Science.gov

Sample records for optical devices ldrd

  1. Chiral multichromic single crystals for optical devices (LDRD 99406).

    SciTech Connect

    Kemp, Richard Alan; Felix, Ana M. (University of New Mexico, Albuquerque, NM)

    2006-12-01

    This report summarizes our findings during the study of a novel system that yields multi-colored materials as products. This system is quite unusual as it leads to multi-chromic behavior in single crystals, where one would expect that only a single color would exist. We have speculated that these novel solids might play a role in materials applications such as non-linear optics, liquid crystal displays, piezoelectric devices, and other similar applications. The system examined consisted of a main-group alkyl compound (a p block element such as gallium or aluminum) complexed with various organic di-imines. The di-imines had substituents of two types--either alkyl or aromatic groups attached to the nitrogen atoms. We observed that single crystals, characterized by X-ray crystallography, were obtained in most cases. Our research during January-July, 2006, was geared towards understanding the factors leading to the multi-chromic nature of the complexes. The main possibilities put forth initially considered (a) the chiral nature of the main group metal, (b) possible reduction of the metal to a lower-valent, radical state, (c) the nature of the ligand(s) attached to the main group metal, and (d) possible degradation products of the ligand leading to highly-colored products. The work carried out indicates that the most likely explanation considered involves degradation of the aromatic ligands (a combination of (c) and (d)), as the experiments performed can clearly rule out (a) and (b).

  2. Final report on LDRD project : advanced optical trigger systems.

    SciTech Connect

    Roose, Lars D.; Hadley, G. Ronald; Mar, Alan; Serkland, Darwin Keith; Geib, Kent Martin; Sullivan, Charles Thomas; Keeler, Gordon Arthur; Bauer, Thomas M.; Peake, Gregory Merwin; Loubriel, Guillermo Manuel; Montano, Victoria A.

    2008-09-01

    are difficult to scale and manufacture with the required uniformity. As a promising alternative to multiple discrete edge-emitting lasers, a single wafer of vertical-cavity surface-emitting lasers (VCSELs) can be lithographically patterned to achieve the desired layout of parallel line-shaped emitters, in which adjacent lasers utilize identical semiconductor material and thereby achieve a degree of intrinsic optical uniformity. Under this LDRD project, we have fabricated arrays of uncoupled circular-aperture VCSELs to approximate a line-shaped illumination pattern, achieving optical fill factors ranging from 2% to 30%. We have applied these VCSEL arrays to demonstrate single and dual parallel line-filament triggering of PCSS devices. Moreover, we have developed a better understanding of the illumination requirements for stable triggering of multiple-filament PCSS devices using VCSEL arrays. We have found that reliable triggering of multiple filaments requires matching of the turn-on time of adjacent VCSEL line-shaped-arrays to within approximately 1 ns. Additionally, we discovered that reliable triggering of PCSS devices at low voltages requires more optical power than we obtained with our first generation of VCSEL arrays. A second generation of higher-power VCSEL arrays was designed and fabricated at the end of this LDRD project, and testing with PCSS devices is currently underway (as of September 2008).

  3. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    SciTech Connect

    Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick; Jones, Eric Daniel; Cich, Michael Joseph; Allerman, Andrew Alan; Peake, Gregory Merwin

    2003-12-01

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

  4. Optical devices

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  5. 4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report.

    SciTech Connect

    Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines

    2010-10-01

    Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

  6. Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

    SciTech Connect

    SERKLAND, DARWIN K.; GEIB, KENT M.; BLANSETT, ETHAN L.; KARPEN, GARY D.; PEAKE, GREGORY M.; HARGETT, TERRY; MONTANO, VICTORIA; SULLIVAN, CHARLES T.; ALLERMAN, ANDREW A.; RIENSTRA, JEFFREY L.

    2003-04-01

    This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

  7. Eyeglass Large Aperture, Lightweight Space Optics FY2000 - FY2002 LDRD Strategic Initiative

    SciTech Connect

    Hyde, R

    2003-02-10

    differences in their requirements and implementations, the fundamental difficulty in utilizing large aperture optics is the same for all of these applications: It is extremely difficult to design large aperture space optics which are both optically precise and can meet the practical requirements for launch and deployment in space. At LLNL we have developed a new concept (Eyeglass) which uses large diffractive optics to solve both of these difficulties; greatly reducing both the mass and the tolerance requirements for large aperture optics. During previous LDRD-supported research, we developed this concept, built and tested broadband diffractive telescopes, and built 50 cm aperture diffraction-limited diffractive lenses (the largest in the world). This work is fully described in UCRL-ID-136262, Eyeglass: A Large Aperture Space Telescope. However, there is a large gap between optical proof-of-principle with sub-meter apertures, and actual 50 meter space telescopes. This gap is far too large (both in financial resources and in spacecraft expertise) to be filled internally at LLNL; implementation of large aperture diffractive space telescopes must be done externally using non-LLNL resources and expertise. While LLNL will never become the primary contractor and integrator for large space optical systems, our natural role is to enable these devices by developing the capability of producing very large diffractive optics. Accordingly, the purpose of the Large Aperture, Lightweight Space Optics Strategic Initiative was to develop the technology to fabricate large, lightweight diffractive lenses. The additional purpose of this Strategic Initiative was, of course, to demonstrate this lens-fabrication capability in a fashion compellingly enough to attract the external support necessary to continue along the path to full-scale space-based telescopes. During this 3 year effort (FY2000-FY2002) we have developed the capability of optically smoothing and diffractively-patterning thin meter

  8. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  9. Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

    SciTech Connect

    Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

    2005-04-01

    The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Optical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.

  12. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  13. Fiber optic monitoring device

    SciTech Connect

    Samborsky, J.K.

    1992-12-31

    This invention is comprised of a device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  14. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  15. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  16. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  17. Superlattice optical device

    DOEpatents

    Biefeld, Robert M.; Fritz, Ian J.; Gourley, Paul L.; Osbourn, Gordon C.

    1986-01-01

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  18. Superlattice optical device

    DOEpatents

    Biefeld, R.M.; Fritz, I.J.; Gourley, P.L.; Osbourn, G.C.

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  19. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  20. LDRD final report on Si nanocrystal as device prototype for spintronics applications.

    SciTech Connect

    Carroll, Malcolm S.; Verley, Jason C.; Pan, Wei; Banks, James Clifford; Brewer, Luke N.; Sheng, Josephine Juin-Jye; Barton, Daniel Lee; Dunn, Roberto G.

    2006-11-01

    The silicon microelectronics industry is the technological driver of modern society. The whole industry is built upon one major invention--the solid-state transistor. It has become clear that the conventional transistor technology is approaching its limitations. Recent years have seen the advent of magnetoelectronics and spintronics with combined magnetism and solid state electronics via spin-dependent transport process. In these novel devices, both charge and spin degree freedoms can be manipulated by external means. This leads to novel electronic functionalities that will greatly enhance the speed of information processing and memory storage density. The challenge lying ahead is to understand the new device physics, and control magnetic phenomena at nanometer length scales and in reduced dimensions. To meet this goal, we proposed the silicon nanocrystal system, because: (1) It is compatible with existing silicon fabrication technologies; (2) It has shown strong quantum confinement effects, which can modify the electric and optical properties through directly modifying the band structure; and (3) the spin-orbital coupling in silicon is very small, and for isotopic pure {sup 28}Si, the nuclear spin is zero. These will help to reduce the spin-decoherence channels. In the past fiscal year, we have studied the growth mechanism of silicon-nanocrystals embedded in silicon dioxide, their photoluminescence properties, and the Si-nanocrystal's magnetic properties in the presence of Mn-ion doping. Our results may demonstrate the first evidence of possible ferromagnetic orders in Mn-ion implanted silicon nanocrystals, which can lead to ultra-fast information process and ultra-dense magnetic memory applications.

  1. Lessons Learned on X-ray Optics Fabrication: Work completed as part of the "Advancing the Technology R&D of Tabletop Mesoscale Nondestructive Characterization" LDRD

    SciTech Connect

    Pivovaroff, M J; Nederbragt, W W; Martz, H E

    2004-11-24

    A Wolter X-ray optic was the central component of the microscope envisioned to fulfill the imaging requirements of the Characterization SI. After encountering many difficulties and delays, an optic was finally produced that, unfortunately, only partially met its specifications. With the SI halted, and efforts underway to reformulate a LDRD program to support fabrication of X-ray optics, it is useful to examine the previous effort and compile a list of lessons learned during the research.

  2. [INVITED] Optical microfibre devices

    NASA Astrophysics Data System (ADS)

    Brambilla, G.

    2016-04-01

    In the last decade optical fibre tapers with micrometre diameter (often called microfibers) have been investigated for numerous applications ranging from sensing to wavelength convertors, telecom and optical manipulation. This paper reviews the various applications of microfibres.

  3. Optical device for straightness measurement

    NASA Astrophysics Data System (ADS)

    Vekteris, Vladas; Jurevicius, Mindaugas; Turla, Vytautas

    2015-11-01

    The present paper describes the research of the optical device for two-dimensional straightness measurement of technological machines. Mathematical study of an optical device, operating on the phase principle and measuring transversal displacements of machine parts in two directions ( X and Y) during their linear longitudinal motion in a machine (alongside the Z axis), is presented. How to estimate the range of travel along the Z axis is analytically shown. At this range, the measurer gives correct measurements of transverse displacement. The necessary distance from the objective focus to the image plane was defined mathematically. The sample results of measuring the displacement of the table of a technological machine by using the optical device are presented in the paper. This optical device for non-contact straightness measurement can be used for measurement straightness in turning, milling, drilling, grinding machines and other technological machines, also in geodesy and cartography, and for moving accuracy testing of mechatronic devices, robotics and others.

  4. Electrochromic optical switching device

    DOEpatents

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  5. Electrochromic optical switching device

    DOEpatents

    Lampert, Carl M.; Visco, Steven J.

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  6. Integrated optic waveguide devices

    NASA Technical Reports Server (NTRS)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  7. Designed supramolecular assemblies for biosensors and photoactive devices. LDRD final report

    SciTech Connect

    Song, X.Z.; Shelnutt, J.A.; Hobbs, J.D.; Cesarano, J.

    1997-02-01

    The objective of this project is the development of a new class of supramolecular assemblies for applications in biosensors and biodevices. The supramolecular assemblies are based on membranes and Langmuir-Blodgett (LB) films composed of naturally-occurring or synthetic lipids, which contain electrically and/or photochemically active components. The LB films are deposited onto electrically-active materials (metal, semiconductors). The active components film components (lipo-porphyrins) at the surface function as molecular recognition sites for sensing proteins and other biomolecules, and the porphyrins and other components (e.g., fullerenes) incorporated into the films serve as photocatalysts and vectorial electron-transport agents. Computer-aided molecular design (CAMD) methods are used to tailor the structure of these film components to optimize function. Molecular modeling is also used to predict the location, orientation, and motion of these molecular components within the films. The result is a variety of extended, self-assembled molecular structures that serve as devices for sensing proteins and biochemicals or as other bioelectronic devices.

  8. PLZT optical information storage devices

    SciTech Connect

    Land, C.E.; Schwartz, R.W.; Butler, M.A.; Martin, S.J.

    1990-01-01

    The application of ferroelectric thin films to optical information storage devices depends first on their capability to store optical information, i.e., their intrinsic and/or extrinsic photosensitivities, and then upon some means of detecting and reading the stored optical information with a reasonable signal-to-noise ratio. Based on the method of reading the stored information, the latter capability depends either on the magnitude of the longitudinal electrooptic coefficients or the photocurrent generation efficiency of the films. This paper briefly discusses PZT and PLZT thin film longitudinal electrooptic effects, photosensitivities and photocurrent generation characteristics and some proposed optical information storage devices which will use these properties. 18 refs., 5 figs., 1 tab.

  9. Optical storage device

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1991-01-01

    A new holographic image storage device which uses four-wave mixing in two photorefractive crystals is described. Photorefractive crystals promise information storage densities on the order of 10(exp 9) to 10(exp 12) bits per cubic centimeter at real-time rates. Several studies in recent years have investigated the use of photorefractive crystals for storing holographic image information. However, all of the previous studies have focused on techniques for storing information in a single crystal. The disadvantage of using a single crystal is that the read process is destructive. Researchers have developed techniques for fixing the information in a crystal so that it may be read many times. However, when fixed, the information cannot be readily erased and overwritten with new information. It two photorefractive crystals are used, holographic image information may be stored dynamically. That is, the stored image information may be read out more than once, and it may be easily erased and overwritten with new image information.

  10. Final Report and Documentation for the Optical Backplane/Interconnect for High Speed Communication LDRD

    SciTech Connect

    ROBERTSON, PERRY J.; CHEN, HELEN Y.; BRANDT, JAMES M.; SULLIVAN, CHARLES T.; PIERSON, LYNDON G.; WITZKE, EDWARD L.; GASS, KARL

    2001-03-01

    Current copper backplane technology has reached the technical limits of clock speed and width for systems requiring multiple boards. Currently, bus technology such as VME and PCI (types of buses) will face severe limitations are the bus speed approaches 100 MHz. At this speed, the physical length limit of an unterminated bus is barely three inches. Terminating the bus enables much higher clock rates but at drastically higher power cost. Sandia has developed high bandwidth parallel optical interconnects that can provide over 40 Gbps throughput between circuit boards in a system. Based on Sandia's unique VCSEL (Vertical Cavity Surface Emitting Laser) technology, these devices are compatible with CMOS (Complementary Metal Oxide Semiconductor) chips and have single channel bandwidth in excess of 20 GHz. In this project, we are researching the use of this interconnect scheme as the physical layer of a greater ATM (Asynchronous Transfer Mode) based backplane. There are several advantages to this technology including small board space, lower power and non-contact communication. This technology is also easily expandable to meet future bandwidth requirements in excess of 160 Gbps sometimes referred to as UTOPIA 6. ATM over optical backplane will enable automatic switching of wide high-speed circuits between boards in a system. In the first year we developed integrated VCSELs and receivers, identified fiber ribbon based interconnect scheme and a high level architecture. In the second year, we implemented the physical layer in the form of a PCI computer peripheral card. A description of future work including super computer networking deployment and protocol processing is included.

  11. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  12. Diphenylpolyynes For Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Perry, Joseph W.; Coulter, Daniel R.

    1989-01-01

    Several diphenylpolyyne compounds found to exhibit second-order nonlinear electric susceptibilities and chemical structures conducive to orientation in appropriate chemical environments. These features make new materials suitable for use in optical devices. Diphenylacetylene links give molecules rodlike characteristics making them amenable to orientation by suspension in liquid crystals. New molecules also have inherent liquid-crystalline properties enabling them to be oriented directly.

  13. Integrated optical devices for telecommunications

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyuan

    Integrated optical devices have received a lot of interest in recent years. With electronic devices becoming smaller and smaller, semiconductor industries are facing significantly difficult problems. Photonic devices have unique characteristics which can avoid problems in electronic devices and they can achieve better performance. However, the development of integrated optical devices is needed to realize integrated optical circuits in the future. In this thesis, three aspects of integrated optical devices were studied for telecommunication applications. First, integrated isolators were fabricated. Dry etching and wet etching recipes have been developed for the well-known isolator material, yttrium iron garnet (Y3Fe5O 12), and ridge waveguides were patterned into YIG with different configurations. Integrated polarizers based on 2-D YIG photonic crystals (PCs) were also fabricated using a Focused Ion Beam (FIB). Second, an inexpensive method to fabricate 2-D PCs was developed using anodized aluminum oxide (AAO) as an etch mask. An approach to grow nanopores on top of various films/substrates was found. This approach involved growing aluminum films directly onto the substrate of choice, and then anodizing the film electrochemically. The next step was to use reactive ion etching (RIE) to transfer the newly obtained AAO pattern to the underlying films/substrates, and so make PCs, for example in ordered porous Si. The third project was to simulate 1-D and 2-D tunable electro-optic filters for telecommunications. Interfering thin-film structures were studied with Pb(Mg1/3Nb1/3)O3-PbTiO3(PMN-PT) as a 1-D tunable electro-optic layer. Design rules were developed and the performance of these filters was compared with the requirements in dense wavelength division multiplexing (DWDM). 2-D tunable electro-optic filters were also designed based on 2-D photonic crystals and Fabry-Perot structures. The design flow was demonstrated and some results were elaborated. These three

  14. Fiber-Optic Communication Technology Branching Devices

    NASA Astrophysics Data System (ADS)

    Williams, J. C.

    1985-02-01

    This tutorial review of fiber-optic branching devices covers example uses of branching devices, device types, device-performance characteristics, examples of current technology, and system-design methodology. The discussion is limited to passive single- and multimode devices fabricated from optical fibers or graded-index components. Integrated-optic, wavelength-division-multiplexing, and polarization-selective devices are not specifically addressed.

  15. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    SciTech Connect

    Coker, Eric Nicholas; Haddad, Raid Edward; Fan, Hongyou; Ta, Anh; Bai, Feng; Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  16. Optical Structural Health Monitoring Device

    NASA Technical Reports Server (NTRS)

    Buckner, Benjamin D.; Markov, Vladimir; Earthman, James C.

    2010-01-01

    This non-destructive, optical fatigue detection and monitoring system relies on a small and unobtrusive light-scattering sensor that is installed on a component at the beginning of its life in order to periodically scan the component in situ. The method involves using a laser beam to scan the surface of the monitored component. The device scans a laser spot over a metal surface to which it is attached. As the laser beam scans the surface, disruptions in the surface cause increases in scattered light intensity. As the disruptions in the surface grow, they will cause the light to scatter more. Over time, the scattering intensities over the scanned line can be compared to detect changes in the metal surface to find cracks, crack precursors, or corrosion. This periodic monitoring of the surface can be used to indicate the degree of fatigue damage on a component and allow one to predict the remaining life and/or incipient mechanical failure of the monitored component. This wireless, compact device can operate for long periods under its own battery power and could one day use harvested power. The prototype device uses the popular open-source TinyOS operating system on an off-the-shelf Mica2 sensor mote, which allows wireless command and control through dynamically reconfigurable multi-node sensor networks. The small size and long life of this device could make it possible for the nodes to be installed and left in place over the course of years, and with wireless communication, data can be extracted from the nodes by operators without physical access to the devices. While a prototype has been demonstrated at the time of this reporting, further work is required in the system s development to take this technology into the field, especially to improve its power management and ruggedness. It should be possible to reduce the size and sensitivity as well. Establishment of better prognostic methods based on these data is also needed. The increase of surface roughness with

  17. Electro-optic component mounting device

    DOEpatents

    Gruchalla, Michael E.

    1994-01-01

    A technique is provided for integrally mounting a device such as an electro-optic device (50) in a transmission line to avoid series resonant effects. A center conductor (52) of the transmission line has an aperture (58) formed therein for receiving the device (50). The aperture (58) splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface (54), which is spaced apart from the center conductor with a dielectric material (56). One set of electrodes formed on the surface of the electro-optic device (50) is directly connected to the center conductor 52 and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface (54). The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage ( 60) formed therein for passage of optical signals to an electro-optic device.

  18. Electro-optic component mounting device

    DOEpatents

    Gruchalla, M.E.

    1994-09-13

    A technique is provided for integrally mounting a device such as an electro-optic device in a transmission line to avoid series resonant effects. A center conductor of the transmission line has an aperture formed therein for receiving the device. The aperture splits the center conductor into two parallel sections on opposite sides of the device. For a waveguide application, the center conductor is surrounded by a conductive ground surface which is spaced apart from the center conductor with a dielectric material. One set of electrodes formed on the surface of the electro-optic device is directly connected to the center conductor and an electrode formed on the surface of the electro-optic device is directly connected to the conductive ground surface. The electrodes formed on the surface of the electro-optic device are formed on curved sections of the surface of the device to mate with correspondingly shaped electrodes on the conductor and ground surface to provide a uniform electric field across the electro-optic device. The center conductor includes a passage formed therein for passage of optical signals to an electro-optic device. 10 figs.

  19. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  20. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  1. Electro-optic KTN Devices

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Fujiura, Kazuo

    We have grown KTN crystals with optical quality, and developed high-speed beam deflectors and variable focal length lenses based on KTN's large electro-optic effect. Furthermore, by using the KTN beam deflectors, we have developed a swept light source for OCT operable at 200 kHz.

