Science.gov

Sample records for optical depth precise

  1. Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.

  2. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  3. Precision Optics Curriculum.

    ERIC Educational Resources Information Center

    Reid, Robert L.; And Others

    This guide outlines the competency-based, two-year precision optics curriculum that the American Precision Optics Manufacturers Association has proposed to fill the void that it suggests will soon exist as many of the master opticians currently employed retire. The model, which closely resembles the old European apprenticeship model, calls for 300…

  4. Aerosol optical depth measuring network - project description

    NASA Astrophysics Data System (ADS)

    Aaltonen, A.; Koskela, K.; Lihavainen, L.

    2003-04-01

    The Finnish Meteorological Institute (FMI), in collaboration with Servicio Meteorológico Nacional (SMN), Argentina, is constructing a network for aerosol optical depth (AOD) measurements. Measurements are to be started in the summer 2003 with three sunphotometers, model PFR, Davos. One of them will be sited in Marambio (64°S), Antarctica, and the rest two in the Observatory of Jokioinen (61°N) and Sodankylä GAW station (67°N), Finland. Each instrument consists of a precision filter radiometer and a suntracker. Due to the harsh climate conditions special solutions had to be introduced to keep the instrument warm and free from snow. Aerosol optical depth measured at Pallas-Sodankylä GAW station can be compared with estimated aerosol extinction, which is calculated from ground base aerosol scattering and absorption coefficient measurements.

  5. Assimilation of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Verver, Gé; Henzing, Bas

    Climate predictions are hampered by the large uncertainties involved in the estima- tion of the effects of atmospheric aerosol (IPCC,2001). These uncertainties are caused partly because sources and sinks as well as atmospheric processing of the different types of aerosol are not accurately known. Moreover, the climate impact (especially the indirect effect) of a certain distribution of aerosol is hard to quantify. There have been different approaches to reduce these uncertainties. In recent years intensive ob- servational campaigns such as ACE and INDOEX have been carried out, aiming to in- crease our knowledge of atmospheric processes that determine the fate of atmospheric aerosols and to quantify the radiation effects. With the new satellite instruments such as SCIAMACHY and OMI it will be possible in the near future to derive the ge- ographical distribution of the aerosol optical depths (AOD) and perhaps additional information on the occurrence of different aerosol types. The goal of the ARIA project (started in 2001) is to assimilate global satellite de- rived aerosol optical depth (AOD) in an off-line chemistry/transport model TM3. The TM3 model (Jeuken et al. 2001) describes sources, sinks, transformation and transport processes of different types of aerosol (mineral dust, carbon, sulfate, nitrate) that are relevant to radiative forcing. All meteorological input is provided by ECMWF. The assimilation procedure constrains the aerosol distribution produced by the model on the basis of aerosol optical depths observed by satellite. The product, i.e. an optimal estimation of global aerosol distribution, is then available for the calculation of radia- tive forcing. Error analyses may provide valuable information on deficiencies of the model. In the ARIA project it is tried to extract additional information on the type of aerosol present in the atmosphere by assimilating AOD at multiple wavelengths. First results of the ARIA project will be presented. The values

  6. Precision conformal optics technology program

    NASA Astrophysics Data System (ADS)

    Trotta, Patrick A.

    2001-09-01

    Conformal optics are defined as optics that deviate from conventional form to best satisfy the contour and shape needs of system platforms. Precision Conformal Optics Technology (PCOT), a comprehensive 48 month program funded by the Defense Advanced Research Program Agency (DARPA) and the U. S. Army Missile Research, Development, and Engineering Center (MRDEC), assessed the potential benefits achieved by use of conformal optics on a variety of U.S. weapon systems. Also addressed were all barriers impeding conformal optics use. The PCOT program was executed by a consortium of organizations ranging from major U.S. defense prime contractors, to small businesses, and academia. The diversity of organizations encouraged synergy across a broad array of skills and perspectives. Smooth team interaction was made possible by the 845 contractual structure of the program. Benefits identified by the PCOT consortium included major reductions in aerodynamic drag (by as much as 50%), reduced time-to-targets (by as much as 60%), and reduced weapon signatures. Impediments addressed included inadequacies in optical design tools, optical manufacturing methods and equipment, optical testing, and system integration. The PCOT program was successfully completed with a demonstration of a highly contoured missile dome, which reduced overall missile drag by 25%, and led to a predicted twofold increase in missile range.

  7. Precision optical metrology without lasers

    NASA Astrophysics Data System (ADS)

    Bergmann, Ralf B.; Burke, Jan; Falldorf, Claas

    2015-07-01

    Optical metrology is a key technique when it comes to precise and fast measurement with a resolution down to the micrometer or even nanometer regime. The choice of a particular optical metrology technique and the quality of results depends on sample parameters such as size, geometry and surface roughness as well as user requirements such as resolution, measurement time and robustness. Interferometry-based techniques are well known for their low measurement uncertainty in the nm range, but usually require careful isolation against vibration and a laser source that often needs shielding for reasons of eye-safety. In this paper, we concentrate on high precision optical metrology without lasers by using the gradient based measurement technique of deflectometry and the finite difference based technique of shear interferometry. Careful calibration of deflectometry systems allows one to investigate virtually all kinds of reflecting surfaces including aspheres or free-form surfaces with measurement uncertainties below the μm level. Computational Shear Interferometry (CoSI) allows us to combine interferometric accuracy and the possibility to use cheap and eye-safe low-brilliance light sources such as e.g. fiber coupled LEDs or even liquid crystal displays. We use CoSI e.g. for quantitative phase contrast imaging in microscopy. We highlight the advantages of both methods, discuss their transfer functions and present results on the precision of both techniques.

  8. Coherence times of precise depth controlled NV centers in diamond

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Zhang, Wenlong; Zhang, Jian; You, Jie; Li, Yan; Guo, Guoping; Feng, Fupan; Song, Xuerui; Lou, Liren; Zhu, Wei; Wang, Guanzhong

    2016-03-01

    We investigated the depth dependence of coherence times of nitrogen-vacancy (NV) centers through precise depth control using oxidative etching at 580 °C in air. By successive nanoscale etching, NV centers could be brought close to the diamond surface step by step, which enabled us to track the evolution of the number of NV centers remaining in the chip and to study the depth dependence of coherence times of NV centers with diamond etching. Our results showed that the coherence times of NV centers declined rapidly with the depth reduction in the last about 22 nm before they finally disappeared, which revealed a critical depth for the influence of a rapid fluctuating surface spin bath. Moreover, by using the slow etching method combined with low-energy nitrogen implantation, NV centers with depths shallower than the initially implanted depths can be generated, which are preferred for detecting external spins with higher sensitivity.

  9. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  10. Navy precision optical interferometer database

    NASA Astrophysics Data System (ADS)

    Ryan, K. K.; Jorgensen, A. M.; Hall, T.; Armstrong, J. T.; Hutter, D.; Mozurkewich, D.

    2012-07-01

    The Navy Precision Optical Interferometer (NPOI) has now been recording astronomical observations for the better part of two decades. During that time period hundreds of thousands of observations have been obtained, with a total data volume of multiple terabytes. Additionally, in the next few years the data rate from the NPOI is expected to increase significantly. To make it easier for NPOI users to search the NPOI observations and to make it easier for them to obtain data, we have constructed a easily accessible and searchable database of observations. The database is based on a MySQL server and uses standard query language (SQL). In this paper we will describe the database table layout and show examples of possible database queries.

  11. Ultra-precision processes for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Martin, William R.

    1991-12-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  12. Ultra-precision processes for optics manufacturing

    NASA Technical Reports Server (NTRS)

    Martin, William R.

    1991-01-01

    The Optics MODIL (Manufacturing Operations Development and Integration Laboratory) is developing advanced manufacturing technologies for fabrication of ultra precision optical components, aiming for a ten-fold improvement in precision and a shortening of the scheduled lead time. Current work focuses on diamond single point turning, ductile grinding, ion milling, and in/on process metrology.

  13. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  14. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  15. Precision Fiber Optic Sensor Market Forecast

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeff D.; Glasco, Jon; Dixon, Frank W.

    1986-01-01

    The worldwide market for precision fiber optic sensors is forecasted, 1984-1994. The forecast is based upon o Analysis of fiber optic sensor and related component current technology, and a forecast of technology advancement o Review and projection of demand for precision sensing, and the penetration which fiber optics will make into this market The analysis and projections are based mainly on interviews conducted worldwide with research teams, government agencies, systems contractors, medical and industrial laboratories, component suppliers and others. The worldwide market for precision (interferometric) fiber optic sensing systems is forecasted to exceed $0.8 billion by 1994. The forecast is segmented by geographical region (Europe, Japan and North America) and by function; o Gyroscope o Sonar o Gradiometer/Magnetometer o Other - Chemical Composition - Atmospheric Acoustic - Temperature - Position - Pressure Requirements for components are reviewed. These include special fiber, emitters and detectors, modulators, couplers, switches, integrated optical circuits and integrated optoelectronics. The advancement in component performance is forecasted. The major driving forces creating fiber optic sensor markets are reviewed. These include fiber optic sensor technical and economic advantages, increasingly stringent operational requirements, and technology evolution. The leading fiber optic sensor and related component development programs are reviewed. Component sources are listed. Funding sources for sensor and component development are outlined, and trends forecasted.

  16. Precision optical interferometry in space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    POINTS, an astrometric Optical interferometer with a nominal measurement accuracy of 5 microarcseconds for the angle between a pair of stars separated by about 90 deg, is presently under consideration by two divisions of NASA-OSSA. It will be a powerful new multi-disciplinary tool for astronomical research. If chosen as the TOPS-1 (Toward Other Planetary Systems) instrument by the Solar-System Exploration Division, it will perform a definitive search for extra-solar planetary systems, either finding and characterizing a large number of them or showing that they are far less numerous than now believed. If chosen as the AIM (Astrometric Interferometry Mission) by the Astrophysics Division, POINTS will open new areas of astrophysical research and change the nature of the questions being asked in some old areas. In either case. it will be the first of a new class of powerful instruments in space and will prove the technology for the larger members of that class to follow. Based on a preliminary indication of the observational needs of the two missions, we find that a single POINTS mission will meet the science objectives of both TOPS-1 and AIM. The instrument detects dispersed fringe (channel led spectrum) and therefore can tolerate large pointing errors.

  17. Optical Fabrication By Precision Electroform

    NASA Astrophysics Data System (ADS)

    George, Ronald W.; Michaud, Lawrence L.

    1987-01-01

    The basic electroforming process exactly reproduces finely finished surface details from a master mold or mandrel. The process promises high potential for fabricating imaging quality optical components. This requires, however, the electrodeposition to be nearly stress free to attain accuracy within fractions of a wavelength (1.06 um) of light. Prior to this work, this level of accuracy had never been accomplished. This paper presents the advances made to the method and the process of electroforming in creating the routine production of imaging quality nickel metal mirrors. Work to date includes the electroforming of self-aligning two mirrored telescopes; the development of a large electroforming workstation to produce several mirrors simultaneously, and the development of a process for electroforming secondary mandrels. A generic process overview is presented along with opto-mechanical testing and results. Also included is a description of the general computer controlled closed loop process (Martin Marietta U.S. Patent #4,647,365 & #4,648,944). The work described was performed at Martin Marietta Corporation (Orlando) with the majority conducted under contract DAAHO1-85-C-1072 for the U.S. Army Missile Command, Redstone Arsenal, August 1985 through August 1987

  18. Optical design for large depth of field

    NASA Astrophysics Data System (ADS)

    Shen, Yang; Wang, Hu; Yue, Pan; Xue, Yaoke; Liu, Jie; Ye, Shuifu

    2016-01-01

    Optical system with large depth of field and large field of view has been designed. To enforce optical system with focal length of 6 mm to imaging the object with object length of 200mmm-1200mm, accord to the equation of depth of field, in case of the CCD sensor with pixel of 5.5umx 5.5um square area, the entrance pupil diameter to ideal imaging will be 0.423mm. To enlarge the modulation transfer function (MTF) at spatial frequency of 90 lp/mm, the entrance pupil diameter is enlarged to 1mm.After design and optimization, with field of view of 80°, within object length of 200mm - 1200mm, the optical system can imaging well, the modulation transfer function (MTF) at spatial frequency of 90lp/mm is larger than 0.1, the distortion of full field of viewed is less than 3%.The optical system can be widely used in machine vision, surveillance cameras, etc.

  19. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  20. High precision Woelter optic calibration facility

    SciTech Connect

    Morales, R.I.; Remington, B.A.; Schwinn, T.

    1994-05-02

    We have developed an off-line facility for very precise characterization of the reflectance and spatial resolution of the grazing incidence Woelter Type 1 x-ray optics used at Nova. The primary component of the facility is a high brightness, ``point`` x-ray source consisting of a focussed DC electron beam incident onto a precision manipulated target/pinhole array. The data are recorded with a selection of detectors. For imaging measurements we use direct exposure x-ray film modules or an x-ray CCD camera. For energy-resolved reflectance measurements, we use lithium drifted silicon detectors and a proportional counter. An in situ laser alignment system allows precise location and rapid periodic alignment verification of the x-ray point source, the statically mounted Woelter optic, and the chosen detector.

  1. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  2. Precision pointing mechanism for intersatellite optical communication

    NASA Astrophysics Data System (ADS)

    Hicks, T.; O'Sullivan, B.; Russell, J.; Scholl, L.

    1989-09-01

    The SILEX project is an experimental communication system aimed at demonstrating, in orbit, the feasibility of intersatellite optical communications using semiconductor lasers. As part of this project, a precision mechanism has been developed to point the transmitted beam ahead of the current receiving satellite position. This is necessary due to the relative motion of the satellites, the narrow beam, and the finite velocity of light. The design and construction of a prototype of this device is discussed along with measurements of performance. The technique as described can be used in many applications requiring precision beam steering or rotation control.

  3. Depth indicator and stop aid machining to precise tolerances

    NASA Technical Reports Server (NTRS)

    Laverty, J. L.

    1966-01-01

    Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.

  4. On optical depth profiling using confocal Raman spectroscopy.

    PubMed

    Freebody, N A; Vaughan, A S; Macdonald, A M

    2010-04-01

    Until 2006 the performance of confocal Raman spectroscopy depth profiling was typically described and modeled through the application of geometrical optics, including refraction at the surface, to explain the degree of resolution and the precise form of the depth profile obtained from transparent and semicrystalline materials. Consequently a range of techniques, physical and analytical, was suggested to avoid the errors thus encountered in order to improve the practice of Raman spectroscopy, if not the understanding of the underlying mechanisms. These approaches were completely unsuccessful in accounting for the precise form of the depth profile, the fact that spectra obtained from laminated samples always contain characteristic peaks from all materials present both well above and below the focal point and that spectra can be obtained when focused some 40 mum above the sample surface. This paper provides further evidence that the physical processes underlying Raman spectroscopy are better modeled and explained through the concept of an extended illuminated volume contributing to the final Raman spectrum and modeled through a photon scattering approach rather than a point focus ray optics approach. The power of this numerical model lies in its ability to incorporate, simultaneously, the effects of degree of refraction at the surface (whether using a dry or oil objective lens), the degree of attenuation due to scatter by the bulk of the material, the Raman scattering efficiency of the material, and surface roughness effects. Through this we are now able to explain why even removing surface aberration and refraction effects through the use of oil immersion objective lenses cannot reliably ensure that the material sampled is only that at or close to the point of focus of the laser. Furthermore we show that the precise form of the depth profile is affected by the degree of flatness of the surface of the sample. Perhaps surprisingly, we show that the degree of flatness

  5. Smart and precise alignment of optical systems

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

    2013-09-01

    For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

  6. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  7. Ultra-Light Precision Membrane Optics

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Gunter, Kent; Patrick, Brian; Marty, Dave; Bates, Kevin; Gatlin, Romona; Clayton, Bill; Rood, Bob; Brantley, Whitt (Technical Monitor)

    2001-01-01

    SRS Technologies and NASA Marshall Space Flight Center have conducted a research effort to explore the possibility of developing ultra-lightweight membrane optics for future imaging applications. High precision optical flats and spherical mirrors were produced under this research effort. The thin film mirrors were manufactured using surface replication casting of CPI(Trademark), a polyimide material developed specifically for UV hardness and thermal stability. In the course of this program, numerous polyimide films were cast with surface finishes better than 1.5 nanometers rms and thickness variation of less than 63 nanometers. Precision membrane optical flats were manufactured demonstrating better than 1/13 wave figure error when measured at 633 nanometers. The aerial density of these films is 0.037 kilograms per square meter. Several 0.5-meter spherical mirrors were also manufactured. These mirrors had excellent surface finish (1.5 nanometers rms) and figure error on the order of tens of microns. This places their figure error within the demonstrated correctability of advanced wavefront correction technologies such as real time holography.

  8. Precision optical displacement measurements using biphotons

    NASA Astrophysics Data System (ADS)

    Lyons, Kevin; Pang, Shengshi; Kwiat, Paul G.; Jordan, Andrew N.

    2016-04-01

    We propose and examine the use of biphoton pairs, such as those created in parametric down-conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that the precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number ("Heisenberg scaling"), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an N -pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear crystal.

  9. High precision optical surface metrology using deflectometry

    NASA Astrophysics Data System (ADS)

    Huang, Run

    Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.

  10. Chemical bonding for precision optical assemblies

    NASA Astrophysics Data System (ADS)

    Green, Katie; Burke, Jan; Oreb, Bozenko

    2011-02-01

    We report on the optimization of precision optical component assemblies for space application with respect to mechanical resilience and retention of optical tolerances such as flatness and angles. Optimized parameters include: the cleaning method of the surfaces to be joined; type, concentration, and quantity of the chemical bonding agent; and post-bonding and curing conditions. Experimental studies and quality assurance are complicated by the large statistical spread in breaking stress, which requires the preparation of a large number of samples. The results previously reported in literature have focused primarily on fused silica, rather than space-qualifiable materials such as Zerodur® and ULE®, and have typically addressed only one or two of the parameters. This study provides a comprehensive picture and a better general understanding of what makes a bond reliably strong.

  11. Precision optical device of freeform defects inspection

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2015-09-01

    This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.

  12. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  13. Improved evaluation of optical depth components from Langley plot data

    NASA Technical Reports Server (NTRS)

    Biggar, S. F.; Gellman, D. I.; Slater, P. N.

    1990-01-01

    A simple, iterative procedure to determine the optical depth components of the extinction optical depth measured by a solar radiometer is presented. Simulated data show that the iterative procedure improves the determination of the exponent of a Junge law particle size distribution. The determination of the optical depth due to aerosol scattering is improved as compared to a method which uses only two points from the extinction data. The iterative method was used to determine spectral optical depth components for June 11-13, 1988 during the MAC III experiment.

  14. Optical Frequency Stabilization and Optical Phase Locked Loops: Golden Threads of Precision Measurement

    SciTech Connect

    Taubman, Matthew S.

    2013-07-01

    Stabilization of lasers through locking to optical cavities, atomic transitions, and molecular transitions has enabled the field of precision optical measurement since shortly after the invention of the laser. Recent advances in the field have produced an optical clock that is orders of magnitude more stable than those of just a few years prior. Phase locking of one laser to another, or to a frequency offset from another, formed the basis for linking stable lasers across the optical spectrum, such frequency chains exhibiting progressively finer precision through the years. Phase locking between the modes within a femtosecond pulsed laser has yielded the optical frequency comb, one of the most beautiful and useful instruments of our time. This talk gives an overview of these topics, from early work through to the latest 1E-16 thermal noise-limited precision recently attained for a stable laser, and the ongoing quest for ever finer precision and accuracy. The issues of understanding and measuring line widths and shapes are also studied in some depth, highlighting implications for servo design for sub-Hz line widths.

  15. Ultra-precision turning of complex spiral optical delay line

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Li, Po; Fang, Fengzhou; Wang, Qichang

    2011-11-01

    Optical delay line (ODL) implements the vertical or depth scanning of optical coherence tomography, which is the most important factor affecting the scanning resolution and speed. The spinning spiral mirror is found as an excellent optical delay device because of the high-speed and high-repetition-rate. However, it is one difficult task to machine the mirror due to the special shape and precision requirement. In this paper, the spiral mirror with titled parabolic generatrix is proposed, and the ultra-precision turning method is studied for its machining using the spiral mathematic model. Another type of ODL with the segmental shape is also introduced and machined to make rotation balance for the mass equalization when scanning. The efficiency improvement is considered in details, including the rough cutting with the 5- axis milling machine, the machining coordinates unification, and the selection of layer direction in turning. The onmachine measuring method based on stylus gauge is designed to analyze the shape deviation. The air bearing is used as the measuring staff and the laser interferometer sensor as the position sensor, whose repeatability accuracy is proved up to 10nm and the stable feature keeps well. With this method developed, the complex mirror with nanometric finish of 10.7nm in Ra and the form error within 1um are achieved.

  16. Microphysical and Dynamical Influences on Cirrus Cloud Optical Depth Distributions

    SciTech Connect

    Kay, J.; Baker, M.; Hegg, D.

    2005-03-18

    Cirrus cloud inhomogeneity occurs at scales greater than the cirrus radiative smoothing scale ({approx}100 m), but less than typical global climate model (GCM) resolutions ({approx}300 km). Therefore, calculating cirrus radiative impacts in GCMs requires an optical depth distribution parameterization. Radiative transfer calculations are sensitive to optical depth distribution assumptions (Fu et al. 2000; Carlin et al. 2002). Using raman lidar observations, we quantify cirrus timescales and optical depth distributions at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in Lamont, OK (USA). We demonstrate the sensitivity of outgoing longwave radiation (OLR) calculations to assumed optical depth distributions and to the temporal resolution of optical depth measurements. Recent work has highlighted the importance of dynamics and nucleation for cirrus evolution (Haag and Karcher 2004; Karcher and Strom 2003). We need to understand the main controls on cirrus optical depth distributions to incorporate cirrus variability into model radiative transfer calculations. With an explicit ice microphysics parcel model, we aim to understand the influence of ice nucleation mechanism and imposed dynamics on cirrus optical depth distributions.

  17. Electro-optical liquid depth sensor

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Atwood, S. O.

    1976-01-01

    Transducer utilizes absorptive properties of water to determine variations in depth without disturbing liquid. Instrument is inexpensive, simple, and small and thus can be used in lieu of direct graduated scale readout or capacitive, ultrasonic, resistive or inducive sensors when these are impractical because of complexity or cost.

  18. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  19. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  20. Aerosol spectral optical depths - Jet fuel and forest fire smokes

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Livingston, J. M.

    1990-01-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  1. Towards Improved Cirrus Cloud Optical Depths from CALIPSO

    NASA Astrophysics Data System (ADS)

    Garnier, Anne; Vaughan, Mark; Pelon, Jacques; Winker, David; Trepte, Chip; Young, Stuart

    2016-06-01

    This paper reviews recent advances regarding the retrieval of optical depths of semi-transparent cirrus clouds using synergetic analyses of perfectly collocated observations from the CALIOP lidar and the IIR infrared radiometer aboard the CALIPSO satellite.

  2. [Precision of spatial interpolation for forest duff layer depth based on secondary variable].

    PubMed

    Liu, Zhi-hua; Chang, Yu; He, Hong-shi; Chen, Hong-wei

    2009-01-01

    Based on geostatistical method, three algorithms of spatial interpolation with elevation as a secondary variable, i.e., simple kriging with varying local means (SKlm), kriging with an external drift (KED), and cokriging (COK), were used to calculate the precision of spatial interpolation for the forest duff layer depth, and cross validation was conducted. The results showed that among the three algorithms, KED gave the highest precision because of its taking into account both the spatial variation among variables and the factors affecting local spatial change, SKlm did not yield expected precision because of the weaker correlation between elevation and forest duff layer depth, while COK directly used the variable elevation to estimate forest duff layer depth but many unexpected results yielded for the boundary area due to insufficient samplings. Comparing with the method of inverse distance weighting (IDW), only KED had a higher precision of interpolation, while for SKlm and COK, their interpolation precision was lower, suggesting that when a secondary variable was used for geostatistical interpolation, the correlation between primary and secondary variables was of significance in increasing the precision of interpolation. PMID:19449569

  3. A disposable flexible skin patch for clinical optical perfusion monitoring at multiple depths

    NASA Astrophysics Data System (ADS)

    Farkas, Dana L.; Kolodziejski, Noah J.; Stapels, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Podolsky, Matthew J.; Christian, James F.; Ward, Brent B.; Vartarian, Mark; Feinberg, Stephen E.; Lee, Seung Yup; Parikh, Urmi; Mycek, Mary-Ann; Joyner, Michael J.; Johnson, Christopher P.; Paradis, Norman A.

    2016-03-01

    Stable, relative localization of source and detection fibers is necessary for clinical implementation of quantitative optical perfusion monitoring methods such as diffuse correlation spectroscopy (DCS) and diffuse reflectance spectroscopy (DRS). A flexible and compact device design is presented as a platform for simultaneous monitoring of perfusion at a range of depths, enabled by precise location of optical fibers in a robust and secure adhesive patch. We will discuss preliminary data collected on human subjects in a lower body negative pressure model for hypovolemic shock. These data indicate that this method facilitates simple and stable simultaneous monitoring of perfusion at multiple depths and within multiple physiological compartments.

  4. Precision-analog fiber-optic transmission system

    SciTech Connect

    Stover, G.

    1981-06-01

    This article describes the design, experimental development, and construction of a DC-coupled precision analog fiber optic link. Topics to be covered include overall electrical and mechanical system parameters, basic circuit organization, modulation format, optical system design, optical receiver circuit analysis, and the experimental verification of the major design parameters.

  5. Remote sensing of atmospheric optical depth using a smartphone sun photometer.

    PubMed

    Cao, Tingting; Thompson, Jonathan E

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  6. Mechanism Design Principle for Optical-Precision, Deployable Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.

  7. Depth-encoded synthetic aperture optical coherence tomography of biological tissues with extended focal depth.

    PubMed

    Mo, Jianhua; de Groot, Mattijs; de Boer, Johannes F

    2015-02-23

    Optical coherence tomography (OCT) has proven to be able to provide three-dimensional (3D) volumetric images of scattering biological tissues for in vivo medical diagnostics. Unlike conventional optical microscopy, its depth-resolving ability (axial resolution) is exclusively determined by the laser source and therefore invariant over the full imaging depth. In contrast, its transverse resolution is determined by the objective's numerical aperture and the wavelength which is only approximately maintained over twice the Rayleigh range. However, the prevailing laser sources for OCT allow image depths of more than 5 mm which is considerably longer than the Rayleigh range. This limits high transverse resolution imaging with OCT. Previously, we reported a novel method to extend the depth-of-focus (DOF) of OCT imaging in Mo et al.Opt. Express 21, 10048 (2013)]. The approach is to create three different optical apertures via pupil segmentation with an annular phase plate. These three optical apertures produce three OCT images from the same sample, which are encoded to different depth positions in a single OCT B-scan. This allows for correcting the defocus-induced curvature of wave front in the pupil so as to improve the focus. As a consequence, the three images originating from those three optical apertures can be used to reconstruct a new image with an extended DOF. In this study, we successfully applied this method for the first time to both an artificial phantom and biological tissues over a four times larger depth range. The results demonstrate a significant DOF improvement, paving the way for 3D high resolution OCT imaging beyond the conventional Rayleigh range. PMID:25836528

  8. Constraining the CMB optical depth through the dispersion measure of cosmological radio transients

    NASA Astrophysics Data System (ADS)

    Fialkov, A.; Loeb, A.

    2016-05-01

    The dispersion measure of extragalactic radio transients can be used to measure the column density of free electrons in the intergalactic medium. The same electrons also scatter the Cosmic Microwave Background (CMB) photons, affecting precision measurements of cosmological parameters. We explore the connection between the dispersion measure of radio transients existing during the Epoch of Reionization (EoR) and the total optical depth for the CMB showing that the existence of such transients would provide a new sensitive probe of the CMB optical depth. As an example, we consider the population of FRBs. Assuming they exist during the EoR, we show that: (i) such sources can probe the reionization history by measuring the optical depth to sub-percent accuracy, and (ii) they can be detected with high significance by an instrument such as the Square Kilometer Array.

  9. Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer

    NASA Astrophysics Data System (ADS)

    Ravichandran, Naresh Kumar; Wijesinghe, Ruchire Eranga; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Jung, Woonggyu; Kim, Jeehyun

    2016-07-01

    A method for depth enhancement is presented using a bidirectional imaging modality for spectral domain optical coherence tomography (SD-OCT). Two precisely aligned sample arms along with two reference arms were utilized in the optical configuration to scan the samples. Using exemplary images of the optical resolution target, Scotch tape, a silicon sheet with two needles, and a leaf, we demonstrated how the developed bidirectional SD-OCT imaging method increases the ability to characterize depth-enhanced images. The results of the developed system were validated by comparing the images with the standard OCT configuration (single-sample arm setup). Given the advantages of higher resolution and the ability to visualize deep morphological structures, this method can be utilized to increase the depth dependent fall-off in samples with limited thickness. Thus, the proposed bidirectional imaging modality is apt for cross-sectional imaging of entire samples, which has the potential capability to improve the diagnostic ability.

  10. Depth profilometry via multiplexed optical high-coherence interferometry.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  11. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  12. Development and evaluation of optical needle depth sensor for percutaneous diagnosis and therapies

    NASA Astrophysics Data System (ADS)

    Palmer, Keryn; Alelyunas, David; McCann, Connor; Yoshimitsu, Kitaro; Kato, Takahisa; Song, Sang-Eun; Hata, Nobuhiko

    2014-03-01

    Current methods of needle insertion during percutaneous CT and MRI guided procedures lack precision in needle depth sensing. The depth of the needle insertion is currently monitored through depth markers drawn on the needle and later confirmed by intra-procedural imaging; until this confirmation, the physicians' judgment that the target is reached is solely based on the depth markers, which are not always clearly visible. We have therefore designed an optical sensing device which provides continuous feedback of needle insertion depth and degree of rotation throughout insertion. An optical mouse sensor was used in conjunction with a microcontroller board, Arduino Due, to acquire needle position information. The device is designed to be attached to a needle guidance robot developed for MRI-guided prostate biopsy in order to aid the manual insertion. An LCD screen and three LEDs were employed with the Arduino Due to form a hand-held device displaying needle depth and rotation. Accuracy of the device was tested to evaluate the impact of insertion speed and rotation. Unlike single dimensional needle depth sensing developed by other researchers, this two dimensional sensing device can also detect the rotation around the needle axis. The combination of depth and rotation sensing would be greatly beneficial for the needle steering approaches that require both depth and rotation information. Our preliminary results indicate that this sensing device can be useful in detecting needle motion when using an appropriate speed and range of motion.

  13. Aerosol optical depth determination from ground based irradiance ratios

    SciTech Connect

    Miller, J. R.; O'Neill, N. T.; Boyer, A.

    1989-08-01

    The atmospheric optical depth serves as an input parameter to atmospheric correction procedures in remote sensing and as an index of atmospheric opacity or constituent columnar abundance for meteorological applications. Its measurement, typically performed by means of a small field of view radiometer centered on the solar disk, is sensitive to the absolute calibration accuracy of the instrument. In this paper a simple technique is presented which permits the extraction of aerosol optical depth from the ratio of total to direct irradiance measurements. An error analysis performed on the results of radiative transfer simulations and field measurements indicates that the technique generates values of aerosol optical depth which are sufficiently accurate for many applications. This method thus represents a useful alternative to standard sunphotometer measurements.

  14. Validation of MODIS Aerosol Optical Depth Retrieval Over Land

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.

  15. Oil-damped mercury pool makes precise optical alignment tool

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1965-01-01

    Mercury pool with a cover layer of high viscosity oil provides a reference reflector for precise alignment of optical instruments. The cover layer effectively damps any ripples in the mercury from support structure vibrations.

  16. Dual focus diffractive optical element with extended depth of focus

    NASA Astrophysics Data System (ADS)

    Uno, Katsuhiro; Shimizu, Isao

    2014-09-01

    A dual focus property and an extended depth of focus were verified by a new type of diffractive lens displaying on liquid crystal on silicon (LCoS) devices. This type of lens is useful to read information on multilayer optical discs and tilted discs. The radial undulation of the phase groove on the diffractive lens gave the dual focus nature. The focal extension was performed by combining the dual focus lens with the axilens that was invented for expanding the depth of focus. The number of undulations did not affect the intensity along the optical axis but the central spot of the diffraction pattern.

  17. Comment: On the different approaches of Rayleigh optical depth determination

    NASA Astrophysics Data System (ADS)

    Eberhard, Wynn L.

    2010-07-01

    Srivastava et al. (2009) presented Rayleigh scattering cross-sections and optical depths for Earth's atmosphere that are approximately 3% smaller than previously accepted. Their analysis was based on quantum-mechanical theory for anisotropic scattering in the Cabannes line published in papers that seem to have introduced some confusion about determining the anisotropy and King factors. This comment clarifies these factors and shows that including the frequency-shifted rotational Raman lines gives the traditional King factor and the correct Rayleigh scattering for the optical depth.

  18. Manipulating Mechanics and Chemistry in Precision Optics Finishing

    SciTech Connect

    Jacobs, S.D.

    2007-05-30

    Deterministic processing is critical to modern precision optics finishing. Put simply, determinism is the ability to predict an outcome before carrying out an activity. With the availability of computer numerically controlled (CNC) equipment and sophisticated software algorithms, it is now possible to grind and polish optics from a variety of materials to surface shape accuracies of ~20 nm peak-to-valley (p-v), with surface roughness values (measured on white light interferometers over 250 um x 350 um areas) to sub-nm root-mean-square (rms) levels. In the grinding phase the capability now exists to estimate removal rates, surface roughness, and the depth of subsurface damage (SSD) for a previously unprocessed material, knowing its Young's modulus, hardness, and fracture toughness. An understanding of how chemistry aids in the abrasive-driven removal of material from the surface during polishing is also critical, Recent polishing process research reveals the importance of chemistry, specifically slurry pH, for preventing particle agglomeration in order to achieve smooth surface finishes with conventional pad or pitch laps. New sub-aperture polishing processes like magnetorheoogical finishing (MRF) can smooth and shape flat, spherical, aspheric and free-form surfaces within a few process iterations. Difficult to finish optical materials like soft polymer polymethyl methacrylate, microstructured polycrystalline zinc sulfide, and water soluble single-crystal potassium dihydrogen phosphate (KDP) can be finished with MRF. The key is the systematic alteration of MR fluid chemistry and mechanics (i.e. the abrasive) to match the unique physical properties of each workpiece.

  19. Aerosol Optical Depth Trends in Switzerland from 1995 - 2010

    NASA Astrophysics Data System (ADS)

    Nyeki, S.; Halios, C.; Eleftheriadis, K.; Wehrli, C.; Groebner, J.

    2011-12-01

    Accurate and long-term measurements of aerosol optical depth (AOD) serve as an important contribution to studies assessing the effect of aerosols on climate change. In this study re-calibrated and updated AOD climatologies are reported for two sites in Switzerland for 1995 - 2010, (Davos, 1580 m and Jungfraujoch, 3580 m), as well as a new data-set for an urban site Bern (560 m asl). At Davos and Jungfraujoch AOD observations were conducted using an SPM2000 sun-photometer system until 2003 and with precision filter radiometers (PFR) from 1999 onwards, while continuous AOD measurements were conducted at Bern over the 1998 - 2006 period with SPM2000. In order to homogenize these diverse data-sets, procedures and algorithms of the GAW-PFR (Global Atmosphere Watch - Precision Filter Radiometer, WMO) program to derive AOD are used here. GAW-PFR procedures and algorithms use: 1) in-situ air pressure data, ii) in-situ or satellite ozone data, 3) commonly-used algorithms for cloud-screening, airmass calculation etc. The AOD average for the available 1-month data-set was 0.026 (± 0.013; ± 1 stdev) at Jungfraujoch, 0.069 (± 0.037) at Davos and 0.174 (± 0.054) at Bern illustrating the typical increase in average AOD with decreasing altitude due to surface aerosol sources, and to boundary layer/free troposphere dynamics. A trend analysis was performed using the seasonal Kendall test, and Sen's slope estimator on logarithmized AOD data. The seasonal Kendall test is an extension of the Mann-Kendall test, a non-parametric technique which determines if a monotonic increasing or de-creasing long-term trend exists. As AOD data are log-normally distributed, the logarithm of AOD was used for analysis. Statistically significant linear trends was found only at Jungfraujoch while for Davos and Bern even though no statistically significant trends were observed, significant trends during certain months were detected (e.g. during May, July, and December for Bern). Factors which could

  20. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  1. High precision optical fiber bundle displacement sensor

    NASA Astrophysics Data System (ADS)

    Cao, Hui-min; Chen, You-ping; Zhang, Gang; Zhou, Zu-de

    2006-02-01

    A noncontact optical fiber bundle displacement sensor with nanometer resolution and low drift is proposed. The principle of the sensor is based on reflective intensity modulation technique. The optical fiber bundle probe contains one transmitting bundle and two receiving bundles. There are 727 identical glass optical fibers with a diameter of 50μm arranged in a concentric random pattern at the probe end. The diameter of the probe coated with a thin stainless ferrule is as small as 2.5mm. A carrier amplifier system is adopted to reduce dc drift and the interference of ambient stray light. The disturbance caused by fluctuation of light source and variation of target surface reflectivity is eliminated by taking a ratio of two receiving signals. The thermal drifts from two photoelectric signal processing circuits cancel out each other by using elements with identical specifications for both photodetector-amplifier chains. The sensitivity of the sensor is 5.9mV/nm over a linear range of 700-2300μm with a nonlinearity of 1%. The achieved resolution is 1nm/square root Hz; over a dynamic bandwidth of 10KHz and the dynamic range is 286dB. It has been proved that the sensor run sufficiently well when used with nano-technological instruments.

  2. Precision engineering for optical applications: knowledge transfer into UK industry

    NASA Astrophysics Data System (ADS)

    Sansom, Christopher; Shore, Paul

    2009-06-01

    A means of facilitating the transfer of precision engineering knowledge and skills from academic institutions and their research partners into UK optics and optical engineering companies is described. The process involves the creation of an Integrated Knowledge Centre (IKC), a partnership led by Cranfield University with the support of the University of Cambridge, University College London, and the OpTIC technium. This paper describes the development of the three main vehicles for knowledge transfer. These are a Masters level postgraduate degree course (the Cranfield University led MSc in "Ultra Precision Technologies"), a portfolio of industrial short courses which are designed to address key skills shortages in the fields of precision engineering for optical applications, and an e-learning package in precision engineering. The main issues encountered during the development of the knowledge transfer teaching and learning packages are discussed, and the outcomes from the first year of knowledge transfer activities are described. In overall summary, the results demonstrate how the Integrated Knowledge Centre in Ultra Precision and Structured Surfaces' approach to knowledge transfer has been effective in addressing the engineering skills gap in precision optics based industries.

  3. Eddington limit for a gaseous stratus with finite optical depth

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    The Eddington luminosity of a spherical source is usually defined for a uniformly extending normal plasma. We usually suppose that the gas can accrete to the central object at the sub-Eddington luminosity, while it would be blown off from the central luminous source in the super-Eddington case. We reconsider this central dogma of the Eddington limit under the radiative transfer effect for the purely scattering case, using analytical and numerical methods. For the translucent isolated gas cloud (stratus) with finite optical depth, the concept of the Eddington luminosity is drastically changed. In an heuristic way, we find that the critical condition is approximately expressed as Γ = (1 + μ* + τc)/2, where Γ (=L/LE) is the central luminosity L normalized by the Eddington luminosity LE, τc is the optical depth of the stratus, and μ* (=√{1-R_*^2/R^2}) is the direction cosine of the central object, R* being the radius of the central object, and R the distance from the central object. When the optical depth of the stratus is around unity, the classical Eddington limit roughly holds for the stratus; Γ ˜ 1. However, when the optical depth is greater than unity, the critical condition becomes roughly Γ ˜ τc/2, and the stratus would infall on to the central source even at the highly super-Eddington luminosity. When the optical depth is less than unity, on the other hand, the critical condition reduces to Γ ≳ (1 + μ*)/2, and the stratus could be blown off in some limited ranges, depending on μ*. This new concept of the Eddington limit for the isolated stratus could drastically change the accretion and outflow physics of highly inhomegeneous plasmas, with relevance for astrophysical jets and winds and supermassive black hole formation.

  4. Injection molded high precision freeform optics for high volume applications

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2012-03-01

    Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.

  5. Structured illumination assisted microdeflectometry with optical depth scanning capability.

    PubMed

    Lu, Sheng-Huei; Hua, Hong

    2016-09-01

    Microdeflectometry is a powerful noncontact tool for measuring nanometer defects on a freeform surface. However, it requires a time-consuming process to take measurements at different depths for an extended depth of field (EDOF) and lacks surface information for integrating the measured gradient data to height. We propose an optical depth scanning technique to speed up the measurement process and introduce the structured illumination technique to efficiently determine the focused data among 3D observation and provide surface orientations for reconstructing an unknown surface shape. We demonstrated 3D measurements with an equivalent surface height sensitivity of 7.21 nm and an EDOF of at least 250 μm, which is 15 times that of the diffraction limited depth range. PMID:27607986

  6. Surface precision of optical membranes with curvature.

    PubMed

    Marker, D; Jenkins, C

    1997-11-24

    Space-based inflatable technology is of current interest to NASA and DOD, and in particular to the Air Force and Phillips Laboratory. Potentially large gains in lowering launch costs, through reductions in structure mass and volume, are driving this activity. Diverse groups are researching and developing this technology for radio and radar antennae, optical telescopes, and solar power and propulsion applications. Regardless of the use, one common requirement for successful application is the accuracy of the inflated surface shape. The work reported here concerns the shape control of an inflated thin circular disk through use of a nonlinear finite element analysis. First, a review of the important associated Hencky problem is given. Then we discuss a shape modification, achieved through enforced boundary displacements, which resulted in moving the inflated shape towards a desired parabolic profile. Minimization of the figure error is discussed and conclusions are drawn. PMID:19377552

  7. Lessons learned from starting Rochester Precision Optics

    NASA Astrophysics Data System (ADS)

    Hurley, William P.

    2014-12-01

    Thank you very much for coming to attend this talk. I see a few familiar faces in the crowd that have had their own journeys, and if you're thinking of starting your own optics business, this is not the authoritative talk on how to do. It's just a talk on what I've learned from my journey and some of my own stories on Lessons Learned. It does tie into some of the previous talks, and I do give credit to some mentors. The developments I've been involved with do make use of the ability to adapt and change, and there have been Bumps in the Road here and there, and I'll tell you a little bit more about that during this Talk.

  8. Perspective on precision machining, polishing, and optical requirements

    SciTech Connect

    Sanger, G.M.

    1981-08-18

    While precision machining has been applied to the manufacture of optical components for a considerable period, the process has, in general, had its thinking restricted to producing only the accurate shapes required. The purpose of this paper is to show how optical components must be considered from an optical (functional) point of view and that the manufacturing process must be selected on that basis. To fill out this perspective, simplistic examples of how optical components are specified with respect to form and finish are given, a comparison between optical polishing and precision machining is made, and some thoughts on which technique should be selected for a specific application are presented. A short discussion of future trends related to accuracy, materials, and tools is included.

  9. Precision glass molding: an integrative approach for the production of high precision micro-optics

    NASA Astrophysics Data System (ADS)

    Hünten, Martin; Klocke, Fritz; Dambon, Olaf

    2010-02-01

    Miniaturization and integration are the dominating factors for the success of numerous optical devices. Conventional manufacturing processes for the fabrication of precise glass optics by means of grinding and polishing cannot cope the increasing demands in terms of precision, volume and costs. Here, precision glass molding is the enabling technology to meet these demands of the future optical products and applications. Since the market requests further miniaturization and integration of the micro optical components the possession of the entire sequence of processes is absolutely essential. With the accomplished and ongoing developments at the Fraunhofer IPT, the replication of double-sided (a)spherical and (a)cylindrical glass lenses with form accuracies of < 150 nm as well as lens arrays and even freeform optics could be realized. Therefore, a sequence of processes needs to be passed. The FEM-simulation of the molding process which was driven to a point capable to simulate even the molding of freeform optics is the first process step. Further on, new mold design concepts were generated to enable the replication of free formed optics. The research works focusing on the mold manufacturing led to sophisticated grinding process strategies able to realized complex mold geometries such as lens arrays. With regard to the coating of the molds, proceedings were developed assuring a defect free and uniform coating which enables the longevity of the molds and therewith helps reducing the final costs per lens. Thus, the precision glass molding becomes more and more interesting even for highly complex mid volume lots, characteristic for European or US optics manufacturer.

  10. Precision compression molding of chalcogenide glass optical elements

    NASA Astrophysics Data System (ADS)

    Qi, Chaowei; Ma, Tao; Chen, Fan

    2013-12-01

    Precision glass molding process (GMP) is a promising process to manufacture small precision optical elements in large volume. In this paper, we report on the fabrication of a molded chalcogenide glass lens as an optical element. A set of mold was designed and manufactured with silicon carbide material for the molding test. The structure of the mold set was semi-closed and detachable which can make the molded lens easy releasing with non-invasion. The surfaces of the mold cores are coated with thin protecting DLC film to relieve adhesion problem and increase the working life. Experiments were also performed using a precision glass molding machine Toshiba GMP-311V to determine the molding parameters i.e. molding temperature, pressure and cooling rate. The glass lens breakage during precision molding process was analyzed according to the glass property and the molding parameters. By modifying the mold design and optimization the processing parameters, ultimately achieve the desired molded lens.

  11. Contrails of Small and Very Large Optical Depth

    NASA Technical Reports Server (NTRS)

    Atlas, David; Wang, Zhien

    2010-01-01

    This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.

  12. Design of an optical system with large depth of field using in the micro-assembly

    NASA Astrophysics Data System (ADS)

    Li, Rong; Chang, Jun; Zhang, Zhi-jing; Ye, Xin; Zheng, Hai-jing

    2013-08-01

    Micro system currently is the mainstream of application and demand of the field of micro fabrication of civilian and national defense. Compared with the macro assembly, the requirements on location accuracy of the micro-assembly system are much higher. Usually the dimensions of the components of the micro-assembly are mostly between a few microns to several hundred microns. The general assembly precision requires for the sub-micron level. Micro system assembly is the bottleneck of micro fabrication currently. The optical stereo microscope used in the field of micro assembly technology can achieve high-resolution imaging, but the depth of field of the optical imaging system is too small. Thus it's not conducive to the three-dimensional observation process of the micro-assembly. This paper summarizes the development of micro system assembly at home and abroad firstly. Based on the study of the core features of the technology, a program is proposed which uses wave front coding technology to increase the depth of field of the optical imaging system. In the wave front coding technology, by combining traditional optical design with digital image processing creatively, the depth of field can be greatly increased, moreover, all defocus-related aberrations, such as spherical aberration, chromatic aberration, astigmatism, Ptzvel(field) curvature, distortion, and other defocus induced by the error of assembling and temperature change, can be corrected or minimized. In this paper, based on the study of theory, a set of optical microscopy imaging system is designed. This system is designed and optimized by optical design software CODE V and ZEMAX. At last, the imaging results of the traditional optical stereo microscope and the optical stereo microscope applied wave front coding technology are compared. The results show that: the method has a practical operability and the phase plate obtained by optimized has a good effect on improving the imaging quality and increasing the

  13. Aerosol optical depth retrievals over the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Halthore, Rangasayi N.; Markham, Brian; Spanner, Michael; Wrigley, Robert

    1992-01-01

    The aerosol optical depth over the Konza Prairie, near Manhattan, Kansas, was recorded at various locations by five separate teams. These measurements were made in support of the First ISLSCP Field Experiment (FIFE) and used to correct imagery from a variety of satellite and aircraft sensors for the effects of atmospheric scattering and absorption. The results from one instrument are reported here for 26 days in 1987 and for 7 in 1989. Daily averages span a range of 0.05 to 0.28 in the midvisible wavelengths. In addition, diurnal variations are noted in which the afternoon optical depths are greater than those of the morning by as much as 0.07. A comparison between instruments and processing techniques used to determine these aerosol optical depths is provided. The first comparisons are made using summer 1987 data. Differences of as much as 0.05 (midvisible) are observed. Although these data allow reasonable surface reflectance retrievals, they do not agree to within the performance limits typically associated with these types of instruments. With an accuracy goal of 0.02 a preseason calibration/comparison experiment was conducted at a mountain site prior to the final field campaign in 1989. Good calibration data were obtained, and good agreement (0.01, midvisible) was observed in the retrieved optical depth acquired over the Konza. By comparing data from the surface instruments at different locations, spatial inhomogeneities are determined. Then, data from the airborne tracking sunphotometer allow one to determine variations as a function of altitude. Finally, a technique is proposed for using the in situ data to establish an instrument calibration.

  14. Effect of depth order on linear vection with optical flows.

    PubMed

    Seya, Yasuhiro; Tsuji, Takayuki; Shinoda, Hiroyuki

    2014-01-01

    In the present study, the effects of depth order on forward and backward vection were examined using optical flows simulating motion in depth (i.e., approaching or receding). In an experiment, space extending 10 or 20 m in depth was simulated, and the space was divided into foreground and background spaces. In each space, a random-dot pattern was presented and the binocular disparity, size, and velocity of each dot were continuously manipulated in a way consistent with the depth being simulated. Participants reported whether they perceived vection. Latency, total duration (i.e., the amount of time that participants reported perceiving vection during a 60-s presentation), and strong-vection duration (i.e., the amount of time that participants reported perceiving strong vection) were measured. The results indicated that, even though the dots making up the optical flow were much smaller and slower moving in the background space than in the foreground space, vection was strongly dependent on flow motion in the background space. This supports the idea that the perceptual system uses background stimulus motion as a reliable cue for self-motion perception. PMID:25926971

  15. Diurnal variations in optical depth at Mars: Observations and interpretations

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1988-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  16. Remote Sensing of Atmospheric Optical Depth Using a Smartphone Sun Photometer

    PubMed Central

    Cao, Tingting; Thompson, Jonathan E.

    2014-01-01

    In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12–0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations. PMID:24416199

  17. Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation.

    PubMed

    Vakoc, B J; Yun, S H; Tearney, G J; Bouma, B E

    2006-02-01

    A novel optical frequency-domain imaging system is demonstrated that employs a passive optical demodulation circuit and a chirped digital acquisition clock derived from a voltage-controlled oscillator. The demodulation circuit allows the separation of signals from positive and negative depths to better than 50 dB, thereby eliminating depth degeneracy and doubling the imaging depth range. Our system design is compatible with dual-balanced and polarization-diverse detection, important techniques in the practical biomedical application of optical frequency-domain imaging. PMID:16480209

  18. Magnetorheological finishing (MRF) in commercial precision optics manufacturing

    NASA Astrophysics Data System (ADS)

    Golini, Donald; Kordonski, William I.; Dumas, Paul; Hogan, Stephen J.

    1999-11-01

    Finish polishing of highly precise optical surfaces is one of the most promising uses of magnetic fluids. We have taken the concept of magnetorheological finishing (MRF) from the laboratory to the optical fabrication shop floor. A commercial, computer numerically controlled (CNC) MRF machine, the Q22, has recently come on-line in optics companies to produce precision flat, spherical and aspheric optical components. MRF is a sub-aperture lap process that requires no specialized tooling, because the magnetically-stiffened abrasive fluid conforms to the local curvature of any arbitrarily shaped workpiece. MRF eliminates subsurface damage, smoothes rms microroughness to less than 1 nm, and corrects p-v surface figure errors to (lambda) /20 in minutes. Here the basic details of the MRF process are reviewed. MR fluid performance for soft and hard materials, the removal of asymmetric grinding errors and diamond turning marks, and examples of batch finishing of glass aspheres are also described.

  19. Precision spectral manipulation: A demonstration using a coherent optical memory

    SciTech Connect

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C.

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  20. Toward 1-mm depth precision with a solid state full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.

    2006-02-01

    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.

  1. Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging

    NASA Astrophysics Data System (ADS)

    Wen, Xiang; Jacques, Steven L.; Tuchin, Valery V.; Zhu, Dan

    2012-06-01

    The strong optical scattering of skin tissue makes it very difficult for optical coherence tomography (OCT) to achieve deep imaging in skin. Significant optical clearing of in vivo rat skin sites was achieved within 15 min by topical application of an optical clearing agent PEG-400, a chemical enhancer (thiazone or propanediol), and physical massage. Only when all three components were applied together could a 15 min treatment achieve a three fold increase in the OCT reflectance from a 300 μm depth and 31% enhancement in image depth Zthreshold.

