Science.gov

Sample records for optical compounds monosubstituted

  1. Molecular Modeling and Experimental Investigations of Nonlinear Optical Compounds Monosubstituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatiana V.; Nesterov, Vladimir N.; Antipin, Mikhail Yu.; Clark, Ronald D.; Sanghadasa, Mohan; Cardelino, Beatriz H.; Moore, Craig E.; Frazier, Donald O.

    1999-01-01

    A search for potential nonlinear optical compounds was performed using the Cambridge Structure Database and molecular modeling. We investigated a series of monosubstituted derivatives of dicyanovinylbenzene, since the nonlinear optical (NLO) properties of such derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were studied earlier. The molecular geometry of these compounds was investigated with x-ray analysis and discussed along with the results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the planarity of the molecules of this series has been revealed. Two new compounds from the series studied, ortho-F and para-Cl-dicyanovinylbenzene, according to powder measurements, were found to be NLO compounds in the crystal state about 10 times more active than urea. The peculiarities of crystal structure formation in the framework of balance between van der Waals and electrostatic interactions have been discussed. The crystal shape of DIVA and two new NLO compounds have been calculated on the basis of the known crystal structure.

  2. Molecular Modeling and Experimental Study of Nonlinear Optical Compounds: Mono-Substituted Derivatives of Dicyanovinylbenzene

    NASA Technical Reports Server (NTRS)

    Timofeeva, Tatyana V.; Nesterov, Vladimir N.; Antipin, Mikhael Y.; Clark, R. D.; Sanghadasa, M.; Cardelino, B. H.; Moore, C. E.; Frazier, Donald O.

    2000-01-01

    A search for potential nonlinear optical (NLO) compounds has been performed using the Cambridge Structural Database and molecular modeling. We have studied a series of mono-substituted derivatives of dicyanovinylbenzene as the NLO properties of one of its derivatives (o-methoxy-dicyanovinylbenzene, DIVA) were described earlier. The molecular geometry in the series of the compounds studied was investigated with an X- ray analysis and discussed along with results of molecular mechanics and ab initio quantum chemical calculations. The influence of crystal packing on the molecular planarity has been revealed. Two new compounds from the series studied were found to be active for second harmonic generation (SHG) in the powder. The measurements of SHG efficiency have shown that the o-F- and p-Cl-derivatives of dicyanovinylbenzene are about 10 and 20- times more active than urea, respectively. The peculiarities of crystal structure formation in the framework of balance between the van der Waals and electrostatic interactions have been discussed. The crystal morphology of DIVA and two new SHG-active compounds have been calculated on the basis of their known crystal structures.

  3. Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones

    NASA Astrophysics Data System (ADS)

    Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.

    2016-03-01

    This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.

  4. An ab initio study of the influence of substituents and intramolecular hydrogen bonding on the carbonyl bond length, and the harmonic and anharmonic stretching force constants. I. Monosubstituted carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1981-11-01

    The CO bond length and the quadratic, cubic and quartic stretching force constants, calculated ab initio using the unscaled 4-31G basis set with full geometry optimization, are reported for three series of monosubstituted carbonyl compounds in which the atom directly bonded to the carbonyl carbon is another carbon, a nitrogen, or an oxygen atom, respectively. The data are analyzed in terms of the In ƒ versus In re relationship, and also the generalized power functions and exponential functions proposed by Herschbach and Laurie. Not only does the atom directly bonded to the carbonyl carbon affect the magnitude of re and the force constants, but the rest of the substituent group is found to be capable of exerting an even greater influence. Within each series of compounds the overall progression from the shortest to the longest CO bonds is tentatively attributed to a diminishing electron density in the bonding region.

  5. Compound semiconductor optical waveguide switch

    DOEpatents

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  6. Hybrid Pd/Fe{sub 3}O{sub 4} nanowires: Fabrication, characterization, optical properties and application as magnetically reusable catalyst for the synthesis of N-monosubstituted ureas under ligand-free conditions

    SciTech Connect

    Nasrollahzadeh, Mahmoud; Azarian, Abbas; Ehsani, Ali; Sajadi, S.Mohammad; Babaei, Ferydon

    2014-07-01

    Highlights: • Preparation of Pd/Fe{sub 3}O{sub 4} nanowires as magnetically reusable catalysts. • The optical properties of the catalyst were studied using Gans theory. • N-arylation of benzylurea and in situ hydrogenolysis of 1-benzyl-3-arylureas. - Abstract: This paper reports the synthesis and use of Pd/Fe{sub 3}O{sub 4} nanowires, as magnetically separable catalysts for ligand-free amidation coupling reactions of aryl halides with benzylurea under microwave irradiation. Then, the in situ hydrogenolysis of the products was performed to afford the N-monosubstituted ureas from good to excellent yields. This method has the advantages of high yields, simple methodology and easy work up. The catalyst can be recovered by using a magnet and reused several times without significant loss of its catalytic activity. The catalyst was characterized using the powder XRD, SEM, EDS and UV–vis spectroscopy. Experimental absorbance spectra was compared with results from the Gans theory.

  7. The structure of the first stable monosubstituted sulfur diimide.

    PubMed

    Jones, Ray

    2015-06-01

    The title compound, 4-(4-methylphenyl)-1,3-diaza-2,4-dithiabuta-1,2-diene, C7H8N2S2, was the first example of a stable monosubstituted sulfur diimide to be documented [Jones (1988). PhD thesis, Imperial College, University of London, England]. Although a partial description of this structure was published previously, the full details are presented here. This allows a detailed comparison against the only other example of this system published to date, highlighting differences in bonding, conformation and packing. PMID:26044326

  8. An AB initio study of the geometry of the CC(H) group the fCC 2 stretching force constant, and the fCC,inCC coupling constant in conjugated mono-substituted carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Bock, Charles W.; Trachtman, Mendel; George, Philip

    1982-06-01

    The geometry of the CC(H)O group, the stretching force constant fCC 2, and the coupling constant fCO,CC, calculated using the unscaled 4-31G basis set with full geometry optimization, are reported for various planar mono-substituted carbonyl compounds. The trends in rCC, rCH, ∠CCO and ∠HCO as rCO increases are investigated, and an inverse relationship established between rCO and rCC, i.e. rCO X rCC = 1.782 ± 0.013. Linear relationships are found in the plot of In fCC 2 versus In rCC in accord with the general form of Clark's equation, and in the plot of fCO,CC versus the quotient rCOit/rinCC.

  9. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrocycles as linker units

    SciTech Connect

    Pang Haijun; Ma Huiyuan; Yu Yan; Yang Ming; Xun Ye; Liu Bo

    2012-02-15

    A new compound, [Cu{sup I}(H{sub 2}O)(Hbpp){sub 2}] Subset-Of {l_brace}[Cu{sup I}(bpp)]{sub 2}[PW{sub 11}Cu{sup II}O{sub 39}]{r_brace} (1) (bpp=1,3-bis(4-pyridyl)propane), has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. In compound 1, the unusual -A-B-A-B- array mono-substituted Keggin anion-chains and 24-membered (Cubpp){sub 2} cation-macrocycles are linked together to form a (2, 4) connected 3D framework with channels of ca. 9.784 Multiplication-Sign 7.771 A{sup 2} along two directions, in which the [Cu(H{sub 2}O)(Hbpp){sub 2}] coordination fragments as guest components are trapped. The photocatalytic experiments of compound 1 were performed, which show a good catalytic activity of compound 1 for photodegradation of RhB. Furthermore, the IR, TGA and electrochemical properties of compound 1 were investigated. - Graphical abstract: An unusual example of mono-substituted Keggin anion-chain based hybrid compound that possesses a 3D structure has been synthesized, which offers a feasible route for synthesis of such compounds. Highlights: Black-Right-Pointing-Pointer The first example of -A-B-A-B- array mono-substituted Keggin chain is observed. Black-Right-Pointing-Pointer An unusual three dimensional structure based mono-substituted Keggin anion-chains. Black-Right-Pointing-Pointer The photocatalysis and electrochemical properties of the title compound were studied.

  10. Monosubstituted Benzene Derivatives from Fruits of Ficus hirta and Their Antifungal Activity against Phytopathogen Penicillium italicum.

    PubMed

    Wan, Chunpeng; Han, Jianxin; Chen, Chuying; Yao, Liangliang; Chen, Jinyin; Yuan, Tao

    2016-07-20

    Ficus hirta, a widely consumed food by Hakka people, has been reported to show potent antifungal activity against phytopathogen Penicillium italicum. However, there is no report of chemical constituents responsible for the antifungal activity. In the current study, nine monosubstituted benzene derivatives, including three new derivatives (1-3), were isolated from the fruits of F. hirta. The structures of these isolates were elucidated on the basis of the analysis of spectroscopic data (mass spectrometry and nuclear magnetic resonance). All of the isolates were evaluated for antifungal activities against P. italicum. At an equivalent concentration, compound 1 exhibited stronger antifungal activity than that of the ethanol extract of F. hirta fruits. PMID:27381890

  11. Optical remote sensing of atmospheric compounds

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.

    1996-02-01

    Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.

  12. Field Evaluation of Anti-Biofouling Compounds on Optical Instrumentation

    NASA Technical Reports Server (NTRS)

    McLean, Scott; Schofield, Bryan; Zibordi, Giuseppe; Lewis, Marlon; Hooker, Stanford; Weidemann, Alan

    1997-01-01

    Biofouling has been a serious question in the stability of optical measurements in the ocean, particularly in moored and drifting buoy applications. Many investigators coat optical surfaces with various compounds to reduce the amount of fouling; to our knowledge, however, there are no objective, in-situ comparative testing of these compounds to evaluate their effectiveness with respect to optical stability relative to untreated controls. We have tested a wide range of compounds at in-situ locations in Halifax Harbour and in the Adriatic Sea on passive optical sensors. Compounds tested include a variety of TBT formulations, antifungal agents, and low-friction silicone-based compounds; time-scales of up to four months were evaluated. The results of these experiments are discussed.

  13. Synthesis and nonlinear optical absorption of novel chalcone derivative compounds

    NASA Astrophysics Data System (ADS)

    Rahulan, K. Mani; Balamurugan, S.; Meena, K. S.; Yeap, G.-Y.; Kanakam, Charles C.

    2014-03-01

    3-(4-(dimethylamino)phenyl)-1-(4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)phenyl)prop-2-en-1-one was synthesized and its third order nonlinear optical properties have been investigated using a z-scan technique with nanosecond laser pulses at 532 nm. The nonlinear absorption behavior of the compound in chloroform presents a distinct difference at different laser intensity. Interestingly, the compound showed a switchover from saturable absorption (SA) to reverse saturable absorption (RSA) with the increase of excitation intensity. Our studies suggest that compound could be used as a potential candidate for optical device applications such as optical limiters.

  14. Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts

    NASA Astrophysics Data System (ADS)

    Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.

    2013-09-01

    Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.

  15. Structures and chiroptical properties of the BINAS-monosubstituted Au38(SCH3)24 cluster

    NASA Astrophysics Data System (ADS)

    Molina, Bertha; Sánchez-Castillo, Ariadna; Knoppe, Stefan; Garzón, Ignacio L.; Bürgi, Thomas; Tlahuice-Flores, Alfredo

    2013-10-01

    The structure and optical properties of a set of R-1,1'-binaphthyl-2,2'-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster.The structure and optical properties of a set of R-1,1'-binaphthyl-2,2'-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster. Electronic supplementary information (ESI) available: Comparison of calculated and experimental optical absorption and CD spectra of the A-38 enantiomer; bond distribution of the A-38 enantiomer, and four studied regioisomers; tables with the excitation energies, oscillator strengths and weights of the electronic transitions; xyz relaxed coordinates of studied regioisomers, frontier orbitals of the relaxed structures. See DOI: 10.1039/c3nr03403h

  16. PPL catalyzed four-component PASE synthesis of 5-monosubstituted barbiturates: Structure and pharmacological properties.

    PubMed

    Bihani, Manisha; Bora, Pranjal P; Verma, Alakesh K; Baruah, Reshita; Boruah, Hari Prasanna Deka; Bez, Ghanashyam

    2015-12-15

    Enzymatic four-component reactions are very rare although three-component enzymatic promiscuous reactions are widely reported. Herein, we report an efficient PASE protocol for the synthesis of potentially lipophilic zwitterionic 5-monosubstituted barbiturates by four component reaction of mixture of ethyl acetoacetate, hydrazine hydrate, aldehyde and barbituric acid in ethanol at room temperature. Seven different lipases were screened for their promiscuous activity towards the synthesis of 5-monosubstituted barbiturates and the lipase from porcine pancreas (PPL) found to give optimum efficiency. The zwitterionic 5-monosubstituted barbiturates with pyrazolyl ring showed promising pharmacological activity upon screening for antibacterial and apoptotic properties. PMID:26546212

  17. Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives - their stability, complexation ability in solution or when deposited on solid anionic surface.

    PubMed

    Popr, Martin; Filippov, Sergey K; Matushkin, Nikolai; Dian, Juraj; Jindřich, Jindřich

    2015-01-01

    The thermal stability of the monosubstituted cationic cyclodextrin (CD) derivatives PEMEDA-β-CD and PEMPDA-β-CD, which differ in their substituent linker length (ethylene and propylene, respectively), was studied via (1)H NMR experiments. PEMPDA-β-CD exhibited higher resistance towards the Hofmann degradation and was chosen as a more suitable host molecule for further studies. Inclusion properties of PEMPDA-β-CD in solution with a series of simple aromatic guests (salicylic acid, p-methoxyphenol and p-nitroaniline) were determined by isothermal titration calorimetry (ITC) and compared to the native β-CD. Permanently charged cationic CD derivatives were successfully deposited on the anionic solid surface of polymeric Nafion(®) 117 membrane via electrostatic interactions. Deposition kinetics and coverage of the surface were determined by ELSD. Finally, the ability of the CD derivatives bound to the solid surface to encapsulate aromatic compounds from aqueous solution was measured by UV-vis spectroscopy. The obtained results are promising for future industrial applications of the monosubstituted β-CD derivatives, because the preparation of cationic CD derivatives is applicable in large scale, without the need of chromatographic purification. Their ionic deposition on a solid surface is simple, yet robust and a straightforward process as well. PMID:25815069

  18. Salicylanilide N-monosubstituted carbamates: Synthesis and in vitro antimicrobial activity.

    PubMed

    Krátký, Martin; Vinšová, Jarmila

    2016-03-15

    The research of innovative antimicrobial agents represents a cutting edge topic. Hence, we synthesized and characterised novel salicylanilide N-monosubstituted carbamates. Twenty compounds were evaluated in vitro against eight bacterial strains and eight fungal species. The lowest minimum inhibitory concentrations (MICs) were found to be ⩽0.49μM. Genus Staphylococcus, including methicillin-resistant Staphylococcus aureus, and fungus Trichophyton mentagrophytes showed uniformly the highest rate of susceptibility, whilst Gram-negative bacteria and most of the fungi were less susceptible. A wide range of carbamates provided comparable or superior in vitro antimicrobial activity in comparison to established drugs. Interestingly, extended-spectrum β-lactamase producing strain of Klebsiella pneumoniae was inhibited with MICs starting from 31.25μM. With respect to Staphylococci, 2-[(4-bromophenyl)carbamoyl]-4-chlorophenyl phenylcarbamate exhibited the lowest MIC values (⩽0.98μM). 2-[(4-Bromophenyl)carbamoyl]-4-chlorophenyl benzylcarbamate showed the widest spectrum of antifungal action. The results indicate that some salicylanilide carbamates can be considered to be promising candidates for future investigation. PMID:26879856

  19. The structure-activity relationship in herbicidal monosubstituted sulfonylureas

    SciTech Connect

    Li, Zheng-Ming; Ma, Yi; Guddat, Luke; Cheng, Pei-Quan; Wang, Jian-Guo; Pang, Siew S; Dong, Yu-Hui; Lai, Cheng-Ming; Wang, Ling-Xiu; Jia, Guo-Feng; Li, Yong-Hong; Wang, Su-Hua; Liu, Jie; Zhao, Wei-Guang; Wang, Bao-Lei

    2012-05-24

    The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesized in the authors laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.

  20. Volatile Organic Compound Optical Fiber Sensors: A Review

    PubMed Central

    Elosua, Cesar; Matias, Ignacio R.; Bariain, Candido; Arregui, Francisco J.

    2006-01-01

    Volatile organic compound (VOC) detection is a topic of growing interest with applications in diverse fields, ranging from environmental uses to the food or chemical industries. Optical fiber VOC sensors offering new and interesting properties which overcame some of the inconveniences found on traditional gas sensors appeared over two decades ago. Thanks to its minimum invasive nature and the advantages that optical fiber offers such as light weight, passive nature, low attenuation and the possibility of multiplexing, among others, these sensors are a real alternative to electronic ones in electrically noisy environments where electronic sensors cannot operate correctly. In the present work, a classification of these devices has been made according to the sensing mechanism and taking also into account the sensing materials or the different methods of fabrication. In addition, some solutions already implemented for the detection of VOCs using optical fiber sensors will be described with detail.

  1. Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.

    2016-07-01

    In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.

  2. Crystal stability and optical properties of organic chain compounds

    NASA Astrophysics Data System (ADS)

    Zupanovic, P.; Bjelis, A.; Barisic, S.

    1999-01-01

    The solution to the long-standing problem of the cohesion of organic chain compounds is proposed. We consider the tight-binding dielectric matrix with two electronic bands per chain, determine the corresponding hybridized collective modes, and show that three among them are considerably softened due to strong dipole-dipole and monopole-dipole interactions. By this we explain the unusual low-frequency optical activity of TTF-TCNQ, including the observed 10 meV anomaly. The softening of the modes also explains the cohesion of the mixed-stack lattice, the fractional charge transfer almost independent of the material, and the formation of the charged sheets in some compounds.

  3. Spin-Exchange Optical Pumping of Solid Alkali Compounds

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Ishikawa, Kiyoshi; Jau, Yuan-Yu; Happer, William

    2007-06-01

    We demonstrate enhancement of the ^133Cs nuclear polarization in a film of cesium hydride which has been placed in contact with an optically pumped cesium vapor. The maximum observed polarization at 9.4 T and 137 ^oC is roughly 4 times the equilibrium polarization, but higher magnetizations are possible at lower magnetic fields. In an attempt to determine the mechanism of spin transfer from the alkali vapor to the solid, we have performed this experiment at intermediate magnetic fields (1-2 tesla) while pumping different optical transitions in the vapor. We will discuss the predicted spin current to the CsH layer in this regime of partial hyperfine decoupling and propose new methods for generating even higher polarizations in the solid. Potential applications of this technique will be mentioned as well as its extension to other compounds.

  4. Caged compounds for multichromic optical interrogation of neural systems

    PubMed Central

    Amatrudo, Joseph M.; Olson, Jeremy P.; Agarwal, Hitesh K.; Ellis-Davies, Graham C.R.

    2014-01-01

    Caged compounds have widely used by neurophysiologists to study many aspects of cellular signaling in glia and neurons. Biologically inert before irradiation, they can be loaded into cells via patch pipette or topically applied in situ to a defined concentration, photolysis releases the caged compound in a very rapid and spatially defined way. Since caged compounds are exogenous optical probes, they include not only natural products such neurotransmitters, calcium and IP3, but non-natural products such as fluorophores, drugs and antibodies. In this Technical Spotlight we provide a short introduction to the uncaging technique by discussing the nitroaromatic caging chromophores most widely used in such experiments (e.g. CNB1, DMNB, MNI and CDNI). We show that recently developed caging chromophores (RuBi and DEAC450) that are photolyzed with blue light (ca. 430–480 nm range) can be combined with traditional nitroaromatic caged compounds to enable two-color optical probing of neuronal function. For example, one-photon uncaging of either RuBi-GABA or DEAC450-GABA with a 473-nm laser is facile, and can block non-linear currents (dendritic spikes or action potentials) evoked by two-photon uncaging of CDNI-Glu at 720 nm. We also show that two-photon uncaging of DEAC450-Glu and CDNI-GABA at 900 and 720 nm, respectively, can be used to fire and block action potentials. Our experiments illustrate that recently developed chromophores have taken uncaging out of the “monochrome era”, in which it has existed since 1978, so as to enable multichromic interrogation of neuronal function with single synapse precision. PMID:25471355

  5. 40 CFR 721.9700 - Monosubstituted alkoxy-amino-tra-zines (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(1)(viii), (g)(2)(i) and (g)(2)(v), (g)(4)(xi), and (g)(5). The provisions of § 721.72(d) requiring.... Requirements as specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(iii) through (a)(5)(vii), and (a)(6)(i... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Monosubstituted...

  6. Modular Approach to 9-Monosubstituted Fluorene Derivatives Using Mo(V) Reagents.

    PubMed

    Franzmann, Peter; Trosien, Simon; Schubert, Moritz; Waldvogel, Siegfried R

    2016-03-01

    Oxidative coupling using molybdenum(V) reagents provides fast access to highly functionalized 9-monosubstituted fluorenes. This synthetic approach is highly modular, is high yielding, and tolerates a variety of labile moieties, e.g. amides or iodo groups. The established protocol leads to promising precursors for pharmacologically important analogues of melatonin. PMID:26913835

  7. 40 CFR 721.9700 - Monosubstituted alkoxy-amino-tra-zines (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(1)(viii), (g)(2)(i) and (g)(2)(v), (g)(4)(xi), and (g)(5). The provisions of § 721.72(d) requiring.... Requirements as specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(iii) through (a)(5)(vii), and (a)(6)(i... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Monosubstituted...

  8. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound.

    PubMed

    Tenenbaum, Elena; Segal, Ester

    2015-11-21

    In this work we present a label-free optical biosensor for rapid bacteria detection using a novel peptide-mimetic compound, as the recognition element. The biosensor design is based on an oxidized porous silicon (PSiO2) nanostructure used as the optical transducer, functionalized with the sequence K-[C12K]7 (referred to as K-7α12), which is a synthetic antimicrobial peptide. This compound is a member of a family of oligomers of acylated lysines (OAKs), mimicking the hydrophobicity and charge of natural antimicrobial peptides. The OAK is tethered to the PSiO2 film and the changes in the reflectivity spectrum are monitored upon exposure to Escherichia coli (E. coli) bacterial suspensions and their lysates. We show that capture of bacterial cell fragments induces predictable changes in the reflectivity spectrum, proportional to E. coli concentrations, thereby enabling rapid, sensitive and reproducible detection of E. coli at concentrations as low as 10(3) cells per mL. While for intact bacterial cells, the K-7α12-tethered PSiO2 shows a poor capturing ability, resulting in an insignificant optical response. The biosensor performance is also studied upon exposure to model Gram positive and negative bacterial lysates, suggesting preferential capture of E. coli cell fragments in the presented scheme. These OAK-based biosensors offer significant advantages in comparison with conventional antibody-based assays, in terms of their simple and cost-effective production, while providing numerous possible sequence combinations for designing new detection schemes. PMID:26456237

  9. Properties of cationic monosubstituted tetraalkylammonium cyclodextrin derivatives – their stability, complexation ability in solution or when deposited on solid anionic surface

    PubMed Central

    Popr, Martin; Filippov, Sergey K; Matushkin, Nikolai; Dian, Juraj

    2015-01-01

    Summary The thermal stability of the monosubstituted cationic cyclodextrin (CD) derivatives PEMEDA-β-CD and PEMPDA-β-CD, which differ in their substituent linker length (ethylene and propylene, respectively), was studied via 1H NMR experiments. PEMPDA-β-CD exhibited higher resistance towards the Hofmann degradation and was chosen as a more suitable host molecule for further studies. Inclusion properties of PEMPDA-β-CD in solution with a series of simple aromatic guests (salicylic acid, p-methoxyphenol and p-nitroaniline) were determined by isothermal titration calorimetry (ITC) and compared to the native β-CD. Permanently charged cationic CD derivatives were successfully deposited on the anionic solid surface of polymeric Nafion® 117 membrane via electrostatic interactions. Deposition kinetics and coverage of the surface were determined by ELSD. Finally, the ability of the CD derivatives bound to the solid surface to encapsulate aromatic compounds from aqueous solution was measured by UV–vis spectroscopy. The obtained results are promising for future industrial applications of the monosubstituted β-CD derivatives, because the preparation of cationic CD derivatives is applicable in large scale, without the need of chromatographic purification. Their ionic deposition on a solid surface is simple, yet robust and a straightforward process as well. PMID:25815069

  10. Optical amplification and stability of spiroquaterphenyl compounds and blends

    NASA Astrophysics Data System (ADS)

    Fuhrmann-Lieker, T.; Lambrecht, J.; Hoinka, N.; Kiurski, M.; Wiske, A.; Hagelstein, G.; Yurttagül, Y.; Abdel-Awwad, M.; Wilke, H.; Messow, F.; Hillmer, H.; Salbeck, J.

    2015-02-01

    In this contribution, we present a systematic investigation on a series of spiroquaterphenyl compounds optimised for solid state lasing in the near ultraviolet (UV). Amplified spontaneous emission (ASE) thresholds in the order of 1 μJ/cm^2 are obtained in neat (undiluted) films and blends, with emission peaks at 390±1 nm for unsubstituted and meta-substituted quaterphenyls and 400±4 nm for para-ether substituted quaterphenyls. Mixing with a transparent matrix retains a low threshold, shifts the emission to lower wavelengths and allows a better access to modes having their intensity maximum deeper in the film. Chemical design and blending allow an independent tuning of optical and processing properties such as the glass transition.