  2. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  3. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  4. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  5. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2008-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  6. Thin, nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth (Inventor); Hughes, Eli (Inventor)

    2007-01-01

    A thin, nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  7. Thin nearly wireless adaptive optical device

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J. (Inventor); Hughes, Eli (Inventor)

    2009-01-01

    A thin nearly wireless adaptive optical device capable of dynamically modulating the shape of a mirror in real time to compensate for atmospheric distortions and/or variations along an optical material is provided. The device includes an optical layer, a substrate, at least one electronic circuit layer with nearly wireless architecture, an array of actuators, power electronic switches, a reactive force element, and a digital controller. Actuators are aligned so that each axis of expansion and contraction intersects both substrate and reactive force element. Electronics layer with nearly wireless architecture, power electronic switches, and digital controller are provided within a thin-film substrate. The size and weight of the adaptive optical device is solely dominated by the size of the actuator elements rather than by the power distribution system.

  8. Electromechanical control of flat optical devices

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Capasso, Federico; Lopez, Daniel

    In the recent times flat optical elements, like lenses and beam deflectors, have come to the forefront of scientific research. These devices, also referred to as ``metasurfaces'', use metal or dielectric resonators, arbitrarily spaced with subwavelength resolution on a two dimensional plane, to mimic the phase profile of any conventional bulk optical device and beyond. Such metasurface-based planar devices are compact and lightweight compared to their conventional bulky counterparts. However, most of these nanostructured devices have so far been passive. In this work we introduce an important concept of actively controlling these flat optical devices. A prototype: an electromechanically controlled plasmonic flat lens focusing mid infrared signal in reflection will be presented. The lens is fabricated on a 2.8 micron thin membrane following photolithography processes and integrated with a micro electromechanical system (MEMS) device. When electrostatically actuated, the MEMS platform controls the mechanical tilt angle of the lens along two orthogonal axes by about 16 degrees that in turn controls the scanning of the focal spot. Such actively controlled miniaturized optical devices promise to provide faster, more efficient and often enhanced functionalities.

  9. Photonic processing with polylithic integrated optical devices

    NASA Astrophysics Data System (ADS)

    Bechtel, James H.; Morrison, Charles B.; Shi, Yongqiang

    1998-07-01

    Recent developments in nonlinear optical polymer materials and devices combined with epitaxial liftoff (ELO) and grafting of semiconductor materials are leading to dramatic new possibilities in devices for photonic signal processing. For example, the development of new device architectures is leading to electro-optic modulators that have halfwave voltages of approximately 1V. Applications include very large bandwidth (greater than 100 GHz) electro-optic modulators and high speed (less than 1 ns) switches for programmable optical delay lines for use in phased array systems. Also, with the increase in operating frequency and angular scan resolution, the delay length accuracy can reach magnitudes of micrometers for millimeter wave frequencies. With micro fabrication methods, integrated delay line/switch networks can achieve superior delay performance with a single integrated optic chip that is compact, light weight, and has low optical insertion loss. The use of ELO allows electronic device driver circuits to be integrated with the polymer chip to provide further miniaturization. Also, ELO methods can be used to fabricate very high speed metal-semiconductor-metal (MSM) photodetectors for optical signal detection and monitoring. Here ELO methods can find applications in the fabrication of multispectral detectors and focal plane arrays. Yet other applications include very high speed analog-to-digital converters.

  10. Optically transduced MEMS gyro device

    SciTech Connect

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  11. Plasma channel optical pumping device and method

    DOEpatents

    Judd, O'Dean P.

    1983-06-28

    A device and method for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device.

  12. Plasma channel optical pumping device and method

    DOEpatents

    Judd, O.P.

    1983-06-28

    A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.

  13. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  14. DIMENSION MEASURING OPTICAL SIGHTING DEVICE

    DOEpatents

    Kerr, G.E.

    1959-08-01

    A sighting device to check the uniformity of thickness of a lining applied to a container is presented. The sighting devlce comprises two tubular members having their ends in threaded connection with one another and a lens lying within the outer end of one of the tubular members. A ground glass inscribed with two concentric circles is located at the outer end of the other tubular section so that the image of the circular junctures, with and without the lining at the closed end of the container, can be focused on the proper circle inscribed in the ground glass so as to determine whether the lining has uniformity and whether there are thin spots.

  15. Transmissive infrared frequency selective surfaces and infrared antennas : final report for LDRD 105749.

    SciTech Connect

    Wendt, Joel Robert; Hadley, G. Ronald; Samora, Sally; Loui, Hung; Cruz-Cabrera, Alvaro Augusto; Davids, Paul; Kemme, Shanalyn A.; Basilio, Lorena I.; Johnson, William Arthur; Peters, David William

    2009-09-01

    Plasmonic structures open up new opportunities in photonic devices, sometimes offering an alternate method to perform a function and sometimes offering capabilities not possible with standard optics. In this LDRD we successfully demonstrated metal coatings on optical surfaces that do not adversely affect the transmission of those surfaces at the design frequency. This technology could be applied as an RF noise blocking layer across an optical aperture or as a method to apply an electric field to an active electro-optic device without affecting optical performance. We also demonstrated thin optical absorbers using similar patterned surfaces. These infrared optical antennas show promise as a method to improve performance in mercury cadmium telluride detectors. Furthermore, these structures could be coupled with other components to lead to direct rectification of infrared radiation. This possibility leads to a new method for infrared detection and energy harvesting of infrared radiation.

  16. Optical tracking using charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Stanton, Richard H.; Alexander, James W.; Dennison, Edwin W.; Glavich, Thomas A.; Hovland, Larry F.

    1987-01-01

    The extraction of precise positional information from CCD images of point-source and extended optical targets is considered, and three examples of CCD optical trackers for space-based operation are described. For ideal point sources, a centerfinding accuracy of 1/100 pixel and a measuremet jitter of less than 1/250 pixel have been obtained using thinned, backside-illuminated devices. Tracker accuracy is shown to be limited by small variation in the optical image shape. Techniques for tracking, and methods for searching the entire field for the desired targets, are also discussed.

  17. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  18. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  19. Polarization Altering Devices in Guided Wave Optics

    NASA Astrophysics Data System (ADS)

    Sletten, Mark Arthur

    In this thesis, four guided wave optical devices are investigated, each of which alters the state of polarization of the lightwave which passes through it. Chapter 1 contains general information on the operation of these devices and on the systems in which they are typically used, and the subsequent chapters discuss each device in detail. Chapter 2 presents a quasi-optic analysis of a thin film polarization converter formed by a thin, isotropic film on an anisotropic, electrooptic substrate. In Chapter 3, a singular perturbation technique with multiple scales is used to analyze a thick metal surface polariton polarizer for a planar optical waveguide. This analysis is extended in Chapter 4 to a similar device in which the metal is assumed to have a finite thickness. The analysis indicates two regions of operation for this device and also indicates the importance of phase matching the surface polariton to the transverse magnetic mode guided by the dielectric waveguide. An experimental investigation of a surface polariton polarizer fabricated with optical fiber and silicon v-grooves is reported in Chapter 5. The fabrication process for these devices is described, and the results of investigations into the dependence of the extinction ratio on the device length and fiber core to metal spacing are presented. Chapter 6 outlines a singular perturbation analysis of a polarization splitting directional coupler. Like the polarizers discussed in Chapters 3, 4 and 5, the coupler owes its polarization selecting capability to interactions with surface polaritons. The final chapter contains suggestions for future research related to the polarizer analysis and experiments.

  20. Poling of Microwave Electro-Optic Devices

    NASA Technical Reports Server (NTRS)

    Singer, Kenneth D.

    1997-01-01

    The desire to transmit high frequency, microwave RF signals over fiber optic cables has necessitated the need for electro-optic modulation devices. However, in order to reap these potential benefits, it is necessary to develop the devices and their associated fabrication processes, particularly those processes associated with the poling of the devices. To this end, we entered into a cooperative research agreement with Richard Kunath of NASA LeRC. A graduate student in my group, Tony Kowalczyk, worked closely with the group at NASA to develop processes for construction of a microwave frequency electro-optic modulator. Materials were commercially obtained from Amoco Chemical and in collaboration with Lockheed-Martin. The photolithography processes were developed at NASA LeRC and the electric-field poling process was carried out in our laboratory at CWRU. During the grant period, the poling process conditions were investigated for these multilayer devices. Samples were poled and the resulting nonlinear optical properties were evaluated in our laboratory. Following the grant period, Kowalczyk went to NASA under a NRC fellowship, and I continued to collaborate as a consultant. Publications listed at the end of this report came out of this work. Another manuscript is in preparation and will be submitted shortly.

  1. LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

    SciTech Connect

    MYERS,DAVID R.; JESSING,JEFFREY R.; SPAHN,OLGA B.; SHANEYFELT,MARTY R.

    2000-01-01

    This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

  2. 2007 LDRD ANNUAL REPORT

    SciTech Connect

    French, T

    2008-12-16

    I am pleased to present the fiscal year 2007 Laboratory Directed Research and Development (LDRD) annual report. This represents the first year that SRNL has been eligible for LDRD participation and our results to date demonstrate we are off to an excellent start. SRNL became a National Laboratory in 2004, and was designated the 'Corporate Laboratory' for the DOE Office of Environmental Management (EM) in 2006. As you will see, we have made great progress since these designations. The LDRD program is one of the tools SRNL is using to enable achievement of our strategic goals for the DOE. The LDRD program allows the laboratory to blend a strong basic science component into our applied technical portfolio. This blending of science with applied technology provides opportunities for our scientists to strengthen our capabilities and delivery. The LDRD program is vital to help SRNL attract and retain leading scientists and engineers who will help build SRNL's future and achieve DOE mission objectives. This program has stimulated our research staff creativity, while realizing benefits from their participation. This investment will yield long term dividends to the DOE in its Environmental Management, Energy, and National Security missions.

  3. THz transceiver characterization : LDRD project 139363 final report.

    SciTech Connect

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  4. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  5. Novel optical MEMS device technology for optical networking

    NASA Astrophysics Data System (ADS)

    Narendra, Rajashree; McMullin, J. N.

    2007-07-01

    Internet Traffic has been growing multifold with time, as more and more people are getting online for communication, education, entertainment, etc. Expanding fiber optic networks through optical networking is seen as the key to fulfilling consumer demand for internet bandwidth. Optical networking is severely handicapped by the unavailability of high performance low cost optical components. Developing economical methods for fabricating optical switches, connectors and other networking components is the key to the realization of an all-optical network vision. Using silicon MEMS technology to produce optical components provides some compelling advantages of integration with electronic devices and packaging. Simple, low-cost fabrication of the integrated optical components such as waveguides, splitters, combiners, reflectors and lenses on silicon substrate is reviewed. Specially designed novel dispensing equipment is used to fabricate these optical components. An integrated optoelectronic switch is designed using silicon V-grooves with reflective taps and dispensed polymer waveguides. Propagation losses of 0.15 dB/cm at 633 nm and 0.45 dB/cm at 1300 nm are reported. Coupling losses of less than 1 dB can be achieved. The fabrication being economical and having lower propagation losses makes this technology very attractive for networking applications.

  6. Optical Alignment Device For Laser Communication

    NASA Technical Reports Server (NTRS)

    Casey, William L.

    1988-01-01

    Optical alignment device under development enables continuous tracking and coalignment of two beams of light. Intended primarily for laser-communication station, in which transmitted beam must be aligned with received beam to ensure transmitted beam falls on receiver at other station. Expected to consume less power and be smaller and less complicated than alignment shutter and drive previously used. Prism and filter separate two overlapping collimated light beams of different wavelength or polarization. Coordinates of two beams tracked on charge-coupled device to determine degree of directional misalignment between two beams.

  7. A biometric access personal optical storage device

    NASA Astrophysics Data System (ADS)

    Davies, David H.; Ray, Steve; Gurkowski, Mark; Lee, Lane

    2007-01-01

    A portable USB2.0 personal storage device that uses built-in encryption and allows data access through biometric scanning of a finger print is described. Biometric image derived templates are stored on the removable 32 mm write once (WO) media. The encrypted templates travel with the disc and allow access to the data providing the biometric feature (e.g. the finger itself) is present. The device also allows for export and import of the templates under secure key exchange protocols. The storage system is built around the small form factor optical engine that uses a tilt arm rotary actuator and front surface media.

  8. Thermo-optic devices on polymer platform

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  9. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  10. Nanocoaxes for Optical and Electronic Devices

    PubMed Central

    Rizal, Binod; Merlo, Juan M.; Burns, Michael J.; Chiles, Thomas C.; Naughton, Michael J.

    2014-01-01

    The evolution of micro/nanoelectronics technology, including the shrinking of devices and integrated circuit components, has included the miniaturization of linear and coaxial structures to micro/nanoscale dimensions. This reduction in the size of coaxial structures may offer advantages to existing technologies and benefit the exploration and development of new technologies. The reduction in the size of coaxial structures has been realized with various permutations between metals, semiconductors and dielectrics for the core, shield, and annulus. This review will focus on fabrication schemes of arrays of metal – nonmetal – metal nanocoax structures using non-template and template methods, followed by possible applications. The performance and scientific advantages associated with nanocoax-based optical devices including waveguides, negative refractive index materials, light emitting diodes, and photovoltaics are presented. In addition, benefits and challenges that accrue from the application of novel nanocoax structures in energy storage, electronic and sensing devices are summarized. PMID:25279400

  11. Method of forming a sharp edge on an optical device

    NASA Technical Reports Server (NTRS)

    Fleetwood, C. M.; Rice, S. H.

    1980-01-01

    A sharp edge is formed on an optical device by placing the optical device in a holding mechanism; grinding one surface so that it and a surface of the holding mechanism are co-planar; and polishing both the surface of the optical device and the surface of the holding mechanism with felt until an edge on the surface of the optical device adjacent to the surface of the holding mechanism obtains a desired sharpness.

  12. Optical orientation in bipolar spintronic devices

    NASA Astrophysics Data System (ADS)

    Fabian, Jaroslav; Žutić, Igor

    2008-11-01

    Optical orientation is a highly efficient tool for the generation of nonequilibrium spin polarization in semiconductors. Combined with spin-polarized transport it offers new functionalities for conventional electronic devices, such as pn junction bipolar diodes or transistors. In nominally nonmagnetic junctions optical orientation can provide a source for spin capacitance—the bias-dependent nonequilibrium spin accumulation—or for spin-polarized current in bipolar spin-polarized solar cells. In magnetic junctions, the nonequilibrium spin polarization generated by spin orientation in the proximity of an equilibrium magnetization gives rise to the spin-voltaic effect (a realization of the Silsbee-Johnson coupling), enabling efficient control of electrical properties such as the I-V characteristics of the junctions by magnetic and optical fields. This paper reviews the main results of investigations of spin-polarized and magnetic pn junctions, from spin capacitance to the spin-voltaic effect.

  13. Precision optical device of freeform defects inspection

    NASA Astrophysics Data System (ADS)

    Meguellati, S.

    2015-09-01

    This method of optical scanning presented in this paper is used for precision measurement deformation in shape or absolute forms in comparison with a reference component form, of optical or mechanical components, on reduced surfaces area that are of the order of some mm2 and more. The principle of the method is to project the image of the source grating to palpate optically surface to be inspected, after reflection; the image of the source grating is printed by the object topography and is then projected onto the plane of reference grating for generate moiré fringe for defects detection. The optical device used allows a significant dimensional surface magnification of up to 1000 times the area inspected for micro-surfaces, which allows easy processing and reaches an exceptional nanometric imprecision of measurements. According to the measurement principle, the sensitivity for displacement measurement using moiré technique depends on the frequency grating, for increase the detection resolution. This measurement technique can be used advantageously to measure the deformations generated by the production process or constraints on functional parts and the influence of these variations on the function. The optical device and optical principle, on which it is based, can be used for automated inspection of industrially produced goods. It can also be used for dimensional control when, for example, to quantify the error as to whether a piece is good or rubbish. It then suffices to compare a figure of moiré fringes with another previously recorded from a piece considered standard; which saves time, money and accuracy. The technique has found various applications in diverse fields, from biomedical to industrial and scientific applications.

  14. Optical links in handheld multimedia devices

    NASA Astrophysics Data System (ADS)

    van Geffen, S.; Duis, J.; Miller, R.

    2008-04-01

    Ever emerging applications in handheld multimedia devices such as mobile phones, laptop computers, portable video games and digital cameras requiring increased screen resolutions are driving higher aggregate bitrates between host processor and display(s) enabling services such as mobile video conferencing, video on demand and TV broadcasting. Larger displays and smaller phones require complex mechanical 3D hinge configurations striving to combine maximum functionality with compact building volumes. Conventional galvanic interconnections such as Micro-Coax and FPC carrying parallel digital data between host processor and display module may produce Electromagnetic Interference (EMI) and bandwidth limitations caused by small cable size and tight cable bends. To reduce the number of signals through a hinge, the mobile phone industry, organized in the MIPI (Mobile Industry Processor Interface) alliance, is currently defining an electrical interface transmitting serialized digital data at speeds >1Gbps. This interface allows for electrical or optical interconnects. Above 1Gbps optical links may offer a cost effective alternative because of their flexibility, increased bandwidth and immunity to EMI. This paper describes the development of optical links for handheld communication devices. A cable assembly based on a special Plastic Optical Fiber (POF) selected for its mechanical durability is terminated with a small form factor molded lens assembly which interfaces between an 850nm VCSEL transmitter and a receiving device on the printed circuit board of the display module. A statistical approach based on a Lean Design For Six Sigma (LDFSS) roadmap for new product development tries to find an optimum link definition which will be robust and low cost meeting the power consumption requirements appropriate for battery operated systems.

  15. Optics Performance at 1(omega), 2 (omega), and 3 (omega): Final Report on LDRD Project 03-ERD-071

    SciTech Connect

    Honig, J; Adams, J; Carr, C; Demos, S; Feit, M; Mehta, N; Norton, M; Nostrand, M; Rubenchik, A; Spaeth, M

    2006-02-08

    The interaction of intense laser light with dielectric materials is a fundamental applied science problem that is becoming increasingly important with the rapid development of ever more powerful lasers. To better understand the behavior of optical components in large fusion-class laser systems, we are systematically studying the interaction of high-fluence, high-power laser light with high-quality optical components, with particular interest on polishing/finishing and stress-induced defects and surface contamination. We focus on obtaining comparable measurements at three different wavelengths, 1{omega} (1053 nm), 2{omega} (527 nm), and 3{omega} (351 nm).

  16. Multipass optical device and process for gas and analyte determination

    DOEpatents

    Bernacki, Bruce E.

    2011-01-25

    A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length.

  17. Electro-optic polymers: Materials and devices

    NASA Astrophysics Data System (ADS)

    Derose, Christopher Todd

    Electro-optic (EO) polymers are an attractive alternative to inorganic nonlinear materials. EO polymers with a Pockel's coefficient, r33, greater than 320 pm/V have been recently demonstrated. In addition to their high EO activity, EO polymers have the additional benefit that their dielectric constants at optical and millimeter wave frequencies are closely matched which allow for bandwidths which are limited only by the resistive losses of traveling wave electrodes. The amorphous nature of the host polymer makes heterogeneous integration of the materials on any substrate possible. The devices which will have the most immediate impact based on these recent materials developments are EO waveguide modulators. Performance benchmarks of less than 6 dB insertion loss, sub-volt Vpi and greater than 100 GHz bandwidth have been achieved separately however, the challenge of achieving all of these benchmarks in a single device has not yet been met. The aim of this dissertation is to optimize passive materials to achieve efficient in device poling of EO polymers, optimize the chromophore loading of the active polymers and to optimize waveguide modulators for device performance within a particular system, analog RF photonic links. These optimizations were done by defining figures of merit for the materials and modulators. This research strategy has led to significant improvements in poling efficiency as well as modulators with record low insertion losses which maintain a low Vpi on the order of 1--2 Volts. Using this optimization strategy and state of the art EO polymers, devices which meet or surpass the benchmark performance values in all categories are expected in the near future.

