.; Smith, T.

    2013-06-01

    Microcystin (MC-LR) produced by cyanobacteria (blue-green algae) was detected in direct immunoassay with specific monoclonal antibody MC10E7 using an optical method of Total Internal Reflection Ellipsometry (TIRE). The minimal detected concentration of MC-LR of 0.1 ng/ml is a remarkable achievement for direct immunoassay against such low molecular weight analyte molecule. The study of binding kinetics of MC-LR to MC10E7 antibody allowed the evaluation of the association constant KA of about 108 (l/Mol) typical for highly specific immune reactions. Concentration of MC-LR in aqueous solutions was reduced using an absorbent made of polyelectrolyte-coated microparticles functionalized with MC10E7 antibodies.

  10. Ionizing radiation detection using microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    DeHaven, Stanton

    Ionizing radiation detecting microstructured optical fibers are fabricated, modeled and experimentally measured for X-ray detection in the 10-40 keV energy range. These fibers operate by containing a scintillator material which emits visible light when exposed to ionizing radiation. An X-ray source characterized with a CdTe spectrometer is used to quantify the X-ray detection efficiency of the fibers. The solid state CdTe detector is considered 100% efficient in this energy range. A liquid filled microstructured optical fiber (MOF) is presented where numerical analysis and experimental observation leads to a geometric theory of photon transmission using total internal reflection. The model relates the quantity and energy of absorbed X-rays to transmitted and measured visible light photons. Experimental measurement of MOF photon counts show good quantitative agreement with calculated theoretical values. This work is extended to a solid organic scintillator, anthracene, which shows improved light output due to its material properties. A detailed description of the experimental approach used to fabricate anthracene MOF is presented. The fabrication technique uses a modified Bridgman-Stockbarger crystal growth technique to grow anthracene single crystals inside MOF. The anthracene grown in the MOF is characterized using spectrophotometry, Raman spectroscopy, and X-ray diffraction. These results show the anthracene grown is a high purity crystal with a structure similar to anthracene grown from the liquid, vapor and melt techniques. The X-ray measurement technique uses the same approach as that for liquid filled MOF for efficiency comparison. A specific fiber configuration associated with the crystal growth allows an order of magnitude improvement in X-ray detection efficiency. The effect of thin film external coatings on the measured efficiency is presented and related to the fiber optics. Lastly, inorganic alkali halide scintillator materials of CsI(Tl), CsI(Na), and

  11. On event-based optical flow detection

    PubMed Central

    Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko

    2015-01-01

    Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470

  12. A scanning method for detecting clustering pattern of both attribute and structure in social networks

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Chi; Phoa, Frederick Kin Hing

    2016-03-01

    Community/cluster is one of the most important features in social networks. Many cluster detection methods were proposed to identify such an important pattern, but few were able to identify the statistical significance of the clusters by considering the likelihood of network structure and its attributes. Based on the definition of clustering, we propose a scanning method, originated from analyzing spatial data, for identifying clusters in social networks. Since the properties of network data are more complicated than those of spatial data, we verify our method's feasibility via simulation studies. The results show that the detection powers are affected by cluster sizes and connection probabilities. According to our simulation results, the detection accuracy of structure clusters and both structure and attribute clusters detected by our proposed method is better than that of other methods in most of our simulation cases. In addition, we apply our proposed method to some empirical data to identify statistically significant clusters.

  13. Morphology and evolution of simulated and optical clusters: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Krywult, Janusz; Motl, Patrick M.; Flin, Piotr; Shandarin, Sergei F.

    2006-04-01

    We have made a comparative study of morphological evolution in simulated dark matter (DM) haloes and X-ray brightness distribution, and in optical clusters. Samples of simulated clusters include star formation with supernovae feedback, radiative cooling and simulation in the adiabatic limit at three different redshifts, z= 0.0, 0.10 and 0.25. The optical sample contains 208 Abell, Corwin & Olowin (ACO) clusters within redshift, z<= 0.25. Cluster morphology, within 0.5 and 1.0 h-1 Mpc from cluster centre, is quantified by multiplicity and ellipticity. We find that the distribution of the DM haloes in the adiabatic simulation appears to be more elongated than the galaxy clusters. Radiative cooling brings halo shapes in excellent agreement with observed clusters; however, cooling along with feedback mechanism makes the haloes more flattened. Our results indicate relatively stronger structural evolution and more clumpy distributions in observed clusters than in the structure of simulated clusters, and slower increase in simulated cluster shapes compared to those in the observed one. Within z<= 0.1, we note an interesting agreement in the shapes of clusters obtained from the cooling simulations and observation. We also note that the different samples of observed clusters differ significantly in morphological evolution with redshift. We highlight a few possibilities responsible for the discrepancy in morphological evolution of simulated and observed clusters.

  14. The dawn of wide-field Sunyaev-Zel'dovich cluster surveys: Efficient optical follow-up

    NASA Astrophysics Data System (ADS)

    High, Fredrick William

    The South Pole Telescope team has recently reported the first 21 galaxy clusters uniformly selected by a blind Sunyaev-Zel'dovich (SZ) survey. Prompt optical imaging has confirmed the existence of red-sequence galaxy overdensities at the SZ locations, and provided first estimates of their redshift and optical richness. We have also followed up a subset spectroscopically. These are some of the most massive clusters in the universe, spanning redshifts from z=0.15 to z>1, with median of 0.74. This remarkable sample serves as proof of concept for SZ cluster surveys, which will provide a new, powerful window on the nature of dark energy. We are attacking the problem of following up many hundreds or thousands of SZ detections in the coming years by developing a real-time photometric calibration tool called Stellar Locus Regression. We also attack it from a hardware standpoint by building PISCO, a simultaneous multiband CCD imager. Optimizing the observing strategy alone using SLR provides a factor of 2 in cluster-confirmation yield over standard methods, and PISCO gives another factor of 3 to 4 for z<1 clusters. Finally, we provide the first sky background characterization in the new CCD y band at Cerro Tololo in Chile, which will be used in next-generation astronomical camera systems and will provide useful additional information. as well as new challenges, for cluster studies such as this.

  15. A Joint Optical & X-ray Analysis of the Triple Merging Cluster MACS J1226.8+2153

    NASA Astrophysics Data System (ADS)

    Ferrara, Jocelyn; Bulbul, E.; Bayliss, M.

    2014-01-01

    We present a multi-wavelength characterization of the massive merging triple galaxy cluster MACSJ1226.8+2153 at z = 0.436, combining Chandra X-ray observations, deep Subaru optical imaging, and spectroscopic redshifts of hundreds of individual galaxies. We find good agreement between the spatial distribution of X-ray emission and optical light from red sequence cluster member galaxies. Redshifts of galaxies within the three cluster components are confirmed to be at a common redshift, and we detect no significant bulk line-of-sight peculiar velocity offsets between the three components. The velocity distributions of two of the individual cluster components exhibit strong bimodality, indicating that they are not completely relaxed and may have recently undergone mergers themselves. From the X-ray surface brightness and temperature profiles there is a clear shock propagating from the most massive cluster component with a Mach number M = 1.48 +/- 0.20. This shock feature could either be a remnant of a recent interaction internal to this component, or a bi-product of the early stages of merger interactions between the three cluster-scale components. We also present evidence for three large-scale filaments extending from this complex system, indicating that MACS J1226.8+2153 lies at the center of a node of the cosmic web. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  16. Alerts Visualization and Clustering in Network-based Intrusion Detection

    SciTech Connect

    Yang, Dr. Li; Gasior, Wade C; Dasireddy, Swetha

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  17. Orthology Detection Combining Clustering and Synteny for Very Large Datasets

    PubMed Central

    Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K.; Prohaska, Sonja J.; Stadler, Peter F.

    2014-01-01

    The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets. PMID:25137074

  18. Human population structure detection via multilocus genotype clustering

    PubMed Central

    Gao, Xiaoyi; Starmer, Joshua

    2007-01-01

    Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP) genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support. PMID:17592628

  19. Parallel Optical and Electrochemical DNA Detection

    NASA Astrophysics Data System (ADS)

    Knoll, Wolfgang; Liu, Jianyun; Niu, Lifang; Nielsen, Peter Eigil; Tiefenauer, Louis

    This contribution introduces strategies for the sensitive detection of oligonucleotides as bio-analytes binding from solution to a variety of probe architectures assembled at the (Au-) sensor surface. Detection principles based on surface plasmon optics and electrochemical techniques are compared. In particular, cyclic- and square wave voltammetry (SWV) are applied for the read-out of ferrocene redox labels conjugated to streptavidin that binds to the (biotinylated) DNA targets after hybridizing to the interfacial probe matrix of either DNA or peptide nucleic acid (PNA) strands. By employing streptavidin modified with fluorophores the identical sensor architecture can be used for the recording of hybridization reactions by surface plasmon fluorescence spectroscopy (SPFS). The Langmuir isotherms determined by both techniques, i.e., by SWV and SPFS, give virtually identical affinity constants KA, confirming that the mode of detection has no influence on the hybridization reaction. By using semiconducting nanoparticles as luminescence labels that can be tuned in their bandgap energies over a wide range of emission wavelengths surface plasmon fluorescence microscopy allows for the parallel read-out of multiple analyte binding events simultaneously.

  20. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  1. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  2. Automated optic disk boundary detection by modified active contour model.

    PubMed

    Xu, Juan; Chutatape, Opas; Chew, Paul

    2007-03-01

    This paper presents a novel deformable-model-based algorithm for fully automated detection of optic disk boundary in fundus images. The proposed method improves and extends the original snake (deforming-only technique) in two aspects: clustering and smoothing update. The contour points are first self-separated into edge-point group or uncertain-point group by clustering after each deformation, and these contour points are then updated by different criteria based on different groups. The updating process combines both the local and global information of the contour to achieve the balance of contour stability and accuracy. The modifications make the proposed algorithm more accurate and robust to blood vessel occlusions, noises, ill-defined edges and fuzzy contour shapes. The comparative results show that the proposed method can estimate the disk boundaries of 100 test images closer to the groundtruth, as measured by mean distance to closest point (MDCP) <3 pixels, with the better success rate when compared to those obtained by gradient vector flow snake (GVF-snake) and modified active shape models (ASM). PMID:17355059

  3. Optical detection of the superconducting proximity effect

    SciTech Connect

    Greene, L.H.; Abeyta, A.C.; Roshchin, I.V.; Robinson, I.K.; Dorsten, J.F.; Tanzer, T.A.; Bohn, P.W.

    1996-12-31

    The authors present the first detection of a superconducting proximity effect by optical techniques. Raman scattering on n{sup +}-InAs is performed through very thin, high-quality, superconducting Nb films grown directly on the (100) InAs surface. The 6 to 10 nm thick Nb films exhibit {Tc}`s of 2.5 to 5.5 K, as measured by electronic transport, and are flat to {approximately}0.5 nm, as measured by x-ray reflectivity. As the Nb/InAs structure is cooled below the superconducting transition temperature, the magnitude of the unscreened LO phonon mode, associated with the surface charge accumulation layer in the InAs, is observed to be enhanced by more than 40%. This reversible change is observed only when the Nb is in good electrical contact with the InAs.