  11. Spin-Exchange Optical Pumping of Solid Alkali Compounds

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Ishikawa, Kiyoshi; Jau, Yuan-Yu; Happer, William

    2007-03-01

    Spin-exchange optical pumping of noble gases has been used for many years to create highly non-equilibrium spin populations, with applications ranging from fundamental physics[1] to medical imaging[2]. In this procedure, angular momentum is transferred from circularly-polarized laser light to the electron spins of an alkali vapor and ultimately to the nuclei of a gas such as ^3He or ^129Xe. Here we show experimentally that a similar process can be used to polarize the nuclei of a solid film of cesium hydride which coats the walls of an optical pumping cell. We present nuclear magnetic resonance (NMR) data which demonstrate that the nuclear polarization of ^133Cs in CsH can be enhanced above the Boltzmann limit in a 9.4-Tesla magnetic field. Possible spin-exchange mechanisms will be discussed, as well as the extension of this technique to other compounds. [1] T. W. Kornack, R. K. Ghosh, and M. V. Romalis, Phys. Rev. Lett. 95, 23080 (2005). [2] M. S. Conradi, D. A. Yablonskiy, et al., Acad. Radiol. 12, 1406 (2005).

  12. Low Scatter Edge Blackening Compounds For Refractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Lewis, Isabella T.; Telkamp, Arthur R.; Ledebuhr, Arno G.

    1990-01-01

    Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric refractive lenses to Lawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-matched absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflected or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane. Perkin-Elmer and LLNL undertook a program to develop epoxy-based dye carrier compounds with refractive indices corresponding to the glass types used in the WFOV lens. This program involved the measuring of the refractive index of a number of epoxy compounds and catalysts, the experimental combination of epoxies to match our glass indices, and the identification of a suitable non-scattering absorptive dye. Measurements on these blacks showed Bidirectional Reflectance Distribution Functions (BRDFs) between 1.4 and 3.1 orders of magnitude lower than Perkin

  13. Synthesis, characterisation, electrical and optical properties of copper borate compounds

    SciTech Connect

    Kipcak, Azmi Seyhun; Senberber, Fatma Tugce; Aydin Yuksel, Sureyya; Derun, Emek Moroydor; Piskin, Sabriye

    2015-10-15

    Highlights: • Cu(BO{sub 2}){sub 2} was synthesized at the form of with pdf number of “00-001-0472”. • Particle sizes were found between 162.72 and 56.44 nm and 195.76 and 75.73 nm at CuSNaH. • Reaction yields were 90.4 ± 0.84, 96.9 ± 0.78 and 78.9 ± 0.76% for CuST, CuSB and CuSNaH. • The resistivity of CuST, CuSB and CuSNaH are 1.10 × 10{sup 7}, 7.02 × 10{sup 6} and 8.62 × 10{sup 5} Ωm. • The optical energy gap was 3.76 eV. - Abstract: The hydrothermal synthesis of copper borate compounds [Cu(BO{sub 2}){sub 2}] was studied, and several parameters were found to affect the synthesis. Raw materials, including CuSO{sub 4}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·5H{sub 2}O, Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O, NaOH and H{sub 3}BO{sub 3}, were used. Reaction temperatures and reaction times between 40 °C and 100 °C and 15 and 240 min, respectively, were used. The as-synthesised copper borate was analysed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The yields of the reactions were also calculated. Single-phase, nanoparticulate copper borate compounds (Cu(BO{sub 2}){sub 2}) possessing high XRD crystal scores were obtained; the reactions used to obtain these materials were highly efficient. Electrical resistivity and optical absorbance measurements were carried out on the compounds obtained from the highest yielding reactions. The results of this study showed that even using a reaction time of 15 min, copper borate formation was successfully achieved.

  14. Optical characterization of gaps in directly bonded Si compound optics using infrared spectroscopy.

    PubMed

    Gully-Santiago, Michael; Jaffe, Daniel T; White, Victor

    2015-12-01

    Silicon direct bonding offers flexibility in the design and development of Si optics by allowing manufacturers to combine subcomponents with a potentially lossless and mechanically stable interface. The bonding process presents challenges in meeting the requirements for optical performance because air gaps at the Si interface cause large Fresnel reflections. Even small (35 nm) gaps reduce transmission through a direct bonded Si compound optic by 4% at λ=1.25  μm at normal incidence. We describe a bond inspection method that makes use of precision slit spectroscopy to detect and measure gaps as small as 14 nm. Our method compares low-finesse Fabry-Perot models to high-precision measurements of transmission as a function of wavelength. We demonstrate the validity of the approach by measuring bond gaps of known depths produced by microlithography. PMID:26836675

  15. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  16. Fiber Optic Biosensing Probes For Biomedically Important Compounds

    NASA Astrophysics Data System (ADS)

    Arnold, Mark A.

    1988-06-01

    Fiber optic biosensing probes for several bioanalytes of clinical and biomedical importance are described. The development of biosensors based on immobilization of a deaminating enzyme at the tip of a fiber optic ammonia sensor is illustrated with a biosensing probe for urea. In addition, biosensors based on the direct fluorometric detection of reduced nicotinamide adenine dinucleotide (NADH) at the tip of an optical fiber device are presented. Probes for lactate and pyruvate illustrate this concept. Finally, preliminary results from an investigation to prepare NADH sensing probes based on immobilized bacterial luciferase are given.

  17. Liquid chromatography analysis of monosubstituted sulfobutyl ether-beta-cyclodextrin isomers on porous graphitic carbon.

    PubMed

    Jacquet, Romain; Pennanec, Rodolphe; Elfakir, Claire; Lafosse, Michel

    2004-10-01

    The retention behaviour of the three positional isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was investigated on a porous graphitic carbon (PGC) column. The influence of the mobile phase composition (nature and concentration of organic and electronic modifiers) was studied as well as the effect of column temperature. These hydrophilic and anionic analytes were highly retained on the PGC stationary phase compared to octadecyl bonded phases. The retention is mainly governed by a reversed-phase mechanism with electronic interaction playing a secondary role. An increase in solute retention and efficiency with temperature was observed. Successful isocratic separation with satisfactory baseline resolution of the three isomers of monosubstituted sulfobutyl ether-beta-cyclodextrin was achieved at 75 degrees C on a Hypercarb column by using ammonium acetate as electronic modifier in water-acetonitrile (83:17). The chromatographic methodology developed can be easily used for relative quantification of each isomer within a mixture and can be applied for semi-preparative purification of each one. The evaporative light scattering detector allows the detection of these non UV-visible absorbing molecules. PMID:15537080

  18. Exciting fluorescence compounds on an optical fiber's side surface with a liquid core waveguide.

    PubMed

    Ray, Jason C; Almas, Muhammad S; Tao, Shiquan

    2016-01-01

    A new fiber optic fluorescence spectroscopic method using a liquid core waveguide (LCW) as an excitation element has been developed for detecting a fluorescence compound absorbed on an optical fiber's surface. A laser light beam was coupled into a multimode optical fiber. The distal end of the fiber was inserted into an LCW. The diverging light emerging from the fiber's end was collected and guided within the LCW. A tapered optical fiber was inserted into the LCW from the other side. Laser light traveling in the LCW evenly illuminates the tapered fiber surface and excites fluorescence molecules absorbed on the tapered fiber's surface. Fluorescence light emitted from the tapered fiber surface was collected with the fiber itself and delivered through the fiber to an optical fiber compatible spectrometer for detection. This new technique provides an efficient way for evenly exciting fluorescence compounds absorbed on an optical fiber's surface. PMID:26696168

  19. Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography

    PubMed Central

    Guan, Guangying; Reif, Roberto; Huang, Zhihong; Wang, Ruikang K.

    2011-01-01

    A model that describes the concentration of photothermal (light-to-heat converters) compounds as a function of depth in a turbid medium is developed. The system consists of a pump laser (808 nm modulated at 400 Hz), which heats a photothermal compound, and a phase sensitive spectral domain optical coherence tomography system, which detects the changes in the optical path length of the sample induced by the temperature increase. The model is theoretically derived and the coefficients are empirically determined using solid homogeneous gel phantoms. The model is validated by reconstructing the concentration of a photothermal compound in thick single and double layer solid phantoms. PMID:22191920

  20. Optically enhanced oxidation of III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuo; Takahei, Kenichiro

    1985-01-01

    Oxidation of III-V compound semiconductor (110) cleaved surfaces under light irradiation is studied. The light irradiation enhanced the reaction rate of oxidation but the relationship between oxide growth and oxidation time under logarithmic law scarcely changed within this experimental range. The oxidation trend observed under light irradiation is similar to that of thermal oxidation for GaP, GaAs, InP, InAs, InGaAs, and InGaAsP. Semiconductors having As as the V element tend to be easily oxidized, while those of the above mentioned six kinds of materials having Ga as the III element are quickly oxidized in their initial stage. Ternary and quaternary compound semiconductors have less tendency to be oxidized compared to their constituent binary materials. off

  1. Topological band order, structural, electronic and optical properties of XPdBi (X = Lu, Sc) compounds

    NASA Astrophysics Data System (ADS)

    Narimani, M.; Nourbakhsh, Z.

    2016-05-01

    In this paper, the structural, electronic and optical properties of LuPdBi and ScPdBi compounds are investigated using the density functional theory by WIEN2K package within the generalized gradient approximation, local density approximation, Engel-Vosco generalized gradient approximations and modified Becke-Johnson potential approaches. The topological phases and band orders of these compounds are studied. The effect of pressure on band inversion strength, electron density of states and the linear coefficient of the electronic specific heat of these compounds is investigated. Furthermore, the effect of pressure on real and imaginary parts of dielectric function, absorption and reflectivity coefficients of these compounds is studied.

  2. Optical Evaluation of an As-Manufactured Compound Secondary Concentrator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Skowronski, Timothy J.; Miles, Barry J.

    1999-01-01

    Secondary concentrators are needed in solar thermal propulsion to further concentrate the energy collected by large lightweight primary concentrators. Although the physics of secondary concentrators has been worked out in detail and the manufacturing has been successfully completed for a ground demonstration, there is a need to quantify the specific performance of as-manufactured concentrators. This paper summarizes the properties of a secondary concentrator manufactured for the Integrated Solar Upper Stage engine ground demonstration in 1997 and presents data obtained from the optic that describe the performance of the as-manufactured component.

  3. Comparative toxicity and structure-activity in Chlorella and Tetrahymena: Monosubstituted phenols

    SciTech Connect

    Jaworska, J.S.; Schultz, T.W. )

    1991-07-01

    The relative toxicity of selected monosubstituted phenols has been assessed by Kramer and Truemper in the Chlorella vulgaris assay. The authors examined population growth inhibition of this simple green algae under short-term static conditions for 33 derivatives. However, efforts to develop a strong predictive quantitative structure-activity relationship (QSAR) met with limited success because they modeled across modes of toxic action or segregated derivatives such as positional isomers (i.e., ortho-, meta-, para-). In an effort to further their understanding of the relationships of ecotoxic effects of phenols, the authors have evaluated the same derivatives reported by Kramer and Truemper in the Tetrahymena pyriformis population growth assay, compared the responses in both systems and developed QSARs for the Chlorella vulgaris data based on mechanisms of action.

  4. Optical properties of NbCl5 and ZnMg intercalated graphite compounds

    NASA Astrophysics Data System (ADS)

    Jung, Eilho; Lee, Seokbae; Roh, Seulki; Meng, Xiuqing; Tongay, Sefaattin; Kang, Jihoon; Park, Tuson; Hwang, Jungseek

    2014-12-01

    We studied NbCl5 and ZnMg alloy intercalated graphite compounds using an optical spectroscopy technique. These intercalated metallic graphite samples were quite challenging to obtain optical reflectance spectra since they were not flat and quite thin. By using both a new method and an in situ gold evaporation technique we were able to obtain reliable reflectance spectra of our samples in the far and mid infrared range (80-7000 cm-1). We extracted the optical constants including the optical conductivity and the dielectric function from the measured reflectance spectra using a Kramers-Kronig analysis. We also extracted the dc conductivity and the plasma frequencies from the optical conductivity and dielectric functions. NbCl5 intercalated graphite samples show similar optical conductivity spectra as bare highly oriented pyrolytic graphite even though there are some differences in detail. ZnMg intercalated samples show significantly different optical conductivity spectra from the bare graphite. Optical spectroscopy is one of the most reliable experimental techniques to obtain the electronic band structures of materials. The obtained optical conductivities support the recent theoretically calculated electronic band structures of NbCl5 and ZnMg intercalated graphite compounds. Our results also provide important information of electronic structures and charge carrier properties of these two new intercalated materials for applications.

  5. Noncrystalline Condensation of Densely Dissolved Optically Nonlinear Organic Compound in Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Hiraga, Takashi; Tanaka, Norio; Hayamizu, Kikuko; Mito, Akihiro; Takarada, Shigeru; Yamasaki, Yuuichi; Nakamura, Michie; Hoshino, Nobuo; Moriya, Tetsuo

    1993-04-01

    Optical properties and condensed states of the densely dissolved optically nonlinear organic compound in polymer matrices were investigated by means of optical measurements, structural analysis and pressure tuning spectroscopy. In the investigation of the absorption peak wavelength, 2-methyl-4-nitroaniline (MNA) in poly(methyl methacrylate) (PMMA) exhibited characteristics intermediate between the crystal and the MNA dissolved in solvents, i.e., noncrystalline condensation. This result was consistent with those of X-ray diffraction analysis, second- and third-harmonics generation, IR absorption and 13C-NMR spectroscopies. It has also been revealed that such a system provides the most suitable measuring method of the third optical nonlinear constant for a variety of compounds.

  6. Optical properties across the insulator to metal transitions in vanadium oxide compounds.

    PubMed

    Perucchi, A; Baldassarre, L; Postorino, P; Lupi, S

    2009-08-12

    We review the optical properties of three vanadium oxide compounds V(2)O(3), VO(2) and V(3)O(5), belonging to the so-called Magnéli phase. Their electrodynamics across a metal to insulator transition is investigated as a function of both temperature and pressure. We analyse thoroughly the optical results, with a special emphasis on the infrared spectral weight. This allows us to discuss the nature of the mechanisms driving the phase transitions in the three compounds, pointing out the role of electron-electron and electron-phonon interactions in the various cases. PMID:21693963

  7. Nonlinear optical properties of new organotellurium compounds containing azomethine and azo groups under CW laser illumination

    NASA Astrophysics Data System (ADS)

    Saadon, H. L.; Ali, Basil; Al-Fregi, Adil A.

    2014-06-01

    Two new organotellurium compounds containing azomethine and azo groups, [2-(2-hydroxynaphthylazo)phenyl][2-(2-methoxybenzylideneamino)-5-methylphenyl]tellurium dibromide (P1) and [2-(2-hydroxynaphthylazo)-5-nitrophenyl][2-(2-methoxy benzylideneamino)-5-methyl phenyl]tellurium dibromide (P2) were synthesized and doped in polyvinylprodidone (PVP) matrix. The nonlinear optical (NLO) properties of these compounds and doped polymer were studied using Z-scan technique at 532 nm. The Z-scan results reveal that the sample solutions and films exhibit self-defocusing nonlinearity. The P2/PVP solutions investigated here exhibit good optical power limiting.

  8. Spatial compound imaging for fiber-bundle optic microscopy

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong Woo; Cha, Jaepyeong; Kang, Jin U.

    2014-02-01

    Coherent fiber bundles with high core density give both flexibility and high resolution to microscopy. Despite of these advantages, fiber bundles inevitably have uncovered region between adjacent cores. The region results in structural artifact known as pixelation effect. Many kinds of image processing techniques have been introduced to remove this pixelation artifact such as frequency domain filter and Gaussian filter. However, these methods fundamentally have limitation because they use the information of adjacent pixels to make up for these uncovered area; therefore, they cannot avoid blurring effect as a result. To overcome this problem, we introduce spatial compound imaging method to overcome this pixelation artifact. The method uses multiple frames taken with small deviation of position. Some parts of these images include information which is devoid of in other images. The total amount of information increase as more images are added up and we can expect the improvement of resolution in the final images. At the same time, the duplicated parts among these images can be averaged to improve SNR ratio. For these improvements, we essentially need sophisticated registration algorithm. The pixelation artifact is troublesome again in registration process because its structural artifacts are strong features shared with whole images. However, we can solve this problem by using reference image and divide the sample images into two parts: effective and ineffective regions. We used effective regions for registration. We used USAF target to evaluate our method and we could get a result that SNR and resolution are both critically increase.

  9. Fiber-optic surface-enhanced Raman system for field screening of hazardous compounds

    SciTech Connect

    Ferrell, T.L.; Goudonnet, J.P.; Arakawa, E.T.; Reddick, R.C.; Gammage, R.B.; Haas, J.W.; James, D.R.; Wachter, E.A.

    1988-01-01

    Surface-enhanced Raman scattering permits identification of compounds adsorbed onto a metal microbase that is microlithographically produced with submicron resolution. Less than one percent of a monolayer of a Raman Active target compound offers a high signal-to-noise ratio. By depositing the microbase on the exterior of a fiber optic cable, convenient field screening or monitoring is permitted. By using highly effective microbases, it is possible to reduce laser power requirements sufficiently to allow an economical, but complete, system to be housed in a suitcase. We shall present details of SERS system of this type and shall show data on samples of interest in the screening of hazardous compounds.

  10. Synthesis of new LC compounds with high optical anisotropy: pentaphenyl derivatives lateral substituted

    NASA Astrophysics Data System (ADS)

    Sasnouski, Genadz; Lapanik, Valery; Dabrowski, Roman; Dziaduszek, Jerzy

    2012-04-01

    A new pentaphenyl liquid crystalline (LC) compounds with 2,3-difluorobenzene moiety exhibiting wide nematic range have been prepared. The key stage is the condensation of the corresponding 3-dimethylaminopropanoyl-4-pentyl benzene hydrochloride with substituted methyl benzyl ketone in the presence of base leading to 3,6-disubstituted cyclohexenones. Methylation with methyl magnesium iodide followed by oxidative aromatization gives three-ring bromides, which are used in the Suzuki cross-coupling reaction. Pentaphenyl LC compounds possessing lateral methyl group have moderate melting points, improved solubility, and miscibility with another LC components. The new compounds could be useful in LC compositions with the high optical anisotropy.

  11. Ab initio study of the structural, electronic and optical properties of ZnTe compound

    SciTech Connect

    Bahloul, B.; Deghfel, B.; Amirouche, L.; Bounab, S.; Bentabet, A.; Bouhadda, Y.; Fenineche, N.

    2015-03-30

    Structural, electronic and optical properties of ZnTe compound were calculated using Density Functional Theory (DFT) based on the pseudopotentials and planewaves (PP-PW) method as implemented in the ABINIT computer code, where the exchange–correlation functional is approximated using the local density approximation (LDA) and the generalized gradient approximation (GGA). The obtained results from either LDA or GGa calculation for lattice parameter, energy band gap and optical parameters, such as the fundamental absorption edge, the peaks observed in the imaginary part of the dielectric function, the macroscopic dielectric constants and the optical dielectric constant, are compared with the available theoretical results and experimental data.

  12. Kinetic Resolution of Racemic and Branched Monosubstituted Allylic Acetates by a Ruthenium-Catalyzed Regioselective Allylic Etherification.

    PubMed

    Shinozawa, Toru; Terasaki, Shou; Mizuno, Shota; Kawatsura, Motoi

    2016-07-01

    We demonstrated the kinetic resolution of racemic and branched monosubstituted allylic acetates by a ruthenium-catalyzed regioselective allylic etherification. The reaction was effectively catalyzed by the chiral ruthenium catalyst, which was generated by [RuCl2(p-cymene)]2 and (S,S)-iPr-pybox and a catalytic amount of TFA, and both the allylic etherification product and recovered allylic acetate were obtained as an enantiomerically enriched form with up to a 103 s value. PMID:27276556

  13. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  14. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Hong, Young Bin; Yoo, Jeong Hyun; Koo, Heasoo; Lee, Ja Hyun; Hong, Hyun Dae; Kim, Sang-Beom; Chung, Ki Wha; Choi, Byung-Ok

    2016-07-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi‑dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early‑onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857‑1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  15. Design of an LED-based compound optical system for a driving beam system.

    PubMed

    Ge, Aiming; Wang, Wei; Du, Zhengqing; Qiu, Peng; Wang, Junwei; Cai, Jinlin; Song, Xiaobo

    2013-04-20

    This paper proposes an LED-based compound optical system, which can be involved in the design of the driving beam system in automotive headlamps with high system efficiency and low power consumption. The compound system can meet the requirements announced in the UNECE regulation "Addendum 111: Regulation No. 112 Revision 2." Also, it is composed of a nonspherical reflector, a compound lens, and a two-dimensional diverging lens. Using a single device of high-brightness LED of merely 7.6 W, the specified illumination requirements for the driving beam can be achieved. As we have expected, on the test screen at a distance of 25 m, the simulation results, as well as the testing results for the prototype, can reach the illuminance distribution requirements, including all specified regions and key points. Moreover, this compound system enjoys the features of high compactness, high energy efficiency, and feasibility of manufacturing. PMID:23669678

  16. N-Monosubstituted Methoxy-oligo(ethylene glycol) Carbamate Ester Prodrugs of Resveratrol.

    PubMed

    Mattarei, Andrea; Azzolini, Michele; Zoratti, Mario; Biasutto, Lucia; Paradisi, Cristina

    2015-01-01

    Resveratrol is a natural polyphenol with many interesting biological activities. Its pharmacological exploitation in vivo is, however, hindered by its rapid elimination via phase II conjugative metabolism at the intestinal and, most importantly, hepatic levels. One approach to bypass this problem relies on prodrugs. We report here the synthesis, characterization, hydrolysis, and in vivo pharmacokinetic behavior of resveratrol prodrugs in which the OH groups are engaged in an N-monosubstituted carbamate ester linkage. As promoiety, methoxy-oligo(ethylene glycol) groups (m-OEG) (CH₃-[OCH₂CH₂]n-) of defined chain length (n = 3, 4, 6) were used. These are expected to modulate the chemico-physical properties of the resulting derivatives, much like longer poly(ethylene glycol) (PEG) chains, while retaining a relatively low MW and, thus, a favorable drug loading capacity. Intragastric administration to rats resulted in the appearance in the bloodstream of the prodrug and of the products of its partial hydrolysis, confirming protection from first-pass metabolism during absorption. PMID:26404221

  17. Supercritical water oxidation kinetics and pathways for ethylphenols, hydroxyacetophenones, and other monosubstituted phenols

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1999-05-01

    The authors examined the decomposition of o-, m-, and p-ethylephenol and o-, m-, and p-hydroxyacetophenone in dilute aqueous solutions at 460 C and 25.3 MPa, both in the presence and absence of added oxygen. In the absence of oxygen, the ethylphenols produced vinylphenols as the major product and the hydroxyacetophenones produced phenol, benzendiols, and hydroxybenzaldehydes. In the presence of oxygen, ethylphenols and hydroxyacetophenones reacted through two major parallel paths and one minor path. The major primary paths for ethylphenols were to vinylphenols and to ring-opening products and ultimately CO{sub 2}. The minor path was to phenol. For hydroxyacetophenones, the major primary paths were to phenol and to ring-opening products and ultimately CO{sub 2}. The minor path was to hydroxybenzaldehydes. The relative rates of these parallel paths were sensitive to the location of the substituent. Although reactions did occur in the absence of oxygen, the disappearance rates were much slower than those observed during oxidation. Power-law global rate expressions were developed for reactant disappearance during oxidation. These rate laws were used along with rate laws previously reported for other monosubstituted phenols to examine the relative oxidation rates for different phenols. All of the substituted phenols oxidized more quickly than phenol itself. The oxidation rates for the substituted phenols were functions of both the identity and location of the substituent. For a given substituent, the reactivity was always in the order ortho > para > meta for all of the substituted phenols examined.

  18. Turnover capacity of Coprinus cinereus peroxidase for phenol and monosubstituted phenols

    SciTech Connect

    Aitken, M.D.; Heck, P.E.

    1998-05-01

    Coprinus cinereus peroxidase (CIP) and other peroxidases are susceptible to mechanism-based inactivation during the oxidation of phenolic substrates. The turnover capacity of CIP was quantified for phenol and 11 monosubstituted phenols under conditions in which enzyme inactivation by mechanisms involving hydrogen peroxide alone were minimized. Turnover capacities varied by nearly 2 orders of magnitude, depending on the substituent. On a mass basis, the enzyme consumption corresponding to the lowest turnover capacities is considerable and may influence the economic feasibility of proposed industrial applications of peroxidases. Within a range of substituent electronegativity values, molar turnover capacities correlated well (r{sup 2} = 0.89) with substituent effects quantified by radical {sigma} values and semiquantitatively with homolytic O-H bond dissociation energies of the phenolic substrates, suggesting that phenoxyl radical intermediates are probably involved in the suicide inactivation of CIP. The correlation range in each case did not include phenols with highly electron-withdrawing (nitro and cyano) substituents because they are not oxidized by CIP, nor phenols with highly electron-donating (hydroxy and amino) substituents because they led to virtually complete inactivation of the enzyme with minimal substrate removal.