  2. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  3. High precision metrology of domes and aspheric optics

    NASA Astrophysics Data System (ADS)

    Murphy, Paul E.; Fleig, Jon; Forbes, Greg; Tricard, Marc

    2005-05-01

    Many defense systems have a critical need for high-precision, complex optics. However, fabrication of high quality, advanced optics is often seriously hampered by the lack of accurate and affordable metrology. QED's Subaperture Stitching Interferometer (SSI®) provides a breakthrough technology, enabling the automatic capture of precise metrology data for large and/or strongly curved (concave and convex) parts. QED"s SSI complements next-generation finishing technologies, such as Magnetorheological Finishing (MRF®), by extending the effective aperture, accuracy and dynamic range of a phase-shifting interferometer. This workstation performs automated sub-aperture stitching measurements of spheres, flats, and mild aspheres. It combines a six-axis precision stage system, a commercial Fizeau interferometer, and specially developed software that automates measurement design, data acquisition, and the reconstruction of the full-aperture figure error map. Aside from the correction of sub-aperture placement errors (such as tilts, optical power, and registration effects), our software also accounts for reference-wave error, distortion and other aberrations in the interferometer"s imaging optics. The SSI can automatically measure the full aperture of high numerical aperture surfaces (such as domes) to interferometric accuracy. The SSI extends the usability of a phase measuring interferometer and allows users with minimal training to produce full-aperture measurements of otherwise untestable parts. Work continues to extend this technology to measure aspheric shapes without the use of dedicated null optics. This SSI technology will be described, sample measurement results shown, and various manufacturing applications discussed.

  4. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  5. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-09-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  6. RANDOM WALKS AND EFFECTIVE OPTICAL DEPTH IN RELATIVISTIC FLOW

    SciTech Connect

    Shibata, Sanshiro; Tominaga, Nozomu; Tanaka, Masaomi

    2014-05-20

    We investigate the random walk process in relativistic flow. In the relativistic flow, photon propagation is concentrated in the direction of the flow velocity due to the relativistic beaming effect. We show that in the pure scattering case, the number of scatterings is proportional to the size parameter ξ ≡ L/l {sub 0} if the flow velocity β ≡ v/c satisfies β/Γ >> ξ{sup –1}, while it is proportional to ξ{sup 2} if β/Γ << ξ{sup –1}, where L and l {sub 0} are the size of the system in the observer frame and the mean free path in the comoving frame, respectively. We also examine the photon propagation in the scattering and absorptive medium. We find that if the optical depth for absorption τ{sub a} is considerably smaller than the optical depth for scattering τ{sub s} (τ{sub a}/τ{sub s} << 1) and the flow velocity satisfies β≫√(2τ{sub a}/τ{sub s}), then the effective optical depth is approximated by τ{sub *} ≅ τ{sub a}(1 + β)/β. Furthermore, we perform Monte Carlo simulations of radiative transfer and compare the results with the analytic expression for the number of scatterings. The analytic expression is consistent with the results of the numerical simulations. The expression derived in this study can be used to estimate the photon production site in relativistic phenomena, e.g., gamma-ray burst and active galactic nuclei.

  7. Depth resolved detection of lipid using spectroscopic optical coherence tomography

    PubMed Central

    Fleming, Christine P.; Eckert, Jocelyn; Halpern, Elkan F.; Gardecki, Joseph A.; Tearney, Guillermo J.

    2013-01-01

    Optical frequency domain imaging (OFDI) can identify key components related to plaque vulnerability but can suffer from artifacts that could prevent accurate identification of lipid rich regions. In this paper, we present a model of depth resolved spectral analysis of OFDI data for improved detection of lipid. A quadratic Discriminant analysis model was developed based on phantom compositions known chemical mixtures and applied to a tissue phantom of a lipid-rich plaque. We demonstrate that a combined spectral and attenuation model can be used to predict the presence of lipid in OFDI images. PMID:24009991

  8. Strategies for Improved CALIPSO Aerosol Optical Depth Estimates

    NASA Technical Reports Server (NTRS)

    Vaughan, Mark A.; Kuehn, Ralph E.; Tackett, Jason L.; Rogers, Raymond R.; Liu, Zhaoyan; Omar, A.; Getzewich, Brian J.; Powell, Kathleen A.; Hu, Yongxiang; Young, Stuart A.; Avery, Melody A.; Winker, David M.; Trepte, Charles R.

    2010-01-01

    In the spring of 2010, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) project will be releasing version 3 of its level 2 data products. In this paper we describe several changes to the algorithms and code that yield substantial improvements in CALIPSO's retrieval of aerosol optical depths (AOD). Among these are a retooled cloud-clearing procedure and a new approach to determining the base altitudes of aerosol layers in the planetary boundary layer (PBL). The results derived from these modifications are illustrated using case studies prepared using a late beta version of the level 2 version 3 processing code.

  9. Towards higher precision and operational use of optical homodyne tomograms

    NASA Astrophysics Data System (ADS)

    Bellini, M.; Coelho, A. S.; Filippov, S. N.; Man'ko, V. I.; Zavatta, A.

    2012-05-01

    We present the results of an operational use of experimentally measured optical tomograms to determine state characteristics (purity) avoiding any reconstruction of quasiprobabilities. We also develop a natural way how to estimate the errors (including both statistical and systematic ones) by an analysis of the experimental data themselves. Precision of the experiment can be increased by postselecting the data with minimal (systematic) errors. We demonstrate those techniques by considering coherent and photon-added coherent states measured via the time-domain improved homodyne detection. The operational use and precision of the data allowed us to check purity-dependent uncertainty relations and uncertainty relations for Shannon and Rényi entropies.

  10. Precision aspheric optics testing with SCOTS: a deflectometry approach

    NASA Astrophysics Data System (ADS)

    Su, Peng; Khreishi, Manal; Huang, Run; Su, Tianquan; Burge, James H.

    2013-04-01

    Absolute measurement with SCOTS/deflectometry is a calibration problem. We use a laser tracker to calibrate the test geometry. The performance id demonstrated with the initial measurement results from the Large Synoptic Survey Telescope tertiary mirror. Systematic errors from the camera are carefully controlled. Camera pupil imaging aberration is removed with an external aperture stop. Imaging aberration and other inherent errors are suppressed with a rotation test. Results show that the SCOTS can act as a large dynamic range, high precision, non-null test method for precision aspheric optics. The SCOTS test can achieve measurement accuracy comparable with the traditional interferometric testing.

  11. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  12. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  13. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

    PubMed Central

    Siddiqui, Meena; Vakoc, Benjamin J.

    2012-01-01

    Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343

  14. Precision holographic optical elements in Bayfol HX photopolymer

    NASA Astrophysics Data System (ADS)

    Bruder, Friedrich-Karl; Bang, Hyungseok; Fäcke, Thomas; Hagen, Rainer; Hönel, Dennis; Orselli, Enrico; Rewitz, Christian; Rölle, Thomas; Vukicevic, Dalibor; Walze, Günther

    2016-03-01

    The versatility of Volume Holographic Optical Elements (vHOE) is high, especially because of their tunable angular and spectral Bragg selectivity. Those unique lightweight, thin and flat optical elements are enabled by the new instant developing photopolymer film Bayfol® HX technology, which allows to mass produce cost effective diffractive optics due to its simplified and robust holographic recording process. From a pure scientific point of view volume holography is well established. In practice though, commercially available optical design software is not adapted to handle the specific characteristics of photopolymer diffractive optical elements and their recording. To achieve high quality vHOE precision optics, the recording setup needs to accommodate several aspects that will be covered in this paper. We report on means how to deal with photopolymer shrinkage and average refractive index changes of the recording media. An important part in diffractive optics design is the compensation of different conditions between the holographic recording setup and in a final product containing the vHOE. Usually substrates might need to be changed (in material, in refractive index) as well the illumination sources are using incoherent light having angular and spectral emission profiles with finite bandwidth. Recently special in- and out-coupling vHOEs are becoming attractive e.g. in near eye displays and in compact lighting devices. We will report on design considerations and adjustments to the recording condition for a specific in-coupling vHOE and demonstrate the effects of pre-compensation on this example.

  15. Derivation of Aerosol Columnar Mass from MODIS Optical Depth

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Hegg, Dean A.

    2003-01-01

    In order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \\eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than

  16. The Navy Precision Optical Interferometer for SSA: A Progress Report

    NASA Astrophysics Data System (ADS)

    Restaino, S.; Andrews, J. R.; Armstrong, J. T.; Baines, E. K.; Clark, J. H.; Schmitt, H. R.

    2014-09-01

    The Navy Precision Optical Interferometer (NPOI) has been involved in studying how a long-baseline optical interferometer can be used to deliver high angular resolution imagery of geostationary satellites and other deep space man-made objects. We have previously reported on the first ever measurements of a geosatellite glint with an optical interferometer. In this paper we report the progress that has been made in the past year. We have commissioned more imaging stations, both for longer baselines to obtain increased resolution, and for shorter baselines for measuring the lower spatial frequencies. We have also implemented beam combiner improvements that will enable multiple-baseline bootstrapping. This technique is essential for integrating the signal on the longest baselines where the fringe visibilities, especially for man-made objects, are so low that direct fringe tracking is impossible.

  17. Parameterization of cirrus optical depth and cloud fraction

    SciTech Connect

    Soden, B.

    1995-09-01

    This research illustrates the utility of combining satellite observations and operational analysis for the evaluation of parameterizations. A parameterization based on ice water path (IWP) captures the observed spatial patterns of tropical cirrus optical depth. The strong temperature dependence of cirrus ice water path in both the observations and the parameterization is probably responsible for the good correlation where it exists. Poorer agreement is found in Southern Hemisphere mid-latitudes where the temperature dependence breaks down. Uncertainties in effective radius limit quantitative validation of the parameterization (and its inclusion into GCMs). Also, it is found that monthly mean cloud cover can be predicted within an RMS error of 10% using ECMWF relative humidity corrected by TOVS Upper Troposphere Humidity. 1 ref., 2 figs.

  18. Underwater optical wireless communications: depth-dependent beam refraction.

    PubMed

    Johnson, Laura J; Green, Roger J; Leeson, Mark S

    2014-11-01

    Global refractive gradients in seawater cause pointing problems for optical wireless communications. A refractive index depth profile of the Pacific Ocean was calculated from measured salinity, temperature, and pressure, determining the end points of a refracted and nonrefracted 200 m communication link. Numerical ray tracing was used with a point source for angles between 10° and 80° and transmission wavelengths of 500-650 nm; the maximum end-point difference found was 0.23 m. A 500 nm laser with a 0.57° full-angle FOV was traced; the nonrefracted receiver location was outside the FOV for all links angled >15° to the vertical. However, most pointing issues underwater are unlikely to be significant with suitable FOV choice and natural scattering of the source. PMID:25402887

  19. Aerosol Optical Depth: A study using Thailand based Brewer Spectrophotometers

    NASA Astrophysics Data System (ADS)

    Kumharn, Wilawan; Sudhibrabha, Sumridh; Hanprasert, Kesrin

    2015-12-01

    The Aerosol Optical Depth (AOD) was retrieved from the direct-sun Brewer observation by the application of the Beer's law for the years 1997-2011 at two monitoring sites in Thailand (Bangkok and Songkhla). AOD values measured in Bangkok exhibited higher values than Songkhla. In addition, AOD values were higher in the morning and evening in Bangkok. In contrast, the AOD values in Songkhla were slightly lower during the mornings and late afternoons. The variation of AOD was seasonal in Bangkok, with the higher values found in summer (from Mid-February to Mid-May) compared with rainy season (Mid-May to Mid-October), whilst there was no clear seasonal pattern of AOD in Songkhla.

  20. Fano resonance based optical modulator reaching 85% modulation depth

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyu; Jiang, Huan; Liu, Bingyi; Jiang, Yongyuan; Tang, Chengchun; Li, Junjie

    2015-10-01

    In this paper, we demonstrate the combination of nematic liquid crystal with a binary silicon nanohole array to realize a high performance Fano resonance based optical modulator. The simulations using a finite difference time domain method reveal that the sharp Fano profile in the binary array originates from the interaction of the in-phased and anti-phased lattice collective resonance hybridized through lattice coupling effects. Experimental results agree very well with the simulations and demonstrate the strong dependence of the Q factor and spectral contrast of the resonance on the radius difference of the two nanohole arrays. Infiltrated with nematic liquid crystal, E7, the Fano profile can be dynamically and continuously tuned by an applied voltage, and an unprecedented modulation depth up to 85% is achieved.

  1. Eight-year climatology of dust optical depth on Mars

    NASA Astrophysics Data System (ADS)

    Montabone, L.; Forget, F.; Millour, E.; Wilson, R. J.; Lewis, S. R.; Cantor, B.; Kass, D.; Kleinböhl, A.; Lemmon, M. T.; Smith, M. D.; Wolff, M. J.

    2015-05-01

    We have produced a multiannual climatology of airborne dust from martian year 24-31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced spatio-temporal grid, using an iterative procedure that is weighted in space, time, and retrieval quality. The lack of observations at certain times and locations introduces missing grid points in the maps, which therefore may result in irregularly gridded (i.e. incomplete) fields. In order to evaluate the strengths and weaknesses of the resulting gridded maps, we compare with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability, in addition to provide a basis for instrument intercomparison. Finally, we have produced regularly gridded maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These complete maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modeling

  2. The Optical Depth Sensor (ODS) for Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2015-10-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  3. Integrating an optical tool inspection system to a precision lathe

    NASA Astrophysics Data System (ADS)

    Barkman, W. E.; Babelay, E. F., Jr.; Williams, R. R.

    1992-03-01

    Optical inspection systems are readily available for the bench-top inspection of a variety of subjects including cutting tools. However, the integration of optical tool inspection techniques into precision machining operations requires the consideration of several factors. Some of the questions that must be answered include: What kinds of tools will be used? What tool characteristics are important to measure? How are these characteristics expressed in a meaningful form that will enhance the quality of the manufacturing process? What will be done with the tool inspection data? Will the inspection be performed on-line, in real-time, to what resolution and accuracy, etc.? This paper describes the integration of an on-machine optical tool inspection/compensation system (OTICS) to a precision turning machine at the Oak Ridge Y-12 Plant. OTICS is an IBM personal computer (PC) based system that uses a vision interface board to collect cutting tool form data. This information is used by the PC to prepare a compensated part program that avoids the workpiece errors that are associated with imperfect cutting tools. Machining tests have demonstrated the system's ability to produce workpiece contour accuracies of 0.0002 in. when using cutting tools with errors as large as 0.0046 in.

  4. Optical Coatings and Thermal Noise in Precision Measurement

    NASA Astrophysics Data System (ADS)

    Harry, Gregory; Bodiya, Timothy P.; DeSalvo, Riccardo

    2012-01-01

    1. Theory of thermal noise in optical mirrors Y. Levin; 2. Coating technology S. Chao; 3. Compendium of thermal noises in optical mirrors V. B. Braginsky, M. L. Gorodetsky and S. P. Vyatchanin; 4. Coating thermal noise I. Martin and S. Reid; 5. Direct measurements of coating thermal noise K. Numata; 6. Methods of improving thermal noise S. Ballmer and K. Somiya; 7. Substrate thermal noise S. Rowan and I. Martin; 8. Cryogenics K. Numata and K. Yamamoto; 9. Thermo-optic noise M. Evans and G. Ogin; 10. Absorption and thermal issues P. Willems, D. Ottaway and P. Beyersdorf; 11. Optical scatter J. R. Smith and M. E. Zucker; 12. Reflectivity and thickness optimisation I. M. Pinto, M. Principe and R. DeSalvo; 13. Beam shaping A. Freise; 14. Gravitational wave detection D. Ottaway and S. D. Penn; 15. High-precision laser stabilisation via optical cavities M. J. Martin and J. Ye; 16. Quantum optomechanics G. D. Cole and M. Aspelmeyer; 17. Cavity quantum electrodynamics T. E. Northup.

  5. Navy precision optical interferometer measurements of 10 stellar oscillators

    SciTech Connect

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.; Benson, James A.; Zavala, R. T.; Van Belle, Gerard T.

    2014-02-01

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. The precision of the relations is not as well constrained for giant stars as it is for less evolved stars.

  6. Incorporating VIBE into the precision optics manufacturing process

    NASA Astrophysics Data System (ADS)

    DeGroote Nelson, Jessica; Gould, Alan; Klinger, Charles; Mandina, Michael

    2011-09-01

    The VIBE™ process is a full-aperture, conformal polishing process incorporating high frequency and random motion designed to rapidly remove sub-surface damage in a VIBE pre-polish step and eliminate mid-spatial frequency (MSF) errors in a VIBE finishing step. The VIBE process has potential to be introduced in two areas of today's modern optics manufacturing process. The first instance is replacing the conventional pre-polishing step with the rapid VIBE pre-polish step. Results will be discussed in this paper that show 10 - 50x higher removal rates compared to conventional polishing for a variety of optical materials. High removal rates combined with the compliant lap results in damage-free surfaces that have the same form that was generated by the CNC generation process for spherical and non-spherical surfaces. The second potential area to incorporate VIBE into today's modern optics manufacturing process is as a finishing step after deterministic sub-aperture polishing to remove mid-spatial frequency errors. By selectively altering the compliant properties of the VIBE pad, and adjusting the frequency of the VIBE motion, VIBE finishing can reduce the mid-spatial frequencies caused from sub-aperture polishing processes while maintaining the desired corrected surface form. This paper will serve as an in-depth review of the VIBE process and how it complements other modern CNC optics manufacturing technologies, as well as highlighting recent VIBE advances specifically in the area of conformal optic fabrication.

  7. Astrophysical Adaptation of Points, the Precision Optical Interferometer in Space

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.; Babcock, Robert W.; Murison, Marc A.; Noecker, M. Charles; Phillips, James D.; Schumaker, Bonny L.; Ulvestad, James S.; McKinley, William; Zielinski, Robert J.; Lillie, Charles F.

    1996-01-01

    POINTS (Precision Optical INTerferometer in Space) would perform microarcsecond optical astrometric measurements from space, yielding submicroarcsecond astrometric results from the mission. It comprises a pair of independent Michelson stellar interferometers and a laser metrology system that measures both the critical starlight paths and the angle between the baselines. The instrument has two baselines of 2 m, each with two subapertures of 35 cm; by articulating the angle between the baselines, it observes targets separated by 87 to 93 deg. POINTS does global astrometry, i.e., it measures widely separated targets, which yields closure calibration, numerous bright reference stars, and absolute parallax. Simplicity, stability, and the mitigation of systematic error are the central design themes. The instrument has only three moving-part mechanisms, and only one of these must move with sub-milliradian precision; the other two can tolerate a precision of several tenths of a degree. Optical surfaces preceding the beamsplitter or its fold flat are interferometrically critical; on each side of the interferometer, there are only three such. Thus, light loss and wavefront distortion are minimized. POINTS represents a minimalistic design developed ab initio for space. Since it is intended for astrometry, and therefore does not require the u-v-plane coverage of an imaging, instrument, each interferometer need have only two subapertures. The design relies on articulation of the angle between the interferometers and body pointing to select targets; the observations are restricted to the 'instrument plane.' That plane, which is fixed in the pointed instrument, is defined by the sensitive direction for the two interferometers. Thus, there is no need for siderostats and moving delay lines, which would have added many precision mechanisms with rolling and sliding parts that would be required to function throughout the mission. Further, there is no need for a third interferometer

  8. Distributed high-precision time transfer through passive optical networks

    NASA Astrophysics Data System (ADS)

    Wu, Guiling; Hu, Liang; Zhang, Hao; Chen, Jianping

    2014-09-01

    We propose a one-point to multipoint distributed time transfer through passive optical networks using a time division multiple access (TDMA) based two-way time transfer. The clock at each clock user node is, in turn, compared with the high-precision reference clock at a master node by a two-way time transfer during assigned subperiods. The corresponding TDMA control protocol and time transfer units for the proposed scheme are designed and implemented. A 1×8 experimental system with a 20 km single-mode fiber in each subpath is demonstrated. The results show that a standard deviation of <60 ps can be reached in each comparison subperiod.

  9. Mechanical fabrication of precision microlenses on optical fiber endfaces

    NASA Astrophysics Data System (ADS)

    Milton, Gareth; Gharbia, Yousef A.; Katupitiya, Jayantha

    2005-12-01

    We present a purely mechanical means of producing highly concentric spherical lenses at the endfaces of optical fibers. The production process has two stages. First, conical lenses are produced in a grinding process that ensures excellent concentricity. Then, the conical lenses are transformed to spherical lenses using a novel process called loose abrasive blasting. The cone grinding is carried out on a microgrinding machine, which has a sophisticated control system that enables the production of precision conical lenses. The blasting is carried out on a diamond blasting machine. Plots showing automatic centering performance of the microgrinding machine and scanning electron microscopy images of the conical and spherical lenses are presented.

  10. Precision optical pointing and tracking from spacecraft with vibrational noise

    NASA Technical Reports Server (NTRS)

    Held, K. J.; Barry, J. D.

    1986-01-01

    The results of an investigation of the performance of three basic precision pointing and tracking control subsystems considered for application to satellite to satellite optical communication missions are discussed. The three-control subsystems include: (1) gyro-stabilized, (2) mass-stabilized and (3) complementary filter. The sources of error included in the analysis included: (1) sensor noise from the optical detector, (2) host satellite baseframe vibrational noise and (3) frictional and bearing noise. The measured vibrational and disturbance data from the LANDSAT satellite was used to generate the power spectral density parameter needed to model the baseframe noise environments of the two satellites used for the evaluation. The results of the study indicate that the 1 microradian rms pointing and tracking accuracy may be achieved with either the gyro-stabilized or the complementary filter approach.

  11. Synchronous Spin Exchange Optical Pumping for Precision NMR

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Weber, Josh; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present the successful execution of synchronous spin exchange optical pumping for precision NMR. In this novel form of NMR, the bias field is applied as a sequence of alkali 2 π pulses; the resulting transverse alkali polarization is then modulated at the NMR frequency and spin exchange collisions build up a transverse precessing noble gas polarization. As compared to longitudinally pumped NMR, this method suppresses the alkali frequency shift by over a factor of 2500. We also discuss how we use synchronous spin exchange optical pumping to excite two noble gas species simultaneously. With dual species operation, we are able to use one species to lock the magnetic field while the other is left to detect nonmagnetic interactions. This method promises to achieve NMR frequency uncertainties of 100nHz/√{ Hz}. Research supported by the NSF and Northrop-Grumman Corp.

  12. Highly precise and robust packaging of optical components

    NASA Astrophysics Data System (ADS)

    Leers, Michael; Winzen, Matthias; Liermann, Erik; Faidel, Heinrich; Westphalen, Thomas; Miesner, Jörn; Luttmann, Jörg; Hoffmann, Dieter

    2012-03-01

    In this paper we present the development of a compact, thermo-optically stable and vibration and mechanical shock resistant mounting technique by soldering of optical components. Based on this technique a new generation of laser sources for aerospace applications is designed. In these laser systems solder technique replaces the glued and bolted connections between optical component, mount and base plate. Alignment precision in the arc second range and realization of long term stability of every single part in the laser system is the main challenge. At the Fraunhofer Institute for Laser Technology ILT a soldering and mounting technique has been developed for high precision packaging. The specified environmental boundary conditions (e.g. a temperature range of -40 °C to +50 °C) and the required degrees of freedom for the alignment of the components have been taken into account for this technique. In general the advantage of soldering compared to gluing is that there is no outgassing. In addition no flux is needed in our special process. The joining process allows multiple alignments by remelting the solder. The alignment is done in the liquid phase of the solder by a 6 axis manipulator with a step width in the nm range and a tilt in the arc second range. In a next step the optical components have to pass the environmental tests. The total misalignment of the component to its adapter after the thermal cycle tests is less than 10 arc seconds. The mechanical stability tests regarding shear, vibration and shock behavior are well within the requirements.

  13. Precise Stabilization of the Optical Frequency of WGMRs

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Matsko, Andrey; Yu, Nan; Maleki, Lute; Iltchenko, Vladimir

    2009-01-01

    Crystalline whispering gallery mode resonators (CWGMRs) made of crystals with axial symmetry have ordinary and extraordinary families of optical modes. These modes have substantially different thermo-refractive constants. This results in a very sharp dependence of differential detuning of optical frequency on effective temperature. This frequency difference compared with clock gives an error signal for precise compensation of the random fluctuations of optical frequency. Certain crystals, like MgF2, have turnover points where the thermo-refractive effect is completely nullified. An advantage for applications using WGMRs for frequency stabilization is in the possibility of manufacturing resonators out of practically any optically transparent crystal. It is known that there are crystals with negative and zero thermal expansion at some specific temperatures. Doping changes properties of the crystals and it is possible to create an optically transparent crystal with zero thermal expansion at room temperature. With this innovation s stabilization technique, the resultant WGMR will have absolute frequency stability The expansion of the resonator s body can be completely compensated for by nonlinear elements. This results in compensation of linear thermal expansion (see figure). In three-mode, the MgF2 resonator, if tuned at the turnover thermal point, can compensate for all types of random thermal-related frequency drift. Simplified dual-mode method is also available. This creates miniature optical resonators with good short- and long-term stability for passive secondary frequency ethalon and an active resonator for active secondary frequency standard (a narrowband laser with long-term stability).

  14. Closed loop high precision position control system with optical scale

    NASA Astrophysics Data System (ADS)

    Ge, Cheng-liang; Liao, Yuan; He, Zhong-wu; Luo, Zhong-xiang; Huang, Zhi-wei; Wan, Min; Hu, Xiao-yang; Fan, Guo-bin; Liang, Zheng

    2008-03-01

    With the developments of science of art, there are more and more demands on the high resolution control of position of object to be controlled, such as lathe, product line, elements in the optical resonant cavity, telescope, and so on. As one device with high resolution, the optical scale has more and more utility within the industrial and civil applications. With one optical scale and small DC servo motor, one closed loop high resolution position control system is constructed. This apparatus is used to control the position of the elements of optical system. The optical scale is attached on the object or reference guide way. The object position is sampled by a readhead of non-contact optical encoder. Control system processes the position information and control the position of object through the motion control of servo DC motor. The DC motor is controlled by one controller which is connected to an industrial computer. And the micro frictionless slide table does support the smooth motion of object to be controlled. The control algorithm of system is PID (Proportional-Integral-Differential) methods. The PID control methods have well ROBUST. The needed data to control are position, velocity and acceleration of the object. These three parameters correspond to the PID characters respectively. After the accomplishments of hardware, GUI (Graphical user interface), that is, the software of control system is also programmed. The whole system is assembled by specialized worker. Through calibration experiments, the coefficients of PID are obtained respectively. And then the precision of position control of the system is about 0.1μm.

  15. Comparison of simulated and observed aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Laulainen, Nels; Ghan, Steven; Easter, Richard; Zaveri, Rahul

    2000-08-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). This paper focuses on comparisons of simulated and measured aerosol optical depth (AOD). When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated AOD agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated AODs are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black carbon emissions data used by MIRAGE. The simulated AODs are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high AODs off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea.

  16. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  17. Aerosol optical depth retrieval using the MERIS observation

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.

    2015-04-01

    Surface reflectance determination and aerosol type selection are the two main challenges for space-borne aerosol remote sensing, especially for those instruments lacking of near-infrared channels, high-temporal observations, multi-angles abilities and/or polarization information. However, space based instruments like the MEdium Resolution Imaging Spectrometer (MERIS) and the successor, Ocean and Land Colour Instrument (OLCI) with high calibration accuracy and high spatial resolution provide unique abilities for obtaining valuable aerosol information for a better understanding of the impact of aerosols on climate, which is still one of the largest uncertainties of global climate change evaluation. In this study, a new Aerosol Optical Depth (AOD) retrieval algorithm is presented. Global aerosol type and surface spectral dataset were used for the aerosol type selection and surface reflectance determination. A modified Ross-Li mode is used to describe the surface Bidirectional Reflectance Distribution Function (BRDF) effect. The comparison with operational MODIS C6 product and the validation using AErosol RObotic NETwork (AERONET) show promising results.

  18. Satellite derived aerosol optical depth climatology over Bangalore, India

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.

    2013-06-01

    Climatological aerosol optical depths (AOD) over Bangalore, India have been examined to bring out the temporal heterogeneity in columnar aerosol characteristics. AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra and Aqua satellites, for the period of 2002-2011 have been analyzed (independently) for the purpose. Frequency distributions of the AOD values are examined to infer the monthly mean values. Monthly and seasonal variations of AOD are investigated in the light of regional synoptic meteorology. Climatological monthly and seasonal mean Terra and Aqua AOD values exhibited similar temporal variation patterns. Monthly mean AOD values increased from January, peaks during May and thereafter (except for a secondary peak during July) fall off to reach a minimum during December. Monsoon season recorded the highest climatological seasonal mean AOD, while winter season recorded the lowest. AOD values show an overall increasing trend on a yearly basis, which was found mainly due to sustained increase in the seasonal averaged AOD during summer. The results obtained in the present study are compared with that of the earlier studies over the same location and also with AOD over various other Indian locations. Finally, the radiative and climatic impacts are discussed.

  19. Spatiotemporal modeling of irregularly spaced Aerosol Optical Depth data

    PubMed Central

    Oleson, Jacob J.; Kumar, Naresh; Smith, Brian J.

    2012-01-01

    Many advancements have been introduced to tackle spatial and temporal structures in data. When the spatial and/or temporal domains are relatively large, assumptions must be made to account for the sheer size of the data. The large data size, coupled with realities that come with observational data, make it difficult for all of these assumptions to be met. In particular, air quality data are very sparse across geographic space and time, due to a limited air pollution monitoring network. These “missing” values make it diffcult to incorporate most dimension reduction techniques developed for high-dimensional spatiotemporal data. This article examines aerosol optical depth (AOD), an indirect measure of radiative forcing, and air quality. The spatiotemporal distribution of AOD can be influenced by both natural (e.g., meteorological conditions) and anthropogenic factors (e.g., emission from industries and transport). After accounting for natural factors influencing AOD, we examine the spatiotemporal relationship in the remaining human influenced portion of AOD. The presented data cover a portion of India surrounding New Delhi from 2000 – 2006. The proposed method is demonstrated showing how it can handle the large spatiotemporal structure containing so much missing data for both meteorologic conditions and AOD over time and space. PMID:24470786

  20. A novel precision face grinder for advanced optic manufacture

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Peng, Y.; Wang, Z.; Yang, W.; Bi, G.; Ke, X.; Lin, X.

    2010-10-01

    In this paper, a large-scale NC precision face grinding machine is developed. This grinding machine can be used to the precision machining of brittle materials. The base and the machine body are independent and the whole structure is configured as a "T" type. The vertical column is seat onto the machine body at the middle center part through a double of precision lead rails. The grinding wheel is driven with a hydraulic dynamic and static spindle. The worktable is supported with a novel split thin film throttle hydrostatic lead rails. Each of motion-axis of the grinding machine is equipped with a Heidenhain absolute linear encoder, and then a closed feedback control system is formed with the adopted Fanuc 0i-MD NC system. The machine is capable of machining extremely flat surfaces on workpiece up to 800mmx600mm. The maximums load bearing of the work table is 620Kg. Furthermore, the roughness of the machined surfaces should be smooth (Ra<50nm-100nm), and the form accuracy less than 2μm (+/-1μm)/200x200mm. After the assembly and debugging of the surface grinding machine, the worktable surface has been self-ground with 60# grinding wheel and the form accuracy is 3μm/600mm×800mm. Then the grinding experiment was conduct on a BK7 flat optic glass element (400mmx250mm) and a ceramic disc (Φ100mm) with 60# grinding wheel, and the measuring results show the surface roughness and the form accuracy of the optic glass device are 0.07μm and 1.56μm/200x200mm, and these of the ceramic disc are 0.52μm and 1.28μm respectively.

  1. MatLab program for precision calibration of optical tweezers

    NASA Astrophysics Data System (ADS)

    Tolić-Nørrelykke, Iva Marija; Berg-Sørensen, Kirstine; Flyvbjerg, Henrik

    2004-06-01

    Optical tweezers are used as force transducers in many types of experiments. The force they exert in a given experiment is known only after a calibration. Computer codes that calibrate optical tweezers with high precision and reliability in the ( x, y)-plane orthogonal to the laser beam axis were written in MatLab (MathWorks Inc.) and are presented here. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number of factors that affect this power spectrum. First, cross-talk between channels in 2D position measurements is tested for, and eliminated if detected. Then, the Lorentzian power spectrum that results from the Einstein-Ornstein-Uhlenbeck theory, is fitted to the low-frequency part of the experimental spectrum in order to obtain an initial guess for parameters to be fitted. Finally, a more complete theory is fitted, a theory that optionally accounts for the frequency dependence of the hydrodynamic drag force and hydrodynamic interaction with a nearby cover slip, for effects of finite sampling frequency (aliasing), for effects of anti-aliasing filters in the data acquisition electronics, and for unintended "virtual" filtering caused by the position detection system. Each of these effects can be left out or included as the user prefers, with user-defined parameters. Several tests are applied to the experimental data during calibration to ensure that the data comply with the theory used for their interpretation: Independence of x- and y-coordinates, Hooke's law, exponential distribution of power spectral values, uncorrelated Gaussian scatter of residual values. Results are given with statistical errors and covariance matrix. Program summaryTitle of program: tweezercalib Catalogue identifier: ADTV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV Computer for

  2. Deterministic precision finishing of domes and conformal optics

    NASA Astrophysics Data System (ADS)

    Shorey, Aric; Kordonski, William; Tricard, Marc

    2005-05-01

    In order to enhance missile performance, future window and dome designs will incorporate shapes with improved aerodynamic performance compared with the more traditional flats and spheres. Due to their constantly changing curvature and steep slopes, these shapes are incompatible with most conventional polishing and metrology solutions. Two types of a novel polishing technology, Magnetorheological Finishing (MRF®) and Magnetorheological (MR) Jet, could enable cost-effective manufacturing of free-form optical surfaces. MRF, a deterministic sub-aperture magnetically assisted polishing method, has been developed to overcome many of the fundamental limitations of traditional finishing. MRF has demonstrated the ability to produce complex optical surfaces with accuracies better than 30 nm peak-to-valley (PV) and surface micro-roughness less than 1 nm rms on a wide variety of optical glasses, single crystals, and glass-ceramics. The polishing tool in MRF perfectly conforms to the optical surface making it well suited for finishing this class of optics. A newly developed magnetically assisted finishing method MR JetTM, addresses the challenge of finishing the inside of steep concave domes and other irregular shapes. An applied magnetic field coupled with the properties of the MR fluid allow for stable removal rate with stand-off distances of tens of centimeters. Surface figure and roughness values similar to traditional MRF have been demonstrated. Combining these technologies with metrology techniques, such as Sub-aperture Stitching Interferometer (SSI®) and Asphere Stitching Interferometer (ASI®), enable higher precision finishing of the windows and domes today, as well as the finishing of future conformal designs.

  3. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate

  4. Precision 3-D microscopy with intensity modulated fibre optic scanners

    NASA Astrophysics Data System (ADS)

    Olmos, P.

    2016-01-01

    Optical 3-D imagers constitute a family of precision and useful instruments, easily available on the market in a wide variety of configurations and performances. However, besides their cost they usually provide an image of the object (i.e. a more or less faithful representation of the reality) instead of a truly object's reconstruction. Depending on the detailed working principles of the equipment, this reconstruction may become a challenging task. Here a very simple yet reliable device is described; it is able to form images of opaque objects by illuminating them with an optical fibre and collecting the reflected light with another fibre. Its 3-D capability comes from the spatial filtering imposed by the fibres together with their movement (scanning) along the three directions: transversal (surface) and vertical. This unsophisticated approach allows one to model accurately the entire optical process and to perform the desired reconstruction, finding that information about the surface which is of interest: its profile and its reflectance, ultimately related to the type of material.

  5. Improved retrieval of aerosol optical depth by satellite

    NASA Astrophysics Data System (ADS)

    Drury, Easan Evans

    Atmospheric aerosols are of major concern for public health and climate change, but their sources and atmospheric distributions remain poorly constrained. Satellite-borne radiometers offer a new constraint on aerosol sources and processes by providing global aerosol optical depth (AOD) retrievals. However, quantitative evaluation of chemical transport models (CTMs) with AOD products retrieved from satellite backscattered reflectances can be compromised by inconsistent assumptions of aerosol optical properties and errors in surface reflectance estimates. We present an improved AOD retrieval algorithm for the MODIS satellite instrument using locally derived surface reflectances and CTM aerosol optical properties. Assuming negligible atmospheric reflectance at 2.13 in cloud-free conditions, we derive 0.47/2.13 and 0.65/2.13 surface reflectance ratios at 1°x1.25° horizontal resolution for the continental United States in summer 2004 from the subset of top-of-atmosphere (TOA) reflectance data with minimal aerosol reflectance. We find higher ratios over arid regions than those assumed in the operational MODIS AOD retrieval algorithm, explaining the high AOD bias found in these regions. We simulate TOA reflectances for each MODIS scene using local aerosol optical properties from the GEOS-Chem CTM, and fit these reflectances to the observed MODIS TOA reflectances for a best estimate of AODs for each scene. Comparison with coincident ground-based (AERONET) AOD observations in the western and central United States during the summer of 2004 shows considerable improvement over the operational MODIS AOD products in this region. We find the AOD retrieval is more accurate at 0.47 than at 0.65 mum because of the higher signal to noise ratio, and that the correlation between MODIS and AERONET AODs improves as averaging time increases. We further improve the AOD retrieval method using an extensive ensemble of aircraft, ground-based, and satellite aerosol observations during the

  6. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when τ approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  7. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmüller, Klaus; Pozzer, Andrea; Metzger, Swen; Stenchikov, Georgiy L.; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the moderate-resolution imaging spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. We relate the annual AOD to precipitation, soil moisture and surface winds to identify regions where these attributes are directly related to the AOD over Saudi Arabia, Iraq and Iran. Regarding precipitation and soil moisture, a relatively small area in and surrounding Iraq turns out to be of prime importance for the AOD over these countries. Regarding surface wind speed, the African Red Sea coastal area is relevant for the Saudi Arabian AOD. Using multiple linear regression we show that AOD trends and interannual variability can be attributed to soil moisture, precipitation and surface winds, being the main factors controlling the dust cycle. Our results confirm the dust driven AOD trends and variability, supported by a decreasing MODIS-derived Ångström exponent and a decreasing AERONET-derived fine mode fraction that accompany the AOD increase over Saudi Arabia. The positive AOD trend relates to a negative soil moisture trend. As a lower soil moisture translates into enhanced dust emissions, it is not needed to assume growing anthropogenic aerosol and aerosol precursor emissions to explain the observations. Instead, our results suggest that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change.

  8. Deriving atmospheric visibility from satellite retrieved aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Schneider, Ch.; Popp, Ch.; Wunderle, S.

    2009-04-01

    Atmospheric visibility is a measure that reflects different physical and chemical properties of the atmosphere. In general, poor visibility conditions come along with risks for transportation (e.g. road traffic, aviation) and can negatively impact human health since visibility impairment often implies the presence of atmospheric pollution. Ambient pollutants, particulate matter, and few gaseous species decrease the perceptibility of distant objects. Common estimations of this parameter are usually based on human observations or devices that measure the transmittance of light from an artificial light source over a short distance. Such measurements are mainly performed at airports and some meteorological stations. A major disadvantage of these observations is the gap between the measurements, leaving large areas without any information. As aerosols are one of the most important factors influencing atmospheric visibility in the visible range, the knowledge of their spatial distribution can be used to infer visibility with the so called Koschmieder equation, which relates visibility and atmospheric extinction. In this study, we evaluate the applicability of satellite aerosol optical depth (AOD) products from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) to infer atmospheric visibility on large spatial scale. First results applying AOD values scaled with the planetary boundary layer height are promising. For the comparison we use a full automated and objective procedure for the estimation of atmospheric visibility with the help of a digital panorama camera serving as ground truth. To further investigate the relation between the vertical measure of AOD and the horizontal visibility data from the Aerosol Robotic Network (AERONET) site Laegeren (Switzerland), where the digital camera is mounted, are included as well. Finally, the derived visibility maps are compared with synoptical observations in central

  9. Aerosol optical depth increase in partly cloudy conditions

    SciTech Connect

    Chand, Duli; Wood, R.; Ghan, Steven J.; Wang, Minghuai; Ovchinnikov, Mikhail; Rasch, Philip J.; Miller, Steven D.; Schichtel, Bret; Moore, Tom

    2012-09-14

    Remote sensing observations of aerosol from surface and satellite instruments are extensively used for atmospheric and climate research. From passive sensors, the apparent cloud-free atmosphere in the vicinity of clouds often appears to be brighter then further away from the clouds, leading to an enhancement in the retrieved aerosol optical depth. Mechanisms contributing to this enhancement, including contamination by undetected clouds, hygroscopic growth of aerosol particles, and meteorological conditions, have been debated in recent literature, but an extent to which each of these factors influence the observed enhancement is poorly known. Here we used 11 years of daily global observations at 10x10 km2 resolution from the MODIS on the NASA Terra satellite to quantify as a function of cloud fraction (CF). Our analysis reveals that, averaged over the globe, the clear sky is enhanced by ? = 0.05 which corresponds to relative enhancements of 25% in cloudy conditions (CF=0.8-0.9) compared with relatively clear conditions (CF=0.1-0.2). Unlike the absolute enhancement ?, the relative increase in ? is rather consistent in all seasons and is 25-35% in the subtropics and 15-25% at mid and higher latitudes. Using a simple Gaussian probability density function model to connect cloud cover and the distribution of relative humidity, we argue that much of the enhancement is consistent with aerosol hygroscopic growth in the humid environment surrounding clouds. Consideration of these cloud-dependent effects will facilitate understanding aerosol-cloud interactions and reduce the uncertainty in estimates of aerosol radiative forcing by global climate models.

  10. Large Magellanic Cloud Microlensing Optical Depth with Imperfect Event Selection

    NASA Astrophysics Data System (ADS)

    Bennett, David P.

    2005-11-01

    I present a new analysis of the MACHO Project 5.7 yr Large Magellanic Cloud (LMC) microlensing data set that incorporates the effects of contamination of the microlensing event sample by variable stars. Photometric monitoring of MACHO LMC microlensing event candidates by the EROS and OGLE groups has revealed that one of these events is likely to be a variable star, while additional data have confirmed that many of the other events are very likely to be microlensing. These additional data on the nature of the MACHO microlensing candidates are incorporated into a simple likelihood analysis to derive a probability distribution for the number of MACHO microlens candidates that are true microlensing events. This analysis shows that 10-12 of the 13 events that passed the MACHO selection criteria are likely to be microlensing events, with the other 1-3 being variable stars. This likelihood analysis is also used to show that the main conclusions of the MACHO LMC analysis are unchanged by the variable star contamination. The microlensing optical depth toward the LMC is τ=(1.0+/-0.3)×10-7. If this is due to microlensing by known stellar populations plus an additional population of lens objects in the Galactic halo, then the new halo population would account for 16% of the mass of a standard Galactic halo. The MACHO detection exceeds the expected background of two events expected from ordinary stars in standard models of the Milky Way and LMC at the 99.98% confidence level. The background prediction is increased to three events if maximal disk models are assumed for both the Milky Way and LMC, but this model fails to account for the full signal seen by MACHO at the 99.8% confidence level.

  11. Intercomparison of Desert Dust Optical Depth from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; Brindley, H.; DeSouza-Machado, S.; Deuze, J. L.; Diner, D.; Ducos, F.; Grey, W.; Hsu, C.; Kalashnikova, O. V.; Kahn, R.; North, P. R. J.; Salustro, C.; Smith, A.; Tanre, D.; Torres, O.; Veihelmann, B,

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  12. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  13. Mechanical fabrication of precision microlenses on optical fiber endfaces

    NASA Astrophysics Data System (ADS)

    Milton, Gareth; Gharbia, Yousef; Katupitiya, Jayantha

    2004-10-01

    This paper presents a purely mechanical means of producing highly concentric spherical lenses at the endfaces of optical fibers. The production process has two stages. First conical lenses are produced in a grinding process that ensures excellent concentricity. Then the conical lenses are transformed to spherical lenses using a novel process called loose abrasive blasting. The cone grinding is carried out on a micro-grinding machine that has a sophisticated control system that enables the production of precision conical lenses. The blasting is carried out on a diamond blasting machine. Plots showing automatic centering performance of the micro-grinding machine and scanning electron microscopy photographs of the conical and spherical lenses are presented.

  14. Multi-baseline bootstrapping at the Navy precision optical interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.

  15. Atomically precise metal nanoclusters: stable sizes and optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Rongchao

    2015-01-01

    Controlling nanoparticles with atomic precision has long been a major dream of nanochemists. Breakthroughs have been made in the case of gold nanoparticles, at least for nanoparticles smaller than ~3 nm in diameter. Such ultrasmall gold nanoparticles indeed exhibit fundamentally different properties from those of the plasmonic counterparts owing to the quantum size effects as well as the extremely high surface-to-volume ratio. These unique nanoparticles are often called nanoclusters to distinguish them from conventional plasmonic nanoparticles. Intense work carried out in the last few years has generated a library of stable sizes (or stable stoichiometries) of atomically precise gold nanoclusters, which are opening up new exciting opportunities for both fundamental research and technological applications. In this review, we have summarized the recent progress in the research of thiolate (SR)-protected gold nanoclusters with a focus on the reported stable sizes and their optical absorption spectra. The crystallization of nanoclusters still remains challenging; nevertheless, a few more structures have been achieved since the earlier successes in Au102(SR)44, Au25(SR)18 and Au38(SR)24 nanoclusters, and the newly reported structures include Au20(SR)16, Au24(SR)20, Au28(SR)20, Au30S(SR)18, and Au36(SR)24. Phosphine-protected gold and thiolate-protected silver nanoclusters are also briefly discussed in this review. The reported gold nanocluster sizes serve as the basis for investigating their size dependent properties as well as the development of applications in catalysis, sensing, biological labelling, optics, etc. Future efforts will continue to address what stable sizes are existent, and more importantly, what factors determine their stability. Structural determination and theoretical simulations will help to gain deep insight into the structure-property relationships.

  16. Atomically precise metal nanoclusters: stable sizes and optical properties.

    PubMed

    Jin, Rongchao

    2015-02-01

    Controlling nanoparticles with atomic precision has long been a major dream of nanochemists. Breakthroughs have been made in the case of gold nanoparticles, at least for nanoparticles smaller than ∼3 nm in diameter. Such ultrasmall gold nanoparticles indeed exhibit fundamentally different properties from those of the plasmonic counterparts owing to the quantum size effects as well as the extremely high surface-to-volume ratio. These unique nanoparticles are often called nanoclusters to distinguish them from conventional plasmonic nanoparticles. Intense work carried out in the last few years has generated a library of stable sizes (or stable stoichiometries) of atomically precise gold nanoclusters, which are opening up new exciting opportunities for both fundamental research and technological applications. In this review, we have summarized the recent progress in the research of thiolate (SR)-protected gold nanoclusters with a focus on the reported stable sizes and their optical absorption spectra. The crystallization of nanoclusters still remains challenging; nevertheless, a few more structures have been achieved since the earlier successes in Au102(SR)44, Au25(SR)18 and Au38(SR)24 nanoclusters, and the newly reported structures include Au20(SR)16, Au24(SR)20, Au28(SR)20, Au30S(SR)18, and Au36(SR)24. Phosphine-protected gold and thiolate-protected silver nanoclusters are also briefly discussed in this review. The reported gold nanocluster sizes serve as the basis for investigating their size dependent properties as well as the development of applications in catalysis, sensing, biological labelling, optics, etc. Future efforts will continue to address what stable sizes are existent, and more importantly, what factors determine their stability. Structural determination and theoretical simulations will help to gain deep insight into the structure-property relationships. PMID:25532730

  17. Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.

    2006-02-01

    Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.

  18. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  19. Observation of Optical Chemical Shift by Precision Nuclear Spin Optical Rotation Measurements and Calculations.

    PubMed

    Shi, Junhui; Ikäläinen, Suvi; Vaara, Juha; Romalis, Michael V

    2013-02-01

    Nuclear spin optical rotation (NSOR) is a recently developed technique for detection of nuclear magnetic resonance via rotation of light polarization, instead of the usual long-range magnetic fields. NSOR signals depend on hyperfine interactions with virtual optical excitations, giving new information about the nuclear chemical environment. We use a multipass optical cell to perform the first precision measurements of NSOR signals for a range of organic liquids and find clear distinction between proton signals for different compounds, in agreement with our earlier theoretical predictions. Detailed first-principles quantum mechanical NSOR calculations are found to be in agreement with the measurements. PMID:26281737

  20. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  1. VIIRS Aerosol Optical Depth (AOD) Products for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Huff, A. K.; Zhang, H.; Kondragunta, S.; Laszlo, I.

    2014-12-01

    The air quality community uses satellite aerosol optical depth (AOD) for a variety of applications, including daily air quality forecasting, retrospective event analysis, and justification for Exceptional Events. AOD is suitable for ambient air quality applications because is related to particulate matter (e.g., PM2.5) concentrations in the atmosphere; higher values of AOD correspond to higher concentrations of particulate matter. AOD is useful for identifying and tracking areas of high PM2.5 concentrations that correspond to air quality events, such as wildfires, dust storms, or haze episodes. Currently, the air quality community utilizes AOD from the MODIS instrument on NASA's polar-orbiting Terra and Aqua satellites and from NOAA's GOES geostationary satellites (e.g, GASP). The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi-NPP satellite is making AOD measurements that are similar to MODIS AOD, but with higher spatial resolution. Two AOD products are available from VIIRS: the 750 m nadir resolution Intermediate Product (IP) and the 6 km resolution Environmental Data Record (EDR) product, which is aggregated from IP measurements. These VIIRS AOD products offer a substantial increase in spatial resolution compared to the MODIS AOD 3 km and 10 km AOD products, respectively. True color (RGB) imagery is also available from VIIRS as a decision aid for air quality applications. It serves as a complement to AOD measurements by providing visible information about areas of smoke, haze, and blowing dust in the atmosphere. Case studies of VIIRS AOD and RGB data for recent air quality events will be presented, with a focus on wildfires, and the relative pros and cons of the VIIRS AOD IP and EDR for air quality applications will be discussed in comparison to MODIS AOD products. Improvements to VIIRS aerosol products based on user feedback as part of the NOAA Satellite Air Quality Proving Ground (AQPG) will be outlined, and an overview of future

  2. [Effects of sensor's laying depth for precision irrigation on growth characteristics of maturate grapes].

    PubMed

    Wang, Yu-Ning; Fan, Jun; Li, Shi-Qing; Zheng, Chen; Wang, Quan-Jiu

    2012-08-01

    In order to approach the appropriate laying depth of soil moisture sensor to control irrigation amount, the sensors were laid at different soil depth to measure the soil moisture content, with the effects of definite irrigation amount on the growth characteristics of maturate grapes studied. The results showed that using the sensor laying at the soil depth 40 cm (SF40) to control irrigation amount, the biological characteristics of the grapes, including photosynthesis, grape yield, and water use efficiency were superior than those when the sensor was laid at the depth 20 cm (SF20) and under conventional furrow irrigation (CK). The grape brix degree in treatment SF40 was slightly lower than that in treatments SF20 and CK, but was still near 20%. In treatment SF40, the irrigated water could infiltrate or redistribute in the soil layers where the main roots of the grapes existed. It was suggested that laying soil moisture sensor at the depth 40 cm could better control the irrigation amount for the maturate grapes in the study area. PMID:23189680

  3. Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors.