  18. Slot optical waveguide usage in forming passive optical devices.

    PubMed

    Iqbal, M; Zheng, Z; Liu, J S

    2012-01-01

    We have reviewed the work on SOI slot optical waveguides followed by our work. In a slot waveguide structure, light can be confined in a low index slot guarded by high index slabs. Slot structures are being used in forming complex structures; such as ring resonator circuits. The increased round trip in ring resonator circuits signifies the importance of dispersion calculations. We did analytical and numerical investigations of slot structures' dispersion characteristics. Our dispersion tuned slot structures can help in reducing the dispersion effects on optical signal, which will in turn improve the efficiency of light-on-chip circuits. Since the advent of slot optical waveguides, SOI based slot optical waveguides have been under consideration. It has been found that glass based slot optical waveguide structures with relatively low refractive index contrast ratio can also play an important role in forming complex nano-size optical devices. We made use of power confined inside low index slot regions for a double slot structure. Opto-mechanical sensors have been proposed based upon: (a) variation in power confined inside low index slot region due to the movement of central high index slab under the action of external force (temperature, pressure, humidity, etc). vide Chinese Patent No. ZL 200710176770.1, 2007 (b) variation in power confined inside low refractive index slot regions due to movement of both slots under the action of external force (temperature, pressure, humidity, etc). PMID:21875406

  19. Silicon Photonic Devices for Optical Computing

    NASA Astrophysics Data System (ADS)

    Qiu, Ciyuan

    The requirement for high performance computer will be significantly increased by the fast development of the internet. However, traditional CMOS computer will meet its bottleneck due to the miniaturization problem. Optical computer comes to be the leading candidate to solve this issue. Silicon photonic technology has tremendous developments and thus it becomes an ideal platform to implement optical computing system. In Chapter 1, I will first show the development of the optical computing and silicon photonic technology. I will also discuss some key nonlinear optical effects of silicon photonic devices. Based on the current silicon photonic technology, I will then make a brief introduction on the optical direct logic for the 2D optical computing and spatial light modulator for the 3D optical computing, both of which will be discussed in detail in the followed chapters. In Chapter 2, I will discuss micro-ring resonator which is the key element of optical directed logic circuit discussed in Chapter 3. I will give the analytical model based on photonic circuit to explain the performance of the micro-ring resonator. The group delay and the loss of the micro-ring resonator will be analyzed. And I will also show the active tuning of the transmission spectrum by using the nonlinear effect of silicon. In Chapter 3, I will show a revised optical direct-logic (DL) circuit for 2D optical computer that is well suited for complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics. It can significantly reduce the latency compared with traditional CMOS computers. For proof of concept, I demonstrated a scalable and reconfigurable optical directed-logic architecture consisting of a regular array of micro-ring resonator based optical on-off switches. The switches are controlled by electrical input logic signals through embedded p-i-n junctions. The circuit can be reconfigured to perform any 2x2 combinational logic operations by thermally tuning the operation modes of

  20. Detectors, devices and electronics for optics

    NASA Astrophysics Data System (ADS)

    Fajer, V.

    2007-06-01

    Objectives: The present course is devoted to engineers, physicists, and techniques which require basic tools for applying in experiments, measurements and research with optical instruments. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Content: It is composed of the following topics: photodetectors, semiconductor devices, photomultiplier tubes, Faraday modulators, lock in amplifiers and automatic polarimeters. It begins with the definitions, classification and general characteristics of the photodetectors and its selection criteria for specific applications. There is included a section relative to different types of photodiodes and its differential characteristics, the photomultipliers are described showing its validity and application range. The different characteristics of Faraday cells which are widely employed as optical modulators are analyzed. Lock in amplifiers are shown and its applications in experimental arrangements. Conclusion: this course could be given as a postgraduate course for Master in Science or Ph. D depending on the number and content of selected topics. It has been applied as an obligatory subject of the Optical Master in Science curriculum in the Superior Technical Institute (José Antonio Echeverría) of Havana, Cuba.

  1. Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS).

    SciTech Connect

    Speed, Ann Elizabeth; Spahn, Olga Blum; Hsu, Alan Yuan-Chun

    2009-09-01

    Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

  2. Optical metrology devices for high-power laser large optics

    NASA Astrophysics Data System (ADS)

    Daurios, J.; Bouillet, S.; Gaborit, G.; Poncetta, J. C.

    2007-06-01

    High power laser systems such as the LMJ laser or the LIL laser, its prototype, require large optical components with very strict and various specifications. Technologies used for the fabrication of these components are now usually compatible of such specifications, but need the implementation at the providers' sites of different kind of metrology like interferometry, photometry, surface inspection, etc., systematically performed on the components. So, during the production for the LIL and now for the LMJ, CEA has also equipped itself with a wide range of specific metrology devices used to verify the effective quality of these large optics. These various systems are now used to characterize and validate the LMJ vendors' processes or to perform specific controls dedicated to analyzes which are going further than the simple "quality control" of the component (mechanical mount effect, environment effect, ageing effect,...). After a short introduction on the LMJ laser and corresponding optical specifications for components, we will focus on different metrology devices concerning interferometry and photometry measurements or surface inspection. These systems are individually illustrated here by the mean of different results obtained during controls done in the last few years.

  3. Physics and Advanced Technologies LDRD Final Report:Adaptive Optics Imaging and Spectroscopy of the Solar System

    SciTech Connect

    Gibbard, S; Max, C; Macintosh, B; Grossman, A

    2004-01-21

    This focus of this project was the investigation of the planets Uranus and Neptune and Saturn's moon Titan using adaptive optics imaging and spectroscopy at the 10-meter W.M. Keck Telescopes. These bodies share a common type of atmosphere, one that is rich in methane and has a hydrocarbon haze layer produced by methane photolysis. Neptune and Uranus have atmospheric features which change on short timescales; we have investigated their altitude, composition, and connection to events occurring deeper in the planets' tropospheres. Titan has a solid surface located under its atmosphere, the composition of which is still quite uncertain. With spectra that sample the vertical structure of the atmosphere and narrowband observations that selectively probe Titan's surface we have determined the surface reflectivity of Titan at near-infrared wavelengths.

  4. Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication

    PubMed Central

    Dey, D.; Goswami, T.

    2011-01-01

    The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields. PMID:22131802

  5. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  6. Interplanetary optical navigation using Charge Coupled Devices

    NASA Technical Reports Server (NTRS)

    Davis, R. P.

    1980-01-01

    Charge Coupled Devices (CCD) will be used as optical navigation image detectors in space missions planned for the 1980's. This paper presents analyses directed at assessing the performance of an imaging system employing a CCD (i.e., a solid state imager (SSI)), for a Jovian satellite tour environment. CCD operating principles are summarized and methods of calculating theoretical dynamic range presented. Methods of analyzing the SSI's ability to perform the fundamental optical navigation function of imaging a target body and one or more stars, are presented. This capability is expressed as a function of SSI optical and electronic parameters and of astrophysical parameters. The influence of these factors and pointing control errors on navigation picture budgets is analyzed. The effect of the sun's glare is analyzed from the standpoint of its reduction of SSI dynamic range and increase of navigation picture budget. Radiation effects on SSI navigation imaging performance are discussed and a method of analyzing probabilities of distinguishing real from false stars presented.

  7. Adaptive Optics Views of the Hubble Deep Fields Final report on LLNL LDRD Project 03-ERD-002

    SciTech Connect

    Max, C E; Gavel, D; Pennington, D; Gibbard, S; van Dam, M; Larkin, J; Koo, D; Raschke, L; Melbourne, J

    2007-02-17

    We used laser guide star adaptive optics at the Lick and Keck Observatories to study active galactic nuclei and galaxies, with emphasis on those in the early Universe. The goals were to observe large galaxies like our own Milky Way in the process of their initial assembly from sub-components, to identify central active galactic nuclei due to accreting black holes in galaxy cores, and to measure rates of star formation and evolution in galaxies. In the distant universe our focus was on the GOODS and GEMS fields (regions in the Northern and Southern sky that include the Hubble Deep Fields) as well as the Extended Groth Strip and COSMOS fields. Each of these parts of the sky has been intensively studied at multiple wavelengths by the Hubble Space Telescope, the Chandra X-Ray Observatory, the XMM Space Telescope, the Spitzer Space Telescope, and several ground-based telescopes including the Very Large Array radio interferometer, in order to gain an unbiased view of a significant statistical sample of galaxies in the early universe.

  8. Variable Shadow Screens for Imaging Optical Devices

    NASA Technical Reports Server (NTRS)

    Lu, Ed; Chretien, Jean L.

    2004-01-01

    Variable shadow screens have been proposed for reducing the apparent brightnesses of very bright light sources relative to other sources within the fields of view of diverse imaging optical devices, including video and film cameras and optical devices for imaging directly into the human eye. In other words, variable shadow screens would increase the effective dynamic ranges of such devices. Traditionally, imaging sensors are protected against excessive brightness by use of dark filters and/or reduction of iris diameters. These traditional means do not increase dynamic range; they reduce the ability to view or image dimmer features of an image because they reduce the brightness of all parts of an image by the same factor. On the other hand, a variable shadow screen would darken only the excessively bright parts of an image. For example, dim objects in a field of view that included the setting Sun or bright headlights could be seen more readily in a picture taken through a variable shadow screen than in a picture of the same scene taken through a dark filter or a narrowed iris. The figure depicts one of many potential variations of the basic concept of the variable shadow screen. The shadow screen would be a normally transparent liquid-crystal matrix placed in front of a focal-plane array of photodetectors in a charge-coupled-device video camera. The shadow screen would be placed far enough from the focal plane so as not to disrupt the focal-plane image to an unacceptable degree, yet close enough so that the out-of-focus shadows cast by the screen would still be effective in darkening the brightest parts of the image. The image detected by the photodetector array itself would be used as feedback to drive the variable shadow screen: The video output of the camera would be processed by suitable analog and/or digital electronic circuitry to generate a negative partial version of the image to be impressed on the shadow screen. The parts of the shadow screen in front of

  9. Portable Handheld Optical Window Inspection Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis; Dokos, Adam; Burns, Bradley

    2010-01-01

    The Portable Handheld Optical Window Inspection Device (PHOWID) is a measurement system for imaging small defects (scratches, pits, micrometeor impacts, and the like) in the field. Designed primarily for window inspection, PHOWID attaches to a smooth surface with suction cups, and raster scans a small area with an optical pen in order to provide a three-dimensional image of the defect. PHOWID consists of a graphical user interface, motor control subsystem, scanning head, and interface electronics, as well as an integrated camera and user display that allows a user to locate minute defects before scanning. Noise levels are on the order of 60 in. (1.5 m). PHOWID allows field measurement of defects that are usually done in the lab. It is small, light, and attaches directly to the test article in any orientation up to vertical. An operator can scan a defect and get useful engineering data in a matter of minutes. There is no need to make a mold impression for later lab analysis.

  10. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  11. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  12. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  13. Method And Apparatus For Coupling Optical Elements To Optoelectronic Devices For Manufacturing Optical Transceiver Modules

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Chu, Dahwey; Duckett, III, Edwin B.; Giunta, Rachel Knudsen; Mitchell, Robert T.; McCormick, Frederick B.; Peterson, David W.; Rising, Merideth A.; Reber, Cathleen A.; Reysen, Bill H.

    2005-06-14

    A process is provided for aligning and connecting at least one optical fiber to at least one optoelectronic device so as to couple light between at least one optical fiber and at least one optoelectronic device. One embodiment of this process comprises the following steps: (1) holding at least one optical element close to at least one optoelectronic device, at least one optical element having at least a first end; (2) aligning at least one optical element with at least one optoelectronic device; (3) depositing a first non-opaque material on a first end of at least one optoelectronic device; and (4) bringing the first end of at least one optical element proximate to the first end of at least one optoelectronic device in such a manner that the first non-opaque material contacts the first end of at least one optoelectronic device and the first end of at least one optical element. The optical element may be an optical fiber, and the optoelectronic device may be a vertical cavity surface emitting laser. The first non-opaque material may be a UV optical adhesive that provides an optical path and mechanical stability. In another embodiment of the alignment process, the first end of at least one optical element is brought proximate to the first end of at least one optoelectronic device in such a manner that an interstitial space exists between the first end of at least one optoelectronic device and the first end of at least one optical element.

  14. Polymeric optical waveguide devices exploiting special properties of polymer materials

    NASA Astrophysics Data System (ADS)

    Oh, Min-Cheol; Chu, Woo-Sung; Shin, Jin-Soo; Kim, Jun-Whee; Kim, Kyung-Jo; Seo, Jun-Kyu; Lee, Hak-Kyu; Noh, Young-Ouk; Lee, Hyung-Jong

    2016-03-01

    Optical polymer materials have many unique features that are unavailable in other inorganic optical materials. These include large thermo-optic effect with low thermal conductivity, index tunability by solution blending, structural diversity, freestanding flexibility, and controllable birefringence. Various functional integrated optic devices have been investigated by our group based on the specialties of fluorinated polymer material, which include extremely low crosstalk integrated optics, strain-controlled flexible waveguide tunable lasers, and birefringence-tuned polarization controllers. They have been demonstrated to have good performance, large fabrication tolerance, and high reliability, and they will be important building blocks for extending the application territory of polymeric optical waveguide devices.

  15. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts; Michael R. , Nielson; Gregory N.

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  16. Overt and covert verification via magnetic optical security devices

    NASA Astrophysics Data System (ADS)

    Coombs, Paul G.; Raksha, Vladimir; Markantes, Tom

    2002-04-01

    The currency of over 70 countries is protected today by security ink incorporating microscopic optical interference filters. The physics of light interference enables the manufacture of multi-layer security devices such as these that are both highly chromatic and color shifting. Further, the technique of thin film deposition allows the inclusion of layers that perform magnetically as well as optically. This investigation involved the creation of security devices that bring together the usually separate functionalities of overt optical and covert magnetic verification into a single device. This allows the devices to be used both for information storage as well as for overt detection and verification--thereby creating improved protection without the addition of separate security devices. Two examples are explored: an optically variable magnetic stripe and a product tag into which an identifiable covert pattern is magnetized. Integrated devices were produced using several different magnetic metals and alloys. The optical and magnetic characteristics of each device were measured and the results included in this report. Devices were built using single-component magnetic layers as well as more complex magnetic materials. Parameters relevant to magnetic materials include remanence (field strength remaining after magnetization) and coercivity (resistance to demagnetization). Also relevant to optical devices is their so-called color travel-often plotted as an arc in a* b* or L* a* b* space. The color travel of sample devices was measured to allow comparison.

  17. Optical limiting device and method of preparation thereof

    DOEpatents

    Wang, Hsing-Lin; Xu, Su; McBranch, Duncan W.

    2003-01-01

    Optical limiting device and method of preparation thereof. The optical limiting device includes a transparent substrate and at least one homogeneous layer of an RSA material in polyvinylbutyral attached to the substrate. The device may be produced by preparing a solution of an RSA material, preferably a metallophthalocyanine complex, and a solution of polyvinylbutyral, and then mixing the two solutions together to remove air bubbles. The resulting solution is layered onto the substrate and the solvent is evaporated. The method can be used to produce a dual tandem optical limiting device.

  18. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  19. Tapered rib fiber coupler for semiconductor optical devices

    DOEpatents

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  20. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1976-01-01

    A novel liquid-crystal electro-optical device useful as a real-time input device in coherent optical data processing is described. The device is a special adaptation of an ac photoactivated liquid-crystal light valve, and utilizes a hybrid field effect (45 deg twisted nematic effect in OFF state and pure optical birefringence of the liquid crystal in ON state). A thin-film sandwich exerts photoelectric control over the optical birefringence of a thin liquid-crystal layer. Liquid-crystal layer thickness is successfully reduced without image degradation. The device offers high resolution (better than 100 lines/mm), contrast (better than 100/1), high speed (10 msec ON, 15 msec OFF), high input sensitivity, low power input, low fabrication cost, and can be operated at below 10 V rms. Preliminary measurements on device performance in level slicing, filtering, contrast reversal, and edge enhancement are under way.

  1. Electro-optic device with gap-coupled electrode

    SciTech Connect

    Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.

    2013-08-20

    An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.

  2. LDRD Annual Report FY2006

    SciTech Connect

    Sketchley, J A; Kotta, P; De Yoreo, J; Jackson, K; van Bibber, K

    2007-03-20

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Laboratory Science and Technology Office, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration in national security, energy security, environmental management, bioscience and technology to improve human health, and breakthroughs in fundamental science and technology. The accomplishments described in this Annual Report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $92 million for FY2006 sponsored 188 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest

  3. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  4. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  5. Quantum reading of unitary optical devices

    SciTech Connect

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-12-04

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported.

  6. 77 FR 65713 - Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... COMMISSION Certain Optoelectronic Devices for Fiber Optic Communications, Components Thereof, and Products... the United States after importation of certain optoelectronic devices for fiber optic communications... importation of certain optoelectronic devices for fiber optic communications, components thereof, and...

  7. Photonic variable delay devices based on optical birefringence

    NASA Technical Reports Server (NTRS)

    Yao, X. Steve (Inventor)

    2005-01-01

    Optical variable delay devices for providing variable true time delay to multiple optical beams simultaneously. A ladder-structured variable delay device comprises multiple basic building blocks stacked on top of each other resembling a ladder. Each basic building block has two polarization beamsplitters and a polarization rotator array arranged to form a trihedron; Controlling an array element of the polarization rotator array causes a beam passing through the array element either going up to a basic building block above it or reflect back towards a block below it. The beams going higher on the ladder experience longer optical path delay. An index-switched optical variable delay device comprises of many birefringent crystal segments connected with one another, with a polarization rotator array sandwiched between any two adjacent crystal segments. An array element in the polarization rotator array controls the polarization state of a beam passing through the element, causing the beam experience different refractive indices or path delays in the following crystal segment. By independently control each element in each polarization rotator array, variable optical path delays of each beam can be achieved. Finally, an index-switched variable delay device and a ladder-structured variable device are cascaded to form a new device which combines the advantages of the two individual devices. This programmable optic device has the properties of high packing density, low loss, easy fabrication, and virtually infinite bandwidth. The device is inherently two dimensional and has a packing density exceeding 25 lines/cm2. The delay resolution of the device is on the order of a femtosecond (one micron in space) and the total delay exceeds 10 nanosecond. In addition, the delay is reversible so that the same delay device can be used for both antenna transmitting and receiving.

  8. Device having two optical ports for switching applications

    DOEpatents

    Rosen, Ayre; Stabile, Paul J.

    1991-09-24

    A two-sided light-activatable semiconductor switch device having an optical port on each side thereof. The semiconductor device may be a p-i-n diode or of bulk intrinsic material. A two ported p-i-n diode, reverse-biased to "off" by a 1.3 kV dc power supply, conducted 192 A when activated by two 1 kW laser diode arrays, one for each optical port.

  9. Tiger LDRD final report

    SciTech Connect

    Steich, D J; Brugger, S T; Kallman, J S; White, D A

    2000-02-01

    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterations during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.

  10. SRNL LDRD ANNUAL REPORT 2008

    SciTech Connect

    French, T

    2008-12-29

    The Laboratory Director is pleased to have the opportunity to present the 2008 Laboratory Directed Research and Development (LDRD) annual report. This is my first opportunity to do so, and only the second such report that has been issued. As will be obvious, SRNL has built upon the excellent start that was made with the LDRD program last year, and researchers have broken new ground in some important areas. In reviewing the output of this program this year, it is clear that the researchers implemented their ideas with creativity, skill and enthusiasm. It is gratifying to see this level of participation, because the LDRD program remains a key part of meeting SRNL's and DOE's strategic goals, and helps lay a solid scientific foundation for SRNL as the premier applied science laboratory. I also believe that the LDRD program's results this year have demonstrated SRNL's value as the EM Corporate Laboratory, having advanced knowledge in a spectrum of areas, including reduction of the technical risks of cleanup, separations science, packaging and transportation of nuclear materials, and many others. The research in support of Energy Security and National and Homeland Security has been no less notable. SRNL' s researchers have shown again that the nascent LDRD program is a sound investment for DOE that will pay off handsomely for the nation as time goes on.

  11. Photopolymer-based three-dimensional optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Kagami, M.; Yamashita, T.; Yonemura, M.; Kawasaki, A.; Watanabe, O.; Tomiki, M.