  19. Speckle reduction in optical coherence tomography by "path length encoded" angular compounding.

    PubMed

    Iftimia, N; Bouma, B E; Tearney, G J

    2003-04-01

    Speckle, the dominant factor reducing image quality in optical coherence tomography (OCT), limits the ability to identify cellular structures that are essential for diagnosis of a variety of diseases. We describe a new high-speed method for implementing angular compounding by path length encoding (ACPE) for reducing speckle in OCT images. By averaging images obtained at different incident angles, with each image encoded by path length, ACPE maintains high-speed image acquisition and requires minimal modifications to OCT probe optics. ACPE images obtained from tissue phantoms and human skin in vivo demonstrate a qualitative improvement over traditional OCT and an increased SNR that correlates well with theory. PMID:12683852

  20. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  1. Two-photon absorption and optical-limiting properties of a novel organic compound

    NASA Astrophysics Data System (ADS)

    Ye, Lihua; Zhang, Junxiang; Cui, Yiping; Li, Zhenhua; He, Anzhi

    2002-09-01

    The two-photon absorption and applications become the hot points in the recent photoelectronic material research field. The two-photon absorption materials can be applied to many fields such as up-conversion lasing, optical limiting, optical stabilization, three-dimension optical storage, three-dimension micro-machining, et al. Especially studies of optical power limiting have become more interesting to the research community because of the need for automatic protection of optical sensors against intense laser radiation. Here we report the observation of the TPA and optical power limiting property of a novel double conjugated molecule DSBDR1 in solution. The linear absorption spectral is observed using a scanning spectrophotometer. Using Nd:YAG laser pulse as exciting laser, the incident pulse energy and the transmitted pulse energy are respectively recorded by an energy meter. Then we obtain the nonlinear absorption coefficient of the novel double conjugated molecule in THF. Figures show that the molecule exhibts the large TPA cross-section and excellent optical limiting at 1064 nm. The nonlinear absorption mechanism of the novel organic compound is finally analyzed.

  2. Polarimeter with linear response for measuring optical activity in organic compounds

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; Montoya, Marcial; Garcia-Torales, G.; Gonzalez Alvarez, Alejandro

    2005-08-01

    A polarimeter designed for measuring small rotation angles on the polarization plane of light is described. The experimental device employs one fixed polarizer and a rotating analyzer. The system generates a periodical intensity signal, which is then Fourier analyzed. The coefficients of Fourier Transform contain information about rotation angles produced by organic compounds that exhibited optical activity. The experimental device can be used to determine the sugar concentration in agave juice.

  3. TRANSFORMATION OF DYES AND RELATED COMPOUNDS IN ANOXIC SEDIMENT: KINETICS AND PRODUCTS

    EPA Science Inventory

    The reactions of several azo, anthraquinone, and quinoline dyes were studied in settled sediments. everal 1-substituted anthraquinones were lost from sediment with half-lives less than 10 days. For monosubstituted 1-amino and 1-methylamino (Disperse Red 9) compounds, the most sta...

  4. Optical properties of Group X-XII intermetallic compounds studied by HR-EELS.

    PubMed

    Sato, Yohei; Terauchi, Masami; Kameoka, Satoshi; Tsai, An-Pang

    2014-11-01

    Electronic structure of d orbital states in transition metals is a key factor for their physical properties and chemical functions. Copper and intermetallic compound PdZn have good catalysis function for the methanol steam reforming reaction. Tsai et al. showed that from results of XPS measurements the d electronic structure of PdZn was similar with that of copper, and the catalysis function should be related to the d electron states [1]. This similarity of d electronic states leads to another view point of the mechanism for coloring the intermetallic compounds. It is well-known that the characteristic red color of copper is caused by interband transition from the d electrons. Therefore, PdZn and Group X-XII intermetallic compounds are expected to be colored and the optical properties should depend on the d electronic states. In this study, the relations between optical properties and d electron states of Group X-XII intermetallic compounds were investigated by using high energy-resolution electron energy-loss spectroscopy (HR-EELS) based on transmission electron microscopy (TEM). From the relation between optical properties and d electronic states, the mechanism of colored intermetallic compounds will be discussed.Figure shows the optical reflectivity of NiZn, PdZn and PtZn, which were derived from EELS spectra by Kramers-Kronig analysis. Intensity drops (arrows) of the reflectivity were observed in visible energy region. These are caused by the interband transitions from d electronic states. The energy positions of the reflectivity drops have tendency of shifting to higher energy side with increasing atomic number of Group X elements (Ni → Pd → Pt). This indicates that the transition energies of d electrons become larger with the atomic number of the elements. First principle calculations (WIEN2k) confirmed that the interband transitions of d electronic states were excitations from bonding d states to hybrid states of anti-bonding s, p, and d states of Group

  5. Simple strategy for synthesis of optically active allylic alcohols and amines by using enantioselective organocatalysis

    PubMed Central

    Jiang, Hao; Holub, Nicole; Anker Jørgensen, Karl

    2010-01-01

    A simple organocatalytic one-pot protocol for the construction of optically active allylic alcohols and amines using readily available reactants and catalyst is presented. The described reaction is enabled by an enantioselective enone epoxidation/aziridination-Wharton-reaction sequence affording two highly privileged and synthetically important classes of compounds in an easy and benign way. The advantages of the described sequence include easy generation of stereogenic allylic centers, also including quaternary stereocenters, with excellent enantio- and diastereomeric-control and high product diversity. Furthermore, using monosubstituted enones as substrates, having moderate enantiomeric excess, the one-pot reaction sequence proceeds with an enantioenrichment of the products and high diastereoselectivity was achieved. PMID:20547884

  6. Kinetic Resolution of Racemic Allylic Alcohols by Catalytic Asymmetric Substitution of the OH Group with Monosubstituted Hydrazines.

    PubMed

    Yan, Liang; Xu, Jing-Kun; Huang, Chao-Fan; He, Zeng-Yang; Xu, Ya-Nan; Tian, Shi-Kai

    2016-09-01

    A new strategy has been established for the kinetic resolution of racemic allylic alcohols through a palladium/sulfonyl-hydrazide-catalyzed asymmetric OH-substitution under mild conditions. In the presence of 1 mol % [Pd(allyl)Cl]2 , 4 mol % (S)-SegPhos, and 10 mol % 2,5-dichlorobenzenesulfonyl hydrazide, a range of racemic allylic alcohols were smoothly resolved with selectivity factors of more than 400 through an asymmetric allylic alkylation of monosubstituted hydrazines under air at room temperature. Importantly, this kinetic resolution process provided various allylic alcohols and allylic hydrazine derivatives with high enantiopurity. PMID:27339655

  7. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  8. [Techniques of on-line monitoring volatile organic compounds in ambient air with optical spectroscopy].

    PubMed

    Du, Zhen-Hui; Zhai, Ya-Qiong; Li, Jin-Yi; Hu, Bo

    2009-12-01

    Volatile organic compounds (VOCs) are harmful gaseous pollutants in the ambient air. The techniques of on-line monitoring VOCs are very significant for environment protection. Until now, there is no single technology that can meet all the needs of monitoring various VOCs. The characteristics and present situation of several optical methods, which can be applied to on-line monitoring VOCs, including non dispersive infrared (NDIR), Fourier transform infrared (FTIR) spectroscopy, differential optical absorption spectroscopy (DOAS), and laser spectroscopy were reviewed. Comparison was completed between the national standard methods and spectroscopic method for measuring VOCs. The main analysis was focused on the status and trends of tuning diode laser absorption spectroscopy (TDLAS) technology. PMID:20210131

  9. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    PubMed Central

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization. PMID:26713213

  10. Optical analysis of a compound quasi-microscope for planetary landers

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  11. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds

    PubMed Central

    Winkler, Christoph K.; Tasnádi, Gábor; Clay, Dorina; Hall, Mélanie; Faber, Kurt

    2012-01-01

    Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues. PMID:22498437

  12. Magneto-optical spectroscopy of Co{sub 2}FeSi Heusler compound

    SciTech Connect

    Veis, M. Beran, L.; Antos, R.; Legut, D.; Hamrle, J.; Pistora, J.; Sterwerf, Ch.; Meinert, M.; Schmalhorst, J.-M.; Kuschel, T.; Reiss, G.

    2014-05-07

    Magneto-optical and electronic properties of the Co{sub 2}FeSi Heusler compound were studied by polar Kerr magneto-optical spectroscopy and ab-initio calculations. The thin-film samples were grown by dc/rf magnetron co-sputtering on MgO(100) substrates. A Cr seed layer was deposited prior to the Co{sub 2}FeSi layer to achieve its epitaxial growth. The magneto-optical spectroscopy was carried out using generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.4 to 5.5 eV with an applied magnetic field of up to 1.2 T. The polar Kerr spectra showed a smooth spectral behavior up to 5.5 eV indicating nearly free charge carriers. Experimental data were compared with ab-initio calculations based on density functional theory employing the full-potential linearized augmented plane wave method.

  13. Stable synthetic mono-substituted cationic bacteriochlorins mediate selective broad-spectrum photoinactivation of drug-resistant pathogens at nanomolar concentrations

    PubMed Central

    Huang, Liyi; Krayer, Michael; Roubil, John G. S.; Huang, Ying-Ying; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2014-01-01

    A set of three stable synthetic mono-substituted cationic bacteriochlorins (BC37, BC38 and BC39) were recently reported to show exceptional activity (low nanomolar) in mediating photodynamic killing of human cancer cells after a 24 h incubation upon excitation with near-infrared light (730 nm). The presence of cationic quaternary ammonium groups in each compound suggested likely activity as antimicrobial photosensitizers. Herein this hypothesis was tested against a panel of pathogenic microorganisms that have all recently drawn attention due to increased drug-resistance (Gram-positive bacteria, Staphylococcus aureus and Enterococcus faecalis; Gram-negative bacteria, Escherichia coli and Acinetobacter baumannii; and fungal yeasts Candida albicans and Cryptococcus neoformans). All three bacteriochlorins were highly effective against both Gram-positive species (> 6 logs of eradication at ≤ 200 nM and 10 J/cm2). The dicationic bacteriochlorin (BC38) was best against the Gram-negative species (> 6 logs at 1–2 μM) and the lipophilic monocationic bacteriochlorin (BC39) was best against the fungi (> 6 logs at 1 μM). The bacteriochlorins produced substantial singlet oxygen (and apparently less Type-1 reactive-oxygen species such as hydroxyl radical) as judged by activation of fluorescent probes and comparison with 1H-phenalen-1-one-2-sulfonic acid; the order of activity was BC37 > BC38 > BC39. A short incubation time (30 min) resulted in selectivity for microbial cells over HeLa human cells. The highly active photodynamic inactivation of microbial cells may stem from the amphiphilic and cationic features of the bacteriochlorins. PMID:25463659

  14. Conformational stability, r0 structural parameters, and vibrational assignments of mono-substituted cyclobutanes: Fluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Ganguly, Arindam; Klaassen, Joshua J.; Guirgis, Gamil A.; Gounev, Todor K.; Durig, James R.

    2011-08-01

    Variable temperature (-55 to -100 °C) studies of the infrared spectra (3500-400 cm -1) of fluorocyclobutane, c-C 4H 7F, dissolved in liquid xenon have been carried out as well as the infrared spectra of the gas. By utilizing eight pairs of conformers at 10 different temperatures, the enthalpy difference between the more stable equatorial conformer and the axial form has been determined to be 496 ± 40 cm -1 (5.93 ± 0.48 kJ/mol). The percentage of the axial conformer present at ambient temperature is estimated to be 8 ± 1%. The ab initio MP2(full) average predicted energy difference from a variety of basis sets is 732 ± 47 cm -1 (9.04 ± 0.44 kJ/mol) and the average value of 602 ± 20 cm -1 from density functional theory predictions by the B3LYP method are significantly larger than the experimentally determined enthalpy value. By utilizing previously reported microwave rotational constants for the equatorial and axial conformers combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r0 parameters have been obtained. The determined heavy atom structural parameters for the equatorial [axial] conformer are: distances (Å) C-F = 1.383(3) [1.407(3)], C α-C β = 1.543(3) [1.546(3)], C β-C γ = 1.554(3) [1.554(3)] and angles (°) ∠C αC βC γ = 85.0(5) [89.2(5)], ∠C βC αC β = 89.3(5) [89.2(5)], ∠F-(C βC αC β) = 117.4(5) [109.2(5)] and a puckering angle of 37.4(5) [20.7(5)]. The conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios and vibrational frequencies have been obtained for both conformers from MP2(full)/6-31G(d) ab initio calculations and compared to experimental values where available. The results are discussed and compared to the corresponding properties of some other monosubstituted cyclobutanes with halogen and pseudo-halogen substituents.

  15. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    SciTech Connect

    Rottkay, K. von; Richardson, T.; Rubin, M.; Slack, J.

    1997-07-01

    Cerium titanium oxide samples derived from a solution have been compared against sputtered films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture M{sub A}O{sub 2}-M{sub B}O{sub 2}. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO{sub 2} and TiO{sub 2}, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO{sub 2} and TiO{sub 2}. In order to investigate the performance as passive counter-electrode in Li{sup +} based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  16. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    NASA Astrophysics Data System (ADS)

    von Rottkay, Nik; Richardson, Terry J.; Rubin, Michael; Slack, J.; Masetti, Enrico; Dautzenberg, G.

    1997-10-01

    Cerium titanium oxide samples produced by sol-gel have been compared against sputtered and pulsed laser deposited films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture MAO2-MBO2. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO2 and TiO2, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO2 and TiO2. In order to investigate the performance as passive counter-electrode in Li+ based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  17. Microstructure and optical characterizations of mechanosynthesized nanocrystalline semiconducting ZrTiO4 compound

    NASA Astrophysics Data System (ADS)

    Dutta, Hema; Nandy, Anshuman; Pradhan, S. K.

    2016-08-01

    A ZrO2-TiO2 solid solution is obtained by high energy ball milling of equimolar mixture of monoclinic (m) ZrO2 and anatase (a) TiO2. Nanocrystalline orthorhombic ZrTiO4 compound is initiated from the nucleation of TiO2-ZrO2 solid solution with isostructural s-TiO2 (srilankite) base after 30 min of milling. After 12 h of milling, 95 mol% non-stoichiometric ZrTiO4 phase is formed. Post-annealing of 12 h ball-milled powder mixture at 1073 K for 1 h in open air results in complete formation of stoichiometric ZrTiO4 compound. Microstructures of all powder mixtures milled for different durations have been characterized by Rietveld's structure and microstructure refinement method using X-ray powder diffraction data. HRTEM images of 12 h milled and annealed samples provide direct evidence of the results obtained from the Rietveld analysis. Optical bandgaps of ball milled and annealed ZrTiO4 compounds lie within the semiconducting region (~2.0 eV) and increases with increase in milling time.

  18. Detection of Organic Compounds in Water by an Optical Absorbance Method.

    PubMed

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  19. Optical Evidence of Itinerant-Localized Crossover of 4f Electrons in Cerium Compounds

    NASA Astrophysics Data System (ADS)

    Kimura, Shin-ichi; Kwon, Yong Seung; Matsumoto, Yuji; Aoki, Haruyoshi; Sakai, Osamu

    2016-08-01

    Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [σ(ω)] spectra originating from the strong conduction (c)-f electron hybridization. To clarify the behavior of the mid-IR peak at a low c-f hybridization strength, we compared the σ(ω) spectra of the isostructural antiferromagnetic and heavy-fermion Ce compounds with the calculated unoccupied density of states and the spectra obtained from the impurity Anderson model. With decreasing c-f hybridization intensity, the mid-IR peak shifts to the low-energy side owing to the renormalization of the unoccupied 4f state, but suddenly shifts to the high-energy side owing to the f-f on-site Coulomb interaction at a slight localized side from the quantum critical point (QCP). This finding gives us information on the change in the electronic structure across QCP.

  20. A novel sensing mechanism for optic detection of aromatic compounds including chlorophenols

    SciTech Connect

    Zhao, Shishan; Luong, J.H.T.

    1995-12-01

    Development of chemosensors and new sensing mechanisms is encouraging for the detection of environmentally and biologically important species. This paper presents a novel design of optic chemosensors for small aromatic compounds including chlorophenols, which represent a large part of the organic pollutants. Cap-shaped assemblies are prepared from the torus-shaped cyclodextrins (CyDs) and planar porphyrin (POR). The assemblies exhibit an intensive absorption maximum at 420.5 nm and is sensitive to the inclusion of guest molecules. For highly selective recognition of an analyte, the necessary condition is the affinity of its hydrophobic benzene ring to the CyD cavity and the sufficient condition is the interaction between its hydrogen-bonding functional group(s) and the porphyrin cycle.

  1. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  2. Low-energy optical phonon modes in the caged compound LaRu2Zn20

    NASA Astrophysics Data System (ADS)

    Wakiya, K.; Onimaru, T.; Tsutsui, S.; Hasegawa, T.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Ogita, N.; Udagawa, M.; Takabatake, T.

    2016-02-01

    We have investigated atomic dynamics of caged compound LaRu2Zn20 by the measurements of specific heat C and inelastic x-ray scattering (IXS). The lattice part of the specific heat Clat divided by T3,Clat /T3, shows a broad peak at around 15 K, which is reproduced by two Einstein modes with characteristic temperatures of θE 1=35 K and θE 2=82 K, respectively. IXS measurements along the [111] and [110] directions reveal weakly dispersive phonon modes at 3 meV (35 K) and 7 meV (80 K), respectively, whose values agree with the values of θE's. The first-principles calculation has assigned the 3 meV phonon modes as the optical modes of Zn atoms located at the middle of two La atoms, which is likely to lead to the structural instability.

  3. Compound prism design principles, III: linear-in-wavenumber and optical coherence tomography prisms

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    We extend the work of the first two papers in this series [Appl. Opt. 50, 4998–5011 (2011), Appl. Opt. 50, 5012–5022 (2011)] to design compound prisms for linear-in-wavenumber dispersion, especially for application in spectral domain optical coherence tomography (OCT). These dispersive prism designs are believed to be the first to meet the requirements of high resolution OCT systems in direct-view geometry, where they can be used to shrink system size, to improve light throughput, to reduce stray light, and to reduce errors resulting from interpolating between wavelength- and wavenumber-sampled domains. We show prism designs that can be used for thermal sources or for wideband superluminescent diodes centered around wavelengths 850, 900, 1300, and 1375 nm. PMID:22423147

  4. Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material

    NASA Astrophysics Data System (ADS)

    Yin, Leijun; Ning, Hao; Turkdogan, Sunay; Liu, Zhicheng; Nichols, Patricia L.; Ning, C. Z.

    2012-06-01

    Erbium-containing materials of long lifetime and high Er density are important for achieving strong luminescence and high optical gain in compact integrated photonics devices. We have systematically studied the lifetime and crystal quality as a function of growth conditions for an erbium compound that we recently reported, erbium chloride silicate (ECS). The lifetime for the best quality ECS nanowires can be as long as 540 μs, the longest for high-density Er-materials, representing a lifetime-density product as high as 8.7 × 1018 s cm-3. Such high density, long lifetime erbium materials can find many interesting applications such as compact lasers or amplifiers.

  5. Second-order nonlinear optical Langmuir-Blodgett films based on a series of azo rare-earth coordination compounds

    SciTech Connect

    Gao, L.H.; Wang, K.Z.; Huang, C.H.

    1995-06-01

    A series of novel azo dyes composed of a lanthanide complex anion and an azo cation, in which strongly electron-donating (dihexadecylamino)phenyl and electron-accepting pyridinium groups are separated by an azo group, was designed as second-order nonlinear optical Langmuir-Blodgett (LB) film materials. The compounds are of good film-forming properties. The values of second-order molecular hyperpolarizability {beta} were determined to be (1.20-3.03) x 10{sup {minus}27} esu, comparable to the largest value known for azo LB materials. The compounds studied may be attactive in the application in future optical devices. 13 refs., 5 figs., 1 tab.

  6. Electronic, Magnetic and Optical Properties of Two Fe-based Superconductors and Related Parent Compounds

    SciTech Connect

    Jin, Rongying; Pan, Minghu; He, Xiaobo; Li, G. R.; Li, De; Peng, Ru-wen; Thompson, James R; Sales, Brian C; Sefat, A. S.; McGuire, Michael A; Mandrus, David; Wendelken, J F; Keepens, V.; Plummer, E. W.

    2010-01-01

    We have investigated the electronic, magnetic, and optical properties of two Fe-based superconductors and related parent compounds via three powerful techniques: scanning tunneling microscopy/spectroscopy (STM/S), high-temperature vibrating sample magnetometer (VSM), and optical transmission spectroscopy (OTS). Below the superconducting transition temperature Tc ~ 48 K, the STM/S of polycrystalline NdFeAsO0.86F0.14 reveals a single-gap feature. The quantitative fitting of STS data results in BCS like temperature dependence of the energy gap (T), with 2 (0)/kBTc ~ 4.3. Surprisingly, the tunneling spectra of BaFe2As2 single crystals show no evidence for the opening of a gap below its magnetic/structural transition temperature TMS ~ 140 K. This transition also had little impact on the transmission spectra in the wavelength range between 400 and 2400 nm. But its effect to the magnetic properties is dramatic, as reflected by the unusual magnetic susceptibility in a wide temperature range.

  7. Thresholds of optical limiting in solutions of nanoscale compounds of zinc phthalocyanine with galactopyranosyl radicals

    NASA Astrophysics Data System (ADS)

    Mikheev, G. M.; Angelov, I. P.; Mantareva, V. N.; Mogileva, T. N.; Mikheev, K. G.

    2013-07-01

    The optical limiting (OL) of nanosecond laser pulses in solutions of newly synthesized dyes in dimethyl sulfoxide (DMSO) has been investigated. These dyes are compounds of zinc phthalocyanine (ZnPc) with D-galactopyranosyl radicals (Gal) located in the peripheral ( p-GalZnPc) and nonperipheral ( n-GalZnPc) positions with respect to the ZnPc macrocycle. Experiments have been performed using laser radiation with a wavelength of 532 nm, at which the optical absorbance of solutions of ZnPc, p-GalZnPc and n-GalZnPc dyes is four orders of magnitude lower than the absorbance in the peaks at wavelengths of 671, 680, and 701 nm, respectively. It is established that solutions of p-GalZnPc and n-GalZnPc in DMSO have a much lower OL threshold in comparison with ZnPc solution; the nonlinearity of p-GalZnPc solutions exceeds that of n-GalZnPc solutions. OL thresholds for the dyes under study in a wide concentration range are determined.

  8. Theoretical Analysis of X-ray Compound Refractive Lens Optical Properties

    SciTech Connect

    Kohn, V.; Snigireva, I.; Snigirev, A.

    2004-05-12

    We present a theoretical analysis of optical properties of parabolic compound refractive lenses (CRL). The parabolic CRL with a large number of elements is considered as a parabolic medium along the x-ray path. The problem of x-ray coherent wave propagation inside such a medium is solved exactly. The analytical formula is obtained for the parabolic CRL imaging propagator as a parabolic wave with complex parameters due to absorption of x rays inside the lens. The fast and universal computer program is developed for simulating the CRL generated images. An imaging example of a test object as a silicon plate of 3 {mu}m thickness with a round hole of 3 {mu}m diameter is presented and discussed in details. The main optical parameters of parabolic CRL such as an effective aperture, a diffraction limited resolution and a focal distance are calculated analytically and discussed. It is shown that parabolic CRL has no spherical aberration while long single plano-concave and bi-concave lenses have.

  9. Optoelectronic properties and holographic optical recording of a dithienylperfluorocyclopentene compound having two phenanthryl units

    NASA Astrophysics Data System (ADS)

    Yang, T. S.; Pu, S. Z.; Liu, G.; Yao, B. L.; Wang, Y. L.; Lei, M.

    2007-12-01

    A phenanthrenyl-substituted diarylethene derivative (1,2-bis[5-phenanthryl-2-methylthiophen-3-yl] perfluorocyclopentene, Ph-BMTFP) has been synthesized and its optoelectronic properties have been investigated. The photochromic reactivity of Ph-BMTFP was examined in hexane solution as well as in poly(methyl methacrylate) (PMMA) amorphous film. Upon irradiation with 313 nm UV light, the colorless solution turned purple, in which a visible absorption band was observed at 555 nm. In PMMA film, the new broad absorption band at λ max = 580 nm appeared when it was irradiated by 313 nm UV light. The compound exhibited good fluorescence in hexane solution and its fluorescence intensity decreased along with the photochromic reactivity upon irradiation with 313 nm UV light. This property could be potentially applied to high-density optical memory with fluorescence readout method. The holographic optical storage was performed successfully using Ph-BMTFP as the recording medium and polarization multiplexing holograms recording can effectively increase the information storage capacity of the holographic data storage.