    PubMed

    Zurauskas, Mantas; Rogers, John; Podoleanu, Adrian Gh

    2013-01-28

    We present a novel low-coherence interferometer configuration, equipped with acousto-optic deflectors that can be used to simultaneously acquire up to eight time domain optical coherence tomography en-face images. The capabilities of the configuration are evaluated in terms of depth resolution, signal to noise ratio and crosstalk. Then the configuration is employed to demonstrate simultaneous en-face optical coherence tomography imaging at five different depths in a specimen of armadillidium vulgare. PMID:23389175

  4. Precise Measurement of Vibrational Transition Frequency of Optically Trapped Molecules

    NASA Astrophysics Data System (ADS)

    Kajita, Masatoshi; Gopakumar, Geetha; Abe, Minori; Hada, Masahiko

    2013-06-01

    We propose to measure the X^{2}Σ(v,N,F,M) =( 0,0,3/2,±3/2) →( v_{u},0,3/2,±3/2) ( v_{u}=1,2,3,4,,,,) transition frequencies of X^{6}Li molecules with the uncertainty lower than 10^{-16} (X: ^{174}Yb, ^{88}Sr, ^{40}Ca). Molecules are produced by photo-association of cold atoms and trapped in the optical lattices. Measurement with molecules in optical lattices is particularly advantageous for precision measurements because (1) the molecules and probe laser interact for a long time, (2) molecules are localized within the Lamb-Dicke region, (3) the measurement is possible with a large number of molecules, and (4) collision effects are suppressed (molecules are trapped at different positions in 2D lattices). Using the proper trap laser frequency, the Stark shift induced by the trap laser is eliminated as the Stark energy shift of the upper and lower states are equal (magic frequency). When the trap laser frequency is shifted from the magic frequency by 1 MHz, the Stark shift is less than 3×10^{-15}. The N=0→0 transition is one-photon forbidden, and it is stimulated by Raman transition using two lasers. When one of two Raman lasers is higher than the magic frequency and another is lower, the total Stark shift induced by two Raman lasers can be eliminated. Measurement of molecular vibrational transition frequencies is useful to test the variation in the proton-to-electron mass ratio. The ^{1}S_{0}-^{3}% P_{0} transition frequencies of ^{27}Al^{+} ion or ^{87}Sr atom are useful as the reference.

  5. Underwater optical wireless communications: depth dependent variations in attenuation.

    PubMed

    Johnson, Laura J; Green, Roger J; Leeson, Mark S

    2013-11-20

    Depth variations in the attenuation coefficient for light in the ocean were calculated using a one-parameter model based on the chlorophyll-a concentration C(c) and experimentally-determined Gaussian chlorophyll-depth profiles. The depth profiles were related to surface chlorophyll levels for the range 0-4  mg/m², representing clear, open ocean. The depth where C(c) became negligible was calculated to be shallower for places of high surface chlorophyll; 111.5 m for surface chlorophyll 0.8depth is the absolute minimum attenuation for underwater ocean communication links, calculated to be 0.0092  m⁻¹ at a wavelength of 430 nm. By combining this with satellite surface-chlorophyll data, it is possible to quantify the attenuation between any two locations in the ocean, with applications for low-noise or secure underwater communications and vertical links from the ocean surface. PMID:24513735

  6. Surface micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-09-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. This makes it also a suitable candidate as mold material for precision compression molding of low and high glass-transition temperature materials. To fabricate molds for diffractive optics a highresolution structuring technique is needed. We introduce a process that allows the micro-structuring of glassy carbon by reactive ion etching. Key parameters such as uniformity, surface roughness, edge definition and lateral resolution are discussed. They are the most relevant parameters for a stamp in optical applications. The use of titanium as a hard mask makes it possible to achieve a reasonable selectivity of 4:1, which has so far been one of the main problems in microstructuring of glassy carbon. We investigate the titanium surface structure with its 5-10 nm thick layer of TiO2 grains and its influence on the shape of the hard mask. In our fabrication procedure we were able to realize optically flat diffractive structures with slope angles of more than 80° at typical feature sizes of 5 μm and at 700 nm depth. The fabricated glassy carbon molds were applied to thermal imprinting onto different glasses. Glassy carbon molds with 1 mm thickness were tested with binary optical structures. Our experiments show the suitability of glassy carbon as molds for cost efficient mass production with a high quality.

  7. Progress in the expansion of the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Restaino, S. R.; Clark, J. H.; Schmitt, H. R.; Baines, E. K.; Hutter, D. J.; Benson, J. A.; Zavala, R. T.; Shankland, P. D.; van Belle, G.; Jorgensen, A. M.

    2014-01-01

    Over the past three years, the Navy Precision Optical Interferometer (NPOI) has been undergoing significant expansion toward its ultimate design goal of six siderostats that can be moved among up to 30 stations. The additional stations that will become available by next spring include E7 (98 m baseline with W7), plus E10 and W10 (432 m baseline between them). Several other close-in stations will produce baselines as short as 7 m tailored to large-scale targets. Significant upgrades to the NPOI backend are also under way. The VISION beam combiner, based on single-mode fiber spatial filtering and a photon-counting CCD and very similar in design to the MIRC combiner at the CHARA array, has been installed and is on its shakedown cruise. The NPOI's current "Classic" combiner is undergoing firmware improvements that will increase both the spectral range and the number of baselines simultaneously available. Coupled with concurrent improvements to the delay line controllers, these developments should significantly increase data quality and instrumental efficiency. Finally, many of the the initial preparations for adding four 1.8 m telescopes (the former Keck outrigger telescopes, now owned by USNO) have been completed, and funding for the first installations is anticipated.

  8. Nanoscale precision in ion milling for optical and terahertz antennas

    NASA Astrophysics Data System (ADS)

    Seniutinas, G.; Gervinskas, G.; Balčytis, A.; Clark, F.; Nishijima, Y.; Krotkus, A.; Molis, G.; Valušis, G.; Juodkazis, S.

    2015-03-01

    Plasmonics and nanoscale antennas have been intensively investigated for sensors, metasurfaces and optical trapping where light control at the nanoscale enables new functionalities. To confine and manipulate the light in tiny spaces sub-wavelength antennas should be used with dimensions from micro- to nano-meters and are still challenging to make. Direct fabrication/modification of nanostructures using focused ion beam (FIB) milling is demonstrated for several types of antennas. Arrays of identical nanoparticles were fabricated in a single step by (i) milling gold films or (ii) by modifying structures which were already defined by electron beam or mask projection lithography. Direct FIB writing enables to exclude resist processing steps, thus making fabrication faster and simpler. Sensor areas of 25x25 μm2 of densely packed nanoparticles separated by tens-of-nanometers were fabricated in half an hour (103 μm2/h throughput at 90 nm resolution). Patterns of chiral nanoparticles by groove inscription is demonstrated. The processing speed and capability to mill complex 3D surfaces due to depth of focus not compromised over micrometers length, makes it possible to reach sub-50 nm resolution of direct write. FIB technology is practical for emerging applications in nano-fabrication/photonic/fluidic/magnetic applications.

  9. The research and construction of the aspheric optics ultra-precision machining system

    NASA Astrophysics Data System (ADS)

    Luo, Songbao; Zhang, Jianming; Yang, Hui

    2006-02-01

    The Nanosys-300 aspheric optics ultra-precision machining system is the main research achievement of the Ninth-Fiveyear Plan period key advanced research, namely the aspheric optics ultra-precision machining and measuring technology. The ultra-precision machining system, machining technology and measuring technology are investigated in this paper. The corresponding research achievements are as follows: comprehensive design and manufacturing technology of aspheric optics ultra-precision machining system, high speed ultra-precision aerostatic air bearing work spindle system, ultra-precision fully constrained hydrostatic oil bearing slides, high speed ultra-precision aerostatic air bearing electrical grinder spindle system, open and high quality CNC system integrating technology, etc. The precision test and practical application shows that the concerned system has reached the world advanced level.

  10. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    NASA Astrophysics Data System (ADS)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  11. Updating Mars-GRAM to Increase the Accuracy of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hiliary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). During the Mars Science Laboratory (MSL) site selection process, it was discovered that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear set to 0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. As a preliminary fix to this pressure-density problem, density factor values were determined for tau=0.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. Currently, these density factors are fixed values for all latitudes and Ls. Results will be presented from work being done to derive better multipliers by including variation with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data. The addition of these more precise density factors to Mars-GRAM 2005 Release 1.4 will improve the results of the sensitivity studies done for large optical depths.

  12. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  13. Imaging of Stellar Surfaces with the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Jorgensen, A.; Schmitt, H. R.; van Belle, G. T.; Hutter, Clark; Mozurkewich, D.; Armstrong, J. T.; Baines, E. K.; Restaino, S. R.

    The Navy Precision Optical Interferometer (NPOI) has a unique layout which is particularly well-suited for high-resolution interferometric imaging. By combining the NPOI layout with a new data acquisition and fringe tracking system we are progressing toward a imaging capability which will exceed any other interferometer in operation. The project, funded by the National Science Foundation, combines several existing advances and infrastructure at NPOI with modest enhancements. For optimal imaging there are several requirements that should be fulfilled. The observatory should be capable of measuring visibilities on a wide range of baseline lengths and orientations, providing complete UV coverage in a short period of time. It should measure visibility amplitudes with good SNR on all baselines as critical imaging information is often contained in low-amplitude visibilities. It should measure the visibility phase on all baselines. The technologies which can achieve this are the NPOI Y-shaped array with (nearly) equal spacing between telescopes and an ability for rapid configuration. Placing 6-telescopes in a row makes it possible to measure visibilities into the 4th lobe of the visibility function. By arranging the available telescopes carefully we will be able to switch, every few days, between 3 different 6-station chains which provide symmetric coverage in the UV (Fourier) plane without moving any telescopes, only by moving beam relay mirrors. The 6-station chains are important to achieve the highest imaging resolution, and switching rapidly between station chains provides uniform coverage. Coherent integration techniques can be used to obtain good SNR on very small visibilities. Coherently integrated visibilities can be used for imaging with standard radio imaging packages such as AIPS. The commissioning of one additional station, the use of new data acquisition hardware and fringe tracking algorithms are the enhancements which make this project possible.

  14. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  15. Micro-optical system based 3D imaging for full HD depth image capturing

    NASA Astrophysics Data System (ADS)

    Park, Yong-Hwa; Cho, Yong-Chul; You, Jang-Woo; Park, Chang-Young; Yoon, Heesun; Lee, Sang-Hun; Kwon, Jong-Oh; Lee, Seung-Wan

    2012-03-01

    20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical shutter'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation. The optical shutter device is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image. Suggested novel optical shutter device enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously. The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical shutter design, fabrication, characterization, 3D camera system prototype and image test results.

  16. Retrieval of the optical depth using an all-sky CCD camera.

    PubMed

    Olmo, Francisco J; Cazorla, Alberto; Alados-Arboledas, Lucas; López-Alvarez, Miguel A; Hernández-Andrés, Javier; Romero, Javier

    2008-12-01

    A new method is presented for retrieval of the aerosol and cloud optical depth using a CCD camera equipped with a fish-eye lens (all-sky imager system). In a first step, the proposed method retrieves the spectral radiance from sky images acquired by the all-sky imager system using a linear pseudoinverse algorithm. Then, the aerosol or cloud optical depth at 500 nm is obtained as that which minimizes the residuals between the zenith spectral radiance retrieved from the sky images and that estimated by the radiative transfer code. The method is tested under extreme situations including the presence of nonspherical aerosol particles. The comparison of optical depths derived from the all-sky imager with those retrieved with a sunphotometer operated side by side shows differences similar to the nominal error claimed in the aerosol optical depth retrievals from sunphotometer networks. PMID:19037341

  17. A COMPARISON OF AEROSOL OPTICAL DEPTH SIMULATED USING CMAQ WITH SATELLITE ESTIMATES

    EPA Science Inventory

    Satellite data provide new opportunities to study the regional distribution of particulate matter. The aerosol optical depth (AOD) - a derived estimate from the satellite measured irradiance, can be compared against model derived estimate to provide an evaluation of the columnar ...

  18. Temporal variations in atmospheric water vapor and aerosol optical depth determined by remote sensing

    NASA Technical Reports Server (NTRS)

    Pitts, D. E.; Mcallum, W. E.; Heidt, M.; Jeske, K.; Lee, J. T.; Demonbrun, D.; Morgan, A.; Potter, J.

    1977-01-01

    By automatically tracking the sun, a four-channel solar radiometer was used to continuously measure optical depth and atmospheric water vapor. The design of this simple autotracking solar radiometer is presented. A technique for calculating the precipitable water from the ratio of a water band to a nearby nonabsorbing band is discussed. Studies of the temporal variability of precipitable water and atmospheric optical depth at 0.610, 0.8730 and 1.04 microns are presented. There was good correlation between the optical depth measured using the autotracker and visibility determined from National Weather Service Station data. However, much more temporal structure was evident in the autotracker data than in the visibility data. Cirrus clouds caused large changes in optical depth over short time periods. They appear to be the largest deleterious atmospheric effect over agricultural areas that are remote from urban pollution sources.

  19. Comparison of Cirrus height and optical depth derived from satellite and aircraft measurements

    SciTech Connect

    Kastner, M.; Kriebel, K.T.; Meerkoetter, R.; Renger, W.; Ruppersberg, G.H.; Wendling, P. )

    1993-10-01

    During the International Cirrus Experiment (ICE'89) simultaneous measurements of cirrus cloud-top height and optical depth by satellite and aircraft have been taken. Data from the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA polar-orbiting meteorological satellite system have been used together with the algorithm package AVHRR processing scheme over clouds, land and ocean (APOLLO) to derive optical depth. NOAA High-Resolution Infrared Radiation Sounder (HIRS) data have been used together with a bispectral technique to derive cloud-top height. Also, the optical depth of some contrails could be estimated. Airborne measurements have been performed simultaneously by using the Airborne Lidar Experiment (ALEX), a backscatter lidar. Comparison of satellite data with airborne data showed agreement of the top heights to about 500 m and of the optical depths to about 30%. These uncertainties are within the limits obtained from error estimates. 34 refs., 8 figs.

  20. Optical and thermal depth profile reconstructions of inhomogeneous photopolymerization in dental resins using photothermal waves

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2010-09-01

    Photopolymerization is a process that depends, among other factors, on the optical properties of polymerized materials. In turn, this process affects longitudinal light transport in these materials, thereby altering their optical absorption coefficient which is thus expected to exhibit depth dependence. Furthermore, polymerization affects the thermal properties of these materials. A robust theoretical approach to the study of the depth-dependent optical absorption coefficient, β(x ), and thermal diffusivity, α(x ), in materials exhibiting depth profiles of these parameters has been developed through the photothermal inverse problem based on the concept of the thermal-harmonic oscillator. Using this concept in the frequency-domain nonhomogeneous photothermal-wave boundary-value problem, the simultaneous reconstruction of arbitrary simultaneous optical and thermal depth profiles was achieved using a multiparameter fitting method to the experimental amplitude and phase. As a first application of the theory to partially polymerized Alert Composite (shade A3) dental resin, with curing induced by a blue light-emitting diode, the β(x ) and α(x ) depth profiles were reconstructed from photothermal radiometric frequency-scanned data. A strong anticorrelation of these two depth profiles was observed and was interpreted in terms of photochemical processes occurring during the optical (photocuring) creation of long polymeric chains in the resin. The photothermally reconstructed depth profiles may have implications for the optimization of blue light curing methods using such resins in dental clinical practice.

  1. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  2. Using a piezoelectric fiber stretcher to remove the depth ambiguity in optical Fourier domain imaging

    NASA Astrophysics Data System (ADS)

    Vergnole, Sébastien; Lamouche, Guy; Dufour, Marc; Gauthier, Bruno

    2007-07-01

    This paper reports the study of an Optical Fourier Domain Imaging (OFDI) setup for optical coherence tomography. One of the main drawbacks of OFDI is its inability to differentiate positive and negative depths. Some setups have already been proposed to remove this depth ambiguity by introducing a modulation by means of electro-optic or acousto-optic modulators. In our setup, we implement a piezoelectric fiber stretcher to generate a periodic phase shift between successive A-scans, thus introducing a transverse modulation. The depth ambiguity is then resolved by performing a Fourier treatment in the transverse direction before processing the data in the axial direction. It is similar to the B-M mode scanning already proposed for Spectral-Domain OCT1 but with a more efficient experimental setup. We discuss the advantages and the drawbacks of our technique compared to the technique based on acousto-optics modulators by comparing images of an onion obtained with both techniques.

  3. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study

    PubMed Central

    Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-01-01

    We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740

  4. Fine Structure and Optical Depth in the Solar Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.; Williamson, K.

    2011-05-01

    Unresolved fine structure in the solar transition region (TR) has long been inferred from measurements of density-sensitive line pairs showing low filling factor (< 0.01). Low filling factor models for the structure of the He II source region, however, have not been well studied. We propose a highly structured model of the lower atmosphere in which He II is formed at low filling factors, leading to high emission measure and an optically thin He II line. This transparent TR material is juxtaposed with absorbing chromospheric structures, leading to the nearly uniform center to limb behavior of the He II line as observed.

  5. Graphical aerosol classification method using aerosol relative optical depth

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Xiang; Yuan, Yuan; Shuai, Yong; Tan, He-Ping

    2016-06-01

    A simple graphical method is presented to classify aerosol types based on a combination of aerosol optical thickness (AOT) and aerosol relative optical thickness (AROT). Six aerosol types, including maritime (MA), desert dust (DD), continental (CO), sub-continental (SC), urban industry (UI) and biomass burning (BB), are discriminated in a two dimensional space of AOT440 and AROT1020/440. Numerical calculations are performed using MIE theory based on a multi log-normal particle size distribution, and the AROT ranges for each aerosol type are determined. More than 5 years of daily observations from 8 representative aerosol sites are applied to the method to confirm spatial applicability. Finally, 3 individual cases are analyzed according to their specific aerosol status. The outcomes indicate that the new graphical method coordinates well with regional characteristics and is also able to distinguish aerosol variations in individual situations. This technique demonstrates a novel way to estimate different aerosol types and provide information on radiative forcing calculations and satellite data corrections.

  6. Post-depositional remanent magnetization lock-in depth in precisely dated varved sediments assessed by archaeomagnetic field models

    NASA Astrophysics Data System (ADS)

    Mellström, Anette; Nilsson, Andreas; Stanton, Tania; Muscheler, Raimund; Snowball, Ian; Suttie, Neil

    2015-01-01

    Accurate and precise chronologies are needed to evaluate the existence and effect of a post-depositional remanent magnetization lock-in process on sedimentary palaeomagnetic records. Here we present lock-in modelling results of two palaeomagnetic records from varved lake sediments (lakes Kälksjön and Gyltigesjön) in Sweden by using model predictions based on archaeomagnetic data. We used the 14C wiggle-match dating technique to improve the precision of the Kälksjön varve chronology in the period between 3000 and 2000 cal BP, which is characterized by pronounced palaeomagnetic secular variation. This method allowed us to infer an age model with uncertainties of ±20 years (95.4% probability range). Furthermore, we compared the palaeomagnetic record of Kälksjön to Gyltigesjön, which has a corresponding 14C wiggle-matched chronology. The ages of palaeomagnetic features derived from the wiggle-matched varve chronologies are older than those predicted by the archaeomagnetic models. Lock-in modelling was performed with different filter functions to explain the temporal offset and the amplitude of the lake sediment palaeomagnetic data. The analyses suggest that a linear lock-in function with lock-in depths (the depth below which no more natural magnetic remanence is acquired) that range between 30 and 80 cm in Kälksjön and 50 and 160 cm in Gyltigesjön are most appropriate to explain the data. These relatively deep lock-in depths in sediments without a bioturbated 'mixed-zone' can be attributed to the relatively high organic contents and low density of the lake sediments, which contribute to a thick unconsolidated upper zone of the sediment sequence in which re-alignment of magnetic particles can take place.

  7. Research on high precision centering assembly method of roll edge optical elements

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Liu, Xiaomei

    2015-08-01

    In order to improve the imaging quality of target imaging optical system, in the special environment of large temperature difference, the centering assembly precision of roll edge optical elements was studied. According to the hole-axis coordinate error theory of mechanics, by analyzing the factors affected the precision of mechanical heating surface, combining with the existing method to eliminate error and centering assembly process, a new kind of high precision centering assembly method was put forward. Using additional grinding device to grinding roll edge of optical element, eliminate the machining error on the surface of the mechanical hot working, thus improve the centering assembly precision between the roll edge optical element and lens tube. The result of experiment shows that the centering precision can reach less than 3μm when assembled optical element after roll edge using new centering assembly method, and improved by 25% compared to the traditional method of roll edge optical elements are assembled directly after hot working. New assembly method with additional grinding device can improve the centering assembly precision of roll edge optical elements, and greatly reduce the difficulty of optical design of such optical imaging system using in large temperature difference environment, when meet the same image quality.

  8. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing

    PubMed Central

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-01-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model’s diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m2 to 11.6 mW/m2 for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8–20 mW/m2 for the air traffic in the year 2000. PMID:20974909

  9. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    PubMed

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000. PMID:20974909

  10. High precision geometrical characterization and alignment of miniaturized optics

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Dumitrescu, Eugen

    2012-03-01

    Miniaturized optical systems like endoscopy or cell phone lenses systems comprise several optical elements like lenses, doublets and plane optics. To receive a good imaging quality the distances and angles between the different optical elements have to be as accurate as possible. In the first step we will describe how the distances and angles between different elements can be monitored and finally we will describe a technique to actively align small optics (diameter approx. 1mm and smaller) with respect to each other. For the measurement electronic autocollimators combined with white-light-interferometers are used. The electronic autocollimator reveals the exact centration errors between optical elements and the low coherence interferometer reveals the distances between surfaces. The accuracy of the centration error measurement is in the range of 0.1μm and the accuracy of the distance measurement is 1μm. Both methods can be applied to assembled multi-element optics. That means geometrical positions of all single surfaces of the final optical system can be analysed without loss of information. Both measurement techniques complement one another. Once the exact x,y,z - Position of each optical surface and element is known computer controlled actuators will be used to improve the alignment of the optics. For this purpose we use piezo-electric-actuators. This method had been applied to cement e.g. doublets for endoscope optics. In this case the optical axis of one lens has been aligned with respect to the optical axis of a second reference lens. Traditional techniques usually rely on an uncertain mechanical reference.

  11. Impact of the optical depth of field on cytogenetic image quality.

    PubMed

    Qiu, Yuchen; Chen, Xiaodong; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Wei R; Liu, Hong

    2012-09-01

    In digital pathology, clinical specimen slides are converted into digital images by microscopic image scanners. Since random vibration and mechanical drifting are unavoidable on even high-precision moving stages, the optical depth of field (DOF) of microscopic systems may affect image quality, in particular when using an objective lens with high magnification power. The DOF of a microscopic system was theoretically analyzed and experimentally validated using standard resolution targets under 60× dry and 100× oil objective lenses, respectively. Then cytogenetic samples were imaged at in-focused and off-focused states to analyze the impact of DOF on the acquired image qualities. For the investigated system equipped with the 60× dry and 100× oil objective lenses, the theoretical estimation of the DOF are 0.855 μm and 0.703 μm, and the measured DOF are 3.0 μm and 1.8 μm, respectively. The observation reveals that the chromosomal bands of metaphase cells are distinguishable when images are acquired up to approximately 1.5 μm or 1 μm out of focus using the 60× dry and 100× oil objective lenses, respectively. The results of this investigation provide important designing trade-off parameters to optimize the digital microscopic image scanning systems in the future. PMID:23085918

  12. Study of Optical Mode Scrambling of Fiber Optics for High Precision Radial Velocity Measurements

    NASA Astrophysics Data System (ADS)

    Cassette, Anthony; Ge, Jian; Jeram, Sarik; Klanot, Khaya; Ma, Bo; Varosi, Frank

    2016-01-01

    Optical Fibers have been used throughout Astronomy for spectroscopy with spectrographs located some distance away from the telescope. This fiber-fed design has greatly increased precision for radial velocity (RV) measurements. However, due to the incomplete fiber illumination mode scrambling in the radial direction, high resolution spectrographs with regular circular fibers have suffered RV uncertainties on the order of a few to tens of m/s with stellar observations, which largely limited their sensitivity in detecting and characterizing low mass planets around stars. At the University of Florida, we studied mode scrambling gain of a few different optical devices, such as three-lens optical double scramblers, octagonal fibers and low numerical aperture fibers with a goal to find an optimal mode scrambling solution for the TOU optical very high resolution spectrograph (R=100,000, 0.38-0.9 microns) and FIRST near infrared high resolution spectrograph (R=60,000, 0.9-1.8 microns) for the on-going Dharma Planet Survey. This presentation will report our lab measurement results and also stellar RV measurements at the observatories.

  13. Cloud Optical Depth Retrievals from Solar Background "signal" of Micropulse Lidars

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, A.; Wiscombe, W.; Valencia, S.; Welton, E. J.

    2007-01-01

    Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10-15% for overcast stratus and broken clouds. In fact, for broken cloud situations one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.

  14. Method for making precisely configured flakes useful in optical devices

    SciTech Connect

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Kosc, Tanya Z.; Marshall, Kenneth L.

    2007-07-03

    Precisely configured, especially of geometric shape, flakes of liquid crystal material are made using a mechanically flexible polymer mold with wells having shapes which are precisely configured by making the mold with a photolithographically manufactured or laser printed master. The polymer liquid crystal is poured into the wells in the flexible mold. When the liquid crystal material has solidified, the flexible mold is bent and the flakes are released and collected for use in making an electrooptical cell utilizing the liquid crystal flakes as the active element therein.

  15. Improving Mars-GRAM: Increasing the Accuracy of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    Extensively utilized for numerous mission applications, the Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model. In a Monte-Carlo mode, Mars-GRAM's perturbation modeling capability is used to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM has been found to be inexact when used during the Mars Science Laboratory (MSL) site selection process for sensitivity studies for MapYear=0 and large optical depth values such as tau=3. Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM) from the surface to 80 km altitude. Mars-GRAM with the MapYear parameter set to 0 utilizes results from a MGCM run with a fixed value of tau=3 at all locations for the entire year. Imprecise atmospheric density and pressure at all altitudes is a consequence of this use of MGCM with tau=3. Density factor values have been determined for tau=0.3, 1 and 3 as a preliminary fix to this pressure-density problem. These factors adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with Thermal Emission Spectrometer (TES) observations for MapYears 1 and 2 at comparable dust loading. These density factors are fixed values for all latitudes and Ls and are included in Mars-GRAM Release 1.3. Work currently being done, to derive better multipliers by including variations with latitude and/or Ls by comparison of MapYear 0 output directly against TES limb data, will be highlighted in the presentation. The TES limb data utilized in this process has been validated by a comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS). This comparison study was undertaken for locations on Mars of varying latitudes, Ls, and LTST. The more precise density factors will be included in Mars-GRAM 2005 Release 1.4 and thus improve the results of future sensitivity studies done for large

  16. Ocean color patterns help to predict depth of optical layers in stratified coastal waters

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, Martín A.; Weidemann, Alan; Gould, Richard; Arnone, Robert; Churnside, James H.; Jaroz, Ewa

    2011-01-01

    Subsurface optical layers distributed at two different depths were investigated in Monterrey Bay, East Sound, and the Black Sea based on spatial statistics of remote sensing reflectance (Rrs). The main objective of this study was to evaluate the use of Rrs(443)/Rrs(490) (hereafter R1) skewness (ψ) as an indicator of vertical optical structure in different marine regions. Measurements of inherent optical properties were obtained using a remotely operated towed vehicle and R1 was theoretically derived from optical profiles. Although the broad range of trophic status and water stratification, a common statistical pattern consisting of lower ψR1--a deeper optical layer was found in all study cases. This variation was attributed to optical changes above the opticline and related to horizontal variability of particulates and spectral variations with depth. We recommend more comparisons in stratified coastal waters with different phytoplankton communities before the use of ψR1 can be generalized as a noninvasive optical proxy for screening depth changes on subsurface optical layers.

  17. Simplest Molecules as Candidates for Precise Optical Clocks

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Bakalov, D.; Korobov, V. I.

    2014-07-01

    The precise measurement of transition frequencies in cold, trapped molecules has applications in fundamental physics, and extremely high accuracies are desirable. We determine suitable candidates by considering the simplest molecules with a single electron, for which the external-field shift corrections can be calculated theoretically with high precision. Our calculations show that H2+ exhibits particular transitions whose fractional systematic uncertainties may be reduced to 5×10-17 at room temperature. We also generalize the method of composite frequencies, introducing tailored linear combinations of individual transition frequencies that are free of the major systematic shifts, independent of the strength of the external perturbing fields. By applying this technique, the uncertainty of the composite frequency is reduced compared to what is achievable with a single transition, e.g., to the 10-18 range for HD+. Thus, these molecules are of metrological relevance for future studies.

  18. Measurement of optical penetration depth and refractive index of human tissue

    NASA Astrophysics Data System (ADS)

    Xie, Shusen; Li, Hui; Li, Buhong

    2003-01-01

    Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluence-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.

  19. Precision optical metrology with alkali-atom isoclinic points

    NASA Astrophysics Data System (ADS)

    Wells, Nathan; Driskell, Travis; Camparo, James

    2016-06-01

    Vapour-phase spectroscopy rarely involves transitions between well-isolated atomic states. Routinely, the spectra comprise overlapped Doppler/pressure-broadened resonances, which leads to a “pulling” of the spectral peaks from their true atomic resonance frequencies. This pulling gives the absorption resonances a temperature sensitivity, which limits their utility for precision spectroscopy when sub-Doppler techniques are not viable. Here, we discuss the use of alkali isoclinic points as a solution to this problem.

  20. Precise evaluation of the Helmholtz equation for optical propagation.

    PubMed

    Pond, John E; Sutton, George W

    2015-01-01

    A precise computational integration of the Helmholtz equation was performed for laser propagation of an electromagnetic wave with no approximations or linearization. This computation integration was performed using 64-bit processors. This is illustrated for a uniform monochromatic beam from a circular aperture that has a uniform intensity. It predicts many Arago spots and near-field intensity fluctuations for a large ratio of aperture size to wavelength and converges to the usual Airy pattern in the far field. PMID:25531618

  1. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  2. VizieR Online Data Catalog: Perseus dust optical depth and column density maps (Zari+, 2016)

    NASA Astrophysics Data System (ADS)

    Zari, E.; Lombardi, M.; Alves, J.; Lada, C.; Bouy, H.

    2015-11-01

    We present optical depth and temperature maps of the Perseus Molecular Cloud, created combining Planck and Herschel data. The maps were obtained using Herschel SPIRE 250um, SPIRE 350um, SPIRE 500um, and, where available, PACS 160um data. The file planckherschelfit.fits reports the results of a full SED fit (with free parameters the optical depth and the temperature), at the SPIRE 500um resolution (36-arcsec). The file planckherschelfit2-a.fits uses the temperature from planckherschelfit.fits and the flux at SPIRE 250um to infer the optical depth with a resolution of 18 arcsec. Finally, the catalogue of Class I/0 protostars reports WISE magnitudes for the sources used to estimate the Schmidt law. (3 data files).

  3. 3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim

    2007-01-01

    To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.

  4. Transmission and division of total optical depth method: A universal calibration method for Sun photometric measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Gong, Wei; Ma, Yingying; Wang, Lunche; Chen, Zhongyong

    2016-03-01

    Sun photometric measurements, which provide accurate and timely information on atmospheric components such as aerosols, clouds, and gases are important to climate research. For regions with heavy and variable aerosol loading, the traditional Langley plot method cannot be applied for Sun photometric instrument calibration, as almost no suitable prolonged periods with stable atmosphere and low-aerosol loading occurs. An improved calibration method, namely, the transmission and division of total optical depth method, is proposed in this study. Atmospheric total optical depth variation information obtained via other methods is transmitted, and period groups with similar atmospheric extinction effects are selected for Langley regression. This method is validated through calibration of a multifilter rotating shadowband radiometer under heavy aerosol-loading conditions. The obtained aerosol optical depth (AOD) compares well with the interpolated AOD from a Cimel Sun-sky radiometer.

  5. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  6. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  7. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  8. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  9. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    USGS Publications Warehouse

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  10. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  11. Increasing the penetration depth for ultrafast laser tissue ablation using glycerol based optical clearing

    NASA Astrophysics Data System (ADS)

    Gabay, Ilan; Subramanian, Kaushik G.; Martin, Chris; Yildirim, Murat; Tuchin, Valery V.; Ben-Yakar, Adela

    2016-03-01

    Background: Deep tissue ablation is the next challenge in ultrafast laser microsurgery. By focusing ultrafast pulses below the tissue surface one can create an ablation void confined to the focal volume. However, as the ablation depth increases in a scattering tissue, increase in the required power can trigger undesired nonlinear phenomena out of focus that restricts our ability to ablate beyond a maximum ablation depth of few scattering lengths. Optical clearing (OC) might reduce the intensity and increase the maximal ablation depth by lowering the refractive index mismatch, and therefore reducing scattering. Some efforts to ablate deeper showed out of focus damage, while others used brutal mechanical methods for clearing. Our clinical goal is to create voids in the scarred vocal folds and inject a biomaterial to bring back the tissue elasticity and restore phonation. Materials and methods: Fresh porcine vocal folds were excised and applied a biocompatible OC agent (75% glycerol). Collimated transmittance was monitored. The tissue was optically cleared and put under the microscope for ablation threshold measurements at different depths. Results: The time after which the tissue was optically cleared was roughly two hours. Fitting the threshold measurements to an exponential decay graph indicated that the scattering length of the tissue increased to 83+/-16 μm, which is more than doubling the known scattering length for normal tissue. Conclusion: Optical clearing with Glycerol increases the tissue scattering length and therefore reduces the energy for ablation and increases the maximal ablation depth. This technique can potentially improve clinical microsurgery.

  12. Measurements of total column ozone, precipitable water content and aerosol optical depth at Sofia

    NASA Astrophysics Data System (ADS)

    Kaleyna, P.; Kolev, N.; Savov, P.; Evgenieva, Ts.; Danchovski, V.; Muhtarov, P.

    2016-03-01

    This article reports the results of a study related to variations in total ozone content, aerosol optical depth, water vapor content and Ångström coefficients from summer campaign carried out in June-July 2014, at two sites in the city of Sofia (Astronomical Observatory in the Borisova Gradina Park and National Institute of Geophysics, Geodesy and Geography (NIGGG)). The results of data analysis indicate the following: Spectral dependence of aerosol optical depth (AOD); Greater AOD values due to greater portion of aerosols; Inverse relationship between the time variations of AOD or water vapor and ozone.

  13. 24 mm depth range discretely swept optical frequency domain imaging in dentistry

    NASA Astrophysics Data System (ADS)

    Kakuma, Hideo; Choi, DongHak; Furukawa, Hiroyuki; Hiro-Oka, Hideaki; Ohbayashi, Kohji

    2009-02-01

    A large depth range is needed if optical coherence tomography (OCT) is to be used to observe multiple teeth simultaneously. A discretely swept optical frequency domain imaging system with a 24-mm depth range was made by using a superstructure-grating distributed Bragg reflector (SSG-DBR) laser as the light source and setting the frequencystep interval to be 3.13 GHz (λ ~ 0.026 nm). The swept wavelength range was 40 nm centered at 1580 nm, the resolution was 29 μm, and the A-scan rate was 1.3 kHz. Application of the OCT system to a dental phantom was demonstrated.

  14. Trace gas emissions from biomass burning inferred from aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Paton-Walsh, Clare; Jones, Nicholas; Wilson, Stephen; Meier, Arndt; Deutscher, Nicholas; Griffith, David; Mitchell, Ross; Campbell, Susan

    2004-03-01

    We have observed strong correlations between simultaneous and co-located measurements of aerosol optical depth and column amounts of carbon monoxide, hydrogen cyanide, formaldehyde and ammonia in bushfire smoke plumes over SE Australia during the Austral summers of 2001/2002 and 2002/2003. We show how satellite-derived aerosol optical depth maps may be used in conjunction with these correlations to determine the total amounts of these gases present in a fire-affected region. This provides the basis of a method for estimating total emissions of trace gases from biomass burning episodes using visible radiances measured by satellites.

  15. Analytical Derivation of the Vegetation Optical Depth from the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Meesters, Antoon G. C. A.; DeJeu, Richard A. M.; Owe, Manfred

    2006-01-01

    A numerical solution for the canopy optical depth in an existing microwave-based land surface parameter retrieval model is presented. The optical depth is derived from the microwave polarization difference index and the dielectric constant of the soil. The original procedure used an approximation in the form of a logarithmic decay function to define this relationship, and was derived through a series of lengthy polynomials. These polynomials had to be recalculated when the scattering albedo or antenna incidence angle changes. The new procedure is computationally more efficient and accurate.

  16. Design and fabrication of an optical probe with a phase filter for extended depth of focus.

    PubMed

    Xing, Jingchao; Kim, Junyoung; Yoo, Hongki

    2016-01-25

    The trade-off between spot size and depth of focus (DOF) often limits the performance of optical systems, such as optical coherence tomography and optical tweezers. Although researchers have proposed various methods to extend the DOF in free-space optics, many are difficult to implement in miniaturized optical probes due to space limitations. In this study, we present an optical probe with an extended DOF using a binary phase spatial filter (BPSF). The BPSF pattern was fabricated on the distal tip of an optical probe with a diameter of 1 mm by replica molding soft lithography, which can be easily implemented in a miniaturized optical probe due to its simple configuration. We optimized the BPSF pattern to enhance DOF, spot diameter, and light efficiency. To evaluate the fabricated endoscopic optical probe, we measured the three-dimensional point spread function of the BPSF probe and compared it with a probe without BPSF. The BPSF probe has a spot diameter of 3.56 μm and a DOF of 199.7 μm, while the probe without BPSF has a spot diameter of 3.69 μm and a DOF of 73.9 μm, representing a DOF gain of 2.7. We anticipate that this optical probe can be used in biomedical applications, including optical imaging and optical trapping techniques. PMID:26832486

  17. Average depth of blood vessels in skin and lesions deduced by optical fiber spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Saidi, Iyad S.; Tittel, Frank K.

    1994-09-01

    The average depth of blood vessels in a cutaneous site, either normal or diseased, can be specified by a simple rapid noninvasive optical measurement. An optical fiber spectrophotometer delivers white light via optical fibers to a skin site. The light reflected by tissue scattering and successfully collected by optical fibers is carried to a diode array spectrophotometer for spectral analysis. The reflectance spectrum is analyzed to specify the component of the optical density (OD) spectrum which is attributed to the cutaneous blood. Then the ratio of the OD420 nm/OD585 nm provides a quantitative indication of the average depth of the blood in the skin site. The purple light (420 nm) less easily penetrates the skin to sample the cutaneous blood content than does the yellow light (585 nm). The calibration of the measurement was accomplished by Monte Carlo simulations of measurements on skin with a layer of blood at various depths. In a study of 47 neonates, the amount of blood content ranged from 4 - 12 mg hemoglobin/g tissue (equivalent to 0.8 - 2.4% of the skin volume being whole blood), and the average depth of blood ranged from 250 - 425 micrometers .

  18. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

    PubMed

    Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

    2016-05-16

    We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1. PMID:27409898

  19. Performance of reduced bit-depth acquisition for optical frequency domain imaging

    PubMed Central

    Goldberg, Brian D.; Vakoc, Benjamin J.; Oh, Wang-Yuhl; Suter, Melissa J.; Waxman, Sergio; Freilich, Mark I.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    High-speed optical frequency domain imaging (OFDI) has enabled practical wide-field microscopic imaging in the biological laboratory and clinical medicine. The imaging speed of OFDI, and therefore the field of view, of current systems is limited by the rate at which data can be digitized and archived rather than the system sensitivity or laser performance. One solution to this bottleneck is to natively digitize OFDI signals at reduced bit depths, e.g., at 8-bit depth rather than the conventional 12–14 bit depth, thereby reducing overall bandwidth. However, the implications of reduced bit-depth acquisition on image quality have not been studied. In this paper, we use simulations and empirical studies to evaluate the effects of reduced depth acquisition on OFDI image quality. We show that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. Images of a human coronary artery acquired in vivo at 8-bit depth are presented and compared with images at higher bit-depth acquisition. PMID:19770914

  20. Precise digital demodulation for fiber optic interferometer sensors

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei; Berezhnoi, Andrei; Kudryashov, Aleksei; Liokumovich, Leonid

    2016-03-01

    Different methods are used in the interferometer sensors for target signal extraction. Digital technologies provide new opportunities for precise signal detection. We have developed the principle of signal demodulation using an additional harmonic phase modulation and digital signal processing. The principle allows implementation of processing algorithms using different ratios between modulation and discretization frequencies. The expressions allowing calculation of the phase difference using the inverse trigonometric functions were derived. The method was realized in LabVIEW programming environment and was demonstrated for various signal shapes.

  1. Fabrication of precision optics using an imbedded reference surface

    DOEpatents

    Folta, James A.; Spiller, Eberhard

    2005-02-01

    The figure of a substrate is very precisely measured and a figured-correcting layer is provided on the substrate. The thickness of the figure-correcting layer is locally measured and compared to the first measurement. The local measurement of the figure-correcting layer is accomplished through a variety of methods, including interferometry and fluorescence or ultrasound measurements. Adjustments in the thickness of the figure-correcting layer are made until the top of the figure-correcting layer matches a desired figure specification.

  2. Optical absorption depth profiling of photodegraded poly(vinylchloride) (PVC) films by quantitative photothermal deflection technique

    NASA Astrophysics Data System (ADS)

    Fu, S.-W.; Power, J. F.; Nepotchatykh, O. V.

    2000-05-01

    An improved photothermal beam deflection technique is applied for optical absorption depth profiling of UV photodegraded PVC films, for nondestructive evaluation of their decomposition mechanism. A new model-based on diffraction theory is used to describe the photothermal response (with bicell recording), induced by impulse irradiation of a depth dependent array of thin planar optical absorbers approximating the sample's depth profile. Improved techniques of alignment, sample preparation and quantitative deconvolution of the bicell impulse response have increased the signal repeatability and reduced the principal bias errors affecting this ill posed problem. By this technique and a stable solution of the inverse problem, the absorption coefficient depth profile is accurately reconstructed in PVC films. Experimental depth profiles were confirmed against destructive techniques run on identical samples of the degraded material. An excellent agreement was found between depth profiles recovered using the mirage effect and these reference methods. Observed absorption profiles were fully consistent with known patterns of depth dependent PVC degradation under nitrogen and oxygen atmospheres.

  3. Mirage effect spectrometry and light profile microscopy: Two views of an optical depth profile (abstract)

    NASA Astrophysics Data System (ADS)

    Power, J. F.; Fu, S. W.; Nepotchatykh, O. V.

    2003-01-01

    Photothermal depth profiling techniques are well adapted for the inspection of optically absorbing features on the length scale of 1-100 μm in a variety of media. However, the depth profiling mechanism intrinsic to thermal wave imaging is inherently ill posed [J. F. Power, AIP Conf. Proc. 463, 3 (1999)], and suffers obvious disadvantages such as sensitivity to experimental errors (requiring regularization) and subsurface broadening of the regularized depth profiles. Recently, through the introduction of light profile microscopy (LPM) an alternate method of optical inspection was made available for depth profiling optically absorbing, scattering, and luminescent structures on this length scale [J. F. Power and S. W. Fu, Appl. Spectros. 53, 1507 (1999); J. F. Power and S. W. Fu, U.S. Patent Pending]. LPM inspects a thin film under test by directing a laser beam through the material along the depth axis, parallel to a polished cross-sectional viewing surface. Luminescence and elastic scatter excited in the beam volume is imaged by a microscope aligned orthogonal to the beam axis. The images obtained by this method showed striking depth contrast in a variety of materials with subsurface interfaces and depth variations of luminescence yield. When implemented in dual beam mode [J. F. Power and S. W. Fu, U.S. Patent Pending; J. F. Power and S. W. Fu, (unpublished)] with an associated mathematical method, LPM may be used to quantitatively resolve depth variable optical absorption from light scattering and luminescence efficiency. In contrast to photothermal methods, the LPM technique is well posed. LPM was evaluated in tandem with mirage effect spectrometry (in normal deflection mode with bicell detection) [J. F. Power, S. W. Fu, and M. A. Schweitzer, Appl. Spectros. 54, 110 (2000)], to determine the effective use of each technique in analysis problems on complex materials. This study used samples with known depth variations of optical properties including homogeneous

  4. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  5. Study on distribution of aerosol optical depth in Chongqing urban area

    NASA Astrophysics Data System (ADS)

    Yang, Shiqi; Liu, Can; Gao, Yanghua

    2015-12-01

    This paper selected 6S (second simulation of the satellite signal in the solar spectrum) model with dark pixel method to inversion aerosol optical depth by MODIS data, and got the spatial distribution and the temporal distribution of Chongqing urban area. By comparing with the sun photometer and API data, the result showed that the inversion method can be used in aerosol optical thickness monitoring in Chongqing urban area.

  6. Antenna pointing compensation based on precision optical measurement techniques

    NASA Technical Reports Server (NTRS)

    Schumacher, L. L.; Vivian, H. C.

    1988-01-01

    The pointing control loops of the Deep Space Network 70 meter antennas extend only to the Intermediate Reference Structure (IRS). Thus, distortion of the structure forward of the IRS due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade blind pointing accuracy. A system is described which can provide real time bias commands to the pointing control system to compensate for environmental effects on blind pointing performance. The bias commands are computed in real time based on optical ranging measurements of the structure from the IRS to a number of selected points on the primary and secondary reflectors.

  7. INTEGRATING LIDAR AND SATELLITE OPTICAL DEPTH WITH AMBIENT MONITORING FOR 3-DIMENSIONAL PARTICULATE CHARACTERIZATION

    EPA Science Inventory

    A combination of in-situ PM2.5, sunphotometers, upward pointing lidar and satellite aerosol optical depth (AOD) instruments have been employed to better understand variability in the correlation between AOD and PM2.5 at the surface. Previous studies have shown good correlation be...

  8. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    EPA Science Inventory

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  9. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  10. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea

    NASA Astrophysics Data System (ADS)

    Ogunjobi, K. O.; He, Z.; Kim, K. W.; Kim, Y. J.

    Spectral daily aerosol optical depths (τ a λ) estimated from a multi-filter radiometer over Kwangju were analyzed from January 1999 to August 2001 (total of 277 days). Optical depths obtained showed a pronounced temporal trend, with maximum dust loading observed during spring time and biomass burning aerosol in early summer and autumn of each year. Result indicates that τ a501 nm increased from spring average of 0.45±0.02 to values >0.7 on 7 April 2000, and 13 April 2001. Daily mean spectral variations in the Ångström exponents α were also computed for various episode periods under consideration. A dramatic change in α value is noted especially at high aerosol optical depth when coarse mode aerosol dominates over the influence of accumulation-mode aerosol. High values of τ a λ associated with high values of α in early June and October are characteristics of smoke aerosol predominantly from biomass burning aerosol. Also, volume size distribution is investigated for different pollution episodes with result indicating that the peak in the distribution of the coarse mode volume radius and fine mode particles of dust and biomass-burning aerosol respectively increases as aerosol optical depth increases at Kwangju. Air-mass trajectory were developed on 7-8 April and 19-20 October, 2000 to explain the transport of Asian dust particle and biomass burning to Kwangju.

  11. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  12. Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”

    SciTech Connect

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2014-02-16

    In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

  13. Direct numerical modeling of Saturn's dense rings at high optical depth

    NASA Astrophysics Data System (ADS)

    Richardson, Derek C.; Ballouz, Ronald-Louis; Morishima, Ryuji

    2015-11-01

    Saturn's B ring exhibits complex optical depth structure of uncertain origin. We are investigating the extent to which viscous overstability and/or gravitational wakes can give rise to this structure, via discrete particle numerical simulations. We use the parallelized N-body tree code pkdgrav with a soft-sphere collision model for detailed treatment of particle collisional physics, including multi-point persistent contact with static, sliding, rolling, and twisting friction forces. This enables us to perform local simulations with millions of particles, realistic sizes, and configurable material properties in high-optical-depth ring patches with near-linear scaling across multiple processors. Recent code improvements to the collision search algorithm provide a further roughly factor of 2 speedup. We present results from the first year of this study in which a library of simulations with different optical depths was constructed. Parameters explored include normal (dynamical) optical depths between 0.5 (approximately 100,000 particles) and 4.0 (approximately 8.3 million particles) in ring patches of dimension 6 by 6 critical Toomre wavelengths, using material parameters ranging from highly elastic smooth spheres to rough "gravel"-like particles. We also vary the particle internal densities to enhance (low density)/suppress (high density) viscous overstability in order to compare against gravitational instability in these different regimes. These libraries will be used to carry out simulated observations for comparison with Cassini CIRS temperature measurements and UVIS occulation data of Saturn's dense rings.

  14. Calculation of optical depths from an integral of the Voigt function

    NASA Technical Reports Server (NTRS)

    Milman, A. S.

    1978-01-01

    The optical depth along a vertical path in an atmosphere in hydrostatic equilibrium can be calculated from an integral of the Voigt function for the case where the absorption is due to spectral lines. Series expansions are presented that allow rapid evaluation of this integral over all values of the independent variables, frequency and pressure.

  15. Temporally-stable active precision mount for large optics.

    PubMed

    Reinlein, Claudia; Damm, Christoph; Lange, Nicolas; Kamm, Andreas; Mohaupt, Matthias; Brady, Aoife; Goy, Matthias; Leonhard, Nina; Eberhardt, Ramona; Zeitner, Uwe; Tünnermann, Andreas

    2016-06-13

    We present a temporally-stable active mount to compensate for manufacturing-induced deformations of reflective optical components. In this paper, we introduce the design of the active mount, and its evaluation results for two sample mirrors: a quarter mirror of 115 × 105 × 9 mm3, and a full mirror of 228 × 210 × 9 mm3. The quarter mirror with 20 actuators shows a best wavefront error rms of 10 nm. Its installation position depending deformations are addressed by long-time measurements over 14 weeks indicating no significance of the orientation. Size-induced differences of the mount are studied by a full mirror with 80 manual actuators arranged in the same actuator pattern as the quarter mirror. This sample shows a wavefront error rms of (27±2) nm over a measurement period of 46 days. We conclude that the developed mount is suitable to compensate for manufacturing-induced deformations of large reflective optics, and likely to be included in the overall systems alignment procedure. PMID:27410369

  16. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    PubMed Central

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-01-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids. PMID:26576666

  17. High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM

    NASA Astrophysics Data System (ADS)

    Masson, Aurore; Escande, Paul; Frongia, Céline; Clouvel, Grégory; Ducommun, Bernard; Lorenzo, Corinne

    2015-11-01

    Today, Light Sheet Fluorescence Microscopy (LSFM) makes it possible to image fluorescent samples through depths of several hundreds of microns. However, LSFM also suffers from scattering, absorption and optical aberrations. Spatial variations in the refractive index inside the samples cause major changes to the light path resulting in loss of signal and contrast in the deepest regions, thus impairing in-depth imaging capability. These effects are particularly marked when inhomogeneous, complex biological samples are under study. Recently, chemical treatments have been developed to render a sample transparent by homogenizing its refractive index (RI), consequently enabling a reduction of scattering phenomena and a simplification of optical aberration patterns. One drawback of these methods is that the resulting RI of cleared samples does not match the working RI medium generally used for LSFM lenses. This RI mismatch leads to the presence of low-order aberrations and therefore to a significant degradation of image quality. In this paper, we introduce an original optical-chemical combined method based on an adaptive SPIM and a water-based clearing protocol enabling compensation for aberrations arising from RI mismatches induced by optical clearing methods and acquisition of high-resolution in-depth images of optically cleared complex thick samples such as Multi-Cellular Tumour Spheroids.

  18. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    SciTech Connect

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  19. Laboratory atomic transition data for precise optical quasar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Berengut, Julian C.

    2014-02-01

    Quasar spectra reveal a rich array of important astrophysical information about galaxies which intersect the quasar line of sight. They also enable tests of the variability of fundamental constants over cosmological time- and distance-scales. Key to these endeavours are the laboratory frequencies, isotopic and hyperfine structures of various metal-ion transitions. Here, we review and synthesize the existing information about these quantities for 43 transitions which are important for measuring possible changes in the fine-structure constant, α, using optical quasar spectra, i.e. those of Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Ni and Zn. We also summarize the information currently missing that precludes more transitions being used. We present an up-to-date set of coefficients, q, which define the sensitivity of these transitions to variations in α. New calculations of isotopic structures and q-coefficients are performed for Si II and Ti II, including Si II λ1808 and Ti IIλλ1910.6/1910.9 for the first time. Finally, simulated absorption-line spectra are used to illustrate the systematic errors expected if the isotopic/hyperfine structures are omitted from profile fitting analyses. To ensure transparency, repeatability and currency of the data and calculations, we supply a comprehensive data base as Supporting Information. This will be updated as new measurements and calculations are performed.