    2012-02-01

    Photopolymer based three-dimensional (3D) waveguide devices are very attractive in low-cost optical system integration. Especially, Light-Induced Self-Written (LISW) technology is suitable for this application, and the technology enables low-loss 3D optical circuitry formation from an optical fiber tip which soaked in photopolymer solution by employing its photo-polymerization due to own irradiation from the fiber tip. This technology is expected drastic mounting cost reduction in fields of micro-optic and hybrid integration devices assembly. The principle of the LISW optical waveguides is self-trapping effect of the irradiation flux into the self-organized waveguide, where, used wavelength can be chosen to fit photopolymer's reactivity from visible to infrared. Furthermore, this effect also makes possible grating formation and "optical solder" interconnection. Actually fabricated self-written grating shows well defined deep periodic index contrast and excellent optical property for the wavelength selectivity. And the "optical solder" interconnection realizes a passive optical interconnection between two faceted fibers or devices by the LISW waveguide even if there is a certain amount of gap and a small degree of misalignment exist. The LISW waveguides grow towards each other from both sides to a central point where the opposing beams overlap and are then combined into one waveguide. This distinctive effect is confirmed in all kind optical fibers, such as from a singlemode to 1-mm-corediameter multimode optical fiber. For example of complicated WDM optical transceiver module, mounted a branchedwaveguide and filter elements, effectiveness of LISW technology is outstanding. In assembling and packaging process, neither dicing nor polishing is needed. In this paper, we introduce LISW technology principles and potential application to integrated WDM optical transceiver devices for both of singlemode and multimode system developed in our research group.

  12. Design and fabrication of optical polymer waveguide devices for optical interconnects and integrated optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Guomin

    Optical interconnects is a promising technique to boost the speed of electronic systems through replacing high speed electrical data buses using optical ones. Optical coherence tomography is an attractive imaging technique that has been widely used in medical imaging applications with capability of high resolution subsurface cross sectional imaging in living tissues. Both the optical interconnects and the optical coherence tomography imaging may benefit from the use of integrated optics technology in particular polymer waveguides that can be designed and fabricated to improve the device capability, system compactness, and performance reliability. In this dissertation, we first present our innovative design and realization on the polymer waveguides with 45° integrated mirrors for optical interconnects using the vacuum assisted microfluidic (VAM) soft lithography. VAM is a new microfluidic based replication technique which can be utilized to improve the performance of imprinted devices by eliminating the residue planar layer and accomplish complex devices incorporating different materials in the same layer. A prism-assisted inclined UV lithography technique is introduced to increase the slanted angles of the side walls of the microstructures and to fabricate multidirectional slanted microstructures. It is also used to fabricate 45° integrated mirrors in polymer waveguides to support surface normal optical coupling for optical interconnects. A dynamic card-to-backplane optical interconnects system has also been demonstrated based on polymer waveguides with tunable optofluidic couplers. The operation of the tunable optofluidic coupler is accomplished by controlling the position of air bubbles and index matching liquid in the perpendicular microfluidic channel for refractive index modulation. The dynamic activation and deactivation of the backplane optofluidic couplers can save the optical signal power. 10 Gbps eye diagrams of the dynamic optical interconnect link

  13. Optical vibration measurement of mechatronics devices

    NASA Astrophysics Data System (ADS)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  14. Final report on LDRD Project: Quantum confinement and light emission in silicon nanostructures

    SciTech Connect

    Guilinger, T.R.; Kelly, M.J.; Follstaedt, D.M.

    1995-02-01

    Electrochemically formed porous silicon (PS) was reported in 1991 to exhibit visible photoluminescence. This discovery could lead to the use of integrated silicon-based optoelectronic devices. This LDRD addressed two general goals for optical emission from Si: (1) investigate the mechanisms responsible for light emission, and (2) tailor the microstructure and composition of the Si to obtain photoemission suitable for working devices. PS formation, composition, morphology, and microstructure have been under investigation at Sandia for the past ten years for applications in silicon-on-insulator microelectronics, micromachining, and chemical sensors. The authors used this expertise to form luminescent PS at a variety of wavelengths and have used analytical techniques such as in situ Raman and X-ray reflectivity to investigate the luminescence mechanism and quantify the properties of the porous silicon layer. Further, their experience with ion implantation in Si lead to an investigation into alternate methods of producing Si nanostructures that visibly luminesce.

  15. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation

    NASA Astrophysics Data System (ADS)

    Varsanik, J. S.; Bernstein, J. J.

    2013-09-01

    Integrated optic/microfluidic devices have proven to be useful tools in many sensing applications. However, the resolution and sensitivity of existing devices is limited by the processes and materials chosen for their fabrication. A procedure for the production of a new family of low-noise, high-resolution integrated microfluidic optical detection devices is presented, along with results from a prototype device. The device architecture is presented, highlighting design choices made in fluidics and optical integration to minimize scattered light. Diffused waveguides were fabricated, characterized, and modeled. A plasmonic resonator is designed, simulated, and integrated into the system to achieve electric field enhancement and localization to sub-micron dimensions. The device was tested to demonstrate both field enhancement and localization. The procedure that was developed enables the creation of integrated devices capable of high-resolution detection of fluorescent samples. The interrogation region was 200 nm long in the direction of flow, achieving sub-wavelength resolution in an integrated device. Furthermore, discrete fluorescent particles 20 nm in diameter were individually detected, demonstrating the high resolution and sensitivity capabilities of this family of devices.

  16. Mobile device-based optical instruments for agriculture

    NASA Astrophysics Data System (ADS)

    Sumriddetchkajorn, Sarun

    2013-05-01

    Realizing that a current smart-mobile device such as a cell phone and a tablet can be considered as a pocket-size computer embedded with a built-in digital camera, this paper reviews and demonstrates on how a mobile device can be specifically functioned as a portable optical instrument for agricultural applications. The paper highlights several mobile device-based optical instruments designed for searching small pests, measuring illumination level, analyzing spectrum of light, identifying nitrogen status in the rice field, estimating chlorine in water, and determining ripeness level of the fruit. They are suitable for individual use as well as for small and medium enterprises.

  17. Magneto-optical switching devices based on Si resonators

    NASA Astrophysics Data System (ADS)

    Noda, Kazuki; Okada, Kazuya; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    The magneto-optical switching devices based on Si ring and Si photonic crystal resonators have been fabricated using a Bi3Fe5O12 (BIG) film deposited by the metal organic decomposition (MOD) method. The quality of the obtained BIG film was evaluated by X-ray diffraction and the magneto-optical Kerr effect and relatively good results were obtained. The light modulations of both devices were ≦20% at a wavelength of ˜1.5 µm. The operation mechanisms of both devices are explained by the Cotton-Mouton effect where the magnetic field direction is perpendicular to the light propagation direction.

  18. Dynamic Optical Grating Device and Associated Method for Modulating Light

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  19. Optical device with low electrical and thermal resistance Bragg reflectors

    SciTech Connect

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  20. Optical device with low electrical and thermal resistance bragg reflectors

    SciTech Connect

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  1. A quantum optical firewall based on simple quantum devices

    NASA Astrophysics Data System (ADS)

    Amellal, H.; Meslouhi, A.; Hassouni, Y.; El Baz, M.

    2015-07-01

    In order to enhance the transmission security in quantum communications via coherent states, we propose a quantum optical firewall device to protect a quantum cryptosystem against eavesdropping through optical attack strategies. Similar to the classical model of the firewall, the proposed device gives legitimate users the possibility of filtering, controlling (input/output states) and making a decision (access or deny) concerning the traveling states. To prove the security and efficiency of the suggested optical firewall, we analyze its performances against the family of intercept and resend attacks, especially against one of the most prominent attack schemes known as "Faked State Attack."

  2. Guided-wave acousto-optic devices for space applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-09-01

    Production of high- performance and low-cost new devices to be used in space applications is strongly required due to the remarkable development of innovative technologies in the last few years. Guided-wave optoelectronics technologies, including integrated optics, acousto-optics and electro-optics can provide some significant benefits to the space applications. In particular, they can overcome the intrinsic limits of the conventional technologies improving also the cost/performance figures, and enabling new services. Earth observation, telecommunications, radar surveillance and navigation control are the main space areas where guided-wave devices can contribute significantly. In this paper, after some general considerations on the potential of optoelectronics for space, on the use of acousto-optic guided-wave devices, a brief description of the acousto-optic interaction is given. Some functional devices reported in literature having significant potential impact in space applications are described with the aim of highlighting the main features of the acousto-optic technology. The performance limits of guided-wave devices for space applications are also shortly discussed.

  3. Advances in nonlinear optical materials and devices

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1991-01-01

    The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.

  4. Optical noise suppression device and method. [laser light exposing film

    NASA Technical Reports Server (NTRS)

    Horner, J. L. (Inventor)

    1976-01-01

    A device and method is disclosed for suppression of optical noise in an optical spatial filtering system using highly coherent light. In the disclosed embodiment, input photographic film to be processed in the system, and output photographic film to be exposed, are each mounted on lateral translation devices. During application of the coherent light for exposure of the output film, the two translation devices are moved in synchronism by a motor-driven gear and linkage assembly. The ratio of the resulting output film translation to the input film translation is equal to the magnification of the optical data processing system. The noise pattern associated with the lenses and other elements in the optical processing system remains stationary while the image-producing light moves laterally through the pattern with the output film, thus averaging out the noise effect at the output film.

  5. Optical sensing: recognition elements and devices

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  6. Fabrication of micro-optical devices

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Marley, J.; Gal, George; Purdy, Don

    1993-01-01

    We have fabricated a variety of micro-optic components including Fresnel and non-Frensel lenses, off-axis and dispersive lenses with binary stepped contours, and analog contours. Process details for all lens designs fabricated are given including multistep photolithography for binary fabrication and grayscale mask photolithography for analog fabrication. Reactive ion etching and ion beam milling are described for the binary fabrication process, while ion beam milling was used for the analog fabrication process. Examples of micro-optic components fabricated in both Si and CdTe substrates are given.

  7. Space Qualification Issues in Acousto-optic and Electro-optic Devices

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta

    2007-01-01

    Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.

  8. Optically controlled multiple switching operations of DNA biopolymer devices

    NASA Astrophysics Data System (ADS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  9. Optically controlled multiple switching operations of DNA biopolymer devices

    SciTech Connect

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  10. The optical-mechanical design of DMD modulation imaging device

    NASA Astrophysics Data System (ADS)

    Li, Tianting; Xu, Xiping; Qiao, Yang; Li, Lei; Pan, Yue

    2014-09-01

    In order to avoid the phenomenon of some image information were lost, which is due to the jamming signals, such as incident laser, make the pixels dot on CCD saturated. In this article a device of optical-mechanical structure was designed, which utilized the DMD (Digital Micro mirror Device) to modulate the image. The DMD reflection imaging optical system adopts the telecentric light path. However, because the design is not only required to guarantee a 66° angle between the optical axis of the relay optics and the DMD, but also to ensure that the optical axis of the projection system keeps parallel with the perpendicular bisector of the micro-mirror which is in the "flat" state, so the TIR prism is introduced,and making the relay optics and the DMD satisfy the optical institution's requirements. In this paper, a mechanical structure of the imaging optical system was designed and at the meanwhile the lens assembly has been well connected and fixed and fine-tuned by detailed structural design, which included the tilt decentered lens, wedge flanges, prisms. By optimizing the design, the issues of mutual restraint between the inverting optical system and the projecting system were well resolved, and prevented the blocking of the two systems. In addition, the structure size of the whole DMD reflection imaging optical system was minimized; it reduced the energy loss and ensured the image quality.

  11. Polymeric memory device with dual electrical and optical reading modes

    NASA Astrophysics Data System (ADS)

    Deng, Xian-Yu; Wong, King Y.

    2011-04-01

    We report a write-once-read-many polymeric memory device that can be read by both electrical and optical methods. The device consists of two layers of conjugated polymer blends sandwiched between a metal electrode and a transparent electrode. One of the polymer blends functions as an ion-trapping, electrochromic layer, while the other polymer blend functions as a light-emitting electrochemical cell. Recording is facilitated by applying a negative writing voltage on the device. Reading can be performed by either probing with a low positive voltage, probing with a laser beam, or by measuring the light emission intensity from the device.

  12. Thermo-optical effects and fiber optic sensing device based on polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Sirleto, Luigi; Righini, Giancarlo C.; Ciaccheri, Leonardo; Rish, Mahmoud A.; Simoni, Francesco F.

    2001-05-01

    In this paper an experimental study of thermo-optical properties of polymer dispersed liquid crystals (PDLC), prepared by PIPS in bulk and in confined cylindrical geometry, is presented. The transmissivity of PDLC In bulk as a function of temperature proves the existence of temperature optical switching. We have also demonstrated the existence of optical bistability, which could be interesting in develop of logical optical devices as optical memory elements. A bistable al fiber optic sensors based on PDLC is also presented. In this device PDLC permits at the same time the optomechanical interconnection of tow fibers and the modulation of the light crossing the device. As the modulation can be controlled by external temperature, the device has been proved to be suitable for the realization of a heat flow sensor. Without any optimization of the device we have obtained an ON-OFF contrast of 8 dB and a response time comparable with other conventional device using nematic LCs. This sensor is compact, rugged and is cheap, because it does not require a complex fabrication and alignment technology. It presents the typical advantages of both the fiber optic sensor and the liquid crystal technology. We note that its main advantage is a small thermal capacity, which is comparable with electronic device as thermistors, and it represents a significant improvement for the sensor based on liquid crystals. Further theoretical studies are necessary in order to understand in depth it thermo-optical characteristics.

  13. Optical devices featuring nonpolar textured semiconductor layers

    DOEpatents

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  14. Table-top mirror based parallel programmable optical logic device

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2014-12-01

    Light rays can easily be reflected to different path by mechanical movement of mirrors. Using this basic operational principle we can design parallel programmable optical logic device (PPOLD) by arranging mirrors on a table. The ‘table-top mirror' models of this proposed circuit have been shown here. We can program it to design all the two input 16-Boolean logical expressions from a single design. The design is based on only plane mirrors. No active optical material is used in this design. Not only that the proposed circuit is optically reversible in nature. Moreover this design is very simple in sense. It can be fabricated in MEMS based optical switches.

  15. LDRD FY 2014 Program Plan

    SciTech Connect

    Anita Gianotto; Dena Tomchak

    2013-08-01

    As required by DOE Order 413.2B the FY 2014 Program Plan is written to communicate ares of investment and approximate amounts being requested for the upcoming fiscal year. The program plan also includes brief highlights of current or previous LDRD projects that have an opportunity to impact our Nation's current and future energy challenges.

  16. A Summary of the results obtained in the LDRD project "Interaction of a magnetized plasma with structured surfaces-from devices to spacecraft"

    SciTech Connect

    Cohen, R. H.; Porter, G. D.; Ryutov, D. D.

    1999-02-23

    Our work was directed towards developing a basic understanding of a new class of phenomena: effects of surface structure on the processes in a magnetized plasma near surfaces and at some distances for them. The surface structures can be of various kinds: topographic features ranging from smooth "waviness" to a coarse "roughness," non-uniformities of the secondary emission coefficient, dielectric impregnations into conducting surface, etc. The expected effects are strongest when the magnetic field forms a shallow angle with the surface. The current and future applications of this new branch of plasma physics include fusion devices, gas-discharge and plasma-processing devices, large spacecraft, and physical phenomena in the vicinity of celestial bodies without atmospheres. We have developed a methodology that allows one to study in a unified way effects of rough surfaces with arbitrary scales of topographic features, from sizes exceeding the ion gyro-radius, to sizes much below the electron gyro-radius, in the most interesting case of a grazing magnetic field. The results can be presented in a dimensionless form, so that they would be equally applicable to the micrometer-scale roughness of the divertor plates of fusion devices, and to 10-km-scale structures of a Lunar surface. We have identified the following new effects: 1) the plasma is absorbed by only a small fraction of the total surface, near the "mountain tops" of the bumps; 2) regions inaccessible for one or both plasma species ("shadows") are formed behind the bumps; the size of these inaccessible domains is, generally speaking, different for the electrons and ions; 3) this latter circumstance leads to formation of fine potential structure both near the surface and in the bulk plasma, leading to enhanced plasma transport. We have investigated the processes that may lead to plasma penetration into the shadows and concluded that most probable candidates are (depending on the specifics of plasma parameters) the

  17. Radiation-induced transmission loss of integrated optic waveguide devices

    NASA Astrophysics Data System (ADS)

    Henschel, Henning; Koehn, Otmar; Schmidt, Hans U.

    1993-04-01

    The radiation sensitivity of different integrated optic (IO) devices was compared under standardized test conditions. We investigated four relatively simple device types made by four different manufacturers. The waveguide materials were proton exchanged LiTaO3, LiNbO3:Ti, Tl-diffused glass, and Ag-diffused glass, respectively. In order to standardize the irradiation parameters we followed the 'Procedure for Measuring Radiation-Induced Attenuation in Optical Fibers and Optical Cables' proposed by the NATO NETG as close as possible. In detail we made pulsed irradiations with dose values of about 500 rad*, 104 rad, and 105 rad, as well as continuous irradiations at a 60Co source with a dose rate of 1300 rad*/min up to a total dose of 104 rad. Device temperatures were about 22 degree(s)C, -50 degree(s)C, and +80 degree(s)C.

  18. A new optical neuron device for all-optical neural networks

    NASA Astrophysics Data System (ADS)

    Akiyama, Koji; Takimoto, Akio; Miyauchi, Michihiro; Kuratomi, Yasunori; Asayama, Junko; Ogawa, Hisahito

    1991-12-01

    A new optical neuron device has been developed. The device can perform both summation and thresholding operations in optics, and consists of a PIN a Si:H photoreceptor, aluminum neuron electrodes and a ferroelectric liquid crystal light modulator. The a-Si:H photoreceptor shows characteristics of an ideal quantum efficiency and a good linearity. The optical neuron device exhibits a response time of about 30 microns for incident light power of 9 microW and a contrast ratio of 300:1. Using this neuron device, a lenslet array and a memory mask, an all-optical neural network has been constructed. The network demonstrates an associate memory function on purely optical parallel processing without any help from electric computation.

  19. Electroluminescent devices with function of electro-optic shutter.

    PubMed

    Song, Seongkyu; Jeong, Jaewook; Chung, Seok Hwan; Jeong, Soon Moon; Choi, Byeongdae

    2012-09-10

    The polymer-dispersed liquid crystal (PDLC) was used as a dielectric layer of electroluminescent (EL) device to provide multi-function of electroluminescence and electro-optic shutter. A 50 μm-thick PDLC layer was formed between a transparent electrode and a ZnS:Cu phosphor layer. The electro-optic properties of the EL device were not distorted by the introduction of the PDLC layer. The extraction efficiency of luminescence was improved by more than 14% by PDLC layer. The transmittance of the PDLC was also founded not to be degraded significantly by excitation frequency. Therefore, the electroluminescence of the device was ignited by excitation frequency at a given voltage for full transparency of the PDLC. This device has great potential for applications in transparent displays with the function of a privacy window. PMID:23037230

  20. Optical sensors with MEMS, slit masks, and micromechanical devices

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer; Wuttig, Andreas

    2001-10-01

    Concepts to increase the performance of optical sensors by combination with optical MEMS are discussed. Architectures of subsystems are reviewed, which modulate or switch the amplitude of the light by scanning, multiplexing and selecting interesting signal components (multi-object-mode). Arrangements with MEMS for optical sensors and instruments can decrease the pixel size and increase their number by creating virtual pixels. A number of signal components can be detected with a smaller number of detectors (detector pixels) by scanning. If the scanning is substituted by multiplexing the best efficiency is achieved. The measurement time can be reduced by selecting interesting objects or signal components to be detected. Architectures which combine single sensors, linear sensor arrays or two dimensional detector arrays with MEMS, slit masks, and micro-mechanical devices are discussed. Such devices are micro-mirrors, micro-shutters, the slit positioning system, the fibre positioning system, and other optical switches.

  1. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1975-01-01

    The design, operation, and structure of the hybrid field effect light valve, a real-time input device for application to coherent optical data processing (CODP), is described. The device consists of a sandwich of thin films that electrically control the optical birefringence of a thin (2 micrometer) liquid crystal layer. It has high resolution (greater than 100 1/mm), contrast ratio (greater than 100:1), speed (10 sec on, 15 sec off) and input sensitivity (about 0.3 ergs/sq cm) in addition to cost and size advantages. Performance data for a laboratory model are presented.