  10. Exploratory synthesis in molten salts: Characterization, nonlinear optical and phase-change properties of new chalcophosphate compounds

    NASA Astrophysics Data System (ADS)

    Chung, In

    The polychalcophosphate flux technique has played an important role in discovery of new chalcophosphate compounds via access to low and intermediate temperature of 160--600°C. Chalcophosphates are compounds that possess phosphorus and chalcogen atoms with P-Q bond, where Q = S, Se, or Te. The structural diversity within the class of metal chalcophosphates is extensive, and members of this family can exhibit technologically important ion-exchange, intercalation, magnetic, electrical, and optical properties. In the present work exploratory synthesis of chalcophosphate compounds using polychalcophosphate molten salt method and characterization of physicochemical properties that are mainly concentrate upon nonlinear optical properties and crystal-glass phase-change behavior are described. Chapters 2-6 focus on the effort of systematic study of alkali metal selenophosphate ternary compounds. The first family of this class is one-dimensional compounds, APSe6 (A = K, Rb, Cs) and A2P2Se6 (A = K, Rb). The compounds adopt noncentrosymmetric polar space group and exhibited remarkably strong second harmonic generation response in both crystalline and glassy phases. They also show a reversible crystal-glass phase-change behavior. By coupling noncentrosymmetry in crystal structure and phase-change behavior, we proposed general fabrication strategy for optical glassy fibers that yield strong, intrinsic, second-order nonlinear optical properties. The APSe 6 (A = K, Rb) glassy optical fiber exhibited waveguided second harmonic and difference frequency generation. The second family of this class is phosphorus-rich, novel molecular complex salts of Rb4P 6Se12, Cs4P6Se12, and Cs 5P5Se12. All compounds feature low valent P in two different formal oxidation states. We attempted rational synthetic conditions to stabilize less oxidized phosphorus compounds by utilizing excess P in the flux. The polychalcophosphate flux also produced rare phosphorus telluride compound. The new compound K4

  11. Analysis of the structural, electronic and optic properties of Ni doped MgSiP2 semiconductor chalcopyrite compound

    NASA Astrophysics Data System (ADS)

    Kocak, Belgin; Ciftci, Yasemin Oztekin

    2016-03-01

    The structural, electronic band structure and optic properties of the Ni doped MgSiP2 chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard's law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions of Ni doped MgSiP2. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.

  12. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl3 intercalation compounds

    NASA Astrophysics Data System (ADS)

    Han, Wen-Peng; Li, Qiao-Qiao; Lu, Yan; Yan, Xu; Zhao, Hui; Long, Yun-Ze

    2016-07-01

    Because of novel features in their structural, electronic, magnetic and optical properties, especially potential applications in nanoelectronics, the few-layer graphene intercalation compounds (FLGICs) have been intensively studied recently. In this work, the dielectric constant of the doped graphene of stage-1 FeCl3-GIC is obtained by fitting the optical contrast spectra. And fully intercalated stage-1 FeCl3-FLGICs were prepared by micromechanical cleavage method from graphite intercalation compounds (GICs) for the first time. Finally, we demonstrated that the thickness of stage-1 FeCl3-GICs by micromechanical cleavage can be determined by optical contrast spectra. This method also can be used to other FLGICs, such as SbCl5-FLGICs and AuCl5-FLGICs, etc.

  13. A stereo-compound hybrid microscope for combined intracellular and optical recording of invertebrate neural network activity.

    PubMed

    Frost, William N; Wang, Jean; Brandon, Christopher J

    2007-05-15

    Optical recording studies of invertebrate neural networks with voltage-sensitive dyes seldom employ conventional intracellular electrodes. This may in part be due to the traditional reliance on compound microscopes for such work. While such microscopes have high light-gathering power, they do not provide depth of field, making working with sharp electrodes difficult. Here we describe a hybrid microscope design, with switchable compound and stereo objectives, that eases the use of conventional intracellular electrodes in optical recording experiments. We use it, in combination with a voltage-sensitive dye and photodiode array, to identify neurons participating in the swim motor program of the marine mollusk Tritonia. This microscope design should be applicable to optical recording studies in many preparations. PMID:17306887

  14. Optical, transport and magnetic properties of new compound CeCd3P3

    NASA Astrophysics Data System (ADS)

    Higuchi, Shohei; Noshima, Yuki; Shirakawa, Naoki; Tsubota, Masami; Kitagawa, Jiro

    2016-05-01

    We have found that CeCd3P3 crystallizes into a hexagonal ScAl3C3-type structure. The optical, transport and magnetic properties of CeCd3P3 were investigated by measuring the diffuse reflectance, electrical resistivity and magnetization. CeCd3P3 is a semiconductor with a fundamental band gap of approximately 0.75 eV. The 4f electrons of Ce3+ ions are well localized but do not show long-range order down to 0.48 K, presumably due to the geometrical frustration of Ce atoms. The magnetic ordering temperature is possibly lower than that of isostructural CeZn3P3 (0.75 K). Because several f-electron compounds with the ScAl3C3-type structure are quantum spin systems, CeCd3P3 may be a candidate for quantum spin liquid. On the other hand, the relatively large band gap compared to approximately 0.4 eV in CeZn3P3, would not be in accordance with the observation of the photoinduced Kondo effect, providing a potentially new range of applications for devices based on the Kondo effect.

  15. Intrinsic fiber optic absorption sensors for the detection of volatile organic compounds

    SciTech Connect

    Klunder, G.L.; Russo, R.E.

    1994-12-31

    Extensive contamination of ground water from organic solvents has placed a large emphasis on the development of instruments for remote in-situ sensing. Fiber optic chemical sensors (FOCSs) have made a great deal of progress in this area. The authors have investigated two intrinsic FOCSs for the detection of volatile organic compounds. One is based on evanescent wave absorption and the other is a direct absorption core-based sensor. Both sensors make use of silicone polymers as selective membranes to extract the volatile analyte from the aqueous solution for analysis in the NIR. The rate limiting step for analyte diffusion into the membrane has been determined to be diffusion through the Nernstian boundary. With each sensor, the times required to reach an equilibrium response are on the order of 30 minutes for 20 ppm aqueous solution of trichloroethylene. Headspace measurements are much faster and reach equilibrium in 3-5 minutes. A comparison of the two sensors, detection limits, diffusion rates and effects of temperature will be discussed.

  16. Speckle reduction process based on digital filtering and wavelet compounding in optical coherence tomography for dermatology

    NASA Astrophysics Data System (ADS)

    Gómez Valverde, Juan J.; Ortuño, Juan E.; Guerra, Pedro; Hermann, Boris; Zabihian, Behrooz; Rubio-Guivernau, José L.; Santos, Andrés.; Drexler, Wolfgang; Ledesma-Carbayo, Maria J.

    2015-07-01

    Optical Coherence Tomography (OCT) has shown a great potential as a complementary imaging tool in the diagnosis of skin diseases. Speckle noise is the most prominent artifact present in OCT images and could limit the interpretation and detection capabilities. In this work we propose a new speckle reduction process and compare it with various denoising filters with high edge-preserving potential, using several sets of dermatological OCT B-scans. To validate the performance we used a custom-designed spectral domain OCT and two different data set groups. The first group consisted in five datasets of a single B-scan captured N times (with N<20), the second were five 3D volumes of 25 Bscans. As quality metrics we used signal to noise (SNR), contrast to noise (CNR) and equivalent number of looks (ENL) ratios. Our results show that a process based on a combination of a 2D enhanced sigma digital filter and a wavelet compounding method achieves the best results in terms of the improvement of the quality metrics. In the first group of individual B-scans we achieved improvements in SNR, CNR and ENL of 16.87 dB, 2.19 and 328 respectively; for the 3D volume datasets the improvements were 15.65 dB, 3.44 and 1148. Our results suggest that the proposed enhancement process may significantly reduce speckle, increasing SNR, CNR and ENL and reducing the number of extra acquisitions of the same frame.

  17. Tunability of optical nonlinear response through twisting of conjugation paths in push-pull biphenyl compounds

    NASA Astrophysics Data System (ADS)

    Boeglin, Alex; Fort, Alain F.; Mager, Loic; Combellas, Catherine; Thiebault, Andre; Rodriguez, Vincent

    2001-12-01

    Charge separated molecules with strong zwitterionic character make especially interesting species for quadratic Non Linear Optical (NLO) doped materials because of their large dipole moments and rather large quadratic hyperpolarizabilities. Furthermore, their sensitivity to the dielectric environment brands them as good candidates for checking the validity of formalisms relating geometrical structure and NLO properties. We have carried out an experimental and theoretical study on two phenoxide pyridinium derivatives with different inter ring twist angle, combining UV-visible, IR and NLO spectroscopies supplemented by semi-empirical and density functional calculations. Experimentally, changing the polarity of the solvent allows us to explore only a small range of twist angles. However, changing the pyridinium nitrogen atom from para to meta position gives essentially the same compound but with a larger twist angle. Changes in solvent polarity and position substitution give rise to a combined enhancement of the quadratic response by an order of magnitude, showing experimentally the possibility of tuning NLO properties of chromophores to be used as doping agents in NLO applications.

  18. Systematic study of the electronic structure and optical properties of icosahedral boron and boron compounds

    NASA Astrophysics Data System (ADS)

    Li, Dong

    1997-11-01

    A systematic study of the electronic structures, total energies and optical properties of B12-based boron and boron-rich compounds and boron oxide compounds has been conducted by the first-principles orthogonalized linear combination of atomic orbitals method. The materials involved are: α-r-B12, B12As2,/ B12P2,/ B11C(CBC)/ (or/ B4C),/ B13C2,/ B12O2,/ (B10Si2)Si2,/ (B10Si2)Si2-I, B2O3-I and B2O3-II. The band structures show that α-r-B12,/ B12As2,/ B12P2,/ B11C(CBC),/ B12O2,/ (B10Si2)Si2, and (B10Si2)Si2-I are semiconductors with band gaps ranging from 1.29 eV to 3.04 eV while B13C2 is a metal with an intrinsic hole at the top of the valence band below a semiconductor-like gap. The study also shows that B2O3-I and B2O3-II are wide gap insulators with calculated LDA gaps of 6.20 eV and 8.85 eV separately. The calculated density of states are resolved into atomic and orbital partial components and the valence-charge distributions are also studied. The natural bonding characteristics in these crystals are illuminated by evaluating the Mulliken effective charges on each atom and overlap populations between pairs of atoms. It is shown that inter-icosahedral bonding is much stronger than the intra-icosahedral bonding in the B12- based crystals. The chain elements in B12As2,/ B12P2,/ (B10Si2)Si2 and (B10Si2)Si2-I donate electrons to the icosahedra, while B11C(CBC),/ B13C2 and B12O2 gain a slight amount of charge in forming strong covalent bonds. For boron oxide compounds, B2O3-II is found to be more ionic than B2O3-I. It is also concluded that the sp2 planar bonding in B2O3-I is stronger than the sp3 tetrahedral bonding in B2O3-II. The bulk moduli of α-r-B12,/ B12As2,/ B12P2,/ B11C(CBC),/ B13C2 and B12O2 are estimated by means of total energy calculation as a function of crystal volume, and are to be considered as upper limits. We have also calculated the interband optical conductivities and the complex dielectric functions. Static dielectric constants for icosahedral

  19. Organic solid state switches incorporating porphyrin compounds and method for producing organic solid state optical switches

    DOEpatents

    Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.

    1996-01-01

    A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.

  20. mBJLDA approach for optical properties of Nowontny-Juza LiMgZ (Z = P, As) compounds

    SciTech Connect

    Sharma, Arvind K.; Thakur, Jyoti Kashyap, Manish K.

    2014-04-24

    First principles approach has been utilized to investigate electronic and optical properties of LiMgZ (Z = P, As) Newontny-Juza compounds. The exchange and correlation (XC) effects are taken into account by a semi local, orbital independent modified Becke-Johnson (mBJ) potential as coupled with Local Density Approximation (LDA). The local orbital independent mBJ potential could provide better band gap/ HM gap due to its capability to catch the essentials of hybrid functionals. The positive values of real dielectric-function rule out the possibility of showing magnetism by these compounds and stabilize the semiconducting state. The shifting of peaks in optical spectra towards high energy is due to increasing indirect band gap from LiMgP to LiMgAs.

  1. Electronic and optical properties of (U,Th)O2 compound from screened hybrid density functional studies

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Yang, Yu; Kang, Wei; Zhang, Ping

    2016-04-01

    The electronic structure and optical properties for the (U,Th)O2 compound are systematically studied by employing the Heyd-Scuseria-Ernzerh method (HSE) of screened hybrid density functional. The electronic band gap of (U,Th)O2 is predicted to be 3.06 eV, in the middle of the values of UO2 and ThO2. Based on wavefunction analysis, we conclude (U,Th)O2 to be a Mott insulator in its ground state. The frequency dependent dielectric functions and optical properties are then calculated and compared with those of ThO2 and UO2. At the visible light frequency range, the adsorption coefficients for ThO2, UO2 and (U,Th)O2 are totally different, which gives an accessible method to predict the proportion of U atoms in an arbitrary unknown (U,Th)O2 compounds from the adsorption spectrum of visible lights.

  2. Object-Based Classification of Wetlands Using Optical and SAR Data with a Compound Kernel in Support Vector Machine (SVM)

    NASA Astrophysics Data System (ADS)

    Salehi, B.; Mahdavi, S.; Brisco, B.; Huang, W.

    2015-12-01

    Both Synthetic Aperture RADAR (SAR) and optical imagery play a pivotal role in many applications. Thus it is desirable to fuse the two independent sources of data congruously. Many of the fusion methods, however, fail to consider the different nature of SAR and optical data. Moreover, it is not straightforward to adjust the contribution of the two data sources with respect to the application. Support Vector Machine (SVM) is one of the classification methods which can provide the possibility of combination of two kinds of images considering the different nature of them. It is particularly useful when object-based classification is used, in which case features extracted from SAR and optical images can be treated differently. This paper aims to develop an object-based classification method using both optical and SAR data which treats the two data sources independently. For the implementation of the method, a RapidEye and a RADARSAT-2 Quad-polarimetric image over Avalon Peninsula in Newfoundland, Canada will be used for wetland classification. RapidEye will be segmented using multiresolution algorithm in eCognitionTM. Because of speckle, segmentation of SAR images does not have robust results. Thus the result of the segmentation from RapidEye image is superimposed on RADARSAT-2 image. Then useful SAR and optical features are extracted. Integrating features extracted from optical and SAR data, a compound kernel in SVM is applied for classification. This kernel is a combination of two kernels with different weights, each of which are for the features of one of the data sources. Using compound kernel can outperform using the same kernel for both images. The proposed method has two main advantages. First, different nature of optical and SAR images which is the result of dissimilar dynamic range, resolution, etc. is considered. Second, as the two data sources are combined with different weights, it is possible to adjust the role of each data sources for varying applications.

  3. Catalytic Addition of Simple Alkenes to Carbonyl Compounds Using Group 10 Metals

    PubMed Central

    Schleicher, Kristin D.

    2011-01-01

    Recent advances using nickel complexes in the activation of unactivated monosubstituted olefins for catalytic intermolecular carbon–carbon bond-forming reactions with carbonyl compounds, such as simple aldehydes, isocyanates, and conjugated aldehydes and ketones, are discussed. In these reactions, the olefins function as vinyl- and allylmetal equivalents, providing a new strategy for organic synthesis. Current limitations and the outlook for this new strategy are also discussed. PMID:21904421

  4. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    NASA Astrophysics Data System (ADS)

    Huang, Jun-ben; Mamat, Mamatrishat; Pan, Shilie; Yang, Zhihua

    2016-07-01

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg2TS4 (T=P, Sb) (I-II) and RbAg2SbS4 (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg2PS4 possesses wide band gap and SHG response comparable with that of AgGaS2. By exploring the origin of the band gap and NLO response for compounds KAg2TS4 (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg2TS4 (T=P, Sb) and RbAg2SbS4 can be used in infrared (IR) region.

  5. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  6. Total organic carbon disappearance kinetics for the supercritical water oxidation of monosubstituted phenols

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1999-06-01

    Supercritical water oxidation (SCWO) is a process technology for destroying organic compounds present in aqueous waste streams. The authors oxidized phenols bearing single -CH{sub 3}, -C{sub 2}H{sub 5}, -COCH{sub 3}, -CHO, -OH, -OCH{sub 3}, and -NO{sub 2} substituents in supercritical water at 460 C and 25.3 MPa. The observed effects of the concentrations of total organic carbon (TOC) and oxygen on the global disappearance rates for TOC were correlated by using power-law rate expressions. This kinetics study revealed that the rate of TOC disappearance is more sensitive to the oxygen concentration than is the rate of reactant disappearance. Additionally, the rate of TOC disappearance is always slower than the rate of reactant disappearance, with the ratio of these rates ranging from 0.10 to 0.65 for the different phenols at the conditions studied. The rates of TOC disappearance during SCWO of these substituted phenols varied by nearly 2 orders of magnitude, showing significant effects from both the identity and location of the substituent. These substituent effects are greater for TOC disappearance kinetics than for reactant disappearance kinetics. Additionally, all of the substituted phenols exhibit faster TOC disappearance rates than does phenol. Accordingly, phenol is a good worst case model compound for SCWO studies. The pronounced substituent effects for TOC disappearance rates indicate that the oxidation of a common refractory intermediate is not an important feature of the SCWO networks for these phenols at the conditions studied.

  7. The structural, electronic and optical response of IIA-VIA compounds through the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Ali, Roshan; Mohammad, S.; Ullah, Hamid; Khan, S. A.; Uddin, H.; Khan, M.; Khan, N. U.

    2013-02-01

    The structural, electronic and optical properties of IIA-VIA compounds are performed, by using the full-potential linearized augmented plan wave (FP-LAPW) method within DFT, by using the (PBEsol-GGA 2008) version. We have compared the modified Becke-Johnson (mBJ) potential to LDA, GGA and EV-GGA approximations. The IIA-VIA compounds have rock salt structure (B1) and zinc-blend structure (B3). The results obtained for band structure using mBJ show a significant improvement over previous theoretical work and give closer values to the experimental results. The bandgaps less than 3.1 eV are used in the visible light devices applications, while those with bandgaps bigger than 3.1 eV, used in UV devices applications. Optical parameters, like the dielectric constant, refractive indices, reflectivity, optical conductivity and absorption coefficient are calculated and analyzed. Refractive index lesser than unity (vg=c/n) shows that the group velocity of the incident radiation is greater than the speed of light.

  8. Structural, elastic, electronic, magnetic and optical properties of RbSrX(C, SI, Ge) half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Ahmad, Mukhtar; Naeemullah; Murtaza, G.; Khenata, R.; Bin Omran, S.; Bouhemadou, A.

    2015-03-01

    In this study we present investigations pertaining to structural, elastic, electronic, magnetic and optical properties of RbSrC, RbSrSi and RbSrGe half-Heusler compounds. To carry out this study, full potential (FP) linearized augmented plane wave (LAPW), a scheme of calculations developed within the framework of density functional theory (DFT), is employed. To incorporate the exchange correlation (XC) energy and corresponding potential into the total energy calculations, generalized gradient approximation (GGA) parameterized by Wu-Cohen is taken into account. Analysis of band structures and densities of states (DOS) profiles illustrate the conducting nature in spin down state and the semiconducting nature in spin-up state. The bonding nature discussed via electron charge density plot reveals strong ionic bonding character of these compounds. At ambient conditions, calculations for elastic constants (Cij) and their related elastic moduli are also performed which point to their brittle character. The compounds are found to be ferromagnetic with 1 μB. The magnetic moment decreases from its integer value at high pressures for these compounds.

  9. Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds

    NASA Astrophysics Data System (ADS)

    Alsheheri, Jamela M.; Ghassemi, Hossein; Schiraldi, David A.

    2014-12-01

    The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC-MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

  10. Enhanced Optical Transmission and Sensing of a Thin Metal Film Perforated with a Compound Subwavelength Circular Hole Array

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangnan; Liu, Guiqiang; Liu, Zhengqi; Hu, Ying; Cai, Zhengjie

    2015-12-01

    We propose and numerically investigate the optical transmission behaviors of a sub-wavelength metal film perforated with a two-dimensional square array of compound circular holes. Enhanced optical transmission is obtained by using the finite-difference time-domain (FDTD) method, which can be mainly attributed to the excitation and coupling of localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), and Fano Resonances. The redshift of the transmission peak can be achieved by enlarging the size and number of small holes, the environmental dielectric constant. These indicate that the proposed structure has potential applications in integrated optoelectronic devices such as plasmonic filters and sensors. supported by National Natural Science Foundation of China (Nos. 11464019, 11264017, 11004088), Young Scientist Development Program of China (No. 20142BCB23008) and the Natural Science Foundation of Jiangxi Province, China (Nos. 2014BAB212001, 20112BBE5033)

  11. Optical Properties of the Charge-Density-Wave Polychalcogenide Compounds R2Te5 (R=Nd, Sm and Gd)

    SciTech Connect

    Pfuner, F.; Degiorgi, L.; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    We investigate the rare-earth polychalcogenide R{sub 2}Te{sub 5} (R = Nd, Sm and Gd) charge-density-wave (CDW) compounds by optical methods. From the absorption spectrum we extract the excitation energy of the CDW gap and estimate the fraction of the Fermi surface which is gapped by the formation of the CDW condensate. In analogy to previous findings on the related RTe{sub n} (n = 2 and 3) families, we establish the progressive closing of the CDW gap and the moderate enhancement of the metallic component upon chemically compressing the lattice.

  12. High-throughput microfluidics and ultrafast optics for in vivo compound/genetic discoveries

    NASA Astrophysics Data System (ADS)

    Rohde, Christopher B.; Gilleland, Cody; Samara, Chrysanthi; Yanik, M. Fatih

    2010-02-01

    Therapeutic treatment of spinal cord injuries, brain trauma, stroke, and neurodegenerative diseases will greatly benefit from the discovery of compounds that enhance neuronal regeneration following injury. We previously demonstrated the use of femtosecond laser microsurgery to induce precise and reproducible neural injury in C. elegans, and have developed microfluidic on-chip technologies that allow automated and rapid manipulation, orientation, and non-invasive immobilization of animals for sub-cellular resolution two-photon imaging and femtosecond-laser nanosurgery. These technologies include microfluidic whole-animal sorters, as well as integrated chips containing multiple addressable incubation chambers for exposure of individual animals to compounds and sub-cellular time-lapse imaging of hundreds of animals on a single chip. Our technologies can be used for a variety of highly sophisticated in vivo high-throughput compound and genetic screens, and we performed the first in vivo screen in C. elegans for compounds enhancing neuronal regrowth following femtosecond microsurgery. The compounds identified interact with a wide variety of cellular targets, such as cytoskeletal components, vesicle trafficking, and protein kinases that enhance neuronal regeneration.

  13. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-08-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  14. Electronic and Optical Properties of Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) Antiperovskite Compounds

    NASA Astrophysics Data System (ADS)

    Iqbal, Samad; Murtaza, G.; Khenata, R.; Mahmood, Asif; Yar, Abdullah; Muzammil, M.; Khan, Matiullah

    2016-05-01

    The electronic and optical properties of cubic antiperovskites Ca3MN (M = Ge, Sn, Pb, P, As, Sb and Bi) were investigated by applying the full potential linearized augmented plane wave plus local orbitals (FP-LAPW + lo) scheme based on density functional theory. Different exchange correlation potentials were adopted for the calculations. The results of band structure and density of states show that, by changing the central anion of Ca3MN, the nature of the materials change from metallic (Ca3GeN, Ca3SnN, Ca3PbN) to semiconducting with small band gaps (Ca3SbN and Ca3BiN) to insulating (Ca3PN and Ca3AsN). The optical properties such as dielectric function, absorption coefficient, optical conductivity, reflectivity and refractive indices have also been calculated. The results reveal that all the studied compounds are optically active in the visible and ultraviolet energy regions, and therefore can be effectively utilized for optoelectronic devices.

  15. Racemization and the origin of optically active organic compounds in living organisms

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1987-01-01

    The organic compounds synthesized in prebiotic experiments are racemic mixtures. A number of proposals have been offered to explain how asymmetric organic compounds formed on the Earth before life arose, with the influence of chiral weak nuclear interactions being the most frequent proposal. This and other proposed asymmetric syntheses give only sight enantiomeric excess and any slight excess will be degraded by racemization. This applies particularly to amino acids where half-lives of 10(5)-10(6) years are to be expected at temperatures characteristic of the Earth's surface. Since the generation of chiral molecules could not have been a significant process under geological conditions, the origins of this asymmetry must have occurred at the time of the origin of life or shortly thereafter. It is possible that the compounds in the first living organisms were prochiral rather than chiral; this is unlikely for amino acids, but it is possible for the monomers of RNA-like molecules.