  4. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2007-09-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed ~100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 × 10 4 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ~ 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  5. Submerged turbulence detection with optical satellites

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Keeler, R. Norris; Bondur, Valery G.; Leung, Pak T.; Prandke, H.; Vithanage, D.

    2013-01-01

    During fall periods in 2002, 2003 and 2004 three major oceanographic expeditions were carried out in Mamala Bay, Hawaii. These were part of the RASP Remote Anthropogenic Sensing Program. Ikonos and Quickbird optical satellite images of sea surface glint revealed !100 m spectral anomalies in km2 averaging patches in regions leading from the Honolulu Sand Island Municipal Outfall diffuser to distances up to 20 km. To determine the mechanisms behind this phenomenon, the RASP expeditions monitored the waters adjacent to the outfall with an array of hydrographic, optical and turbulence microstructure sensors in anomaly and ambient background regions. Drogue tracks and mean turbulence parameters for 2 ! 104 microstructure patches were analyzed to understand complex turbulence, fossil turbulence and zombie turbulence near-vertical internal wave transport processes. The dominant mechanism appears to be generic to stratified natural fluids including planet and star atmospheres and is termed beamed zombie turbulence maser action (BZTMA). Most of the bottom turbulent kinetic energy is converted to ! 100 m fossil turbulence waves. These activate secondary (zombie) turbulence in outfall fossil turbulence patches that transmit heat, mass, chemical species, momentum and information vertically to the sea surface for detection in an efficient maser action. The transport is beamed in intermittent mixing chimneys.

  6. Multimodal optical imaging for detecting breast cancer

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh; Khan, Ashraf; Wirth, Dennis; Kamionek, Michal; Kandil, Dina; Quinlan, Robert; Yaroslavsky, Anna N.

    2012-06-01

    The goal of the study was to evaluate wide-field and high-resolution multimodal optical imaging, including polarization, reflectance, and fluorescence for the intraoperative detection of breast cancer. Lumpectomy specimens were stained with 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged. Wide-field reflectance images were acquired between 390 and 750 nm. Wide-field fluorescence images were excited at 640 nm and registered between 660 and 750 nm. High resolution confocal reflectance and fluorescence images were excited at 642 nm. Confocal fluorescence images were acquired between 670 nm and 710 nm. After imaging, the specimens were processed for hematoxylin and eosin (H&E) histopathology. Histological slides were compared with wide-field and high-resolution optical images to evaluate correlation of tumor boundaries and cellular morphology, respectively. Fluorescence polarization imaging identified the location, size, and shape of the tumor in all the cases investigated. Averaged fluorescence polarization values of tumor were higher as compared to normal tissue. Statistical analysis confirmed the significance of these differences. Fluorescence confocal imaging enabled cellular-level resolution. Evaluation and statistical analysis of MB fluorescence polarization values registered from single tumor and normal cells demonstrated higher fluorescence polarization from cancer. Wide-field high-resolution fluorescence and fluorescence polarization imaging shows promise for intraoperative delineation of breast cancers.

  7. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  8. Coherent detection in optical fiber systems.

    PubMed

    Ip, Ezra; Lau, Alan Pak Tao; Barros, Daniel J F; Kahn, Joseph M

    2008-01-21

    The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years. PMID:18542153

  9. Non-virialized clusters for detection of dark energy-dark matter interaction

    NASA Astrophysics Data System (ADS)

    Le Delliou, M.; Marcondes, R. J. F.; Lima Neto, G. B.; Abdalla, E.

    2015-10-01

    The observation of galaxy and gas distributions, as well as cosmological simulations in a ΛCDM cold dark matter universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a dark matter-dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer-Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak-lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of -1.99^{+2.56}_{-16.00}, compatible with no interaction, but also a compounded rest virial ratio of -0.79 ± 0.13, which would entail a 2σ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.

  10. OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS

    SciTech Connect

    High, F. W.; Stalder, B.; Song, J.; Ade, P. A. R.; Aird, K. A.; Allam, S. S.; Buckley-Geer, E. J.; Armstrong, R.; Barkhouse, W. A.; Benson, B. A.; Bertin, E.; Bhattacharya, S.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Challis, P.; De Haan, T.

    2010-11-10

    We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.

  11. Mammographic calcification cluster detection and threshold gold thickness measurements

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Mackenzie, A.; Cooke, J.; Given-Wilson, R.; Wallis, M. G.; Chakraborty, D. P.; Dance, D. R.; Young, K. C.

    2012-03-01

    European Guidelines for quality control in digital mammography specify acceptable and achievable standards of image quality (IQ) in terms of threshold gold thickness using the CDMAM test object. However, there is little evidence relating such measurements to cancer detection. This work investigated the relationship between calcification detection and threshold gold thickness. An observer study was performed using a set of 162 amorphous selenium direct digital (DR) detector images (81 no cancer and 81 with 1-3 inserted calcification clusters). From these images four additional IQs were simulated: different digital detectors (computed radiography (CR) and DR) and dose levels. Seven observers marked and rated the locations of suspicious regions. DBM analysis of variances was performed on the JAFROC figure of merit (FoM) yielding 95% confidence intervals for IQ pairs. Automated threshold gold thickness (Tg) analysis was performed for the 0.25mm gold disc diameter on CDMAM images at the same IQs (16 images per IQ). Tg was plotted against FoM and a power law fitted to the data. There was a significant reduction in FoM for calcification detection for CR images compared with DR; FoM decreased from 0.83 to 0.63 (p<=0.0001). Detection was also sensitive to dose. There was a good correlation between FoM and Tg (R2=0.80, p<0.05), consequently threshold gold thickness was a good predictor of calcification detection at the same IQ. Since the majority of threshold gold thicknesses for the various IQs were above the acceptable standard despite large variations in calcification detection by radiologists, current EU guidelines may need revising.

  12. Polarization sensitive optical coherence tomography detection method

    SciTech Connect

    Everett, M J; Sathyam, U S; Colston, B W; DaSilva, L B; Fried, D; Ragadio, J N; Featherstone, J D B

    1999-05-12

    This study demonstrates the potential of polarization sensitive optical coherence tomography (PS-OCT) for non-invasive in vivo detection and characterization of early, incipient caries lesions. PS-OCT generates cross-sectional images of biological tissue while measuring the effect of the tissue on the polarization state of incident light. Clear discrimination between regions of normal and demineralized enamel is first shown in PS-OCT images of bovine enamel blocks containing well-characterized artificial lesions. High-resolution, cross-sectional images of extracted human teeth are then generated that clearly discriminate between the normal and carious regions on both the smooth and occlusal surfaces. Regions of the teeth that appeared to be demineralized in the PS-OCT images were verified using histological thin sections examined under polarized light microscopy. The PS-OCT system discriminates between normal and carious regions by measuring the polarization state of the back-scattered 1310 nm light, which is affected by the state of demineralization of the enamel. Demineralization of enamel increases the scattereing coefficient, thus depolarizing the incident light. This study shows that PS-OCT has great potential for the detection, characterization, and monitoring of incipient caries lesions.

  13. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-01

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light. PMID:27136989

  14. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  15. Blood detection in wireless capsule endoscopy using expectation maximization clustering

    NASA Astrophysics Data System (ADS)

    Hwang, Sae; Oh, JungHwan; Cox, Jay; Tang, Shou Jiang; Tibbals, Harry F.

    2006-03-01

    Wireless Capsule Endoscopy (WCE) is a relatively new technology (FDA approved in 2002) allowing doctors to view most of the small intestine. Other endoscopies such as colonoscopy, upper gastrointestinal endoscopy, push enteroscopy, and intraoperative enteroscopy could be used to visualize up to the stomach, duodenum, colon, and terminal ileum, but there existed no method to view most of the small intestine without surgery. With the miniaturization of wireless and camera technologies came the ability to view the entire gestational track with little effort. A tiny disposable video capsule is swallowed, transmitting two images per second to a small data receiver worn by the patient on a belt. During an approximately 8-hour course, over 55,000 images are recorded to a worn device and then downloaded to a computer for later examination. Typically, a medical clinician spends more than two hours to analyze a WCE video. Research has been attempted to automatically find abnormal regions (especially bleeding) to reduce the time needed to analyze the videos. The manufacturers also provide the software tool to detect the bleeding called Suspected Blood Indicator (SBI), but its accuracy is not high enough to replace human examination. It was reported that the sensitivity and the specificity of SBI were about 72% and 85%, respectively. To address this problem, we propose a technique to detect the bleeding regions automatically utilizing the Expectation Maximization (EM) clustering algorithm. Our experimental results indicate that the proposed bleeding detection method achieves 92% and 98% of sensitivity and specificity, respectively.

  16. Adaptive clustering algorithm for community detection in complex networks.

    PubMed

    Ye, Zhenqing; Hu, Songnian; Yu, Jun

    2008-10-01

    Community structure is common in various real-world networks; methods or algorithms for detecting such communities in complex networks have attracted great attention in recent years. We introduced a different adaptive clustering algorithm capable of extracting modules from complex networks with considerable accuracy and robustness. In this approach, each node in a network acts as an autonomous agent demonstrating flocking behavior where vertices always travel toward their preferable neighboring groups. An optimal modular structure can emerge from a collection of these active nodes during a self-organization process where vertices constantly regroup. In addition, we show that our algorithm appears advantageous over other competing methods (e.g., the Newman-fast algorithm) through intensive evaluation. The applications in three real-world networks demonstrate the superiority of our algorithm to find communities that are parallel with the appropriate organization in reality. PMID:18999501

  17. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    SciTech Connect

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-04-20

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  18. Advanced defect detection algorithm using clustering in ultrasonic NDE

    NASA Astrophysics Data System (ADS)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  19. GALAXY CLUSTERS IN THE SWIFT/BAT ERA. II. 10 MORE CLUSTERS DETECTED ABOVE 15 keV

    SciTech Connect

    Ajello, M.; Reimer, O.; Rebusco, P.; Cappelluti, N.; Boehringer, H.; La Parola, V.; Cusumano, G.

    2010-12-20

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/Burst Alert Telescope (BAT) all-sky survey. Among the newly BAT-discovered clusters there are Bullet, A85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters, we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters' emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and A3667), we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law-like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For A3667, the excess emission can be successfully modeled as a hot component (kT {approx} 13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely a thermal origin.

  20. Galaxy Clusters in the Swift/BAT era II: 10 more Clusters detected above 15 keV

    SciTech Connect

    Ajello, M.; Rebusco, P.; Cappelluti, N.; Reimer, O.; Boehringer, H.; La Parola, V.; Cusumano, G.; /Palermo Observ.