  20. Total Optical Depth Analysis for NO2, O3 and Aerosols by a Multi-Filter Shadowband Radiometer

    NASA Technical Reports Server (NTRS)

    Williamson, Lorenzo; Mebane, Lloyd; Brathwaite, Kevin; Craig, R.

    2000-01-01

    The main focus of this research is the retrieval of tropospheric aerosol information using a Multi-filter Rotating Shadowband Radiometer, Model MFR-7, placed on the roof of the Science Building at Medgar Evers College. This instrument makes precise measurements of atmospheric extinction of the direct solar beam simultaneously at six wavelengths (475, 500, 615, 670, 840 and 940 nm) at one minute intervals throughout the day. We are interested in measuring the changes in the optical depth of ambient aerosols, mass, effective particle size, aerosol size distribution, and chemical composition of ambient particulate matter in the Greater New York City Area. Results will be compared with data obtained by A. Lacis, B. Carlson and B. Cairns at the NASA Goddard Institute for Space Studies.

  1. Terminal speed of a gaseous stratus with finite optical depth over a luminous flat source

    NASA Astrophysics Data System (ADS)

    Masuda, Takao; Fukue, Jun

    2016-06-01

    We reexamine the terminal speed of a moving stratus irradiated by an infinite flat source, considering relativistic radiative transfer in the stratus. For the case of a particle, V. Icke (1989, A&A, 216, 294) analytically derived the terminal speed of (4-√{7})c/3 ˜ 0.45 c, whereas the terminal speed of a stratus with finite optical depth is calculated under the Eddington approximation (J. Fukue, 2014, PASJ, 66, 13), and becomes larger up to 0.7 c in the optically thin limit. In this paper, we numerically calculate radiative transfer in the stratus without the Eddington approximation, and obtain the terminal speed. In the optically thick limit the terminal speed approaches 0.47 c. In the optically thin limit, in contrast to the previous analytical study, it becomes small as the optical depth decreases, and approaches 0.26 c. This is due to the anisotropic effect of the radiation field in the optically thin regime.

  2. Terminal speed of a gaseous stratus with finite optical depth over a luminous flat source

    NASA Astrophysics Data System (ADS)

    Masuda, Takao; Fukue, Jun

    2016-04-01

    We reexamine the terminal speed of a moving stratus irradiated by an infinite flat source, considering relativistic radiative transfer in the stratus. For the case of a particle, V. Icke (1989, A&A, 216, 294) analytically derived the terminal speed of (4-√{7})c/3 ˜ 0.45 c, whereas the terminal speed of a stratus with finite optical depth is calculated under the Eddington approximation (J. Fukue, 2014, PASJ, 66, 13), and becomes larger up to 0.7 c in the optically thin limit. In this paper, we numerically calculate radiative transfer in the stratus without the Eddington approximation, and obtain the terminal speed. In the optically thick limit the terminal speed approaches 0.47 c. In the optically thin limit, in contrast to the previous analytical study, it becomes small as the optical depth decreases, and approaches 0.26 c. This is due to the anisotropic effect of the radiation field in the optically thin regime.

  3. Influence of the aerosol vertical distribution on the retrievals of aerosol optical depth from satellite radiance measurements

    NASA Astrophysics Data System (ADS)

    Quijano, Ana Lía; Sokolik, Irina N.; Toon, Owen B.

    2000-11-01

    We investigate the importance of the layered vertical distribution of absorbing and non-absorbing tropospheric aerosols for the retrieval of the aerosol optical depth from satellite radiances measured at visible wavelengths at a single viewing angle. We employ lidar and in-situ measurements of aerosol extinction coefficients and optical depths to model radiances which would have been observed by a satellite. Then, we determine the aerosol optical depth that would produce the observed radiance under various sets of assumptions which are often used in current retrieval algorithms. We demonstrate that, in the presence of dust or other absorbing aerosols, the retrieved aerosol optical depth can underestimate or overestimate the observed optical depth by a factor of two or more depending on the choice of an aerosol optical model and the relative position of different aerosol layers. The presence of undetected clouds provides a further complication.

  4. High precision deflection measurement of microcantilever in an optical pickup head based atomic force microscopy

    SciTech Connect

    Lee, Sang Heon

    2012-11-15

    This paper presents the methodology to measure the precise deflection of microcantilever in an optical pickup head based atomic force microscopy. In this paper, three types of calibration methods have been proposed: full linearization, sectioned linearization, and the method based on astigmatism. In addition, the probe heads for easy calibration of optical pickup head and fast replacement of optical pickup head have been developed. The performances of each method have been compared through a set of experiments and constant height mode operation which was not possible in the optical pickup head based atomic force microscopy has been carried out successfully.

  5. Regional Aerosol Optical Depth Characteristics from Satellite Observations: ACE-1, TARFOX and ACE-2 Results

    NASA Technical Reports Server (NTRS)

    Durkee, P. A.; Nielsen, K. E.; Smith, P. J.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Holben, B. N.; Tomasi, C.; Vitale, V.; Collins, D.

    1999-01-01

    Analysis of the aerosol properties during 3 recent international field campaigns ACE-1, TARFOX and ACE-2 are described using satellite retrievals from NOAA AVHRR data. Validation of the satellite retrieval procedure is performed with airborne, shipboard, and land-based sunphotometry during ACE-2. The intercomparison between satellite and surface optical depths has a correlation coefficient of 0.93 for 630 nm wavelength and 0.92 for 860 nm wavelength, The standard error of estimate is 0.025 for 630 nm wavelength and 0.023 for 860 nm wavelength. Regional aerosol properties are examined in composite analysis of aerosol optical properties from the ACE-1, TARFOX and ACE-2 regions. ACE-1 and ACE-2 regions have strong modes in the distribution of optical depth around 0.1, but the ACE-2 tails toward higher values yielding an average of 0.16 consistent with pollution and dust aerosol intrusions. The TARFOX region has a noticeable mode of 0.2, but has significant spread of aerosol optical depth values consistent with the varied continental aerosol constituents off the eastern North American Coast.

  6. MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias

    2014-08-01

    Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.

  7. A study on ultra-precision machining technique for Al6061-T6 to fabricate space infrared optics

    NASA Astrophysics Data System (ADS)

    Ryu, Geun-man; Lee, Gil-jae; Hyun, Sang-won; Sung, Ha-yeong; Chung, Euisik; Kim, Geon-hee

    2014-08-01

    In this paper, analysis of variance on designed experiments with full factorial design was applied to determine the optimized machining parameters for ultra-precision fabrication of the secondary aspheric mirror, which is one of the key elements of the space cryogenic infrared optics. A single point diamond turning machine (SPDTM, Nanotech 4μpL Moore) was adopted to fabricate the material, AL6061-T6, and the three machining parameters of cutting speed, feed rate and depth of cut were selected. With several randomly assigned experimental conditions, surface roughness of each condition was measured by a non-contact optical profiler (NT2000; Vecco). As a result of analysis using Minitab, the optimum cutting condition was determined as following; cutting speed: 122 m/min, feed rate: 3 mm/min and depth of cut: 1 μm. Finally, a 120 mm diameter aspheric secondary mirror was attached to a particularly designed jig by using mixture of paraffin and wax and successfully fabricated under the optimum machining parameters. The profile of machined surface was measured by a high-accuracy 3-D profilometer(UA3P; Panasonic) and we obtained the geometrical errors of 30.6 nm(RMS) and 262.4 nm(PV), which satisfy the requirements of the space cryogenic infrared optics.

  8. Development of Wet-Etching Tools for Precision Optical Figuring

    SciTech Connect

    Rushford, M C; Dixit, S N; Hyde, R; Britten, J A; Nissen, J; Aasen, M; Toeppen, J; Hoaglan, C; Nelson, C; Summers, L; Thomas, I

    2004-01-27

    This FY03 final report on Wet Etch Figuring involves a 2D thermal tool. Its purpose is to flatten (0.3 to 1 mm thickness) sheets of glass faster thus cheaper than conventional sub aperture tools. An array of resistors on a circuit board was used to heat acid over the glass Optical Path Difference (OPD) thick spots and at times this heating extended over the most of the glass aperture. Where the acid is heated on the glass it dissolves faster. A self-referencing interferometer measured the glass thickness, its design taking advantage of the parallel nature and thinness of these glass sheets. This measurement is used in close loop control of the heating patterns of the circuit board thus glass and acid. Only the glass and acid were to be moved to make the tool logistically simple to use in mass production. A set of 4-circuit board, covering 80 x 80-cm aperture was ordered, but only one 40 x 40-cm board was put together and tested for this report. The interferometer measurement of glass OPD was slower than needed on some glass profiles. Sometimes the interference fringes were too fine to resolve which would alias the sign of the glass thickness profile. This also caused the phase unwrapping code (FLYNN) to struggle thus run slowly at times taking hours, for a 10 inch square area. We did extensive work to improve the speed of this code. We tried many different phase unwrapping codes. Eventually running (FLYNN) on a farm of networked computers. Most of the work reported here is therefore limited to a 10-inch square aperture. Researched into fabricating a better interferometer lens from Plexiglas so to have less of the scattered light issues of Fresnel lens groves near field scattering patterns, this set the Nyquest limit. There was also a problem with the initial concept of wetting the 1737 glass on its bottom side with acid. The wetted 1737 glass developed an Achromatic AR coating, spoiling the reflection needed to see glass thickness interference fringes. In response

  9. Depth-resolved holographic optical coherence imaging using a high-sensitivity photorefractive polymer device

    NASA Astrophysics Data System (ADS)

    Salvador, M.; Prauzner, J.; Köber, S.; Meerholz, K.; Jeong, K.; Nolte, D. D.

    2008-12-01

    We present coherence-gated holographic imaging using a highly sensitive photorefractive (PR) polymer composite as the recording medium. Due to the high sensitivity of the composite holographic recording at intensities as low as 5 mW/cm2 allowed for a frame exposure time of only 500ms. Motivated by regenerative medical applications, we demonstrate optical depth sectioning of a polymer foam for use as a cell culture matrix. An axial resolution of 18 μm and a transverse resolution of 30 μm up to a depth of 600 μm was obtained using an off-axis recording geometry.

  10. Linking Lyα and Low-ionization Transitions at Low Optical Depth

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-08-01

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-13293 and GO-12928.

  11. Optical depth retrievals from Delta-T SPN1 measurements of broadband solar irradiance at ground

    NASA Astrophysics Data System (ADS)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick

    2016-04-01

    The SPN1 radiometer, manufactured by Delta-T Devices Ltd., is an instrument designed for the measurement of global solar irradiance and its components (diffuse, direct) at ground level. In the present study, the direct irradiance component has been used to retrieve an effective total optical depth, by applying the Beer-Lambert law to the broadband measurements. The results have been compared with spectral total optical depths derived from two Cimel CE318 and Prede POM01 sun-sky radiometers, located at the Burjassot site in Valencia (Spain), during years 2013 - 2015. The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. In turn, the Beer-Lambert law has been applied to the broadband direct solar component to obtain an effective total optical depth, representative of the total extinction in the atmosphere. For the assessment of the total optical depth values retrieved with the SPN1, two different sun-sky radiometers (Cimel CE318 and Prede POM01L) have been employed. Both instruments belong to the international networks AERONET and SKYNET. The modified SUNRAD package has been applied in both Cimel and Prede instruments. Cloud affected data has been removed by applying the Smirnov cloud-screening procedure in the SUNRAD algorithm. The broadband SPN1 total optical depth has been analysed by comparison with the spectral total optical depth from the sun-sky radiometer measurements at wavelengths 440, 500, 675, 870 and 1020 nm. The slopes and intercepts have been estimated to be 0.47 - 0.98 and 0.055 - 0.16 with increasing wavelength. The average correlation coefficients and RMSD were 0.80 - 0.83 and 0.034 - 0.036 for all the channels. The

  12. Comparison of Atmospheric Column Optical Depth Measurements for Urban Reno, NV with Three Different Sun Photometers and In Situ Measurements Combined with Boundary Layer Height Estimation

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Arnott, W. P.; Moosmuller, H.; Sumlin, B.; Karr, D.

    2011-12-01

    Reno, Nevada, USA is located in a mountain valley often characterized by very dry conditions, clear sky and red sunsets during the summer season, with rare incursions of monsoonal moisture. This city is subject to moderately strong nocturnal inversions nearly every day in summer. Urban aerosols, wind blown dust, as well as occasional biomass burning smoke from natural and non-natural fires all contribute to the optical depth. Because of its geographical position, drastic changes in weather conditions and variations in aerosol optical properties make Reno an excellent location for evaluating measurements of aerosol optical depth in order to determine particulate air pollution concentration as well as to provide input for models of atmospheric radiation transfer and evaluation of satellite-based aerosol optical sensing measurements. Aerosol optical depth can be calculated by in situ photoacoustic measurements of aerosol light absorption and reciprocal nephelometer scattering coefficients and estimation of aerosol mixing height. LED-based hand-held sun photometers are commonly used as inexpensive instruments for informal networks. However, the LED emission wavelength maximum and bandwidth are higher and narrower than the LED reception wavelength spectrum, necessitating empirical determination of an equivalent wavelength. The manually operated spectrometer and Cimel sun photometer measurements provide the most accurate and precise column aerosol optical depth. This paper makes a comparison between these four instruments for measurements obtained during the summer and fall seasons in order to study how the total and aerosol optical depth change during dry and moist conditions. Ångström exponents of extinction and absorption are also analyzed to provide insight on aerosol size distribution and composition, respectively.

  13. Optical-precision alignment of diffraction grating mold in moire interferometry

    NASA Technical Reports Server (NTRS)

    Joh, D.

    1992-01-01

    A high-precision optical method is presented for aligning diffraction grating molds with the edges of specimens in moire interferometry. The alignment fixture is simple and convenient to operate. The conventional method of grating-mold alignment has a wide band of uncertainty in the range of error which is not compatible with the required precision of high-sensitivity moire interferometry. Following a description of the alignment technique, both the single-edge and parallel-edge guide bar optical alignment methods are introduced and compared.

  14. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  15. High-precision spectroscopy of ultracold molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McGuyer, B. H.; McDonald, M.; Iwata, G. Z.; Tarallo, M. G.; Grier, A. T.; Apfelbeck, F.; Zelevinsky, T.

    2015-05-01

    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88Sr2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.

  16. Grain depth distribution and the reality of optical transient candidates near the GRB 790325b position

    NASA Astrophysics Data System (ADS)

    Hudec, R.

    1993-03-01

    The method of grain depth distribution analysis has recently been suggested as a means of verifying the genuine astrophysical nature of optical candidates for gamma-ray burst sources. Application of this technique has raised doubts about the reality of several such candidates, including the multiple candidate near gamma-ray burst source 790325b. We analyze those results here on the basis of experience gained from the optical search for optical transients. It is concluded that the results are not convincing and that the true astrophysical origin of the optical candidate for gamma-ray source 790325b can neither be definitely proven nor definitely discarded on the basis of the present evidence.

  17. Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography

    PubMed Central

    Guan, Guangying; Reif, Roberto; Huang, Zhihong; Wang, Ruikang K.

    2011-01-01

    A model that describes the concentration of photothermal (light-to-heat converters) compounds as a function of depth in a turbid medium is developed. The system consists of a pump laser (808 nm modulated at 400 Hz), which heats a photothermal compound, and a phase sensitive spectral domain optical coherence tomography system, which detects the changes in the optical path length of the sample induced by the temperature increase. The model is theoretically derived and the coefficients are empirically determined using solid homogeneous gel phantoms. The model is validated by reconstructing the concentration of a photothermal compound in thick single and double layer solid phantoms. PMID:22191920

  18. Flexible, non-contact and high-precision measurements of optical components

    NASA Astrophysics Data System (ADS)

    Beutler, A.

    2016-06-01

    A high-accuracy cylindrical coordinate measuring instrument developed for the measurement of optical components is presented. It is equipped with an optical point sensor system including a high aperture probe. This setup allows measurements to be performed with high accuracy in a flexible way. Applications include the measurement of the topography of high-precision aspheric and freeform lenses and diffractive structures. High measuring speeds guarantee the implementation in a closed-loop production process.

  19. Engineering Stark Potentials for Precision Measurements: Optical Lattice Clock and Electrodynamic Surface Trap

    SciTech Connect

    Katori, Hidetoshi; Takamoto, Masao; Hachisu, Hidekazu; Fujiki, Jun; Higashi, Ryoichi; Yasuda, Masami; Kishimoto, Tetsuo

    2005-05-05

    Employing the engineered electric fields, we demonstrate novel platforms for precision measurements with neutral atoms. (1) Applying the light shift cancellation technique, atoms trapped in an optical lattice reveal 50-Hz-narrow optical spectrum, yielding nearly an order of magnitude improvement over existing neutral-atom-based clocks. (2) Surface Stark trap has been developed to manipulate scalar atoms that are intrinsically robust to decoherence.

  20. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    SciTech Connect

    Berkowitz, C.M.; Ghan, S.J.; Benkovitz, C.M.; Wagener, R.; Nemesure, S.; Schwartz, S.E.

    1993-11-01

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations.

  1. Optical depth measurements by shadow-band radiometers and their uncertainties

    SciTech Connect

    Alexandrov, Mikhail; Kiedron, Peter; Michalsky, Joseph J.; Hodges, Gary; Flynn, Connor J.; Lacis, Andrew A.

    2007-11-20

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the U.S. include DOE Atmospheric Radiation Measurement (ARM) Program, USDA UV-B Monitoring and Research Program, NOAA Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). In this paper we discuss a number of technical issues specific for shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as some data processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  2. Optical depth measurements by shadow-band radiometers and their uncertainties

    SciTech Connect

    Alexandrov, Mikhail; Kiedron, Peter; Michalsky, Joseph J.; Hodges, Gary; Flynn, Connor J.; Lacis, Andrew A.

    2007-11-15

    Shadow-band radiometers in general, and especially the Multi-Filter Rotating Shadow-band Radiometer (MFRSR), are widely used for atmospheric optical depth measurements. The major programs running MFRSR networks in the U.S. include DOE Atmospheric Radiation Measurement (ARM) Program, USDA UV-B Monitoring and Research Program, NOAA Surface Radiation (SURFRAD) Network, and NASA Solar Irradiance Research Network (SIRN). In this paper we discuss a number of technical issues specific for shadow-band radiometers and their impact on the optical depth measurements. These problems include instrument tilt and misalignment, as well as somedata processing artifacts. Techniques for data evaluation and automatic detection of some of these problems are described.

  3. Constructing portable depth from defocus optical profilometers for surface roughness evaluation

    NASA Astrophysics Data System (ADS)

    Klein, Robert; Steiner, Matthew; Suhring, William; Agnew, Sean; Fitz-Gerald, James

    2015-03-01

    Hand portability of non-contact optical profilometers represents a significant technological breakthrough for wide-area industrial processes such as grit blasting, capable of replacing mechanical styluses and providing real time assessment of surface roughness without damaging sampled areas. This paper demonstrates the possibility of building depth from defocus profilometers using off the shelf components, allowing for improved portability, affordability, and customization compared to similar table-top commercial products. An outlined demonstration device is proven to be capable of matching the performance of an ISO/NIST standardized mechanical profilometer for isotropic rough surfaces in the 2-10 μm Ra range with R2 > 0.96, and important considerations for each component of the assembly are addressed in detail. A prototype for a next generation liquid-lens based depth from defocus optical profilometer is also presented along with the technological obstacles found to be associated with such devices.

  4. Research on the Relationship Between Cloud Temperature and Optical Depth Using Rotational and Vibrational Raman Lidar

    NASA Astrophysics Data System (ADS)

    Su, Jia; McCormick, M. Patrick; Lei, Liqiao

    2016-06-01

    Clouds play a key role in the climate system, for they can result in a warming or a cooling effect according to their characteristics and altitudes. Raman Lidars have been proven to be a very useful remote sensing tool to characterize cloud properties and locations. In this paper, cloud temperature and optical depth are obtained using rotational Raman (RR) and vibrational Raman techniques. Results of cloud temperature and optical depth (OD) observed by the Hampton University (HU) Rotational-Vibrational Raman Lidar are presented. The paper discusses the influence of cloud OD on temperature of the cloud base and top. From these measurements, the relation of low-altitude cloud OD and temperature is summarized. These analyses are unique in that they combine simultaneous measurements of these quantities that can lead to an improvement in the understanding of cloud radiation transfer and effects.

  5. Ultra-long scan depth optical coherence tomography for imaging the anterior segment of human eye

    NASA Astrophysics Data System (ADS)

    Zhu, Dexi; Shen, Meixiao; Leng, Lin

    2012-12-01

    Spectral domain optical coherence tomography (SD-OCT) was developed in order to image the anterior segment of human eye. The optical path at reference arm was switched to compensate the sensitivity drop in OCT images. An scan depth of 12.28 mm and an axial resolution of 12.8 μm in air were achieved. The anterior segment from cornea to posterior surface of crystalline lens was clearly imaged and measured using this system. A custom designed Badal optometer was coupled into the sample arm to induce the accommodation, and the movement of crystalline lens was traced after the image registration. Our research demonstrates that SD-OCT with ultra-long scan depth can be used to image the human eye for accommodation research.

  6. Burn depth determination in human skin using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pierce, Mark C.; Sheridan, Robert L.; Park, Boris H.; Cense, Barry; de Boer, Johannes F.

    2003-07-01

    Accurate evaluation of the depth of injury in burn victims is of considerable practical value to the surgeon, both for initial determination of resuscitation fluid requirements, and in deciding whether excision and closure of the wound is necessary. Currently, burn depth is most accurately evaluated by visual inspection, though decisions concerning treatment may not be possible for a number of days post-injury. As part of our ongoing efforts to provide an objective, quantitative method for burn depth determination, we present here the results of a study using polarization-sensitive optical coherence tomography (PS-OCT) to detect and measure thermally induced changes in collagen birefringence in skin excised from burn patients. We find that PS-OCT is capable of imaging and quantifying significantly reduced birefringence in burned human skin.

  7. Features of aerosol spectral optical depth at a tropical urban environment at Pune

    NASA Astrophysics Data System (ADS)

    Aher, G. R.; Shantikumar Singh, N.; Agashe, V. V.

    2000-08-01

    The authors used a sun-tracking multiple wavelength radiometer to study characteristics of atmospheric aerosols from Pune University campus. The study shows that there is a strong influence of weather parameters like relative humidity and surface wind and atmospheric boundary layer processes such as capped inversion and upper air circulation on the temporal variation of the aerosol spectral optical depth. These are described in the paper.

  8. Ice Cloud Optical Depth Mapping from MRO-CRISM Multispectral Data

    NASA Astrophysics Data System (ADS)

    Klassen, David R.

    2015-11-01

    The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) multi-spectral mapping data are a reduced spectral sampling mapping set using only 72 of its 545 channels. This reduction allowed for greater spatial coverage and the creation of nearly complete maps after several sols of orbits. Using data from late 2006 through early 2008 I have created 6 such maps in order to measure ice cloud optical depth as a function of position for each of them. Optical depth is retrieved using a DISORT-based radiative transfer code[1].One of the inputs for the code is surface reflectance which is not known at each point, a priori, but instead is fit from a linear combination of surface endmember spectra—the endmember coefficients for each endmember, along with dust and ice optical depth, are adjustable model parameters that are varied until the RMS error between model and data is a minimum. Surface spectral endmembers are recovered through a combination of principal component analysis (PCA) and target transformation (TT) which first reduces the dimensionality of the data (from 72 to 4) and then creates a data cloud in this space of possible potential endmembers derived from best fits of a spectral library [2-4]. The actual endmembers are chosen from extrema of this candidate cloud.I will present six ice cloud optical depth maps made using this technique with a 3-endmember surface model.[1] Wolff, M. J., personal communication.[2] Klassen, D. R. (2013) AAS/DPS Abstracts, 45, 313.05.[3] Klassen, D. R. (2014) LPI Contributions, 1791, 1384.[4] Klassen, D. R. (2014) The Fifth International Workshop on the Mars Atmosphere, 2303.

  9. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  10. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-05-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  11. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  12. Determination of aerosol extinction coefficient profiles from LIDAR data using the optical depth solution method

    NASA Astrophysics Data System (ADS)

    Aparna, John; Satheesh, S. K.; Mahadevan Pillai, V. P.

    2006-12-01

    The LIDAR equation contains four unknown variables in a two-component atmosphere where the effects caused by both molecules and aerosols have to be considered. The inversion of LIDAR returns to retrieve aerosol extinction profiles, thus, calls for some functional relationship to be assumed between these two. The Klett's method, assumes a functional relationship between the extinction and backscatter. In this paper, we apply a different technique, called the optical depth solution, where we made use of the total optical depth or transmittance of the atmosphere along the LIDAR-measurement range. This method provides a stable solution to the LIDAR equation. In this study, we apply this technique to the data obtained using a micro pulse LIDAR (MPL, model 1000, Science and Engineering Services Inc) to retrieve the vertical distribution of aerosol extinction coefficient. The LIDAR is equipped with Nd-YLF laser at an operating wavelength of 523.5 nm and the data were collected over Bangalore. The LIDAR data are analyzed to get to weighted extinction coefficient profiles or the weighted sum of aerosol and molecular extinction coefficient profiles. Simultaneous measurements of aerosol column optical depth (at 500 nm) using a Microtops sun photometer were used in the retrievals. The molecular extinction coefficient is determined assuming standard atmospheric conditions. The aerosol extinction coefficient profiles are determined by subtracting the molecular part from the weighted extinction coefficient profiles. The details of the method and the results obtained are presented.

  13. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  14. Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Fenker, B.; Behr, J. A.; Melconian, D.; Anderson, R. M. A.; Anholm, M.; Ashery, D.; Behling, R. S.; Cohen, I.; Craiciu, I.; Donohue, J. M.; Farfan, C.; Friesen, D.; Gorelov, A.; McNeil, J.; Mehlman, M.; Norton, H.; Olchanski, K.; Smale, S.; Thériault, O.; Vantyghem, A. N.; Warner, C. L.

    2016-07-01

    We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in the {β }+-decay of the same atoms. These results will be used to test the V ‑ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of \\bar{P}=0.9913+/- 0.0009, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has 0.2 % statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to \\lt 0.1 % , allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.

  15. The business of precision optics manufacturing: photonics in the Rochester region

    NASA Astrophysics Data System (ADS)

    Mandina, Michael P.

    2003-05-01

    Many changes have occurred in business strategies for precision optics manufacturing. The author reacts to two papers published by D. Reid, R. DeMartino, and S. Zyglidopoulous titled "An Emerging Photonics Industry: The success Vulnerability Paradigm" and "New Business Creation and Technology Transfer in the Rochester Cluster."

  16. Freeform metrology using swept-source optical coherence tomography with custom pupil-relay precision scanning configuration

    NASA Astrophysics Data System (ADS)

    Yao, Jianing; Xu, Di; Zhao, Nan; Rolland, Jannick P.

    2015-10-01

    The recent advances in the optics manufacturing industry to achieve the capability of fabricating rotationally nonsymmetric optical quality surfaces have considerably stimulated the optical designs with freeform components. This opens up new horizons for novel optical systems with larger fields of view and higher performance, or significantly more compact in volume at equal performance compared to conventional systems. A bottleneck to the broad industrial applications of freeform optics remains the lack of a high performance optical metrology tool capable of measuring significant surface departures and slopes of the parts. To address this issue, we have developed a fiber-based swept-source optical coherence tomography (SS-OCT) system for point-cloud freeform metrology, where two-axis galvanometer scanners are leveraged for high-speed lateral scans. We specifically designed a custom all-reflective achromatic pupil relay system to achieve a diffraction-limited scanning configuration. Coupled with a large field-of-view (FOV) telecentric scan lens, the imaging covers 28.9 mm × 28.9 mm FOV with 35 μm lateral resolution and more than 600 μm depth of focus. Freeform metrology is demonstrated for an Alvarez surface of 400 μm surface sag. The high sensitivity of the SS-OCT system allows for capturing the slope variations of the part up to the maximum slope that is 5 degrees in this case. Specific surface reconstruction, rendering and fitting algorithms were developed to evaluate the metrology results and investigate the accuracy and precision of the measurements.

  17. Low photon scattering rates and large optical depths of atoms in donut modes of hollow core optical fibers

    NASA Astrophysics Data System (ADS)

    Pechkis, Joseph A.; Fatemi, Fredrik K.

    2012-06-01

    We have guided cold rubidium atoms in blue-detuned hollow optical modes of a hollow fiber. These higher order modes allow large optical depth, low scattering rates, and efficient use of guide laser power. Atoms are transported through a 3-cm-long hollow fiber with a 100 micron diameter using the first three optical modes of the fiber. We compare guiding properties in the red-detuned, fundamental HE11 mode with the blue-detuned TE01 (first order) and HE12 (second order) modes. Using guide laser powers below 50 mW and detunings below 1.5 nm, we have directly measured recoil scattering rates in the three different guides and found that atoms in the HE12 mode typically have a 10x lower recoil scattering rate compared to the red-detuned HE11 mode for equal guide peak intensity. Furthermore, we have observed optical depths of ˜20 for the blue-detuned guides with recoil scattering rates below 10 Hz. We will discuss our ongoing experiments using the atoms in these guides. This work supported by the Office of Naval Research and the Defense Advanced Research Projects Agency.

  18. Precision spectral manipulation of optical pulses using a coherent photon echo memory.

    PubMed

    Buchler, B C; Hosseini, M; Hétet, G; Sparkes, B M; Lam, P K

    2010-04-01

    Photon echo schemes are excellent candidates for high efficiency coherent optical memory. They are capable of high-bandwidth multipulse storage, pulse resequencing and have been shown theoretically to be compatible with quantum information applications. One particular photon echo scheme is the gradient echo memory (GEM). In this system, an atomic frequency gradient is induced in the direction of light propagation leading to a Fourier decomposition of the optical spectrum along the length of the storage medium. This Fourier encoding allows precision spectral manipulation of the stored light. In this Letter, we show frequency shifting, spectral compression, spectral splitting, and fine dispersion control of optical pulses using GEM. PMID:20364227

  19. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  20. Dual-band Fourier domain optical coherence tomography with depth-related compensations

    PubMed Central

    Zhang, Miao; Ma, Lixin; Yu, Ping

    2013-01-01

    Dual-band Fourier domain optical coherence tomography (FD-OCT) provides depth-resolved spectroscopic imaging that enhances tissue contrast and reduces image speckle. However, previous dual-band FD-OCT systems could not correctly give the tissue spectroscopic contrast due to depth-related discrepancy in the imaging method and attenuation in biological tissue samples. We designed a new dual-band full-range FD-OCT imaging system and developed an algorithm to compensate depth-related fall-off and light attenuation. In our imaging system, the images from two wavelength bands were intrinsically overlapped and their intensities were balanced. The processing time of dual-band OCT image reconstruction and depth-related compensations were minimized by using multiple threads that execute in parallel. Using the newly developed system, we studied tissue phantoms and human cancer xenografts and muscle tissues dissected from severely compromised immune deficient mice. Improved spectroscopic contrast and sensitivity were achieved, benefiting from the depth-related compensations. PMID:24466485

  1. Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

    SciTech Connect

    Yin B.; Vogelmann A.; Min Q.; Duan M.; Bartholomew M. J.; Turner D. D.

    2011-12-13

    A Thin-Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward-scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth < 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR-based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article.

  2. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María S.; Jaroszewicz, Zbigniew; Kolodziejczyk, Andrzej

    2012-04-01

    The aged human eye is commonly affected by presbyopia, and therefore, it gradually loses its capability to form images of objects placed at different distances. Extended depth of focus (EDOF) imaging elements can overcome this inability, despite the introduction of a certain amount of aberration. This paper evaluates the EDOF imaging performance of the so-called peacock eye phase diffractive element, which focuses an incident plane wave into a segment of the optical axis and explores the element's potential use for ophthalmic presbyopia compensation optics. Two designs of the element are analyzed: the single peacock eye, which produces one focal segment along the axis, and the double peacock eye, which is a spatially multiplexed element that produces two focal segments with partial overlapping along the axis. The performances of the peacock eye elements are compared with those of multifocal lenses through numerical simulations as well as optical experiments in the image space. The results demonstrate that the peacock eye elements form sharper images along the focal segment than the multifocal lenses and, therefore, are more suitable for presbyopia compensation. The extreme points of the depth of field in the object space, which represent the remote and the near object points, have been experimentally obtained for both the single and the double peacock eye optical elements. The double peacock eye element has better imaging quality for relatively short and intermediate distances than the single peacock eye, whereas the latter seems better for far distance vision.

  3. An integral imaging method for depth extraction with lens array in an optical tweezer system

    NASA Astrophysics Data System (ADS)

    Wang, Shulu; Liu, Wei-Wei; Wang, Anting; Li, Yinmei; Ming, Hai

    2014-10-01

    In this paper, a new integral imaging method is proposed for depth extraction in an optical tweezer system. A mutual coherence algorithm of stereo matching are theoretically analyzed and demonstrated feasible by virtual simulation. In our design, optical tweezer technique is combined with integral imaging in a single microscopy system by inserting a lens array into the optical train. On one hand, the optical tweezer subsystem is built based on the modulated light field from a solid laser, and the strong focused beam forms a light trap to capture tiny specimens. On the other hand, through parameters optimization, the microscopic integral imaging subsystem is composed of a microscope objective, a lens array (150x150 array with 0.192mm unit size and 9mm focal length) and a single lens reflex (SLR). Pre-magnified by the microscope objective, the specimens formed multiple images through the lens array. A single photograph of a series of multiple sub-images has recorded perspective views of the specimens. The differences between adjacent sub-images have been analyzed for depth extraction with the mutual coherence algorithm. The experimental results show that the axial resolution can reach to 1μm -1 and lateral resolution can reach to 2 μm -1.

  4. Aerosol Optical Depth Measurements in the Southern Ocean Within the Framework of Maritime Aerosol Network

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sayer, A. M.; Sakerin, S. M.; Radionov, V. F.; Courcoux, Y.; Broccardo, S. P.; Evangelista, H.; Croot, P. L.; Disterhoft, P.; Piketh, S.; Milinevsky, G. P.; O'Neill, N. T.; Slutsker, I.; Giles, D. M.

    2013-12-01

    Aerosol production sources over the World Ocean and various factors determining aerosol spatial and temporal distribution are important for understanding the Earth's radiation budget and aerosol-cloud interactions. The Maritime Aerosol Network (MAN) as a component of AERONET has been collecting aerosol optical depth data over the oceans since 2006. A significant progress has been made in data acquisition over areas that previously had very little or no coverage. Data collection included intensive study areas in the Southern Ocean and off the coast of Antarctica including a number of circumnavigation cruises in high southern latitudes. It made an important contribution to MAN and provided a valuable reference point in atmospheric aerosol optical studies. The paper presents results of this international and multi-agency effort in studying aerosol optical properties over Southern Ocean and adjacent areas. The ship-borne aerosol optical depth measurements offer an excellent opportunity for comparison with global aerosol transport models, satellite retrievals and provide useful information on aerosol distribution over the World Ocean. A public domain web-based database dedicated to the MAN activity can be found at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html.

  5. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    NASA Technical Reports Server (NTRS)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  6. A Neural Network Approach to Infer Optical Depth of Thick Ice Clouds at Night

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Hong, G.; Sun-Mack, S.; Chen, Yan; Smith, W. L., Jr.

    2016-01-01

    One of the roadblocks to continuously monitoring cloud properties is the tendency of clouds to become optically black at cloud optical depths (COD) of 6 or less. This constraint dramatically reduces the quantitative information content at night. A recent study found that because of their diffuse nature, ice clouds remain optically gray, to some extent, up to COD of 100 at certain wavelengths. Taking advantage of this weak dependency and the availability of COD retrievals from CloudSat, an artificial neural network algorithm was developed to estimate COD values up to 70 from common satellite imager infrared channels. The method was trained using matched 2007 CloudSat and Aqua MODIS data and is tested using similar data from 2008. The results show a significant improvement over the use of default values at night with high correlation. This paper summarizes the results and suggests paths for future improvement.

  7. CALIPSO and MODIS Observations of Increases in Aerosol Optical Depths near Marine Stratocumulus

    NASA Astrophysics Data System (ADS)

    Coakley, J. A.; Tahnk, W. R.

    2009-12-01

    Aerosols not only affect droplet sizes and number concentrations in marine stratocumulus but in turn the near cloud environment gives rise to changes in the aerosol particle concentrations and sizes. In addition, the clouds serve as reflectors that illuminate the adjacent cloud-free air. This extra illumination leads to overestimates of aerosol optical depths and fine mode fractions retrieved from multispectral satellite imagery. Large cloud-free ocean regions bounded on both ends, or if sufficiently large (>100 km), on at least one end by layers of marine stratocumulus, as deduced from CALIPSO lidar returns, were examined to deduce the effects of the clouds on the properties of nearby aerosols. CALIPSO aerosol optical depths composited for more than a year and covering the global oceans, 60°S-60°N, reveal that the fractional increase in aerosol optical depth in going from a cloud-free 5-km region more than 10 to 15 km from a cloud boundary to one adjacent the clouds is 10%-15% at both 532 and 1064 nm for both daytime and nighttime observations. All of the changes are statistically significant at the 90% confidence level or greater. The associated reduction in the 532/1064 Ånsgtröm Exponent is 0.023 for the nighttime observations, but owing to a poorer signal to noise ratio, no change in the Exponent is detected for the daytime observations. For comparison, the MODIS aerosol optical depths collocated with the daytime CALIPSO optical depths suggest that the fractional increases in aerosol optical depths in going from a cloud-free 10-km region 15 km from a cloud boundary to one adjacent the clouds is about 5% at both 550 and 850 nm. The associated reduction in the 550/850 Ånsgtröm Exponent is 0.053. The changes in aerosol properties die away within 10 to 20 km from the marine stratocumulus. The increases in aerosol scattering and reductions in Ånsgtröm Exponent suggest that near the clouds, the aerosol particles become larger. The fine mode fraction found in

  8. Development of a new process for manufacturing precision gobs out of new developed low Tg optical glasses for precise pressing of aspherical lenses; Technical Digest

    NASA Astrophysics Data System (ADS)

    Jaschek, Rainer; Klein, Christopher; Schenk, Christian; Schneider, Klaus; Freund, Jochen; Simone, Ritter

    2005-05-01

    Aspherical lenses or refractive elements out of optical glass can be produced either by grinding and polishing of glass or by precise molding of glass preforms. The first process is applied for lenses with larger geometries and smaller production quantities. On the other hand, precise molding is used for volume production of lenses within a diameter range between 1 mm and around 30 mm. The addressed products can be found in the consumer markets (digital imaging, digital projection and digital storage). Different preform types can be used for precise molding: polished spherical near shape preforms, polished balls, polished discs and precision gobs. The latter are made directly from the glass melt. This paper describes a newly developed process, which results in fire-polished gobs with very low surface roughness and excellent volume accuracy. Since precision gobs are mostly made for precise molding, they must meet specific process requirements apart form their optical values, such as allowing low molding temperatures and shorter process cycles times. Therefore, this paper also describes the latest results in the development of low Tg glasses, which are designed for the volume production of precision molded optical components. Beside the important parameters like nd, nd as well as Tg, other properties like chemical durability, devitrification resistance, thermal expansion and conductivity coefficients are important for optimizing the precise molding process. The characteristics of three new low Tg glasses in the FK-, PK- as well as SK-region are presented. These glasses are environmentally friendly, since they are free of lead and arsenic.

  9. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with the highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.

  10. THE OPTICAL DEPTH OF H II REGIONS IN THE MAGELLANIC CLOUDS

    SciTech Connect

    Pellegrini, E. W.; Oey, M. S.; Jaskot, A. E.; Zastrow, J.; Winkler, P. F.; Points, S. D.; Smith, R. C.

    2012-08-10

    We exploit ionization-parameter mapping (IPM) as a powerful tool to measure the optical depth of star-forming H II regions. Our simulations using the photoionization code CLOUDY and our new, SURFBRIGHT surface-brightness simulator demonstrate that this technique can directly diagnose most density-bounded, optically thin nebulae using spatially resolved emission-line data. We apply this method to the Large and Small Magellanic Clouds (LMC and SMC), using the data from the Magellanic Clouds Emission Line Survey. We generate new H II region catalogs based on photoionization criteria set by the observed ionization structure in the [S II]/[O III] ratio and H{alpha} surface brightness. The luminosity functions from these catalogs generally agree with those from H{alpha}-only surveys. We then use IPM to crudely classify all the nebulae into optically thick versus optically thin categories, yielding fundamental new insights into Lyman-continuum (LyC) radiation transfer. We find that in both galaxies, the frequency of optically thin objects correlates with H{alpha} luminosity, and that the numbers of these objects dominate above log L/(erg s{sup -1}) {>=} 37.0. The frequencies of optically thin objects are 40% and 33% in the LMC and SMC, respectively. Similarly, the frequency of optically thick regions correlates with H I column density, with optically thin objects dominating at the lowest N(H I). The integrated escape luminosity of ionizing radiation is dominated by the largest regions and corresponds to luminosity-weighted, ionizing escape fractions from the H II region population of {>=}0.42 and {>=}0.40 in the LMC and SMC, respectively. These values correspond to global galactic escape fractions of 4% and 11%, respectively. This is sufficient to power the ionization rate of the observed diffuse ionized gas in both galaxies. Since our optical depth estimates tend to be underestimates, and also omit the contribution from field stars without nebulae, our results suggest

  11. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea

    PubMed Central

    Wang, Shang; Larin, Kirill V.

    2014-01-01

    High-resolution elastographic assessment of the cornea can greatly assist clinical diagnosis and treatment of various ocular diseases. Here, we report on the first noncontact depth-resolved micro-scale optical coherence elastography of the cornea achieved using shear wave imaging optical coherence tomography (SWI-OCT) combined with the spectral analysis of the corneal Lamb wave propagation. This imaging method relies on a focused air-puff device to load the cornea with highly-localized low-pressure short-duration air stream and applies phase-resolved OCT detection to capture the low-amplitude deformation with nano-scale sensitivity. The SWI-OCT system is used here to image the corneal Lamb wave propagation with the frame rate the same as the OCT A-line acquisition speed. Based on the spectral analysis of the corneal temporal deformation profiles, the phase velocity of the Lamb wave is obtained at different depths for the major frequency components, which shows the depthwise distribution of the corneal stiffness related to its structural features. Our pilot experiments on ex vivo rabbit eyes demonstrate the feasibility of this method in depth-resolved micro-scale elastography of the cornea. The assessment of the Lamb wave dispersion is also presented, suggesting the potential for the quantitative measurement of corneal viscoelasticity. PMID:25426312

  12. Examination of Optical Depth Effects on Fluorescence Imaging of Cardiac Propagation

    PubMed Central

    Bray, Mark-Anthony; Wikswo, John P.

    2003-01-01

    Optical mapping with voltage-sensitive dyes provides a high-resolution technique to observe cardiac electrodynamic behavior. Although most studies assume that the fluorescent signal is emitted from the surface layer of cells, the effects of signal attenuation with depth on signal interpretation are still unclear. This simulation study examines the effects of a depth-weighted signal on epicardial activation patterns and filament localization. We simulated filament behavior using a detailed cardiac model, and compared the signal obtained from the top (epicardial) layer of the spatial domain with the calculated weighted signal. General observations included a prolongation of the action upstroke duration, early upstroke initiation, and reduction in signal amplitude in the weighted signal. A shallow filament was found to produce a dual-humped action potential morphology consistent with previously reported observations. Simulated scroll wave breakup exhibited effects such as the false appearance of graded potentials, apparent supramaximal conduction velocities, and a spatially blurred signal with the local amplitude dependent upon the immediate subepicardial activity; the combination of these effects produced a corresponding change in the accuracy of filament localization. Our results indicate that the depth-dependent optical signal has significant consequences on the interpretation of epicardial activation dynamics. PMID:14645100

  13. Restraint of range walk error in a Geiger-mode avalanche photodiode lidar to acquire high-precision depth and intensity information.

    PubMed

    Xu, Lu; Zhang, Yu; Zhang, Yong; Yang, Chenghua; Yang, Xu; Zhao, Yuan

    2016-03-01

    There exists a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar because of the fluctuation in the number of signal photoelectrons. To restrain this range walk error, we propose a new returning-wave signal processing technique based on the Poisson probability response model and the Gaussian functions fitting method. High-precision depth and intensity information of the target at the distance of 5 m is obtained by a Gm-APD lidar using a 6 ns wide pulsed laser. The experiment results show that the range and intensity precisions are 1.2 cm and 0.015 photoelectrons, respectively. PMID:26974630

  14. Phase shifts in precision atom interferometry due to the localization of atoms and optical fields

    SciTech Connect

    Wicht, A.; Sarajlic, E.; Hensley, J.M.; Chu, S.

    2005-08-15

    We discuss details of momentum transfer in the interaction between localized atoms and localized optical fields which are relevant to precision atom interferometry. Specifically, we consider a {lambda}-type atom coherently driven between its ground states by a bichromatic optical field. We assume that the excited state can be eliminated adiabatically from the time evolution. It is shown that the average recoil momentum is given by the phase gradient of the two-photon field at the 'position' of the atom, provided that the optical field can be described by a function which is separable in position and time and that the atomic wave function is symmetric and well localized within the optical field envelope. The result does not require the optical fields to have a Gaussian spatial dependence. Our discussion provides the basis for the analysis of systematic errors in precision atom interferometry arising from optical wave-front curvature, wave-front distortion, and the Gouy phase shift of Gaussian beams. We apply our result to the atom interferometer experiment of Chu and co-workers which measures the fine-structure constant.

  15. Ring beam shaping optics fabricated with ultra-precision cutting for YAG laser processing

    NASA Astrophysics Data System (ADS)

    Kuwano, Ryoichi; Koga, Toshihiko; Tokunaga, Tsuyoshi; Wakayama, Toshitaka; Otani, Yukitoshi; Fujii, Nobuyuki

    2012-03-01

    In this study, a method for generating ring intensity distribution at a refraction-type lens with an aspheric element was proposed, and the beam shaping optical element was finished using only ultra-precision cutting. The shape of the optical element and its irradiance pattern were determined from numerical calculation based on its geometrical and physical optics. An ultra-precision lathe was employed to fabricate beam shaping optical elements, and acrylic resin was used as the material. The transmittance of an optical element (a rotationally symmetrical body) with an aspheric surface fabricated using a single-crystal diamond tool was over 98%, and its surface roughness was 9.6 nm Ra. The method enabled the formation of a circular melting zone on a piece of stainless steel with a thickness of 300 μm through pulse YAG laser ( λ 1:06 μm) processing such that the average radius was 610 μm and the width was 100-200 μm. Circular processing using a ring beam shaping optical element can be realized by single-pulse beam irradiation without beam scanning.

  16. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu

    2016-03-01

    Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.

  17. Support for the U.S. precision optics manufacturing base center for optics manufacturing

    NASA Astrophysics Data System (ADS)

    Leshne, Robert H.

    1989-12-01

    The importance of optics to the economic and military strength of the United States is well known. Advances in optical technology have substantial leverage and are closely related to advances in associated technologies (i.e., imaging, sensing, communications, guidance control, etc.). However, the lead in manufacturing and fabrication of optical components and systems has been lost to our world competitors, especially Japan and other Pacific Rim countries. The optics industrial base has been in a slow but constant decline since the 1970's. The shift in business strategy from manufacturing emphasis to purchasing from worldwide resources has resulted in many U.S. "manufacturers" becoming importers. Optics employment dropped 50% from 1981 to 1986. Imports currently dominate both the U.S. commercial and DOD optics markets.

  18. A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom.

    PubMed

    Correia, Teresa; Banga, Anil; Everdell, N L; Gibson, Adam P; Hebden, Jeremy C

    2009-10-21

    A solid dynamic phantom with tissue-like optical properties is presented, which contains seven discrete targets impregnated with thermochromic pigment located at different depths from the surface. Changes in absorption are obtained in response to localized heating of the targets, simulating haemodynamic changes occurring in the brain and other tissues. The depth sensitivity of a continuous wave optical topography system was assessed successfully using the phantom. Images of the targets have been reconstructed using a spatially variant regularization, and the determined spatial localization in the depth direction is shown to be accurate within an uncertainty of about 3 mm down to a depth of about 30 mm. PMID:19794240

  19. A quantitative assessment of the depth sensitivity of an optical topography system using a solid dynamic tissue-phantom

    NASA Astrophysics Data System (ADS)

    Correia, Teresa; Banga, Anil; Everdell, N. L.; Gibson, Adam P.; Hebden, Jeremy C.

    2009-10-01

    A solid dynamic phantom with tissue-like optical properties is presented, which contains seven discrete targets impregnated with thermochromic pigment located at different depths from the surface. Changes in absorption are obtained in response to localized heating of the targets, simulating haemodynamic changes occurring in the brain and other tissues. The depth sensitivity of a continuous wave optical topography system was assessed successfully using the phantom. Images of the targets have been reconstructed using a spatially variant regularization, and the determined spatial localization in the depth direction is shown to be accurate within an uncertainty of about 3 mm down to a depth of about 30 mm.

  20. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT

    NASA Astrophysics Data System (ADS)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.

    2014-12-01

    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  1. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  2. Development and Validation of High Precision Thermal, Mechanical, and Optical Models for the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Lindensmith, Chris A.; Briggs, H. Clark; Beregovski, Yuri; Feria, V. Alfonso; Goullioud, Renaud; Gursel, Yekta; Hahn, Inseob; Kinsella, Gary; Orzewalla, Matthew; Phillips, Charles

    2006-01-01

    SIM Planetquest (SIM) is a large optical interferometer for making microarcsecond measurements of the positions of stars, and to detect Earth-sized planets around nearby stars. To achieve this precision, SIM requires stability of optical components to tens of picometers per hour. The combination of SIM s large size (9 meter baseline) and the high stability requirement makes it difficult and costly to measure all aspects of system performance on the ground. To reduce risks, costs and to allow for a design with fewer intermediate testing stages, the SIM project is developing an integrated thermal, mechanical and optical modeling process that will allow predictions of the system performance to be made at the required high precision. This modeling process uses commercial, off-the-shelf tools and has been validated against experimental results at the precision of the SIM performance requirements. This paper presents the description of the model development, some of the models, and their validation in the Thermo-Opto-Mechanical (TOM3) testbed which includes full scale brassboard optical components and the metrology to test them at the SIM performance requirement levels.

  3. Remote sounding of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5-micron radiometers during STEP

    NASA Technical Reports Server (NTRS)

    Liou, K. N.; Ou, S. C.; Takano, Y.; Valero, F. P. J.; Ackerman, T. P.

    1990-01-01

    A dual-channel retrieval technique involving the water vapor band at 6.5 microns and the window region at 10.5 microns has been developed to infer the temperature and emissivity of tropical anvils. This technique has been applied to data obtained from the ER-2 narrow field-of-view radiometers during two flights in the field observation of the Stratosphere-Troposphere Exchange Project near Darwin, Australia, January-February 1987. The retrieved cloud temperatures are between 190 and 240 K, while the cloud emissivities derived from the retrieval algorithm range from about 0.2 to 1. Moreover, the visible optical depths have been obtained from the cloud emissivity through a theoretical parameterization with values of 0.5-10. A significant portion of tropical cirrus clouds are found to have optical depths greater than about 6. Because of the parameterization, the present technique is unable to precisely determine the optical depth values for optically thick cirrus clouds.