  16. High-speed guided-wave electro-optic modulators and polarization converters in III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Rahmatian, Farnoosh

    In the last few decades, the need for electronic communication has increased by several orders of magnitude. Due to the rapid growth of the demand for transmission bandwidth, development of very high-speed communication systems is crucial. This thesis describes integrated-optic electro-optic modulators using travelling-wave electrodes in compound semiconductors for ultra-high-speed guided-wave optical communications. Both Mach-Zehnder (MZ) interferometric modulators and polarization converters (PC) have been studied with particular emphasis on the latter ones. Slow-wave travelling-wave electrodes in compound semiconductors have previously been proposed and demonstrated. Here, a study of slow-wave, travelling-wave electrodes on compound semiconductors has been performed in order to significantly improve their use in ultra-wide-band guided-wave electro-optic devices. The most important factors limiting the high frequency performance of such devices, in general, are the microwave-lightwave velocity mismatch and the microwave loss on the electrodes. Based on the deeper understanding acquired through our study, we have designed, fabricated, and tested low-loss, slow-wave, travelling-wave electrodes on semi- insulating GaAs (SI-GaAs) and AlGaAs/GaAs substrates. Microwave-to-lightwave velocity matching within 1% was achieved using slow-wave coplanar strip electrodes; many of the electrodes had effective microwave indices in the range 3.3 to 3.4 (measured at frequencies up to 40 GHz). For the electrodes fabricated on SI-GaAs substrates, microwave losses of 0.22 Np/cm and 0.34 Np/cm (average values at 40 GHz) were measured for the slow-wave coplanar strip and the slow-wave coplanar waveguide electrodes, respectively. For the electrodes fabricated on the AlGaAs/GaAs substrates containing the modulators, the corresponding losses were, on average, 0.17 Np/cm higher at 40 GHz. For the first time, ultra-wide-band polarization converters using slow-wave electrodes have been

  17. Optical studies of magnons, excitons and polarons in CuO{sub 2}-layer compounds

    SciTech Connect

    Kastner, M.A.; Birgeneau, R.J.

    1996-12-31

    The optical properties of undoped and lightly doped lamellar copper oxides are reviewed. In the undoped materials the absorption below the charge-transfer gap is dominated by magnetic and crystal field excitations of the CuO{sub 2} layers. The temperature dependence of the charge-transfer absorption provides evidence that free charged excitations form large polarons. However, the optical ionization energy of holes bound to acceptors is much larger than the thermal ionization energy, indicating that the bound polarons are small. The parameters extracted from optical measurements predict the Hall mobility of holes in lightly doped La{sub 2}CuO{sub 4}, with no adjustable parameters, confirming that the carriers are polarons.

  18. Giant magneto-optical Raman effect in a layered transition metal compound

    PubMed Central

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E. W.; Zhang, Qingming

    2016-01-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications. PMID:26884198

  19. Giant magneto-optical Raman effect in a layered transition metal compound.

    PubMed

    Ji, Jianting; Zhang, Anmin; Fan, Jiahe; Li, Yuesheng; Wang, Xiaoqun; Zhang, Jiandi; Plummer, E W; Zhang, Qingming

    2016-03-01

    We report a dramatic change in the intensity of a Raman mode with applied magnetic field, displaying a gigantic magneto-optical effect. Using the nonmagnetic layered material MoS2 as a prototype system, we demonstrate that the application of a magnetic field perpendicular to the layers produces a dramatic change in intensity for the out-of-plane vibrations of S atoms, but no change for the in-plane breathing mode. The distinct intensity variation between these two modes results from the effect of field-induced broken symmetry on Raman scattering cross-section. A quantitative analysis on the field-dependent integrated Raman intensity provides a unique method to precisely determine optical mobility. Our analysis is symmetry-based and material-independent, and thus the observations should be general and inspire a new branch of inelastic light scattering and magneto-optical applications. PMID:26884198

  20. Retrieval of the atmospheric compounds using a spectral optical thickness information

    SciTech Connect

    Ioltukhovski, A.A.

    1995-03-01

    A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.

  1. A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanent positive charges

    PubMed Central

    Popr, Martin; Hybelbauerová, Simona

    2014-01-01

    Summary An efficient synthetic route toward the preparation of a complete series of monosubstituted tetraalkylammonium cyclodextrin (CD) derivatives is presented. Monotosylation of native CDs (α-, β-, γ-) at position 6 gave the starting material. Reaction of monotosylate (mono-Ts-CD) with 45% aqueous trimethylamine gave CDs substituted with one cationic functional group in a single step. Derivatives equipped with a substituent containing two cationic sites separated by an ethylene or a propylene linker were prepared by reacting mono-Ts-CD with neat N,N,N’-trimethylethane-1,2-diamine or N,N,N’-trimethylpropane-1,3-diamine and subsequent methylation by CH3I in good yields. Finally, analogues bearing a moiety with three tetraalkylammonium sites were synthesized by reacting mono-Ts-CD with bis(3-aminopropyl)amine and subsequent methylation. The majority of the presented reactions are very straightforward with a simple work-up, which avoids the need of chromatographic separation. Thus, these reactions are suitable for the multigram-scale production of monosubstituted cationic CDs. PMID:24991293

  2. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Jacksen, Niels

    2016-05-01

    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  3. Ab initio investigation of the structural, electronic, magnetic and optical properties of the perovskite TlMnX3 (X = F, Cl) compounds

    NASA Astrophysics Data System (ADS)

    Hamioud, Farida; Alghamdi, Ghadah S.; Al-Omari, Saleh; Mubarak, A. A.

    2016-03-01

    We have performed ab initio investigation of some physical properties of the perovskite TlMnX3 (X = F, Cl) compounds using the full-potential linearized augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) is employed as exchange-correlation potential. The calculated lattice constant and bulk modulus agree with previous studies. Both compounds are found to be elastically stable. TlMnF3 and TlMnCl3 are classified as anisotropic and ductile compounds. The calculations of the band structure of the studied compounds showed the semiconductor behavior with the indirect (M-X) energy gap. Both compounds are classified as a ferromagnetic due to the integer value of the total magnetic moment of the compounds. The different optical spectra are calculated from the real and the imaginary parts of the dielectric function and connected to the electronic structure of the compounds. The static refractive index n(0) is inversely proportional to the energy bandgap of the two compounds. Beneficial optics technology applications are predicted based on the optical spectra.

  4. Electronic Band Structure, Optical, Thermal and Bonding Properties of XMg2O4(X = Si, Ge) Spinel Compounds

    NASA Astrophysics Data System (ADS)

    Semari, F.; Ouahrani, T.; Khachai, H.; Khenata, R.; Rabah, M.; Bouhemadou, A.; Murtaza, G.; Amin, B.; Rached, D.

    2013-07-01

    Bonding nature as well as structural, optoelectronic and thermal properties of the cubic XMg2O4(X = Si, Ge) spinel compounds have been calculated using a full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method within the density functional theory. The exchange-correlation potential was treated with the PBE-GGA approximation to calculate the total energy. Moreover, the modified Becke-Johnson potential (TB-mBJ) was also applied to improve the electronic band structure calculations. The computed ground-state parameters (a, B, B‧ and u) are in excellent agreements with the available theoretical data. Calculations of the electronic band structure and bonding properties show that these compounds have a direct energy band gap (Γ-Γ) with a dominated ionic character and the TB-mBJ approximation yields larger fundamental band gaps compared to those obtained using the PBE-GGA. Optical properties such as the complex dielectric function ɛ(ω), reflectivity R(ω) and energy loss function L(ω), for incident photon energy up to 40 eV, have been predicted. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effects of pressure P and temperature T on the thermal expansion coefficient, Debye temperature and heat capacity for the considered compounds are investigated for the first time.

  5. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds.

    PubMed

    Keast, V J; Barnett, R L; Cortie, M B

    2014-07-30

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications. PMID:25001413

  6. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  7. The propargylic route as a short and versatile entry to optically active monofluorinated compounds.

    PubMed

    Prakesch, Michaël; Grée, Danielle; Grée, René

    2002-03-01

    Using selected models and appropriate NMR techniques, it has been demonstrated that dehydroxyfluorination in the propargylic position can be highly regio- and stereoselective. The corresponding propargylic fluorides are very useful intermediates for short preparations of stereodefined unsaturated or polyunsaturated compounds with a single fluorine atom in allylic or propargylic position. This strategy offers good means for the synthesis of chiral, nonracemic monofluorinated analogues of natural products. PMID:11900521

  8. Optical methods for creating delivery systems of chemical compounds to plant roots

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  9. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles.

    PubMed

    Nezhad, M Reza Hormozi; Alimohammadi, M; Tashkhourian, J; Razavian, S Mehdi

    2008-11-01

    An indirect colorimetric method is presented for detection of trace amounts of hydroquinone (1), catechol (2) and pyrogallol (3). The reduction of AuCl4(-) to Gold nanoparticles (Au-NPs) by these phenolic compounds in the presence of cetyltrimethylammonium chloride (CTAC) produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of Au-NPs allows the quantitative colorimetric detection of the phenolic compounds. The calibration curves derived from the changes in absorbance at lambda = 568 nm were linear with concentration of hydroquinone, catechol and pyrogallol in the range of 7.0 x 10(-7) to 1.0 x 10(-4)M, 6.0 x 10(-6) to 2.0 x 10(-4)M and 6.0 x 10(-7) to 1.0 x 10(-4)M, respectively. The detection limits were 5.3 x 10(-7), 2.5 x 10(-6) and 3.2 x 10(-7)M for the hydroquinone, catechol and pyrogallol, respectively. The method was applied satisfactorily to the determination of phenolic compounds in water samples and pharmaceutical formulations. PMID:18222104

  10. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    PubMed Central

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-01-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics. PMID:24988381

  11. Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve

    NASA Astrophysics Data System (ADS)

    Troiani, Francesca; Nikolic, Konstantin; Constandinou, Timothy G.

    2016-03-01

    Due to optical coherence tomography (OCT) high spatial and temporal resolution, this technique could be used to observe the quick changes in the refractive index that accompany action potential. In this study we explore the use of time domain Optical Coherence Tomography (TD-OCT) for real time action potential detection in ex vivo Xenopus Laevis sciatic nerve. TD-OCT is the easiest and less expensive OCT technique and, if successful in detecting real time action potential, it could be used for low cost monitoring devices. A theoretical investigation into the order of magnitude of the signals detected by a TD-OCT setup is provided by this work. A linear dependence between the refractive index and the intensity changes is observed and the minimum SNR for which the setup could work is found to be SNR = 2 x 104.

  12. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  13. Photochromism induced nonlinear optical absorption enhancement and ultrafast responses of several dithienylethene compounds

    NASA Astrophysics Data System (ADS)

    Wang, Yaochuan; Yan, Yongli; Liu, Dajun; Wang, Guiqiu; Pu, Shouzhi

    2015-11-01

    The nonlinear optical properties and ultrafast dynamics of three dithienylethene photochromic derivatives (i.e., P1, P2, and P3) were investigated by two-photon fluorescence, open-aperture Z-scan, and femtosecond pump-probe experiments. Photoinduced ring-closure and ring-opening phenomena, as well as a photochromism induced nonlinear optical property enhancement, were observed. For both the ring-opening and ring-closure state, the curve exhibited an ultrafast absorption peak approximately 200 fs followed by a fast decay process (i.e., ˜1 ps) and a long decay process that had a duration longer than 5 ps. The ultrafast peak followed by a fast decay process and the long decay process were attributable to a special two-photon absorption process, the formation of a charge separation state, and the relaxation of the charge separation state, respectively. However, the magnitude of the signal under the ring-closure state is approximately fivefold greater than that of the ring-opening state, which is in good agreement with nonlinear optical results. Intramolecular charge transfer processes were observed in the dynamics curves of the P2' and P3' isomers with D- π-A and D- π-D structures.

  14. Comment on "Structural, elastic, electronic, magnetic and optical properties of RbSrX (C, SI, Ge) half-Heusler compounds"

    NASA Astrophysics Data System (ADS)

    Jalilian, Jaafar; Motiepour, Pouria

    2015-12-01

    In a recent article by Ahmad et al. (2015) [1] structural, elastic, electronic, magnetic and optical properties of RbSrX (C, Si, Ge) half-Heusler compounds have been studied by the first principles calculations. After studying this article, we found that there are some physical and computational mistakes in electronic and optical properties sections. In investigating optical properties, they did not consider intraband transitions contribution in complex dielectric function term, while this term has significant effect on optical spectra for half-metallic materials.

  15. Electrical and optical investigation on doping of II-VI compounds using radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Wienecke, Marion

    2000-12-01

    Using radioactive isotopes of shallow dopants (Ag, As, Rb) as well as of native or isoelectronic elements (Se, Te, Cd, Sr) which were incorporated as host atoms and then transmuted into relevant dopants (transmutation doping) we investigated doping phenomena occurring in the wide band gap II-VI compounds CdTe, ZnTe, ZnSe and SrS by the classical methods of semiconductor physics: Hall effect, C-V and photoluminescence measurements. Thus, we could assign unambiguously defect features in electrical and photoluminescence measurements to extrinsic dopants by means of the half lives of radioactive decay. In As doped ZnSe samples we observed two states: a metastable effective mass like state and a deep state. The occurrence of the latter state is always linked with the high resistivity of As doped ZnSe crystals. The transmutation doping experiments reveal that the so-called self-compensation typical for wide band gab II-VI compounds can be overcome when the thermal treatment for dopant incorporation is time separated from its electrical activation, achieved using transmutation at room temperature. Under these conditions we found an almost one-to-one doping efficiency relative to the implanted dose. Thus, these investigations are a contribution to understanding compensation phenomena occurring due to interactions between dopants and native defects during conventional doping treatments.

  16. Optically isotropy in scintillator host compounds M{sub 2}LaCl{sub 5} (M=Rb, and Cs): Ab-initio study

    SciTech Connect

    Shwetha, G.; Kanchana, V.; Vaitheeswaran, G.

    2015-06-24

    Full potential linearized augmented plane wave method (FP-LAPW) has been used to calculate the electronic structure and optical properties of high light output scintillator host compounds M{sub 2}LaCl{sub 5} (M=Rb, and Cs) with in the Tran Blaha modified Becke Johnson (TB-mBJ) potential. These are wide band gap materials with the band gap of 4.75, and 4.72 eV for Rb{sub 2}LaCl{sub 5}, and Cs{sub 2}LaCl{sub 5} respectively. From the calculated optical properties of these compounds, we find these compounds to be optically isotropic, though they are structurally anisotropic, which is an important criteria for the ceramic scintillators.

  17. Optically isotropy in scintillator host compounds M2LaCl5 (M=Rb, and Cs): Ab-initio study

    NASA Astrophysics Data System (ADS)

    Shwetha, G.; Vaitheeswaran, G.; Kanchana, V.

    2015-06-01

    Full potential linearized augmented plane wave method (FP-LAPW) has been used to calculate the electronic structure and optical properties of high light output scintillator host compounds M2LaCl5 (M=Rb, and Cs) with in the Tran Blaha modified Becke Johnson (TB-mBJ) potential. These are wide band gap materials with the band gap of 4.75, and 4.72 eV for Rb2LaCl5, and Cs2LaCl5 respectively. From the calculated optical properties of these compounds, we find these compounds to be optically isotropic, though they are structurally anisotropic, which is an important criteria for the ceramic scintillators.

  18. Density-functional study of the electronic and optical properties of the spinel compound CuIr2S4

    NASA Astrophysics Data System (ADS)

    Sarkar, Soumyajit; de Raychaudhury, Molly; Saha-Dasgupta, T.

    2009-03-01

    Using first-principles density-functional calculations we have computed the electronic and optical properties of spinel compound CuIr2S4 , which undergoes a structural phase transition, accompanied by a metal-insulator transition at a temperature of about 230 K. The nature of this transition has been discussed in the literature in terms of both the correlated singlet formation picture as well as the orbitally driven Peierls transition picture. Our first-principles calculations find little role of correlation. Our calculated reflectivity and conductivity data for both the high-temperature and low-temperature phases are found to be in good agreement with measured data by Wang [Phys. Rev. B 69, 153104 (2004)].

  19. Compound refractive lenses as prefocusing optics for X-ray FEL radiation.

    PubMed

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-03-01

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3-10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method. PMID:26917128

  20. Development of optically transparent water oxidation catalysts using manganese pyrophosphate compounds.

    PubMed

    Takashima, Toshihiro; Hotori, Yuki; Irie, Hiroshi

    2015-11-01

    One challenge in artificial photosynthetic systems is the development of active oxygen evolution catalysts composed of abundant elements. The oxygen evolution activities of manganese pyrophosphate compounds were examined in electrochemical and photochemical experiments. Electrocatalysis using calcium-manganese pyrophosphate exhibited good catalytic ability under neutral pH and an oxygen evolution reaction was driven with a small overpotential (η<100 mV). UV-vis diffuse reflectance measurements revealed that manganese pyrophosphates exhibit weak absorption in the visible light region while commonly used oxygen evolution catalysts exhibit intense absorption. Therefore, the efficient light absorption of a photocatalyst was retained even after surface modification with a manganese pyrophosphate, and photochemical oxygen evolution was achieved by using magnesium ferrite modified with manganese pyrophosphate nanoparticles under the illumination of visible light at wavelength of over 420 nm. PMID:25648929

  1. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    DOE PAGESBeta

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-01-27

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. As a result, the X-ray focus was also determined bymore » the ablation imprint method.« less

  2. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    PubMed Central

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-01-01

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method. PMID:26917128

  3. Small angle x-ray scattering with a beryllium compound refractive lens as focusing optic

    SciTech Connect

    Timmann, Andreas; Doehrmann, Ralph; Schubert, Tom; Schulte-Schrepping, Horst; Hahn, Ulrich; Kuhlmann, Marion; Gehrke, Rainer; Roth, Stephan Volkher; Schropp, Andreas; Schroer, Christian; Lengeler, Bruno

    2009-04-15

    At BW4 at HASYLAB a beryllium compound refractive lens (Be-CRL) is used for the focusing in small-angle x-ray scattering experiments. Using it provides the advantages of higher long-term stability and a much easier alignment compared to a setup with focusing mirrors. In our investigations presented here, we show the advantages of using a Be-CRL in small-angle and also ultra small-angle x-ray scattering. We investigated the beam characteristics at the sample position with respect to spot size and photon flux. The spot size is comparable to that of a setup with focusing mirrors but with a gain in flux and better long-term stability. It is also shown that plane mirrors are still necessary to suppress higher order energies passing the monochromator.

  4. Luminescent optical detection of volatile electron deficient compounds by conjugated polymer nanofibers.

    PubMed

    Wade, Aidan; Lovera, Pierre; O'Carroll, Deirdre; Doyle, Hugh; Redmond, Gareth

    2015-04-21

    Optical detection of volatile electron deficient analytes via fluorescence quenching is demonstrated using ca. 200 nm diameter template-synthesized polyfluorene nanofibers as nanoscale detection elements. Observed trends in analyte quenching effectiveness suggest that, in addition to energetic factors, analyte vapor pressure and polymer/analyte solubility play an important role in the emission quenching process. Individual nanofibers successfully act as luminescent reporters of volatile nitroaromatics at sub-parts per million levels. Geometric factors, relating to the nanocylindrical geometry of the fibers and to low nanofiber substrate coverage, providing a less crowded environment around fibers, appear to play a role in providing access by electron deficient quencher molecules to the excited states within the fibers, thereby facilitating the pronounced fluorescence quenching response. PMID:25803242

  5. Encapsulation of functional organic compounds in nanoglass for optically anisotropic coatings.

    PubMed

    Stöter, Matthias; Biersack, Bernhard; Rosenfeldt, Sabine; Leitl, Markus J; Kalo, Hussein; Schobert, Rainer; Yersin, Hartmut; Ozin, Geoffrey A; Förster, Stephan; Breu, Josef

    2015-04-13

    A novel approach is presented for the encapsulation of organic functional molecules between two sheets of 1 nm thin silicate layers, which like glass are transparent and chemically stable. An ordered heterostructure with organic interlayers strictly alternating with osmotically swelling sodium interlayers can be spontaneously delaminated into double stacks with the organic interlayers sandwiched between two silicate layers. The double stacks show high aspect ratios of >1000 (typical lateral extension 5000 nm, thickness 4.5 nm). This newly developed technique can be used to mask hydrophobic functional molecules and render them completely dispersible in water. The combination of the structural anisotropy of the silicate layers and a preferred orientation of molecules confined in the interlayer space allows polymer nanocomposite films to be cast with a well-defined orientation of the encapsulated molecules, thus rendering the optical properties of the nanocoatings anisotropic. PMID:25703020

  6. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  7. A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes

    SciTech Connect

    Fahleson, Tobias; Norman, Patrick; Coriani, Sonia; Rizzo, Antonio; Rikken, Geert L. J. A.

    2013-11-21

    We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes.

  8. Evaluation of an evanescent fiber optic chemical sensor for monitoring aqueous volatile organic compounds

    SciTech Connect

    Blair, D.S.

    1997-04-01

    Linear chemometric algorithms were used to model the quantitative response of an evanescent fiber optic chemical sensor in aqueous mixtures with concentrations between 20 and 300 ppm. Four data sets were examined with two different experimental arrangements. Two data sets contained trichloroethene, 1,1,2 trichloroethane, and toluene. Partial Least Squares, PLS, and Principal Component Regression, PCR, algorithms performed comparably on these calibration sets with cross-validated root mean squared errors of prediction (RMSEP) for trichloroethene, 1,1,1 trichloroethane, and toluene of approximately 26, 29 and 22 ppm, respectively. The third data set contained trichloroethene, 1,1,2 trichloroethane, toluene, and chloroform and the fourth contained these four analytes as well as tetrachloroethene. Again, both chemometric algorithms performed comparably on a given data set with RMSEP for trichloroethene, 1,1,2 trichloroethane, toluene, and chloroform of approximately 6, 6, 9, and 16 ppm from the first set, and 7, 11, 13, and 31 ppm from the second set with tetrachloroethene RMSEP of 31 ppm. The decrease in the quantitative performance of the sensor for modeling toluene and chloroform upon addition of tetrachloroethene to the sample solutions is due to increased cladding absorption features in the spectral response matrix. These features overlap with the analyte absorption features of toluene and chloroform. These results suggest one of the limitations with this type of sensing format.

  9. Structural, electronic and optical properties of hexagonal TaN compound

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjun; Yan, Jungan; Kuang, Zhong; Chen, Taihong; Li, Dehua

    2016-01-01

    Structural and electronic properties of hexagonal Tantalum nitride (TaN) in CoSn and WC structures are studied using the first-principle calculations. Lattice constants and electronic band structures are in an excellent agreement with the available experimental and other theoretical values. TaN in both structures studied has a metallic nature and a strong hybridization of Ta 5d and N 2p are found from the spin density of states (DOS). Meanwhile, our LSDA+U calculations predicted a strong ferromagnetic state for CoSn-type structure and an obvious paramagnetic nature for WC-type structure. No phase transition are observed within cubic and hexagonal CoSn and WC structures under high pressures. Our results show WC-type TaN is the calculated ground-state structure among the three crystallographic structures studied under 120 GPa. Optical properties show that TaN in CoSn-type structure is a better dielectric material.

  10. Learning about Structural and Optical Properties of Organic Compounds through Preparation of Functional Nanomicelles While Avoiding Hazardous Chemicals or Complicated Apparatus

    ERIC Educational Resources Information Center

    Langhals, Heinz; Eberspa¨cher, Moritz; Hofer, Alexander

    2015-01-01

    The synthesis of nanomicelles in the aqueous phase on the basis of nonhazardous detergents is described where azulene and a naphthalene tetracarboximide are used in this experiment to teach the relation between structural and optical properties of organic compounds and point out possible applications. The experiment covers many aspects of…

  11. Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z.

    2016-06-01

    In this talk, after a short introduction on the methodologies used for computing dipole polarizability (α), second and third-order hyperpolarizability and susceptibility; the results of theoretical studies performed on density functional theory (DFT) and ab-initio quantum mechanical calculations of nonlinear optical (NLO) properties for a few selected organic compounds and polymers will be explained. The electric dipole moments (μ) and dispersion-free first hyperpolarizabilities (β) for a family of azo-azulenes and a styrylquinolinium dye have been determined by DFT at B3LYP level. To reveal the frequency-dependent NLO behavior, the dynamic α, second hyperpolarizabilities (γ), second (χ(2)) and third-order (χ(3)) susceptibilites have been evaluated using time-dependent HartreeFock (TDHF) procedure. To provide an insight into the third-order NLO phenomena of a series of pyrrolo-tetrathiafulvalene-based molecules and pushpull azobenzene polymers, two-photon absorption (TPA) characterizations have been also investigated by means of TDHF. All computed results of the examined compounds are compared with their previous experimental findings and the measured data for similar structures in the literature. The one-photon absorption (OPA) characterizations of the title molecules have been theoretically obtained by configuration interaction (CI) method. The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps have been revealed by DFT at B3LYP level for azo-azulenes, styrylquinolinium dye, push-pull azobenzene polymers and by parametrization method 6 (PM6) for pyrrolo-tetrathiafulvalene-based molecules.

  12. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  13. Detection of the volatile organic compounds emitted from paints using optical fibre long period grating modified with the mesoporous nano-scale coating

    NASA Astrophysics Data System (ADS)

    Hromadka, Jiri; James, Stephen; Davis, Frank; Tatam, Ralph P.; Crump, Derrick; Korposh, Sergiy

    2015-09-01

    An optical fibre long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of a mixture of volatile organic compounds (VOCs). The sensing mechanism is based on the transduction of the refractive index change induced by the complexion of the VOCs with calixarene into a change in the form of the transmission spectrum of the LPG. An LPG, modified with a calixarene-infused coating comprising 5 cycles of silica nanoparticles/poly(allylamine hydrochloride) polycation (SiO2/PAH), was exposed to mixture of VOCs emitted from paint at conditions simulating ISO standards test (16000-10).