  2. Visual fatigue induced by optical misalignment in binocular devices: application to night vision binocular devices

    NASA Astrophysics Data System (ADS)

    Gavrilescu, Maria; Battista, Josephine; Ibbotson, Michael R.; Gibbs, Peter

    2015-05-01

    The additional and perhaps unnatural eye-movements required to fuse misaligned binocular images can lead to visual fatigue and decreased task performance. The eyes have some tolerance to optical misalignment. However, a survey of the scientific literature reveals a wide range of recommended tolerances but offers little supporting experimental evidence. Most experimental studies are based on small numbers of participants exposed to brief periods of optical misalignment. Therefore, these published tolerance limits might have limited relevance for long-duration exposure to misaligned binocular devices. Prolonged use of binocular devices may cause visual fatigue irrespective of binocular alignment especially for complex tasks such as night vision flying. This study attempts to identify measures most sensitive to misalignment in order to establish relevant tolerance limits for in-service binocular night vision devices. Firstly, we developed a rugged and deployable test bench that can measure binocular alignment with a reproducibility error of less than 1 arcmin. The bench was used to identify and investigate major factors affecting the stability of the optical misalignment over time. Our results indicated that the optical misalignment of a given device changed over time as a function of the in-service usage and thermal history of the device. Secondly, participants were exposed to experimentally controlled levels of optical misalignment typical of those measured on in-service binocular night vision devices. The visual fatigue of each participant was assessed via a set of oculomotor parameters. The oculomotor parameters showing high sensitivity to optical misalignment were compared for subjects exposed to extended periods of misalignment in a baseline reading task and a task using an actual night vision device.

  3. Final report on LDRD project: Low-cost Pd-catalyzed metallization technology for rapid prototyping of electronic substrates and devices

    SciTech Connect

    Chen, K.S.; Morgan, W.P.; Zich, J.L.

    1998-02-01

    A low-cost, thermally-activated, palladium-catalyzed metallization process was developed for rapid prototyping of polymeric electronic substrates and devices. The process was successfully applied in producing adhesiveless copper/polyimide laminates with high peel strengths and thick copper coating; copper/polyimide laminates are widely used in fabricating interconnects such as printed wiring boards (PWBs) and flexible circuits. Also successfully metallized using this low-cost metallization process were: (1) scaled-down models of radar-and-communication antenna and waveguide; (2) scaled-down model of pulsed-power-accelerator electrode; (3) three-dimensional micro-porous, open-cell vitreous carbon foams. Moreover, additive patterned metallization was successfully achieved by selectively printing or plotting the catalyst ink only on areas where metallization is desired, and by uniform thermal activation. Additive patterned metallization eliminates the time-consuming, costly and environmentally-unfriendly etching process that is routinely carried out in conventional subtractive patterned metallization. A metallization process via ultraviolet (UV) irradiation activation was also demonstrated. In this process palladium-catalyst solution is first uniformly coated onto the substrate. A masking pattern is used to cover the areas where metallization is not wanted. UV irradiation is applied uniformly to activate the palladium catalyst and to cure the polymer carrier in areas that are not covered by the mask. Metal is then deposited by electroless plating only or by a combination of electroless and electrolytic plating. This UV-activation technique is particularly useful in additive fine-line patterned metallization. Lastly, computer models for electrolytic and electroless plating processes were developed to provide guidance in plating-process design.

  4. Compensated vibrating optical fiber pressure measuring device

    DOEpatents

    Fasching, George E.; Goff, David R.

    1987-01-01

    A microbending optical fiber is attached under tension to a diaphragm to se a differential pressure applied across the diaphragm which it causes it to deflect. The fiber is attached to the diaphragm so that one portion of the fiber, attached to a central portion of the diaphragm, undergoes a change in tension; proportional to the differential pressure applied to the diaphragm while a second portion attached at the periphery of the diaphragm remains at a reference tension. Both portions of the fiber are caused to vibrate at their natural frequencies. Light transmitted through the fiber is attenuated by both portions of the tensioned sections of the fiber by an amount which increases with the curvature of fiber bending so that the light signal is modulated by both portions of the fiber at separate frequencies. The modulated light signal is transduced into a electrical signal. The separate modulation signals are detected to generate separate signals having frequencies corresponding to the reference and measuring vibrating sections of the continuous fiber, respectively. A signal proportional to the difference between these signals is generated which is indicative of the measured pressure differential across the diaphragm. The reference portion of the fiber is used to compensate the pressure signal for zero and span changes resulting from ambient temperature and humidity effects upon the fiber and the transducer fixture.

  5. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOEpatents

    Sopori, B.L.

    1995-07-04

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance. 5 figs.

  6. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  7. Developing improved silica materials and devices for integrated optics applications

    NASA Astrophysics Data System (ADS)

    Maker, Ashley Julia

    Due to their favorable optical and material properties, silica-based materials and devices have found many important applications throughout science and engineering, especially in sensing, communications, lasers, and integrated optics. Often, silica's properties ultimately limit the performance of these applications. To address this limitation, this thesis investigates the development of improved silica materials and optical devices, including silica films, coatings, waveguides, resonators, lasers, and sensors. Using sol-gel chemistry and microfabrication procedures, custom silica materials and devices are developed to benefit many applications. In this thesis, it is first demonstrated how the low optical loss of silica enables fabrication of low loss integrated waveguides and toroidal resonators with ultra-high quality factors. Then, by adding various rare earth and metal dopants to sol-gel silica, hybrid silica materials and devices are made with custom properties such as high refractive index and lasing capabilities. Finally, several applications are demonstrated, including the use of high refractive index coatings to control the behavior of light, development of Raman and ultra-low threshold rare earth microlasers, and a heterodyned microlaser sensor with significantly improved sensing performance. Future applications and directions of this research are also discussed.

  8. Safety analysis of optically ignited explosive and pyrotechnic devices

    SciTech Connect

    Merson, J.A.; Salas, F.J.; Holswade, S.

    1994-05-01

    The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

  9. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  10. Enhanced photocoagulation with catheter-based diffusing optical device

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Kim, Jeehyun; Oh, Jungwhan

    2012-11-01

    A novel balloon catheter-based diffusing optical device was designed and evaluated to assist in treating excessive menstrual bleeding. A synthetic fused-silica fiber was micro-machined precisely to create scattering segments on a 25 mm long fiber tip for uniform light distribution. A visible wavelength (λ=532 nm) was used to specifically target the endometrium due to the high vascularity of the uterine wall. Optical simulation presented 30% wider distribution of photons along with approximately 40% higher irradiance induced by addition of a glass cap to the diffuser tip. Incorporation of the optical diffuser with a polyurethane balloon catheter considerably enhanced coagulation depth and area (i.e., 3.5 mm and 18.9 cm2 at 1 min irradiation) in tissue in vitro. The prototype device demonstrated the coagulation necrosis of 2.8±1.2 mm (n=18) and no thermal damage to myometrium in in vivo caprine models. A prototype 5 cm long balloon catheter-assisted optical diffuser was also evaluated with a cadaveric human uterus to confirm the coagulative response of the uterine tissue as well as to identify the further design improvement and clinical applicability. The proposed catheter-based diffusing optical device can be a feasible therapeutic tool to photocoagulate endometrial cell layers in an efficient and safe manner.

  11. Sub-Wavelength Silicon Photonic Devices for Optical Interconnect Networks

    NASA Astrophysics Data System (ADS)

    Dudley, Eric F.

    As our demand for information grows, so too does the demand for networks capable of handling this flood of data. Conventional on-chip electrical networks are approaching their limits in terms of latency, power consumption and data rates and will need to be replaced with new technology in the near future. Photonic networks promise great improvements over electrical networks, but several key challenges still hinder their widespread deployment. This thesis focuses on addressing the problem of encoding and routing data inside integrated optical communication networks. This is accomplished through electrically driven optical switches or modulators that are able to produce a binary optical data stream from a binary electrical input signal. The primary metrics used to evaluate the performance of these devices are spatial footprint, modulation/switching speed, operating voltage and power consumption per bit. Secondary concerns are device bandwidth, CMOS compatibility, tolerance to fabrication errors and device losses. In this thesis, we present a theoretical design for an electrically driven optical switch utilizing hybrid silicon-insulator-metal waveguides with a 30 square micrometer footprint, 57 Gbit/s switching speed, 2.6 fJ/bit power consumption and 1V operation. We also present experimental confirmation of the optical properties of hybrid silicon-insulator-metal waveguides which form the basis of this design.

  12. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  13. Recent Advances in Photonic Devices for Optical Computing and the Role of Nonlinear Optics-Part II

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Witherow, William K.; Banks, Curtis E.; Paley, Mark S.

    2007-01-01

    The twentieth century has been the era of semiconductor materials and electronic technology while this millennium is expected to be the age of photonic materials and all-optical technology. Optical technology has led to countless optical devices that have become indispensable in our daily lives in storage area networks, parallel processing, optical switches, all-optical data networks, holographic storage devices, and biometric devices at airports. This chapters intends to bring some awareness to the state-of-the-art of optical technologies, which have potential for optical computing and demonstrate the role of nonlinear optics in many of these components. Our intent, in this Chapter, is to present an overview of the current status of optical computing, and a brief evaluation of the recent advances and performance of the following key components necessary to build an optical computing system: all-optical logic gates, adders, optical processors, optical storage, holographic storage, optical interconnects, spatial light modulators and optical materials.

  14. Noncontact surface thermometry for microsystems: LDRD final report.

    SciTech Connect

    Abel, Mark (Georgia Institute of Technology, Atlanta, GA); Beecham, Thomas (Georgia Institute of Technology, Atlanta, GA); Graham, Samuel (Georgia Institute of Technology, Atlanta, GA); Kearney, Sean Patrick; Serrano, Justin Raymond; Phinney, Leslie Mary

    2006-10-01

    We describe a Laboratory Directed Research and Development (LDRD) effort to develop and apply laser-based thermometry diagnostics for obtaining spatially resolved temperature maps on working microelectromechanical systems (MEMS). The goal of the effort was to cultivate diagnostic approaches that could adequately resolve the extremely fine MEMS device features, required no modifications to MEMS device design, and which did not perturb the delicate operation of these extremely small devices. Two optical diagnostics were used in this study: microscale Raman spectroscopy and microscale thermoreflectance. Both methods use a low-energy, nonperturbing probe laser beam, whose arbitrary wavelength can be selected for a diffraction-limited focus that meets the need for micron-scale spatial resolution. Raman is exploited most frequently, as this technique provides a simple and unambiguous measure of the absolute device temperature for most any MEMS semiconductor or insulator material under steady state operation. Temperatures are obtained from the spectral position and width of readily isolated peaks in the measured Raman spectra with a maximum uncertainty near {+-}10 K and a spatial resolution of about 1 micron. Application of the Raman technique is demonstrated for V-shaped and flexure-style polycrystalline silicon electrothermal actuators, and for a GaN high-electron-mobility transistor. The potential of the Raman technique for simultaneous measurement of temperature and in-plane stress in silicon MEMS is also demonstrated and future Raman-variant diagnostics for ultra spatio-temporal resolution probing are discussed. Microscale thermoreflectance has been developed as a complement for the primary Raman diagnostic. Thermoreflectance exploits the small-but-measurable temperature dependence of surface optical reflectivity for diagnostic purposes. The temperature-dependent reflectance behavior of bulk silicon, SUMMiT-V polycrystalline silicon films and metal surfaces is

  15. Advanced polychromator systems for remote chemical sensing (LDRD project 52575).

    SciTech Connect

    Sinclair, Michael B.; Pfeifer, Kent Bryant; Allen, James Joe

    2005-01-01

    The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized compound leveraged bending and the rotational grating element used vertical comb drive actuation. This work resulted in two technical advances and one patent application. Also a new optical configuration of the Polychromator was demonstrated. The new optical configuration improved the optical efficiency of the system without degrading any other aspect of the system. The new configuration also relaxes some constraint on the programmable diffraction grating.

  16. The liquid crystal light valve, an optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Beard, T. D.; Bleha, W. P.; Margerum, J. D.; Wong, S. Y.

    1972-01-01

    A photoactivated liquid crystal light valve is described as an optical-to-optical interface device (OTTO) which is designed to transfer an optical image from a noncoherent light beam to a spatially coherent beam of light, in real time. Schematics of OTTO in use, the liquid cyrstal cell, and the liquid crystal structure are presented. Sensitivity characteristics and the principles of operation are discussed.

  17. Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection

    NASA Astrophysics Data System (ADS)

    Goddard, Julie; Mandal, Sudeep; Erickson, David

    Optical devices, such as surface plasmon resonance chips and waveguide-based Mach-Zehnder interferometers, have long been successfully used as label-free biomolecular sensors. Recently, however, there has been increased interest in developing new approaches to biomolecular detection that can improve on the limit of detection, specificity, and multiplexibility of these early devices and address emerging challenges in pathogen detection, disease diagnosis, and drug discovery. As we describe in this chapter, planar optically resonant nanophotonic devices (such as ring resonators, whispering gallery modes, and photonic crystal cavities) are one method that shows promise in significantly advancing the technology. Here we first provide a short review of these devices focusing on a handful of approaches illustrative of the state of the art. We then frame the major challenge to improving the technology as being the ability to provide simultaneously spatial localization of the electromagnetic energy and biomolecular binding events. We then introduce our “Nanoscale Optofluidic Sensor Arrays” which represents our approach to addressing this challenge. It is demonstrated how these devices serve to enable multiplexed detection while localizing the electromagnetic energy to a volume as small as a cubic wavelength. Challenges involved in the targeted immobilization of biomolecules over such a small area are discussed and our solutions presented. In general, we have tried to write this chapter with the novice in mind, providing details on the fabrication and immobilization methods that we have used and how one might adapt our approach to their designs.

  18. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, D.K.; Bechinger, C.S.; Tracy, C.E.

    1998-01-13

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.

  19. Fiber optic device for sensing the presence of a gas

    DOEpatents

    Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin

    1998-01-01

    A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.

  20. Fiber-Optic Photoelastic Device Senses Pressure Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Wesson, L. N.

    1995-01-01

    Fiber-optic/photoelastic device measures gas pressures up to 600 psi at operating temperatures as high as 1,100 degrees C. Pressure on fused-silica sensing element gives rise to birefringence via photoelastic effect. Polarization of light changed by birefringence; change in polarization measured and used to infer pressure causing it. Device prototype of gas-pressure sensor for aircraft engine. Mounted in engine at or near desired measurement point, where it responds to both time-varying and steady components of pressure.

  1. Whole optic fiber weighing technique and device of belt conveyor

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Liu, Jie; Pan, Jianjun

    2015-07-01

    Whole optic fiber weighing technique and its device of belt conveyor are developed and put into application. Four FBG stress cells support a frame in a belt conveying line. In each cell, two FBG strain gauges are respectively installed at the stretching and compressing places to get the effects of sensitivity enhancement and temperature compensation. The weighing signals are from both FBG wavelength shift of loading cells and fiber belt speed meter. By means of integral algorithm, the weighing result is obtained. Actual coal weighing test shows that the accuracy of this weighing device is under 0.5%.

  2. Computational analysis of endometrial photocoagulation with diffusing optical device

    PubMed Central

    Kwon, Jinhee; Lee, Chang-Yong; Oh, Junghwan; Kang, Hyun Wook

    2013-01-01

    A balloon-catheter optical diffuser for endometrial treatment was evaluated with computational thermal analysis. Various catheter materials and dimensions were implemented to identify the optimal design for the device. Spatial and temporal development of temperature during 30-sec irradiation of 532-nm light demonstrated thermal insulation effects of polyurethane on temperature increase up to 384 K, facilitating the irreversible denaturation. The current model revealed the degree of thermal coagulation 13% thicker than experimental results possibly due to lack of tissue dynamics and light intensity distribution. In combination with photon distribution, the analytical simulation can be a feasible tool to optimize the new optical diffuser for efficient and safe endometrial treatment. PMID:24298406

  3. Active terahertz device based on optically controlled organometal halide perovskite

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Lv, Longfeng; He, Ting; Chen, Tianji; Zang, Mengdi; Zhong, Liang; Wang, Xinke; Shen, Jingling; Hou, Yanbing

    2015-08-01

    An active all-optical high-efficiency broadband terahertz device based on an organometal halide perovskite (CH3NH3PbI3, MAPbI3)/inorganic (Si) structure is investigated. Spectrally broadband modulation of the THz transmission is obtained in the frequency range from 0.2 to 2.6 THz, and a modulation depth of nearly 100% can be achieved with a low-level photoexcitation power (˜0.4 W/cm2). Both THz transmission and reflection were suppressed in the MAPbI3/Si structure by an external continuous-wave (CW) laser. Enhancement of the charge carrier density at the MAPbI3/Si interface is crucial for photo-induced absorption. The results show that the proposed high-efficiency broadband optically controlled terahertz device based on the MAPbI3/Si structure has been realized.

  4. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  5. Tunable terahertz generation via a cascaded optical parametric device

    NASA Astrophysics Data System (ADS)

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-05-01

    A compact cascaded optical parametric device generating a coherent pulse terahertz (THz) wave is demonstrated. The terahertz parametric oscillator (TPO) and the difference frequency generation (DFG) are designed for cascaded operation use with two outputs producing tunable THz wavelengths. From the first optical parametric device, a TPO with a MgO: LiNbO3 crystal pumped by a Q switch laser of 1.064 μm, 1.8 mJ idler pulse and 5.5 mJ residual pump pulse is obtained. Both of the two beams are employed as the pump and signal beams in the second optical parametric device DFG with a GaSe crystal. More than 0.6 μJ and about 2.1 ns THz pulse at 183 μm is achieved from the DFG. A tunable THz source in the range 104–226 μm via tuning the external phase matching (PM) angles of the TPO and the DFG flexibly under room temperature is obtained. The observed tunable THz wavelengths from the DFG are the same as those from the TPO.

  6. A simple approach for an optically transparent nanochannel device prototype.

    PubMed

    Liang, Fupeng; Ju, An; Qiao, Yi; Guo, Jing; Feng, Haiqing; Li, Junji; Lu, Na; Tu, Jing; Lu, Zuhong

    2016-03-21

    Compared with microfluidic devices, the fabrication of structure-controllable and designable nanochannel devices has been considered to have high costs and complex procedures, which require expensive equipment and high-quality raw materials. Exploring fast, simple and inexpensive approaches in nanochannel fabrication will be greatly helpful to speed up laboratory studies of nanofluidics. Here we developed a simple and inexpensive approach to fabricate a nanochannel device with a glass/epoxy resin/glass structure. The grooves were engraved using a UV laser on an aluminum sacrificial layer on the substrate glass, and epoxy resin was coated on the substrate and stuffed fully into the grooves. Another glass plate with holes for fluidic inlets and outlets was bonded on the top of the resin layer. The nanochannels were formed by etching thin sacrificial layers electrochemically. Meanwhile, the microstructures of the fluidic outlets and inlets could be fabricated simultaneously to the nanochannel formation. The total processing time for the simple nanochannel device took less than 10 hours. Optically transparent nanochannels with a depth of up to 20 nm were achieved. Nanofluidic behaviors in the nanochannels were observed under both optical and fluorescence microscopes. PMID:26891717

  7. A multitechnique study of bacteriorhodopsin's photonics toward new optical devices

    NASA Astrophysics Data System (ADS)

    Martin, Marta; Saab, Marie-Belle; Cloitre, Thierry; Estephan, Elias; Legros, René; Cuisinier, Frédéric J. G.; Zimányi, László; Gergely, Csilla

    2008-04-01

    Bacteriorhodopsin (BR) is a robust trans-membrane protein that functions as a light-driven proton pump, thus is an excellent candidate for biophotonics applications. For the development of new optical devices, the buildup of stable BR matrices has to be optimised. In this work, we present a multi- technique approach: the combination of optical waveguide lightmode spectroscopy (OWLS), atomic force microscopy (AFM) and multi-photon microscopy (MPM) aiming to analyze the optical and physico-chemical properties of BR embedded in polyelectrolyte multilayers (PEM) in its membrane bound form (purple membrane, PM), as well as solubilized BR immobilized within a photonic structure built of porous silicon (PSi). OWLS measurements revealed the possibility of incorporation of PM-BR layers into PE-multilayers. The calculated thickness and refractive index of the adsorbed layers demonstrate the successful adsorption of PM on top of the positively or negatively charged PE layers. Morphological studies by AFM proved a complete coverage of the positively charged PE layer with PM patches. As for the other model system, photonic responses of BR, after being immobilized within PSi substrates, have been evaluated using multi-photon microscopy. Fluorescence emission and second harmonic generation (SHG) of the BR-PSi system were observed at some particular pores of PSi and subsequent enhancement of the signal arising from the BR adsorbed within the pores was detected. Our results constitute the first steps of two interesting and innovative biomimetic approaches for the future design and development of BR based integrated optical devices.