    2010-10-27

    We report on the discovery of 10 additional galaxy clusters detected in the ongoing Swift/BAT all-sky survey. Among the newly BAT-discovered clusters there are: Bullet, Abell 85, Norma, and PKS 0745-19. Norma is the only cluster, among those presented here, which is resolved by BAT. For all the clusters we perform a detailed spectral analysis using XMM-Newton and Swift/BAT data to investigate the presence of a hard (non-thermal) X-ray excess. We find that in most cases the clusters emission in the 0.3-200 keV band can be explained by a multi-temperature thermal model confirming our previous results. For two clusters (Bullet and Abell 3667) we find evidence for the presence of a hard X-ray excess. In the case of the Bullet cluster, our analysis confirms the presence of a non-thermal, power-law like, component with a 20-100 keV flux of 3.4 x 10{sup -12} erg cm{sup -2} s{sup -1} as detected in previous studies. For Abell 3667 the excess emission can be successfully modeled as a hot component (kT = {approx}13 keV). We thus conclude that the hard X-ray emission from galaxy clusters (except the Bullet) has most likely thermal origin.

  1. Study of Optical Properties on Fractal Aggregation Using the GMM Method by Different Cluster Parameters

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-En; Lin, Tang-Huang; Lien, Wei-Hung

    2015-04-01

    Anthropogenic pollutants or smoke from biomass burning contribute significantly to global particle aggregation emissions, yet their aggregate formation and resulting ensemble optical properties are poorly understood and parameterized in climate models. Particle aggregation refers to formation of clusters in a colloidal suspension. In clustering algorithms, many parameters, such as fractal dimension, number of monomers, radius of monomer, and refractive index real part and image part, will alter the geometries and characteristics of the fractal aggregation and change ensemble optical properties further. The cluster-cluster aggregation algorithm (CCA) is used to specify the geometries of soot and haze particles. In addition, the Generalized Multi-particle Mie (GMM) method is utilized to compute the Mie solution from a single particle to the multi particle case. This computer code for the calculation of the scattering by an aggregate of spheres in a fixed orientation and the experimental data have been made publicly available. This study for the model inputs of optical determination of the monomer radius, the number of monomers per cluster, and the fractal dimension is presented. The main aim in this study is to analyze and contrast several parameters of cluster aggregation aforementioned which demonstrate significant differences of optical properties using the GMM method finally. Keywords: optical properties, fractal aggregation, GMM, CCA

  2. Redshift and Optical Properties for S Statistically Complete Sample of Poor Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Ledlow, Michael J.; Loken, Chris; Burns, Jack O.; Hill, John M.; White, Richard A.

    1996-08-01

    From the poor cluster catalog of White et al. (1996), we define a sample of 71 optically-selected poor galaxy clusters. The surface-density enhancement we require for our clusters falls between that of the loose associations of Turner & Gott [AJ, 91,204(1976)] and the Hickson compact groups [Hickson, ApJ, 255, 382(1982)]. We review the selection biases and determine the statistical completeness of the sample. For this sample, we report new velocity measurements made with the ARC 3.5-m Dual-Imaging spectrograph and the 2.3-m Steward Observatory MX fiber spectrograph. Combining our own measurements with those from the literature, we examine the velocity distributions, velocity dispersions, and ID velocity substructure for our poor cluster sample, and compare our results to other poor cluster samples. We find that approximately half of the sample may have significant ID velocity substructure. The optical morphology, large-scale environment, and velocity field of many of these clusters are indicative of young, dynamically evolving systems. In future papers, we will use this sample to derive the poor cluster x-ray luminosity function and gas mass function, and will examine the optical/x-ray properties of the clusters in more detail.

  3. Resource-Efficient Generataion of Linear Cluster States by Linear Optics with postselection

    DOE PAGESBeta

    Uskov, Dmitry B; Alsing, Paul; Fanto, Michael; Kaplan, Lev; Kim, R; Szep, Atilla; Smith IV, Amos M

    2015-01-01

    We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detectionmore » of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2^n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4^m-1.« less

  4. A method to determine the number of nanoparticles in a cluster using conventional optical microscopes

    SciTech Connect

    Kang, Hyeonggon; Attota, Ravikiran Tondare, Vipin; Vladár, András E.; Kavuri, Premsagar

    2015-09-07

    We present a method that uses conventional optical microscopes to determine the number of nanoparticles in a cluster, which is typically not possible using traditional image-based optical methods due to the diffraction limit. The method, called through-focus scanning optical microscopy (TSOM), uses a series of optical images taken at varying focus levels to achieve this. The optical images cannot directly resolve the individual nanoparticles, but contain information related to the number of particles. The TSOM method makes use of this information to determine the number of nanoparticles in a cluster. Initial good agreement between the simulations and the measurements is also presented. The TSOM method can be applied to fluorescent and non-fluorescent as well as metallic and non-metallic nano-scale materials, including soft materials, making it attractive for tag-less, high-speed, optical analysis of nanoparticles down to 45 nm diameter.

  5. Detecting cancer clusters in a regional population with local cluster tests and Bayesian smoothing methods: a simulation study

    PubMed Central

    2013-01-01

    Background There is a rising public and political demand for prospective cancer cluster monitoring. But there is little empirical evidence on the performance of established cluster detection tests under conditions of small and heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological cancer registry in Germany. Methods Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0 or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive predictive values. The Bayesian smoothing models were evaluated using ROC curves. Results With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale. At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood, showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted by data

  6. An insight into the optical properties of a sub nanosize glutathione stabilized gold cluster.

    PubMed

    Nair, Lakshmi V; Nair, Resmi V; Jayasree, Ramapurath S

    2016-07-28

    In this study, gold quantum clusters with distinct fluorescence properties were developed and their structural and physical behaviour was evaluated. The clusters were prepared by etching gold nanoparticles with glutathione. Three different Au33 clusters with emission profiles in the NIR region and one blue emitting cluster, Au8 were developed by varying the geometrical arrangement of atoms within the cluster. These clusters having sizes in the range of 0.7 to 2 nm were synthesized by choosing different reaction temperatures from 0 °C to 70 °C and pH between 1.5 and 10. In the three cases, formation of self assembled atoms within the cluster and the corresponding changes in optical properties were observed. A detailed evaluation of the number of atoms and the core-ligand ratio using MALDI-MS and a change in the binding energy as seen in the XPS study confirmed this finding. The study demonstrates that the self assembly of atoms and their arrangement is an important factor in determining the characteristics of the cluster. In this communication, we put forward a new concept where the number of atoms and their arrangement within the clusters play a crucial role in tuning their optical properties. PMID:27356966

  7. Degradation points detection in optical fiber

    NASA Astrophysics Data System (ADS)

    Salikhov, Aydar I.

    2015-03-01

    In this paper, we propose a new algorithm for monitoring the state of the fiber-optic link using polarization effects. The necessity of this work is because currently in operation is a very large number of fiber-optic cables with expired or expiring operation. This means that they are actively developing microcracks and other local defects. In this paper we propose a method for continuous monitoring of optical fiber communication cables.

  8. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    NASA Astrophysics Data System (ADS)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  9. South Pole Telescope Detections of the Previously Unconfirmed Planck Early Sunyaev-Zel'dovich Clusters in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Story, K.; Aird, K. A.; Andersson, K.; Armstrong, R.; Bazin, G.; Benson, B. A.; Bleem, L. E.; Bonamente, M.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mohr, J. J.; Montroy, T. E.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zenteno, A.

    2011-07-01

    We present South Pole Telescope (SPT) observations of the five galaxy cluster candidates in the southern hemisphere which were reported as unconfirmed in the Planck Early Sunyaev-Zel'dovich (ESZ) sample. One cluster candidate, PLCKESZ G255.62-46.16, is located in the 2500 deg2 SPT SZ survey region and was reported previously as SPT-CL J0411-4819. For the remaining four candidates, which are located outside of the SPT SZ survey region, we performed short, dedicated SPT observations. Each of these four candidates was strongly detected in maps made from these observations, with signal-to-noise ratios ranging from 6.3 to 13.8. We have observed these four candidates on the Magellan-Baade telescope and used these data to estimate cluster redshifts from the red sequence. Resulting redshifts range from 0.24 to 0.46. We report measurements of Y 0farcm75, the integrated Comptonization within a 0farcm75 radius, for all five candidates. We also report X-ray luminosities calculated from ROSAT All-Sky Survey catalog counts, as well as optical and improved SZ coordinates for each candidate. The combination of SPT SZ measurements, optical red-sequence measurements, and X-ray luminosity estimates demonstrates that these five Planck ESZ cluster candidates do indeed correspond to real galaxy clusters with redshifts and observable properties consistent with the rest of the ESZ sample.

  10. SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED PLANCK EARLY SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE

    SciTech Connect

    Story, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Andersson, K.; Bazin, G.; Armstrong, R.; Desai, S.; Bonamente, M.; Brodwin, M.; Foley, R. J.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; Dudley, J. P.; George, E. M.

    2011-07-10

    We present South Pole Telescope (SPT) observations of the five galaxy cluster candidates in the southern hemisphere which were reported as unconfirmed in the Planck Early Sunyaev-Zel'dovich (ESZ) sample. One cluster candidate, PLCKESZ G255.62-46.16, is located in the 2500 deg{sup 2} SPT SZ survey region and was reported previously as SPT-CL J0411-4819. For the remaining four candidates, which are located outside of the SPT SZ survey region, we performed short, dedicated SPT observations. Each of these four candidates was strongly detected in maps made from these observations, with signal-to-noise ratios ranging from 6.3 to 13.8. We have observed these four candidates on the Magellan-Baade telescope and used these data to estimate cluster redshifts from the red sequence. Resulting redshifts range from 0.24 to 0.46. We report measurements of Y{sub 0.'75}, the integrated Comptonization within a 0.'75 radius, for all five candidates. We also report X-ray luminosities calculated from ROSAT All-Sky Survey catalog counts, as well as optical and improved SZ coordinates for each candidate. The combination of SPT SZ measurements, optical red-sequence measurements, and X-ray luminosity estimates demonstrates that these five Planck ESZ cluster candidates do indeed correspond to real galaxy clusters with redshifts and observable properties consistent with the rest of the ESZ sample.

  11. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites.