  14. Design, synthesis and nonlinear optical properties of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds

    NASA Astrophysics Data System (ADS)

    Saha, Amrita; Shukla, Vijay; Choudhury, Sudip; Jayabalan, J.

    2016-06-01

    A new series of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds have been synthesized by Claisen-Schmidt condensation reaction. Nonlinear optical characterization were carried out using z-scan technique with nanosecond pulses. These samples are found to exhibit strong nonlinear absorption at 532 nm and the nonlinear absorption coefficient of these samples exponentially increases with the increase of phonon characteristic energy. This relation speaks the role of phonon in the origin of nonlinear absorption in these compounds. The reported dependence of optical nonlinearity of the chalcone derivatives on the phonon characteristic energy will help in designing similar class of new molecules with high nonlinear coefficients.

  15. Optical and magneto-optical properties of single crystals of RFe{sub 2} (R = Gd, Tb, Ho, and Lu) and GdCo{sub 2} intermetallic compounds

    SciTech Connect

    Lee, S.J.

    1999-02-12

    The author has studied the diagonal and off-diagonal optical conductivity of RFe{sub 2}(R = Gd, Tb, Ho, Lu) and GdCo{sub 2} single crystals grown by the flux method. Using spectroscopic ellipsometry the author has measured the dielectric function from 1.5 to 5.5 eV. The magneto-optical Kerr spectrometer at temperatures between 7 and 295 K and applied magnetic fields between 0.5 to 1.6 T. The apparatus and calibration method are described in detail. Using magneto-optical data and optical constants he derives the experimental value of the off-diagonal conductivity components. Theoretical calculations of optical conductivities and magneto-optical parameters were performed using the tight binding-linear muffin tin orbitals method within the local spin density approximation. He applied this TB-LMTO method to LuFe{sub 2}. The theoretical results obtained agree well with the experimental data. The oxidation effects on the diagonal part of the optical conductivity were considered using a three-phase model. The oxidation effects on the magneto-optical parameters were also considered by treating the oxide layer as a nonmagnetic thin transparent layer. These corrections change not only the magnitude but also the shape of the optical conductivity and the magneto-optical parameters.

  16. Synthesis, crystal structure and non-linear optical properties of inorganic-organic hybrid compound based on face-sharing octahedral [PbBr3]∞ chains

    NASA Astrophysics Data System (ADS)

    Ben Ahmed, A.; Feki, H.; Abid, Y.

    2015-09-01

    4-BenzylPiPeridine-PbBr3 has been synthesized. The crystal structures of the title compound have been defined by X-ray diffraction analysis and characterized by FT-IR, Raman and UV-visible instrumental methods. The recorded spectrum by UV-visible spectroscopy for the investigated compound show good transparency in the visible region. This result indicates a non-zero value of the first Hyperpolarizability. We also report DFT calculations of the electric dipole moments (μ), Polarizability (α), the first Hyperpolarizability (β) and HOMO-LUMO analysis of the title compound was theoretically investigated by Gaussian 03 package. Our results suggest that the investigated material might have microscopic nonlinear optical behavior with non-zero values.

  17. Linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-11-01

    The linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds are performed using the first-principles calculations. Particularly, we appraised the optical dielectric function and the second-harmonic generation (SHG) response. We have analyzed the linear optical properties, i.e. the real and imaginary part of the dielectric tensor, the reflectivity, refractive index, extension coefficient and energy loss function. The linear optical properties show a considerable anisotropy which is important for SHG as it is defined by the phase-matching condition. The scrutiny of the roles of diverse transitions to the SHG coefficients demonstrates that the virtual electron process is foremost. The features in the spectra of χ322(2)(ω) are successfully interrelated with the character of the linear dielectric function ε(ω) in terms of single-photon and two-photon resonances. In additional, we have calculated the first hyperpolarizability, βijk, for the dominant component at the static limit for the for α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds. The calculated values of β322(ω) are 2.28 × 10-30 esu for α-K2Hg3Ge2S8 and 3.69 × 10-30 esu for α-K2Hg3Sn2S8.

  18. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  19. In vitro anti-mycobacterial activity of (E)-N'-(monosubstituted-benzylidene) isonicotinohydrazide derivatives against isoniazid-resistant strains

    PubMed Central

    Coelho, Tatiane S.; Cantos, Jessica B.; Bispo, Marcelle L.F.; Gonçalves, Raoni S.B.; Lima, Camilo H.S.; da Silva, Pedro E.A.; Souza, Marcus V. N.

    2012-01-01

    A series of twenty-three N-acylhydrazones derived from isoniazid (INH 1-23) have been evaluated for their in vitro antibacterial activity against INH- susceptible strain of M. tuberculosis (RG500) and three INH-resistant clinical isolates (RG102, RG103 and RG113). In general, derivatives 4, 14, 15 and 16 (MIC=1.92, 1.96, 1.96 and 1.86 µM, respectively) showed relevant activities against RG500 strain, while the derivative 13 (MIC=0.98 µM) was more active than INH (MIC=1.14 µM). However, these derivatives were inactive against RGH102, which displays a mutation in the coding region of inhA. These results suggest that the activities of these compounds depend on the inhibition of this enzyme. However, the possibility of other mechanisms of action cannot be excluded, since compounds 2, 4, 6, 7, 12–17, 19, 21 and 23 showed good activities against katG-resistant strain RGH103, being more than 10-fold more active than INH. PMID:24470920

  20. Dispersion of the linear and nonlinear optical susceptibilities of the CuAl(S{sub 1–x}Se{sub x})₂ mixed chaclcopyrite compounds

    SciTech Connect

    Reshak, A. H.; Brik, M. G.; Auluck, S.

    2014-09-14

    Based on the electronic band structure, we have calculated the dispersion of the linear and nonlinear optical susceptibilities for the mixed CuAl(S{sub 1–x}Se{sub x})₂ chaclcopyrite compounds with x=0.0, 0.25, 0.5, 0.75, and 1.0. Calculations are performed within the Perdew-Becke-Ernzerhof general gradient approximation. The investigated compounds possess a direct band gap of about 2.2 eV (CuAlS₂), 1.9 eV (CuAl(S₀.₇₅Se₀.₂₅)₂), 1.7 eV (CuAl(S₀.₅Se₀.₅)₂), 1.5 eV (CuAl(S₀.₂₅Se₀.₇₅)₂), and 1.4 eV (CuAlSe₂) which tuned to make them optically active for the optoelectronics and photovoltaic applications. These results confirm that substituting S by Se causes significant band gaps' reduction. The optical function's dispersion ε₂{sup xx}(ω) and ε₂{sup zz}(ω)/ε₂{sup xx}(ω), ε₂{sup yy}(ω), and ε₂{sup zz}(ω) was calculated and discussed in detail. To demonstrate the effect of substituting S by Se on the complex second-order nonlinear optical susceptibility tensors, we performed detailed calculations for the complex second-order nonlinear optical susceptibility tensors, which show that the neat parents compounds CuAlS₂ and CuAlSe₂ exhibit | χ₁₂₂²}(-2ω;ω;ω) | as the dominant component, while the mixed alloys exhibit | χ₁₁₁²(-2ω;ω;ω) | as the dominant component. The features of | χ₁₂₃²}(-2ω;ω;ω) | and | χ{sub 111}²}(-2ω;ω;ω) | spectra were analyzed on the basis of the absorptive part of the corresponding dielectric function ε₂(ω) as a function of both ω/2 and ω.

  1. Synthesis and enantioselectivity of optically active 1- and 3-substituted 4-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ols and related compounds as norepinephrine potentiators.

    PubMed

    Kihara, M; Ikeuchi, M; Adachi, S; Nagao, Y; Moritoki, H; Yamaguchi, M; Taira, Z

    1995-09-01

    Optically active 1,2-dimethyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-4-ols (1R,4R-3a and 1S,4S-3b, 1S,4R-4a, and 1R,4S-4b) and 2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinolines (4S-5a and 4R-5b) were prepared in order to examine the effects of the 1-, 3-, and 4-substituents of 2-methyl-4-phenyl- 1,2,3,4-tetrahydroisoquinolin-4-ol (PI-OH) (1) on the enantioselectivity for norepinephrine (NE) potentiating activity. The conformations and absolute configurations of 3-5 were determined from their 1H-NMR and circular dichroism (CD) spectra and by single-crystal X-ray diffractometric analysis. The NE potentiating activity of the optically active 3-5 and previously prepared 3-methyl derivatives (3R,4R-6a and 3S,4S-6b) of PI-OH were tested. The results show that compounds 3, 4, and 6 had high enantioselectivity for NE potentiation: the 4R series of the enantiomers exhibited activity but not the 4S-enantiomers. The activity of the 4-desoxy compound 5 also resided exclusively in the 4S-enantiomer. These findings suggest the presence of a specific receptor for NE uptake, and the enantiomers 3a, 4a, 5a, and 6a may be antagonistic at this NE uptake receptor. PMID:7586079

  2. Magnetic, resonance, and optical properties of Cu3Sm (SeO3)2O2Cl : A rare-earth francisite compound

    NASA Astrophysics Data System (ADS)

    Zakharov, K. V.; Zvereva, E. A.; Markina, M. M.; Stratan, M. I.; Kuznetsova, E. S.; Dunaev, S. F.; Berdonosov, P. S.; Dolgikh, V. A.; Olenev, A. V.; Klimin, S. A.; Mazaev, L. S.; Kashchenko, M. A.; Ahmed, Md. A.; Banerjee, A.; Bandyopadhyay, S.; Iqbal, A.; Rahaman, B.; Saha-Dasgupta, T.; Vasiliev, A. N.

    2016-08-01

    In this combined experimental and theoretical paper, we study the properties of Cu3Sm (SeO3)2O2Cl belonging to the francisite family of compounds, which are novel frustrated layered compounds. Cu3Sm (SeO3)2O2Cl is synthesized through a solid state reaction. Characterizations through measurements of magnetization, specific heat, X-band electron spin resonance, and rare-earth optical spectroscopy, establish that the compound orders antiferromagnetically at TN=35 K and undergoes a spin-reorientation phase transition at TC=8.5 K due to the interplay of anisotropies in transition metal and rare-earth subsystems. The ground state Kramers doublet of Sm is found to split only at T

  3. Characterization of the Localized Excited State of Monosubstituted Ruthenium (ii) Complexes, and Thermodynamic and Structural Investigations on Langmuir Monolayers and Built-Up Multilayers.

    NASA Astrophysics Data System (ADS)

    Samuels, Alan Christopher

    This dissertation consists of two parts. The first part is contained in chapter one, which describes an Electron Spin Resonance (ESR) investigation of the metal -ligand charge transfer (MLCT) excited state of monodiimine complexes of ruthenium (II). Specifically, the electrochemically reduced mono-substituted diimine complexes [ {rm Ru(bpy)(CN)}_4]^ {2-}, [{rm Ru(bpm)(CN)}_4]^{2- }, and [{rm Ru(bpz)(CN) }_4]^{2-}, where bpy = 2,2^'-bipyridine, bpm = 2,2^'-bipyrimidine, and bpz = 2,2^'-bipyrazine, were characterized by ESR spectroscopy. Well-resolved hyperfine structure (hfs) was observed in all three complexes, and coupling constants were calculated from the observed spectra. The hyperfine coupling constants derived from the ESR spectra indicate that the electronic spin density is largely localized within the pi* orbitals of the reduced species. Emission spectra, solvatochromic absorption spectra, and cyclic voltammetry data are also presented and discussed. The second part of this dissertation constitutes the remaining chapters, and details a comprehensive series of investigations on a monolayer fatty acid film system prepared by the classical Langmuir technique. Specifically, monolayer and multilayer films composed of mixtures of behenic acid and platinum bis(2-(2-thienyl)-pyridine were prepared by the Langmuir-Blodgett and Langmuir-Schaefer techniques, and characterized by FTIR transmission and reflectance-absorbance spectroscopy, visible dichroism, emission spectroscopy, transmission electron microscopy and electron diffraction. Langmuir film properties were investigated as a function of subphase temperature to elucidate the phase changes observed in the pressure-area isotherms for these mixtures. Chromatographic analysis of phenacyl derivatives of the fatty acids coupled with luminescence measurements on the platinum complex was performed to elucidate the composition and structure of the multilayer films. The results suggest that the platinum complex assumes a

  4. Pressure dependence of the optical properties of the charge-density-wave compound LaTe2

    SciTech Connect

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; Arcangeletti, E.; Baldassarre, L.; Postorino, P.; Lupi, S.; Perucchi, A.; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report the pressure dependence of the optical response of LaTe{sub 2}, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe{sub 2}. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.

  5. a Study of the Structural, Magnetic, Optical, and Electronic Properties of Several New Copper(ii) Halide and Copper(ii, i) Halide Compounds in the Solid State.

    NASA Astrophysics Data System (ADS)

    Scott, Brian Lindley

    The synthesis, x-ray crystal structures, magnetic susceptibilities, and ligand field transition energies are reported for several A_2Cu _2X_6 (A = organic cation; X = Cl, Br) compounds. The structure of the Cu _2Br_6^{2 -} dimer within these solids is correlated to their magnetic exchange and ligand field spectral results; the critical structural parameters tied to these properties are the geometry of the X-Cu-X bridge, and the coordination geometry about the metal centers. Spectral assignments are made in light of EHMO calculations. The synthesis, x-ray structures, and the polarized ligand field and charge transfer absorption results on the two room temperature phases of ((C_3 H_7)_4N) _2Cu_2Br _6 are presented. Striking piezochromic and thermochromic phase transitions are observed between these two phases. The optical properties associated with these phase transitions are explained in terms of a difference in orientation of the Cu_2Br _6^{2-} chromophore within each of the two phases. An absorption band unique to the dimer (not observed in the CuBr_4^ {2-} monomer) is assigned to a ligand to metal charge transfer transition, and not to a simultaneous ligand field transition occurring on each metal center. The synthesis, x-ray structure, absorption spectroscopy, magnetic susceptibility, and electronic conductivity results for a series of mixed-valence Cu(II,I) halide compounds are reported. These compounds fall into the following two categories: a family of pseudo 1-D compounds with the stoichiometry ACu_2X_4 (A = tetraalkylammonium cation, X = Cl, Br), and the compound (hydrazinium)_2Cu _3Cl_6. All of the compounds contain bridges of the type Cu(I)-X-Cu(II). It is shown via absorption spectroscopy and EHMO results that all of these compounds contain intervalence charge transfer bands. The 1-D salts show semiconductive behavior. The physical properties of the 1-D salts are rationalized in terms of band calculations. All compounds are assigned to Class II in the

  6. Detection of volatile organic compounds using optical fibre long period grating modified with metal organic framework thin films

    NASA Astrophysics Data System (ADS)

    Hromadka, Jiri; Tokay, Begum; Korposh, Sergiy; James, Stephen; Tatam, Ralph P.

    2015-09-01

    An optical fibre long period grating (LPG) modified with a thin film of ZIF-8, a zeolitic immidazol framework (ZIF) material, a subgroup of the metal organic framework (MOF) family, was employed for the detection of organic vapours. ZIF-8 film was deposited onto the surface of the LPG using an in-situ crystallization technique. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by the penetration of the chemical molecules into the ZIF-8 pores. An LPG modified with 5 growth cycles of ZIF-8 responded to exposure to methanol and ethanol vapours.

  7. Comparative optical study of the two-dimensional donor-type intercalation compounds graphite-KHx and their binary counterparts C8K and C24K

    NASA Astrophysics Data System (ADS)

    Doll, G. L.; Yang, M. H.; Eklund, P. C.

    1987-06-01

    We report the results of optical reflectivity studies of the stage-1 and -2 graphite-KHx intercalation compounds prepared by direct reaction of highly ordered pyrolytic graphite and KH powder. The stage-1 and -2 binary graphite-K compounds are studied for comparison. The optical data are analyzed in terms of a model involving two-dimensional (2D) graphitic π electrons and three-dimensional (3D) nearly free K(4s) electrons. The model is used to interpret the observed values of the free-carrier unscreened plasma frequencies and the position of the interband absorption threshold to determine experimental values for the Fermi level (EF) in the carbon π band(s) and the fractional occupation of the K(4s) band. For the hydrides, we find quantitative evidence that the hydrogen states lie below EF. Thus, hydrogen is present as H-, acting as an acceptor, thereby compensating the electron donation to the π bands from the K(4s) states. This assumption and the optical data for the stage-1 and -2 hydrides results in a [H]/[K] ratio of 0.8, in excellent agreement with chemical analyses reported by Guérard and co-workers, and leads to very small values for the fractional K(4s) band occupation fK<0.03 electrons per K atom. Within the framework of a superimposed 2D (π) and 3D [K(4s)] rigid-band model, our experimental results support an empty K(4s) band (i.e., fK=0) in stage-2 C24K. In stage-1 C8K, the rigid-band model yields large values for fK (fK>0.5 electrons per K atom), unless the value of the optical mass of the electrons in the K(4s) states is larger than ~2. The C8K results are also discussed in terms of more sophisticated energy-band calculations.

  8. Mn doping effect on optical and ESR studies of Zn1-xMnxO compound sintered at different temperatures

    NASA Astrophysics Data System (ADS)

    Mahule, T.; Srinivasu, V. V.; Das, J.

    2016-05-01

    Polycrystalline bulk samples of Zn1-xMnxO with x=0.02, 0.04, 0.05 and sintered at different temperatures (500 °C & 800 °C) were studied to investigate the doping effect on the structural, optical properties and spin dynamics in ZnO system. The crystallite size was seen to decrease with no significant change in other structural parameters. FTIR study showed a small effect on the Zn-O stretching bond and other bonds due to presence of Mn. Calculation from UV-Vis spectra showed increase in the optical band gap in the low temperature sintered samples due to Mn doping. In the PL spectra, the UV emission seen to dominate for the 500 °C sintered sample, for 800 °C sample the visible emission dominate indicating increase in non-radiative emission. ESR signals obtained from the microwave absorption shows ferromagnetic signal for the low temperature sintered sample only with a g value of 2.004 for the 2% Mn doped sample. The number of spin participation for resonance is calculated from the ESR signal, which supports the magnetic behaviour of this particular sample.

  9. Structural, mechanical, electronic, optical properties and effective masses of CuMO2 (M = Sc, Y, La) compounds: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Zhang, Ning-Chao; Sun, Yan-Yun; Liu, Fu-Sheng; Liu, Zheng-Tang

    2014-05-01

    The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.

  10. Detection of volatile organic compounds through a sensing film of TiO II doped with organic dyes deposited on an optical fiber

    NASA Astrophysics Data System (ADS)

    Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.

    2007-03-01

    The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.

  11. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; Peteanu, Linda A.; Sfeir, Matthew Y.; Kemboi, Abraham; Picker, Jesse; Fossum, Eric

    2015-08-01

    Organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad. We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.

  12. First-principles studies of the structural, electronic, and optical properties of a novel thorium compound Rb{sub 2}Th{sub 7}Se{sub 15}

    SciTech Connect

    Brik, M.G.

    2014-04-01

    The structural, electronic, and optical properties of a recently synthesized thorium compound Rb{sub 2}Th{sub 7}Se{sub 15} have been calculated in the density functional theory framework for the first time. The calculated direct band gap was 1.471 eV (generalized gradient approximation) and 1.171 eV (local density approximation), with both results being close to the experimental result of 1.83 eV. High covalency/iconicity of the Th–Se/Rb–Se bonds was demonstrated by calculating effective Mulliken charges of all ions. The polarized calculations of the complex dielectric function are presented; dependence of the calculated index of refraction was fitted to the Sellmeyer equation in the wavelength range from 500 to 2500 nm. - Graphical abstract: Calculated band structure of Rb{sub 2}Th{sub 7}Se{sub 15}. - Highlights: • The first theoretical analysis of the Rb{sub 2}Th{sub 7}Se{sub 15} properties is reported. • Structural, electronic and optical properties of Rb{sub 2}Th{sub 7}Se{sub 15} were calculated. • An indirect character of Rb{sub 2}Th{sub 7}Se{sub 15} band gap was confirmed. • Dependence of the refractive index on the wavelength was calculated.

  13. Confocal Raman microscopy of pH-gradient-based 10 000-fold preconcentration of compounds within individual, optically trapped phospholipid vesicles.

    PubMed

    Myers, Grant A; Harris, Joel M

    2011-08-01

    A stable pH gradient established across the membrane of phospholipid vesicle can induce the accumulation of ionizable compounds from bulk solution into the vesicle interior. This pH-gradient vesicle loading process has previously been utilized to encapsulate drugs in pharmaceutical liposomal formulations. In the present work, this process is exploited to preconcentrate dilute analytes from free solution into phospholipid vesicles, which are then detected by optically trapping individual vesicles and measuring their contents using confocal Raman microscopy. The theory of accumulation, based on the acid-base ionization equilibria of the analyte, is developed to account for depletion of the source phase and the finite buffering capacity of the vesicle interior. The model predicts that, under appropriate conditions, enrichment factors of more than 4 orders of magnitude can be realized. To test the concept, experiments were performed measuring the accumulation of benzyldimethylamine into 600-nm phospholipid vesicles. Manipulation of vesicles by optical trapping allows accumulation within an individual vesicle to be characterized while varying the external solution conditions. A more than 10 000-fold enrichment of the analyte concentration inside the vesicle relative to the source phase is reported. The results suggest that pH-gradient loading could be exploited as a powerful preconcentration scheme for trace analysis using either Raman microscopy or other microspectroscopy techniques. PMID:21740010

  14. Gas Sensor Using a Rhodamine-6 G Doped TiO2 Film Deposited on an Optical Fiber to Detect Volatile Organic Compounds.

    NASA Astrophysics Data System (ADS)

    Aguirre, S. Muñoz; Hipatl, C. Martínez; Mixcóatl, J. Castillo; Pérez, G. Beltrán; Merino, R. Palomino

    2008-04-01

    The necessity of detection and recognition of different types of gases, such as simple volatile organic compounds or their mixtures, requires the development of different types of sensors and the study of different materials for sensing films. In this work, an application of an optical fiber to the detection of VOC is presented. The sensor was constructed removing a portion of the cladding of approximately 3 cm and depositing instead a sensing titanium dioxide (TiO2) film doped with an organic dye (rhodamine 6 G) by the sol-gel technique. The sensor operation principle is based on the absorption of evanescent wave when the sensing film interacts with the VOC molecules, which attenuates the output optical power. The difference between the output power with and without gas gives a measure of the concentration in the chamber. The results showed that for ethanol concentration from 0 to 10,000 ppm, the response of the sensor was approximately linear. The sensor responses to octane and ethyl acetate were also studied.

  15. First principles study of hydrogen storage material NaBH4 and LiAlH4 compounds: electronic structure and optical properties

    NASA Astrophysics Data System (ADS)

    Ghellab, T.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G.; Soyalp, F.

    2016-04-01

    A comprehensive study of structure, phase stability, optical and electronic properties of LiAlH4 and NaBH4 light-metal hydrides is presented. The calculations are carried out within density functional theory using the full potential linear augmented plane wave method. The exchange-correlation potential is treated within the local density approximation and the generalized gradient approximation (GGA) to calculate the total energy. Furthermore, the Engel-Vosko GGA approach is employed to compute electronic and optical properties such as reflectivity spectra. The phases α, β and γ of LiAlH4 and NaBH4 hydrides are investigated, the phase transition from the β to the high-pressure γ phase is determined for NaBH4 and is accompanied by a 1% volume decrease. For LiAlH4, no phase transition is detected. The materials under consideration are classified as wide band gap compounds. From the analysis of the structures at different phases, it is deduced that the hydrides show strong covalent interaction between B (Al) and H in the [BH4]- ([AlH4]-) anions and ionic bonding character between [BH4]- and Na+ for NaBH4, and [AlH4]- and Li+ for LiAlH4. The complex dielectric function, absorption coefficient and the reflectivity spectra are also computed and analyzed in different phases.

  16. Electronic and optical properties of the LiCdX (X = N, P, As and Sb) filled-tetrahedral compounds with the Tran–Blaha modified Becke–Johnson density functional

    SciTech Connect

    Bouhemadou, A.; Bin-Omran, S.; Allali, D.; Al-Otaibi, S.M.; Khenata, R.; Al-Douri, Y.; Chegaar, M.; Reshak, A.H.

    2015-04-15

    Highlights: • Electronic and optical properties of the LiCdX compounds have been predicted. • Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap. • We predict a direct band gap in all of the considered LiCdX compounds. • Origin of the peaks in the optical spectra is determined. - Abstract: The structural, electronic and optical properties of the LiCdN, LiCdP, LiCdAs and LiCdSb filled-tetrahedral compounds have been explored from first-principles. The calculated structural parameters are consistent with the available experimental results. Since DFT with the common LDA and GGA underestimates the band gap, we use a new developed functional able to accurately describe the electronic structure of semiconductors, namely the Tran–Blaha-modified Becke–Johnson potential. The four investigated compounds demonstrate semiconducting behavior with direct band gap ranging from about 0.32 to 1.65 eV. The charge-carrier effective masses are evaluated at the topmost valence band and at the bottommost conduction band. The evolution of the value and nature of the energy band gap under pressure effect is also investigated. The frequency-dependent complex dielectric function and some macroscopic optical constants are estimated. The microscopic origins of the structures in the optical spectra are determined in terms of the calculated energy band structures.