  4. The microlensing event rate and optical depth toward the galactic bulge from MOA-II

    SciTech Connect

    Sumi, T.; Suzuki, D.; Wada, K.; Collaboration: MOA Collaboratoin; and others

    2013-12-01

    We present measurements of the microlensing optical depth and event rate toward the Galactic Bulge (GB) based on two years of the MOA-II survey. This sample contains ∼1000 microlensing events, with an Einstein radius crossing time of t {sub E} ≤ 200 days in 22 bulge fields covering ∼42 deg{sup 2} between –5° < l < 10° and –7° < b < –1°. Our event rate and optical depth analysis uses 474 events with well-defined microlensing parameters. In the central fields with |l| < 5°, we find an event rate of Γ = [2.39 ± 1.1]e {sup [0.60±0.05](3–|b|)} × 10{sup –5} star{sup –1} yr{sup –1} and an optical depth (for events with t {sub E} ≤ 200 days) of τ{sub 200} = [2.35 ± 0.18]e {sup [0.51±0.07](3–|b|)} × 10{sup –6} for the 427 events, using all sources brighter than I{sub s} ≤ 20 mag. The distribution of observed fields is centered at (l, b) = (0.°38, –3.°72). We find that the event rate is maximized at low latitudes and a longitude of l ≈ 1°. For the 111 events in 3.2 deg{sup 2} of the central GB at |b| ≤ 3.°0 and 0.°0 ≤ l ≤ 2.°0, centered at (l, b) = (0.°97, –2.°26), we find Γ=4.57{sub −0.46}{sup +0.51}×10{sup −5} star{sup –1} yr{sup –1} and τ{sub 200}=3.64{sub −0.45}{sup +0.51}×10{sup −6}. We also consider a red clump giant (RCG) star sample with I{sub s} < 17.5, and we find that the event rate for the RCG sample is slightly lower than but consistent with the all-source event rate. The main difference is the lack of long duration events in the RCG sample due to a known selection effect. Our results are consistent with previous optical depth measurements, but they are somewhat lower than previous all-source measurements, and slightly higher than previous RCG optical depth measurements. This suggests that the previously observed difference in optical depth measurements between all-source and RCG samples may largely be due to statistical fluctuations. These event rate measurements toward the central GB

  5. In-depth quantification by using multispectral time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Zouaoui, Judy; Hervé, Lionel; Di Sieno, Laura; Planat-Chrétien, Anne; Berger, Michel; Dalla Mora, Alberto; Pifferi, Antonio; Derouard, Jacques; Dinten, Jean-Marc

    2015-07-01

    Near-infrared diffuse optical tomography (DOT) is a medical imaging which gives the distribution of the optical properties of biological tissues. To obtain endogenous chromophore features in the depth of a scattering medium, a multiwavelength/time-resolved (MW/TR) DOT setup was used. Reconstructions of the three-dimensional maps of chromophore concentrations of probed media were obtained by using a data processing technique which manages Mellin-Laplace Transforms of their MW/TR optical signals and those of a known reference medium. The point was to put a constraint on the medium absorption coefficient by using a material basis composed of a given set of chromophores of known absorption spectra. Experimental measurements were conducted by injecting the light of a picosecond near- infrared laser in the medium of interest and by collecting, for several wavelengths and multiple positions, the backscattered light via two fibers (with a source-detector separation of 15 mm) connected to fast-gated single-photon avalanche diodes (SPAD) and coupled to a time-correlated single-photon counting (TCSPC) system. Validations of the method were performed in simulation in the same configuration as the experiments for different combination of chromophores. Evaluation of the technique in real conditions was investigated on liquid phantoms composed of an homogenous background and a 10 mm depth inclusion formed of combination of intralipid and inks scanned at 30 positions and at three wavelengths. Both numerical and preliminary phantom experiments confirm the potential of this method to determine chromophore concentrations in the depth of biological tissues.

  6. Herschel-Planck dust optical depth and column density maps. II. Perseus

    NASA Astrophysics Data System (ADS)

    Zari, Eleonora; Lombardi, Marco; Alves, João; Lada, Charles J.; Bouy, Hervé

    2016-03-01

    We present optical depth and temperature maps of the Perseus molecular cloud, obtained combining dust emission data from the Herschel and Planck satellites and 2MASS/NIR dust extinction maps. The maps have a resolution of 36 arcsec in the Herschel regions, and of 5 arcmin elsewhere. The dynamic range of the optical depth map ranges from 1 × 10-2 mag up to 20 mag in the equivalent K-band extinction. We also evaluate the ratio between the 2.2 μm extinction coefficient and the 850 μm opacity. The value we obtain is close to the one found in the Orion B molecular cloud. We show that the cumulative and the differential area function of the data (which is proportional to the probability distribution function of the cloud column density) follow power laws with an index of respectively ≃-2, and ≃-3. We use WISE data to improve current YSO catalogs based mostly on Spitzer data and we build an up-to-date selection of Class I/0 objects. Using this selection, we evaluate the local Schmidt law, ΣYSO ∝ Σgasβ, showing that β = 2.4 ± 0.6. Finally, we show that the area-extinction relation is important for determining the star-formation rate in the cloud, which is in agreement with other recent works. The optical depth and temperature maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A106

  7. Noninvasive Evaluation of Oral Lesions Using Depth-Sensitive Optical Spectroscopy

    PubMed Central

    Schwarz, Richard A.; Gao, Wen; Weber, Crystal Redden; Kurachi, Cristina; Lee, J. Jack; El-Naggar, Adel K.; Richards-Kortum, Rebecca; Gillenwater, Ann M.

    2009-01-01

    BACKGROUND Optical spectroscopy is a noninvasive technique with potential applications for diagnosis of oral dysplasia and early cancer. In this study we evaluated the diagnostic performance of a depth-sensitive optical spectroscopy (DSOS) system for distinguishing dysplasia and carcinoma from non-neoplastic oral mucosa. METHODS Patients with oral lesions and volunteers without any oral abnormalities were recruited to participate. Autofluorescence and diffuse reflectance spectra of selected oral sites were measured using the DSOS system. 424 oral sites in 124 subjects were measured and analyzed, including 154 sites in 60 patients with oral lesions and 270 sites in 64 normal volunteers. Measured optical spectra were used to develop computer-based algorithms to identify the presence of dysplasia or cancer. Sensitivity and specificity were calculated using a gold standard of histopathology for patient sites and clinical impression for normal volunteer sites. RESULTS Differences in oral spectra were observed in: (1) neoplastic vs. non-neoplastic sites, (2) keratinized vs. non-keratinized tissue, and (3) shallow vs. deep depths within oral tissue. Algorithms based on spectra from 310 non-keratinized anatomic sites (buccal, tongue, floor of mouth, and lip) yielded an area under the receiver operating characteristic (ROC) curve of 0.96 in the training set and 0.93 in the validation set. CONCLUSIONS The ability to selectively target epithelial and shallow stromal depth regions appears diagnostically useful. For non-keratinized oral sites the sensitivity and specificity of this objective diagnostic technique are comparable to that of clinical diagnosis by expert observers. Thus DSOS has potential to augment oral cancer screening efforts in community settings. PMID:19170229

  8. The Use of Aerosol Optical Depth in Estimating Trace Gas Emissions from Biomass Burning Plumes

    NASA Astrophysics Data System (ADS)

    Jones, N.; Paton-Walsh, C.; Wilson, S.; Meier, A.; Deutscher, N.; Griffith, D.; Murcray, F.

    2003-12-01

    We have observed significant correlations between aerosol optical depth (AOD) at 500 nm and column amounts of a number of biomass burning indicators (carbon monoxide, hydrogen cyanide, formaldehyde and ammonia) in bushfire smoke plumes over SE Australia during the 2001/2002 and 2002/2003 fire seasons from remote sensing measurements. The Department of Chemistry, University of Wollongong, operates a high resolution Fourier Transform Spectrometer (FTS), in the city of Wollongong, approximately 80 km south of Sydney. During the recent bushfires we collected over 1500 solar FTIR spectra directly through the smoke over Wollongong. The total column amounts of the biomass burning indicators were calculated using the profile retrieval software package SFIT2. Using the same solar beam, a small grating spectrometer equipped with a 2048 pixel CCD detector array, was used to calculate simultaneous aerosol optical depths. This dataset is therefore unique in its temporal sampling, location to active fires, and range of simultaneously measured constituents. There are several important applications of the AOD to gas column correlation. The estimation of global emissions from biomass burning currently has very large associated uncertainties. The use of visible radiances measured by satellites, and hence AOD, could significantly reduce these uncertainties by giving a direct estimate of global emissions of gases from biomass burning through application of the AOD to gas correlation. On a more local level, satellite-derived aerosol optical depth maps could be inverted to infer approximate concentration levels of smoke-related pollutants at the ground and in the lower troposphere, and thus can be used to determine the nature of any significant health impacts.

  9. Effect of Binary Source Companions on the Microlensing Optical Depth Determination toward the Galactic Bulge Field

    NASA Astrophysics Data System (ADS)

    Han, Cheongho

    2005-11-01

    Currently, gravitational microlensing survey experiments toward the Galactic bulge field use two different methods of minimizing the blending effect for the accurate determination of the optical depth τ. One is measuring τ based on clump giant (CG) source stars, and the other is using ``difference image analysis'' (DIA) photometry to measure the unblended source flux variation. Despite the expectation that the two estimates should be the same assuming that blending is properly considered, the estimates based on CG stars systematically fall below the DIA results based on all events with source stars down to the detection limit. Prompted by the gap, we investigate the previously unconsidered effect of companion-associated events on τ determination. Although the image of a companion is blended with that of its primary star and thus not resolved, the event associated with the companion can be detected if the companion flux is highly magnified. Therefore, companions work effectively as source stars to microlensing, and thus the neglect of them in the source star count could result in a wrong τ estimation. By carrying out simulations based on the assumption that companions follow the same luminosity function as primary stars, we estimate that the contribution of the companion-associated events to the total event rate is ~5fbi% for current surveys and can reach up to ~6fbi% for future surveys monitoring fainter stars, where fbi is the binary frequency. Therefore, we conclude that the companion-associated events comprise a nonnegligible fraction of all events. However, their contribution to the optical depth is not large enough to explain the systematic difference between the optical depth estimates based on the two different methods.

  10. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  11. Wheel wear and surface/subsurface qualities when precision grinding optical materials

    NASA Astrophysics Data System (ADS)

    Tonnellier, X.; Shore, P.; Luo, X.; Morantz, P.; Baldwin, A.; Evans, R.; Walker, D.

    2006-06-01

    An ultra precision large optics grinder, which will provide a rapid and economic solution for grinding large off-axis aspherical and free-form optical components, has been developed at Cranfield University. This paper presents representative grinding experiments performed on another machine - a 5 axes Edgetek - in order to verify the proposed BoX(r) grinding cycle. The optical materials assessed included; Zerodur(r), SIC and ULE(r), all three being materials are candidates for extreme large telescope (ELT) mirror segments. Investigated removal rates ranged from 2mm 3/s to 200mm 3/s. The higher removal rate ensures that a 1 metre size optic could be ground in less than 10 hours. These experiments point out the effect of diamond grit size on the surface quality and wheel wear. The power and forces for each material type at differing removal rates are presented, together with subsurface damage.

  12. Non-contact high precision measurement of surface form tolerances and central thickness for optical elements

    NASA Astrophysics Data System (ADS)

    Lou, Ying

    2010-10-01

    The traditional contact measuring methods could not satisfy the current optical elements measuring requirements. Noncontact high precision measuring theory, principle and instrument of the surface form tolerances and central thickness for optical elements were studied in the paper. In comparison with other types of interferometers, such as Twyman-Green and Mach-Zehnder, a Fizeau interferometer has the advantages of having fewer optical components, greater accuracy, and is easier to use. Some relations among the 3/A(B/C), POWER/PV and N/ΔN were studied. The PV with POWER removed can be the reference number of ΔN. The chromatic longitudinal aberration of a special optical probe can be used for non-contanct central thickness measurement.

  13. Diffuse Optical Imaging and Spectroscopy of the Human Breast for Quantitative Oximetry with Depth Resolution

    NASA Astrophysics Data System (ADS)

    Yu, Yang

    Near-infrared spectral imaging for breast cancer diagnostics and monitoring has been a hot research topic for the past decade. Here we present instrumentation for diffuse optical imaging of breast tissue with tandem scan of a single source-detector pair with broadband light in transmission geometry for tissue oximetry. The efforts to develop the continuous-wave (CW) domain instrument have been described, and a frequency-domain (FD) system is also used to measure the bulk tissue optical properties and the breast thickness distribution. We also describe the efforts to improve the data processing codes in the 2D spatial domain for better noise suppression, contrast enhancement, and spectral analysis. We developed a paired-wavelength approach, which is based on finding pairs of wavelength that feature the same optical contrast, to quantify the tissue oxygenation for the absorption structures detected in the 2D structural image. A total of eighteen subjects, two of whom were bearing breast cancer on their right breasts, were measured with this hybrid CW/FD instrument and processed with the improved algorithms. We obtained an average tissue oxygenation value of 87% +/- 6% from the healthy breasts, significantly higher than that measured in the diseased breasts (69% +/- 14%) (p < 0.01). For the two diseased breasts, the tumor areas bear hypoxia signatures versus the remainder of the breast, with oxygenation values of 49 +/- 11% (diseased region) vs. 61 +/- 16% (healthy regions) for the breast with invasive ductal carcinoma, and 58 +/- 8% (diseased region) vs 77 +/- 11% (healthy regions) for ductal carcinoma in situ. Our subjects came from various ethnical/racial backgrounds, and two-thirds of our subjects were less than thirty years old, indicating a potential to apply the optical mammography to a broad population. The second part of this thesis covers the topic of depth discrimination, which is lacking with our single source-detector scan system. Based on an off

  14. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2010-01-01

    The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.

  15. Aerosol Optical Depth Model Assessment With High-Resolution Multiple Angle Sensors

    NASA Astrophysics Data System (ADS)

    Martin, J. S.; Nielsen, K. E.; Vincent, D. A.; Durkee, P. A.; Reid, J. S.

    2005-12-01

    The Naval Postgraduate School Aerosol Optical Depth (NPS AOD) model has been used successfully to retrieve aerosol optical depths over water using Advanced Very High Resolution Radiometer (AVHRR) imagery. In this work, the NPS AOD model is applied to the QuickBird high-resolution commercial satellite imagery collected at multiple zenith angles around Sir Bu Nuair Island, United Arab Emirates in September 2004 during the Unified Aerosol Experiment, United Arab Emirates (UAE2) Campaign. The QuickBird-retrieved aerosol optical depths are compared to other satellite and ground-based optical depth retrievals, including those from the Aeerosol Robotic NETwork (AERONET), the MODerate resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and AVHRR. Adapting the NPS AOD model to the nominally 2.4-meter resolution imagery from QuickBird required using modal radiances determined over an area that matched the lower resolution imagers (~ 275 meters to 1 kilometer). Additionally, the NPS AOD model was originally developed for the AVHRR imager on the NOAA-14 satellite. The NPS AOD model selects a modeled aerosol size distribution and scattering phase function based on the ratio the red and near-infrared channels of the AVHRR and the scattering angle derived from solar-sensor geometry. As such, the LUT that relates the ratio of red and near-infrared radiances was based on the center effective wavelengths of the NOAA-14 channels. The AOD retrievals from the other imagers must be adjusted to account for the changes in center effective wavelengths of the red and near-IR channels. Results show that the application of the NPS AOD model to QuickBird data yields findings that are consistent with other satellite and ground-based retrievals. In general, the NPS AOD model works well for nadir and near-nadir view angles, but not for zenith angles greater than 50 degrees. A non-linearized single scattering model and additional scattering streams will be

  16. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    NASA Astrophysics Data System (ADS)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K. Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    Doppler Lidar and Multi-Filter Rotating Shadowband Radiometer (MFRSR) observations are utilized to show wave like signatures in aerosol optical depth (AOD) during daytime boundary layer evolution over the Himalayan region. Fourier analysis depicted 60-80 min periods dominant during afternoon hours, implying that observed modulations could be plausible reason for the AOD forenoon-afternoon asymmetry which was previously reported. Inclusion of wave amplitude in diurnal variation of aerosol radiative forcing estimates showed ~40% additional warming in the atmosphere relative to mean AOD. The present observations emphasize the importance of wave induced variations in AOD and radiation budget over the site.

  17. Transient vision loss at depth due to presumed barotraumatic optic neuropathy.

    PubMed

    Hexdall, Eric J; Butler, Frank K

    2012-01-01

    Pressure-related vision loss has been reported during ascent to altitude. We report the case of an otherwise healthy diver who suffered painless, sudden-onset binocular vision loss at depth, followed by complete recovery immediately upon surfacing. We examine the dive and briefly discuss the differential diagnosis of transient vision loss in the setting of ambient pressure changes. We conclude that the diver likely suffered from sphenoid sinus barotrauma, possibly in association with dehiscence of the bony canals of the optic nerves as they travel in close proximity to the walls of the sphenoid sinus. PMID:23045919

  18. Optical depth measurements and atmospheric correction of remotely sensed data for FIFE

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Slye, R. E.; Pueschel, R. F.; Spanner, M. A.; Livingston, J. M.

    1990-01-01

    Data derived from an airborne tracking-sun photometer are used to provide quantitative corrections for atmospheric effects in remotely sensed data. The atmospheric correction involves the validation of radiometric and atmospheric measurements and the application of single scattering approximation which permits the separation of Rayleigh scattering from aerosol scattering. Sun-photometer data are used to generate plots of spectral optical depths, aerosol size distributions, aerosol phase functions, and aerosol single-scattering albedos. The atmospheric correction model and the atmospheric optical properties are incorporated into a program which is applied to two flightlines of data. Atmospheric corrections tested on remotely sensed data permitted the removal of limb brightening, although the results require verification by means of ground measurements.

  19. First measurements of aerosol optical depth and Angstrom exponent number from AERONET's Kuching site

    NASA Astrophysics Data System (ADS)

    Salinas, Santo V.; Chew, Boon N.; Mohamad, M.; Mahmud, M.; Liew, Soo C.

    2013-10-01

    We report our first measurements, over the 2011 dry season period, of aerosol optical depth, Angstrom exponent number and its fine mode counterpart obtained from photometric measurements at AERONET's newest site located at the city of Kuching, Sarawak, East Malaysia. This site was set up as part of the collaborative efforts of the Seven South East Asian Studies (7SEAS) regional aerosol measurements initiative. Located at the converging zone between peninsular Malaysia and the land masses of Sumatra, Borneo, Java and Sulawesi, this site is expected to provide first hand evidence about the physical and optical characteristics of the regional aerosol environment, specially during the biomass burning months. Moreover, given its relative proximity to our Singapore radiation measurement super-site, Kuching is expected to provide further insight on aerosol transport pathways caused by seasonal winds transporting smoke to other parts of the maritime continent and the South Asia region.

  20. An ultra-high optical depth cold atomic ensemble for quantum memories

    NASA Astrophysics Data System (ADS)

    Sparkes, B. M.; Bernu, J.; Hosseini, M.; Geng, J.; Glorieux, Q.; Altin, P. A.; Lam, P. K.; Robins, N. P.; Buchler, B. C.

    2013-12-01

    Quantum memories for light lie at the heart of long-distance provably-secure communication. Demand for a functioning quantum memory, with high efficiency and coherence times approaching a millisecond, is therefore at a premium. Here we report on work towards this goal, with the development of a 87Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F = 2 → F' = 3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble we implemented the gradient echo memory (GEM) scheme on the D1 line. Our data shows a memory efficiency of 80 ± 2% and coherence times up to 195 μs.

  1. Fabrication of the Advanced X-ray Astrophysics Facility (AXAF) Optics: A Deterministic, Precision Engineering Approach to Optical Fabrication

    NASA Technical Reports Server (NTRS)

    Gordon, T. E.

    1995-01-01

    The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.

  2. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  3. Fabrication of micro-optical components by high-precision embossing

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Schubert, Andreas; Boehm, Juliana; Gessner, Thomas

    2000-08-01

    Optical components, such as miniature spectrometer gratings working in the infrared range for environmental monitoring or physical analytics, contribute appeciably to the price of Micro Electro Opto Mechanical Systems (MOEMS). These optical components could be a part of a miniature functional package produced with an alternative fabrication technology based on cold forming metals. The cost-efficient fabrication of these components, for example by implementation of forming technology, appears promising. With this technology, high quality embossing of optical structures for high precision requirements in a batch process is possible. In this way the system costs can be reduced. In this paper aluminum forming by cold embossed grating for the fabrication of gratings was investigated. Experiments with different geometries of the embossed grating were carried out. The quality of the embossed structures is primarily determined by the precision and surface quality of the die. Therefore we used a single crystalline silicon tool made by etching as a die. Quality criteria for the review of the formed optical grating were the geometry of surfaces and the surface roughness as well as optical properties of the total structure.

  4. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.

    PubMed

    Guillot, Sarah L; Mistry, Kevin S; Avery, Azure D; Richard, Jonah; Dowgiallo, Anne-Marie; Ndione, Paul F; van de Lagemaat, Jao; Reese, Matthew O; Blackburn, Jeffrey L

    2015-04-21

    Semiconducting single-walled carbon nanotubes (s-SWCNTs) are promising candidates as the active layer in photovoltaics (PV), particularly for niche applications where high infrared absorbance and/or semi-transparent solar cells are desirable. Most current fabrication strategies for SWCNT PV devices suffer from relatively high surface roughness and lack nanometer-scale deposition precision, both of which may hamper the reproducible production of ultrathin devices. Additionally, detailed optical models of SWCNT PV devices are lacking, due in part to a lack of well-defined optical constants for high-purity s-SWCNT thin films. Here, we present an optical model that accurately reconstructs the shape and magnitude of spectrally resolved external quantum efficiencies for ultrathin (7,5) s-SWCNT/C60 solar cells that are deposited by ultrasonic spraying. The ultrasonic spraying technique enables thickness tuning of the s-SWCNT layer with nanometer-scale precision, and consistently produces devices with low s-SWCNT film average surface roughness (Rq of <5 nm). Our optical model, based entirely on measured optical constants of each layer within the device stack, enables quantitative predictions of thickness-dependent relative photocurrent contributions of SWCNTs and C60 and enables estimates of the exciton diffusion lengths within each layer. These results establish routes towards rational performance improvements and scalable fabrication processes for ultra-thin SWCNT-based solar cells. PMID:25790468

  5. Multilevel micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-03-01

    A consumer market for diffractive optical elements in glass can only be created if high efficient elements are available at affordable prices. In diffractive optics the efficiency and optical properties increases with the number of levels used, but in the same way the costs are multiplied by the number if fabrication steps. Replication of multilevel diffractive optical elements in glass would allow cost efficient fabrication but a suitable mold material is needed. Glassy carbon shows a high mechanical strength, thermal stability and non-sticking adhesion properties, which makes it an excellent candidate as mold material for precision compression molding of low and high glass-transition temperature materials. We introduce an 8 level micro structuring process for glassy carbon molds with standard photolithography and a Ti layer as hard mask for reactive ion etching. The molds were applied to thermal imprinting onto low and high transition temperature glass. Optical performance was tested for the molded samples with different designs for laser beamsplitters. The results show a good agreement to the design specification. Our result allow us to show limitations of our fabrication technique and we discussed the suitability of precision glass molding for cost efficient mass production with a high quality.

  6. Higher-order effects on the precision of clocks of neutral atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, V. D.; Marmo, S. I.; Palchikov, V. G.; Katori, H.

    2016-04-01

    The recent progress in designing optical lattice clocks with fractional uncertainties below 10-17 requires unprecedented precision in estimating the role of higher-order effects of atom-lattice interactions. In this paper, we present results of systematic theoretical evaluations of the multipole, nonlinear, and anharmonic effects on the optical-lattice-based clocks of alkaline-earth-like atoms. Modifications of the model-potential approach are introduced to minimize discrepancies of theoretical evaluations from the most reliable experimental data. Dipole polarizabilities, hyperpolarizabilities, and multipolar polarizabilities for neutral Ca, Sr, Yb, Zn, Cd, and Hg atoms are calculated in the modified approach.

  7. Polarisation control through an optical feedback technique and its application in precise measurements

    PubMed Central

    Chen, Wenxue; Zhang, Shulian; Long, Xingwu

    2013-01-01

    We present an anisotropic optical feedback technique for controlling light polarisation. The technique is based on the principle that the effective gain of a light mode is modulated by the magnitude of the anisotropic feedback. A new physical model that integrates Lamb's semi-classical theory and a model of the equivalent cavity of a Fabry-Perot interferometer is developed to reveal the physical nature of this technique. We use this technique to measure the phase retardation, optical axis, angle, thickness and refractive index with a high precision of λ/1380, 0.01°, 0.002°, 59 nm and 0.0006, respectively. PMID:23771164

  8. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M.; Sassaroli, Angelo; Anderson, Pamela G.; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting.

  9. Broadband optical mammography instrument for depth-resolved imaging and local dynamic measurements.

    PubMed

    Krishnamurthy, Nishanth; Kainerstorfer, Jana M; Sassaroli, Angelo; Anderson, Pamela G; Fantini, Sergio

    2016-02-01

    We present a continuous-wave instrument for non-invasive diffuse optical imaging of the breast in a parallel-plate transmission geometry. The instrument measures continuous spectra in the wavelength range 650-1000 nm, with an intensity noise level <1.5% and a spatial sampling rate of 5 points/cm in the x- and y-directions. We collect the optical transmission at four locations, one collinear and three offset with respect to the illumination optical fiber, to recover the depth of optical inhomogeneities in the tissue. We imaged a tissue-like, breast shaped, silicone phantom (6 cm thick) with two embedded absorbing structures: a black circle (1.7 cm in diameter) and a black stripe (3 mm wide), designed to mimic a tumor and a blood vessel, respectively. The use of a spatially multiplexed detection scheme allows for the generation of on-axis and off-axis projection images simultaneously, as opposed to requiring multiple scans, thus decreasing scan-time and motion artifacts. This technique localizes detected inhomogeneities in 3D and accurately assigns their depth to within 1 mm in the ideal conditions of otherwise homogeneous tissue-like phantoms. We also measured induced hemodynamic changes in the breast of a healthy human subject at a selected location (no scanning). We applied a cyclic, arterial blood pressure perturbation by alternating inflation (to a pressure of 200 mmHg) and deflation of a pneumatic cuff around the subject's thigh at a frequency of 0.05 Hz, and measured oscillations with amplitudes up to 1 μM and 0.2 μM in the tissue concentrations of oxyhemoglobin and deoxyhemoglobin, respectively. These hemodynamic oscillations provide information about the vascular structure and functional integrity in tissue, and may be used to assess healthy or abnormal perfusion in a clinical setting. PMID:26931870

  10. Effect of Aerosol Size and Hygroscopicity on Aerosol Optical Depth in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Brock, Charles; Wagner, Nick; Gordon, Timothy

    2016-04-01

    Aerosol optical depth (AOD) is affected by the size, optical characteristics, and hygroscopicity of particles, confounding attempts to link remote sensing observations of AOD to measured or modeled aerosol mass concentrations. In situ airborne observations of aerosol optical, chemical, microphysical and hygroscopic properties were made in the southeastern United States in the daytime in summer 2013. We use these observations to constrain a simple model that is used to test the sensitivity of AOD to the various measured parameters. As expected, the AOD was found to be most sensitive to aerosol mass concentration and to aerosol water content, which is controlled by aerosol hygroscopicity and the ambient relative humidity. However, AOD was also fairly sensitive to the mean particle diameter and the width of the size distribution. These parameters are often prescribed in global models that use simplified modal parameterizations to describe the aerosol, suggesting that the values chosen could substantially bias the calculated relationship between aerosol mass and optical extinction, AOD, and radiative forcing.

  11. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  12. Precise measurement of volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-04-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). In this paper, we propose a method for extraction of the specific eccrine sweat gland by means of the connected component extraction process and the adaptive threshold method, where the en face OCT images are constructed by the swept-source OCT. In the experiment, we demonstrate precise measurement of the volume of the sweat gland in response to the external stimulus.

  13. Measurements of aerosol optical depth and diffuse-to-direct irradiance ratios in the Northeastern United States

    SciTech Connect

    Laulainen, N.; Larson, N.; Michalsky, J.J.

    1995-12-31

    Simultaneous observations of total and diffuse irradiance on a horizontal surface in six narrowband filtered detectors and one broadband shortwave detector have been made since late 1991 at a nine-site network of multi-filter rotating shadowband radiometers. From these measurements, the direct normal irradiance values are calculated. These data are then used to calculate the outside-the-atmosphere direct irradiance (lo) and total optical depth using the Langley method of regressing the natural logarithm of the direct irradiance against air mass for cloud-free conditions. Frequent determinations of lo allow tracking of changes in lo caused by soiling and filter degradation. The daily average total optical depth is calculated in two ways: (1) from the slope of the Langley regression line and (2) from 30-minute averages calculated from the Beer-Lambert-Bougeur law using the median lo for that day. Finally, aerosol optical depths for five wavelengths (the other narrowband wavelength is used to estimate water vapor) are obtained by subtracting Rayleigh scattering and Chappuis ozone absorption optical depths from the total optical depths. The aerosol pattern at each site is consistent with an annual cycle superimposed on a decaying aerosol loading associated with the Mt. Pinatubo eruption. Moreover, the wavelength dependence of the aerosol pattern shows seasonal changes in the aerosol size distribution. The irradiance data are also used to calculate the diffuse-to-direct irradiance ratio, a quantity which in theory is related to the aerosol optical depth and surface albedo. A radiative transfer model based on the adjoint method, combined with a nonlinear least squares method. is used to estimate aerosol optical depth and surface albedo from the observed diffuse-to-direct ratios. The aerosol optical depths are in good agreement with those calculated from the direct beam data and the surface albedos are in accord with other observations.

  14. VISION: Next Generation Beam Combiner for the Navy Precision Optical Interferometer

    NASA Astrophysics Data System (ADS)

    Garcia, Eugenio; van Belle, G.; Muterspaugh, M. W.; Swihart, S.

    2014-01-01

    The Visible Imaging System for Interferometric Observations at NPOI (VISION) is a versatile beam combiner for the Navy Precision Optical Interferometer (NPOI). VISION is a fiber-optics based beam combiner that can coherently combine light from up to 6 telescopes simultaneously using an image-plane combination scheme. VISION was inspired by the Michigan Infrared Combiner (MIRC) for the CHARA array - but VISION operates at optical wavelengths. With planned resolutions of <0.2 milli-arcseconds, VISION will be used to reconstruct multi-pixel time-varying images of evolved (luminosity class I-III) stars - in other words, movies of stellar surface variations. VISION’s visible light beam combination will be able to uniquely characterize surface features of stars less accessible at infrared wavelengths by interferometers such as CHARA. The “classic” beam combiner for NPOI employs a pupil-plane image combination which has visibility amplitude and closure phase precisions of 5-20% and 1-10 degrees respectively.VISION features a photometric camera for calibrations, spatial filtering from single mode fibers, and negligible read noise with a modern Andor Ixon CCD. These features will enable a factor of 10 improvement in visibility amplitude and closure phase precisions.

  15. Sub-nm accuracy metrology for ultra-precise reflective X-ray optics

    NASA Astrophysics Data System (ADS)

    Siewert, F.; Buchheim, J.; Zeschke, T.; Brenner, G.; Kapitzki, S.; Tiedtke, K.

    2011-04-01

    The transport and monochromatization of synchrotron light from a high brilliant laser-like source to the experimental station without significant loss of brilliance and coherence is a challenging task in X-ray optics and requires optical elements of utmost accuracy. These are wave-front preserving plane mirrors with lengths of up to 1 m characterized by residual slope errors in the range of 0.05 μrad (rms) and values of 0.1 nm (rms) for micro-roughness. In the case of focusing optical elements like elliptical cylinders the required residual slope error is in the range of 0.25 μrad rms and better. In addition the alignment of optical elements is a critical and beamline performance limiting topic. Thus the characterization of ultra-precise reflective optical elements for FEL-beamline application in the free and mounted states is of significant importance. We will discuss recent results in the field of metrology achieved at the BESSY-II Optics Laboratory (BOL) of the Helmholtz Zentrum Berlin (HZB) by use of the Nanometer Optical Component Measuring Machine (NOM). Different types of mirror have been inspected by line-scan and slope mapping in the free and mounted states. Based on these results the mirror clamping of a combined mirror/grating set-up for the BL-beamlines at FLASH was improved.

  16. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  17. The Origin and Optical Depth of Ionizing Photons in the Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-09-01

    Our understanding of radiative feedback and star formation in galaxies at high redshift is hindered by the rarity of similar systems at low redshift. However, the recently identified Green Pea (GP) galaxies are similar to high-redshift galaxies in their morphologies and star formation rates and are vital tools for probing the generation and transmission of ionizing photons. The GPs contain massive star clusters that emit copious amounts of high-energy radiation, as indicated by intense [OIII] 5007 emission and HeII 4686 emission. We focus on six GP galaxies with high ratios of [O III] 5007,4959/[O II] 3727 ~10 or more. Such high ratios indicate gas with a high ionization parameter or a low optical depth. The GP line ratios and ages point to chemically homogeneous massive stars, Wolf-Rayet stars, or shock ionization as the most likely sources of the He II emission. Models including shock ionization suggest that the GPs may have low optical depths, consistent with a scenario in which ionizing photons escape along passageways created by recent supernovae. The GPs and similar galaxies can shed new light on cosmic reionization by revealing how ionizing photons propagate from massive star clusters to the intergalactic medium.

  18. The long-term global record on Aerosol Absorption Optical Depth from TOMS and OMI observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P.; Ahn, C.; Veefkind, P.

    2006-12-01

    Carbonaceous aerosols from biomass burning and boreal forest fires, and desert dust lofted by the winds from the world major arid and semi-arid areas are among the most long-lived aerosol types in the Earth's atmosphere, since they often reach the free troposphere and are sometimes transported thousands of kilometers from their original sources. A lot has been learned about the global distribution of aerosol sources, and the transport patterns of these aerosol types since the development of the near-UV methods of aerosol detection and characterization using data from the TOMS series of instruments. Because both smoke and desert dust aerosols absorb UV-radiation, the TOMS aerosol sensing technique is specially suited for tracking these aerosol types over variety of surfaces including clouds and snow. TOMS aerosol observations, for instance, have been fundamental in discovering that carbonaceous aerosols associated with wild fires at mid and high latitudes often reach the lower stratosphere, and travel as far as the remote polar regions. We have recently completed the development of an improved algorithm to derive quantitative information about aerosol absorption optical depth using near-UV data. We will discuss the multi- decadal global record on aerosol absorption optical depth produced using TOMS and OMI sensors, and review the multiple contributions of the TOMS-OMI record to the current understanding of the factors that govern the observed temporal and spatial distribution of smoke and desert dust aerosols.

  19. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  20. Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Satheesh, S. K.; Krishna Moorthy, K.; Kaufman, Y. J.; Takemura, T.

    2006-01-01

    The Arabian Sea region (4° N 20° N to 50° E 78° E) has a unique weather pattern on account of the Indian monsoon and the associated winds that reverse direction seasonally. The aerosol data, collected using ship-borne and island platforms (for 8 years from 1995 to 2002) along with MODIS (onboard TERRA satellite) data (from 2000 to 2003) have been used to evolve a comprehensive characterisation of the spatial and temporal variation in the physical, chemical, and radiative properties of aerosols over the Arabian Sea. The aerosol optical depth (AOD) was found to increase with latitude between the equator and 12° N. Over the northern Arabian Sea (regions lying north of 12° N), AODs do not show significant latitudinal variations; the average aerosol optical depth for this region was 0.29±0.12 during winter monsoon season (WMS; November to March) and 0.47±0.14 during summer monsoon season (SMS; April/May to September). The corresponding Angstrom exponents were 0.7±0.12 and 0.3±0.08, respectively. The low values of the exponent during SMS indicate the dominance of large aerosols (mainly dust particles >1 µm). The latitudinal gradient in AOD in the southern Arabian Sea is larger during SMS compared to WMS.

  1. THEMIS Observations of Mars Aerosol Optical Depth from 2002-2008

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.

    2009-01-01

    We use infrared images obtained by the Thermal Emission Imaging System (THEMIS) instrument on-board Mars Odyssey to retrieve the optical depth of dust and water ice aerosols over more than 3.5 martian years between February 2002 (MY 25, Ls=330 ) and December 2008 (MY 29, Ls=183). These data provide an important bridge between earlier TES observations and recent observations from Mars Express and Mars Reconnaissance Orbiter. An improvement to our earlier retrieval to include atmospheric temperature information from THEMIS Band 10 observations leads to much improved retrievals during the largest dust storms. The new retrievals show moderate dust storm activity during Mars Years 26 and 27, although details of the strength and timing of dust storms is different from year to year. A planet-encircling dust storm event was observed during Mars Year 28 near Southern Hemisphere Summer solstice. A belt of low-latitude water ice clouds was observed during the aphelion season during each year, Mars Years 26 through 29. The optical depth of water ice clouds is somewhat higher in the THEMIS retrievals at approximately 5:00 PM local time than in the TES retrievals at approximately 2:00 PM, suggestive of possible local time variation of clouds.

  2. CALIOP and AERONET Aerosol Optical Depth Comparisons: One Size Fits None

    NASA Technical Reports Server (NTRS)

    Omar, A. H.; Winker, D. M.; Tackett, J. L.; Giles, D. M.; Kar, J.; Liu, Z.; Vaughan, M. A.; Powell, K. A.; Trepte, C. R.

    2013-01-01

    We compare the aerosol optical depths (AOD) retrieved from backscatter measurements of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite with coincident Aerosol Robotic Network (AERONET) measurements. Overpass coincidence criteria of +/- 2 h and within a 40 km radius are satisfied at least once at 149 globally distributed AERONET sites from 2006 to 2010. Most data pairs (>80%) use AERONET measurements acquired +/- 30 min of the overpass. We examine the differences in AOD estimates between CALIOP and AERONET for various aerosol, environmental, and geographic conditions. Results show CALIOP AOD are lower than AERONET AOD especially at low optical depths as measured by AERONET (500 nm AOD<0.1). Furthermore, the median relative AOD difference between the two measurements is 25% of the AERONET AOD for AOD>0.1. Differences in AOD between CALIOP and AERONET are possibly due to cloud contamination, scene inhomogeneity, instrument view angle differences, CALIOP retrieval errors, and detection limits. Comparison of daytime to nighttime number of 5 km 60m (60m in the vertical) features detected by CALIOP show that there are 20% more aerosol features at night. We find that CALIPSO and AERONET do not agree on the cloudiness of scenes. Of the scenes that meet the above coincidence criteria, CALIPSO finds clouds in more than 45% of the coincident atmospheric columns AERONET classifies as clear.

  3. Aerosol Optical Depth at Cape Grim 1986 - 2014: What does it tell us?

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen

    2015-04-01

    The Cape Grim Baseline Air Pollution Station is located near the northwest tip of Tasmania (Australia), a site chosen to permit measurement of the atmospheric environment over the southern oceans. Atmospheric measurements began in the late 1970s, and observations of Aerosol Optical Depth (AOD) using automated sunphotometers began in 1986. Since then, measurements have continued with a range of different instruments operating at a varying number of wavelengths. The site is challenging for these measurements as it is exposed to a sea-salt laden atmosphere, which presents both instrumental issues (corrosion) and measurement complications (salt fouling of the windows) in addition to the high frequency of cloud. The dataset has been processed to produce a record of half-hourly AOD for the period 1986 - 2014 and investigated for internal consistency. In general the AOD is small (around 0.05 at 500nm). The impact of the Mount Pinatubo eruption in 1991 can be clearly observed, along with a persistent annual cycle. This has been further analyzed fitting to all wavelengths measured to derive an averaged optical depth (at 500 nm) and some preliminary aerosol size distribution information.

  4. Ship-based Aerosol Optical Depth Measurements in the Atlantic Ocean, Comparison with Satellite Retrievals and GOCART Model

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Holben, B. N.; Sakerin, S.; Kabanov, D.; Slutsker, I.; Remer, L. A.; Kahn, R.; Ignatov, A.; Chin, M.; Diehl, T. L.; Mishchenko, M.; Liu, L.; Kucsera, T. L.; Giles, D.; Eck, T. F.; Torres, O.; Kopelevich, O.

    2005-12-01

    Aerosol optical depth measurements were made in October -December 2004 aboard of R/V Akademik Sergey Vavilov. The cruise area included the Atlantic transect from North Sea to Cape Town and then a crossing in the South Atlantic to Ushuaia, Argentina. The hand-held Microtops II sunphotometer was used to acquire 314 series of measurements spanning 38 days. The sunphotometer was pre-calibrated at the NASA Goddard Space Flight Center against a master sun/sky radiometer instrument of the Aerosol Robotic Network (AERONET). The direct sun measurements were acquired in five spectral channels: 340, 440, 675, 870 and 940 nm. To retrieve aerosol optical depths we applied AERONET processing algorithm (Version 2) to the raw data. Aerosol optical depth values were close to background oceanic conditions (0.04-0.08) in the open oceanic areas not influenced by continental sources. Spectral dependence can be described as almost neutral (Angstrom parameter was less than 0.6), especially in the Southern Atlantic. A notable latitudinal variability of optical depth was observed between 15N and 21S, which was associated with the aerosol transport from Africa. Correlations between optical depth and meteorological parameters were considered and comparison between ship-based measurements and AERONET sites along the cruise track was made. Aerosol optical depths were compared to the global transport model (GOCART) simulations and satellite retrievals from MODIS, MISR, and AVHRR.

  5. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons

    NASA Astrophysics Data System (ADS)

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-10-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm-2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth.

  6. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons

    PubMed Central

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-01-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm−2. This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon–phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372

  7. Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons.

    PubMed

    Sim, Sangwan; Jang, Houk; Koirala, Nikesh; Brahlek, Matthew; Moon, Jisoo; Sung, Ji Ho; Park, Jun; Cha, Soonyoung; Oh, Seongshik; Jo, Moon-Ho; Ahn, Jong-Hyun; Choi, Hyunyong

    2015-01-01

    Modulating light via coherent charge oscillations in solids is the subject of intense research topics in opto-plasmonics. Although a variety of methods are proposed to increase such modulation efficiency, one central challenge is to achieve a high modulation depth (defined by a ratio of extinction with/without light) under small photon-flux injection, which becomes a fundamental trade-off issue both in metals and semiconductors. Here, by fabricating simple micro-ribbon arrays of topological insulator Bi2Se3, we report an unprecedentedly large modulation depth of 2,400% at 1.5 THz with very low optical fluence of 45 μJ cm(-2). This was possible, first because the extinction spectrum is nearly zero due to the Fano-like plasmon-phonon-destructive interference, thereby contributing an extremely small denominator to the extinction ratio. Second, the numerator of the extinction ratio is markedly increased due to the photoinduced formation of massive two-dimensional electron gas below the topological surface states, which is another contributor to the ultra-high modulation depth. PMID:26514372

  8. On the assimilation of optical reflectances and snow depth observations into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Charrois, Luc; Cosme, Emmanuel; Dumont, Marie; Lafaysse, Matthieu; Morin, Samuel; Libois, Quentin; Picard, Ghislain

    2016-05-01

    This paper examines the ability of optical reflectance data assimilation to improve snow depth and snow water equivalent simulations from a chain of models with the SAFRAN meteorological model driving the detailed multilayer snowpack model Crocus now including a two-stream radiative transfer model for snow, TARTES. The direct use of reflectance data, allowed by TARTES, instead of higher level snow products, mitigates uncertainties due to commonly used retrieval algorithms.Data assimilation is performed with an ensemble-based method, the Sequential Importance Resampling Particle filter, to represent simulation uncertainties. In snowpack modeling, uncertainties of simulations are primarily assigned to meteorological forcings. Here, a method of stochastic perturbation based on an autoregressive model is implemented to explicitly simulate the consequences of these uncertainties on the snowpack estimates.Through twin experiments, the assimilation of synthetic spectral reflectances matching the MODerate resolution Imaging Spectroradiometer (MODIS) spectral bands is examined over five seasons at the Col du Lautaret, located in the French Alps. Overall, the assimilation of MODIS-like data reduces by 45 % the root mean square errors (RMSE) on snow depth and snow water equivalent. At this study site, the lack of MODIS data on cloudy days does not affect the assimilation performance significantly. The combined assimilation of MODIS-like reflectances and a few snow depth measurements throughout the 2010/2011 season further reduces RMSEs by roughly 70 %. This work suggests that the assimilation of optical reflectances has the potential to become an essential component of spatialized snowpack simulation and forecast systems. The assimilation of real MODIS data will be investigated in future works.

  9. Hi Gas Cycles and Lyman Continuum Optical Depth in Low-Redshift Starbursts

    NASA Astrophysics Data System (ADS)

    Jaskot, Anne Elizabeth

    Neutral gas both fuels star formation and determines the propagation of ionizing photons. In this work, we reveal the interactions between H I, star formation, and radiative feedback in two samples of low-redshift starbursts. Using the ALFALFA-Halpha sample, we present the first comparison of starbursts and non-starbursts within a statistically uniform, H I-selected sample. The moderate H I gas fractions of the starbursts relative to non-starbursts indicate efficient HI to H2 conversion and show that the H I supply is largely unaffected by ionizing radiation. Mergers may trigger the more massive starbursts, while the absence of obvious kinematical disturbances in dwarf starbursts may indicate periodic starburst activity, triggered by cycles of gas expulsion and re-accretion. While the ALFALFA-Halpha galaxies demonstrate that starbursts may maintain large H I reservoirs, the more powerful starbursts in the Green Pea (GP) galaxies illustrate the effects of extreme radiative feedback on neutral gas. To investigate whether the enormous [O III]/[O II] ratios in the most extreme GPs indicate LyC escape, we use photoionization modeling to constrain their ionizing sources and optical depths. Radiation from Wolf-Rayet stars or unusually hot O stars reproduces the observed [O III]/[O II] ratios, but no clear signatures of these stars are present. The GP spectra do suggest the presence of shocks, however, and accounting for shock emission necessitates a low optical depth. We therefore suggest that the GPs may be a new class of low-redshift LyC Emitters (LCEs), and we evaluate this scenario using Hubble Space Telescope COS spectra of four GPs. With these spectra, we develop a simple physical picture of the neutral gas optical depth and geometry that explains the previously enigmatic link between Lyalpha, Si II, and Si II* lines observed in high-redshift Lyalpha Emitters. Two GPs are likely optically thin along the line of sight, and their strong, narrow Lyalpha emission, weak

  10. Fiber-based optical coherence tomography for biomedical imaging, sensing, and precision measurements

    NASA Astrophysics Data System (ADS)

    Lee, Byeong Ha; Min, Eun Jung; Kim, Young Ho

    2013-12-01

    Recently published studies on fiber-based optical coherence tomography (OCT) are reviewed mainly in relation to applications within the fields of biomedical imaging and precision measurement. A succinct introduction to fiber-based OCT system configurations is described including history, related core components, and functional characteristics. Then, an overview of fiber-optic probes is presented in terms of actuating method, scanning direction, and functionality. In order to verify the performance of fiber-optic OCT systems, fiber-based OCT images of several biological samples including pearls, fingers, teeth, and tumor tissues are presented. A multi-functional modality combined with laser induced fluorescence spectroscopy is also presented to distinguish between similar samples. Finally, some interesting fiber-optic OCT studies are briefly presented to measure various physical, chemical, and biological parameters. In particular, simultaneous refractive index and thickness measurement systems with self-referencing and dual probing techniques are introduced. Also, high precision measurement using a common-path OCT configuration is demonstrated with the help of Fourier domain phase analysis.

  11. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea

    NASA Astrophysics Data System (ADS)

    Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N.

    2014-01-01

    aerosol optical depth (AAOD) measurements made by sun-sky photometers are currently the only constraint available for estimates of the global radiative forcing of black carbon (BC), but their validation studies are limited. In this paper, we report the first attempt to compare AAODs derived from single-particle soot photometer (SP2) and ground-based sun-sky photometer (sky radiometer, SKYNET) measurements. During the Aerosol Radiative Forcing in East Asia (A-FORCE) experiments, BC size distribution and mixing state vertical profiles were measured using an SP2 on board a research aircraft near the Fukue Observatory (32.8°N, 128.7°E) over the East China Sea in spring 2009 and late winter 2013. The aerosol extinction coefficients (bext) and single scattering albedo (SSA) at 500 nm were calculated based on aerosol size distribution and detailed BC mixing state information. The calculated aerosol optical depth (AOD) agreed well with the sky radiometer measurements (2 ± 6%) when dust loadings were low (lidar-derived nonspherical particle contribution to AOD less than 20%). However, under these low-dust conditions, the AAODs obtained from sky radiometer measurements were only half of the in situ estimates. When dust loadings were high, the sky radiometer measurements showed systematically higher AAODs even when all coarse particles were assumed to be dust for in situ measurements. These results indicate that there are considerable uncertainties in AAOD measurements. Uncertainties in the BC refractive index, optical calculations from in situ data, and sky radiometer retrieval analyses are discussed.

  12. Depth discrimination in acousto-optic cerebral blood flow measurement simulation

    NASA Astrophysics Data System (ADS)

    Tsalach, A.; Schiffer, Z.; Ratner, E.; Breskin, I.; Zeitak, R.; Shechter, R.; Balberg, M.

    2016-03-01

    Monitoring cerebral blood flow (CBF) is crucial, as inadequate perfusion, even for relatively short periods of time, may lead to brain damage or even death. Thus, significant research efforts are directed at developing reliable monitoring tools that will enable continuous, bed side, simple and cost-effective monitoring of CBF. All existing non invasive bed side monitoring methods, which are mostly NIRS based, such as Laser Doppler or DCS, tend to underestimate CBF in adults, due to the indefinite effect of extra-cerebral tissues on the obtained signal. If those are to find place in day to day clinical practice, the contribution of extra-cerebral tissues must be eliminated and data from the depth (brain) should be extracted and discriminated. Recently, a novel technique, based on ultrasound modulation of light was developed for non-invasive, continuous CBF monitoring (termed ultrasound-tagged light (UTL or UT-NIRS)), and shown to correlate with readings of 133Xe SPECT and laser Doppler. We have assembled a comprehensive computerized simulation, modeling this acousto-optic technique in a highly scattering media. Using the combination of light and ultrasound, we show how depth information may be extracted, thus distinguishing between flow patterns taking place at different depths. Our algorithm, based on the analysis of light modulated by ultrasound, is presented and examined in a computerized simulation. Distinct depth discrimination ability is presented, suggesting that using such method one can effectively nullify the extra-cerebral tissues influence on the obtained signals, and specifically extract cerebral flow data.

  13. Focusing of photomechanical waves with an optical lens for depth-targeted molecular delivery

    NASA Astrophysics Data System (ADS)

    Shimada, Takuichirou; Sato, Shunichi; Kawauchi, Satoko; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2014-02-01

    We have been developing molecular delivery systems based on photomechanical waves (PMWs), which are generated by the irradiation of a laser absorbing material with nanosecond laser pulses. This method enables highly site-specific delivery in the horizontal plane of the tissue. However, targeting in the vertical direction is a remaining challenge. In this study, we developed a novel PMW focusing device for deeper tissue targeting. A commercial optical concave lens and black natural rubber sheet (laser absorber) were attached to the top and bottom end of a cylindrical spacer, respectively, which was filled with water. A laser pulse was transmitted through the lens and water and hit the rubber sheet to induce a plasma, generating a PMW. The PMW was propagated both downward and upward. The downward wave (1st wave) was diffused, while the upward (2nd wave) wave was reflected with the concave surface of the lens and focused at a depth determined by the geometrical parameters. To attenuate the 1st wave, a small-diameter silicon sponge rubber disk was adhered just under the rubber sheet concentrically with the laser axis. With the lens of f = -40 mm, the 2nd wave was focused to a diameter of 5.7 mm at a targeted depth of 20 mm, which was well agreed with the result of calculation by ray tracing. At a laser fluence of 5.1 J/cm2, peak pressure of the PMW reached ~40 MPa at the depth of 20 mm. Under this condition, we examined depth-targeted gene delivery to the rat skin.

  14. High precision surface metrology of x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Lacey, Ian; Artemiev, Nikolay A.; McKinney, Wayne R.; Merthe, Daniel J.; Yashchuk, Valeriy V.

    2013-09-01

    We describe a systematic procedure developed for surface characterization of super polished x-ray optical components with an interferometric microscope. In this case, obtaining trustworthy metrology data requires thorough accounting of the instrument's optical aberrations, its spatial resolution, and random noise. We analyze and cross compare two general experimental approaches to eliminate the aberration contribution. The reference surface approach relies on aberration evaluation with successive measurements of a high quality reference mirror. The so called super smooth measurement mode consists of subtracting two surface profiles measured over two statistically uncorrelated areas of the optics under test. The precisely measured instrument's modulation transfer function (MTF) and random noise spectrum allows us to correct the aberration-amended surface topography in the spatial frequency domain. While the developed measurement procedure is general and can be applied to various metrology instruments, the specific results presented are from a Zygo NewView™ 7300 microscope.