    PubMed

    Fenwick, Oliver; Coutiño-Gonzalez, Eduardo; Grandjean, Didier; Baekelant, Wouter; Richard, Fanny; Bonacchi, Sara; De Vos, Dirk; Lievens, Peter; Roeffaers, Maarten; Hofkens, Johan; Samorì, Paolo

    2016-09-01

    The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal-host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster's optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure-property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging. PMID:27270964

  12. Detection of a large-scale structure of intracluster globular clusters in the Virgo cluster.

    PubMed

    Lee, Myung Gyoon; Park, Hong Soo; Hwang, Ho Seong

    2010-04-16

    Globular clusters are usually found in galaxies, and they are excellent tracers of dark matter. Long ago it was suggested that intracluster globular clusters (IGCs) may exist that are bound to a galaxy cluster rather than to any single galaxy. Here we present a map showing the large-scale distribution of globular clusters over the entire Virgo cluster. It shows that IGCs are found out to 5 million light years from the Virgo center and that they are concentrated in several substructures that are much larger than galaxies. These objects might have been mostly stripped off from low-mass dwarf galaxies. PMID:20223950

  13. Spectral Clustering for Unsupervised Segmentation of Lower Extremity Wound Beds Using Optical Images.

    PubMed

    Dhane, Dhiraj Manohar; Krishna, Vishal; Achar, Arun; Bar, Chittaranjan; Sanyal, Kunal; Chakraborty, Chandan

    2016-09-01

    Chronic lower extremity wound is a complicated disease condition of localized injury to skin and its tissues which have plagued many elders worldwide. The ulcer assessment and management is expensive and is burden on health establishment. Currently accurate wound evaluation remains a tedious task as it rely on visual inspection. This paper propose a new method for wound-area detection, using images digitally captured by a hand-held, optical camera. The strategy proposed involves spectral approach for clustering, based on the affinity matrix. The spectral clustering (SC) involves construction of similarity matrix of Laplacian based on Ng-Jorden-Weiss algorithm. Starting with a quadratic method, wound photographs were pre-processed for color homogenization. The first-order statistics filter was then applied to extract spurious regions. The filter was selected based on the performance, evaluated on four quality metrics. Then, the spectral method was used on the filtered images for effective segmentation. The segmented regions were post-processed using morphological operators. The performance of spectral segmentation was confirmed by ground-truth pictures labeled by dermatologists. The SC results were additionally compared with the results of k-means and Fuzzy C-Means (FCM) clustering algorithms. The SC approach on a set of 105 images, effectively delineated targeted wound beds yielding a segmentation accuracy of 86.73 %, positive predictive values of 91.80 %, and a sensitivity of 89.54 %. This approach shows the robustness of tool for ulcer perimeter measurement and healing progression. The article elucidates its potential to be incorporated in patient facing medical systems targeting a rapid clinical assistance. PMID:27520612

  14. Automatic detection of clustered microcalcifications in digital mammograms based on wavelet features and neural network classification

    NASA Astrophysics Data System (ADS)

    Yu, Songyang; Guan, Ling; Brown, Stephen

    1998-06-01

    The appearance of clustered microcalcifications in mammogram films is one of the important early signs of breast cancer. This paper presents a new image processing system for the automatic detection of clustered microcalcifications in digitized mammogram films. The detection method uses wavelet features and feed forward neural network to find possible microcalcifications pixels and a set of features to locate individual microcalcifications.

  15. Leakage detection using fiber optics distributed temperature monitoring

    NASA Astrophysics Data System (ADS)

    Nikles, Marc; Vogel, Bernhard H.; Briffod, Fabien; Grosswig, Stephan; Sauser, Florian; Luebbecke, Steffen; Bals, Andre; Pfeiffer, Thomas

    2004-07-01

    The monitoring of temperature profiles over long distance by means of optical fibers represents a highly efficient way to perform leakage detection along pipelines, in dams, dykes, or tanks... Different techniques have been developed taking advantages of the fiber geometry and of optical time domain analysis for the localization of the information. Among fiber optics distributed temperature sensing techniques, Brillouin-based systems have demonstrated to have the best potential for applications over distances up to several tens of kilometers. The key features and performances are reviewed in the present article and a 55km pipeline equipped with a fiber optics leakage detection system is presented as a case study.

  16. Properties of Weak Lensing Clusters Detected on Hyper Suprime-Cam’s 2.3 deg2 field

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satoshi; Oguri, Masamune; Hamana, Takashi; Tanaka, Masayuki; Miller, Lance; Utsumi, Yousuke; Komiyama, Yutaka; Furusawa, Hisanori; Sakurai, Junya; Kawanomoto, Satoshi; Nakata, Fumiaki; Uraguchi, Fumihiro; Koike, Michitaro; Tomono, Daigo; Lupton, Robert; Gunn, James E.; Karoji, Hiroshi; Aihara, Hiroaki; Murayama, Hitoshi; Takada, Masahiro

    2015-07-01

    We present properties of moderately massive clusters of galaxies detected by the newly developed Hyper Suprime-Cam on the Subaru telescope using weak gravitational lensing. Eight peaks exceeding a signal-to-noise ratio (S/N) of 4.5 are identified on the convergence S/N map of a 2.3 deg2 field observed during the early commissioning phase of the camera. Multi-color photometric data are used to generate optically selected clusters using the Cluster finding algorithm based on the Multiband Identification of Red-sequence galaxies algorithm. The optical cluster positions were correlated with the peak positions from the convergence map. All eight significant peaks have optical counterparts. The velocity dispersion of clusters is evaluated by adopting the Singular Isothemal Sphere fit to the tangential shear profiles, yielding virial mass estimates, {M}{500c}, of the clusters which range from 2.7 × 1013 to 4.4 × 10 {}14 {M}⊙ . The number of peaks is considerably larger than the average number expected from ΛCDM cosmology but this is not extremely unlikely if one takes the large sample variance in the small field into account. We could, however, safely argue that the peak count strongly favors the recent Planck result suggesting a high {σ }8 value of 0.83. The ratio of stellar mass to the dark matter halo mass shows a clear decline as the halo mass increases. If the gas mass fraction, fg, in halos is universal, as has been suggested in the literature, the observed baryon mass in stars and gas shows a possible deficit compared with the total baryon density estimated from the baryon oscillation peaks in anisotropy of the cosmic microwave background.

  17. Comparison of galaxy clusters selected by weak-lensing, optical spectroscopy, and X-rays in the deep lens survey F2 field

    SciTech Connect

    Starikova, Svetlana; Jones, Christine; Forman, William R.; Vikhlinin, Alexey; Kurtz, Michael J.; Fabricant, Daniel G.; Murray, Stephen S.; Geller, Margaret J.; Dell'Antonio, Ian P.

    2014-05-10

    We compare galaxy clusters selected in Chandra and XMM-Newton X-ray observations of the 4 deg{sup 2} Deep Lens Survey (DLS) F2 field to the cluster samples previously selected in the same field from a sensitive weak-lensing shear map derived from the DLS and from a detailed galaxy redshift survey—the Smithsonian Hectospec Lensing Survey (SHELS). Our Chandra and XMM-Newton observations cover 1.6 deg{sup 2} of the DLS F2 field, including all 12 weak-lensing peaks above a signal-to-noise ratio of 3.5, along with 16 of the 20 SHELS clusters with published velocity dispersions >500 km s{sup –1}. We detect 26 extended X-ray sources in this area and confirm 23 of them as galaxy clusters using the optical imaging. Approximately 75% of clusters detected in either X-ray or spectroscopic surveys are found in both; these follow the previously established scaling relations between velocity dispersion, L {sub X}, and T {sub X}. A lower percentage, 60%, of clusters are in common between X-ray and DLS samples. With the exception of a high false-positive rate in the DLS weak-lensing search (5 out of 12 DLS candidates appear to be false), differences between the three cluster detection methods can be attributed primarily to observational uncertainties and intrinsic scatter between different observables and cluster mass.

  18. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Mahmoud, E.; Takey, A.; Shoukry, A.

    2016-07-01

    We develop a galaxy cluster finding algorithm based on spectral clustering technique to identify optical counterparts and estimate optical redshifts for X-ray selected cluster candidates. As an application, we run our algorithm on a sample of X-ray cluster candidates selected from the third XMM-Newton serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital Sky Survey (SDSS). Our method works on galaxies described in the color-magnitude feature space. We begin by examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1-0.8 with a median of 0.36. As a result, we are able to identify their optical counterparts and estimate their photometric redshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we investigate another 40 X-ray cluster candidates (from the same cluster survey) with no redshift information in the literature and found that 12 candidates are considered as galaxy clusters in the redshift range from 0.29 to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and optical data. Among them 7 clusters have spectroscopic redshifts for at least one member galaxy.

  19. Cluster formation in ferrofluids induced by holographic optical tweezers.

    PubMed

    Masajada, Jan; Bacia, Marcin; Drobczyński, Sławomir

    2013-10-01

    Holographic optical tweezers were used to show the interaction between a strongly focused laser beam and magnetic nanoparticles in ferrofluid. When the light intensity was high enough, magnetic nanoparticles were removed from the beam center and formed a dark ring. The same behavior was observed when focusing vortex or Bessel beams. The interactions between two or more separated rings of magnetic nanoparticles created by independent optical traps were also observed. PMID:24081086

  20. Characterizing Planck SZ detected clusters with X-ray observations

    NASA Astrophysics Data System (ADS)

    Lovisari, L.; Forman, W.; Jones, C.; Kraft, R.; Randall, S.; Santos, F.

    2016-06-01

    Galaxy clusters are a powerful tool to constrain cosmological parameters. An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step because it will enable us to compare the theoretical predictions with the real data and with the cosmological models. A complete sample is required for any meaningful study of the scaling properties, otherwise potentially important biases (e.g. Malmquist bias, cool-core and merger fractions) cannot be corrected. The Planck mission provided a nearly complete mass-limited sample of clusters of galaxies. From XMM-Newton and/or Chandra observations of the 165 Planck ESZ clusters at z <0.35, we derived the total mass, gas mass, X-ray luminosity, temperature, and morphology of each cluster. We will show how the cluster properties and morphologies differ for X-ray and SZ selected samples. In particular we will show that the Planck sample has a smaller fraction of cool-core clusters than X-ray selected samples. We will show the derived X-ray scaling relations for the Planck SZ selected sample. Finally, we will show the preliminary results of the cluster mass function.

  1. Molecular detection using Rydberg, autoionizing, and cluster states. Progress report

    SciTech Connect

    Wessel, J.

    1989-08-17

    Continuing investigations of multiphoton ionization processes in naphthalene have established the geometry and spectroscopy of trimer and tetramer cluster states. A new, highly efficient ionization mechanism has been identified in the trimer. It is closely related to autoionization of 2-electron atoms by resonant 2-photon excitation and to exciton fusion in larger clusters.

  2. An X-ray and optical study of the cluster of galaxies Abell 754

    NASA Technical Reports Server (NTRS)

    Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.

    1986-01-01

    X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.

  3. Fiber-optic testing system having a detection circuit

    NASA Astrophysics Data System (ADS)

    Needham, Francis L.

    1992-05-01

    A system for testing a fiber-optic component with infrared radiation is provided. The testing system has a source of infrared radiation, an optic coupler, a detecting circuit, and an analog tape recorder. The optic coupler directs the infrared radiation onto the fiber-optic component. The detection circuit is electrically connected to the tape recorder. The detection circuit has an amplifier, a potentiometer connected in parallel to the amplifier, and a photoelectric transducer connected in series to the amplifier. These components are mounted on a non-conductive board. A power source supplies voltage and is connected to the amplifier. The circuit operates by having the photoelectric transducer sense the infrared radiation emitted from the tested fiber-optic component and convert the radiation into an electrical signal. The amplifier then amplifies the electrical signal to the voltage necessary for driving the tape recorder.