  8. Block Copolymer Templates for Optical Materials and Devices

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine; Martin, Maldovan; Carter, W. C.; Thomas, E. L.; Fasolka, Michael; Fraser, Cassandra

    2002-03-01

    Block copolymers can act as super-lattices for creating novel optical structures. We have fabricated block copolymer photonic crystals from one, two and three dimensionally periodic systems and have enhanced their dielectric properties towards creating complete 3D band gaps. By using carefully selected blends of linear and star block copolymers, we are able to create hierarchical blends which exhibit precise molecular positioning of fluorescent molecules. We are exploring these unique patterning capabilities of block copolymer systems for the formation of ordered arrays of optically active components within a photonic crystal. Precise location of both fluorescent and nonlinear components within block copolymer photonic crystals affords new opportunities for creating low threshold, upconverting and array lasers as well as optical modulators and other photonic devices.

  9. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices.

    PubMed

    Vespini, V; Coppola, S; Todino, M; Paturzo, M; Bianco, V; Grilli, S; Ferraro, P

    2016-01-21

    We report a novel method for direct printing of viscous polymers based on a pyro-electrohydrodynamic repulsion system capable of overcoming limitations on the material type, geometry and thickness of the receiving substrate. In fact, the results demonstrate that high viscosity polymers can be easily manipulated for optical functionalizing of lab-on-a-chip devices through demonstration of direct printing of polymer microlenses onto microfluidic chips and optical fibre terminations. The present system has great potential for applications from biomolecules to nano-electronics. Moreover, in order to prove the effectiveness of the system, the optical performance of such microlenses has been characterized by testing their imaging capabilities when the fibroblast cells were allowed to flow inside the microfluidic channel, showing one of their possible applications on-board a LoC platform. PMID:26660423

  10. Optical and Acoustic Device Applications of Ferroelastic Crystals

    NASA Astrophysics Data System (ADS)

    Meeks, Steven Wayne

    This dissertation presents the discovery of a means of creating uniformly periodic domain gratings in a ferroelastic crystal of neodymium pentaphosphate (NPP). The uniform and non-uniform domain structures which can be created in NPP have the potential applications as tunable active gratings for lasers, tunable diffraction gratings, tunable Bragg reflection gratings, tunable acoustic filters, optical modulators, and optical domain wall memories. The interaction of optical and acoustic waves with ferroelastic domain walls in NPP is presented in detail. Acoustic amplitude reflection coefficients from a single domain wall in NPP are much larger than other ferroelastic-ferroelectrics such as gadolinium molybdate (GMO). Domain walls of NPP are used to make two demonstration acoustic devices: a tunable comb filter and a tunable delay line. The tuning process is accomplished by moving the position of the reflecting surface (the domain wall). A theory of the reflection of optical waves from NPP domain walls is discussed. The optical reflection is due to a change in the polarization of the wave, and not a change in the index, as the wave crosses the domain wall. Theoretical optical power reflection coefficients show good agreement with the experimentally measured values. The largest optical reflection coefficient of a single domain wall is at a critical angle and is 2.2% per domain wall. Techniques of injecting periodic and aperiodic domain walls into NPP are presented. The nucleation process of the uniformly periodic domain gratings in NPP is described in terms of a newly-discovered domain structure, namely the ferroelastic bubble. A ferroelastic bubble is the elastic analogue to the well-known magnetic bubble. The period of the uniformly periodic domain grating is tunable from 100 to 0.5 microns and the grating period may be tuned relatively rapidly. The Bragg efficiency of these tunable gratings is 77% for an uncoated crystal. Several demonstration devices which use

  11. Final Report: CNC Micromachines LDRD No.10793

    SciTech Connect

    JOKIEL JR., BERNHARD; BENAVIDES, GILBERT L.; BIEG, LOTHAR F.; ALLEN, JAMES J.

    2003-04-01

    The three-year LDRD ''CNC Micromachines'' was successfully completed at the end of FY02. The project had four major breakthroughs in spatial motion control in MEMS: (1) A unified method for designing scalable planar and spatial on-chip motion control systems was developed. The method relies on the use of parallel kinematic mechanisms (PKMs) that when properly designed provide different types of motion on-chip without the need for post-fabrication assembly, (2) A new type of actuator was developed--the linear stepping track drive (LSTD) that provides open loop linear position control that is scalable in displacement, output force and step size. Several versions of this actuator were designed, fabricated and successfully tested. (3) Different versions of XYZ translation only and PTT motion stages were designed, successfully fabricated and successfully tested demonstrating absolutely that on-chip spatial motion control systems are not only possible, but are a reality. (4) Control algorithms, software and infrastructure based on MATLAB were created and successfully implemented to drive the XYZ and PTT motion platforms in a controlled manner. The control software is capable of reading an M/G code machine tool language file, decode the instructions and correctly calculate and apply position and velocity trajectories to the motion devices linear drive inputs to position the device platform along the trajectory as specified by the input file. A full and detailed account of design methodology, theory and experimental results (failures and successes) is provided.

  12. Workplace for manufacturing devices based on optical fiber tapers

    NASA Astrophysics Data System (ADS)

    Martan, Tomáš; Honzátko, Pavel; Kaňka, Jiři; Novotný, Karel

    2007-04-01

    Many important optical fiber components are based on tapered optical fibers. A taper made from a single-mode optical fiber can be used, e.g., as a chemical sensor, bio-chemical sensor, or beam expander. A fused pair of tapers can be used as a fiber directional coupler. Fiber tapers can be fabricated in several simple ways. However, a tapering apparatus is required for more sophisticated fabrication of fiber tapers. The paper deals with fabrication and characterization of fiber tapers made from a single-mode optical fiber. A tapering apparatus was built for producing devices based on fiber tapers. The apparatus is universal and enables one to taper optical fibers of different types by a method utilizing stretching a flame-heated section of a silica fiber. Fiber tapers with constant waist length and different waist diameters were fabricated. The transition region of each fiber taper monotonically decreased in diameter along its length from the untapered fiber to the taper waist. The fiber tapers were fabricated with a constant drawing velocity, while the central zone of the original single-mode fiber was heated along a constant length. The spectral transmissions of the manufactured fiber tapers with different parameters were measured by the cut-back method.

  13. Thermo-Optical Effects and Fiber Optic Sensing Device Based on Polymer Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Sirleto, L.; Righini, G. C.; Mahmoud, Aburish; Simoni, F.

    In this article, the thermo-optical properties of polymer dispersed liquid crystals (PDLCs) in confined geometry are experimentally investigated to demonstrate the feasibility of a fiber optic sensing device based on PDLCsE Since an unexpected behavior of PDLCs in confined geometry has been experienced, a systematic study of PDLCs' thermo-optical properties in bulk is presented also to point out principal differences. Finally, bistable all fiber optic temperature sensors, in which a PDLC permits at the same time the opto-mechanical interconnection of two fibers and the modulation of light crossing the device, has been realized and characterized, for the first time. Being the modulation controlled by external temperature, the device has been proven to be suitable for the realization of a heat flow sensor. The sensor presents the typical advantages of both fiber optic sensors and liquid crystal technology. Moreover, due to its small thermal capacity, it should exhibit little influence on thermal equilibrium and, above all, it represents a significant improvement compared to a temperature fiber optic sensor based on liquid crystals (presented in the literature).

  14. Deposited silicon photonics: Optical interconnect devices in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Preston, Kyle Jonathan

    Silicon photonics has tremendous potential to provide high-bandwidth and low-power data communication for applications such as computing and telecommunication, over length scales ranging from 100 kilometers over fiber to centimeter-length on-chip waveguides. Many silicon photonic building blocks have been demonstrated to date, but critical work remains to determine the best approaches for integrating together silicon photonics with microelectronics. In this thesis, I explore a novel method for integration of silicon photonics on the CMOS platform by using a deposited material: polycrystalline silicon. I will show the first demonstrations of electrically-active optical filters, modulators, and photodetectors in this material. In principle, this material platform would allow for the integration of silicon photonic devices and systems on top of any substrate, including complex CMOS and memory chips or even glass and plastic substrates. In Chapter 1, I introduce the state-of-the-art in silicon photonics, describe several integration schemes under development, and introduce the idea of using deposited materials. In Chapter 2, I demonstrate the use of polysilicon to make integrated microring resonators, and show the integration of different silicon materials together. Chapter 3 discusses the use of polysilicon as both an optical waveguiding layer and an electrode material in slot waveguides for the application of light emitters. Chapter 4 demonstrates the use of a pump-probe experiment to measure the free carrier lifetime in the material and demonstrate all-optical modulation. In Chapter 5, I demonstrate the first high-speed integrated electro-optic modulator in polysilicon, a necessary device for optical transmitters. In Chapter 6, I show how defects inside the same material enable integrated photodetectors at near-infrared telecommunication wavelengths. Chapter 7 shows initial results in adapting the material processing for lower temperatures, necessary for integration

  15. Tunable microfluidic optical devices with an integrated microlens array

    NASA Astrophysics Data System (ADS)

    Hong, Kuang-Sheng; Wang, Jing; Sharonov, Alexey; Chandra, Dinesh; Aizenberg, Joanna; Yang, Shu

    2006-08-01

    Interest in dynamically tuning light has attracted great attention to the fabrication of tunable microlens arrays. Here we discuss the fabrication and characterization of a simple, robust, yet tunable microfluidic optical device with an integrated microlens array. The microfluidic device with a desired channel structure was micromachined on a polycarbonate plate with a resolution of up to 100 µm, followed by thermal bonding two plates above their glass transition temperature. The microlens arrays were replica molded on a glass slide, which was then attached to the polycarbonate plates. By simply actuating the liquids with variable refractive index into the fluidic channel to immerse the lens arrays without moving or deformation of microlenses, a large change of focal length of more than ten times (f = 0.74-8.53) was achieved. When a dye-containing liquid was pumped into the microfluidic channel to cover the lenses, the light transmission through the lenses was reduced from about 95% to 55% when the dye concentration was increased to 10 w/v%. The knowledge we gain from these studies will provide important insights to construct new, adaptive, micro-scale optical devices with multiple functionalities.

  16. Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Ilchenko, Vladimir (Inventor); Savchenkov, Anatoliy (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Techniques and devices using whispering gallery mode (WGM) optical resonators, where the optical materials of the WGM resonators exhibit an electro-optical effect to perform optical modulation. Examples of actively mode-locked lasers and other devices are described.

  17. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  18. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  19. Fracture Probability of MEMS Optical Devices for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon

    1999-01-01

    A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.

  20. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  1. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  2. Multimodal optical device for early childhood caries: a clinical prototype

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Ridge, Jeremy S.; Nelson, Leonard Y.; Berg, Joel H.; Seibel, Eric J.

    There is currently a need for a safe and effective way to detect and diagnose early childhood caries. We have developed a multimodal optical clinical prototype for testing in vivo. The device can be used to quickly image and screen for any signs of demineralized enamel by obtaining high-resolution and highcontrast surface images using a 405-nm laser as the illumination source, as well as obtaining autofluorescence and bacterial fluorescence images. Then, when a suspicious region is located, the device can perform dual laser fluorescence spectroscopy using 405-nm and 532-nm laser excitation which is used to compute an autofluorescence ratio. This ratio can be used to quantitatively diagnose enamel health. The device is tested on four in vivo test subjects as well as 17 extracted teeth with clinically diagnosed carious lesions. The device was able to provide detailed images which served to screen for suspected early caries. The autofluorescence ratios obtained from the extracted teeth were able to discriminate between healthy and unhealthy enamel. Therefore, the clinical prototype demonstrates feasibility in screening for and in quantitatively diagnosing healthy from demineralized enamel.

  3. Optical Devices for Cold Atoms and Bose-Einstein Condensates

    SciTech Connect

    Gaaloul, Naceur; Jaouadi, Amine; Telmini, Mourad; Pruvost, Laurence; Charron, Eric

    2007-09-19

    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold {sup 87}Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.

  4. Optically variable devices for use on bank notes

    NASA Astrophysics Data System (ADS)

    Rolfe, John

    1990-04-01

    The security of bank notes against counterfeiting can be improved by the incorporation of optically variable devices (OVDs), which change their appearance when the note is viewed in different directions. Three types of OVD; holograms, multiple diffraction gratings, and thin film interference filters will be compared in relation to the special requirements unique to bank notes; security, visibility and durability. The Bank of Canada has recently issued $50 bank notes bearing a five-layer thin film interference filter. The tests which led to this particular form of OVD will be described, together with methods of deposition, quality control, and application to sheets of bank notes.

  5. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1992-01-01

    An oxidatively coloring electrochromic layer of composition M.sub.y CrO.sub.2+x (0.33.ltoreq.y.ltoreq.2.0 and x.ltoreq.2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M.sub.y CrO.sub.2+x provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li.sup.+ ion conductors.

  6. Electrochromic material and electro-optical device using same

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1992-01-14

    An oxidatively coloring electrochromic layer of composition M[sub y]CrO[sub 2+x] (0.33[le]y[le]2.0 and x[le]2) where M=Li, Na or K with improved transmittance modulation, improved thermal and environmental stability, and improved resistance to degradation in organic liquid and polymeric electrolytes. The M[sub y]CrO[sub 2+x] provides complementary optical modulation to cathodically coloring materials in thin-film electrochromic glazings and electrochromic devices employing polymeric Li[sup +] ion conductors. 12 figs.

  7. Digital Fluoroscopy with AN Optically Coupled Charge-Coupled Device

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    1992-01-01

    This research was aimed at investigating the potential of developing an optically coupled charge-coupled device (CCD) imaging system for some digital fluoroscopic applications. The viability of this concept for fluoroscopic imaging was studied with respect to image intensifier-television (II -TV) techniques. The anticipated advantages of the optically coupled CCD, compared with II-TV, include higher contrast sensitivity, larger dynamic range, moderate spatial resolution and clinically acceptable dose. Following an investigation of some theoretical and practical issues concerning the optical coupling efficiency between the intensifying screen and the CCD imager, mathematical methods were developed to relate the signal, signal-to -noise ratio, and x-ray quantum efficiency of the optically coupled CCD imaging chain. The spatial resolution of the system was also analyzed. Using an ultra-sensitive CCD, as well as improved scintillating and optical coupling techniques, we built a laboratory system for experiments. We conducted measurements of the modulation transfer function (MTF), contrast sensitivity, contrast-detail detectability and detector contrast. The results suggest that the lesion detectability of our sub-optimal system was comparable to that of a screen-film technique under the same radiation dose, and was significantly better than II-TV fluoroscopy. Potential clinical applications of our system include mammography, pre-operational localization, pediatric chest radiography, and single tracer autoradiography. Images of selected phantoms, pathological specimens and small animals were acquired to demonstrate the radiologic quality attainable for such procedures. We conclude that developing an x-ray quantum limited, pseudo-real time, digital fluoroscopic imaging system (for some applications) without an II appears to be theoretically and technically feasible. The successful development of optically coupled CCD fluoroscopy has the potential for improving the

  8. Digital fluoroscopy with an optically coupled charge-coupled device

    NASA Astrophysics Data System (ADS)

    Liu, Hong

    1992-07-01

    This research was aimed at investigating the potential of developing an optically coupled charge-coupled device (CCD) imaging system for some digital fluoroscopic applications. The viability of this concept for fluoroscopic imaging was studied with respect to image intensifier-television (II-TV) techniques. The anticipated advantages of the optically coupled CCD, compared with II-TV, include higher contrast sensitivity, larger dynamic range, moderate spatial resolution and clinically acceptable dose. Following an investigation of some theoretical and practical issues concerning the optical coupling efficiency between the intensifying screen and the CCD imager, mathematical methods were developed to relate the signal, signal-to-noise ratio, and x-ray quantum efficiency of the optically coupled CCD imaging chain. The spatial resolution of the system was also analyzed. Using an ultra-sensitive CCD, as well as improved scintillating and optical coupling techniques, we built a laboratory system for experiments. We conducted measurements of the modulation transfer function (MTF), contrast sensitivity, contrast-detail detectability and detector contrast. The results suggest that the lesion detectability of our sub-optimal system was comparable to that of a screen-film technique under the same radiation dose, and was significantly better than II-TV fluoroscopy. Potential clinical applications of our system include mammography, pre-operational localization, pediatric chest radiography, and single tracer autoradiography. Images of selected phantoms, pathological specimens and small animals were acquired to demonstrate the radiologic quality attainable for such procedures. We conclude that developing an x-ray quantum limited, pseudo-real time, digital fluoroscopic imaging system (for some applications) without an II appears to be theoretically and technically feasible. The successful development of optically coupled CCD fluoroscopy has the potential for improving the quality

  9. Diffractive optical variable image devices generated by maskless interferometric lithography for optical security

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre; Rebordão, José M.

    2011-05-01

    In optical security (protection against forgery and counterfeit of products and documents) the problem is not exact reproduction but the production of something sufficiently similar to the original. Currently, Diffractive Optically Variable Image Devices (DOVID), that create dynamic chromatic effects which may be easily recognized but are difficult to reproduce, are often used to protect important products and documents. Well known examples of DOVID for security are 3D or 2D/3D holograms in identity documents and credit cards. Others are composed of shapes with different types of microstructures yielding by diffraction to chromatic dynamic effects. A maskless interferometric lithography technique to generate DOVIDs for optical security is presented and compared to traditional techniques. The approach can be considered as a self-masking focused holography on planes tilted with respect to the reference optical axes of the system, and is based on the Scheimpflug and Hinge rules. No physical masks are needed to ensure optimum exposure of the photosensitive film. The system built to demonstrate the technique relies on the digital mirrors device MOEMS technology from Texas Instruments' Digital Light Processing. The technique is linear on the number of specified colors and does not depend either on the area of the device or the number of pixels, factors that drive the complexity of dot-matrix based systems. The results confirmed the technique innovation and capabilities in the creation of diffractive optical elements for security against counterfeiting and forgery.

  10. Novel optical devices based on the tunable refractive index of magnetic fluid and their characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Zhang, Yuyan; Lv, Riqing; Wang, Qi

    2011-12-01

    As a new type of functional material, magnetic fluid (MF) is a stable colloid of magnetic nanoparticles, dressed with surfactant and dispersed in the carrier liquid uniformly. The MF has many unique optical properties, and the most important one is its tunable refractive index property. This paper summarizes the properties of the MF refractive index and the related optical devices. The refractive index can be easily controlled by external magnetic field, temperature, and so on. But the tunable refractive index of MF has a relaxation effect. As a result, the response time is more than milliseconds and the MF is only suitable for low speed environment. Compared with the traditional optical devices, the magnetic fluid based optical devices have the tuning ability. Compared with the tunable optical devices (the electro-optic devices (LiNbO3) of more than 10 GHz modulation speed, acoustic-optic devices (Ge) of more than 20 MHz modulation speed), the speed of the magnetic fluid based optical devices is low. Now there are many applications of magnetic fluid based on the refractive index in the field of optical information communication and sensing technology, such as tunable beam splitter, optical-fiber modulator, tunable optical gratings, tunable optical filter, optical logic device, tunable interferometer, and electromagnetic sensor. With the development of the research and application of magnetic fluid,a new method, structure and material to improve the response time can be found, which will play an important role in the fields of optical information communication and sensing technology.

  11. FY2014 LBNL LDRD Annual Report

    SciTech Connect

    Ho, Darren

    2015-06-01

    Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nation by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.

  12. 2013 SRNL LDRD Annual Report

    SciTech Connect

    McWhorter, S.

    2014-03-07

    This report demonstrates the execution of our LDRD program within the objectives and guidelines outlined by the Department of Energy (DOE) through the DOE Order 413.2b. The projects described within the report align purposefully with SRNL’s strategic vision and provide great value to the DOE. The diversity exhibited in the research and development projects underscores the DOE Office of Environmental Management (DOE-EM) mission and enhances that mission by developing the technical capabilities and human capital necessary to support future DOE-EM national needs. As a multiprogram national laboratory, SRNL is applying those capabilities to achieve tangible results for the nation in National Security, Environmental Stewardship, Clean Energy and Nuclear Materials Management.

  13. Acousto-Optic Devices For Use In Radio Frequency Target Simulators

    NASA Astrophysics Data System (ADS)

    Kirchner, Ernst K.

    1980-01-01

    Acousto-optic devices have been analyzed and developed for use as modulators, filters and correlators, and in spectrum analyzers. The ability of the acousto-optic unit to amplitude-modulate, frequency-modulate, and deflect laser beams, makes them suitable for these applications. The various signal processing and control functions provided by the acousto-optic devices are optimized by controlling the ratio of divergence angles of the optical beam and the acoustic beam in the acousto-optic interaction region. Another application of acousto-optic devices is to simulate moving targets to test fuzing altimeters and active missile control systems. The frequency modulation, amplitude modulation, and deflection properties of acousto-optic components are all utilized in a single acousto-optic unit to provide the variable range and Doppler simulation. Development of a suitable acousto-optic component for this simulation application is described, as is a description of a simulator employing this acousto-optic device.