  15. Femtosecond-precision synchronization of the pump-probe optical laser for user experiments at FLASH

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Czwalinna, M. K.; Felber, M.; Predki, P.; Schefer, S.; Schlarb, H.; Wegner, U.

    2013-05-01

    In this paper, we present the long-term stable synchronization of the FLASH pump-probe Ti:sapphire oscillator to an optical reference with sub-10 fs (rms) timing jitter employing a balanced optical cross-correlator. The reference pulse train, transmitted over an actively transit time-stabilized 500m long fiber link, is generated by the FLASH master laser oscillator. This laser also provides the reference for several electron bunch arrival time monitors with sub-10 fs resolution, which in turn enables a longitudinal feedback reducing the electron bunch arrival time jitter to below 25 fs (rms). Combining the precise synchronization of the laser and the longitudinal accelerator feedback enabled a proof-of-principle pump-probe experiment at FLASH, ultimately showing a significant reduction of the timing jitter between the optical laser and the XUV pulses generated by the FEL, compared to the present standard operation.

  16. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    SciTech Connect

    Morozov, A N; Turchin, I V

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resulting field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)

  17. A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Dailey, D.; Lillie, C.

    2011-09-01

    The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.

  18. Software-Assisted Depth Analysis of Optic Nerve Stereoscopic Images in Telemedicine.

    PubMed

    Xia, Tian; Patel, Shriji N; Szirth, Ben C; Kolomeyer, Anton M; Khouri, Albert S

    2016-01-01

    Background. Software guided optic nerve assessment can assist in process automation and reduce interobserver disagreement. We tested depth analysis software (DAS) in assessing optic nerve cup-to-disc ratio (VCD) from stereoscopic optic nerve images (SONI) of normal eyes. Methods. In a prospective study, simultaneous SONI from normal subjects were collected during telemedicine screenings using a Kowa 3Wx nonmydriatic simultaneous stereoscopic retinal camera (Tokyo, Japan). VCD was determined from SONI pairs and proprietary pixel DAS (Kowa Inc., Tokyo, Japan) after disc and cup contour line placement. A nonstereoscopic VCD was determined using the right channel of a stereo pair. Mean, standard deviation, t-test, and the intraclass correlation coefficient (ICCC) were calculated. Results. 32 patients had mean age of 40 ± 14 years. Mean VCD on SONI was 0.36 ± 0.09, with DAS 0.38 ± 0.08, and with nonstereoscopic 0.29 ± 0.12. The difference between stereoscopic and DAS assisted was not significant (p = 0.45). ICCC showed agreement between stereoscopic and software VCD assessment. Mean VCD difference was significant between nonstereoscopic and stereoscopic (p < 0.05) and nonstereoscopic and DAS (p < 0.005) recordings. Conclusions. DAS successfully assessed SONI and showed a high degree of correlation to physician-determined stereoscopic VCD. PMID:27190507

  19. Software-Assisted Depth Analysis of Optic Nerve Stereoscopic Images in Telemedicine

    PubMed Central

    Xia, Tian; Patel, Shriji N.; Szirth, Ben C.

    2016-01-01

    Background. Software guided optic nerve assessment can assist in process automation and reduce interobserver disagreement. We tested depth analysis software (DAS) in assessing optic nerve cup-to-disc ratio (VCD) from stereoscopic optic nerve images (SONI) of normal eyes. Methods. In a prospective study, simultaneous SONI from normal subjects were collected during telemedicine screenings using a Kowa 3Wx nonmydriatic simultaneous stereoscopic retinal camera (Tokyo, Japan). VCD was determined from SONI pairs and proprietary pixel DAS (Kowa Inc., Tokyo, Japan) after disc and cup contour line placement. A nonstereoscopic VCD was determined using the right channel of a stereo pair. Mean, standard deviation, t-test, and the intraclass correlation coefficient (ICCC) were calculated. Results. 32 patients had mean age of 40 ± 14 years. Mean VCD on SONI was 0.36 ± 0.09, with DAS 0.38 ± 0.08, and with nonstereoscopic 0.29 ± 0.12. The difference between stereoscopic and DAS assisted was not significant (p = 0.45). ICCC showed agreement between stereoscopic and software VCD assessment. Mean VCD difference was significant between nonstereoscopic and stereoscopic (p < 0.05) and nonstereoscopic and DAS (p < 0.005) recordings. Conclusions. DAS successfully assessed SONI and showed a high degree of correlation to physician-determined stereoscopic VCD. PMID:27190507

  20. Ultrahigh resolution optical coherence elastography using a Bessel beam for extended depth of field

    NASA Astrophysics Data System (ADS)

    Curatolo, Andrea; Villiger, Martin; Lorenser, Dirk; Wijesinghe, Philip; Fritz, Alexander; Kennedy, Brendan F.; Sampson, David D.

    2016-03-01

    Visualizing stiffness within the local tissue environment at the cellular and sub-cellular level promises to provide insight into the genesis and progression of disease. In this paper, we propose ultrahigh-resolution optical coherence elastography, and demonstrate three-dimensional imaging of local axial strain of tissues undergoing compressive loading. The technique employs a dual-arm extended focus optical coherence microscope to measure tissue displacement under compression. The system uses a broad bandwidth supercontinuum source for ultrahigh axial resolution, Bessel beam illumination and Gaussian beam detection, maintaining sub-2 μm transverse resolution over nearly 100 μm depth of field, and spectral-domain detection allowing high displacement sensitivity. The system produces strain elastograms with a record resolution (x,y,z) of 2×2×15 μm. We benchmark the advances in terms of resolution and strain sensitivity by imaging a suitable inclusion phantom. We also demonstrate this performance on freshly excised mouse aorta and reveal the mechanical heterogeneity of vascular smooth muscle cells and elastin sheets, otherwise unresolved in a typical, lower resolution optical coherence elastography system.

  1. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling.

    PubMed

    Soni, Kirti; Parmar, Kulwinder Singh; Kapoor, Sangeeta; Kumar, Nishant

    2016-05-15

    A lot of studies in the literature of Aerosol Optical Depth (AOD) done by using Moderate Resolution Imaging Spectroradiometer (MODIS) derived data, but the accuracy of satellite data in comparison to ground data derived from ARrosol Robotic NETwork (AERONET) has been always questionable. So to overcome from this situation, comparative study of a comprehensive ground based and satellite data for the period of 2001-2012 is modeled. The time series model is used for the accurate prediction of AOD and statistical variability is compared to assess the performance of the model in both cases. Root mean square error (RMSE), mean absolute percentage error (MAPE), stationary R-squared, R-squared, maximum absolute percentage error (MAPE), normalized Bayesian information criterion (NBIC) and Ljung-Box methods are used to check the applicability and validity of the developed ARIMA models revealing significant precision in the model performance. It was found that, it is possible to predict the AOD by statistical modeling using time series obtained from past data of MODIS and AERONET as input data. Moreover, the result shows that MODIS data can be formed from AERONET data by adding 0.251627 ± 0.133589 and vice-versa by subtracting. From the forecast available for AODs for the next four years (2013-2017) by using the developed ARIMA model, it is concluded that the forecasted ground AOD has increased trend. PMID:26925737

  2. Global and Seasonal Aerosol Optical Depths Derived From Ultraviolet Observations by Satellites (TOMS)

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Torres, O.

    1999-01-01

    It has been shown that absorbing aerosols (dust, smoke, volcanic ash) can be detected in the ultraviolet wavelengths (331 nm to 380 nm) from satellite observations (TOMS, Total Ozone Mapping Spectrometer) over both land and water. The theoretical basis for these observations and their conversions to optical depths is discussed in terms of an aerosol index AI or N-value residue (assigned positive for absorbing aerosols). The theoretical considerations show that negative values of the AI frequently represent the presence of non-absorbing aerosols (NA) in the troposphere (mostly pollution in the form of sulfates, hydrocarbons, etc., and some natural sulfate aerosols) with particle sizes near 0.1 to 0.2 microns or less. The detection of small-particle non-absorbing aerosols from the measured backscattered radiances is based on the observed wavelength dependence from Mie scattering after the background Rayleigh scattering is subtracted. The Mie scattering from larger particles, 1 micron or more (e.g., cloud water droplets) has too small a wavelength dependence to be detected by this method. In regions that are mostly cloud free, aerosols of all sizes can be seen in the single channel 380 nm or 360 nm radiance data. The most prominent Al feature observed is the strong asymmetry in aerosol amount between the Northern and Southern Hemispheres, with the large majority of NA occurring above 20degN latitude. The maximum values of non-absorbing aerosols are observed over the eastern U.S. and most of western Europe corresponding to the areas of highest industrial pollution. Annual cycles in the amount of NA are observed over Europe and North America with maxima occurring in the summer corresponding to times of minimum wind transport. Similarly, the maxima in the winter over the Atlantic Ocean occurs because of wind borne transport from the land. Most regions of the world have the maximum amount of non-absorbing aerosol in the December to January period except for the eastern

  3. Assessment of Error in Aerosol Optical Depth Measured by AERONET Due to Aerosol Forward Scattering

    NASA Technical Reports Server (NTRS)

    Sinyuk, Alexander; Holben, Brent N.; Smirnov, Alexander; Eck, Thomas F.; Slustsker, Ilya; Schafer, Joel S.; Giles, David M.; Sorokin, Michail

    2013-01-01

    We present an analysis of the effect of aerosol forward scattering on the accuracy of aerosol optical depth (AOD) measured by CIMEL Sun photometers. The effect is quantified in terms of AOD and solar zenith angle using radiative transfer modeling. The analysis is based on aerosol size distributions derived from multi-year climatologies of AERONET aerosol retrievals. The study shows that the modeled error is lower than AOD calibration uncertainty (0.01) for the vast majority of AERONET level 2 observations, 99.53%. Only 0.47% of the AERONET database corresponding mostly to dust aerosol with high AOD and low solar elevations has larger biases. We also show that observations with extreme reductions in direct solar irradiance do not contribute to level 2 AOD due to low Sun photometer digital counts below a quality control cutoff threshold.

  4. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS day/night band

    NASA Astrophysics Data System (ADS)

    Johnson, R. S.; Zhang, J.; Hyer, E. J.; Miller, S. D.; Reid, J. S.

    2013-01-01

    A great need exists for reliable nighttime aerosol products at high spatial and temporal resolution. In this concept demonstration study, using Visible/Infrared Imager/Radiometer Suite (VIIRS) Day/Night Band (DNB) observations on the Suomi National Polar-orbiting Partnership (NPP) satellite, a new method is proposed for retrieving nighttime aerosol optical depth (τ) using the contrast between regions with and without artificial surface lights. Evaluation of the retrieved τ values against daytime AERONET data from before and after the overpass of the VIIRS satellite over the Cape Verde, Grand Forks, and Alta Floresta AERONET stations yields a coefficient of determination (r2) of 0.71. This study suggests that the VIIRS DNB has the potential to provide useful nighttime aerosol detection and property retrievals.

  5. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band

    NASA Astrophysics Data System (ADS)

    Johnson, R. S.; Zhang, J.; Hyer, E. J.; Miller, S. D.; Reid, J. S.

    2013-05-01

    A great need exists for reliable nighttime aerosol products at high spatial and temporal resolution. In this concept demonstration study, using Visible/Infrared Imager/Radiometer Suite (VIIRS) Day/Night Band (DNB) observations on the Suomi National Polar-orbiting Partnership (NPP) satellite, a new method is proposed for retrieving nighttime aerosol optical depth (τ) using the contrast between regions with and without artificial surface lights. Evaluation of the retrieved τ values against daytime AERONET data from before and after the overpass of the VIIRS satellite over the Cape Verde, Grand Forks, and Alta Floresta AERONET stations yields a coefficient of determination (r2) of 0.71. This study suggests that the VIIRS DNB has the potential to provide useful nighttime aerosol detection and property retrievals.

  6. Atmospheric optical depth effects on angular anisotropy of plant canopy reflectance

    NASA Technical Reports Server (NTRS)

    Deering, Donald W.; Eck, Thomas F.

    1987-01-01

    The effects of varying atmospheric aerosol optical depth on the bidirectional reflectance distribution of vegetation canopies is investigated. The reflectance distributions of two pasture grass canopies and one soya bean canopy under different sky irradiance distributions were measured, and the data were analyzed in the visible and IR spectral bands. It is observed that, for the pasture grass canopies, the change in reflectance is due to the percentage of shadowed area viewed by the sensor, and for the soya bean, the specular reflection effect and increased diffuse irradiance penetration into the canopy cause reflectance changes. It is detected that the reflectivity for the soya bean canopy on a hazy day is lower than on a clear day; however, the opposite change is observed for the pasture grass. It is also detected that the normalized difference vegetation index values differ under clear and hazy conditions for the same vegetation canopy conditions.

  7. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography.

    PubMed

    Zhang, Yun; Dong, Bo; Bai, Yulei; Ye, Shuangli; Lei, Zhenkun; Zhou, Yanzhou

    2015-10-19

    An updated B-scan method is proposed for measuring the evolution of thermal deformation fields in polymers. In order to measure the distributions of out-of-plane deformation and normal strain field, phase-contrast spectral optical coherence tomography (PC-SOCT) was performed with the depth range and resolution of 4.3 mm and 10.7 μm, respectively, as thermal loads were applied to three different multilayer samples. The relation between temperature and material refractive index was predetermined before the measurement. After accounting for the refractive index, the thermal deformation fields in the polymer were obtained. The measured thermal expansion coefficient of silicone sealant was approximately equal to its reference value. This method allows correctly assessing the mechanical properties in semitransparent polymers. PMID:26480464

  8. The optical depth of the Universe seen through ultrahigh energy cosmic ray spectacles

    NASA Astrophysics Data System (ADS)

    Kotera, K.; Lemoine, M.

    2008-11-01

    We provide an analytical description of the transport of ultrahigh energy cosmic rays in a universe made up of magnetized scattering centers, with negligible magnetic fields between them. Magnetic deflection is no longer a continuous process: it is rather dominated by scattering events. We calculate the optical depth of the Universe to cosmic ray scattering and discuss its phenomenological consequences for various source scenarios. It is found that part of the correlation reported recently by the Pierre Auger Observatory between active galactic nuclei and the arrival directions of ultrahigh energy cosmic rays may be affected by a scattering delusion. This experiment may be observing in part the last scattering surface of particles, rather than their source population.

  9. Estimating object proper motion using optical flow, kinematics, and depth information.

    PubMed

    Schmüdderich, Jens; Willert, Volker; Eggert, Julian; Rebhan, Sven; Goerick, Christian; Sagerer, Gerhard; Körner, Edgar

    2008-08-01

    For the interaction of a mobile robot with a dynamic environment, the estimation of object motion is desired while the robot is walking and/or turning its head. In this paper, we describe a system which manages this task by combining depth from a stereo camera and computation of the camera movement from robot kinematics in order to stabilize the camera images. Moving objects are detected by applying optical flow to the stabilized images followed by a filtering method, which incorporates both prior knowledge about the accuracy of the measurement and the uncertainties of the measurement process itself. The efficiency of this system is demonstrated in a dynamic real-world scenario with a walking humanoid robot. PMID:18632403

  10. Reconstruction of long-term aerosol optical depth series with sunshine duration records

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; Sanchez-Lorenzo, A.; González, J. A.; Calbó, J.

    2016-02-01

    We report the suitability of sunshine duration (SD) records as a proxy for the reconstruction of atmospheric aerosol content, for which little information exists, especially prior to the 1980s. Specifically, we have treated cloudless summer days in 16 stations throughout Spain. For almost all sites we find statistically significant relationships between aerosol optical depth (AOD) and daily SD. The correlation coefficient presents a mean value of -0.72, and slope values of the linear regressions are within the range [-0.11, -0.36]. The relationships are used to generate AOD series back to the 1960s (to the 1920s for Madrid). These reconstructed series show an increase in AOD from the mid-1960s to the 1980s, followed by a decrease until the present, in agreement with changes in anthropogenic aerosol emissions and with opposite trends of solar irradiance. The method can be used to reconstruct AOD from the late nineteenth century at many stations worldwide.

  11. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  12. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  13. Spatial and temporal variations in the atmospheric aerosol optical depth at the ARM CART Site

    SciTech Connect

    Nash, T.M.; Cheng, M.D.

    1998-02-01

    In an effort to better characterize the inputs to radiative transfer models and research-grade global climate simulation models (GCMs) the columnar aerosol loading, measured as the aerosol optical depth (AOD), has been computed for five facilities within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site. Characterization of the AOD reported here show clear evidence that the spatial and temporal gradient exists at a much finer linear scale than those of the CART site. The annual variations of median AOD are on the order of 0.30 at all five facilities. The Spearman correlation and varimax-rotated PCA indicated the AOD values vary consistently across the CART site. The Northwest corner facility (EF-1) was the single facility that behaved differently from the rest. This sub-GCM grid variation can not be ignored if the model is to be used to accurately predict future climate change.

  14. Spatial and temporal variations in the atmospheric aerosol optical depth at the ARM CART Site

    SciTech Connect

    Nash, T.M.; Cheng, M.D.

    1998-12-31

    In an effort to better characterize the inputs to radiative transfer models and research-grade global climate simulation models (GCMs) the columnar aerosol loading, measured as the aerosol optical depth (AOD), has been computed for five facilities within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site. Characterization of the AOD reported here show clear evidence that the spatial and temporal gradient exists at a much finer linear scale than those of the CART site. The annual variations of median AOD are on the order of 0.30 at all five facilities. The Spearman correlation and varimax-rotated PCA indicated the AOD values vary consistently across the CART site. The Northwest corner facility (EF-1) was the single facility that behaved differently from the rest. This sub-GCM grid variation can not be ignored if the model it to be used to accurately predict future climate change.

  15. In-vivo full depth of eye imaging spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dai, Cuixia; Zhou, Chuanqing; Jiao, Shuliang; Xi, Peng; Ren, Qiushi

    2011-09-01

    It is necessary to apply the spectral-domain optical coherence tomography (SD-OCT) to image the whole eye segment for practically iatrical application, but the imaging depth of SD-OCT is limited by the spectral resolution of the spectrometer. By now, no result about this research has been reported. In our study, a new dual channel dual focus OCT system is adopted to image the whole eye segment. The cornea and the crystalline lens are simultaneously imaged by using full range complex spectral-domain OCT in one channel, the retina is detected by the other. The new system was successfully tested in imaging of the volunteer' eye in vivo. The preliminary results presented in this paper demonstrated the feasibility of this approach.

  16. An optical fiber multiplexing interferometric system for measuring remote and high precision step height

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-02-01

    In this paper, an optical fiber multiplexing interferometric system including a Fizeau interferometer and a Michelson interferometer is designed for remote and high precision step height measurement. The Fizeau interferometer which is inserted in the remote sensing field is used for sensing the measurand, while the Michelson interferometer which is stabilized by a feedback loop works in both modes of low coherence interferometry and high coherence interferometry to demodulate the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by using the symmetrical peak-searching method to address the peak of the low coherence interferogram precisely and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  17. Remote and high precision step height measurement with an optical fiber multiplexing interferometric system

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Chen, Liang

    2015-03-01

    An optical fiber multiplexing low coherence and high coherence interferometric system, which includes a Fizeau interferometer as the sensing element and a Michelson interferometer as the demodulating element, is designed for remote and high precision step height measurement. The Fizeau interferometer is placed in the remote field for sensing the measurand, while the Michelson interferometer which works in both modes of low coherence interferometry and high coherence interferometry is employed for demodulating the measurand. The range of the step height is determined by the low coherence interferometry and the value of it is measured precisely by the high coherence interferometry. High precision has been obtained by searching precisely the peak of the low coherence interferogram symmetrically from two sides of the low coherence interferogram and stabilizing the Michelson interferometer with a feedback loop. The maximum step height that could be measured is 6 mm while the measurement resolution is less than 1 nm. The standard deviation of 10 times measurement results of a step height of 1 mm configurated with two gauge blocks is 0.5 nm.

  18. High precision optical cavity length and width measurements using double modulation.

    PubMed

    Staley, A; Hoak, D; Effler, A; Izumi, K; Dwyer, S; Kawabe, K; King, E J; Rakhmanov, M; Savage, R L; Sigg, D

    2015-07-27

    We use doubly phase modulated light to measure both the length and the linewidth of an optical resonator with high precision. The first modulation is at RF frequencies and is set near a multiple of the free spectral range, whereas the second modulation is at audio frequencies to eliminate offset errors at DC. The light in transmission or in reflection of the optical resonator is demodulated while sweeping the RF frequency over the optical resonance. We derive expressions for the demodulated power in transmission, and show that the zero crossings of the demodulated signal in transmission serve as a precise measure of the cavity linewidth at half maximum intensity. We demonstrate the technique on two resonant cavities, with lengths 16 m and a 4 km, and achieve an absolute length accuracy as low as 70 ppb. The cavity width for the 16 m cavity was determined with an accuracy of approximately 6000 ppm. Through an analysis of the systematic errors we show that this result could be substantially improved with the reduction of technical sources of uncertainty. PMID:26367601

  19. Analysis of precision in tumor tracking based on optical positioning system during radiotherapy.

    PubMed

    Zhou, Han; Shen, Junshu; Li, Bing; Chen, Junting; Zhu, Xixu; Ge, Yun; Wang, Yongjian

    2016-03-19

    Tumor tracking is performed during patient set-up and monitoring of respiratory motion in radiotherapy. In the clinical setting, there are several types of equipment for this set-up such as the Electronic Portal imaging Device (EPID) and Cone Beam CT (CBCT). Technically, an optical positioning system tracks the difference between the infra ball reflected from body and machine isocenter. Our objective is to compare the clinical positioning error of patient setup between Cone Beam CT (CBCT) with the Optical Positioning System (OPS), and to evaluate the traditional positioning systems and OPS based on our proposed approach of patient positioning. In our experiments, a phantom was used, and we measured its setup errors in three directions. Specifically, the deviations in the left-to-right (LR), anterior-to-posterior (AP) and inferior-to-superior (IS) directions were measured by vernier caliper on a graph paper using the Varian Linear accelerator. Then, we verified the accuracy of OPS based on this experimental study. In order to verify the accuracy of phantom experiment, 40 patients were selected in our radiotherapy experiment. To illustrate the precise of optical positioning system, we designed clinical trials using EPID. From our radiotherapy procedure, we can conclude that OPS has higher precise than conventional positioning methods, and is a comparatively fast and efficient positioning method with respect to the CBCT guidance system. PMID:27257880

  20. Nonisothermal glass molding for the cost-efficient production of precision freeform optics

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz

    2016-07-01

    Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.

  1. A Precision Optical Calibration Module (POCAM) for IceCube-Gen2

    NASA Astrophysics Data System (ADS)

    Jurkovič, M.; Abraham, K.; Holzapfel, K.; Krings, K.; Resconi, E.; Veenkamp, J.

    2016-04-01

    We present here a new concept of an in-situ self-calibrated isotropic light source for the future IceCube-Gen2 neutrino detector called the Precision Optical Calibration Module (POCAM). IceCube-Gen2 will be a matrix of light sensors buried deep in the ice at the geographic South Pole. The timing, the location, and the amount of Cherenkov light deposited by the secondary charged particles are used to reconstruct the properties of the incident neutrinos. The reconstruction relies on a detailed detector model that includes the response of optical modules to the Cherenkov light, as well as the optical properties of the detector medium - the natural Antarctic ice. To understand these properties, both natural, and artificial light sources are already used for calibration. New calibration devices are being developed in order to improve the precision of these measurements, and reduce systematic errors. The POCAM concept is based on the principle of an inverted integrating sphere. The main components are LEDs emitting light at several wavelengths and solid-state light sensors e.g. calibrated photodiode or silicon photomultipliers to monitor the emitted light intensity. We report on the current status of the POCAM R&D.

  2. Ultrahigh precise and sensitive measurement of optical rotation based on photo-elastic modulation

    NASA Astrophysics Data System (ADS)

    Li, Kewu; Wang, Zhibin; Wang, Liming

    2015-11-01

    A novel technique for improving measurement sensitivity of optical rotation based on photo-elastic modulation is presented. The probe laser orderly passes through a polarizer, the sample to be measured, a photo-elastic modulator(PEM), and an analyzer to be detected. Using the least optical elements to avoid the measurement error may introduced by the other optical elements in the detection light path; other than a reference light path is brought in the measurement system, and differential balance detection method is employed to obtain the AC and DC signal, the common mode noise of light source is efficiently eliminated, then the AC signal is preamplified, and output by a lock-in amplifier, the measurement sensitivity of optical rotation is enhanced further. For our verification experiment, the results show that the precision is up to 0.4%, and the sensitivity is up to 3.17×10-7 rad . So our scheme realizes more accurate and sensitive measurement of optical rotation than any one reported previously.

  3. Aerosol optical depth derived from solar radiometry observations at northern mid-latitude sites

    SciTech Connect

    Laulainen, N.S.; Larson, N.R.; Michalsky, J.J.; Harrison, L.C.

    1994-01-01

    Routine, automated solar radiometry observations began with the development of the Mobile Automated Scanning Photometer (MASP) and its installation at the Rattlesnake Mountain Observatory (RMO). We have introduced a microprocessor controlled rotating shadowband radiometer (RSR), both the single detector and the multi-filter/detector (MFRSR) versions to replace the MASP. The operational mode of the RSRs is substantially different than the MASP or other traditional sun-tracking radiometers, because, by virtue of the automated rotating shadowband, the total and diffuse irradiance on a horizontal plane are measured and the direct-normal component deduced through computation from the total and diffuse components by the self-contained microprocessor. Because the three irradiance components are measured using the same detector for a given wavelength, the calibration coefficients are identical for each component, thus reducing errors when comparing them. The MFRSR is the primary radiometric instrument in the nine-station Quantitative Links Network (QLN) established in the eastern United States in late 1991. Data from this network are being used to investigate how cloud- and aerosol-induced radiative effects vary in time and with cloud structure and type over a mid-latitude continental region. This work supports the DOE Quantitative Links Program to quantify linkages between changes in atmospheric composition and climate forcing. In this paper we describe the setup of the QLN and present aerosol optical depth results from the on-going measurements at PNL/RMO, as well as preliminary results from the QLN. From the time-series of data at each site, we compare seasonal variability and geographical differences, as well as the effect of the perturbation to the stratosphere by Mt. Pinatubo. Analysis of the wavelength dependence of optical depth also provides information on the evolution and changes in the size distribution of the aerosols.

  4. Evaluation of Operationally Derived Aerosol Optical Depth from MSG-SEVIRI over Central Europe

    NASA Astrophysics Data System (ADS)

    Popp, C.; Riffler, M.; Emili, E.; Petitta, M.; Wunderle, S.

    2009-04-01

    Aerosol parameters derived from geostationary remote sensing instruments can complement those obtained from polar orbiting sensors (e.g. MODIS, MERIS, or AVHRR). The high scanning frequency of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellites of 15 minutes significantly broadens the potential diurnal coverage over Europe and Africa. Therefore, these data allow to better account for the occasionally high spatial and temporal variabilities of atmospheric aerosols, for instance in cases such as desert dust outbreaks, forest fires, or the evolution of high particulate matter concentrations during stable weather conditions. The aim of this study is to evaluate operationally derived aerosol optical depth maps based on imagery acquired by MSG-SEVIRI between December 2007 and November 2008. A one-channel multi-temporal approach is used in order to daily estimate aerosol optical depth for each slot between 6:12 and 18:12 UTC. The resulting SEVIRI AOD values are related to Sun photometer measurements from the Aerosol Robotic Network (AERONET). 22 AERONET sites within the study area of central Europe provide cloud-screened level1.5 data for the investigation period. Overall, nearly ten thousand instantaneous SEVIRI and Sun photometer AOD values are compared and a correlation of 0.75 as well as a root-mean-square-error of 0.07 is found. Further, about 75% of all SEVIRI AOD values fall within the MODIS expected error over land of +/-(0.05+0.15*AOD). Finally, the computed statistical parameters for each individual season do not vary strongly. Taken together, the performance of the operational SEVIRI AOD estimation is comparable to the ones based on data from sensors on-board polar orbiting satellites. Therefore, these aerosol information of high temporal frequency can be of great interest e.g. for tracking pollutant transport, for comparisons with aerosol modelling results, or for synergistic use with additional

  5. Characteristics of atmospheric aerosol optical depth variation in China during 1993-2012

    NASA Astrophysics Data System (ADS)

    Xu, X.; Qiu, J.; Xia, X.; Sun, L.; Min, M.

    2014-12-01

    Atmospheric aerosol optical depth (AOD) is a critical physical parameter for indicating atmospheric turbidity and aerosol content, and is also a key factor in determining the aerosol radiative forcing effects. This study gives the long-term variation characteristics of atmospheric aerosol optical depth at 14 first-class solar radiation stations in China during 1993-2012. Based on the broadband extinction method (BEM), we retrieve the AOD from the hourly accumulated direct solar radiation. Using a AOD selection method, we derive and analyze the monthly, seasonal and annual averaged AOD. The results show that (1) the mean AOD ranges from 0.135 (Lhasa) to 0.678 (Zhengzhou). Shenyang has the maximum standard deviation of 0.109, while Ejin Banner has the minimum value of 0.021. The mean value for all years and stations is 0.423. (2) At most stations, the largest AOD appears in spring and the smallest in autumn. The seasonal averaged AOD of all years and stations is 0.487 (spring), 0.456 (summer), 0.364 (autumn) and 0.381 (winter). (3) As to the variation trend, an increasing trend appeared at five stations (Kashi, Kunming, Zhengzhou, Wuhan and Shanghai), while a decreasing trend is found at two stations (Guangzhou and Beijing). After analyzing the correlations between AOD and the meteorological factors (i.e. temperature, pressure, humidity and visibility), we find that AOD has a positive correlation with temperature, and a negative correlation with pressure and visibility at most of the stations.

  6. Retrieval of Aerosol Optical Depth Under Thin Cirrus from MODIS: Application to an Ocean Algorithm

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, Nai-Yung Christina; Sayer, Andrew Mark; Bettenhausen, Corey

    2013-01-01

    A strategy for retrieving aerosol optical depth (AOD) under conditions of thin cirrus coverage from the Moderate Resolution Imaging Spectroradiometer (MODIS) is presented. We adopt an empirical method that derives the cirrus contribution to measured reflectance in seven bands from the visible to shortwave infrared (0.47, 0.55, 0.65, 0.86, 1.24, 1.63, and 2.12 µm, commonly used for AOD retrievals) by using the correlations between the top-of-atmosphere (TOA) reflectance at 1.38 micron and these bands. The 1.38 micron band is used due to its strong absorption by water vapor and allows us to extract the contribution of cirrus clouds to TOA reflectance and create cirrus-corrected TOA reflectances in the seven bands of interest. These cirrus-corrected TOA reflectances are then used in the aerosol retrieval algorithm to determine cirrus-corrected AOD. The cirrus correction algorithm reduces the cirrus contamination in the AOD data as shown by a decrease in both magnitude and spatial variability of AOD over areas contaminated by thin cirrus. Comparisons of retrieved AOD against Aerosol Robotic Network observations at Nauru in the equatorial Pacific reveal that the cirrus correction procedure improves the data quality: the percentage of data within the expected error +/-(0.03 + 0.05 ×AOD) increases from 40% to 80% for cirrus-corrected points only and from 80% to 86% for all points (i.e., both corrected and uncorrected retrievals). Statistical comparisons with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrievals are also carried out. A high correlation (R = 0.89) between the CALIOP cirrus optical depth and AOD correction magnitude suggests potential applicability of the cirrus correction procedure to other MODIS-like sensors.

  7. The matter power spectrum from the Lyα forest: an optical depth estimate

    NASA Astrophysics Data System (ADS)

    Zaroubi, S.; Viel, M.; Nusser, A.; Haehnelt, M.; Kim, T.-S.

    2006-06-01

    We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6-3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation, τ ~ (1 + δ)α. The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe), σ8 = (0.92 +/- 0.09) × (Ωm/0.3)-0.3, with α varying in the range of 1.56-1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature-density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of HeII occurred at z ~ 3.2. A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.

  8. The design of a stepper motor control-based high-precision varifocal imaging optical system

    NASA Astrophysics Data System (ADS)

    Xiang, Bai

    2012-11-01

    This study, while introducing the theories and makeup of conventional cam varifocal system, indicates the two faults stemming from their inherent mechanism and potentiometer-based focal-length measurement: 1) inability to stop optic axis vibration and 2) considerable error in real-time output of focal-length value. As a result, a stepper motor, instead of cam mechanism, was employed to control mirrors of variofocus and mirrors of compensation in moving accurately along straight-ling rails so that continuous focal-length variation and surface image positioning were accomplished; a linear encoder was substituted for potentiometer in realizing real-time output of focal-length value and also in closed-loop control of stepper motor. Compared with the cam mechanism, this system provides 90% less vibration and 80% more positioning precision, thereby basically solving the problems of the cam system and enabling the high-precision angular measurement.

  9. A novel high precision adaptive equalizer in digital coherent optical receivers

    NASA Astrophysics Data System (ADS)

    Ma, Xiurong; Xu, Yujun; Wang, Xiao; Ding, Zhaocai

    2015-10-01

    A novel high precision adaptive equalization method is introduced and applied to dynamic equalization for quadrature phase shift keying (QPSK) coherent optical communication system in this paper. A frequency-domain constant modulus algorithm (CMA) method is used to equalize the received signal roughly. Then, some non-ideal output signals will be picked out through the error measurement, and they will be equalized accurately further in a fixed time-domain CMA equalizer. This high precision equalization method can decrease the equalization error, then it can reduce the bit error ratio (BER) of coherent communication system. Simulation results show that there is a 6% decrease for computation complexity by proposed scheme when compared with time-domain CMA. Furthermore, compared with time-domain CMA and frequency-domain CMA, about 2 dB and 2.2 dB in OSNR improvement can be obtained by proposed scheme at the BER value of 1e-3, respectively.

  10. Optical Estimation of Depth and Current in a Ebb Tidal Delta Environment

    NASA Astrophysics Data System (ADS)

    Holman, R. A.; Stanley, J.

    2012-12-01

    A key limitation to our ability to make nearshore environmental predictions is the difficulty of obtaining up-to-date bathymetry measurements at a reasonable cost and frequency. Due to the high cost and complex logistics of in-situ methods, research into remote sensing approaches has been steady and has finally yielded fairly robust methods like the cBathy algorithm for optical Argus data that show good performance on simple barred beach profiles and near immunity to noise and signal problems. In May, 2012, data were collected in a more complex ebb tidal delta environment during the RIVET field experiment at New River Inlet, NC. The presence of strong reversing tidal currents led to significant errors in cBathy depths that were phase-locked to the tide. In this paper we will test methods for the robust estimation of both depths and vector currents in a tidal delta domain. In contrast to previous Fourier methods, wavenumber estimation in cBathy can be done on small enough scales to resolve interesting nearshore features.

  11. Extended scan depth optical coherence tomography for evaluating ocular surface shape

    PubMed Central

    Shen, Meixiao; Cui, Lele; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2011-01-01

    Spectral domain optical coherence tomography (SD-OCT) with extended scan depth makes it possible for quantitative measurement of the entire ocular surface shape. We proposed a novel method for ocular surface shape measurement using a custom-built anterior segment SD-OCT, which will serve on the contact lens fitting. A crosshair alignment system was applied to reduce the misalignment and tilting of the eye. An algorithm was developed to automatically segment the ocular surface. We also described the correction of the image distortion from the segmented dataset induced by the nontelecentric scanning system and tested the accuracy and repeatability. The results showed high accuracy of SD-OCT in measuring a bicurved test surface with a maximum height error of 17.4 μm. The repeatability of in vivo measurement was also good. The standard deviations of the height measurement within a 14-mm wide range were all less than 35 μm. This work demonstrates the feasibility of using extended depth SD-OCT to perform noninvasive evaluation of the ocular surface shape. PMID:21639575

  12. Extended scan depth optical coherence tomography for evaluating ocular surface shape

    NASA Astrophysics Data System (ADS)

    Shen, Meixiao; Cui, Lele; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2011-05-01

    Spectral domain optical coherence tomography (SD-OCT) with extended scan depth makes it possible for quantitative measurement of the entire ocular surface shape. We proposed a novel method for ocular surface shape measurement using a custom-built anterior segment SD-OCT, which will serve on the contact lens fitting. A crosshair alignment system was applied to reduce the misalignment and tilting of the eye. An algorithm was developed to automatically segment the ocular surface. We also described the correction of the image distortion from the segmented dataset induced by the nontelecentric scanning system and tested the accuracy and repeatability. The results showed high accuracy of SD-OCT in measuring a bicurved test surface with a maximum height error of 17.4 μm. The repeatability of in vivo measurement was also good. The standard deviations of the height measurement within a 14-mm wide range were all less than 35 μm. This work demonstrates the feasibility of using extended depth SD-OCT to perform noninvasive evaluation of the ocular surface shape.

  13. Optical depth of cirrus and embedded contrails from airborne Lidar and models

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Wirth, M.

    2009-04-01

    A new developed high performance airborne Lidar is applied to measure the backscatter, extinction, depolarization and water vapor profiles from above a thin cirrus cloud along a flight path of about 1000 km over Germany with high temporal/spatial resolution (about 0.2 s, 40 m). The observations revealed surprisingly many embedded contrails within the cirrus. The observations are roughly explained by a simple multiple-plume model simulating the many contrails that formed during the four hours before the observations. Direct airborne measurements of the optical thickness tau of thin cirrus layers have been performed using the high spectral resolution lidar (HSRL) channel at 532 nm wavelength of the Lidar instrument called WALES (Water Vapour Lidar Experiment in Space). During the 4 h flight, more than 1000 aircraft passed below the flight path of the Falcon. The observations show variable optical depth with a mean value of about 0.3 and large fluctuations with many sharp isolated peaks of typically 200 - 1000 m width up to or even exceeding unity. The observations are explained using a combination of two models versions. First we use the ice water content and extinction predicted with various versions of weather prediction models (ECMWF and COSMO, initiated at various times between 3 and 12 hours before start of the observations). These models explain roughly the mean behavior of the measured tau. The peaky structure of the tau signal is qualitatively explained by a multiple-plume contrail model. This model is based on a Gaussian plume model. It uses the known air traffic waypoint sequences for all the aircraft passing Germany during the day before the observations (provided by air traffic control, DFS). For each waypoint a Lagrangian calculation is started identifying flights under ambient conditions for which contrails are expected to form according to the Schmidt-Appleman criterion. The plume moves horizontally with the wind at constant potential temperature. This

  14. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.; Mao, J.; Naik, V.; Horowitz, L. W.

    2015-09-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for present-day fine nitrate optical depth at 550 nm is 0.006 (0.005-0.008). We only find a modest increase of nitrate optical depth (< 30 %) in response to the projected changes in the emissions of SO2 (-40 %) and ammonia (+38 %) from 2010 to 2050. Nitrate burden is projected to increase in the tropics and in the free troposphere, but to decrease at the surface in the midlatitudes because of lower nitric acid concentrations. Our results suggest that better constraints on the heterogeneous chemistry of nitric acid on dust, on tropical ammonia emissions, and on the transport of ammonia to the free troposphere are needed to improve projections of aerosol optical depth.

  15. Precise measurement of instantaneous volume of eccrine sweat gland in mental sweating by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sugawa, Yoshihiko; Fukuda, Akihiro; Ohmi, Masato

    2015-03-01

    We have demonstrated dynamic analysis of the physiological function of eccrine sweat glands underneath skin surface by optical coherence tomography (OCT). We propose a method for extraction of the target eccrine sweat gland by use of the connected component extraction process and the adaptive threshold method, where the en-face OCT images are constructed by the SS-OCT. Furthermore, we demonstrate precise measurement of instantaneous volume of the sweat gland in response to the external stimulus. The dynamic change of instantaneous volume of eccrine sweat gland in mental sweating is performed by this method during the period of 300 sec with the frame intervals of 3.23 sec.

  16. Precise intensity correlation measurement for atomic resonance fluorescence from optical molasses.

    PubMed

    Nakayama, Kazuyuki; Yoshikawa, Yutaka; Matsumoto, Hisatoshi; Torii, Yoshio; Kuga, Takahiro

    2010-03-29

    We measured the intensity correlation of true thermal light scattered from cold atoms in an optical molasses. Using a single-mode fiber as a transverse mode filter, measurement with maximally high spatial coherence was realized, allowing us to observe ideal photon bunching with unprecedented precision. The measured intensity correlation functions showed a definite bimodal structure with fast damped oscillation from the maximum value of 2.02(3) and slow monotonic decay toward unity. The oscillation can be understood as an interference between elastic and inelastic scattering fields in resonance fluorescence. PMID:20389684

  17. Depths-encoded angular compounding for speckle reduction in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cao, Zhaoyuan; Qian, Jie; Chen, Xinjian; Mo, Jianhua

    2016-03-01

    Optical coherence tomography (OCT) is one of the successful inventions in medical imaging as a clinic routine in the past decades. This imaging technique is based on low coherence interferometer and consequently suffers from speckle noise inherently, which can degrade image quality and obscure micro-structures. Therefore, effective speckle reduction techniques have been always desired and researched since optical coherence tomography was invented. In this study, we proposed an angular compounding method to reduce speckle noise of OCT image. Two different angular light paths are created on the sample arm using two beam splitters. The epi-detection scheme creates three different combinations of the two angular light paths above, which produce three images in single B-scan. To compound these three images, these three images are separated in depth by delaying one light path relative to the other. Compared to those reported angular compounding methods, our method showed an advantage of faster imaging speed. This method was evaluated on an artificial eye model. The results demonstrated a 1.46-fold improvement in speckle contrast.

  18. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  19. Investigating Methods for Nighttime Aerosol Optical Depth Retrieval Using the VIIRS Day/Night Band

    NASA Astrophysics Data System (ADS)

    McHardy, T. M.; Zhang, J.; Reid, J. S.; Hyer, E. J.

    2014-12-01

    Most of the existing aerosol sensitive passive sensors focus on detecting day time aerosol properties. The Visible/Infrared Imaging Radiometer Suite (VIIRS) contains a Day/Night Band (DNB) which is capable of remote sensing of aerosol signals at night. This brings an opportunity for studying nighttime aerosol optical properties at a high spatial and temporal resolution. Using VIIRS DNB data, several methods are developed for retrieving aerosol optical depth values over regions with artificial city lights. These methods are based on changes in diffuse scattering of artificial light due to particles in the atmosphere. The first method compares average radiance values of artificial light sources against that of nearby dark pixels. The second method examines the dispersion of radiance values above an artificial light source. The strengths and weaknesses of each method are investigated over selected artificial city light sources that are within close proximity to Aerosol Robotic Network (AERONET) sites. This study suggests that nighttime retrievals of aerosol properties at high spatial and temporal resolution using the VIIRS DNB may be viable in the future.

  20. Optical Depth Sensor (ODS) for the measurement of dust and clouds properties in the Mars atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2014-04-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in both Martian and Earth environments. The principal goal of ODS is to carry out the opacity due to the Martian dust as well as to characterize the high altitude clouds at twilight, crucial parameters in understanding of Martian meteorology. The instrument was initially designed for the failed MARS96 Russian mission, and also was included in the payload of several other missions [1]. Until recently, it was selected (NASA/ESA AO) in the payload of the atmospheric package DREAMS onboard the MARS 2016 mission. But following a decision of the CNES, it is no more included in the payload. In order to study the performance of ODS under a wide range of conditions as well as its capable to provide daily measurements of both dust optical thickness and high altitude clouds properties, the instrument has participated in different terrestrial campaigns. A good performance of ODS prototype (Figure 1) on cirrus clouds detection and in dust opacity estimation was previously archived in Africa during 2004-2005 and in Brasil from 2012 to nowadays. Moreover, a campaign in the arctic is expected before 2016 where fifteen ODSs will be part of an integrated observing system over the Arctic Ocean, allowing test the ODS performance in extreme conditions. In this presentation we present main principle of the retrieval, the instrumental concept, the result of the tests performed and the principal objectives of ODS in Mars.

  1. Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Li, Shu; Wang, Tijian; Xie, Min; Han, Yong; Zhuang, Bingliang

    2015-12-01

    Aerosol optical properties at Gulou station in Nanjing, China were measured and analyzed from April 2011 to April 2012. The annual median of aerosol optical depth (hereafter called as AOD) at 440 nm was 0.73 and the corresponding annual median of angstrom exponent (hereafter called as AE) between 440 nm and 870 nm was 1.28. The monthly median of AOD440nm presented a seasonal variation, which revealed a maximum in August (1.22) and a minimum in February (0.51), while the monthly median of AE showed a minimum in May (0.79) and a maximum in December (1.42). AOD and AE accumulated mainly between 0.40-0.90 (68%) and 1.20-1.50 (68%) respectively in Nanjing. The observation data showed that high AODs (>1.00) were clustered in the fine mode growth wing and the coarse mode. Comparison was made between two typical cases under different weather conditions and the results showed that Nanjing is influenced by the dust aerosol from Northwest China and Mongolia under dust weather in spring and the anthropogenic aerosol from local emission and surrounding industrialization region under haze weather.

  2. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

    NASA Astrophysics Data System (ADS)

    Toledano, C.; Wiegner, M.; Garhammer, M.; Seefeldner, M.; Gasteiger, J.; Müller, D.; Koepke, P.

    2009-02-01

    ABSTRACT The aerosol optical depth (AOD) in the range 340-1550nm was monitored at Ouarzazate (Morocco) during the Saharan Mineral Dust Experiment (SAMUM) experiment in May-June 2006. Two different sun photometers were used for this purpose. The mean AOD at 500nm was 0.28, with a maximum of 0.83, and the mean Ångström exponent (AE) was 0.35. The aerosol content over the site changed alternatively from very low turbidity, associated to Atlantic air masses, to moderate dust load, associated to air masses arriving in the site from Algeria, Tunisia and Libya. The dusty conditions were predominant in the measurement period (78% of data), with AOD (500nm) above 0.15 and AE below 0.4. The spectral features of the AOD under dusty conditions are discussed. Air mass back trajectory analysis is carried out to investigate the origin and height patterns of the dust loaded air masses. The advection of dust occurred mainly at atmospheric heights below 3000m, where east flow is the predominant. At the 5000m level, the air masses originate mainly over the Atlantic Ocean. Finally the Optical Properties of Aerosols and Clouds (OPAC) model is used to perform a set of simulations with different aerosol mixtures to illustrate the measured AOD and AE values under varying dust concentrations, and a brief comparison with other measurement sites is presented.

  3. Spectroradiometer with wedge interference filters (SWIF): measurements of the spectral optical depths at Mauna Loa Observatory.

    PubMed

    Vasilyev, O B; Leyva, A; Muhila, A; Valdes, M; Peralta, R; Kovalenko, A P; Welch, R M; Berendes, T A; Isakov, V Y; Kulikovskiy, Y P; Sokolov, S S; Strepanov, N N; Gulidov, S S; von Hoyningen-Huene, W

    1995-07-20

    A spectroradiometer with wedge interference filters (SWIF) (the filters were produced by Carl Zeiss, Jena, Germany) and a CCD matrix (which was of Russian production) that functions as the sensor has been designed and built for use in ground-based optical sensing of the atmosphere and the Earth's surface in the spectral range of 0.35-1.15 µm. Absolute calibration of this instrument was performed through a series of observations of direct solar radiation at Mauna Loa Observatory (MLO) in Hawaii in May and June 1993. Spectral optical depth (SOD) measurements that were made during these field experiments provided detailed spectral information about both aerosol extinction (scattering plus absorption) and molecular absorption in the atmosphere above the site at MLO. The aerosol-SOD measurements were compared with narrow-band radiometer measurements at wavelengths of 380, 500, and 778 nm The SWIF and narrow-band radiometer measurements are in agreement to within the experimental error. At a wavelength of 500 nm, the aerosol SOD was found to be approximately 0.045. Adescription of the SWIF instrument, its absolute calibration, and the determination of atmospheric SOD's at MLO are presented. PMID:21052277

  4. a Novel Index for Atmospheric Aerosol Types Categorization with Spectral Optical Depths from Satellite Retrieval

    NASA Astrophysics Data System (ADS)

    Lin, Tang-Huang; Liu, Gin-Rong; Liu, Chian-Yi

    2016-06-01

    In general, the type of atmospheric aerosols can be efficiently identified with the characteristics of optical properties, such as Ångström exponent (AE) and single scattering albedo (SSA). However, the retrieval of SSA is not frequently available to global area which may cause the difficulty in the identification of aerosol type. Since aerosol optical depth (AOD) can be easily requested, a novel index in terms of AOD, Normalized Gradient Aerosol Index (NGAI), is proposed to get over the constraint on SSA providing. With the NGAI derived from MODIS AOD products, the type of atmospheric aerosols can be clearly categorized between mineral dusts, biomass burning and anthropogenic pollutants. The results of aerosol type categorization show the well agreement with the ground-based observations (AERONET) in AE and SSA properties, implying that the proposed index equips highly practical for the application of aerosols type categorization by means of remote sensing. In addition, the fraction of AOD compositions can be potentially determined according to the value of index after compared with the products of CALIPSO Aerosol Subtype.

  5. Variability of aerosol optical depth and their impact on cloud properties in Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Khan, Rehana; Blaschke, Thomas; Mukhtiar, Azam

    2014-01-01

    This study analyzes seasonal and temporal variations in aerosol optical depth (AOD), and the impact of these variations on the properties of clouds over five cities in Pakistan, using Moderate Resolution Imaging Spectroradiometer (MODIS) data, obtained from the Terra satellite during the period (2001-2011). The obtained results indicated seasonal variation in AOD, with a high value of 2.3, in summer and low values of 0.2, in winter for the costal part of the region. The relationship between AOD and other cloud parameters, namely water vapor (WV), cloud fraction (CF), cloud optical thickness (COT), cloud liquid water path (CLWP), cloud top temperature (CTT), and cloud top pressure (CTP) were analyzed. On a temporal scale, latitudinal variations of both WV and AOD produce high correlations (>0.6) in some regions, and moderate correlations (0.4-0.6) in the other regions. An increasing trend in CF with AOD was found over urban regions in the period of observations. The CF values were higher for Lahore than the other selected regions during the whole period. During autumn and winter seasons the correlation was found to be positive between AOD and CLWP, while negative correlation was observed during the other seasons for all the selected regions. COT showed negative correlation with AOD at all locations except Karachi during spring and summer seasons.

  6. Titan's 2 micron Surface Albedo and Haze Optical Depth in 1996-2004

    SciTech Connect

    Gibbard, S; de Pater, I; Macintosh, B; Roe, H; Max, C; Young, E; McKay, C

    2004-05-04

    We observed Titan in 1996-2004 with high-resolution 2 {micro}m speckle and adaptive optics imaging at the W.M. Keck Observatory. By observing in a 2 {micro}m broadband filter we obtain images that have contributions from both Titan's surface and atmosphere. We have modeled Titan's atmosphere using a plane-parallel radiative transfer code that has been corrected to agree with 3-D Monte Carlo predictions. We find that Titan's surface albedo ranges from {le} 0:02 in the darkest equatorial region of the trailing hemisphere to {approx_equal} 0:1 in the brightest areas of the leading hemisphere. Over the past quarter of a Saturnian year haze optical depth in Titan's Southern hemisphere has decreased substantially from a value of 0.48 in 1996 down to 0.18 in 2004, while the northern haze has been increasing over the past few years. As a result of these changes, in 2004 the North/South haze asymmetry at K' band has disappeared.

  7. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  8. High precision 6.8GHz phase locking of coherent laser beams for optical lattice experiment

    NASA Astrophysics Data System (ADS)

    Ding, Xun; Sang, Linlin; Zhang, Chen; Jin, Ge; Jiang, Xiao

    2013-12-01

    With the optical phase lock loop (OPLL) we made, we can achieve phase locking at frequency differences ranging from 0.5GHz to 7.5 GHz. This OPLL is fully applicable in atomic physics experiments, mostly in coherent lasers frequency locking. Two kinds of modulation modes were brought to ensure the frequency range and precision: the fast feedback current as the injection current and the slow feedback current to adjust the piezo-electric transducer. This device has been put into an optical lattice platform to lock a laser used for cooling and trapping atoms. The beat signal has a -3dB band width of 1Hz at 6.834GHz, corresponding to the hyperfine splitting of the ground state 87Rb atom.