  4. Fiber-optical testing system having a detection circuit

    NASA Astrophysics Data System (ADS)

    Needham, Francis L.

    1994-01-01

    A system for testing a fiber-optic component with infrared radiation is provided. The testing system has a source of infrared radiation, an optic coupler, a detecting circuit, and an analog tape recorder. The optic coupler directs the infrared radiation onto the fiber-optic component. The detection circuit is electrically connected to the tape recorder. The detection circuit has an amplifier, a potentiometer connected in parallel to the amplifier, and a photoelectric transducer connected in series to the amplifier. These components are mounted on a non-conductive board. A power source supplies voltage and is connected to the amplifier. The circuit operates by having the photoelectric transducer sense the infrared radiation emitted from the tested fiber-optic component and convert the radiation into an electrical signal. The amplifier then amplifies the electrical signal to the voltage necessary for driving the tape recorder.

  5. Chemical detection demonstrated using an evanescent wave graphene optical sensor

    NASA Astrophysics Data System (ADS)

    Maliakal, Ashok; Reith, Leslie; Cabot, Steve

    2016-04-01

    Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our current results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.

  6. Adaptive optics assisted Fourier domain OCT with balanced detection

    NASA Astrophysics Data System (ADS)

    Meadway, A.; Bradu, A.; Hathaway, M.; Van der Jeught, S.; Rosen, R. B.; Podoleanu, A. Gh.

    2011-03-01

    Two factors are of importance to optical coherence tomography (OCT), resolution and sensitivity. Adaptive optics improves the resolution of a system by correcting for aberrations causing distortions in the wave-front. Balanced detection has been used in time domain OCT systems by removing excess photon noise, however it has not been used in Fourier domain systems, as the cameras used in the spectrometers saturated before excess photon noise becomes a problem. Advances in camera technology mean that this is no longer the case and balanced detection can now be used to improve the signal to noise ratio in a Fourier domain (FD) OCT system. An FD-OCT system, enhanced with adaptive optics, is presented and is used to show the improvement that balanced detection can provide. The signal to noise ratios of single camera detection and balanced detection are assessed and in-vivo retinal images are acquired to demonstrate better image quality when using balance detection.

  7. Detecting Hotspots from Taxi Trajectory Data Using Spatial Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Qin, K.; Zhou, Q.; Liu, C. K.; Chen, Y. X.

    2015-07-01

    A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1st, 2014), weekday (Wednesday, May 7th, 2014) and weekend (Saturday, May 10th, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.

  8. Electro-Optical Detection of Single λ-DNA†

    PubMed Central

    Liu, Shuo; Wall, Thomas A.; Ozcelik, Damla; Parks, Joshua W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Single λ-DNA molecules are detected on a nanopore-gated optofluidic chip electrically and optically. Statistical variations in the single particle trajectories are used to predict the intensity distribution of the fluorescence signals. PMID:25533516

  9. Optical activity of a single MnAs cluster: Birefringence or Kerr effect

    NASA Astrophysics Data System (ADS)

    Leuschner, M.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Hara, S.; Stolz, W.; Volz, K.; Kurz, T.; Loidl, A.; Krug von Nidda, H.-A.

    2006-06-01

    We have grown In 0.54Ga 0.46As:Mn/MnAs granular paramagnetic-ferromagnetic hybrid structures by metal-organic vapor-phase epitaxy. The MnAs clusters have a Curie temperature of about 320 K. We have studied the optical activity of individual ferromagnetic MnAs clusters embedded in the paramagnetic In 0.54Ga 0.46As:Mn matrix at room temperature by far-field depolarization measurements. A scanning near-field optical microscopy set-up in constant height mode ( ≈100 nm above the sample surface) was used to achieve a high spatial resolution. Individual MnAs clusters rotate the linear polarization of the incoming light by almost 2∘ in this reflection geometry. This optical activity was analyzed in terms of birefringence and polar Kerr effect and correlated with the structural and magnetic properties of the MnAs clusters as determined by ferromagnetic resonance measurements. The optical activity of the MnAs clusters turns out to be dominated by linear birefringence caused by the uniaxial symmetry of the hexagonal crystal structure of MnAs. The polar Kerr effect plays a minor role in this experiment.

  10. Soar adaptive optics observations of the globular cluster NGC 6496

    SciTech Connect

    Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei E-mail: lfraga@lna.br

    2013-06-01

    We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m – M) {sub V} = 15.71 ± 0.02 mag and E(V – I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = –0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal.

  11. Lamb wave detection with a fiber optic angular displacement sensor

    NASA Astrophysics Data System (ADS)

    Garcia, Marlon R.; Sakamoto, João. M. S.; Higuti, Ricardo T.; Kitano, Cláudio

    2015-09-01

    In this work we show that the fiber optic angular displacement sensor is capable of Lamb wave detection, with results comparable to a piezoelectric transducer. Therefore, the fiber optic sensor has a great potential to be used as the Lamb wave ultrasonic receiver and to perform non-destructive and non-contact testing.

  12. Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part 2; Clustering Algorithm

    NASA Technical Reports Server (NTRS)

    Mach, Douglas M.; Christian, Hugh J.; Blakeslee, Richard; Boccippio, Dennis J.; Goodman, Steve J.; Boeck, William

    2006-01-01

    We describe the clustering algorithm used by the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) for combining the lightning pulse data into events, groups, flashes, and areas. Events are single pixels that exceed the LIS/OTD background level during a single frame (2 ms). Groups are clusters of events that occur within the same frame and in adjacent pixels. Flashes are clusters of groups that occur within 330 ms and either 5.5 km (for LIS) or 16.5 km (for OTD) of each other. Areas are clusters of flashes that occur within 16.5 km of each other. Many investigators are utilizing the LIS/OTD flash data; therefore, we test how variations in the algorithms for the event group and group-flash clustering affect the flash count for a subset of the LIS data. We divided the subset into areas with low (1-3), medium (4-15), high (16-63), and very high (64+) flashes to see how changes in the clustering parameters affect the flash rates in these different sizes of areas. We found that as long as the cluster parameters are within about a factor of two of the current values, the flash counts do not change by more than about 20%. Therefore, the flash clustering algorithm used by the LIS and OTD sensors create flash rates that are relatively insensitive to reasonable variations in the clustering algorithms.

  13. Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics.

    PubMed

    Van Steerteghem, Nick; Van Cleuvenbergen, Stijn; Deckers, Steven; Kumara, Chanaka; Dass, Amala; Häkkinen, Hannu; Clays, Koen; Verbiest, Thierry; Knoppe, Stefan

    2016-06-16

    The first hyperpolarizabilities of [Au25(SR)18](-1/0) and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18](-1/0), protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics. PMID:27264025

  14. Symmetry breaking in ligand-protected gold clusters probed by nonlinear optics

    NASA Astrophysics Data System (ADS)

    van Steerteghem, Nick; van Cleuvenbergen, Stijn; Deckers, Steven; Kumara, Chanaka; Dass, Amala; Häkkinen, Hannu; Clays, Koen; Verbiest, Thierry; Knoppe, Stefan

    2016-06-01

    The first hyperpolarizabilities of [Au25(SR)18]-1/0 and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18]-1/0, protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics.The first hyperpolarizabilities of [Au25(SR)18]-1/0 and Au38(SR)24 clusters were determined by Hyper-Rayleigh Scattering. A strong dependence on the molecular symmetry was observed, and we explore two strategies to destroy the center of inversion in [Au25(SR)18]-1/0, protection by chiral ligands and alloying of the cluster with silver. This may open new avenues to applications of Au : SR clusters in second-order nonlinear optics. Electronic supplementary information (ESI) available: Synthesis and characterization of the clusters, details on HRS measurements and DFT calculations. See DOI: 10.1039/c6nr02251k

  15. Integrated optical biosensor for detection of multivalent proteins

    SciTech Connect

    Kelly, Dan; Grace, Karen M.; Song, Xuedong; Swanson, Basil I.; Frayer, Daniel; Mendes, Sergio B.; Peyghambarian, Nasser

    1999-12-01

    We have developed a simple, highly sensitive and specific optical waveguide sensor for the detection of multivalent proteins. The optical biosensor is based on optically tagged glycolipid receptors embedded within a fluid phospholipid bilayer membrane formed upon the surface of a planar optical waveguide. Binding of multivalent cholera toxin triggers a fluorescence resonance energy transfer that results in a two-color optical change that is monitored by measurement of emitted luminescence above the waveguide surface. The sensor approach is highly sensitive and specific and requires no additional reagents and washing steps. Demonstration of protein-receptor recognition by use of planar optical waveguides provides a path forward for the development of fieldable miniaturized biosensor arrays. (c) 1999 Optical Society of America.

  16. Optical Detection of Anomalous Nitrogen in Comets

    NASA Astrophysics Data System (ADS)

    2003-12-01

    VLT Opens New Window towards Our Origins Summary A team of European astronomers [1] has used the UVES spectrograph on the 8.2-m VLT KUEYEN telescope to perform a uniquely detailed study of Comet LINEAR (C/2000 WM1) . This is the first time that this powerful instrument has been employed to obtain high-resolution spectra of a comet. At the time of the observations in mid-March 2002, Comet LINEAR was about 180 million km from the Sun, moving outwards after its perihelion passage in January. As comets are believed to carry "pristine" material - left-overs from the formation of the solar system, about 4,600 million years ago - studies of these objects are important to obtain clues about the origins of the solar system and the Earth in particular. The high quality of the data obtained of this moving 9th-magnitude object has permitted a determination of the cometary abundance of various elements and their isotopes [2]. Of particular interest is the unambiguous detection and measurement of the nitrogen-15 isotope. The only other comet in which this isotope has been observed is famous Comet Hale-Bopp - this was during the passage in 1997, when it was much brighter than Comet LINEAR. Most interestingly, Comet LINEAR and Comet Hale-Bopp display the same isotopic abundance ratio, about 1 nitrogen-15 atom for each 140 nitrogen-14 atoms ( 14 N/ 15 N = 140 ± 30) . That is about half of the terrestrial value (272). It is also very different from the result obtained by means of radio measurements of Comet Hale-Bopp ( 14 N/ 15 N = 330 ± 75). Optical and radio measurements concern different molecules (CN and HCN, respectively), and this isotopic anomaly must be explained by some differentiation mechanism. The astronomers conclude that part of the cometary nitrogen is trapped in macromolecules attached to dust particles . The successful entry of UVES into cometary research now opens eagerly awaited opportunities for similiar observations in other, comparatively faint comets. These

  17. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network

    PubMed Central

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  18. An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.

    PubMed

    Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian

    2015-01-01

    Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696

  19. Optical detection of oil on water

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.