  17. Compound semiconductor native oxide-based technologies for optical and electrical devices grown on gallium arsenide substrates using MOCVD

    NASA Astrophysics Data System (ADS)

    Holmes, Adrian Lawrence

    1999-11-01

    The beginning of the modern microelectronics industry can be traced back to an invention made in 1947 when Bardeen and Brattain created the first semiconductor switch, called a transistor. Several other important discoveries followed; however, two of the more significant were (i) the development of the first planar process using silicon dioxide (SiO2) as a mask for diffusions into silicon by Frosch in 1955, and (ii) the subsequent integration of several transistors in tiny circuits by Kilby in 1958. Due to the superior quality of the SiO2-silicon interface, Si-based metal-oxide-semiconductor (MOS) transistors have primarily been used in integrated circuits. Until recently, compound semiconductors did not have a native oxide of sufficient quality to create similar MOS transistors. In 1990, research performed by Professor Holonyak and his group at the University of Illinois at Urbana-Champaign has led to a high-quality, stable, and insulating native oxide created from aluminum-containing compound semiconductor alloys. This study investigates native oxide films that are formed by the thermal oxidation of AlAs and InAlP epitaxial layers grown lattice-matched on GaAs substrates using metalorganic chemical vapor deposition (MOCVD). The primary goal is to evaluate how these native oxides can help form novel device structures and transistors. To qualify the material properties of these native oxide films, we have used several characterization techniques including photoluminescence, cross-sectional scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Additionally, we have performed leakage current and capacitance-voltage measurements to evaluate the electrical characteristics of the native oxide-semiconductor interface. The kinetics of the thermal oxidation process for both the surface oxidation of InAlP and lateral oxidation of AlAs are studied and contrasted. Aided by this knowledge, we have created a sealed

  18. Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol.

    PubMed

    Nasrollahzadeh, Mahmoud; Maham, Mehdi; Sajadi, S Mohammad

    2015-10-01

    A facile, efficient and environmentally-friendly protocol has been developed for the green synthesis of CuO nanoparticles (NPs) by aqueous extract of Gundelia tournefortii as a mild, renewable and non-toxic reducing agent. CuO NPs were characterized by SEM, TEM, XRD, EDS, FT-IR and UV-vis spectroscopy. More importantly, the green synthesized CuO NPs presented excellent catalytic activity for reduction of 4-nitrophenol and synthesis of N-monosubstituted ureas via hydration of cyanamides with the aid of acetaldoxime as an effective water surrogate in ethanol as a green solvent. The catalyst was easily separated and the recovered catalyst was reused many times without any significant loss of the catalytic activity. PMID:26073846

  19. Fiber optic NIR evanescent wave absorption sensor systems for in-situ monitoring of hydrocarbon compounds in waste and ground water

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen; Denter, P.; Mensch, M.; Kraemer, K.; Scholz, Michael

    1999-02-01

    In situ measurements with the prototype of a portable fiber- optic sensor system for the monitoring of nonpolar hydrocarbons (HC) in ground water or industrial waste water are presented. This sensor system can be used for quantitative in situ analysis of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs in a broad concentration range from around 200 (mu) g(DOT) L-1 up to a few 100 mg(DOT) L-1. The sensing principle is based on solid phase extraction of analyte molecules into a hydrophobic silicone cladding of a quartz glass optical fiber and the direct absorptiometric measurement of the extracted species in the polymer through the evanescent wave. The sensor can be connected via all-silica fibers with a length of up to 100 m to a filter photometer developed at the IFIA, thus allowing even remote analysis in monitoring wells. This instrument provides a sum concentration signal of the extracted organic compounds by measuring the integral absorption at the C-H overtone bands in the near-infrared spectral range. In situ measurements with the sensor system were performed in a ground water circulation well at the VEGAS research facility (Universitat Stuttgart). Here, the sensor proved to trace the HC sum concentration of xylene isomers in process water pumped from the well to a stripper column. In further experiments the sensor was combined with an oil sampling device and was tested with simulated waste waters of a commercial vehicle plant contaminated with different types of mineral oil. In this case the sensor system was able to detect the presence of mineral oil films floating on water or oil-in-water emulsions with concentrations greater than 20 ppm (v/v) within a few minutes.

  20. Exploring the electronic structure and optical properties of the quaternary selenide compound, Ba{sub 4}Ga{sub 4}SnSe{sub 12}: For photovoltaic applications

    SciTech Connect

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya

    2015-09-15

    Due to huge demand on discovering new materials for energy, we used first-principle calculations to explore the electronic structure and optical properties of a recent quaternary selenide, namely Ba{sub 4}Ga{sub 4}SnSe{sub 12}. The electronic structure and the optical properties of Ba{sub 4}Ga{sub 4}SnSe{sub 12} were calculated through a reliable approach of Engle Vosko-GGA (EV-GGA). We found that Ba{sub 4}Ga{sub 4}SnSe{sub 12} has a direct band gap of 2.14 eV positioned at Γ. Acquiring the fundamental characteristics of Ba{sub 4}Ga{sub 4}SnSe{sub 12,} we studied the linear optical properties like dielectric function in the energy range of 0–14 eV. From the dielectric function we noticed a weak directional anisotropy for the two components. The absorption spectrum indicates the possibility of greater multiple direct and indirect inter-band transitions in the visible regions and shows similar behavior with experimental spectrum. Ba{sub 4}Ga{sub 4}SnSe{sub 12} can be used as shielding material from UV radiations. Present study predicts that the Ba{sub 4}Ga{sub 4}SnSe{sub 12} is promising for photovoltaic applications due to their high absorption of solar radiations and photoconductivity in the visible range. - Graphical abstract: Interesting quaternary selenide compound, Ba{sub 4}Ga{sub 4}SnSe{sub 12}, for photovoltaic applications. - Highlights: • Ba{sub 4}Ga{sub 4}SnSe{sub 12} is a quaternary selenide designed for PV and thermoelectric. • Ba{sub 4}Ga{sub 4}SnSe{sub 12} has a direct band gap of 2.14 eV. • Ba{sub 4}Ga{sub 4}SnSe{sub 12,} has a maximum reflectivity in the visible and UV regions.

  1. Investigation of p-side contact layers for II-VI compound semiconductor optical devices fabricated on InP substrates by MBE

    NASA Astrophysics Data System (ADS)

    Takamatsu, Shingo; Nomura, Ichirou; Shiraishi, Tomohiro; Kishino, Katsumi

    2015-09-01

    N-doped p-type ZnTe and ZnSeTe contact layers were investigated to evaluate which is more suitable for use in II-VI compound semiconductor optical devices on InP substrates. Contact resistances (Rc) between the contact layers and several electrode materials (Pd/Pt/Au, Pd/Au, and Au) were measured by the circular transmission line model (c-TLM) method using p-n diode samples grown on InP substrates by molecular beam epitaxy (MBE). The lowest Rc (6.5×10-5 Ω cm2) was obtained in the case of the ZnTe contact and Pd/Pt/Au electrode combination, which proves that the combination is suitable for obtaining low Rc. Yellow light-emitting diode devices with a ZnTe and ZnSeTe p-contact layer were fabricated by MBE to investigate the effect of different contact layers. The devices were characterized under direct current injections at room temperature. Yellow emission at around 600 nm was observed for each device. Higher emission intensity and lower slope resistance were obtained for the device with the ZnTe contact layer and Pd/Pt/Au electrode compared with other devices. These device performances are ascribed to the low Rc of the ZnTe contact and Pd/Pt/Au electrode combination.

  2. Electrical induction and optical erasure of birefringence in the isotropic liquid phase of a dichiral azobenzene liquid-crystalline compound (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Nishiyama, Isa

    2015-10-01

    Liquid crystal is a representative soft matter, which has physical properties between those of conventional liquid and those of crystal in a temperature range above a melting point. A liquid-crystal display (LCD) employs the response of the liquid-crystal alignment to the electric field and is a key device of an information display. For common LCDs, the precise control of the initial alignment of LC molecules is needed so that a good dark state, thus a high contrast ratio, can be obtained. If the birefringence can be induced in the liquid phase by the application of electric field, it is of great use as a material for the LCD application. In this study, we will report a unique property of dichiral azobenzene liquid crystals: an electric induction of birefringence in a liquid phase of an antiferroelectric dichiral azobenzene liquid crystal. The optically isotropic texture changes into the homogenous birefringent texture by the application of the in-plane electric field above the clearing temperature of the liquid crystal. We find that one of the possible reasons of the induction of the birefringence in the isotropic phase is the electrically-induced increase of the phase transition temperature between the antiferroelectric liquid-crystalline and "liquid" phases, i.e., increase in the clearing temperature. The resulting birefringence can be disappeared by the irradiation of UV light, due to the photoinduced isomerization of the azobenzene compound, thus dual control of the birefringent structure, by the irradiation of light and/or by the application of the electric field, is achieved.

  3. Real-time imaging of RGC death with a cell-impermeable nucleic acid dyeing compound after optic nerve crush in a murine model.

    PubMed

    Tsuda, Satoru; Tanaka, Yuji; Kunikata, Hiroshi; Yokoyama, Yu; Yasuda, Masayuki; Ito, Azusa; Nakazawa, Toru

    2016-05-01

    The retinal ganglion cells (RGCs) are the main source of therapeutic targets for neuroprotective glaucoma treatment, and evaluating RGCs is key for effective glaucoma care. Thus, we developed a minimally invasive, quick, real-time method to evaluate RGC death in mice. In this article we describe the details of our method, report new results obtained from C57BL/6J mice, and report that our method was usable in wild type (WT) and knockout (KO) mice lacking an RGC-death-suppressing gene. It used a non-invasive confocal scanning laser ophthalmoscope (cSLO) and a low molecular weight, photo-switching, cell-impermeant, fluorescent nucleic acid dyeing compound, SYTOX orange (SO). The RGCs were retrogradely labeled with Fluorogold (FG), the optic nerve was crushed (ONC), and SO was injected into the vitreous. After ten minutes, RGC death was visualized with cSLO in vivo. The retinas were then extracted and flat mounted for histological observation. SO-labeled RGCs were counted in vivo and FG-labeled RGCs were counted in retinal flat mounts. The time course of RGC death was examined in Calpastatin KO mice and wild type (WT) mice. Our in vivo imaging method revealed that SO-positive dead RGCs were mainly present from 4 to 6 days after ONC, and the peak of RGC death was after 5 days. Moreover, the number of SO-positive dead RGCs after 5 days differed significantly in the Calpastatin KO mice and the WT mice. Counting FG-labeled RGCs in isolated retinas confirmed these results. Thus, real-time imaging with SO was able to quickly quantify ONC-induced RGC death. This technique may aid research into RGC death and the development of new neuroprotective therapies for glaucoma. PMID:27013099

  4. Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany.

    PubMed

    Huang, Jen-How; Schwesig, David; Matzner, Egbert

    2004-07-01

    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l(-1) to several ten ng Sn l(-1), but never over 200 ng Sn l(-1). The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l(-1)) equaling a flux of up to 70 mg Sn ha(-1) a(-1). In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g(-1)) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere. PMID:15158032

  5. Anaerobic biodegradation of phenolic compounds in digested sludge.

    PubMed Central

    Boyd, S A; Shelton, D R; Berry, D; Tiedje, J M

    1983-01-01

    We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized. PMID:6614908

  6. Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids.

    PubMed

    Martínez-Gómez, Ana Isabel; Martínez-Rodríguez, Sergio; Clemente-Jiménez, Josefa María; Pozo-Dengra, Joaquín; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier

    2007-03-01

    Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2. PMID:17220246

  7. Optical XOR gate

    SciTech Connect

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  8. Optical NOR gate

    DOEpatents

    Skogen, Erik J.; Tauke-Pedretti, Anna

    2011-09-06

    An optical NOR gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical NOR gate utilizes two digital optical inputs and a continuous light input to provide a NOR function digital optical output. The optical NOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  9. Optical data latch

    SciTech Connect

    Vawter, G. Allen

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  10. Synthesis, structure, and optical properties of the quaternary diamond-like compounds I{sub 2}–II–IV–VI{sub 4} (I=Cu; II=Mg; IV=Si, Ge; VI=S, Se)

    SciTech Connect

    Liu, Bin-Wen; Zhang, Ming-Jian; Zhao, Zhong-Yan; Zeng, Hui-Yi Zheng, Fa-Kun; Guo, Guo-Cong Huang, Jin-Shun

    2013-08-15

    Three new diamond-like compounds with the formula of I{sub 2}−II−IV−VI{sub 4} (I=Cu; II=Mg; IV=Si, Ge; VI=S, Se) have been synthesized via traditional high-temperature solid-state reactions and structurally characterized by single crystal X-ray diffraction analysis. All the three compounds crystallize in the space group Pmn2{sub 1} in the wurtzite-type superstructure with a=7.563(4), b=6.448(3), c=6.179(3) Å, Z=2 for Cu{sub 2}MgSiS{sub 4} (1); a=7.953(5), b=6.797(4), c=6.507(4) Å, Z=2 for Cu{sub 2}MgGeS{sub 4} (2); a=7.638(4), b=6.515(4), c=6.225(3) Å, Z=2 for Cu{sub 2}MgSiSe{sub 4} (3). All atoms in these compounds are tetrahedrally coordinated. Optical diffuse reflectance UV/Vis/NIR spectra indicate that compounds 1 and 2 have the band gaps of 3.20 and 2.36 eV, respectively. Electronic structure calculations using the CASTEP code indicate that they are all direct band gap compounds. - Graphical abstract: Three new diamond-like compounds, Cu{sub 2}MgSiS{sub 4}, Cu{sub 2}MgGeS{sub 4}, and Cu{sub 2}MgSiSe{sub 4}, have been synthesized. All the three compounds crystallize in the space group Pmn2{sub 1} and all atoms are tetrahedrally coordinated. Highlights: • Three new diamond-like compounds Cu{sub 2}MgSiS{sub 4}, Cu{sub 2}MgGeS{sub 4} and Cu{sub 2}MgSiSe{sub 4} have been synthesized. • All ions are tetrahedrally coordinated. • Electronic structure calculations indicate that they are all direct band gap compounds.

  11. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-01

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.

  12. C-C bond unsaturation degree in monosubstituted ferrocenes for molecular electronics investigated by a combined near-edge x-ray absorption fine structure, x-ray photoemission spectroscopy, and density functional theory approach

    SciTech Connect

    Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.

    2012-04-07

    We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.

  13. Optical NAND gate

    DOEpatents

    Skogen, Erik J.; Raring, James; Tauke-Pedretti, Anna

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  14. Chalcogenide chemistry in ionic liquids: nonlinear optical wave-mixing properties of the double-cubane compound [Sb{sub 7}S{sub 8}Br{sub 2}](AlCl{sub 4}){sub 3}.

    SciTech Connect

    Zhang, Q.; Chung, I.; Jang, J. I.; Ketterson, J. B.; Kanatzidis, M. G.

    2009-07-06

    The new cation [Sb{sub 7}S{sub 8}Br{sub 2}]{sup 3+} has a double-cubane structure and forms as the [AlCl{sub 4}]{sup -} salt from the ionic liquid EMIMBr-AlCl{sub 3} (EMIM = 1-ethyl-3-methylimidazolium) at 165 C. The compound is noncentrosymmetric with space group P2{sub 1}2{sub 1}2{sub 1} and exhibits second-harmonic and difference-frequency nonlinear optical response across a wide range of the visible and near-infrared regions.

  15. Compound lens

    DOEpatents

    Brixner, B.B.; Klein, M.M.; Winkler, M.A.

    1980-05-21

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  16. Compound lens

    DOEpatents

    Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.

    1982-01-01

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  17. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  18. Ion-forming processes on 248 NM laser excitation of uracil and methyl-monosubstituted uracils: A time-resolved transient conductivity study in aqueous solution

    NASA Astrophysics Data System (ADS)

    Görner, Helmut; Schulte-Frohlinde, Dietrich

    1995-04-01

    Uracil, thymine and 1-, 3-, and 6-methyluracil were studied by time-resolved optical and conductometric methods after 248 nm excitation with 20 ns laser pulses. The transient conductivity in argon-saturated aqueous solution, showing a maximum increase ( Δκmax) during the pulse, is ascribed to the generation of hydrated electrons (e aq-) and protons. Biphotonic photoionization as the primary process is inferred from the almost linear dependence of Δκmax on the square of the laser pulse intensity ( IL2). The quantum yield, obtained from either Δκmax or optical detection of e aq-, e.g. gfe- = 0.02 for uracil at pH 7 and IL = 12 MW cm -2, varies by a factor of about two for the five pyrimidines. The neutralization kinetics depend strongly on pH and the concentrations of laser-induced e aq- and H +, i.e. on IL. At pH 6-7 the Δκ signal decays by second-order kinetics. Under argon the electron adds to the (methyl)uracil and neutralization occurs by reaction of the radical anion with a proton, which originates from a fast decay of the radical cation. Virtually the same conductivity pattern was found for the neutralization reaction of OH - and H + under N 2O. In the acidic pH range the decay changes to first-order kinetics due to reaction of H + with e aq- under argon or with OH - under N 2O. In the alkaline pH range OH - release is involved in the relaxation process resulting from the radical cation after excitation of the conjugate base. No indication of a specific spatial correlation of the charged species, as proposed earlier by Grossweiner for other systems, was found.

  19. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber.

    PubMed

    Eganhouse, Robert P; DiFilippo, Erica L

    2015-10-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost. PMID:26346188

  20. Microoptical compound lens

    DOEpatents

    Sweatt, William C.; Gill, David D.

    2007-10-23

    An apposition microoptical compound lens comprises a plurality of lenslets arrayed around a segment of a hollow, three-dimensional optical shell. The lenslets collect light from an object and focus the light rays onto the concentric, curved front surface of a coherent fiber bundle. The fiber bundle transports the light rays to a planar detector, forming a plurality of sub-images that can be reconstructed as a full image. The microoptical compound lens can have a small size (millimeters), wide field of view (up to 180.degree.), and adequate resolution for object recognition and tracking.

  1. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A method for making a composition for measuring the concentration of chloated aromatic compounds in aqueous fluids, and an optical probe for use with the method. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis.

  2. Detection of chlorinated aromatic compounds

    DOEpatents

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  3. Effect of ring coordination of pyridine-3,5-dicarboxylate and metatungstate to Ln ions on metatungstate structure: Synthesis, structure and optical property of four new compounds

    SciTech Connect

    Liu Dandan; Chen Yaguang; Zhang Chunjing; Meng Huaxin; Zhang Zhichao; Zhang Chunxia

    2011-06-15

    Four novel compounds based on {alpha}-metatungstate [H{sub 2}W{sub 12}O{sub 40}]{sup 6-} (W{sub 12}) and Ln-organic complexes, (NH{sub 4}){sub 4}[Ln{sub 2}(L){sub 2}(H{sub 2}O){sub 9}(H{sub 2}W{sub 12}O{sub 40})].nH{sub 2}O (Ln=Eu{sup III} (1), Gd{sup III} (2), Dy{sup III} (4), n=11; Tb{sup III} (3), n=12; L=pyridine-3,5-dicarboxylate dianion) have been synthesized in aqueous solution and characterized by element analysis, IR spectrometry and thermogravimetric analysis. Single-crystal X-ray diffraction analyses reveal these compounds are isostructural with a P21/n space group. The W{sub 12} cluster acting as a tridentate ligand connects three Ln{sup 3+} ions, in turn, each Ln2 ion links two W{sub 12} clusters, as a result, a W{sub 12}-Ln polymeric chain is formed. Coordination of pyridine-3,5-dicarboxylate ligands to the Ln{sup 3+} ions leads to a Ln-L polymeric chain. The two chains, W{sub 12}-Ln and Ln-L, share Ln2 ions, resulting in a 2-D layer. Ring coordination of pyridine-3,5-dicarboxylate and W{sub 12} to the Ln ions changes some bond angles of W{sub 12} that leads to a slight distortion of W{sub 12} and splitting of vibration band of W-Oc-W. Solid-state photoluminescence properties of compounds 1-4 have been investigated. - Graphical abstract: Four two-dimensional {alpha}-metatungstate and Ln-pyridine-3,5-dicarboxylate compounds have been synthesized. During the research, we elucidated the effect of ring coordination of pyridine-3,5-dicarboxylate on the structures of the POM-based hybrids. Highlights: > Four new 2-D compounds based on [H{sub 2}W{sub 12}O{sub 40}]{sup 6-} and Ln-organic complexes have been synthesized. > We study the ring coordination of pyridine-3, 5-dicarboxylate and W{sub 12} to Ln ions. > The luminescent properties of these compounds have been investigated.

  4. Surface defect free growth of a spin dimer TlCuCl3 compound crystals and investigations on its optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Ryu, Gihun; Son, Kwanghyo

    2016-05-01

    A defect-free high quality single crystal of spin dimer TlCuCl3 compound is firstly synthesized at the optimal growth temperature using the vertical Bridgman method. In this study, we clearly found that the cupric chloride is easily decomposed into the Cl- deficient composition at ≥470 °C. The Cl-- related gas phase at the high temperature region also always gives rise to a pinhole-like surface defect at the surface of crystal. Therefore, we clearly verified an exotic anisotropic magnetic behavior (anisotropic ratio of Mb/M(201) at 2 K, 7 T=10) using the defect-free TlCuCl3 crystals in this three-dimensional spin dimer TlCuCl3 compound, relatively stronger magnetic ordering in the H//b than that of H//(201) direction at above the transition magnetic field.

  5. Compound C2, a product of the reaction of oxygen and the mixed-valence state of cytochrome oxidase. Optical evidence for a type-I copper.

    PubMed

    Chance, B; Saronio, C; Leigh, J S

    1979-03-01

    Compound C2 is a product of the reaction of O2 and the mixed-valence state of cytochrome oxidase. The mixed-valence state of membrane-bound cytochrome oxidase is obtained at -24 degrees C, by using either ferricyanide or yeast peroxidase complex ES as oxidants, and the configurations of oxidized haem a and its associated copper (a3+Cua2+) and of reduced haem a3 and its associated copper (ac3+.CO.Cua3+) are obtained. The mixed-valence-state cytochrome oxidase mixed with O2 at -24 degrees C and flash-photolysed at -60 to -100 degrees C reacts with O2 and initially forms an oxy compound (A2) similar to that formed from the fully reduced state (A1). Thereafter the course of the reaction differs from that obtained in the fully reduced state, and absorbance increases are observed at 740--750 nm and 609 nm and a decrease at 444 nm, with no increase in absorbance at 655 nm. One possible attribution of the absorbance increases is to charge-transfer interaction between the iron of haem a3 and the copper associated with haem a3, Cua3(2+), having properties of a type-I 'blue' copper. A possible attribution of the decrease in absorbance at 444 nm is to liganding of a3(2+). A related explanation is that the 609 nm absorbance involves a charge-transfer interaction of both iron and copper as a mixed-valence binuclear complex, Cua3, having properties of a non-blue copper. Intermediates in addition to Compound C2 are not yet identifiable by chemical or spectroscopic tests. The kinetic and equilibrium properties of Compound C2 are described. PMID:220956

  6. Magnetic, Mössbauer and optical spectroscopic properties of the AFe3O(PO4)3 (A = Ca, Sr, Pb) series of powder compounds

    NASA Astrophysics Data System (ADS)

    El Hafid, Hassan; Velázquez, Matias; El Jazouli, Abdelaziz; Wattiaux, Alain; Carlier, Dany; Decourt, Rodolphe; Couzi, Michel; Goldner, Philippe; Delmas, Claude

    2014-10-01

    AFe3O(PO4)3 (A = Ca, Sr and Pb) powder compounds were studied by means of X-ray diffraction (XRD), electron-probe microanalysis (EPMA) coupled with wavelength dispersion spectroscopy (WDS), Raman and diffuse reflectance spectroscopies, specific heat and magnetic properties measurements. Magnetization, magnetic susceptibility and specific heat measurements carried out on AFe3O(PO4)3 (A = Sr, Ca and Pb) powders firmly establish a series of three ferromagnetic (FM)-like second order phase transitions spanned over the 32-8 K temperature range. Room temperature Mössbauer spectroscopy and associated DFT calculations confirm the existence of three crystallographically non equivalent Fe3+ sites in the three compounds. Mössbauer spectra recorded as a function of temperature in the PbFe3O(PO4)3 compound also establishes the occurrence of two purely magnetic and reversible phase transitions at 32 and 10 K. Diffuse reflectance measurements reveal two broad absorption bands at 1047 and 837 nm, in both PbFe3O(PO4)3 and SrFe3O(PO4)3 powders, with peak cross sections ˜10-20 cm2 typical of spin-forbidden and forced electric dipole intraconfigurational transitions.