  9. Comparison of Materials for Use in the Precision Grinding of Optical Components

    SciTech Connect

    Evans, Boyd M. III; Miller, Arthur C. Jr.; Egert, Charles M.

    1997-12-31

    Precision grinding of optical components is becoming an accepted practice for rapidly and deterministically fabrication optical surfaces to final or near-final surface finish and figure. In this paper, a comparison of grinding techniques and materials is performed. Flat and spherical surfaces were ground in three different substrate materials: BK7 glass, chemical vapor deposited (CVD) silicon carbide ceramic, and sapphire. Spherical surfaces were used to determine the contouring capacity of the process, and flat surfaces were used for surface finish measurements. The recently developed Precitech Optimum 2800 diamond turning and grinding platform was used to grind surfaces in 40mm diameter substrates sapphire and silicon carbide substrates and 200 mm BK7 glass substrates using diamond grinding wheels. The results of this study compare the surface finish and figure for the three materials.

  10. A new approach on restoration of dynamic measurement uncertainties in optical precision coordinate metrology

    NASA Astrophysics Data System (ADS)

    Holder, S.; Reetz, E.; Linß, G.

    2015-02-01

    This paper presents a new approach to the restoration of dynamic influenced measurement uncertainties in optical precision coordinate metrology (OPCM) using image sensors to measure geometrical features. Dynamic measurements within the context of this paper are based upon relative motion between the imaging setup (CCD-camera and optical system) and the measuring object respectively the measuring scene. The dynamic image acquisition causes image motion blur effects, which downgrades the uncertainties of the measurand. The approach presented deals with a new technique to restore motion degraded images using different methods to analyze important image features by extending the famous state of the art Richardson-Lucy image restoration technique using a new convergence criteria based on the variation of the detectable sub-pixel edge position of each iteration.

  11. Precise realization of the thermal radiation environment for an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Sherman, Jeff; Phillips, Nathaniel; Hinkley, Nathan; Oates, Chris; Ludlow, Andrew

    2013-05-01

    The Stark shift due to thermal radiation contributes one of the largest known perturbations to the clock transition frequency of optical lattice clocks. Consequently, the uncertainty stemming from this shift has played a dominant role in the total uncertainty of these standards. Following recent works focused on atomic response factors (e.g., the differential polarizability), uncertainty in this perturbation is now limited by imprecise knowledge of the environment itself. Here we present progress towards precise realization of the thermal radiation environment in a Yb optical lattice clock by trapping the atoms in a highly uniform radiation shield at a well-known temperature. We characterize the non-ideal aspects of this approach, including less than unit emissivity, contamination of the blackbody environment from the ambient environment, and thermal non-uniformities.

  12. Depth-sensitive optical spectroscopy for noninvasive diagnosis of oral neoplasia

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard Alan

    Oral cancer is the 11th most common cancer in the world. Cancers of the oral cavity and oropharynx account for more than 7,500 deaths each year in the United States alone. Major advances have been made in the management of oral cancer through the combined use of surgery, radiotherapy and chemotherapy, improving the quality of life for many patients; however, these advances have not led to a significant increase in survival rates, primarily because diagnosis often occurs at a late stage when treatment is more difficult and less successful. Accurate, objective, noninvasive methods for early diagnosis of oral neoplasia are needed. Here a method is presented to noninvasively evaluate oral lesions using depth-sensitive optical spectroscopy (DSOS). A ball lens coupled fiber-optic probe was developed to enable preferential targeting of different depth regions in the oral mucosa. Clinical studies of the diagnostic performance of DSOS in 157 subjects were carried out in collaboration with the University of Texas M. D. Anderson Cancer Center. An overall sensitivity of 90% and specificity of 89% were obtained for nonkeratinized oral tissue relative to histopathology. Based on these results a compact, portable version of the clinical DSOS device with real-time automated diagnostic capability was developed. The portable device was tested in 47 subjects and a sensitivity of 82% and specificity of 83% were obtained for nonkeratinized oral tissue. The diagnostic potential of multimodal platforms incorporating DSOS was explored through two pilot studies. A pilot study of DSOS in combination with widefield imaging was carried out in 29 oral cancer patients, resulting in a combined sensitivity of 94% and specificity of 69%. Widefield imaging and spectroscopy performed slightly better in combination than each method performed independently. A pilot study of DSOS in combination with the optical contrast agents 2-NBDG, EGF-Alexa 647, and proflavine was carried out in resected tissue

  13. Optical Estimation of Depth Induced Wave Breaking Distributions over Complex Bathymetry

    NASA Astrophysics Data System (ADS)

    Keen, A. S.; Holman, R. A.

    2012-12-01

    Parametric depth-induced-breaking dissipation models have shown great skill at predicting time averaged wave heights across the surf zone. First proposed by Battjes & Janssen (1978), these models balance the incoming wave energy flux with a roller dissipation term. This roller dissipation term is estimated by calculating the dissipation for one characteristic broken wave and then multiplying this quantity by the fraction of broken waves. To describe the fraction of broken waves, a typical assumption asserts that wave heights are nearly Rayleigh distributed [Thornton & Guza (1983)] allowing a sea state to be described by only a few parameters. While many experiments have validated the cross shore wave height profiles, few field experiments have been performed to analyze the probability distribution of breaking wave heights over a barred beach profile. The goal of the present research is to determine the distribution of broken and unbroken wave heights across a natural barred beach profile. Field data collected during the Surf Zone Optics experiment (a Multi-disciplinary University Research Initiative) in Duck, North Carolina, consisted of an array of in-situ pressure sensors and optical remote sensing cameras. Sea surface elevation time series from the in-situ pressure sensors are used here to resolve wave height distributions at multiple locations across the surf zone. Breaking wave height distributions are resolved based upon a combination of the pressure sensor and optically based breaker detection algorithm. Since breaking is easily able to be tracked by video imaging, breaking waves are flagged in the sea surface elevation series and binned into a broken wave height distribution. Results of this analysis are compared with model predictions based upon the Battjes & Janssen (1978), Thornton & Guza (1983) and Janssen & Battjes (2007) models to assess the validity of each wave height distribution model.

  14. Quantifying the sensitivity of aerosol optical depths retrieved from MSG SEVIRI to a priori data

    NASA Astrophysics Data System (ADS)

    Bulgin, C. E.; Palmer, P. I.; Merchant, C. J.; Siddans, R.; Poulsen, C.; Grainger, R. G.; Thomas, G.; Carboni, E.; McConnell, C.; Highwood, E.

    2009-12-01

    Radiative forcing contributions from aerosol direct and indirect effects remain one of the most uncertain components of the climate system. Satellite observations of aerosol optical properties offer important constraints on atmospheric aerosols but their sensitivity to prior assumptions must be better characterized before they are used effectively to reduce uncertainty in aerosol radiative forcing. We assess the sensitivity of the Oxford-RAL Aerosol and Cloud (ORAC) optimal estimation retrieval of aerosol optical depth (AOD) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) to a priori aerosol data. SEVIRI is a geostationary satellite instrument centred over Africa and the neighbouring Atlantic Ocean, routinely sampling desert dust and biomass burning outflow from Africa. We quantify the uncertainty in SEVIRI AOD retrievals in the presence of desert dust by comparing retrievals that use prior information from the Optical Properties of Aerosol and Cloud (OPAC) database, with those that use measured aerosol properties during the Dust Outflow and Deposition to the Ocean (DODO) aircraft campaign (August, 2006). We also assess the sensitivity of retrieved AODs to changes in solar zenith angle, and the vertical profile of aerosol effective radius and extinction coefficient input into the retrieval forward model. Currently the ORAC retrieval scheme retrieves AODs for five aerosol types (desert dust, biomass burning, maritime, urban and continental) and chooses the most appropriate AOD based on the cost functions. We generate an improved prior aerosol speciation database for SEVIRI based on a statistical analysis of a Saharan Dust Index (SDI) determined using variances of different brightness temperatures, and organic and black carbon tracers from the GEOS-Chem chemistry transport model. This database is described as a function of season and time of day. We quantify the difference in AODs between those chosen based on prior information from the SDI and GEOS

  15. Using Artificial Sky Glow to Retrieve Night Time Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Aubé, M.; O'Neill, N. T.; Giguère, J.-D.; Royer, A.

    2009-04-01

    Measuring the Aerosol Optical Depth (AOD) is of particular importance in monitoring aerosol contributions to global radiative forcing. Most measuring methods are based on direct or indirect observation of sunlight and thus are only available for use during daylight hours. Attempts have been made to measure AOD behavior at night from star photometry, and more recently moon photometry. Star photometry method uses spectrally calibrated stars as reference targets this provides somewhat more flexibility than a sunphotometer but there are low-signal and calibration issues which can make these measurements problematic. Moon photometry is only possible when the moon is present in the sky. We suggest a complementary method, based on the observation of artificial hemispheric sky glow generated by light pollution. The methodology requires (1) the implementation of an heterogeneous 3D light pollution model and (2) the design of an automated light pollution spectrometer. This instrument designated as the Spectrometer for Aerosol Night Detection (SAND) is now in it's third version. Basically, SAND-3 is a CCD based, long-slit spectrometer with a non imaging optical head. SAND-3 is protected from inclement weather by a transparent acrylic dome; it can run autonomously with minimal maintenance. The system can be remotely controlled via a web browser or via a secure shell client. Preliminary field measurements acquired at the Mont-Mégantic astronomical observatory (Québec, Canada) and in Sherbrooke (Québec, Canada) will be reported. We will also show preliminary day/night (continuity) comparisons with AERONET/AEROCAN sunphotometer AOD measurements and nightime comparisons with aerosol backscatter lidar profiles acquired at the nearby optical observatory in Sherbrooke Québec, Canada. The performance and the potential of this approach will be discussed in conjunction with the implementation of the light pollution model.

  16. Precision-Deployable, Stable, Optical Benches for Cost-Effective Space Telescopes

    NASA Astrophysics Data System (ADS)

    Danner, Rolf; Pellegrino, S.; Dailey, D.; Marks, G.; Bookbinder, J.

    2012-05-01

    To explore the universe at the arcsecond resolution of Chandra, while increasing collecting area by at least an order of magnitude and maintaining affordability, we will need to make creative use of existing and new technology. Precision-deployable, stable, optical benches that fit inside smaller, lower-cost launch vehicles are a prime example of a technology well within current reach that will yield breakthrough benefits for future astrophysics missions. Deployable optical benches for astrophysical applications have a reputation for complexity; however, we are offering an approach, based on techniques used in space for decades, that reduces overall mission cost. Currently, deployable structures are implemented on JAXA’s Astro-H and NASA’s NuStar high-energy astrophysics missions. We believe it is now time to evolve these structures into precision, stable optical benches that are stiff, lightweight, and suitable for space telescopes with focal lengths of 20 meters or more. Such optical benches are required for advanced observatory class missions and can be scaled to Explorer and medium-class missions. To this end, we have formed a partnership between Space Structures Laboratory (SSL) at the California Institute of Technology, Northrop Grumman Aerospace Systems (NGAS), Northrop Grumman Astro Aerospace (Astro), and Smithsonian Astrophysical Observatory (SAO). Combining the expertise and tools from academia and industry is the most effective approach to take this concept to Technology Readiness Level (TRL) 6. We plan to perform small sub-scale demonstrations, functional tests, and analytical modeling in the academic environment. Using results from SSL, larger prototypes will be developed at facilities at NGAS in Redondo Beach and Carpinteria, CA.

  17. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance

    NASA Astrophysics Data System (ADS)

    Kolste, Kolbein K.; Kanick, Stephen C.; Valdés, Pablo A.; Jermyn, Michael; Wilson, Brian C.; Roberts, David W.; Paulsen, Keith D.; Leblond, Frederic

    2015-02-01

    A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications.

  18. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance

    PubMed Central

    Kolste, Kolbein K.; Kanick, Stephen C.; Valdés, Pablo A.; Jermyn, Michael; Wilson, Brian C.; Roberts, David W.; Paulsen, Keith D.; Leblond, Frederic

    2015-01-01

    Abstract. A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications. PMID:25652704

  19. Effects of Configuration of Optical Combiner on Near-Field Depth Perception in Optical See-Through Head-Mounted Displays.

    PubMed

    Lee, Sangyoon; Hua, Hong

    2016-04-01

    The ray-shift phenomenon means the apparent distance shift in the display image plane between virtual and physical objects. It is caused by the difference in the refraction of virtual display and see-through optical paths derived from optical combiners that are necessary to provide a see-through capability in optical see-through head-mounted displays. In this work, through a human-subject experiment, we investigated the effects of ray-shift phenomenon induced by the optical combiner on depth perception for near-field distances (40 cm-100 cm). In our experiment, we considered three different configurations of optical combiner: horizontal-tilt and vertical-tilt configurations (using plate beamsplitters horizontally and vertically tilted by 45°, respectively), and non-tilt configuration (using rectangular solid waveguides). Participants' depth perception errors in these configurations were compared with those in an ordinary condition (i.e., the condition where physical objects are directly shown without the displays) and theoretically estimated ones. According to the experimental results, the measured percentage depth perception errors were similar to the theoretically estimated ones, where the amount of estimated percentage depth errors was greater than 0.3%. Furthermore, the participants showed significantly larger depth perception errors in the horizontal-tilt configuration than in an ordinary condition, while no large errors were found in the vertical-tilt configuration. In the non-tilt configuration, the results were dependent on the thickness of optical combiner and target distance. PMID:26780807

  20. Optical elements with extended depth of focus and arbitrary distribution of intensity along the focal segment obtained by angular modulation of the optical power

    NASA Astrophysics Data System (ADS)

    Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.

    2015-04-01

    Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.

  1. Precision Interferometric Measurements of Mirror Birefringence in High-Finesse Optical Resonators

    PubMed Central

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often non-uniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R = 99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μm, with precision limited by both quantum and technical noise sources. We report a splitting of δν = 618(1) Hz, significantly less than the intrinsic cavity linewidth of δcav ≈ 3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δn/n = 6.38(1) × 10−6. PMID:27088133

  2. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  3. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  4. Precision interferometric measurements of mirror birefringence in high-finesse optical resonators

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Long, David A.; Liu, Qingnan; Hodges, Joseph T.

    2016-01-01

    High-finesse optical resonators found in ultrasensitive laser spectrometers utilize supermirrors ideally consisting of isotropic high-reflectivity coatings. Strictly speaking, however, the optical coatings are often nonuniformly stressed during the deposition process and therefore do possess some small amount of birefringence. When physically mounted the cavity mirrors can be additionally stressed in such a way that large optical birefringence is induced. Here we report a direct measurement of optical birefringence in a two-mirror Fabry-Pérot cavity with R =99.99 % by observing TEM00 mode beating during cavity decays. Experiments were performed at a wavelength of 4.53 μ m , with precision limited by both quantum and technical noise sources. We report a splitting of δν=618 (1 ) Hz, significantly less than the intrinsic cavity line width of δcav≈3 kHz. With a cavity free spectral range of 96.9 MHz, the equivalent fractional change in mirror refractive index due to birefringence is therefore Δ n /n =6.38 (1 ) ×10-6 .

  5. Atom optical experiments in the drop tower: a pathfinder for space based precision measurements

    NASA Astrophysics Data System (ADS)

    Herrmann, Sven; Resch, Andreas; Müntinga, Hauke; Laemmerzahl, Claus

    Recent years have seen much technological progress towards the application of ultra-cold atoms and degenerate quantum gases in future space based precision measurements. A first milestone was achieved by the QUANTUS collaboration with the successful creation of a Bose-Einstein condensate in a freely falling compact drop tower experiment. A next step will now be to demonstrate the feasibility of matter wave interferometry with increased precision due to the extended free evolution time available in zero gravity. This is a particular focus of the PRIMUS project, which also explores concepts to apply a fiber based optical frequency comb in such microgravity experiments. Here we report on the current status of this activity, including the first operation of an optical frequency comb in a microgravity environment. We also discuss the perspectives for space based fundamental physics experiments that might be enabled by such earth-bound pathfinder experiments in the long run. PRIMUS is a collaboration of ZARM at the Universitüt Bremen and of the Leibniz Universitüt Hannover. It is supported by the a a German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50 WM 0842.

  6. Precision Surface-Coupled Optical-Trapping Assay with One-Basepair Resolution

    PubMed Central

    Carter, Ashley R.; Seol, Yeonee; Perkins, Thomas T.

    2009-01-01

    The most commonly used optical-trapping assays are coupled to surfaces, yet such assays lack atomic-scale (∼0.1 nm) spatial resolution due to drift between the surface and trap. We used active stabilization techniques to minimize surface motion to 0.1 nm in three dimensions and decrease multiple types of trap laser noise (pointing, intensity, mode, and polarization). As a result, we achieved nearly the thermal limit (<0.05 nm) of bead detection over a broad range of trap stiffness (kT = 0.05–0.5 pN/nm) and frequency (Δf = 0.03–100 Hz). We next demonstrated sensitivity to one-basepair (0.34-nm) steps along DNA in a surface-coupled assay at moderate force (6 pN). Moreover, basepair stability was achieved immediately after substantial (3.4 pN) changes in force. Active intensity stabilization also led to enhanced force precision (∼0.01%) that resolved 0.1-pN force-induced changes in DNA hairpin unfolding dynamics. This work brings the benefit of atomic-scale resolution, currently limited to dual-beam trapping assays, along with enhanced force precision to the widely used, surface-coupled optical-trapping assay. PMID:19348774

  7. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    SciTech Connect

    Burke, David L.; Axelrod, T.; Blondin, Stephane; Claver, Chuck; Ivezic, Zeljko; Jones, Lynne; Saha, Abhijit; Smith, Allyn; Smith, R.Chris; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  8. Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Ginoux, P.; Cooke, W. F.; Donner, L. J.; Fan, S.; Lin, M.-Y.; Mao, J.; Naik, V.; Horowitz, L. W.

    2016-02-01

    We update and evaluate the treatment of nitrate aerosols in the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model (AM3). Accounting for the radiative effects of nitrate aerosols generally improves the simulated aerosol optical depth, although nitrate concentrations at the surface are biased high. This bias can be reduced by increasing the deposition of nitrate to account for the near-surface volatilization of ammonium nitrate or by neglecting the heterogeneous production of nitric acid to account for the inhibition of N2O5 reactive uptake at high nitrate concentrations. Globally, uncertainties in these processes can impact the simulated nitrate optical depth by up to 25 %, much more than the impact of uncertainties in the seasonality of ammonia emissions (6 %) or in the uptake of nitric acid on dust (13 %). Our best estimate for fine nitrate optical depth at 550 nm in 2010 is 0.006 (0.005-0.008). In wintertime, nitrate aerosols are simulated to account for over 30 % of the aerosol optical depth over western Europe and North America. Simulated nitrate optical depth increases by less than 30 % (0.0061-0.010) in response to projected changes in anthropogenic emissions from 2010 to 2050 (e.g., -40 % for SO2 and +38 % for ammonia). This increase is primarily driven by greater concentrations of nitrate in the free troposphere, while surface nitrate concentrations decrease in the midlatitudes following lower concentrations of nitric acid. With the projected increase of ammonia emissions, we show that better constraints on the vertical distribution of ammonia (e.g., convective transport and biomass burning injection) and on the sources and sinks of nitric acid (e.g., heterogeneous reaction on dust) are needed to improve estimates of future nitrate optical depth.

  9. Optical test bench for high precision metrology and alignment of zoom sub-assembly components

    NASA Astrophysics Data System (ADS)

    Leprêtre, F.; Levillain, E.; Wattellier, B.; Delage, P.; Brahmi, D.; Gascon, A.

    2013-09-01

    Thales Angénieux (TAGX) designs and manufactures zoom lens assemblies for cinema applications. These objectives are made of mobile lens assemblies. These need to be precisely characterized to detect alignment, polishing or glass index homogeneity errors, which amplitude may range to a few hundreds of nanometers. However these assemblies are highly aberrated with mainly spherical aberration (>30 μm PV). PHASICS and TAGX developed a solution based on the use of a PHASICS SID4HR wave front sensor. This is based on quadri-wave lateral shearing interferometry, a technology known for its high dynamic range. A 100-mm diameter He:Ne source illuminates the lens assembly entrance pupil. The transmitted wave front is then directly measured by the SID4- HR. The measured wave front (WFmeas) is then compared to a simulation from the lens sub-assembly optical design (WFdesign). We obtain a residual wave front error (WFmanufactured), which reveals lens imperfections due to its manufacturing. WFmeas=WFdesign+(WFEradius+WFEglass+WFEpolish)=WF design + WFmanufactured The optical test bench was designed so that this residual wave front is measured with a precision below 100 nm PV. The measurement of fast F-Number lenses (F/2) with aberrations up to 30 μm, with a precision of 100 nm PV was demonstrated. This bench detects mismatches in sub-assemblies before the final integration step in the zoom. Pre-alignment is also performed in order to overpass the mechanical tolerances. This facilitates the completed zoom alignment. In final, productivity gains are expected due to alignment and mounting time savings.

  10. Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm.

    PubMed

    Riris, Haris; Rodriguez, Michael; Allan, Graham R; Hasselbrack, William; Mao, Jianping; Stephen, Mark; Abshire, James

    2013-09-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an IPDA lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled erbium-doped fiber amplifier and single photon-counting detector to measure oxygen absorption at 765 nm. Our results show good agreement between the experimentally derived differential optical depth measurements with the theoretical predictions for aircraft altitudes from 3 to 13 km. PMID:24085100

  11. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  12. Development and Evaluation of a Simple Algorithm to Find Cloud Optical Depth with Emphasis on Thin Ice Clouds

    SciTech Connect

    Barnard, James C.; Long, Charles N.; Kassianov, Evgueni I.; McFarlane, Sally A.; Comstock, Jennifer M.; Freer, Matthew; McFarquhar, Greg

    2008-04-14

    We present here an algorithm for determining cloud optical depth, τ, using data from shortwave broadband irradiances, focusing on the case of optically thin clouds. This method is empirical and consists of applying a one-line equation to the shortwave flux analysis described by Long and Ackerman (2000). We apply this method to cirrus clouds observed at the Atmospheric Radiation Measurement Program’s (ARM) Darwin, Australia site during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) campaign and cirrus clouds observed at ARM’s Southern Great Plains (SGP) site. These cases were chosen because independent verification of cloud optical depth retrievals is possible. For the TWP-ICE case, the calculated optical depths compare favorably (to within about 1 unit) with a “first principles” τ calculated from a vertical profile of ice particle size distributions obtained from an aircraft sounding. For the SGP case, the results from the algorithm correspond reasonably well with τ values obtained from an average over other methods; some of which have been subject to independent verification. The medians of the two time series are 0.79 and 0.81, for the empirical and averaged values, respectively (although such close agreement is likely to be fortuitous). This tool may be applied wherever measurements of the three components of the shortwave broadband flux are available at 1- to 5-minute resolution. Because these measurements are made across the world, it then becomes possible to estimate optical depth at many locations.

  13. Anterior segment biometry during accommodation imaged with ultra-long scan depth optical coherence tomography

    PubMed Central

    Du, Chixin; Shen, Meixiao; Li, Ming; Zhu, Dexi; Wang, Michael R.; Wang, Jianhua

    2012-01-01

    Purpose To measure by ultra-long scan depth optical coherence tomography (UL-OCT) dimensional changes in the anterior segment of human eyes during accommodation. Design Evaluation of diagnostic test or technology. Participants Forty-one right eyes of healthy subjects with a mean age of 34 years (range, 22–41 years) and a mean refraction of −2.5±2.6 diopters (D) were imaged in two repeated measurements at minimal and maximal accommodation. Methods A specially adapted designed UL-OCT instrument was used to image from the front surface of the cornea to the back surface of the crystalline lens. Custom software corrected the optical distortion of the images and yielded the biometric measurements. The coefficient of repeatability (COR) and the intraclass correlation coefficient (ICC) were calculated to evaluate the repeatability and reliability. Main Outcome Measures Anterior segment parameters and associated repeatability and reliability upon accommodation. The dimensional results included central corneal thickness (CCT), anterior chamber depth and width (ACD, ACW), pupil diameter (PD), lens thickness (LT), anterior segment length (ASL=ACD+LT), lens central position (LCP=ACD+1/2LT) and horizontal radii of the lens anterior and posterior surface curvatures (LAC, LPC). Results Repeated measurements of each variable within each accommodative state did not differ significantly (P>0.05). The CORs and ICCs for CCT, ACW, ACD, LT, LCP, and ASL were excellent (1.2% to 3.59% and 0.998 to 0.877, respectively). They were higher for PD (18.90% to 21.63% and 0.880 to 0.874, respectively), and moderate for LAC and LPC (34.86% to 42.72% and 0.669 to 0.251, respectively) in the two accommodative states. Compared to minimal accommodation, PD, ACD, LAC, LPC, and LCP decreased and LT and ASL increased significantly at maximal accommodation (P<0.05), while CCT and ACW did not change (P>0.05). Conclusions UL-OCT measured changes in anterior segment dimensions during accommodation with

  14. Evaluation of CALIOP 532-nm Aerosol Optical Depth Over Opaque Water Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.

    2015-01-01

    With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by approx. 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the

  15. The Generation of Higher-order Laguerre-Gauss Optical Beams for High-precision Interferometry

    PubMed Central

    Carbone, Ludovico; Fulda, Paul; Bond, Charlotte; Brueckner, Frank; Brown, Daniel; Wang, Mengyao; Lodhia, Deepali; Palmer, Rebecca; Freise, Andreas

    2013-01-01

    Thermal noise in high-reflectivity mirrors is a major impediment for several types of high-precision interferometric experiments that aim to reach the standard quantum limit or to cool mechanical systems to their quantum ground state. This is for example the case of future gravitational wave observatories, whose sensitivity to gravitational wave signals is expected to be limited in the most sensitive frequency band, by atomic vibration of their mirror masses. One promising approach being pursued to overcome this limitation is to employ higher-order Laguerre-Gauss (LG) optical beams in place of the conventionally used fundamental mode. Owing to their more homogeneous light intensity distribution these beams average more effectively over the thermally driven fluctuations of the mirror surface, which in turn reduces the uncertainty in the mirror position sensed by the laser light. We demonstrate a promising method to generate higher-order LG beams by shaping a fundamental Gaussian beam with the help of diffractive optical elements. We show that with conventional sensing and control techniques that are known for stabilizing fundamental laser beams, higher-order LG modes can be purified and stabilized just as well at a comparably high level. A set of diagnostic tools allows us to control and tailor the properties of generated LG beams. This enabled us to produce an LG beam with the highest purity reported to date. The demonstrated compatibility of higher-order LG modes with standard interferometry techniques and with the use of standard spherical optics makes them an ideal candidate for application in a future generation of high-precision interferometry. PMID:23962813

  16. Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network

    NASA Astrophysics Data System (ADS)

    Che, Huizheng; Zhang, Xiaoye; Chen, Hongbin; Damiri, Bahaiddin; Goloub, Philippe; Li, Zhengqiang; Zhang, Xiaochun; Wei, Yao; Zhou, Huaigang; Dong, Fan; Li, Deping; Zhou, Tianming

    2009-02-01

    This paper introduced the calibration of the CE-318 sunphotometer of the China Aerosol Remote Sensing Network (CARSNET) and the validation of aerosol optical depth (AOD) by AOD module of ASTPWin software compared with the simultaneous measurements of the Aerosol Robotic Network (AERONET)/Photométrie pour le Traitement Opérationnel de Normalization Satellitaire (PHOTONS) and PREDE skyradiometer. The results show that the CARSNET AOD measurements have the same accuracy as the AERONET/PHOTONS. On the basis of a comparison between CARSNET and AERONET, the AODs from CARSNET at 1020, 870, 670, and 440 nm are about 0.03, 0.01, 0.01, and 0.01 larger than those from AERONET, respectively. The aerosol optical properties over Beijing acquired through the CE-318 sunphotometers of one AERONET/PHOTONS site and two CARSNET sites were analyzed on the basis of 4-year measurements. It was obvious that the AOD of the Shangdianzi site (rural site) was lower than that of the two urban sites (the Institute of Atmospheric Physics (IAP) site (north urban site) and the Beijing Meteorological Observatory (BJO) site (south urban site)). The AOD of BJO was about 0.05, 0.04, 0.05, and 0.06 larger than that of IAP at 1020, 870, 670, and 440 nm, respectively, indicating that there is more local pollution in the south part of Beijing. The highest AOD was found in summer because of the stagnation planetary boundary layer and transport of pollutants from large pollution centers south of Beijing. The high temperature and relative humidity in summer also favor the production of aerosol precursor and the hygroscopic growth of the existing particles locally, which results in high AOD. In contrast, the lowest AOD at the two urban sites and one rural site in Beijing occurred in winter as the frequent cold air masses help pollutants diffuse easily.

  17. Retrieval of aerosol optical depth in the visible range with a Brewer spectrophotometer in Athens

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Eleftheratos, Kostas; Kazadzis, Stelios; Amiridis, Vassilis; Zerefos, Christos S.

    2016-04-01

    A MkIV Brewer spectrophotometer has been operating in Athens since 2004. Direct-sun measurements originally scheduled for nitrogen dioxide retrievals were reprocessed to provide aerosol optical depths (AODs) at a wavelength of about 440 nm. A novel retrieval algorithm was specifically developed and the resulting AODs were compared to those obtained from a collocated Cimel filter radiometer belonging to the Aerosol Robotic Network (AERONET). The series are perfectly correlated, with Pearson's correlation coefficients being as large as 0.996 and with 90 % of AOD deviations between the two instruments being within the World Meteorological Organisation (WMO) traceability limits. In order to reach such a high agreement, several instrumental factors impacting the quality of the Brewer retrievals must be taken into account, including sensitivity to the internal temperature, and the state of the external optics and pointing accuracy must be carefully checked. Furthermore, the long-term radiometric stability of the Brewer was investigated and the performances of in situ Langley extrapolations as a way to track the absolute calibration of the Brewer were assessed. Other sources of error, such as slight shifts of the wavelength scale, are discussed and some recommendations to Brewer operators are drawn. Although MkIV Brewers are rarely employed to retrieve AODs in the visible range, they represent a key source of information about aerosol changes in the past three decades and a potential worldwide network for present and future coordinated AOD measurements. Moreover, a better understanding of the AOD retrieval at visible wavelengths will also contribute in improving similar techniques in the more challenging UV range.

  18. More than 100 channel supercontinuum CW optical source with precise 25GHz spacing for 10Gbit/s DWDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Nan, Yinbo; Zhou, Xianwei

    2006-01-01

    We experimentally demonstrate the generation of supercontinuum (SC) with a 12.5GHz DFB/EAM ultrashort optical pulse broadened in the high nonlinear fiber (HNLF). Through longitudinal mode-carving of the SC spectrum, a novel multiwavelength continuous wave (CW) optical source with precise 25GHz channel spacing is realized. The bit error rate (BER) curve and eye diagram show that the multiwavelength CW optical source is promising for dense wavelength division multiplexing (DWDM) systems.

  19. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  20. Aerosol Optical Depth Retrieval by NPS Model Modified for SEAWIFS Input

    NASA Astrophysics Data System (ADS)

    Brown, Brady A.

    2002-03-01

    Using visible wavelength radiance data obtained from the spaceborne Sea-viewing Wide Field of-view Sensor (SeaWiFS), during the Aerosol Characterization Experiment-Asia (ACE-Asia), an analysis of aerosol optical depth (AOD) was completed by modification to the NPS AOD Model previously compiled for NOAA geosynchronous- and polar-orbiting satellites. The objective of the analysis was to calibrate the linearized, single-scatter algorithm, estimated bi-directional surface reflectance, and phase function parameters. The intent of the study was to provide enhanced temporal AOD coverage with the addition of the orbiting SeaWiFS eight-channel radiometer to the established NOAA constellation of five-channel AVHRR-equipped satellites. The work has operational significance in providing timely, accurate remote information to military operators of identification and targeting systems. Possible applications include detection and warning of international treaty violation of reducing the adverse public health effects by weapons of mass destruction of pollution advection on global weather patterns.

  1. Theoretical gravity darkening as a function of optical depth. A first approach to fast rotating stars

    NASA Astrophysics Data System (ADS)

    Claret, A.

    2016-04-01

    Aims: Recent observations of very fast rotating stars show systematic deviations from the von Zeipel theorem and pose a challenge to the theory of gravity-darkening exponents (β1). In this paper, we present a new insight into the problem of temperature distribution over distorted stellar surfaces to try to reduce these discrepancies. Methods: We use a variant of the numerical method based on the triangles strategy, which we previously introduced, to evaluate the gravity-darkening exponents. The novelty of the present method is that the theoretical β1 is now computed as a function of the optical depth, that is, β1 ≡ β1(τ). The stellar evolutionary models, which are necessary to obtain the physical conditions of the stellar envelopes/atmospheres inherent to the numerical method, are computed via the code GRANADA. Results: When the resulting theoretical β1(τ) are compared with the best accurate data of very fast rotators, a good agreement for the six systems is simultaneously achieved. In addition, we derive an equation that relates the locus of constant convective efficiency in the Hertzsprung-Russell (HR) diagram with gravity-darkening exponents.

  2. Process output nonclassicality and nonclassicality depth of quantum-optical channels

    NASA Astrophysics Data System (ADS)

    Sabapathy, Krishna Kumar

    2016-04-01

    We introduce a quantum-optical notion of nonclassicality that we call the process output nonclassicality for multimode quantum channels. The motivation comes from an information-theoretic point of view and the emphasis is on the output states of a channel. We deem a channel to be "classical" if its outputs are always classical irrespective of the input, i.e., if the channel is nonclassicality breaking, and nonclassical otherwise. Our condition is stronger than the one considered by Rahimi-Keshari et al., [Phys. Rev. Lett. 110, 160401 (2013)], 10.1103/PhysRevLett.110.160401 and we compare the two approaches. Using our framework we then quantify the nonclassicality of a quantum process by introducing a noise-robustness type of measure that we call the nonclassicality depth of a channel. It characterizes a certain threshold noise beyond which a given channel outputs only classical states. We achieve this by generalizing a prescription by Lee [Phys. Rev. A 44, R2775 (1991), 10.1103/PhysRevA.44.R2775] to multimode states and then by extension to multimode channels.

  3. High Resolution Aerosol Optical Depth Mapping of Beijing Using LANSAT8 Imagery

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Yuanliang; Wu, Jianliang

    2016-06-01

    Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.

  4. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity.

    PubMed

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-05-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  5. Trends in aerosol optical depth in northern China retrieved from sunshine duration data

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liu, Run; Liu, Shaw Chen; Shiu, Chein-Jung; Wang, Jingli; Zhang, Yuanhang

    2016-01-01

    A new method has been developed to retrieve aerosol optical depth (AOD) from sunshine duration (SSD). Retrieved AODs from SSD at the six stations in northern China in 2003-2005 agree reasonably well with AODs retrieved from Moderate Resolution Imaging Spectroradiometer observations near the six stations. Values and trends in AOD retrieved from SSD in Beijing and Tianjin in the period 1961-2005 also agree with those retrieved from solar radiation and visibility. These agreements allow the retrieval of credible upper and lower limits for anthropogenic AODs from SSD at the six stations during 1961-2005. The trends in anthropogenic AODs are approximately a factor of 3 to 5 lower than the trends in emissions of gas-phase precursors of aerosols in 1973-2005, implying a significant sublinear relationship between the level of aerosols and emissions of their gas phase precursors. This finding has important implications for formulating a control strategy for PM2.5 or haze pollution in northern China.

  6. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  7. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Case Study

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.; Alexandrov, Mikhail

    2010-10-06

    A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on June 12, 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15-30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.

  8. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging.

    PubMed

    Maldiney, Thomas; Lecointre, Aurélie; Viana, Bruno; Bessière, Aurélie; Bessodes, Michel; Gourier, Didier; Richard, Cyrille; Scherman, Daniel

    2011-08-01

    Focusing on the use of nanophosphors for in vivo imaging and diagnosis applications, we used thermally stimulated luminescence (TSL) measurements to study the influence of trivalent lanthanide Ln(3+) (Ln = Dy, Pr, Ce, Nd) electron traps on the optical properties of Mn(2+)-doped diopside-based persistent luminescence nanoparticles. This work reveals that Pr(3+) is the most suitable Ln(3+) electron trap in the diopside lattice, providing optimal trap depth for room temperature afterglow and resulting in the most intense luminescence decay curve after X-ray irradiation. This luminescence dependency toward the electron trap is maintained through additional doping with Eu(2+), allowing UV-light excitation, critical for bioimaging applications in living animals. We finally identify a novel composition (CaMgSi(2)O(6):Eu(2+),Mn(2+),Pr(3+)) for in vivo imaging, displaying a strong near-infrared afterglow centered on 685 nm, and present evidence that intravenous injection of such persistent luminescence nanoparticles in mice allows not only improved but highly sensitive detection through living tissues. PMID:21702453

  9. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  10. Choroidal changes observed with enhanced depth imaging optical coherence tomography in patients with mild Graves orbitopathy.

    PubMed

    Özkan, B; Koçer, Ç A; Altintaş, Ö; Karabaş, L; Acar, A Z; Yüksel, N

    2016-07-01

    PurposeTo evaluate the choroidal thickness in patients with Graves orbitopathy (GO) using enhanced depth imaging-optical coherence tomography (EDI-OCT).MethodsThirty-one patients with GO were evaluated prospectively. All subjects underwent ophthalmologic examination including best-corrected visual acuity, intraocular pressure measurement, biomicroscopic, and fundus examination. Choroidal thickness was measured at the central fovea. In addition, visual evoked potential measurement and visual field evaluation were performed.ResultsThe mean choroidal thickness was 377.8±7.4 μ in the GO group, and 334±13.7 μ in the control group. (P=0.004). There was a strong correlation between the choridal thickness and the clinical activity scores (CAS) of the patients (r=0.281, P=0.027). Additionally, there was a correlation between the choroidal thickness and the visual-evoked potential (VEP) P100 latency measurements of the patients (r=0.439, P=0.001).ConclusionsThe results of this study demonstrate that choroid is thicker in patients with GO. The choroidal thickness is also correlated with the CAS and VEP P100 latency measurements in these patients. PMID:27315349

  11. Comparison of trend between aerosol optical depth and PM in East Asia

    NASA Astrophysics Data System (ADS)

    KIM, S. H.; Kim, J.; Choi, M.; KIM, M.; Jeong, U.

    2014-12-01

    East Asia is one of major source region of aerosol emission. For decades, vast amount of aerosol, which is emitted and transported from emission region such as desert and industrialized area, has significant effect in the air quality and public health. Moreover, by scattering solar radiation and moderating cloud microphysical system, aerosol plays an important role in climate system. As the Korean peninsula is located in the downwind side of East Asia, the distribution of aerosol in this region is affected by continental outflow and local emission, This study shows the long-term trend and regional distribution of PM10 concentration over 28 Korea Meteorological Administration (KMA) sites and aerosol optical depth (AOD) retrieved from Geostationary Ocean Color Imager (GOCI) at 550nm channel during the period from March 2011 to March 2014. Though AOD is a good indicator of PM10 concentration, there are some uncertainties in AOD caused largely by aerosol type, surface reflectance, and those in PM by relative humidity (RH), boundary layer height (BLH) and so on. In this study, retrieved AODs were compared with the observed PM10, and trends and correlations between AOD and PM10 have been calculated for different region and season over the Korean peninsula.

  12. Study of satellite retrieved aerosol optical depth spatial resolution effect on particulate matter concentration prediction

    NASA Astrophysics Data System (ADS)

    Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.

    2014-10-01

    The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.

  13. Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth

    NASA Astrophysics Data System (ADS)

    Gevaert, A. I.; Parinussa, R. M.; Renzullo, L. J.; van Dijk, A. I. J. M.; de Jeu, R. A. M.

    2016-03-01

    Space-borne passive microwave radiometers are used to derive land surface parameters such as surface soil moisture and vegetation optical depth (VOD). However, the value of such products in regional hydrology is limited by their coarse resolution. In this study, the land parameter retrieval model (LPRM) is used to derive enhanced resolution (∼10 km) soil moisture and VOD from advanced microwave scanning radiometer (AMSR-E) brightness temperatures sharpened by a modulation technique based on high-frequency observations. A precipitation mask based on brightness temperatures was applied to remove precipitation artefacts in the sharpened LPRM products. The spatial and temporal patterns in the resulting products are evaluated against field-measured and modeled soil moisture as well as the normalized difference vegetation index (NDVI) over mainland Australia. Results show that resolution enhancement accurately sharpens the boundaries of different vegetation types, lakes and wetlands. Significant changes in temporal agreement between LPRM products and related datasets are limited to specific areas, such as lakes and coastal areas. Spatial correlations, on the other hand, increase over most of Australia. In addition, hydrological signals from irrigation and water bodies that were absent in the low-resolution soil moisture product become clearly visible after resolution enhancement. The increased information detail in the high-resolution LPRM products should benefit hydrological studies at regional scales.

  14. The uncertainty of MODIS C6 aerosol optical depth product over land

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2015-04-01

    Aerosol Optical Depth (AOD) has an important impact on climate change and air quality. A number of AOD satellite data products have been released, like Moderate Resolution Imaging Spectroradiometer (MODIS) AOD product, which are further applied for monitoring PM2.5, for long-term aerosol trend analysis, and for estimating aerosol radiative forcing. However, the accuracy of MODIS AOD product with ±0.03 or 15-20% of global mean value over land is still low for extensive scientific research. To investigate the accuracy of the product, a synthetic experiment was designed where the errors introduced by both radiometry and algorithm, e.g. instrument calibration, gas correction and cloud mask, and some assumptions on aerosol properties can be removed. Through analysis of the mean value of retrieved AOD over 1520 observational configurations, the algorithm performs very well with small errors (up to 0.2%) for most cases, while for some extreme cases (eg., AOD=5.0), it performs less accurately (> 3%). The uncertainty also shows a trend related to the geometry of observations (e.g., scattering angle). The results suggest higher accuracy at large scattering angles, and lower accuracy at small scattering angles. The main reason for the uncertainty is an inappropriate assumption on surface reflectance, where surface reflectance is regarded as a function of aerosol loading and mixing ratio. Therefore, a more accurate representation of the surface reflectance will increase the accuracy of the MODIS AOD product.

  15. Analysis of the weekly cycle of aerosol optical depth using AERONET and MODIS data

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao; Eck, Tom F.; Holben, Brent N.; Phillippe, Goloub; Chen, Hongbin

    2008-07-01

    Multi-year Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) data are used to study AOD weekly variations at the global scale. A clear weekly cycle of AOD is observed in the United States (U.S.) and Central Europe. AOD during the weekday is larger than that during the weekend in 36 out of 43 AERONET sites in the U.S. The average U.S. weekend effect (the percent difference in AOD during the weekday and the weekend) is 3.8%. A weekly periodicity with lower AODs on Sunday and Monday and higher AODs from Wednesday until Saturday is revealed over Central Europe and the average weekend effect there is 4.0%. The weekly cycle in urban sites is greater than that in rural sites. AOD during the weekday is also significantly larger than that during the weekend in urban AERONET sites in South America and South Korea. However, a reversed AOD weekly cycle is observed in the Middle East and India. AODs on Thursday and Friday, the "weekend" for Middle East cultures, are relatively lower than AODs on other days. There is no clear weekly variation of AOD over eastern China. The striking feature in this region is the occurrence of much higher AOD on Sunday and this phenomenon is independent of season. The analysis of MODIS aerosol data is in good agreement with that of AERONET data.

  16. Electron beam and optical depth-profiling of quasi-bulk GaN

    SciTech Connect

    Chernyak, L.; Osinsky, A.; Nootz, G.; Schulte, A.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Look, D.C.; Molnar, R.J.

    2000-11-22

    Electron beam and optical depth-profiling of thick (5.5-64 mm) quasi-bulk n-type GaN samples, grown by hydride vapor-phase epitaxy (HVPE), were carried out using electron beam induced current (EBIC), micro-photoluminescence (PL) and transmission electron microscopy (TEM). The minority carrier diffusion length, L, was found to increase linearly from 0.25 mm, at a distance of about 5 mm from the GaN/sapphire interface, to 0.63 mm at the GaN surface, for a 36-mm-thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. We attribute the latter changes in PL intensity and minority carrier diffusion length to a reduced carrier mobility and lifetime at the interface, due to scattering at threading dislocations. The results of EBIC and PL measurements are in good agreement with the values for dislocation density, obtained using TEM.

  17. Electron beam and optical depth profiling of quasibulk GaN

    NASA Astrophysics Data System (ADS)

    Chernyak, L.; Osinsky, A.; Nootz, G.; Schulte, A.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Look, D. C.; Molnar, R. J.

    2000-10-01

    Electron beam and optical depth profiling of thick (5.5-64 μm) quasibulk n-type GaN samples, grown by hydride vapor-phase epitaxy, were carried out using electron beam induced current (EBIC), microphotoluminescence (PL), and transmission electron microscopy (TEM). The minority carrier diffusion length, L, was found to increase linearly from 0.25 μm, at a distance of about 5 μm from the GaN/sapphire interface, to 0.63 μm at the GaN surface, for a 36-μm-thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. We attribute the latter changes in PL intensity and minority carrier diffusion length to a reduced carrier mobility and lifetime at the interface, due to scattering at threading dislocations. The results of EBIC and PL measurements are in good agreement with the values for dislocation density obtained using TEM.

  18. Electron beam and optical depth profiling of quasibulk GaN

    SciTech Connect

    Chernyak, L.; Osinsky, A.; Nootz, G.; Schulte, A.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Look, D. C.; Molnar, R. J.

    2000-10-23

    Electron beam and optical depth profiling of thick (5.5--64 {mu}m) quasibulk n-type GaN samples, grown by hydride vapor-phase epitaxy, were carried out using electron beam induced current (EBIC), microphotoluminescence (PL), and transmission electron microscopy (TEM). The minority carrier diffusion length, L, was found to increase linearly from 0.25 {mu}m, at a distance of about 5 {mu}m from the GaN/sapphire interface, to 0.63 {mu}m at the GaN surface, for a 36-{mu}m-thick sample. The increase in L was accompanied by a corresponding increase in PL band-to-band radiative transition intensity as a function of distance from the GaN/sapphire interface. We attribute the latter changes in PL intensity and minority carrier diffusion length to a reduced carrier mobility and lifetime at the interface, due to scattering at threading dislocations. The results of EBIC and PL measurements are in good agreement with the values for dislocation density obtained using TEM.

  19. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  20. A Critical Look at Deriving Monthly Aerosol Optical Depth from Satellite Data

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Leptoukh, Gregory, G.; Kahn, Ralph; Gopalan, Arun

    2009-01-01

    Satellite-derived aerosol data sets, such as those provided by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, are greatly improving our understanding of global aerosol optical depth (AOD). Yet, there are sampling issues. MODIS specific orbital geometry, convolved with the need to avoid bright surfaces (glint, desert, clouds, etc.), means that AOD can be under- or over-sampled in places. When deriving downstream products, such as daily or monthly gridded AOD, one must consider the spatial and temporal density of the measurements relative to the gradients of the true AOD. Additionally, retrieval confidence criteria should be considered. Averaged products are highly dependent on choices made for data aggregation and weighting, and sampling errors can be further propagated when deriving regional or global mean AOD. Different choices for aggregation and weighting result in estimates of regional and global means varying by 30% or more. The impacts of a particular averaging algorithm vary by region and surface type and can be shown to represent different tolerance for clouds and retrieval confidence.

  1. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    PubMed

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time. PMID:26438373

  2. Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: A Novel Approach

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2008-10-13

    A novel method for the retrieval of aerosol optical depth (AOD) under partly cloudy conditions has been suggested. The method exploits reflectance ratios, which are not sensitive to the three-dimensional (3D) effects of clouds. As a result, the new method provides an effective way to avoid the 3D cloud effects, which otherwise would have a large (up to 140%) contaminating impact on the aerosol retrievals. The 1D version of the radiative transfer model has been used to develop look-up tables (LUTs) of reflectance ratios as functions of two parameters describing the spectral dependence of AOD (a power law). The new method implements an innovative 2D inversion for simultaneous retrieval of these two parameters and, thus, the spectral behavior of AOD. The performance of the new method has been illustrated with a model-output inverse problem. We demonstrated that a new retrieval has the potential for (i) detection of clear pixels outside of cloud shadows and (ii) accurate (~15%) estimation of AOD for the majority of them.

  3. Comparison of AERONET and Russian actinometrical network aerosol optical depths over Russia

    NASA Astrophysics Data System (ADS)

    Plakhina, Inna; Pankratova, Natalia; Makhotkina, Elena

    2016-04-01

    The estimates of comparable values of aerosol optical depth (AOD) at different averaging periods are obtained on the basis of the data network AERONET and ground based solar radiation observations on the territory of the Russian Federation. A comparison is carried out for stations that match by location or nearby. Synchronous monthly and daily averaging datasets of AOD for the period 2004-2012 were analyzed. Periods of the data coincidence and violations in synchronous AOD changes were revealed for each set pair. Violations in the synchronicity of AOD relative course may be caused by differences in location of observation points and associated with a possible inhomogeneity of the cloud field as well as with local features of the atmosphere conditions. Additionally a comparison of AOD data obtained by ground and satellite observations was made. Presented results are preliminary and will be the basis for a systematic analysis of AOD data obtained in the Russian Federation. The work has been funded by RFBR (project #15-05-05803).

  4. Aerosol optical depth and planetary Albedo in the visible from the Solar Mesosphere Explorer

    NASA Technical Reports Server (NTRS)

    Naudet, J. P.; Thomas, G. E.

    1987-01-01

    The Solar Mesosphere Explorer (SME) satellite has observed the visible sunlight scattered at the earth's limb since early 1982. By using a radiative-transfer model including multiple scattering and albedo effects, observations at 20 deg N latitude have been interpreted in terms of aerosol optical depth. The ratio of aerosol extinction to Rayleigh extinction at 431.8 nm shows a large increase after the eruption of El Chichon. A maximum ratio of 5 at 36 km and larger than 11 at 30 km occurred in the summer of 1982 followed by a decrease through 1983 and 1984. Aspects of the aerosol time evolution appear to be consistent with other observations and model predictions. Quantitative differences exist between inferred SME and lidar extinction coefficients, possibly due to the different wavelengths of the measurements and to the different scattering phase functions used in the two analyses. It is also shown that visible limb radiances provide information on the planetary albedo, which shows an increase from the equator to the poles with a maximum in the winter hemisphere and a minimum in the summer hemisphere.

  5. Comparison of aerosol optical depth (AOD) determined from UVMRP and AERONET

    NASA Astrophysics Data System (ADS)

    Wang, Manyi; Liu, Chaoshun; Shi, Runhe; Gao, Wei

    2013-09-01

    Aerosol optical depth (AOD) is critically important for a better understanding of how Earth's climate is radiatively forced. To compensate for the conventional satellite observations, several types of ground-based radiometers are operated by AOD measurement programs. This study compares the Bratts Lake climate station's long-term AOD measurements from 1999 to 2012 which are derived from two ground-based programs with high accuracy: the United States Department of Agriculture (USDA) UV-B Monitoring and Research Program (UVMRP) and the AERONET (AErosol RObotic NETwork) program. The comparison shows that, in the 14-year period, the AOD values have an excellent agreement at six wavelengths (368, 415, 500, 610, 665, and 860 nm) with varying slopes (ranging from 0.95763 to 1.04089), intercepts (ranging from 0.0219 to 0.03945), correlation coefficients (R) (ranging from 0.82005 to 0.96155), and root mean square errors (RMSE) (ranging from 0.02639 to 0.03663). The correlations of both monthly and hourly averaged AOD measurements are highly consistent for each band. Specifically, the shorter (with larger AOD values) the wavelength is, the better the correlation is. Also, the results show that the peaks of relative errors generally occur in summer each year, and at noon each day. Our analyses suggest that AOD products derived from UVMRP are accurate and can serve as an alternative ground-based validation source for satellite AOD measurements.