  20. Leakage detection of oil pipeline using distributed fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Shan, Song; Wang, Li; Zhou, Jinfeng

    2007-07-01

    A system of distributed optical fiber sensor has presented based on the optical fiber sensor technology and detected the oil pipeline leakage using Mach-Zehnder optical interferometer. There are two interferential signals from sensor and reference light to put in computer has been analyzed using the analysis software LabVIEW of National Instruments' that can operate for the cross-correlation function, then compare the correlation peak to obtain the disturbance of oil leakage location, the detection precision 200m at around 50km for pipeline in the high speed sampling and data signal processing has obtained.

  1. An Optical Biosensor for Bacillus Cereus Spore Detection

    NASA Astrophysics Data System (ADS)

    Li, Chengquan; Tom, Harry W. K.

    2005-03-01

    We demonstrate a new transduction scheme for optical biosensing. Bacillus cereus is a pathogen that may be found in food and dairy products and is able to produce toxins and cause food poisoning. It is related to Bacillus anthracis (anthrax). A CCD array covered with micro-structured glass coverslip is used to detect the optical resonant shift due to the binding of the antigen (bacillus cereus spore) to the antibody (polyclonal antibody). This novel optical biosensor scheme has the potential for detecting 10˜100 bioagents in a single device as well as the potential to test for antigens with multiple antibody tests to avoid ``false positives.''

  2. The merging cluster Abell 1758: an optical and dynamical view

    NASA Astrophysics Data System (ADS)

    Monteiro-Oliveira, Rogerio; Serra Cypriano, Eduardo; Machado, Rubens; Lima Neto, Gastao B.

    2015-08-01

    The galaxy cluster Abell 1758-North (z=0.28) is a binary system composed by the sub-structures NW and NE. This is supposed to be a post-merging cluster due to observed detachment between the NE BCG and the respective X-ray emitting hot gas clump in a scenario very close to the famous Bullet Cluster. On the other hand, the projected position of the NW BCG coincides with the local hot gas peak. This system was been targeted previously by several studies, using multiple wavelengths and techniques, but there is still no clear picture of the scenario that could have caused this unusual configuration. To help solving this complex puzzle we added some pieces: firstly, we have used deep B, RC and z' Subaru images to perform both weak lensing shear and magnification analysis of A1758 (including here the South component that is not in interaction with A1758-North) modeling each sub-clump as an NFW profile in order to constrain masses and its center positions through MCMC methods; the second piece is the dynamical analysis using radial velocities available in the literature (143) plus new Gemini-GMOS/N measurements (68 new redshifts).From weak lensing we found that independent shear and magnification mass determinations are in excellent agreement between them and combining both we could reduce mass error bar by ~30% compared to shear alone. By combining this two weak-lensing probes we found that the position of both Northern BCGs are consistent with the masses centers within 2σ and and the NE hot gas peak to be offseted of the respective mass peak (M200=5.5 X 1014 M⊙) with very high significance. The most massive structure is NW (M200=7.95 X 1014 M⊙ ) where we observed no detachment between gas, DM and BCG.We have calculated a low line-of-sight velocity difference (<300 km/s) between A1758 NW and NE. We have combined it with the projected velocity of 1600 km/s which was estimated by previous X-ray analysis (David & Kempner 2004) and we have obtained a small angle between

  3. THE OPTICAL COUNTERPART TO THE X-RAY TRANSIENT IGR J1824-24525 IN THE GLOBULAR CLUSTER M28

    SciTech Connect

    Pallanca, C.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.

    2013-08-20

    We report on the identification of the optical counterpart to the recently detected INTEGRAL transient IGR J1824-24525 in the Galactic globular cluster M28. From analysis of a multi-epoch Hubble Space Telescope data set, we have identified a strongly variable star positionally coincident with the radio and Chandra X-ray sources associated with the INTEGRAL transient. The star has been detected during both a quiescent and an outburst state. In the former case it appears as a faint, unperturbed main-sequence star, while in the latter state it is about two magnitudes brighter and slightly bluer than main-sequence stars. We also detected H{alpha} excess during the outburst state, suggestive of active accretion processes by the neutron star.

  4. X-RAY SOURCES AND THEIR OPTICAL COUNTERPARTS IN THE GALACTIC GLOBULAR CLUSTER M12 (NGC 6218)

    SciTech Connect

    Lu, T.-N.; Kong, Albert K. H.; Bassa, Cees; Verbunt, Frank; Lewin, Walter H. G.; Anderson, Scott F.; Pooley, David

    2009-11-01

    We study a Chandra X-ray Observatory ACIS-S observation of the Galactic globular cluster M12. With a 26 ks exposure time, we detect six X-ray sources inside the half-mass radius (2.'16) of which two are inside the core radius (0.'72) of the cluster. If we assume that these sources are all associated with globular cluster M12, the luminosity L {sub X} among these sources between 0.3 and 7.0 keV varies roughly from 10{sup 30} to 10{sup 32} erg s{sup -1}. For identification, we also analyzed the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and Wide Field and Planetary Camera 2 (WFPC2) data and identified the optical counterparts to five X-ray sources inside the HST ACS field of view. According to the X-ray and optical features, we found 2-5 candidate active binaries (ABs) or cataclysmic variables (CVs) and 0-3 background galaxies within the HST ACS field of view. Based on the assumption that the number of X-ray sources scales with the encounter rate and the mass of the globular cluster, we expect two X-ray sources inside M12, and the expectation is consistent with our observational results. Therefore, the existence of identified X-ray sources (possible CVs or ABs) in M12 suggests the primordial origin of X-ray sources in globular clusters which is in agreement with previous studies.

  5. Detection of Laser Optic Defects Using Gradient Direction Matching

    SciTech Connect

    Chen, B Y; Kegelmeyer, L M; Liebman, J A; Salmon, J T; Tzeng, J; Paglieroni, D W

    2005-12-14

    That National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be the world's largest and most energetic laser. It has thousands of optics and depends heavily on the quality and performance of these optics. Over the past several years, we have developed the NIF Optics Inspection Analysis System that automatically finds defects in a specific optic by analyzing images taken of that optic. This paper describes a new and complementary approach for the automatic detection of defects based on detecting the diffraction ring patterns in downstream optic images caused by defects in upstream optics. Our approach applies a robust pattern matching algorithm for images called Gradient Direction Matching (GDM). GDM compares the gradient directions (the direction of flow from dark to light) of pixels in a test image to those of a specified model and identifies regions in the test image whose gradient directions are most in line with those of the specified model. For finding rings, we use luminance disk models whose pixels have gradient directions all pointing toward the center of the disk. After GDM identifies potential rings locations, we rank these rings by how well they fit the theoretical diffraction ring pattern equation. We perform false alarm mitigation by throwing out rings of low fit. A byproduct of this fitting procedure is an estimate of the size of the defect and its distance from the image plane. We demonstrate the potential effectiveness of this approach by showing examples of rings detected in real images of NIF optics.

  6. Portable multichannel fiber optic biosensor for field detection

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Saaski, Elric W.; Shriver-Lake, Lisa C.; Anderson, George P.; Ligler, Frances S.

    1997-04-01

    A compact, portable fiber optic biosensor is developed that enables monitoring of up to four fiber optic probes simultaneously. The sensor employs a novel optical fiber bundle jumper for exciting and collecting fluorescence emission from the evanescent wave fiber optic probes. A single fiber in the center of the bundle couples laser excitation into the sensor probe, while the surrounding fibers collect the returning fluorescent emission light. This design requires no beamsplitter, enabling the detection optics and control circuitry to be reduced to a 4 X 6 in. circuit card. Four of these cards are integrated into a single portable system. Results from detection assays for hazardous biological agents and an environmental pollutant are shown.

  7. Light-Harvesting Nanoparticle Core-Shell Clusters with Controllable Optical Output.

    PubMed

    Sun, Dazhi; Tian, Ye; Zhang, Yugang; Xu, Zhihua; Sfeir, Matthew Y; Cotlet, Mircea; Gang, Oleg

    2015-06-23

    We used DNA self-assembly methods to fabricate a series of core-shell gold nanoparticle-DNA-colloidal quantum dot (AuNP-DNA-Qdot) nanoclusters with satellite-like architecture to modulate optical (photoluminescence) response. By varying the intercomponent distance through the DNA linker length designs, we demonstrate precise tuning of the plasmon-exciton interaction and the optical behavior of the nanoclusters from regimes characterized by photoluminescence quenching to photoluminescence enhancement. The combination of detailed X-ray scattering probing with photoluminescence intensity and lifetime studies revealed the relation between the cluster structure and its optical output. Compared to conventional light-harvesting systems like conjugated polymers and multichromophoric dendrimers, the proposed nanoclusters bring enhanced flexibility in controlling the optical behavior toward a desired application, and they can be regarded as controllable optical switches via the optically pumped color. PMID:25933097

  8. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  9. Optical properties of silicon clusters deposited on the basal plane of graphite

    NASA Astrophysics Data System (ADS)

    Dinh, L. N.; Chase, L. L.; Balooch, M.; Terminello, L. J.; Tench, R. J.; Wooten, F.

    1994-04-01

    Laser ablation was used to deposit of silicon on highly oriented pyrolytic graphite surfaces in an ultra high-vacuum environment equipped with Auger electron spectroscopy (AES), scanning tunneling microscopy (STM) and luminescence spectroscopy. For deposition of up to several monolayers, post annealing produced silicon clusters, whose size distribution was determined vs annealing time and temperature using STM. Pure silicon clusters ranging from 1 to 10 nm showed no detectable photoluminescence in visible range. Exposure to oxygen at 10(exp -6) Torr and for up to 8 hours showed adsorption on the surface of the clusters without silicon oxide formation and no detectable luminescence. Hydrogen termination of these clusters was accomplished by exposing them to atomic hydrogen beam but did not result in any photoluminescence. Prolonged exposure of these clusters to ambient air, however, resulted in strong photoluminescence spectra with color ranging from red to greenish-blue depending on average cluster size. Auger electron spectra revealed the existence of partially oxidized silicon clusters. This luminescence could be due to either an oxide phase or to changes in electronic structure of the clusters as a result of quantum confinement effect.

  10. Analysis of quantitative phase detection based on optical information processing

    NASA Astrophysics Data System (ADS)

    Tao, Wang; Tu, Jiang-Chen; Chun, Kuang-Tao; Yu, Han-Wang; Xin, Du

    2009-07-01

    Phase object exists widely in nature, such as biological cells, optical components, atmospheric flow field and so on. The phase detection of objects has great significance in the basic research, nondestructive testing, aerospace, military weapons and other areas. The usual methods of phase object detection include interference method, grating method, schlieren method, and phase-contrast method etc. These methods have their own advantages, but they also have some disadvantages on detecting precision, environmental requirements, cost, detection rate, detection range, detection linearity in various applications, even the most sophisticated method-phase contrast method mainly used in microscopic structure, lacks quantitative analysis of the size of the phase of the object and the relationship between the image contrast and the optical system. In this paper, various phase detection means and the characteristics of different applications are analyzed based on the optical information processing, and a phase detection system based on optical filtering is formed. Firstly the frequency spectrum of the phase object is achieved by Fourier transform lens in the system, then the frequency spectrum is changed reasonably by the filter, at last the image which can represent the phase distribution through light intensity is achieved by the inverse Fourier transform. The advantages and disadvantages of the common used filters such as 1/4 wavelength phase filter, high-pass filter and edge filter are analyzed, and their phase resolution is analyzed in the same optical information processing system, and the factors impacting phase resolution are pointed out. The paper draws a conclusion that there exists an optimal filter which makes the detect accuracy best for any application. At last, we discussed how to design an optimal filter through which the ability of the phase testing of optical information processing system can be improved most.