  14. Self-organized optical device driven by motor proteins

    PubMed Central

    Aoyama, Susumu; Shimoike, Masahiko; Hiratsuka, Yuichi

    2013-01-01

    Protein molecules produce diverse functions according to their combination and arrangement as is evident in a living cell. Therefore, they have a great potential for application in future devices. However, it is currently very difficult to construct systems in which a large number of different protein molecules work cooperatively. As an approach to this challenge, we arranged protein molecules in artificial microstructures and assembled an optical device inspired by a molecular system of a fish melanophore. We prepared arrays of cell-like microchambers, each of which contained a scaffold of microtubule seeds at the center. By polymerizing tubulin from the fixed microtubule seeds, we obtained radially arranged microtubules in the chambers. We subsequently prepared pigment granules associated with dynein motors and attached them to the radial microtubule arrays, which made a melanophore-like system. When ATP was added to the system, the color patterns of the chamber successfully changed, due to active transportation of pigments. Furthermore, as an application of the system, image formation on the array of the optical units was performed. This study demonstrates that a properly designed microstructure facilitates arrangement and self-organization of molecules and enables assembly of functional molecular systems. PMID:24065817

  15. Towards next generation time-domain diffuse optics devices

    NASA Astrophysics Data System (ADS)

    Dalla Mora, Alberto; Contini, Davide; Arridge, Simon R.; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-03-01

    Diffuse Optics is growing in terms of applications ranging from e.g. oximetry, to mammography, molecular imaging, quality assessment of food and pharmaceuticals, wood optics, physics of random media. Time-domain (TD) approaches, although appealing in terms of quantitation and depth sensibility, are presently limited to large fiber-based systems, with limited number of source-detector pairs. We present a miniaturized TD source-detector probe embedding integrated laser sources and single-photon detectors. Some electronics are still external (e.g. power supply, pulse generators, timing electronics), yet full integration on-board using already proven technologies is feasible. The novel devices were successfully validated on heterogeneous phantoms showing performances comparable to large state-of-the-art TD rack-based systems. With an investigation based on simulations we provide numerical evidence that the possibility to stack many TD compact source-detector pairs in a dense, null source-detector distance arrangement could yield on the brain cortex about 1 decade higher contrast as compared to a continuous wave (CW) approach. Further, a 3-fold increase in the maximum depth (down to 6 cm) is estimated, opening accessibility to new organs such as the lung or the heart. Finally, these new technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost, for a widespread use of TD devices in real life.

  16. Printed polymer photonic devices for optical interconnect systems

    NASA Astrophysics Data System (ADS)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  17. Self-organized optical device driven by motor proteins.

    PubMed

    Aoyama, Susumu; Shimoike, Masahiko; Hiratsuka, Yuichi

    2013-10-01

    Protein molecules produce diverse functions according to their combination and arrangement as is evident in a living cell. Therefore, they have a great potential for application in future devices. However, it is currently very difficult to construct systems in which a large number of different protein molecules work cooperatively. As an approach to this challenge, we arranged protein molecules in artificial microstructures and assembled an optical device inspired by a molecular system of a fish melanophore. We prepared arrays of cell-like microchambers, each of which contained a scaffold of microtubule seeds at the center. By polymerizing tubulin from the fixed microtubule seeds, we obtained radially arranged microtubules in the chambers. We subsequently prepared pigment granules associated with dynein motors and attached them to the radial microtubule arrays, which made a melanophore-like system. When ATP was added to the system, the color patterns of the chamber successfully changed, due to active transportation of pigments. Furthermore, as an application of the system, image formation on the array of the optical units was performed. This study demonstrates that a properly designed microstructure facilitates arrangement and self-organization of molecules and enables assembly of functional molecular systems. PMID:24065817

  18. Wireless electro-optic switching network for optical fiber sensor array using MEMS-IDT devices

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-09-01

    Optical fiber arrays have been proposed for signal paths in various civilian and military controls as a means of offering advanced sensing functions not available in electronic systems. To implement optic fiber sensors on various control systems, a proper electro-optic architecture (EOA) with a bar- coded electro-optical switch needs to be studied. In this paper, a design of such EO switch is proposed which can be operated remotely. Lithium Niobate is chosen as the EO material. The MEMS-IDT device is designed with Lithium Niobate as a substrate with IDT and a set of floating reflectors. The reflectors can be programmable and thus a bar-coded switch can be fabricated. The electrostatic field between the reflectors and the Lithium Niobate serves as the fast acting switch in this application.

  19. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    SciTech Connect

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping E-mail: moli@umn.edu; Li, Mo E-mail: moli@umn.edu

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  20. REVIEW ARTICLE Fibre optic devices produced by arc discharges

    NASA Astrophysics Data System (ADS)

    Rego, G.

    2010-11-01

    We present an overview of the applications of the electric arc technique related to optical fibre technology. The use of arc discharges ranges from the well-known fibre splicing, going through the fabrication of basic devices such as fibre tapers and microspheres, to tailoring the spectra of UV-induced gratings such as in the apodization of fibre Bragg gratings and also in the fabrication of phase-shifted and sampled fibre Bragg gratings. However, in the past decade a topic more intensively investigated was probably long-period fibre gratings. Therefore, some devices based on arc-induced gratings, namely, phase-shifted and step-changed gratings and bandpass filters are discussed. We also present an electrically insulated thermocouple assembled in situ using arc discharges. This sensor is very useful in the determination of the temperature attained by the fibre during an arc discharge, this property being fundamental for the discussion of the mechanisms of formation and for the understanding of the thermal properties of arc-induced devices.

  1. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  2. Point of care optical device for sepsis diagnosis

    NASA Astrophysics Data System (ADS)

    Baldini, F.; Bolzoni, L.; Giannetti, A.; Porro, G.; Senesi, F.; Trono, C.

    2009-10-01

    The discrimination of viral and bacterial sepsis is an important issue in intensive care patients. For this purpose, the simultaneous measurements of different analytes are necessary. Among the possible candidates, C-reactive protein (CRP) and procalcitonin (PCT) are probably the most important ones. A novel optical platform was designed and realised for the implementation of fluorescence-based immunoassays. The core of the optical platform is a plastic biochip, constituted by 13 microchannels (50 μm high, 600 μm width, 10 mm long) through which the sample flows. The sensing layer, where the immunochemical reaction takes place, is located on the upper part of each microchannel. The chip is interrogated with a novel optoelectronic platform, based on fluorescence anisotropy. A line-shaped beam from a 635-nm laser-diode excites perpendicularly the sensing layer and great many of the emitted remains entrapped inside the chip. The particular shape of the top of the chip allows to guide the emitted fluorescence along the same direction of the microchannel. The fluorescence which comes out on the lateral side from the chip is collected by a single plastic optical fibre and sent to an amplified photodiode. The device was characterised by the implementation of the sandwich assay for CRP and PCT spiked in serum. Limit of quantifications of 4.5 and of 6 μg L-1 in serum solution were achieved for CRP and PCT, respectively.

  3. Optical Enhancement in Optoelectronic Devices Using Refractive Index Grading Layers.

    PubMed

    Lee, Illhwan; Park, Jae Yong; Gim, Seungo; Kim, Kisoo; Cho, Sang-Hwan; Choi, Chung Sock; Song, Seung-Yong; Lee, Jong-Lam

    2016-02-10

    We enhanced the optical transmittance of a multilayer barrier film by inserting a refractive index grading layer (RIGL). The result indicates that the Fresnel reflection, induced by the difference of refractive indices between Si(x)N(y) and SiO2, is reduced by the RIGL. To eliminate the Fresnel reflection while maintaining high transmittance, the optimized design of grading structures with the RIGL was conducted using an optical simulator. With the RIGL, we achieved averaged transmittance in the visible wavelength region by 89.6%. It is found that the optimized grading structure inserting the multilayer barrier film has a higher optical transmittance (89.6%) in the visible region than that of a no grading sample (82.6%). Furthermore, luminance is enhanced by 14.5% (from 10,190 to 11,670 cd m(-2) at 30 mA cm(-2)) when the grading structure is applied to organic light-emitting diodes. Finally, the results offer new opportunities in development of multilayer barrier films, which assist industrialization of very cost-effective flexible organic electronic devices. PMID:26800204

  4. Optical design of automotive headlight system incorporating digital micromirror device.

    PubMed

    Hung, Chuan-Cheng; Fang, Yi-Chin; Huang, Ming-Shyan; Hsueh, Bo-Ren; Wang, Shuan-Fu; Wu, Bo-Wen; Lai, Wei-Chi; Chen, Yi-Liang

    2010-08-01

    In recent years, the popular adaptive front-lighting automobile headlight system has become a main emphasis of research that manufacturers will continue to focus great efforts on in the future. In this research we propose a new integral optical design for an automotive headlight system with an advanced light-emitting diode and digital micromirror device (DMD). Traditionally, automobile headlights have all been designed as a low beam light module, whereas the high beam light module still requires using accessory lamps. In anticipation of this new concept of integral optical design, we have researched and designed a single optical system with high and low beam capabilities. To switch on and off the beams, a DMD is typically used. Because DMDs have the capability of redirecting incident light into a specific angle, they also determine the shape of the high or low light beam in order to match the standard of headlight illumination. With collocation of the multicurvature reflection lens design, a DMD can control the light energy distribution and thereby reinforce the resolution of the light beam. PMID:20676171

  5. Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points

    NASA Technical Reports Server (NTRS)

    Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2011-01-01

    An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.

  6. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    SciTech Connect

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  7. Nanomaterials for LightManagement in Electro-Optical Devices

    SciTech Connect

    Truong, Vo-Van; Singh, Jai; Tanemura, Sakae; Hu, Michael Z.

    2012-01-01

    In the past decade, nanostructured materials and nanoparticles have emerged as the necessary ingredients for electrooptical applications and enhancement of device performance, in particular by making use of the light management aspects of the nanomaterials. The application areas that are being transformed profoundly include smart coating devices (e.g., electrochromic, photochromic, and thermochromic devices), solar energy, and sensing. Despite the large volume of work in the past on smart coating devices, and in particular on electrochromic devices and thermochromic fenestrations, for optical transmission or reflection control, applications remain limited because of slow response time and nonuniformity in the case of large surfaces. Recent works in the field indicate that nanostructured electrochromic coatings would be an integral part of the solution to the above problem. One aspect that can thus be focused on would be the fabrication and characterization of the nanostructured smart coating materials and their compatibility with other layers in the overall smart coating device. In the area of solar photovoltaics, nanomaterials have been used in designing light-trapping schemes for inorganic as well as organic solar cells. One particular category of solar cells that has attracted much interest is the plasmonic solar cells in which metallic nanoparticles are incorporated, helping in enhancing their energy conversion efficiency. Nanostructured solar cells would eventually develop into a 'game changing' technology for making solar cells that are affordable and highly efficient, providing a sizeable alternative energy source for our ever-increasing energy needs. Sensors based on the optical properties of constituting nanostructures and nanoparticles also form a most interesting class of bio- and electrochemical sensing devices. The possibility of synthetizing nanoparticles and structures of specifically desired sizes and shapes has indeed opened a whole new range of

  8. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    PubMed

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions. PMID:21743540

  9. Optical connecting devices fabricated by self-written waveguide technology for smart optical interconnect

    NASA Astrophysics Data System (ADS)

    Enomoto, Tadayuki; Soeda, Yukinobu; Mikami, Osamu

    2014-03-01

    Recently the importance of optical interconnect is increasing particularly in board-to-board interconnection. The success of smart optical interconnects for practical use strongly depends on the development of sophisticated coupling technologies achieving both high coupling efficiency and easy alignment. One promising technology for solving these problems is self-written waveguide (SWW) method which uses light-curable resin. This method is flexible and may allow substantial advances in the practical application of optical interconnect technology. We fabricated a micro 90° light-path converter on the top of MT connector. Four channel SWWs are fabricated by irradiating a blue laser beam (406nm wavelength) from a multi-mode fiber in light-curable resin. The SWWs are covered by cladding resin. This converter is useful for connecting between fibers and an optical wiring board. We have further developed this fiber- SWW technology into a new technology we call the "Mask-Transfer SWW method". The Mask-Transfer SWW technology involves contact exposure of UV-curable resin through a photomask. Alignment of the photomask pattern with the target can be precisely accomplished by employing a conventional mask-aligner. We proposed a new Vgrooving method by applying the Mask-Transfer SWW method. V-grooves are a well-known technique for aligning optical fibers for coupling. Unlike the conventional methods and material, this new method has an advantage that Vgrooves can be easily fabricated precisely on various kinds of substrates as designed. Therefore, optical coupling between fibers and devices is achieved simply and efficiently. We believe that these devices will be a key for smart optical interconnects in near future.

  10. Integration of optical devices and nanotechnology for conducting genome research

    NASA Astrophysics Data System (ADS)

    Chung, Pei-Yu; Parag, Parekh; Zhu, Zhi; Chegini, Claudine; Schultz, Gregory; Tan, Weihong; Jiang, Peng; Batich, Christopher

    2011-06-01

    SPR based sensing techniques utilize a spectroscopy for transducing biomolecular binding events to variations in spectra. This label-free and real-time technique has widely applied for conducting biomedical research. In this study, we present a spectroscopy-based SPR system for monitoring binding between human serum albumin and nucleic acid library. Compared with conventional SPR technique, this novel system utilizes cost-effective nanostructured arrays and a portable UV-Vis spectrometer. These advantages enable a promising development of a portable analytical device for widespread applications. Meanwhile, multispectral analysis used here also helps increase the sensitivity, and thus transducing the binding event to optical signal efficiently. The result demonstrates that this cost-effective and portable system could be applied for a future application of selecting target aptamer. Moreover, we also present surface enhanced Raman spectroscopy (SERS) on the nanostructured arrays in a label-free approach. This integration of multiple spectroscopy technologies is utilized for conducting genome research efficiently.

  11. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  12. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  13. Devic's disease before Devic: Bilateral optic neuritis and simultaneous myelitis in a young woman (1874).

    PubMed

    Jarius, S; Wildemann, B

    2015-11-15

    Neuromyelitis optica (NMO, Devic's disease) is an often severely disabling disorder of the central nervous system (CNS) which mainly affects the optic nerves and spinal cord. NMO was long considered a clinical subform of multiple sclerosis (MS). In 2004, however, Lennon and colleagues described a novel autoantibody in NMO which targets aquaporin-4, the most abundant water channel in the CNS, and which was later shown to be directly pathogenic. This has led to the recognition of NMO as a distinct disease entity in its own right. While the history of 'classical' MS has been extensively studied, only little is known about the early history of NMO. The term neuromyelitis optica was coined in 1894 by Eugène Devic (1858-1930) and Fernand Gault (1873-1936), who were the first to provide a systematic description of that disorder. Here we re-present a very early description of a case of NMO by a Polish physician, Adolf Wurst, which appeared in 1876 in Przegląd Lekarski, one of the oldest Polish medical journals. This report predates Devic and Gault's seminal work on NMO by more than two decades. The patient, a 30-year-old woman, subacutely developed simultaneous bilateral optic neuritis with papilloedema and bilateral blindness and transverse myelitis with severe paraparesis, anaesthesia, and bladder and bowel dysfunction. At last follow-up, one year after onset, she had recovered except for a residual spastic gait and some visual deficit on the right side. Of note, this is the first known case of NMO in a Caucasian patient ever reported outside Western Europe. PMID:26303625

  14. Dye-modified nanochannel materials for photoelectronic and optical devices.

    PubMed

    Calzaferri, Gion; Li, Huanrong; Brühwiler, Dominik

    2008-01-01

    Artificial photonic antenna systems have been realised by incorporating organic dyes into zeolite L. The size and aspect ratio of the cylindrically shaped zeolite crystals can be tuned over a wide range, adding to the versatility of this host material. A 600 nm sized crystal, for example, consists of about 96 000 one-dimensional channels oriented parallel to the cylinder axis. Geometrical constraints imposed by the host structure lead to supramolecular organisation of the guests, allowing high concentrations of non- or only very weakly interacting dye molecules. A special twist is added to these systems by plugging the channel openings with a second type of fluorescent dye, a so-called stopcock molecule. The two types of molecules are precisely tuned to each other; the stopcocks are able to accept excitation energy from the dyes in the channels, but cannot pass it back. The supramolecular organisation of dyes in the zeolite channels corresponds to a first stage of organisation, allowing light-harvesting within the volume of a cylindrical crystal and radiationless energy transport to either the cylinder ends or centre. The second stage of organisation represents the coupling to an external acceptor or donor stopcock fluorophore at the channel entrances, which can then trap or inject electronic excitation energy. The third stage of organisation is realised by interfacing the material to an external device through a stopcock intermediate. We observed that electronic-excitation-energy transfer in dye-zeolite L materials occurs mainly along the channel axis and we have shown that macroscopically organised materials can be prepared. The new materials offer unique possibilities as building blocks for optical, electro-optical and sensing devices. PMID:18626875

  15. Optical devices in adverse environments; Proceedings of the Meeting, Cannes, France, Nov. 19, 20, 1987

    NASA Astrophysics Data System (ADS)

    Greenwell, Roger A.

    Recent advances in the design of fiber-optic devices, test equipment, optical sensors, and lasers for operation in hostile environments are discussed in reviews and reports. Topics examined include radiation effects on optical fibers, the effect of H2 treatment and water content on the recovery of undoped core fibers after pulsed and continuous irradiation, the NATO test program for optical fibers and components, alpha-irradiation damage to borosilicate glasses, high-reliability optical components for undersea light-wave systems, the behavior of Si optoelectronic components under gamma irradiation, optical devices and sensors of special-purpose fibers, and a fiber-optic microprobe for interferometric measurements in generators.

  16. High speed all-optical data processing in fast semiconductor and optical fiber based devices

    NASA Astrophysics Data System (ADS)

    Sun, Hongzhi

    Future generations of communication systems demand ultra high speed data processing and switching components. Conventional electrical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in optical domain is gaining more popularity. In this PhD thesis work, we proposed and demonstrated various schemes of all-optical Boolean logic gate at data rate as high as 80Gb/s by using semiconductor optical amplifier (SOA), SOA Mach-Zehnder interferometer (SOA-MZI), highly nonlinear fiber (HNLF) and optical fiber based components. With the invention of quantum dot (QD) based semiconductor devices, speed limit of all optical data processing has a chance to boost up to 250Gb/s. We proposed and simulated QD-SOA based Boolean functions, and their application such as shift register and pseudorandom bit sequence generation (PRBS). Clock and data recovery of high speed data signals has been simulated and demonstrated by injection lock and phase lock loop techniques in a fiber and SOA ring and an optical-electrical (OE) feedback loop.

  17. Novel optical devices based on the transmission properties of magnetic fluid and their characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Lv, Riqing; Zhang, Yuyan; Wang, Qi

    2012-09-01

    Magnetic fluid has many unique optical properties. It has numerous potential applications in developing optical devices because of its versatile optical properties. This paper summarizes the physical origins and control mechanisms of the MF transmission properties, and the related optical devices based on the transmission properties of magnetic fluid. In recent years, there are many applications in optical information communication and sensing technology, such as optical switches, tunable optical gratings, coarse wavelength-division multiplexing, magnetic-field sensors, current sensor. The qualitative and quantitative analysis about the physical configuration, the operating principle, and the characteristics of those optical devices are given. The valuable potential problems and the solutions that are related to optical properties and optical devices based on magnetic fluid are expounded in detail, and potential new types of MF-based optical devices are proposed. It can be concluded that the transmission properties of MF will be improved greatly, and the characteristics of present optical devices based on magnetic fluid will be made better continually and it will play an important role in the fields of optical information communication and sensing technology.

  18. An integrated semiconductor device enabling non-optical genome sequencing.

    PubMed

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-21

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome. PMID:21776081

  19. Indentation device for in situ Raman spectroscopic and optical studies

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.; Morris, D. J.; Cook, R. F.