  6. Retrieval of aerosol optical depth over land using MSG/SEVIRI data

    NASA Astrophysics Data System (ADS)

    She, Lu; Xue, Yong; Guang, Jie; Di, Aojie

    2016-04-01

    In the present study we proposed an algorithm to estimate hourly Aerosol Optical Depth (AOD) using multi-temporal data from SEVIRI aboard Meteosat Second Generation (MSG). The algorithm coupled a Radiative Transfer Model with Ross-Li-sparse bidirectional reflectance factor (BRF) to calculate the AOD and bidirectional reflectance simultaneously using the visible and near-infrared (NIR) channel of SEVIRI data. We assume the surface albedo doesn't vary over a short time (e.g. 1 day), and a κ-ratio approach was used which assumes the ratio of surface reflectance in the visible and NIR channel for two observations is the same. In the inversion, the MODIS product (MCD43) was used as the prior information of the surface reflectance and the single scattering albedo (SSA) and asymmetry factor (g) were derived from six pre-defined aerosol types. The retrieved AOD and AngstrÖm exponent α were compared with Aerosol Robotic Network (AERONET) measurements, which shows good consistency.

  7. Spatiotemporal associations between GOES aerosol optical depth retrievals and ground-level PM2.5.

    PubMed

    Paciorek, Christopher J; Liu, Yang; Moreno-Macias, Hortensia; Kondragunta, Shobha

    2008-08-01

    We analyze the strength of association between aerosol optical depth (AOD) retrievals from the GOES aerosol/smoke product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States. GASP AOD is retrieved from a geostationary platform, giving half-hourly observations every day, in contrast to once per day snapshots from polar-orbiting satellites. However, GASP AOD is based on a less-sophisticated instrument and retrieval algorithm. We find that daily correlations between GASP AOD and PM2.5 over time at fixed locations are reasonably high, except in the winter and in the western U.S. Correlations over space at fixed times are lower. Simple averaging to the month and year actually reduces correlations over space, but statistical calibration allows averaging over time that produces moderately strong correlations. These results and the data density of GASP AOD highlight its potential to help improve exposure estimates for epidemiological analyses. On average 39% of days in a month have a GASP AOD retrieval compared to 11% for MODIS and 5% for MISR. Furthermore, GASP AOD has been retrieved since November 1994, providing a long-term record that predates the availability of most PM2.5 monitoring data and other satellite instruments. PMID:18754512

  8. The estimation of Aerosol Optical Depth in eastern China based on regression analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shi, Runhe; Liu, Chaoshun; Zhou, Cong

    2015-09-01

    The atmospheric pollution and air quality issues are getting worse in China, the formation mechanism of aerosols and their environment effects attracted more and more attention. Aerosol Optical Depth (AOD) is one of the most important parameters which can indicate the atmospheric turbidity and aerosol load. High-quality AOD data are significant for the study in the atmospheric environment (i.e., air quality). This paper used MODIS/Terra AOD in 2008 to improve the coverage of MODIS/Aqua AOD, which was based on linear regression analysis model. RMSE between estimation value and AquaAOD detected through satellite is 0.132. The average value of test data was 0.812. The average of regression result was 0.807. It showed that the regression model between AODTerra and AODAqua worked well. Also, we built two sets of estimation models (MODIS AOD and OMI AOD) through stepwise regression analysis model. One is using OMI AOD and meteorological elements to estimate MODIS AOD. The value of RMSE was 0.113, which represents 13.916% of the average(R2=0.782). The other one is using MODIS AOD and meteorological elements to estimate OMI AOD. RMSE of the model is 0.132, which represents 18.182% of the average (R2=0.726).

  9. A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Top Height Fields

    NASA Technical Reports Server (NTRS)

    Prigarin, Sergei M.; Marshak, Alexander

    2007-01-01

    A simple and fast algorithm for generating two correlated stochastic twodimensional (2D) cloud fields is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. The algorithm output is statistical realizations of these two fields with approximately the same correlation and joint distribution functions as the original ones. The major assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models of homogeneous random fields. For keeping the same probability density function as the (first) original field, the method of inverse distribution function is used. When the spatial distribution of the first field has been generated, a realization of the correlated second field is simulated using a conditional distribution matrix. This paper is served as a theoretical justification to the publicly available software that has been recently released by the authors and can be freely downloaded from http://i3rc.gsfc.nasa.gov/Public codes clouds.htm. Though 2D rather than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of given fields have proved to be very useful to study 3D radiative transfer features of broken cumulus clouds for better understanding of shortwave radiation and interpretation of the remote sensing retrievals.

  10. Mars Orbiter Laser Altimeter Radiometry: Phase Functions and the Optical Depth of Nocturnal Water Ice Clouds

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Barker, M. K.; Sun, X.

    2014-12-01

    Over the course of more than 3 Mars years the MOLA instrument on board Mars Global Surveyor (from 1999 to the loss of MGS in Nov. 2006) obtained passive reflectance measurements of Mars at 1064 nm wavelength from the solar background. As an altimeter, the quantity of light removed from a laser beam by scattering or absorption during the roundtrip to the surface may be calculated knowing the energy returned, the surface geometric albedo and the instrument parameters for each laser shot. These opacity measurements indicate the combined effects of dust and condensates, particularly those seen during during the night. The measure of opacity, to optical depths exceeding unity, correlates well with daytime measurements by the Hubble Space Telescope and with the broadband Thermal Emission Spectrometer. Applying a simple phase function to passive radiometric observations obtained at emission angles varying from 0 to 80 degrees, upper and lower limits are obtained for atmospheric opacity as a function of season and time of day. The implications for the effects of nocturnal water ice clouds on radiative transfer, and for future applications to the detection of icy plumes from moons of the outer solar system will be discussed.

  11. Relationship between the effective cloud optical depth and different atmospheric transmission factors

    NASA Astrophysics Data System (ADS)

    Serrano, D.; Marín, M. J.; Núñez, M.; Gandía, S.; Utrillas, M. P.; Martínez-Lozano, J. A.

    2015-06-01

    This study examines the sensitivity of cloud optical depth (COD) for overcast conditions to radiation transmission using data collected in Valencia, Spain. These relationships are provided as simple empirical functions, therefore avoiding the need to apply complex model minimisation schemes to obtain COD. Comparisons are presented between COD obtained by a minimization method and several radiation transmission factors comprising a clearness index (kt), a modified version (kt'), a cloud modification factor (CMF) and its modified version (CMF'). Additionally, a statistical model of COD proposed by J.C. Barnard and C.N. Long (2004) is tested with our data. Statistical relationships between COD and these variables were developed for measurements in the ultraviolet Erythema Radiation (UVER) range as well as for broadband measurements covering the full solar spectrum. Measurements collected in 2011 were used to develop power and exponential relationships relating COD to the above transmission factors, and subsequently tested with independent data collected in 2012. In general, expressions relating COD to CMF perform better and exhibit a higher correlation than equivalent expressions relating COD to clearness indices, especially in the UVER range. The expression of Barnard and Long is potentially adequate for the estimation of COD for both UVER and broadband solar radiation in Valencia, but the regression coefficients need tuning for local conditions.

  12. Validation of ASH Optical Depth and Layer Height from IASI using Earlinet Lidar Data

    NASA Astrophysics Data System (ADS)

    Balis, D.; Siomos, N.; Koukouli, M.; Clarisse, L.; Carboni, E.; Ventress, L.; Grainger, R.; Mona, L.; Pappalardo, G.

    2016-06-01

    The 2010 eruptions of the Icelandic volcano Eyjafjallajökull attracted the attention of the public and the scientific community to the vulnerability of the European airspace to volcanic eruptions. The European Space Agency project "Satellite Monitoring of Ash and Sulphur Dioxide for the mitigation of Aviation Hazards", called for the creation of an optimal End-to-End System for Volcanic Ash Plume Monitoring and Prediction. This system is based on improved and dedicated satellite-derived ash plume and sulphur dioxide level assessments, as well as an extensive validation, using among others ground-based measurements (Koukouli et al., 2014). The validation of volcanic ash levels and height extracted from IASI/MetopA is presented in this work with emphasis on the ash plume height and ash optical depth levels. European Aerosol Research Lidar Network [EARLINET] lidar measurements are compared to different satellite estimates for two eruptive episodes. The validation results are extremely promising within the estimated uncertainties of each of the comparative datasets.

  13. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity

    PubMed Central

    Mora, Alberto Dalla; Contini, Davide; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-01-01

    Light is a powerful tool to non-invasively probe highly scattering media for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. Here we show that, for a paradigmatic case of diffuse optical imaging, ideal yet realistic time-domain systems yield more than 2-fold higher depth penetration and many decades higher contrast as compared to ideal continuous-wave systems, by adopting a dense source-detector distribution with picosecond time-gating. Towards this aim, we demonstrate the first building block made of a source-detector pair directly embedded into the probe based on a pulsed Vertical-Cavity Surface-Emitting Laser (VCSEL) to allow parallelization for dense coverage, a Silicon Photomultiplier (SiPM) to maximize light harvesting, and a Single-Photon Avalanche Diode (SPAD) to demonstrate the time-gating capability on the basic SiPM element. This paves the way to a dramatic advancement in terms of increased performances, new high impact applications, and availability of devices with orders of magnitude reduction in size and cost for widespread use, including quantitative wearable imaging. PMID:26137377

  14. Nine martian years of dust optical depth observations: A reference dataset

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  15. Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change

    NASA Technical Reports Server (NTRS)

    Ridley, D. A.; Solomon, S.; Barnes, J. E.; Burlakov, V. D.; Deshler, T.; Dolgii, S. I.; Herber, A. B.; Nagai, T.; Neely, R. R., III; Nevzorov, A. V.; Ritter, C.; Sakai, T.; Santer, B. D.; Sato, M.; Schmidt, A.; Uchino, O.; Vernier, J. P.

    2014-01-01

    Understanding the cooling effect of recent volcanoes is of particular interest in the context of the post-2000 slowing of the rate of global warming. Satellite observations of aerosol optical depth above 15 km have demonstrated that small-magnitude volcanic eruptions substantially perturb incoming solar radiation. Here we use lidar, Aerosol Robotic Network, and balloon-borne observations to provide evidence that currently available satellite databases neglect substantial amounts of volcanic aerosol between the tropopause and 15 km at middle to high latitudes and therefore underestimate total radiative forcing resulting from the recent eruptions. Incorporating these estimates into a simple climate model, we determine the global volcanic aerosol forcing since 2000 to be 0.19 +/- 0.09W/sq m. This translates into an estimated global cooling of 0.05 to 0.12 C. We conclude that recent volcanic events are responsible for more post-2000 cooling than is implied by satellite databases that neglect volcanic aerosol effects below 15 km.

  16. Improving Calculation Accuracies of Accumulation-Mode Fractions Based on Spectral of Aerosol Optical Depths

    NASA Astrophysics Data System (ADS)

    Ying, Zhang; Zhengqiang, Li; Yan, Wang

    2014-03-01

    Anthropogenic aerosols are released into the atmosphere, which cause scattering and absorption of incoming solar radiation, thus exerting a direct radiative forcing on the climate system. Anthropogenic Aerosol Optical Depth (AOD) calculations are important in the research of climate changes. Accumulation-Mode Fractions (AMFs) as an anthropogenic aerosol parameter, which are the fractions of AODs between the particulates with diameters smaller than 1μm and total particulates, could be calculated by AOD spectral deconvolution algorithm, and then the anthropogenic AODs are obtained using AMFs. In this study, we present a parameterization method coupled with an AOD spectral deconvolution algorithm to calculate AMFs in Beijing over 2011. All of data are derived from AErosol RObotic NETwork (AERONET) website. The parameterization method is used to improve the accuracies of AMFs compared with constant truncation radius method. We find a good correlation using parameterization method with the square relation coefficient of 0.96, and mean deviation of AMFs is 0.028. The parameterization method could also effectively solve AMF underestimate in winter. It is suggested that the variations of Angstrom indexes in coarse mode have significant impacts on AMF inversions.

  17. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  18. Aerosol optical depth in a western Mediterranean site: An assessment of different methods

    NASA Astrophysics Data System (ADS)

    Sanchez-Romero, A.; González, J. A.; Calbó, J.; Sanchez-Lorenzo, A.; Michalsky, J.

    2016-06-01

    Column aerosol optical properties were derived from multifilter rotating shadowing radiometer (MFRSR) observations carried out at Girona (northeast Spain) from June 2012 to June 2014. We used a technique that allows estimating simultaneously aerosol optical depth (AOD) and Ångström exponent (AE) at high time-resolution. For the period studied, mean AOD at 500 nm was 0.14, with a noticeable seasonal pattern, i.e. maximum in summer and minimum in winter. Mean AE from 500 to 870 nm was 1.2 with a strong day-to-day variation and slightly higher values in summer. So, the summer increase in AOD seems to be linked with an enhancement in the number of fine particles. A radiative closure experiment, using the SMARTS2 model, was performed to confirm that the MFRSR-retrieved aerosol optical properties appropriately represent the continuously varying atmospheric conditions in Girona. Thus, the calculated broadband values of the direct flux show a mean absolute difference of less than 5.9 W m- 2 (0.77%) and R = 0.99 when compared to the observed fluxes. The sensitivity of the achieved closure to uncertainties in AOD and AE was also examined. We use this MFRSR-based dataset as a reference for other ground-based and satellite measurements that might be used to assess the aerosol properties at this site. First, we used observations obtained from a 100 km away AERONET station; despite a general similar behavior when compared with the in-situ MFRSR observations, certain discrepancies for AOD estimates in the different channels (R < 0.84 and slope < 1) appear. Second, AOD products from MISR and MODIS satellite observations were compared with our ground-based retrievals. Reasonable agreements are found for the MISR product (R = 0.92), with somewhat poorer agreement for the MODIS product (R = 0.70). Finally, we apply all these methods to study in detail the aerosol properties during two singular aerosol events related to a forest fire and a desert dust intrusion.

  19. Retrieval of Surface Lambert Albedos and Aerosols Optical Depths Using OMEGA Near-IR EPF Observations of Mars

    NASA Astrophysics Data System (ADS)

    Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.

    2007-03-01

    We have analyzed five EPF sequences acquired by OMEGA/Mars Express in the near-IR over ice-free and ice-covered surfaces to retrieve simultaneously the Lambert albedo of the surface and the optical depth of aerosols.

  20. Precise Directed Assembly of Nanoparticles for Electronic, Optical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Cihan

    Assembly of nano building blocks offers a versatile route to the creation of complex 1, 2 and 3-dimensional homogenous or hybrid nanostructures with unique properties to be used in many applications including electronics, optics, energy, and biotechnology. Bottom-up directed assembly of nanoparticles has been recently considered as one of the best approaches to manufacture such functional and novel nanostructures. However, current directed assembly techniques have not been shown to make nanostructures homogeneous or hybrid materials with nanoscale precision at a high yield. This is mainly due to the lack of fundamental understanding of the forces driving the assembly of nanoparticles into organized nanostructures on surfaces and the difficulties in precisely controlling these forces to enable the repeatable and reliable assembly of various types of organic or inorganic nanoparticles. We experimentally and numerically investigated the fundamental mechanism of the electrophoretic directed assembly for different sizes and types of nanoparticles. The results showed that unlike large (such as 500nm) Polysterene Latex (PSL) particles, the electrophoretic assembly of 50nm and smaller PSL particles is significantly influenced by the Brownian diffusion. This results in random and low yield assembly for the smaller nanoparticles. In order to overcome the Brownian diffusion-limited assembly of 50nm or smaller particles, the electrophoretic velocity of the particles must be increased. This can be accomplished by increasing the electrophoretic force, which is a function of particle surface charge and applied voltage. The surface charge of the PSL particles is greatly influenced by the pH of the solution. At high pH values (pH 10.1 or above), the nanoparticles attain higher charge, which increases the electrophoretic force. Consequently, the Brownian diffusion can also be overcome by increasing the pH of the solution. Overcoming the Brownian motion at low pH values (<10

  1. Apparent Depth.

    ERIC Educational Resources Information Center

    Nassar, Antonio B.

    1994-01-01

    Discusses a well-known optical refraction problem where the depth of an object in a liquid is determined. Proposes that many texts incorrectly solve the problem. Provides theory, equations, and diagrams. (MVL)

  2. Highly precise distributed Brillouin scattering sensor for structural health monitoring of optical ground wire cable

    NASA Astrophysics Data System (ADS)

    Zou, Lufan; Ravet, Fabien; Bao, Xiaoyi; Chen, Liang

    2004-07-01

    A distributed Brillouin scattering sensor with high special precision has been developed for the measurement of small damages/cracks of 1.5 cm. The out-layer damaged regions in an optical ground wire (OPGW) cable have been identified successfully by measuring the strain distributions every 5 cm using this technology. The stress increased to 127 kN which corresponds to more than 7500 micro-strain in the fibers. The locations of structural indentations comprising repaired and undamaged regions are found and distinguished using their corresponding strain data. The elongation of repaired region increases with time on 127 kN. These results are quantified in terms of the fiber orientation, stress, and behavior relative to undamaged sections.

  3. Vibratory response modeling and verification of a high precision optical positioning system.

    SciTech Connect

    Barraza, J.; Kuzay, T.; Royston, T. J.; Shu, D.

    1999-06-18

    A generic vibratory-response modeling program has been developed as a tool for designing high-precision optical positioning systems. Based on multibody dynamics theory, the system is modeled as rigid-body structures connected by linear elastic elements, such as complex actuators and bearings. The full dynamic properties of each element are determined experimentally or theoretically, then integrated into the program as inertial and stiffness matrices. Utilizing this program, the theoretical and experimental verification of the vibratory behavior of a double-multilayer monochromator support and positioning system is presented. Results of parametric design studies that investigate the influence of support floor dynamics and highlight important design issues are also presented. Overall, good matches between theory and experiment demonstrate the effectiveness of the program as a dynamic modeling tool.

  4. Pupil tracking optical coherence tomography for precise control of pupil entry position

    PubMed Central

    Carrasco-Zevallos, Oscar; Nankivil, Derek; Keller, Brenton; Viehland, Christian; Lujan, Brandon J.; Izatt, Joseph A.

    2015-01-01

    To maximize the collection efficiency of back-scattered light, and to minimize aberrations and vignetting, the lateral position of the scan pivot of an optical coherence tomography (OCT) retinal scanner should be imaged to the center of the ocular pupil. Additionally, several retinal structures including Henle’s Fiber Layer (HFL) exhibit reflectivities that depend on illumination angle, which can be controlled by varying the pupil entry position of the OCT beam. In this work, we describe an automated method for controlling the lateral pupil entry position in retinal OCT by utilizing pupil tracking in conjunction with a 2D fast steering mirror placed conjugate to the retinal plane. We demonstrate that pupil tracking prevents lateral motion artifacts from impeding desired pupil entry locations, and enables precise pupil entry positioning and therefore control of the illumination angle of incidence at the retinal plane. We use our prototype pupil tracking OCT system to directly visualize the obliquely oriented HFL. PMID:26417510

  5. Aerosol Optical Depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the Western US

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Hoff, R. M.; Kondragunta, S.; Laszlo, I.; Lyapustin, A.

    2012-10-01

    Aerosol Optical Depth (AOD) in the Western United States is observed independently by both the GOES-East and GOES-West imagers. The GASP (GOES Aerosol/Smoke Product) aerosol optical depth retrieval algorithm treats each satellite as a unique sensor and thus NOAA obtains two separate aerosol optical depth values at the same time for the same location. The TOA radiances and the associated derived optical depths can be quite different due to the different viewing geometries with large difference in solar-scattering angles. In order to fully exploit the simultaneous observations and generate consistent AOD retrievals from the two satellites, the authors develop a new aerosol optical depth retrieval algorithm that uses data from both satellites. The algorithm uses combined GOES-East and GOES-West visible channel TOA reflectance and daily average AOD from GOES Multi-Angle Implementation of Atmospheric Correction (GOES-MAIAC) on clear days (AOD less than 0.3), when diurnal variation of AOD is low, to retrieve surface BRDF. The known BRDF shape is applied on subsequent days to retrieve BRDF and AOD. The algorithm is validated at three AERONET sites over the Western US. The AOD retrieval accuracy from the hybrid technique using the two satellites is similar to that from one satellite over UCSB and Railroad Valley. Improvement of the accuracy is observed at Boulder. The correlation coefficients between the GOES AOD and AERONET AOD are in the range of 0.67 to 0.81 over the three sites. The hybrid algorithm has more data coverage compared to the single satellite retrievals over surfaces with high reflectance. The number of coincidences with AERONET observations increases from the use of two-single satellite algorithms by 5-80% for the three sites. With the application of the new algorithm, consistent AOD retrievals and better retrieval coverages can be obtained using the data from the two GOES satellite imagers.

  6. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  7. Harnessing the Single Ion: Precision Measurements across the Optical Spectrum using a Trapped Strontium Ion Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Madej, Alan

    2001-04-01

    Slightly over 25 years have passed since H. Dehmelt first proposed the concept of a frequency standard based on a single, trapped ion; at rest and probed by a highly stable laser. In the intervening years, dramatic advances have been made in the laser cooling and manipulation of atoms and ions, Hz level stabilization of lasers, and recently, in the direct measurement of optical frequencies to Cs atomic time standards. Today, the dream of such an ultimate, nearly unperturbed frequency standard has reached its first practical realizations. We describe our work using a single trapped and laser cooled ion of strontium that is probed on the ultra-narrow 445 THz (674 nm), 5s ^2S_1/2 - 4d ^2D_5/2 electric quadrupole transition of 0.4 Hz natural width. Through direct Cs atomic clock based measurements performed in 1998, the ^88Sr^+ system was measured to an accuracy of 200 Hz (5 X 10-13) and became the first internationally recognized single ion optical frequency standard. Under current experimental conditions, the magnitudes of the systematic shifts in the line center are estimated to be less than 1 part in 10^15. The Sr^+ ion system has been used in our laboratory in the measurement of an accurate laser system at 1.5 μm which was stabilized on a narrow two-photon transition in Rb at 778 nm. Recently, the single Sr^+ reference has been applied to the measurement of the 474 THz (633 nm) I_2/HeNe laser which is currently the most widely employed optical frequency standard and forms the basis for world-wide precision length metrology. Moreover, a single ion based measurement of the JILA/NIST, I_2/HeNe system has verified the accuracy of optical frequency measurement using mode-locked femtosecond lasers to a level of 700 Hz. The recent breakthrough in absolute frequency determination provided by femtosecond laser frequency combs has indeed provided a straightforward technology to relate disparate optical frequencies with each other and to Rf atomic clocks. Work will be

  8. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  9. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2009-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars- GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars- GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear=0 with MapYears 1 and 2 MGCM output

  10. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Justus, C. G.; Badger, A. M.

    2009-12-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM’s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3 is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. Unrealistic energy absorption by uniform atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage change in density at all altitudes. Consequently, the final result of a change in surface pressure is an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, a density factor value was determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with MapYears 1 and 2 MGCM output

  11. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    NASA Astrophysics Data System (ADS)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  12. A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products

    NASA Astrophysics Data System (ADS)

    Singh, Manoj K.; Gautam, Ritesh; Venkatachalam, Parvatham

    2016-05-01

    Aerosol Optical Depth (AOD) products available from MODIS and MISR observations are widely used for aerosol characterization, and global/environmental change studies. These products are based on different retrieval-algorithms, resolutions, sampling, and cloud-screening schemes, which have led to global/regional biases. Thus a merged product is desirable which bridges this gap by utilizing strengths from each of the sensors. In view of this, we have developed a "merged" AOD product based on MODIS and MISR AOD datasets, using Bayesian principles which takes error distributions from ground-based AOD measurements (from AERONET). Our methodology and resulting dataset are especially relevant in the scenario of combining multi-sensor retrievals for satellite-based climate data records; particularly for long-term studies involving AOD. Specifically for MISR AOD product, we also developed a methodology to produce a gap-filled dataset, using geostatistical methods (e.g. Kriging), taking advantage of available MODIS data. Merged and spatially-complete AOD datasets are inter-compared with other satellite products and with AERONET data at three stations- Kanpur, Jaipur and Gandhi College, in the Indo-Gangetic Plains. The RMSE of merged AOD (0.08-0.09) is lower than MISR (0.11-0.20) and MODIS (0.15-0.27). It is found that merged AOD has higher correlation with AERONET data (r within 0.92-0.95), compared to MISR (0.74-0.86) and MODIS (0.69-0.84) data. In terms of Expected Error, the accuracy of valid merged AOD is found to be superior as percent of merged AOD within error envelope are larger (71-92%), compared to MISR (43-61%) and MODIS (50-70%).

  13. Aerosol optical Depth Measurements in the UVB and visible at Ispra, Italy: 1992 TO 2002

    NASA Astrophysics Data System (ADS)

    Gröbner, J.; Meleti, C.

    2003-04-01

    Since 1992 direct solar irradiance has been measured with a Brewer spectroradiometer typ MKIV at several wavelengths in the UVB (between 306 and 320 nm) and visible (between 431 and 453 nm) part of the solar spectrum. So far, the measurements in the UVB were only used to determine the total column Ozone while those in the visible were used for the total column Nitrogen Dioxide. Here we present a re-evaluation of the whole times series with respect to aerosol optical depth (aod) using the same direct solar irradiance measurements. AOD measurements since 1997 from a CIMEL spectrophotometer belonging to AERONET were used as a cross check to verify the quality of the retrieved Brewer data. In the UVB, the calibration is based on routine lamp measurements performed on the global irradiance port of the Brewer and then transferred to the direct irradiance port using a custom measurement procedure. The calibration in the visible is based on Langley-plots performed at Ispra. A second method to calculate the relative extraterrestrials constants (ETC) for the Brewer using CIMEL data was also applied. The estimated ETC of the two methods agree to better than 4.5%. Comparison between the aod as derived from the Brewer spectroradiometer and the aod at 440 nm from the CIMEL instrument shows that the data are strongly correlated, confirming that the Brewer direct sun measurements are able to provide reliable aod. A detailed study reveals that the NO2 absorption needs to be taken into account for more accurate aod estimations in these wavelength regions. Finally, the time series of the Å ngström exponent α calculated from the retrieved aod is presented and its performance discussed.

  14. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  15. Deriving High Resolution UV Aerosol Optical Depth over East Asia using CAI-OMI Joint Retrieval

    NASA Astrophysics Data System (ADS)

    Go, S.; Kim, J.; KIM, M.; Lee, S.

    2015-12-01

    Monitoring aerosols using near UV spectral region have been successfully performed over decades by Ozong Monitoring Instruments (OMI) with benefit of strong aerosol signal over continuous dark surface reflectance, both land and ocean. However, because of big foot print of OMI, the cloud contamination error was a big issue in the UV aerosol algorithm. In the present study, high resolution UV aerosol optical depth (AOD) over East Asia was derived by collaborating the Greenhouse gases Observing SATellite/Thermal And Near infrared Sensor for carbon Observation (GOSAT/TANSO)-Cloud and Aerosol Imager (CAI) and OMI together. AOD of 0.1 degree grid resolution was retrieved using CAI band 1 (380nm) by bring OMI lv.2 aerosol type, single scattering albedo, and aerosol layer peak height in 1 degree grid resolution. Collocation of the two dataset within the 0.5 degree grid with time difference of OMI and CAI less than 5 minute was selected. Selected region becomes wider as it goes to the higher latitude. Also, calculated degradation factor of 1.57 was applied to CAI band1 (380nm) by comparing normalized radiance and Lambertian Equivalent Reflectivity (LER) of both sensors. The calculated degradation factor was reasonable over dark scene, but inconsistent over cirrus cloud and bright area. Then, surface reflectance was developed by compositing CAI LER minimum data over three month period, since the infrequent sampling rate associated with the three-day recursion period of GOSAT and the narrow CAI swath of 1000 km. To retrieve AOD, look up table (LUT) was generated using radiative transfer model VLIDORT NGST. Finally, the retrieved AOD was validated with AERONET ground based measurement data during the Dragon-NE Asia campaign in 2012.

  16. Trap depth optimization to improve optical properties of diopside-based nanophosphors for medical imaging

    NASA Astrophysics Data System (ADS)

    Maldiney, Thomas; Lecointre, Aurélie; Viana, Bruno; Bessière, Aurélie; Gourier, Didier; Bessodes, Michel; Richard, Cyrille; Scherman, Daniel

    2012-02-01

    Regarding its ability to circumvent the autofluorescence signal, persistent luminescence was recently shown to be a powerful tool for in vivo imaging and diagnosis applications in living animal. The concept was introduced with lanthanide-doped persistent luminescence nanoparticles (PLNP), from a lanthanide-doped silicate host Ca0.2Zn0.9Mg0.9Si2O6:Eu2+, Mn2+, Dy3+ emitting in the near-infrared window. In order to improve the behaviour of these probes in vivo and favour diagnosis applications, we showed that biodistribution could be controlled by varying the hydrodynamic diameter, but also the surface charges and functional groups. Stealth PLNP, with neutral surface charge obtained by polyethylene glycol (PEG) coating, can circulate for longer time inside the mice body before being uptaken by the reticulo-endothelial system. However, the main drawback of this first generation of PLNP was the inability to witness long-term monitoring, mainly due to the decay kinetic after several decades of minutes, unveiling the need to work on new materials with improved optical characteristics. We investigated a modified silicate host, diopside CaMgSi2O6, and increased its persistent luminescence properties by studying various Ln3+ dopants (for instance Ce, Pr, Nd, Tm, Ho). Such dopants create electron traps that control the long lasting phosphorescence (LLP). We showed that Pr3+ was the most suitable Ln3+ electron trap in diopside lattice, providing optimal trap depth, and resulting in the most intense luminescence decay curve after UV irradiation. A novel composition CaMgSi2O6:Eu2+,Mn2+,Pr3+ was obtained for in vivo imaging, displaying a strong near-infrared persistent luminescence centred on 685 nm, allowing improved and sensitive detection through living tissues.

  17. Inter-Annual Variability of Aerosol Optical Depth over East Asia during 2000-2011 summers

    NASA Astrophysics Data System (ADS)

    Liu, J.; Liu, Y.; Tao, S.

    2013-12-01

    Aerosols degrade air quality, perturb atmospheric radiation, and impact regional and global climate. Due to a rapid increase of anthropogenic emissions, aerosol loading over East Asia (EA) is markedly higher than other industrialized regions, motivating a need to characterize the evolution of aerosols and understand the associated drivers. Based on the MISR satellite data during 2000-2011, a wave-like inter-annual variation of summertime aerosol optical depth (SAOD) is observed over the highly populated North China Plain (NCP) in East Asia. Specifically, the peak to trough ratio of SAOD ranges from 1.4 to 1.6, with a period of 3-4y. This variation pattern differs apparently from what has been seen in EA emissions, indicating a periodic change in regional climate pattern during the past decade. Investigations on meteorological fields over the region reveal that the high SAOD is generally associated with enhanced Philippine Sea Anticyclone Anomaly (PSAA), which weakens southeasterlies over northeastern EA and depresses air ventilation. Alternatively, a higher temperature or lower relative humidity is found to be coincident with reduced SAOD. The behavior of PSAA has been found previously to be modulated by the El Niño southern oscillations (ENSO), which thereby could disturb the EA SAOD as well. Rather than changing coherently with the ENSO activity, SAOD peaks over the NCP are found to be accompanied by the rapid transition of El Niño warm to cold phases developed four months ahead. An index measuring the ENSO development during January-April is able to capture the inter-annual variability of NCP SAOD during 2000-2011. This indicates a need to integrate the consideration of large-scale periodic climate variability in the design of regional air quality policy.

  18. A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products

    NASA Astrophysics Data System (ADS)

    Xu, H.; Guang, J.; Xue, Y.; de Leeuw, Gerrit; Che, Y. H.; Guo, Jianping; He, X. W.; Wang, T. K.

    2015-08-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), the Multiangle Imaging Spectroradiometer (MISR) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provide validated aerosol optical depth (AOD) products over both land and ocean. However, the values of the AOD provided by each of these satellites may show spatial and temporal differences due to the instrument characteristics and aerosol retrieval algorithms used for each instrument. In this article we present a method to produce an AOD data set over Asia for the year 2007 based on fusion of the data provided by different instruments and/or algorithms. First, the bias of each satellite-derived AOD product was calculated by comparison with ground-based AOD data derived from the AErosol RObotic NETwork (AERONET) and the China Aerosol Remote Sensing NETwork (CARSNET) for different values of the surface albedo and the AOD. Then, these multiple AOD products were combined using the maximum likelihood estimate (MLE) method using weights derived from the root mean square error (RMSE) associated with the accuracies of the original AOD products. The original and merged AOD dataset has been validated by comparison with AOD data from the CARSNET. Results show that the mean bias error (MBE) and mean absolute error (MAE) of the merged AOD dataset are not larger than that of any of the original AOD products. In addition, for the merged AOD dataset the fraction of pixels with no data is significantly smaller than that of any of the original products, thus increasing the spatial coverage. The fraction of retrievable area is about 50% for the merged AOD dataset and between 5% and 20% for the MISR, SeaWiFS, MODIS-DT and MODIS-DB algorithms.

  19. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  20. Assessment of OMI near-UV aerosol optical depth over Central and East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhao; Gu, Xingfa; Xu, Hui; Yu, Tao; Zheng, Fengjie

    2016-01-01

    Several essential improvements have been made in recent Ozone Monitoring Instrument (OMI) near-ultraviolet (UV) aerosol retrieval algorithm version (OMAERUV version 1.4.2), but few regional validations for its aerosol optical depth (AOD) product are conducted. This paper assessed the OMAERUV AOD product over Central and East Asia. The OMAERUV Level 2.0 AOD product was compared with Aerosol Robotic Network (AERONET) Level 2.0 direct Sun AOD measurement over 10 years (2005-2014) at 27 selected AERONET sites. A combined comparison of OMAERUV-AERONET AOD at 25 (2) sites was carried out and yielded correlation coefficient (ρ) of 0.63 (0.77), slope of 0.53 (0.57), y intercept of 0.18 (0.13), and 50.71% (57.24%) OMAERUV AOD fall within the expected uncertainty boundary (larger by 0.1 or ±30%) at 380 nm (440 nm). The more accurate (ρ > 0.70) OMAERUV retrievals are reported over eastern and northern China and South Korea. The two primary reasons for the underestimation of OMAERUV AOD over China are as follows: (1) the use of single-channel (388 nm) retrieval method retrieves scattering AOD and not total AOD, and (2) the spectral dependence of the imaginary part of the refractive index in the near-UV region assumed in the algorithm may not be representative of aerosols found over China. The comparisons for three predominant aerosol types indicate that smoke aerosol exhibits the best performance, followed by dust and nonabsorbing aerosol. It is consistent with the characteristic of near-UV wavelength that it is more sensitive to absorbent particles. The comprehensive yearly (2005-2014) comparison at 25 sites and comparison between two periods (2005-2006 and 2009-2014) at selected four sites show no discernible decrease of temporal trend, which indicates that the OMAERUV algorithm successfully maintains its quality of aerosol product despite post-2008 row anomaly instrument problem.

  1. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006.

    SciTech Connect

    Streets, D. G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C.; Decision and Information Sciences; Univ. of Illinois; NASA; Cornell Univ.; Forschungszentrum; Inst.for Atmospheric and Climate Science; Tsinghua Univ.

    2009-07-28

    Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (<1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period.

  2. Characteristics of atmospheric aerosol optical depth variation in China during 1993-2012

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Qiu, Jinhuan; Xia, Xiangao; Sun, Ling; Min, Min

    2015-10-01

    The long-term variations of atmospheric aerosol optical depth (AOD) over 14 first-class solar radiation stations in China during 1993-2012 are studied. The AOD at 750 nm wavelength is retrieved with the hourly accumulated direct solar radiation by using a broadband extinction method. The retrievals are validated in comparison with AERONET (Aerosol Robotic Network) and MODIS (Moderate Resolution Imaging Spectroradiometer) AOD products. For the comparison with AERONET, the correlation coefficient (R), mean bias error (MBE) and root mean square error (RMSE) of the monthly mean AODs are respectively 0.848, 0.029 and 0.101. Based on the statistical analysis, the monthly, seasonal and annual AOD variation characteristics are categorized as follow: (1) There are three major types of the seasonal AOD variations, which shows the largest seasonal averaged AOD appearing in spring, summer and winter. The smallest seasonal averaged AOD appears mostly in autumn. (2) Beijing and Guangzhou show a significant decreasing trend of the yearly AOD, while an increasing tendency appears in Zhengzhou, Shanghai, Kunming, Kashi and Wuhan. Although no significant variation trends are found, some fluctuations appear in the 20-year period in other cities. (3) The 20-year mean AOD ranges from 0.135 (Lhasa) to 0.678 (Zhengzhou). The aerosol hygroscopic growth contributes a lot to AOD in major cities in the eastern part of China, while not in most cities in the western part. A simple correction method is applied for enhancing the relationship of AOD and PM2.5 concentration.

  3. Spatiotemporal fusion of multiple-satellite aerosol optical depth (AOD) products using Bayesian maximum entropy method

    NASA Astrophysics Data System (ADS)

    Tang, Qingxin; Bo, Yanchen; Zhu, Yuxin

    2016-04-01

    Merging multisensor aerosol optical depth (AOD) products is an effective way to produce more spatiotemporally complete and accurate AOD products. A spatiotemporal statistical data fusion framework based on a Bayesian maximum entropy (BME) method was developed for merging satellite AOD products in East Asia. The advantages of the presented merging framework are that it not only utilizes the spatiotemporal autocorrelations but also explicitly incorporates the uncertainties of the AOD products being merged. The satellite AOD products used for merging are the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Level-2 AOD products (MOD04_L2) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Deep Blue Level 2 AOD products (SWDB_L2). The results show that the average completeness of the merged AOD data is 95.2%,which is significantly superior to the completeness of MOD04_L2 (22.9%) and SWDB_L2 (20.2%). By comparing the merged AOD to the Aerosol Robotic Network AOD records, the results show that the correlation coefficient (0.75), root-mean-square error (0.29), and mean bias (0.068) of the merged AOD are close to those (the correlation coefficient (0.82), root-mean-square error (0.19), and mean bias (0.059)) of the MODIS AOD. In the regions where both MODIS and SeaWiFS have valid observations, the accuracy of the merged AOD is higher than those of MODIS and SeaWiFS AODs. Even in regions where both MODIS and SeaWiFS AODs are missing, the accuracy of the merged AOD is also close to the accuracy of the regions where both MODIS and SeaWiFS have valid observations.

  4. Assessment of satellite-based aerosol optical depth using continuous lidar observation

    NASA Astrophysics Data System (ADS)

    Lin, C. Q.; Li, C. C.; Lau, A. K. H.; Yuan, Z. B.; Lu, X. C.; Tse, K. T.; Fung, J. C. H.; Li, Y.; Yao, T.; Su, L.; Li, Z. Y.; Zhang, Y. Q.

    2016-09-01

    Due to a reliance on solar radiation, the aerosol optical depth (AOD) is observed only during the day by passive satellite-based instruments such as the MODerate resolution Imaging Spectroradiometer (MODIS). Research on urban air quality, atmospheric turbidity, and evolution of aerosols in the atmospheric boundary layer, however, requires 24-h measurement of aerosols. A lidar system is capable of detecting the vertical distribution of the aerosol extinction coefficient and calculating the AOD throughout the day, but routinely lidar observation is still quite limited and the results from MODIS and lidar sometimes are contradictory in China. In this study, long-term lidar observations from 2005 to 2009 over Hong Kong were analyzed with a focus on identification of the reasons for different seasonal variation in the AOD data obtained from MODIS and lidar. The lidar-retrieved AOD shows the lowest average level, but has the most significant diurnal variation during the summer. When considering only a 5-h period between 10:00 a.m. and 3:00 p.m. local time to match satellite passages, the average of the lidar-retrieved AOD doubles during the summer and exceeds that during the winter. This finding is consistent with the MODIS observation of a higher AOD during the summer and a lower AOD during the winter. The increase in the aerosol extinction coefficient in the upper level of the mixing layer makes the greatest contribution to the increase in the AOD at midday during the summer. These assessments suggest that large over-estimation may occur when long-term averages of AOD are estimated from passive satellite observations.

  5. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina.

    PubMed

    An, Lin; Shen, Tueng T; Wang, Ruikang K

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm(2) with single scan and 7 × 8 mm(2) for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm(2) with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration. PMID:22029360

  6. Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina

    NASA Astrophysics Data System (ADS)

    An, Lin; Shen, Tueng T.; Wang, Ruikang K.

    2011-10-01

    This paper presents comprehensive and depth-resolved retinal microvasculature images within human retina achieved by a newly developed ultrahigh sensitive optical microangiography (UHS-OMAG) system. Due to its high flow sensitivity, UHS-OMAG is much more sensitive to tissue motion due to the involuntary movement of the human eye and head compared to the traditional OMAG system. To mitigate these motion artifacts on final imaging results, we propose a new phase compensation algorithm in which the traditional phase-compensation algorithm is repeatedly used to efficiently minimize the motion artifacts. Comparatively, this new algorithm demonstrates at least 8 to 25 times higher motion tolerability, critical for the UHS-OMAG system to achieve retinal microvasculature images with high quality. Furthermore, the new UHS-OMAG system employs a high speed line scan CMOS camera (240 kHz A-line scan rate) to capture 500 A-lines for one B-frame at a 400 Hz frame rate. With this system, we performed a series of in vivo experiments to visualize the retinal microvasculature in humans. Two featured imaging protocols are utilized. The first is of the low lateral resolution (16 μm) and a wide field of view (4 × 3 mm2 with single scan and 7 × 8 mm2 for multiple scans), while the second is of the high lateral resolution (5 μm) and a narrow field of view (1.5 × 1.2 mm2 with single scan). The great imaging performance delivered by our system suggests that UHS-OMAG can be a promising noninvasive alternative to the current clinical retinal microvasculature imaging techniques for the diagnosis of eye diseases with significant vascular involvement, such as diabetic retinopathy and age-related macular degeneration.

  7. Performance of a FieldSpec spectroradiometer for aerosol optical depth retrieval: method and preliminary results.

    PubMed

    Bassani, Cristiana; Estellés, Víctor; Campanelli, Monica; Cavalli, Rosa Maria; Martínez-Lozano, José Antonio

    2009-04-10

    The performance of a FieldSpec spectroradiometer for retrieving aerosol optical depth (AOD) has been assessed after modifying its basic configuration in order to measure direct solar irradiance at ground level. The FieldSpec measurements were obtained during four summertime days in the years 2004 and 2005, over a Spanish agricultural site in Barrax, Albacete (30 degrees 3(') N, 2 degrees 6(') W, 700 m a.s.l.), in the framework of two European Space Agency mission remote sensing field campaigns. From the whole FieldSpec spectral domain (350-2500 nm) the AOD was extracted for channels within atmospheric windows. The instrument was calibrated by means of the standard Langley plot method, performed at a high mountain site in Italy. The AOD retrieved by the FieldSpec has been validated by comparison with the AOD obtained from a colocated CIMEL CE318 Sun photometer. The FieldSpec AOD spectra were convoluted with the CE318 filter transmission functions in order to make both datasets comparable. Our results show that both datasets are very similar (R(2) around 0.9) for all the channels from the CE318, with an average deviation of about 0.02. The temporal evolution of the AOD was accurately monitored by the FieldSpec under different atmospheric conditions, as was the case for a previously reported mineral dust intrusion. As a conclusion, the comparison performed in this study shows that the FieldSpec spectroradiometer is a suitable instrument for retrieving the AOD in different atmospheric situations. PMID:19363533

  8. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring. PMID:26969552

  9. Comparing the relationships between aerosol optical depth and cloud properties in observations and global models

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes

    2016-04-01

    Aerosols impact the climate both directly, through their interaction with radiation and indirectly, via their ability to act as cloud condensation nuclei (CCN), modifying cloud properties. The influence of aerosols on cloud properties is highly uncertain. Many relationships between aerosol optical depth (AOD) and cloud properties have been observed using satellite data, but previous work has shown that some of these relationships are the product of the strong AOD-cloud fraction (CF) relationship. The confounding influence of local meteorology obscures the magnitude of any aerosol impact on CF, and so also the impact of aerosol on other cloud properties. For example, both AOD and CF are strongly influenced by relative humidity, which can generate a correlation between them. Previous studies have used reanalysis data to account for confounding meteorological variables. This requires knowledge of the relevant meteorological variables and is limited by the accuracy of the reanalysis data. Recent work has shown that by using the cloud droplet number concentration (CDNC) to mediate the AOD-CF relationship, the impact of relative humidity can be significantly reduced. This method removes the limitations imposed by the finite accuracy of reanalysis data. In this work we investigate the impact of the CDNC mediation on the AOD-CF relationship and on the relationship between AOD and other cloud properties in global atmospheric models. By comparing pre-industrial and present day runs, we investigate the success of the CDNC mediated AOD-CF relationship to predict the change in CF from the pre-industrial to the present day using only observations of the present day relationships between clouds and aerosol properties. This helps to determine whether the satellite-derived relationship provides a constraint on the aerosol indirect forcing due to changes in CF.

  10. Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008

    SciTech Connect

    Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

    2010-04-01

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  11. Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008

    SciTech Connect

    Michalsky, Joseph; Denn, Frederick; Flynn, Connor; Hodges, Gary; Kiedron, Piotr; Koontz, Annette; Schlemmer, James; Schwartz, Stephen E.

    2010-04-13

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  12. Comparison of single-channel and multichannel aerosol optical depths derived from MAPSS data

    NASA Astrophysics Data System (ADS)

    Laszlo, Istvan; Liu, Hongqing; Ignatov, Alexander

    2008-10-01

    Previous comparisons of the single-channel and multichannel aerosol products reported in the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) data sets showed systematic differences that were partly attributed to differences in sampling and cloud screening. This study concentrates on quantifying the aerosol optical depth (AOD) differences when the above differences are absent and exactly the same clear radiances are inputted to the aerosol algorithms used to generate the two products. This is accomplished by retrieving AOD with the single-channel algorithm at 22 oceanic locations from the reflectance data in the Moderate Resolution Imaging Spectroradiometer (MODIS) Atmosphere Parameters Subset Statistics (MAPSS) data set for the period of 2000-2007 and then by comparing them to the corresponding MODIS AOD data reported in MAPSS. Comparisons of AODs are performed for two MODIS instruments flown onboard the Terra and Aqua platforms at two wavelengths. On average, the mean differences are wavelength and platform dependent. The single-channel 644-nm AODs are larger by 0.004-0.015 (˜2-9%) than those from the multichannel algorithm. The mean AOD at 1632 nm from both algorithms are very similar from Terra, but the single-channel AOD from Aqua at 2119 nm is lower by 0.02 (˜24%). The mean absolute differences are 0.022-0.025 and do not change much with wavelength or platform. Slight dependence of the mean differences on the scattering angle is observed, which is partially explained by the differences between the retrieved aerosol model in the multichannel retrieval and the fixed aerosol model used in the single-channel algorithm.

  13. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling

    PubMed Central

    Chang, Howard H.; Hu, Xuefei; Liu, Yang

    2014-01-01

    There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial–temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003–2005. Via cross-validation experiments, our model had an out-of-sample prediction R2 of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m3 between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial–temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined. PMID:24368510

  14. Calibrating MODIS aerosol optical depth for predicting daily PM2.5 concentrations via statistical downscaling.

    PubMed

    Chang, Howard H; Hu, Xuefei; Liu, Yang

    2014-07-01

    There has been a growing interest in the use of satellite-retrieved aerosol optical depth (AOD) to estimate ambient concentrations of PM2.5 (particulate matter <2.5 μm in aerodynamic diameter). With their broad spatial coverage, satellite data can increase the spatial-temporal availability of air quality data beyond ground monitoring measurements and potentially improve exposure assessment for population-based health studies. This paper describes a statistical downscaling approach that brings together (1) recent advances in PM2.5 land use regression models utilizing AOD and (2) statistical data fusion techniques for combining air quality data sets that have different spatial resolutions. Statistical downscaling assumes the associations between AOD and PM2.5 concentrations to be spatially and temporally dependent and offers two key advantages. First, it enables us to use gridded AOD data to predict PM2.5 concentrations at spatial point locations. Second, the unified hierarchical framework provides straightforward uncertainty quantification in the predicted PM2.5 concentrations. The proposed methodology is applied to a data set of daily AOD values in southeastern United States during the period 2003-2005. Via cross-validation experiments, our model had an out-of-sample prediction R(2) of 0.78 and a root mean-squared error (RMSE) of 3.61 μg/m(3) between observed and predicted daily PM2.5 concentrations. This corresponds to a 10% decrease in RMSE compared with the same land use regression model without AOD as a predictor. Prediction performances of spatial-temporal interpolations to locations and on days without monitoring PM2.5 measurements were also examined. PMID:24368510

  15. Creating a consistent dark-target aerosol optical depth record from MODIS and VIIRS

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Mattoo, S.; Munchak, L. A.; Patadia, F.; Holz, R.

    2014-12-01

    To answer fundamental questions about our changing climate, we must quantify how aerosols are changing over time. This is a global question that requires regional characterization, because in some places aerosols are increasing and in others they are decreasing. Although NASA's Moderate resolution Imaging Spectrometer (MODIS) sensors have provided quantitative information about global aerosol optical depth (AOD) for more than a decade, the creation of an aerosol climate data record (CDR) requires consistent multi-decadal data. With the Visible and Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi-NPP, there is potential to continue the MODIS aerosol time series. Yet, since the operational VIIRS aerosol product is produced by a different algorithm, it is not suitable to continue MODIS to create an aerosol CDR. Therefore, we have applied the MODIS Dark-target (DT) algorithm to VIIRS observations, taking into account the slight differences in wavelengths, resolutions and geometries between the two sensors. More specifically, we applied the MODIS DT algorithm to a dataset known as the Intermediate File Format (IFF), created by the University of Wisconsin. The IFF is produced for both MODIS and VIIRS, with the idea that a single (MODIS-like or ML) algorithm can be run either dataset, which can in turn be compared to the MODIS Collection 6 (M6) retrieval that is run on standard MODIS data. After minimizing or characterizing remaining differences between ML on MODIS-IFF (or ML-M) and M6, we have performed apples-to-apples comparison between ML-M and ML on VIIRS IFF (ML-V). Examples of these comparisons include time series of monthly global mean, monthly and seasonal global maps at 1° resolution, and collocations as compared to AERONET. We concentrate on the overlapping period January 2012 through June 2014, and discuss some of the remaining discrepancies between the ML-V and ML-M datasets.

  16. Depth-resolved Optical Imaging and Microscopy of Vascular Compartment Dynamics During Somatosensory Stimulation

    PubMed Central

    Hillman, Elizabeth M. C.; Devor, Anna; Bouchard, Matthew; Dunn, Andrew K.; Krauss, GW; Skoch, Jesse; Bacskai, Brian J.; Dale, Anders M.; Boas, David A.

    2007-01-01

    The cortical hemodynamic response to somatosensory stimulus is investigated at the level of individual vascular compartments using both depth-resolved optical imaging and in-vivo two-photon microscopy. We utilize a new imaging and spatiotemporal analysis approach that exploits the different characteristic dynamics of responding arteries, arterioles, capillaries and veins to isolate their three-dimensional spatial extent within the cortex. This spatial delineation is validated using vascular casts. Temporal delineation is supported by in-vivo two-photon microscopy of the temporal dynamics and vascular mechanisms of the arteriolar and venous responses. Using these techniques we have been able to characterize the roles of the different vascular compartments in generating and controlling the hemodynamic response to somatosensory stimulus. We find that changes in arteriolar total hemoglobin concentration agree well with arteriolar dilation dynamics, which in turn correspond closely with changes in venous blood flow. For four-second stimuli, we see only small changes in venous hemoglobin concentration, and do not detect measurable dilation or ballooning in the veins. Instead, we see significant evidence of capillary hyperemia. We compare our findings to historical observations of the composite hemodynamic response from other modalities including functional magnetic resonance imaging. Implications of our results are discussed with respect to mathematical models of cortical hemodynamics, and to current theories on the mechanisms underlying neurovascular coupling. We also conclude that our spatiotemporal analysis approach is capable of isolating and localizing signals from the capillary bed local to neuronal activation, and holds promise for improving the specificity of other hemodynamic imaging modalities. PMID:17222567

  17. Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study

    SciTech Connect

    Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

    2008-02-21

    Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a gene