  11. Simultaneous detection and intensity estimation of an optical image

    NASA Technical Reports Server (NTRS)

    Wang, L.

    1979-01-01

    A statistical model for simultaneous detection and single parameter estimation of a stochastic signal against background noise is obtained. Two strategies, Bayes and maximum likelihood, are discussed. The detection of an optical point source imaged on a photosensitive surface and the estimation of its intensity based on such strategies are examined. An almost optimum estimate is also proposed and its statistical properties are studied.

  12. Galaxy Cluster Center Detection Methods with Weak Lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    2013-01-01

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. Misidentification of centers, either because a well-defined center does not exist or because candidate centers are incorrectly identified or ranked, leads to systematic underestimates of cluster masses. Weak lensing provides a potential lever on this issue by directly probing the distribution of dark matter. We test methods of determining cluster centers directly from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ~500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. In cases where other center identification methods fail, however, the method may still be useful to distinguish between competing options.

  13. Improvement of optical systems for detection of smokes

    NASA Astrophysics Data System (ADS)

    Panin, V. F.; Dashkovskii, A. G.

    2015-04-01

    The theory of electromagnetic radiation dispersion by polydisperse particles is analyzed. Methods of reliable optical indication of smokes to identify Fire Danger are considered. The conventional method of optical smoke detection implies measuring optical characteristics of the environment under control. After that the results obtained are converted into microphysical parameters which can be compared to the known microphysical properties of smokes.The calculated optical portrait of smokes is offered. The portrait of smokes is the field of representation points in coordinates of the degree of diffusion radiation polarization for two diffusion angles. Each of the spots indicates one of the numerous realizations of smokes. The direct match of the representation spots in the optical increases the probability of smoke A different way to protect optical system is to use the device with mutually orthogonal polarizers of the light source and detector. If hindrance is nonspherical aerosol, the signal from the device is used to correct the signals from smoke detectors.

  14. Joint scaling properties of Sunyaev-Zel'dovich and optical richness observables in an optically-selected galaxy cluster sample

    NASA Astrophysics Data System (ADS)

    Greer, Christopher Holland

    Galaxy cluster abundance measurements are an important tool used to study the universe as a whole. The advent of multiple large-area galaxy cluster surveys across multiple ensures that cluster measurements will play a key role in understanding the dark energy currently thought to be accelerating the universe. The main systematic limitation at the moment is the understanding of the observable-mass relation. Recent theoretical work has shown that combining samples of clusters from surveys at different wavelengths can mitigate this systematic limitation. Precise measurements of the scatter in the observable-mass relation can lead to further improvements. We present Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the Sunyaev-Zel'dovich (SZ) signal for 28 galaxy clusters selected from the Sloan Digital Sky Survey (SDSS) maxBCG catalog. This cluster sample represents a complete, volume-limited sample of the richest galaxy clusters in the SDSS between redshifts 0.2 ≥ z ≥ 0.3, as measured by the RedMaPPer algorithm being developed for the Dark Energy Survey (DES; Rykoff et al. 2012). We develop a formalism that uses the cluster abundance in tandem with the galaxy richness measurements from SDSS and the SZ signal measurements from CARMA to calibrate the SZ and optical observable-mass relations. We find that the scatter in richness at fixed mass is σlog λ| M = 0.24+0.09-0.07 using SZ signal calculated by integrating a cluster pressure profile to a radius of 1 Mpc at the redshift of the cluster. We also calculate the SZ signal at R500 and find that the choice of scaling relation used to determined R500 has a non-trivial effect on the constraints of the observable-mass relationship. Finally, we investigate the source of disagreement between the positions of the SZ signal and SDSS Brightest Cluster Galaxies (BCGs). Improvements to the richness calculator that account for blue BCGs in the cores of cool-core X-ray clusters, as well as

  15. Detection of Significant Groups in Hierarchical Clustering by Resampling.

    PubMed

    Sebastiani, Paola; Perls, Thomas T

    2016-01-01

    Hierarchical clustering is a simple and reproducible technique to rearrange data of multiple variables and sample units and visualize possible groups in the data. Despite the name, hierarchical clustering does not provide clusters automatically, and "tree-cutting" procedures are often used to identify subgroups in the data by cutting the dendrogram that represents the similarities among groups used in the agglomerative procedure. We introduce a resampling-based technique that can be used to identify cut-points of a dendrogram with a significance level based on a reference distribution for the heights of the branch points. The evaluation on synthetic data shows that the technique is robust in a variety of situations. An example with real biomarker data from the Long Life Family Study shows the usefulness of the method. PMID:27551289

  16. Galaxy cluster center detection methods with weak lensing

    NASA Astrophysics Data System (ADS)

    Simet, Melanie

    The precise location of galaxy cluster centers is a persistent problem in weak lensing mass estimates and in interpretations of clusters in a cosmological context. In this work, we test methods of centroid determination from weak lensing data and examine the effects of such self-calibration on the measured masses. Drawing on lensing data from the Sloan Digital Sky Survey Stripe 82, a 275 square degree region of coadded data in the Southern Galactic Cap, together with a catalog of MaxBCG clusters, we show that halo substructure as well as shape noise and stochasticity in galaxy positions limit the precision of such a self-calibration (in the context of Stripe 82, to ˜ 500 h-1 kpc or larger) and bias the mass estimates around these points to a level that is likely unacceptable for the purposes of making cosmological measurements. We also project the usefulness of this technique in future surveys.

  17. Detection of Significant Groups in Hierarchical Clustering by Resampling

    PubMed Central

    Sebastiani, Paola; Perls, Thomas T.

    2016-01-01

    Hierarchical clustering is a simple and reproducible technique to rearrange data of multiple variables and sample units and visualize possible groups in the data. Despite the name, hierarchical clustering does not provide clusters automatically, and “tree-cutting” procedures are often used to identify subgroups in the data by cutting the dendrogram that represents the similarities among groups used in the agglomerative procedure. We introduce a resampling-based technique that can be used to identify cut-points of a dendrogram with a significance level based on a reference distribution for the heights of the branch points. The evaluation on synthetic data shows that the technique is robust in a variety of situations. An example with real biomarker data from the Long Life Family Study shows the usefulness of the method. PMID:27551289

  18. Fiber optic approach for detecting corrosion

    NASA Astrophysics Data System (ADS)

    Kostecki, Roman; Ebendorff-Heidepriem, Heike; Davis, Claire; McAdam, Grant; Wang, Tianyu; Monro, Tanya M.

    2016-04-01

    Corrosion is a multi-billion dollar problem faced by industry. The ability to monitor the hidden metallic structure of an aircraft for corrosion could result in greater availability of existing aircraft fleets. Silica exposed-core microstructured optical fiber sensors are inherently suited towards this application, as they are extremely lightweight, robust, and suitable both for distributed measurements and for embedding in otherwise inaccessible corrosion-prone areas. By functionalizing the fiber with chemosensors sensitive to corrosion by-products, we demonstrate in-situ kinetic measurements of accelerated corrosion in simulated aluminum aircraft joints.

  19. Clustering of Mueller matrix images for skeletonized structure detection

    NASA Astrophysics Data System (ADS)

    Collet, Christophe; Zallat, Jihad; Takakura, Yoshitate

    2004-04-01

    This paper extends and refines previous work on clustering of polarization-encoded images. The polarization-encoded images used in this work are considered as multidimensional parametric images where a clustering scheme based on Markovian Bayesian inference is applied. Hidden Markov Chains Model (HMCM) and Hidden Hierarchical Markovian Model (HHMM) show to handle effectively Mueller images and give very good results for biological tissues (vegetal leaves). Pretreatments attempting to reduce the image dimensionality based on the Principal Component Analysis (PCA) turns out to be useless for Mueller matrix images.

  20. A Spectral Clustering Approach to Lagrangian Vortex Detection

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2015-11-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  1. Spectral-clustering approach to Lagrangian vortex detection

    NASA Astrophysics Data System (ADS)

    Hadjighasem, Alireza; Karrasch, Daniel; Teramoto, Hiroshi; Haller, George

    2016-06-01

    One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two- and three-dimensional flows.

  2. Control of optical response of a supported cluster on different dielectric substrates

    SciTech Connect

    Iida, Kenji Noda, Masashi; Nobusada, Katsuyuki

    2015-06-07

    We develop a computational method for optical response of a supported cluster on a dielectric substrate. The substrate is approximated by a dielectric continuum with a frequency-dependent dielectric function. The computational approach is based on our recently developed first-principles simulation method for photoinduced electron dynamics in real-time and real-space. The approach allows us to treat optical response of an adsorbate explicitly taking account of interactions at an interface between an adsorbate and a substrate. We calculate optical absorption spectra of supported Ag{sub n} (n = 2, 54) clusters, changing the dielectric function of a substrate. By analyzing electron dynamics in real-time and real-space, we clarify the mechanisms for variations in absorption spectra, such as peak shifts and intensity changes, relating to various experimental results for optical absorption of supported clusters. Attractive and repulsive interactions between an adsorbate and a substrate result in red and blue shifts, respectively, and the intensity decreases by energy dissipation into a substrate. We demonstrate that optical properties can be controlled by varying the dielectric function of a substrate.

  3. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods. PMID:25967336

  4. The NIDS Cluster: Scalable, Stateful Network Intrusion Detection on Commodity Hardware

    SciTech Connect

    Tierney, Brian L; Vallentin, Matthias; Sommer, Robin; Lee, Jason; Leres, Craig; Paxson, Vern; Tierney, Brian

    2007-09-19

    In this work we present a NIDS cluster as a scalable solution for realizing high-performance, stateful network intrusion detection on commodity hardware. The design addresses three challenges: (i) distributing traffic evenly across an extensible set of analysis nodes in a fashion that minimizes the communication required for coordination, (ii) adapting the NIDS's operation to support coordinating its low-level analysis rather than just aggregating alerts; and (iii) validating that the cluster produces sound results. Prototypes of our NIDS cluster now operate at the Lawrence Berkeley National Laboratory and the University of California at Berkeley. In both environments the clusters greatly enhance the power of the network security monitoring.