  7. Characterization of hydrogenated amorphous germanium compounds obtained by x-ray chemical vapor deposition of germane: Effect of the irradiation dose on optical parameters and structural order

    SciTech Connect

    Arrais, Aldo; Benzi, Paola; Bottizzo, Elena; Demaria, Chiara

    2007-11-15

    Hydrogenated nonstoichiometric germanium materials have been produced by x-ray activated-chemical vapor deposition from germane. The reactions pattern leading to the solid products has been investigated. The dose effect on the composition, the local bonding configuration, and structural characteristics of the deposited solids has been studied using infrared absorption and Raman spectroscopy and has been discussed. Optical parameters have been also determined from ultraviolet-visible spectrophotometry data. The results show that the solids are formed by a random bound network of germanium and hydrogen atoms with a-Ge zones dispersed in the matrix. The Raman results and optical parameters indicate that the structural order, both short-range and intermediate-range, decreases with increasing irradiation time. This behavior suggests that the solid is involved in the reactions leading to the final product and indicates that the formation of amorphous germanium zones is stimulated by postdeposition irradiation, which induces compositional and structural modifications.

  8. Thin compound-eye camera.

    PubMed

    Duparré, Jacques; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2005-05-20

    An artificial compound-eye objective fabricated by micro-optics technology is adapted and attached to a CMOS sensor array. The novel optical sensor system with an optics thickness of only 0.2 mm is examined with respect to resolution and sensitivity. An optical resolution of 60 x 60 pixels is determined from captured images. The scaling behavior of artificial compound-eye imaging systems is analyzed. Cross talk between channels fabricated by different technologies is evaluated, and the influence on an extension of the field of view by addition of a (Fresnel) diverging lens is discussed. The lithographic generation of opaque walls between channels for optical isolation is experimentally demonstrated. PMID:15929282

  9. Microoptical telescope compound eye

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques W.; Schreiber, Peter; Matthes, André; Pshenay–Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70ºx10º field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results.

  10. Microoptical telescope compound eye.

    PubMed

    Duparré, Jacques; Schreiber, Peter; Matthes, André; Pshenay-Severin, Ekaterina; Bräuer, Andreas; Tünnermann, Andreas; Völkel, Reinhard; Eisner, Martin; Scharf, Toralf

    2005-02-01

    A new optical concept for compact digital image acquisition devices with large field of view is developed and proofed experimentally. Archetypes for the imaging system are compound eyes of small insects and the Gabor-Superlens. A paraxial 3x3 matrix formalism is used to describe the telescope arrangement of three microlens arrays with different pitch to find first order parameters of the imaging system. A 2mm thin imaging system with 21x3 channels, 70 masculinex10 masculine field of view and 4.5mm x 0.5mm image size is optimized and analyzed using sequential and non-sequential raytracing and fabricated by microoptics technology. Anamorphic lenses, where the parameters are a function of the considered optical channel, are used to achieve a homogeneous optical performance over the whole field of view. Captured images are presented and compared to simulation results. PMID:19494951

  11. Exploring the Magnetic Susceptibility of a Haldane Compound Sm2 BaNiO5 : Optical Spectroscopy of Sm^{3+} Kramers Doublets

    NASA Astrophysics Data System (ADS)

    Galkin, A. S.; Klimin, S. A.

    2016-07-01

    An optical spectroscopic study of quasi-Haldane chain nickelate Sm2 BaNiO5 is presented. A temperature-dependent splitting of the ground-state Kramers doublet of the Sm^{3+} ion due to an antiferromagnetic ordering at TN = 55 K has been obtained experimentally and used to calculate the Schottky-type anomaly in magnetic susceptibility. The value of the magnetic moment of Sm^{3+} ion at zero temperature has been estimated within the model of the ground doublet. One-dimensional magnetic behavior of the nickel subsystem is emphasized.

  12. Polybenzimidazole compounds

    DOEpatents

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  13. Optical doping of Al{sub x}Ga{sub 1-x}N compounds by ion implantation of Tm ions

    SciTech Connect

    Fialho, M.; Lorenz, K.; Magalhaes, S.; Redondo-Cubero, A.; Rodrigues, J.; Santos, N. F.; Monteiro, T.; Alves, E.

    2012-11-06

    Al{sub x}Ga{sub 1-x}N (0optical efficiency. The ions were implanted under random and channeled orientations with a fluence of 1 Multiplication-Sign 10{sup 15}cm{sup -2}. The damage profile and the defects' nature were investigated by Rutherford Backscattering/Channeling Spectrometry and High Resolution X-ray Diffraction. The structural measurements show a higher resistance of the lattice to irradiation damage with the increase of the AlN content. Results of the angular scans measured along the <0001> axis for samples with AlN contents of 0.15 and 0.77 suggest a relation between the AlN content and Tm specific sites in the lattice. Rapid thermal annealing treatments under N{sub 2} ambient were performed to remove damage and promote optical activation of rare earth intra-4f{sup n} transitions. After annealing the observed intraionic emissions of Tm{sup 3+} ions were characterized by photoluminescence.

  14. Growth, characterization, optical and vibrational properties of Sm3+ doped Cd0.8Zn0.2S semiconductor compounds

    NASA Astrophysics Data System (ADS)

    Yellaiah, G.; Hadasa, K.; Nagabhushanam, M.

    2014-01-01

    Undoped and doped polycrystalline Cd0.8Zn0.2S powders with different amounts of samarium (0.01, 0.02, 0.03, 0.04 and 0.05 M) were synthesized by the controlled co-precipitation technique. Effect of the Sm3+ on structural, elemental, optical and vibrational properties of Cd0.8Zn0.2S: Smx samples were investigated. X-ray diffraction (XRD) results showed that the samples prepared were polycrystalline with hexagonal structure. From the XRD patterns, the average crystallite size was calculated it was about 45-90 nm. The band gap of these samples is estimated from the optical absorption studies. The samples showed direct band gap, which varies from 2.52 to 3.18 eV. Fourier transform infrared spectroscopy (FTIR) showed the characteristic vibrational modes of Cd-S and Zn-S in the wave number range 621-821 cm-1. Experimental and XRD densities were calculated and analyzed.

  15. Black and Brown Carbon in Biogenic Settings with Different Levels of Anthropogenic Influence, and The Effect of Semivolatile Compounds on Aerosol Optical Properties

    NASA Astrophysics Data System (ADS)

    Tasoglou, A.; Ramachandran, S.; Khlystov, A.; Saha, P.; Grieshop, A. P.; Pandis, S. N.

    2015-12-01

    Secondary organic aerosol (SOA) is a major contributor to the global aerosol burden. Black carbon (BC) is a significant climate warming agent, while light-absorbing organic carbon (brown carbon, BrC), also impacts the atmospheric radiative balance. The optical properties of ambient aerosols can be affected by biogenic SOA through the lensing effect (coating of BC cores by semivolatile SOA), and by the potential formation of BrC from biogenic sources influenced by anthropogenic sources. To evaluate these effects, measurements of ambient aerosol optical properties and BC concentrations were made in rural Centreville, AL (a remote site with little anthropogenic influence) in summer 2013 and at Duke Forest in Chapel Hill, NC (a site close to high density vehicular traffic and industrial sources), during summer 2015. Photoacoustic extinctiometers (PAX, 405 nm and 532 nm) measured particulate light absorption and a single particle soot photometer (SP2) measured BC mass at both locations. A seven-wavelength Aethalometer and a three-wavelength nephelometer were also deployed at Duke Forest. A third PAX (870 nm) was deployed at Centreville. For absorption and BC measurements, the sample was cycled between a dry line and a dry/thermally-denuded line. Hourly samples were collected with a steam jet aerosol collector (SJAC) for online (2013) and offline (2015) chemical composition analysis. BC concentrations were generally higher at Duke Forest compared to the rural Centreville site. The Aethalometer readings at Duke Forest show greater absorption at the shorter wavelengths (370 nm and 470 nm) than expected from the absorption at 880 nm coupled with an inverse wavelength dependence, suggesting the presence of brown carbon. This presentation will examine the evidence for brown carbon at the two sites, as well as the effect of non-BC coatings on BC light absorption (the lensing effect.)

  16. Magnetic and optical properties in the 1D TM-O chain compounds Sr2TMO3 (TM = Ni, Co): A first-principle investigation

    NASA Astrophysics Data System (ADS)

    Gui, Hong; Li, Xin; Zhao, Zhenjie; Xie, Wenhui

    2016-03-01

    In this paper, we have calculated the structural, electronic, magnetic and optical properties of Sr2NiO3 and Sr2CoO3 using density functional theory (DFT) within generalized gradient approximation (GGA). The crystal structure of both materials is well described with Immm (No. 71) symmetry which are isostructural with Sr2CuO3 and both are quasi-one-dimensional (1D) rectangular lattice G-type antiferromagnets, in consistent with the experimental data. Due to a distortion, Sr2CoO3 lifts the near-degeneracy dxz and dyz states of the local Co electronic configuration, which demonstrates a strong coupling between the structural lattice and the electronic configuration. The calculated band structure shows a band gap of 1.376 eV for Sr2NiO3 and a band gap of 1.735 eV for Sr2CoO3. Ni and Co ions are in the high-spin S = 1 and S = 3/2 configurations with the magnetic moments of 1.585 μB and 2.587 μB, respectively. Based on the Heisenberg Hamiltonian model, we conclude that the superexchange intrachain TM-O-TM superexchange interaction is predominant and interaction between the 1D chains is weak. According to the calculated dielectric function, absorption spectrum and electron energy loss spectrum, the optical responses suggest that Sr2NiO3 shows the unique anisotropic structure and interaction of the application in optoelectronics.

  17. Layer specific optical band gap measurement at nanoscale in MoS2 and ReS2 van der Waals compounds by high resolution electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dileep, K.; Sahu, R.; Sarkar, Sumanta; Peter, Sebastian C.; Datta, R.

    2016-03-01

    Layer specific direct measurement of optical band gaps of two important van der Waals compounds, MoS2 and ReS2, is performed at nanoscale by high resolution electron energy loss spectroscopy. For monolayer MoS2, the twin excitons (1.8 and 1.95 eV) originating at the K point of the Brillouin zone are observed. An indirect band gap of 1.27 eV is obtained from the multilayer regions. Indirect to direct band gap crossover is observed which is consistent with the previously reported strong photoluminescence from the monolayer MoS2. For ReS2, the band gap is direct, and a value of 1.52 and 1.42 eV is obtained for the monolayer and multilayer, respectively. The energy loss function is dominated by features due to high density of states at both the valence and conduction band edges, and the difference in analyzing band gap with respect to ZnO is highlighted. Crystalline 1T ReS2 forms two dimensional chains like superstructure due to the clustering between four Re atoms. The results demonstrate the power of HREELS technique as a nanoscale optical absorption spectroscopy tool.

  18. Multipurpose Compound

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  19. Electronic Energy-Level Structures, Optical Line Strengths, and Correlation Crystal-Field Interactions in NEODYMIUM(3+) and ERBIUM(3+) Crystalline Compounds.

    NASA Astrophysics Data System (ADS)

    Quagliano, John Romolo

    Energy-level state structures of Nd^ {3+} (4f^3) and Er^{3+} (4f^ {11}) electronic configurations were analyzed in a total of 13 distinct chemical systems. The 13 systems included seven crystalline hosts that contain Nd ^{3+} ions (four garnets, one nonahydrate, one hexachloride, and one hexabromide), and six that contain Er^{3+} ions (three garnets, one oxalate-bioxalate, one hexachloride, and one hexabromide). Single crystal absorption spectra (polarized and unpolarized) and optical intensity data have been acquired for neat (rm Nd(H_2O)_9) (CF _3rm SO_3)_3 at cryogenic temperatures over the UV to near-IR energy range. Single crystal polarized orthoaxial absorption, excitation, and emission experiments were performed on Er^{3+}-doped CsCdBr _3. Model Hamiltonians were developed and used to calculate lanthanide 4f^{rm N } electronic structures. These Hamiltonians were constructed and parametrized to represent both atomic and crystal-field interactions in various host materials. A Hamiltonian with atomic and first-order crystal-field operators gave a very good initial description of the energy-level structures, and a second-order correlation crystal-field (CCF) refinement produced excellent results for some multiplet manifolds that are not well characterized by the first -order (one-particle) crystal-field interactions alone. The ^2rm H(2)_{11/2} , ^2{F}(2)_ {5/2}, and ^2rm F(2) _{7/2} multiplet manifolds of Nd ^{3+} and the ^2rm H(2)_{9/2}, ^2H(2) _{11/2}, and ^4 rm G_{11/2} multiplet manifolds of Er^{3+} were markedly improved after a maximum of three CCF operators were added to the Hamiltonian. The studies showed that since the Nd^{3+} and Er ^{3+} ions share the same SLJ (Russell -Saunders) basis of atomic states, then their respective energy-level structures are sensitive to the same CCF operators. The magnitudes of the CCF interactions were found to be typically 10% of the first-order one-particle crystal-field interactions. The present work establishes a new

  20. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties.

    PubMed

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-18

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NO(x). Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated. PMID:21825823

  1. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-01

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NOx. Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated.

  2. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect

    Zhang, Yonghui; Wei, Tongbo Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350 mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2001-01-01

    Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

  4. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  5. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2003-01-01

    Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

  6. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  7. Substituent effects on the optical properties of naphthalenediimides: A frontier orbital analysis across the periodic table.

    PubMed

    Mulder, Joshua R; Guerra, Célia Fonseca; Slootweg, J Chris; Lammertsma, Koop; Bickelhaupt, F Matthias

    2016-01-15

    A comprehensive theoretical treatment is presented for the electronic excitation spectra of ca. 50 different mono-, di-, and tetrasubstituted naphthalenediimides (NDI) using time-dependent density functional theory (TDDFT) at ZORA-CAM-B3LYP/TZ2P//ZORA-BP86/TZ2P with COSMO for simulating the effect of dichloromethane (DCM) solution. The substituents -XHn are from groups 14-17 and rows 2-5 of the periodic table. The lowest dipole-allowed singlet excitation (S0 -S1 ) of the monosubstituted NDIs can be tuned from 3.39 eV for -F to 2.42 eV for -TeH, while the S0 -S2 transition is less sensitive to substitution with energies ranging between 3.67 eV for -CH3 and 3.44 eV for -SbH2 . In the case of NDIs with group-15 and -16 substituents, the optical transitions strongly depend on the extent to which -XHn is planar or pyramidal as well as on the possible formation of intramolecular hydrogen bonds. The accumulative effect of double and quadruple substitution leads in general to increasing bathochromic shifts, but the increased steric hindrance in tetrasubstituted NDIs can lead to deformations that diminish the effectiveness of the substituents. Detailed analyses of the Kohn-Sham orbital electronic structure in monosubstituted NDIs reveal the mesomeric destabilization of the HOMO as the primary cause of the bathochromic shift of the S0-S1 transition. PMID:26444551

  8. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  9. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2002-01-01

    Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  11. Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-<-| S 373K|-<-550- μV-K-1 for undoped samples, it should be possible to obtain highly efficient thermoelectric materials both by adjusting the carrier concentration and by reducing the thermal conductivity. Here, we report the effects of doping on the thermoelectric properties of FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  12. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  13. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  14. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA`s fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  15. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  16. Bismaleimide compounds

    DOEpatents

    Adams, Johnnie E.; Jamieson, Donald R.

    1986-01-14

    Bismaleimides of the formula ##STR1## wherein R.sub.1 and R.sub.2 each independently is H, C.sub.1-4 -alkyl, C.sub.1-4 -alkoxy, C1 or Br, or R.sub.1 and R.sub.2 together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R.sub.1 and R.sub.2 are not t-butyl or t-butoxy; X is O, S or Se; n is 1-3; and the alkylene bridging group, optionally, is substituted by 1-3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  17. Bismaleimide compounds

    DOEpatents

    Adams, J.E.; Jamieson, D.R.

    1986-01-14

    Bismaleimides of the formula shown in the diagram wherein R[sub 1] and R[sub 2] each independently is H, C[sub 1-4]-alkyl, C[sub 1-4]-alkoxy, Cl or Br, or R[sub 1] and R[sub 2] together form a fused 6-membered hydrocarbon aromatic ring, with the proviso that R[sub 1] and R[sub 2] are not t-butyl or t-butoxy; X is O, S or Se; n is 1--3; and the alkylene bridging group, optionally, is substituted by 1--3 methyl groups or by fluorine, form polybismaleimide resins which have valuable physical properties. Uniquely, these compounds permit extended cure times, i.e., they remain fluid for a time sufficient to permit the formation of a homogeneous melt prior to curing.

  18. COMPOUND SPECIFIC IMPRINTED NANOSPHERES FOR OPTICAL SENSING

    EPA Science Inventory

    The U.S. Geological Survey reported in the March 2002 issue of Environmental Science and Technology that steroids, hormones, antibiotics, and numerous other prescription and nonprescription drugs, e.g., caffeine and ibuprofen, are present in streams throughou...

  19. A novel class of compounds--superalkalides: M⁺(en)₃M'₃O⁻ (M, M' = Li, Na, and K; en = ethylenediamine)-with excellent nonlinear optical properties and high stabilities.

    PubMed

    Mai, Jinmei; Gong, Shida; Li, Nan; Luo, Qiong; Li, Zhiru

    2015-11-21

    With the aid of ab initio calculations at the MP2 level of theory, we designed a novel class of inorganic salts, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), by using the M3'O superalkalis. These compounds are the first examples of inorganic salts wherein the superalkali occupies the anionic site, and termed superalkalides. The electronic structural features of the M(+)(en)3M3'O(-) superalkalides are very similar to those of the corresponding M(+)(en)3M'(-) alkalides which have been reported by Zurek (J. Am. Chem. Soc., 2011, 133, 4829). In this study, the calculated NLO properties of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) (M, M' = Li, Na, and K) show that both superalkalides and alkalides have significantly large first hyperpolarizabilities (β0) with the values in the range of 7.80 × 10(3) to 9.16 × 10(4) a.u. and 7.95 × 10(3) to 1.84 × 10(5) a.u., respectively. Computations on the stabilities of M(+)(en)3M3'O(-) and M(+)(en)3M'(-) demonstrate that the M(+)(en)3M3'O(-) superalkalides are preferably stable than the corresponding M(+)(en)3M'(-) alkalides because of the presence of hydrogen bonds in M(+)(en)3M3'O(-). Therefore, the designed superalkalides, M(+)(en)3M3'O(-) (M, M' = Li, Na, and K), with excellent nonlinear optical properties and high stabilities are greatly promising candidates for NLO materials. We hope that this article could attract more research interest in superatom chemistry and for further experimental research. PMID:26446270

  20. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  1. Miniature curved artificial compound eyes

    PubMed Central

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L’Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A.; Franceschini, Nicolas

    2013-01-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  2. Miniature curved artificial compound eyes.

    PubMed

    Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas

    2013-06-01

    In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories. PMID:23690574

  3. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  4. An investigation of new infrared nonlinear optical material: BaCdSnSe4, and three new related centrosymmetric compounds: Ba2SnSe4, Mg2GeSe4, and Ba2Ge2S6.

    PubMed

    Wu, Kui; Su, Xin; Yang, Zhihua; Pan, Shilie

    2015-12-14

    A series of new metal chalcongenides, BaCdSnSe4 (1), Ba2SnSe4 (2), Mg2GeSe4 (3), and Ba2Ge2S6 (4), were successfully synthesized for the first time. Among them, compounds 2 and 4 were prepared by a molten flux method with Zn as the flux. In their structures, all of them have MQ4 (M = Sn, Ge; Q = S, Se) units. For compound 1, the CdSe4 and SnSe4 groups are connected to form CdSnSe6 layers and these layers are linked together by the Ba atoms. Compounds 2 and 3 are composed of isolated MSe4 (M = Sn, Ge) units and charge-balanced by the Ba or Mg atoms, respectively, while compound 4 has infinite ∞(GeS3)n chains, which is different from the structures of the other three compounds that only have isolated MSe4 (M = Sn, Ge) units. The measured IR and Raman data of the title compounds show wide infrared transmission ranges. The experimental band gaps of compounds 1, 2, 3 and were determined to be 1.79, 1.90, and 2.02 eV, respectively. Band structures were also calculated and indicate that their tetrahedral units, such as [SnSe4], [GeS4] and [GeSe4], determine the energy band gaps of the title compounds, respectively. As for compound 1, based on fundamental light at 2.09 μm, the experimental second harmonic generation (SHG) response is about 1.6 times that of the benchmark AgGaS2, which is also consistent with the calculated value. Based on the above results, compound 1 has promising applications in the IR field as a NLO material. PMID:26509847

  5. Compounding in Ukraine.

    PubMed

    Zdoryk, Oleksandr A; Georgiyants, Victoriya A; Gryzodub, Oleksandr I; Schnatz, Rick

    2013-01-01

    Pharmaceutical compounding in modern Ukraine has a rich history and goes back to ancient times. Today in the Ukraine, there is a revival of compounding practice, the opening of private compounding pharmacies, updating of legislative framework and requirements of the State Pharmacopeia of Ukraine for compounding preparations, and the introduction of Good Pharmaceutical Practice. PMID:23696172

  6. Films Containing Optically Nonlinear Diacetylene Monomer

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Mcmanus, Samuel P.; Frazier, Donald O.

    1993-01-01

    Solid films exhibiting nonlinear optical properties prepared as mixtures of poly(methyl methacrylate) with various amounts of diacetylene monomer called "compound 1" in article, "Synthesizing Diacetylenes With Nonlinear Optical Properties" (MFS-26186). Useful as phase-conjugate mirrors in laser-beam communications and as optical switches in optical computers. This particular diacetylene monomer exhibits strong third-order nonlinear optical properties, both in pure form and in solution.

  7. Bio-inspired hemispherical compound eye camera

    NASA Astrophysics Data System (ADS)

    Xiao, Jianliang; Song, Young Min; Xie, Yizhu; Malyarchuk, Viktor; Jung, Inhwa; Choi, Ki-Joong; Liu, Zhuangjian; Park, Hyunsung; Lu, Chaofeng; Kim, Rak-Hwan; Li, Rui; Crozier, Kenneth B.; Huang, Yonggang; Rogers, John A.

    2014-03-01

    Compound eyes in arthropods demonstrate distinct imaging characteristics from human eyes, with wide angle field of view, low aberrations, high acuity to motion and infinite depth of field. Artificial imaging systems with similar geometries and properties are of great interest for many applications. However, the challenges in building such systems with hemispherical, compound apposition layouts cannot be met through established planar sensor technologies and conventional optics. We present our recent progress in combining optics, materials, mechanics and integration schemes to build fully functional artificial compound eye cameras. Nearly full hemispherical shapes (about 160 degrees) with densely packed artificial ommatidia were realized. The number of ommatidia (180) is comparable to those of the eyes of fire ants and bark beetles. The devices combine elastomeric compound optical elements with deformable arrays of thin silicon photodetectors, which were fabricated in the planar geometries and then integrated and elastically transformed to hemispherical shapes. Imaging results and quantitative ray-tracing-based simulations illustrate key features of operation. These general strategies seem to be applicable to other compound eye devices, such as those inspired by moths and lacewings (refracting superposition eyes), lobster and shrimp (reflecting superposition eyes), and houseflies (neural superposition eyes).

  8. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds

    SciTech Connect

    Helguera, Aliuska Morales Cordeiro, M. Natalia D.S.; Perez, Miguel Angel Cabrera; Combes, Robert D.; Gonzalez, Maykel Perez

    2008-09-01

    In this work, Quantitative Structure-Activity Relationship (QSAR) modelling was used as a tool for predicting the carcinogenic potency of a set of 39 nitroso-compounds, which have been bioassayed in male rats by using the oral route of administration. The optimum QSAR model provided evidence of good fit and performance of predicitivity from training set. It was able to account for about 84% of the variance in the experimental activity and exhibited high values of the determination coefficients of cross validations, leave one out and bootstrapping (q{sup 2}{sub LOO} = 78.53 and q{sup 2}{sub Boot} = 74.97). Such a model was based on spectral moments weighted with Gasteiger-Marsilli atomic charges, polarizability and hydrophobicity, as well as with Abraham indexes, specifically the summation solute hydrogen bond basicity and the combined dipolarity/polarizability. This is the first study to have explored the possibility of combining Abraham solute descriptors with spectral moments. A reasonable interpretation of these molecular descriptors from a toxicological point of view was achieved by means of taking into account bond contributions. The set of relationships so derived revealed the importance of the length of the alkyl chains for determining carcinogenic potential of the chemicals analysed, and were able to explain the difference between mono-substituted and di-substituted nitrosoureas as well as to discriminate between isomeric structures with hydroxyl-alkyl and alkyl substituents in different positions. Moreover, they allowed the recognition of structural alerts in classical structures of two potent nitrosamines, consistent with their biotransformation. These results indicate that this new approach has the potential for improving carcinogenicity predictions based on the identification of structural alerts.

  9. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  10. Device for aqueous detection of nitro-aromatic compounds

    DOEpatents

    Reagen, W.K.; Schulz, A.L.; Ingram, J.C.; Lancaster, G.D.; Grey, A.E.

    1994-04-26

    This invention relates to a compact and portable detection apparatus for nitro-aromatic based chemical compounds, such as nitrotoluenes, dinitrotoluenes, and trinitrotoluene (TNT). The apparatus is based upon the use of fiber optics using filtered light. The preferred process of the invention relies upon a reflective chemical sensor and optical and electronic components to monitor a decrease in fluorescence when the nitro-aromatic molecules in aqueous solution combine and react with a fluorescent polycyclic aromatic compound. 4 figures.