  5. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    NASA Astrophysics Data System (ADS)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  6. The optical measurement of large cluster tracks in a gas jet

    PubMed Central

    Chen, Zhiyuan; Liu, Dong; Han, Jifeng; Bai, Lixin

    2016-01-01

    We propose an optical method based on Rayleigh scattering for the direct measurement of cluster tracks produced by a high-pressure gas jet. The tracks of the argon and methane clusters are acquired by a high-speed camera. It is found that the cluster sizes of these tracks are within the range of 7E + 03~1E + 07 for argon and 2E + 06~4E + 08 for methane. Most argon tracks are continuous and their intensity changes gradually, while the majority of the methane tracks are separated into discrete fractions and their intensity alters periodically along the flight path, which may indicate the methane clusters are more unstable and easily to break up. Special methane clusters which may fly at an axial velocity of less than 2.5m/s are also found. This method is very sensitive to large gas cluster and has broad application prospects in cluster physics. PMID:27561338

  7. The optical measurement of large cluster tracks in a gas jet.

    PubMed

    Chen, Zhiyuan; Liu, Dong; Han, Jifeng; Bai, Lixin

    2016-01-01

    We propose an optical method based on Rayleigh scattering for the direct measurement of cluster tracks produced by a high-pressure gas jet. The tracks of the argon and methane clusters are acquired by a high-speed camera. It is found that the cluster sizes of these tracks are within the range of 7E + 03~1E + 07 for argon and 2E + 06~4E + 08 for methane. Most argon tracks are continuous and their intensity changes gradually, while the majority of the methane tracks are separated into discrete fractions and their intensity alters periodically along the flight path, which may indicate the methane clusters are more unstable and easily to break up. Special methane clusters which may fly at an axial velocity of less than 2.5m/s are also found. This method is very sensitive to large gas cluster and has broad application prospects in cluster physics. PMID:27561338

  8. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  9. Amplifier Noise Based Optical Steganography with Coherent Detection

    NASA Astrophysics Data System (ADS)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  10. Pyridine Vapors Detection by an Optical Fibre Sensor

    PubMed Central

    Elosua, Cesar; Bariain, Candido; Matias, Ignacio R.; Rodriguez, Antonio; Colacio, Enriquie; Salinas-Castillo, Alfonso; Segura-Carretero, Antonio; Fernandez-Gutiérrez, Alberto

    2008-01-01

    An optical fibre sensor has been implemented towards pyridine vapors detection; to achieve this, a novel vapochromic material has been used, which, in solid state, suffers a change in colour from blue to pink-white in presence of pyridine vapours. This complex is added to a solution of PVC (Poly Vinyl Chloride), TBP (Tributylphosphate) and tetrahydrofuran (THF), forming a plasticized matrix; by dip coating technique, the sensing material is fixed onto a cleaved ended optical fibre. The fabrication process was optimized in terms of number of dips and dipping speed, evaluating the final devices by dynamic range. Employing a reflection set up, the absorbance spectra and changes in the reflected optical power of the sensors were registered to determine their response. A linear relation between optical power versus vapor concentration was obtained, with a detection limit of 1 ppm (v/v).

  11. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis.

    PubMed

    Jeong, Ji-Wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul

    2016-01-01

    We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993

  12. Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    PubMed Central

    Jeong, Ji-wook; Chae, Seung-Hoon; Chae, Eun Young; Kim, Hak Hee; Choi, Young-Wook; Lee, Sooyeul

    2016-01-01

    We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response function and a connected-component segmentation method was applied to extract the cluster seed objects as potential clustering centers of MCs. Secondly, a signal-to-noise ratio (SNR) enhanced image was also generated to detect the individual MC candidates and prescreen the MC-like objects. Each cluster seed candidate was prescreened by counting neighboring individual MC candidates nearby the cluster seed object according to several microcalcification clustering criteria. As a second step, we introduced bounding boxes for the accepted seed candidate, clustered all the overlapping cubes, and examined. After the FP reduction step, the average number of FPs per case was estimated to be 2.47 per DBT volume with a sensitivity of 83.3%. PMID:27274993

  13. LLNL electro-optical mine detection program

    SciTech Connect

    Anderson, C.; Aimonetti, W.; Barth, M.; Buhl, M.; Bull, N.; Carter, M.; Clark, G.; Fields, D.; Fulkerson, S.; Kane, R.

    1994-09-30

    Under funding from the Advanced Research Projects Agency (ARPA) and the US Marine Corps (USMC), Lawrence Livermore National Laboratory (LLNL) has directed a program aimed at improving detection capabilities against buried mines and munitions. The program has provided a national test facility for buried mines in arid environments, compiled and distributed an extensive data base of infrared (IR), ground penetrating radar (GPR), and other measurements made at that site, served as a host for other organizations wishing to make measurements, made considerable progress in the use of ground penetrating radar for mine detection, and worked on the difficult problem of sensor fusion as applied to buried mine detection. While the majority of our effort has been concentrated on the buried mine problem, LLNL has worked with the U.S.M.C. on surface mine problems as well, providing data and analysis to support the COBRA (Coastal Battlefield Reconnaissance and Analysis) program. The original aim of the experimental aspect of the program was the utilization of multiband infrared approaches for the detection of buried mines. Later the work was extended to a multisensor investigation, including sensors other than infrared imagers. After an early series of measurements, it was determined that further progress would require a larger test facility in a natural environment, so the Buried Object Test Facility (BOTF) was constructed at the Nevada Test Site. After extensive testing, with sensors spanning the electromagnetic spectrum from the near ultraviolet to radio frequencies, possible paths for improvement were: improved spatial resolution providing better ground texture discrimination; analysis which involves more complicated spatial queueing and filtering; additional IR bands using imaging spectroscopy; the use of additional sensors other than IR and the use of data fusion techniques with multi-sensor data; and utilizing time dependent observables like temperature.

  14. Tumor margin detection using optical biopsy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  15. Spectrally balanced detection for optical frequency domain imaging.

    PubMed

    Chen, Yueli; de Bruin, Daniel M; Kerbage, Charles; de Boer, Johannes F

    2007-12-10

    In optical frequency domain imaging (OFDI) or swept-source optical coherence tomography, balanced detection is required to suppress relative intensity noise (RIN). A regular implementation of balanced detection by combining reference and sample arm signal in a 50/50 coupler and detecting the differential output with a balanced receiver is however, not perfect. Since the splitting ratio of the 50/50 coupler is wavelength dependent, RIN is not optimally canceled at the edges of the wavelength sweep. The splitting ratio has a nearly linear shift of 0.4% per nanometer. This brings as much as +/-12% deviation at the margins of wavelength-swept range centered at 1060nm. We demonstrate a RIN suppression of 33dB by spectrally corrected balanced detection, 11dB more that regular balanced detection. PMID:19550929

  16. Multicolor Fluorescence Detection for Droplet Microfluidics Using Optical Fibers.

    PubMed

    Cole, Russell H; Gartner, Zev J; Abate, Adam R

    2016-01-01

    Fluorescence assays are the most common readouts used in droplet microfluidics due to their bright signals and fast time response. Applications such as multiplex assays, enzyme evolution, and molecular biology enhanced cell sorting require the detection of two or more colors of fluorescence. Standard multicolor detection systems that couple free space lasers to epifluorescence microscopes are bulky, expensive, and difficult to maintain. In this paper, we describe a scheme to perform multicolor detection by exciting discrete regions of a microfluidic channel with lasers coupled to optical fibers. Emitted light is collected by an optical fiber coupled to a single photodetector. Because the excitation occurs at different spatial locations, the identity of emitted light can be encoded as a temporal shift, eliminating the need for more complicated light filtering schemes. The system has been used to detect droplet populations containing four unique combinations of dyes and to detect sub-nanomolar concentrations of fluorescein. PMID:27214249

  17. Automatic detection of erythemato-squamous diseases using k-means clustering.

    PubMed

    Ubeyli, Elif Derya; Doğdu, Erdoğan

    2010-04-01

    A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases. PMID:20433056

  18. Semi-supervised spectral clustering with application to detect population stratification

    PubMed Central

    Liu, Binghui; Shen, Xiaotong; Pan, Wei

    2013-01-01

    In genetic association studies, unaccounted population stratification can cause spurious associations in a discovery process of identifying disease-associated genetic markers. In such a situation, prior information is often available for some subjects' population identities. To leverage the additional information, we propose a semi-supervised clustering approach for detecting population stratification. This approach maintains the advantages of spectral clustering, while is integrated with the additional identity information, leading to sharper clustering performance. To demonstrate utility of our approach, we analyze a whole-genome sequencing dataset from the 1000 Genomes Project, consisting of the genotypes of 607 individuals sampled from three continental groups involving 10 subpopulations. This is compared against a semi-supervised spectral clustering method, in addition to a spectral clustering method, with the known subpopulation information by the Rand index and an adjusted Rand (ARand) index. The numerical results suggest that the proposed method outperforms its competitors in detecting population stratification. PMID:24298278

  19. Cluster-based differential features to improve detection accuracy of focal cortical dysplasia

    NASA Astrophysics Data System (ADS)

    Yang, Chin-Ann; Kaveh, Mostafa; Erickson, Bradley

    2012-03-01

    In this paper, a computer aided diagnosis (CAD) system for automatic detection of focal cortical dysplasia (FCD) on T1-weighted MRI is proposed. We introduce a new set of differential cluster-wise features comparing local differences of the candidate lesional area with its surroundings and other GM/WM boundaries. The local differences are measured in a distributional sense using χ2 distances. Finally, a Support Vector Machine (SVM) classifier is used to classify the clusters. Experimental results show an 88% lesion detection rate with only 1.67 false positive clusters per subject. Also, the results show that using additional differential features clearly outperforms the result using only absolute features.

  20. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks.

    PubMed

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) "downward-IDS (D-IDS)" to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) "upward-IDS (U-IDS)" to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  1. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks

    PubMed Central

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  2. Spin microscope based on optically detected magnetic resonance

    DOEpatents

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  4. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  5. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  6. Spin microscope based on optically detected magnetic resonance

    SciTech Connect

    Berman, Gennady P.; Chernobrod, Boris M.

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Detection of optical properties in small region by diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Li, Shengcai; Wang, Kai; Zhu, Zongping; Wang, Wei

    2015-11-01

    The optical properties of small and highly absorbing tissues can be determined by measurement of spatially resolved diffuse reflectance at short source-detector separations. Spatial resolution and number of measuring point influence the inverting precision of optical property directly from the experimental diffuse reflectance. To increase spatial resolution and number of measuring point, a high-resolution and multiple points detection system is designed. A special optical fiber array probe is employed. Its spatial resolution is 0.125mm. The system is proved to be reliable by comparing the experimental result of diffuse reflectance from small region 0.125mm-1.25mm with that of numerical simulation. The inverting method based on Monte Carlo simulation is designed, by which optical properties can be achieved by building optical parameter date base and training artificial neural network (ANN).

  8. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    SciTech Connect

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexing in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.

  9. Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Carvalho, P.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gilfanov, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-10-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fields were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. We also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.

  10. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGESBeta

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less