    2012-12-01

    Instrumented indentation is a widely used technique to study the mechanical behavior of materials at small length scales. Mechanical tests of bulk materials, microscopic, and spectroscopic studies may be conducted to complement indentation and enable the determination of the kinetics and physics involved in the mechanical deformation of materials at the crystallographic and molecular level, e.g., strain build-up in crystal lattices, phase transformations, and changes in crystallinity or orientation. However, many of these phenomena occurring during indentation can only be observed in their entirety and analyzed in depth under in situ conditions. This paper describes the design, calibration, and operation of an indentation device that is coupled with a Raman microscope to conduct in situ spectroscopic and optical analysis of mechanically deformed regions of Raman-active, transparent bulk material, thin films or fibers under contact loading. The capabilities of the presented device are demonstrated by in situ studies of the indentation-induced phase transformations of Si thin films and modifications of molecular conformations in high density polyethylene films.

  20. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  1. A new repeatable, optical writing and electrical erasing device based on photochromism and electrochromism of viologen

    NASA Astrophysics Data System (ADS)

    Gao, Li-ping; Wei, Jian; Wang, Yue-chuan; Ding, Guo-jing; Yang, Yu-lin

    2012-08-01

    New optical writing and electrical erasing devices have been successfully fabricated that exploit the photochromism and electrochromism of viologen. In a preliminary study, both the structures of viologen and device were investigated in detail by UV-vis spectra in order to confirm their effects on the optical writing and electrical erasing performances of corresponding devices. For sandwiched, single and complementary devices based on benzyl viologen (BV 2+), only optical writing can be performed, not electrical erasing operations, which indicated these devices cannot realize optical information rewriting. For single and complementary devices based on styrene-functional viologen (V BV 2+) and acrylic-functional viologen (ACV 2+), optical writing and electrical erasing operations can be reversibly performed and optical information rewriting realized. It is clear that single devices based on V BV2+ and ACV2+ possess better performance accompanied with contrast without significant degradation and bleaching times and without significant deterioration over 10 repeated writing/erasing cycles. Furthermore, we put forward possible mechanisms for sandwiched, single and complementary devices based on V BV2+ and ACV2+ for the optical writing and electrical erasing operations. This study provides a new strategy to design optical writing and electrical erasing devices to realize optical information rewriting.

  2. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  3. All-optical devices based on carrier nonlinearities for optical filtering and spectral equalization

    NASA Astrophysics Data System (ADS)

    Burger, Johan Petrus

    InGaAsP-based quantum wells can display nonlinear refractive index changes of ~0.1 near the band-edge for intrawell carrier density changes of 1 × 1018cm-3, due to effects like bandfilling and the plasma effect, which make these materials promising for the realization of all-optical signal processing devices, as demonstrated here. A novel single passband filter with sub-gigahertz bandwidth and greater than 40nm of tunability was experimentally demonstrated. The filter uses the detuning characteristics of nearly degenerate four-wave mixing in a broad area semiconductor optical amplifier to obtain frequency selectivity. The key to this demonstration was the spatial separation of the filtered signal from the input signal, based on their different propagation directions. An analysis of an analogous integrated optic dual-order mode nonlinear mode-converter, with integrated mode sorters which separate the signal from the interacting modes, was also undertaken. This device is promising as a filter, a wavelength converter, notch filter, and a wavelength recognizing switch. Novel ways to prevent carrier diffusion, which washes out the nonlinear grating, were suggested. It is important to have a large mutual overlap to modal overlap ratio of the two interacting modes on the nonlinear medium, because the mixing efficiency scales as the fourth power of this number. Three types of integrated optic limiters (based on Kerr- like nonlinearities) namely an all-optical cutoff modulator, a nonlinear Y-branch and an interferometer with an internal Kerr element, were theoretically investigated. A beam propagation program, which can solve the propagation of an optical field in a semiconductor in the presence of carrier diffusion, was developed for the numerical analysis of these structures. A negative feedback mechanism was identified in the Y-branch devices and a new limiting configuration was discovered in a Y- branch with a selectively placed defocusing nonlinearity. Dichroic

  4. Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Xue (Michael)

    2006-07-01

    Recent advances in optoelectronic devices require sophisticated optical simulation and modeling. These tiny semiconductor device structures, such as semiconductor lasers and light emitting diodes (LED), not only need detailed electrical computation, such as band structure, carrier transportation, and electron-hole recombination under different external voltages, but also require comprehensive optical modeling, such as photon generation and propagation. Optical modeling also includes waveguide structure calculations, guided mode and leakage mode identification, as well far-field pattern prediction using optical ray tracing. In modeling semiconductor lasers, light emission and propagation can be treated using the single mode of wave optics, the so-called photon propagation equation coupled with carrier transport equations. These differential equations can be numerically solved using the Finite Difference Method (FDM). In the LED modeling, the main tools are based on optical ray tracing, and photons are treated as light emissions with random directions and polarizations. Optical waveguide theory is used to qualitatively analyze photon emissions inside a LED chip, and helps to design the LED device structure. One important area of semiconductor laser modeling is the optical simulation of the wavelength converter based on semiconductor optical amplifiers (SOA). This wavelength converter is a critical device in optical communication, and it can copy information from one wavelength to anther through cross-gain modulation. Some numerical methods have been developed to model the wavelength conversion. In these methods, solutions are found by solving differential equations in the time domain using FDM. In all previous models, the waveguide internal loss is assumed uniform across the cavity of the SOA, or the gain coefficient is based on the polynomial approximation method, i.e., the gain coefficient is assumed proportional to the difference between the carrier and

  5. Design of 3D isotropic metamaterial device using smart transformation optics.

    PubMed

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology. PMID:26368165

  6. Fabrication and performance of contamination free individual single-walled carbon nanotube optical devices.

    PubMed

    Zhou, Yuxiu; Cheng, Rong; Liu, Jianqiang; Li, Tie

    2014-06-01

    Contamination free individual single-walled carbon nanotube (SWCNT) optical devices are fabricated using a hybrid method in the purpose of increase sensitivity as well as further understanding the sensing mechanism. The devices were tested in vacuum to avoid contamination. Three typical devices are discussed comparatively. Under infrared lamp illumination, photovoltaic and photoconductive properties are revealed in device A and B respectively, while device C shows no detectable signal. The photoresponse of device B reaches 108% at 78 K, much larger than that of horizontally aligned or network carbon nanotube devices, indicating priority of the individual nanotube device structure. Interestingly, the temperature characteristics of device A and B are just the opposite. The individual SWCNT devices hold promise in high performance and low cost optical sensors as well as nano-scale solar cells. PMID:24738376

  7. Athermalization of resonant optical devices via thermo-mechanical feedback

    DOEpatents

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  8. Study of Utilizing Static Photoelastic Effect in Integrated Optical Devices

    NASA Astrophysics Data System (ADS)

    Tang, Zhi-Cheng

    Channel waveguides have been produced in LiNbO _3, LiTaO_3, BaTiO_3, and BSTN ferroelectric crystals by depositing thick SiO_2 films at an elevated temperature and patterning them by combination of reactive ion etching and wet etching. Propagation losses of 0.8 dB/cm and 0.9 dB/cm for TE- and TM- polarization, respectively, were achieved for LiNbO_3 at 0.633 μm wavelength, while insertion losses of 8.4 dB and 3.3 dB for TE- and TM-polarization, respectively, were obtained for a waveguide in z-cut BSTN of 5 mm in length at 1.3 mu m wavelength. Electrooptic modulations have been demonstrated for LiNbO_3 using coplanar electrodes and for BSTN using both coplanar and vertical electrodes. Tunable guided-wave TErightarrow TM mode converters with 98% efficiency have been obtained using a periodic, strain inducing SiO _2 film on a zinc indiffused LiTaO _3 waveguide. The conversion is highly wavelength selective, with a spectral width of 9 nm in a device with interactive length of 5.4 mm. Thermal and electro-optic tuning of the center wavelength were demonstrated. A polarization -independent electrooptically tunable wavelength filter using passive polarization splitters and strain-induced polarization mode couplers in LiTaO_3 has also been realized. Tuning of the center wavelength from 655 nm to 692 nm was demonstrated. An optical bandwidth (FWHM) of 11 nm and a tuning rate of 0.4 nm/v were obtained.

  9. Determining electro-optic coefficients for lithium tantalate using an electro-optic scanning device

    SciTech Connect

    Casson, J. L.; Gahagan, K. T.; Robinson, J. M.; Scrymgeour, D. A.; Jain, R.

    2001-01-01

    We demonstrate a ferroelectric optical device based on single crystal LiTaO{sub 3} that can scan a laser beam from the visible to the infrared. It utilizes the electro-optic effect in the ferroelectric that has potentially high intrinsic response times of GHz. There are many applications to such scanning devices in the infrared such as optical switching, spectrometry, microscopy, and sensing. Lithium tantalate has two ferroelectric polarization states that are antiparallel (180{sup o}) to each other. The domain states can be reversed by applying an electric field of {approx}21 kV/mm at room temperature. By reversing the domain structure in the crystal, we can create domains in the crystal of almost any desired shape. By creating prism-shaped domain, we can create a ferroelectric deflector or scanner by applying either static or sweeping voltages across the crystal. This scanner is capable of scanning wavelengths from 0.4-5 {micro}m. The scanning performance varied from a total deflection angle of 13.38{sup o} at 1558 nm to 16.18{sup o} at 632.8 nm. Since the amount of deflection of the incoming light is determined by the applied voltage, the electro-optic coefficient and other fixed quantities, by measuring the deflection angle as a function of wavelength, the dispersion of the electro-optic coefficient in lithium tantalate can be determined. In these experiments, the scanner was characterized from the visible (632.8 nm) to midinfrared (1558 nm). Both extraordinary and the ordinary polarizations of light were used, in order to determine the electro-optic coefficients, r{sup 33} and r{sup 31}. Except for the values at 632.8 nm, these values of the electro-optic coefficients have not been previously reported. For lithium tantalate, r{sup 33} at 632.8 nm is reported in the literature as 30.2 pm/V. We found that this decreases to 27.1 pm/V at 1558 nm. For the extraordinary polarization, r{sup 13} varied from 7.55 pm/V (632.8 nm) to 6.84 pm/V (1558 nm).

  10. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  11. FY 2014 LDRD Annual Report Project Summaries

    SciTech Connect

    Tomchak, Dena

    2015-02-01

    The FY 2014 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support future DOE missions and national research priorities. LDRD is essential to INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enahnces technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  12. Devices, components, and applications of low cost using polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lomer, Mauro; Baldwin-Olguin, Guillermo

    2004-10-01

    Low-cost optical devices, components a polymer optical fiber (POF) are demonstrated using technical of polished. Potentially low-cost components fabrication processes are described. Several components and devices are proposed for applications in comunications or industrial applications. Experimental results obtained with POF and diffraction grating are presented.

  13. Implantable micro-optical semiconductor devices for optical theranostics in deep tissue

    NASA Astrophysics Data System (ADS)

    Takehara, Hiroaki; Katsuragi, Yuji; Ohta, Yasumi; Motoyama, Mayumi; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Optical therapy and diagnostics using photoactivatable molecular tools are promising approaches in medical applications; however, a method for the delivery of light deep inside biological tissues remains a challenge. Here, we present a method of illumination and detection of light using implantable micro-optical semiconductor devices. Unlike in conventional transdermal light delivery methods using low-energy light (>620 nm or near-infrared light), in our method, high-energy light (470 nm) can also be used for illumination. Implanted submillimeter-sized light-emitting diodes were found to provide sufficient illumination (0.6-4.1 mW/cm2), and a complementary metal-oxide-semiconductor image sensor enabled the detection of fluorescence signals.

  14. On the origin of contact resistances in graphene devices fabricated by optical lithography

    NASA Astrophysics Data System (ADS)

    Chavarin, Carlos Alvarado; Sagade, Abhay A.; Neumaier, Daniel; Bacher, Gerd; Mertin, Wolfgang

    2016-02-01

    The contact resistance is a key bottleneck limiting the performance of graphene-based electronic and optoelectronic devices. Using a combined approach of atomic force microscopy patterning, Kelvin probe force microscopy and micro-Raman mapping, we study the influence of optical lithography resists on the contact resistance in graphene devices. We find that devices fabricated by optical lithography show a significantly larger contact resistance compared to devices produced by electron beam lithography using polymethylmethacrylate as resist. This difference is attributed to a 3-4-nm-thick residual layer remaining in between the contact metal and the graphene after optical lithography.

  15. Coherent optical noise suppression device. [using spatial filtering

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1974-01-01

    The present work describes a scheme for a noise suppression system to be used with an afocal coherent optical data processor. The noise averaging scheme is based on the simple principle of moving input and output film planes together during exposure; the noise pattern remains stationary while the desired (filtered) image moves through it. The noise suppression system consists of a drive motor, right-angle gear box, reversing gear assemblage, right-angle gear drive, and micrometer adjusting translation tables. The device was tested by using a Sayce target containing fundamental spatial frequencies from 5 lines/mm to 100 lines/mm as the input signal. The output was photographed on Pan-X 35-mm film with and without the noise suppression system in operation. Microdensitometer scans of the exposed output film show that without noise averaging, resolution is good to about 80 lines/mm, while with noise averaging, it is good to about 35 lines/mm. A brief analysis of errors in the mechanical parts of the system reponsible for the upper limit of resolution is presented.

  16. Small form factor (SFF) optical data storage devices for mobile applications

    NASA Astrophysics Data System (ADS)

    Park, Young-Pil; Park, No-Cheol; Kim, Chul-Jin

    2005-09-01

    There are two basic requirements in the field of optical storage data devices. The first is the demand for the improvement of memory capacity to manage the increased data capacity in personal and official purposes. The second is the demand for small sized optical storage devices for mobile multimedia digital electronics, including digital camera, PDA and mobile phones. To summarize, for the sake of mobile applications, it is necessary to develop optical data storage devices which have simultaneously a large capacity and a small size. Small form factor optical disk drive (SFF ODD) is expected to become a good match for mobile applications due its advantages over other devices in cost and removability. Nowadays, many companies and research institutes including universities cooperate together in the research on SFF ODD and other related optical storage devices. Due such active researches, it is expected that SFF ODD will be widely used in mobile applications in the very near future.

  17. Functional optical devices using highly ordered hole array architectures of anodic porous alumina

    NASA Astrophysics Data System (ADS)

    Masuda, Hideki; Kondo, Toshiaki; Nishio, Kazuyuki

    2011-12-01

    The fabrication of highly ordered anodic porous alumina and its application to the fabrication of several types of functional optical devices are described. Highly ordered hole array structures of anodic porous alumina, which were formed under appropriate anodizing conditions, were applied as a starting structure in several processes for the fabrication of ordered structures used for the functional optical devices. On the basis of these processes, twodimensional photonic crystals and localized surface plasmonic devices were prepared.

  18. Photonic crystal planar waveguide devices exploiting the thermo-optic effect (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard M.; Chong, Harold; Camargo, Edilson; Ciminelli, Caterina; Armenise, Mario

    2005-07-01

    Photonic crystal devices are now being produced for a variety of functions-and the need to provide thermal control of the behaviour suggests the use of thermo-optic effects. It has emerged that thermo-optic effects can provide useful modulation, switching and tuning capability. Future trends indicate fast, low-power, thermo-optically operated photonic crystal and photonic wire devices-and the possibility of simultaneous athermal characteristics.

  19. Optical device for continuous monitoring of DDT residues

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Sheikh, Sohail H.

    1997-05-01

    A two step filtration based fluorometric device for continuous measurement of DDT residues is developed. The device which exploits the native fluorescence of DDT can be easily adopted to a commercial spectrofluorometer. The device was tested for its use in measuring DDT contamination in soil, potato peel and orange juice extracts and provides a detection limit approximately 1 (mu) M.

  20. Optical polarizing neutron devices designed for pulsed neutron sources

    SciTech Connect

    Takeda, M.; Kurahashi, K.; Endoh, Y.; Itoh, S.

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  1. Refractive Results Using a New Optical Biometry Device

    PubMed Central

    Aktas, Serdar; Aktas, Hatice; Tetikoglu, Mehmet; Sagdık, Hacı Murat; Özcura, Fatih

    2015-01-01

    Abstract The aim of the study was to compare the measurements of optical (AL-Scan; Nidek Co., Ltd.) and ultrasonic (Echo Scan US-800; Nidek Co., Ltd.) biometry devices and to assess refractive results after cataract surgery. Eighty-one cataractous eyes of 81 patients were included in this study. Biometry was performed using the AL-Scan and an ultrasonic biometer (USB). Axial length (AL), keratometry (K) data, and intraocular lens (IOL) power calculations using the SRK/T formula were compared. Bland–Altman analysis was used to assess the extent of agreement between AL-Scan and USB data in terms of AL measurement and IOL power calculation. The K measurements of the AL-Scan were compared to autorefractor data (Canon Autorefractor RK-F1). The AL-Scan assessed the AL as longer (average difference 0.06 ± 0.18 mm; ICC = 0.987; P < 0.001) and the IOL power as greater (average difference 0.19 ± 0.66 D; ICC = 0.964; P < 0.001) than the USB. The AL-Scan also measured average K values (average difference 0.25 ± 0.25 D; ICC = 0.985; P < 0.001) greater than those given by the autorefractor. The postoperative mean absolute error was +0.30 ± 0.04 D (minimum: −0.51 D, maximum +1.04 D). The postoperative mean K value change was 0.36 ± 0.29 D (P < 0.05). The differences between measurements afforded by the AL-Scan and USB may be clinically acceptable. Keratometric changes that develop after cataract operations compromise the attainment of good refractive outcomes. PMID:26632900

  2. Laser chemical etching of waveguides and quasi-optical devices

    NASA Astrophysics Data System (ADS)

    Drouet D'Aubigny, Christian Yann Pierre

    2003-11-01

    The terahertz (THz) frequency domain, located at the frontier of radio and light, is the last unexplored region of the electromagnetic spectrum. As technology becomes available, THz systems are finding applications to fields ranging all the way from astronomical and atmospheric remote sensing to space telecommunications, medical imaging, and security. In Astronomy the THz and far infrared (IR) portion of the electromagnetic spectrum (λ = 300 to 10 μm) may hold the answers to countless questions regarding the origin and evolution of the Universe, galaxy, star and planet formation. Over the past decade, advances in telescope and detector technology have for the first time made this regime available to astronomers. Near THz frequencies, metallic hollow waveguide structures become so small, (typically much less than a millimeter), that conventional machining becomes extremely difficult, and in many cases, nearly impossible. Laser induced, micro-chemical etching is a promising new technology that can be used to fabricate three dimensional structures many millimeters across with micrometer accuracy. Laser micromachining of silicon possesses a significant edge over more conventional techniques. It does not require the use of masks and is not confined to crystal planes. A non-contact process, it eliminates tool wear and vibration problems associated with classical milling machines. At the University of Arizona we have constructed the first such laser micromachining system optimized for the fabrication of THz and far IR waveguide and quasi-optical components. The system can machine structures up to 50 mm in diameter, down to a few microns accuracy in a few minutes and with a remarkable surface finish. A variety of THz devices have been fabricated using this technique, their design, fabrication, assembly and theoretical performance is described in the chapters that follow.

  3. Theoretical design of photonic crystal devices for integrated optical circuits

    NASA Astrophysics Data System (ADS)

    Mekis, Attila

    2000-12-01

    In this thesis we investigate novel photonic crystal devices that can be used as building blocks of all- optical circuits. We contrast the behavior of light in photonic crystal systems and in their traditional counterparts. We exhibit that bends in photonic crystals are able to transmit light with over 90% efficiency for large bandwidths and with 100% efficiency for specific frequencies. In contrast to traditional waveguides, bound states in photonic crystal waveguides can also exist in constrictions and above the cutoff frequency. We discuss how to lower reflections encountered when photonic crystal waveguides are terminated, both in an experimental setup as well as in numerical simulations. We show that light can be very efficiently coupled into and out of photonic crystal waveguides using tapered dielectric waveguides. In time-domain simulations of photonic crystal waveguides, spurious reflections from cell edges can be eliminated by terminating the waveguide with a Bragg reflector waveguide. We demonstrate novel lasing action in two-dimensional photonic crystal slabs with gain media, where lasing occurs at saddle points in the band structure, in contrast to one-dimensional photonic crystals. We also design a photonic crystal slab with organic gain media that has a TE-like pseudogap. We demonstrate that such a slab can support a high- Q defect mode, enabling low threshold lasing, and we discuss how the quality factor depends on the design parameters. We also propose to use two- dimensional photonic crystal slabs as directionally efficient free-space couplers. We draft methods to calculate the coupling constant both numerically and analytically, using a finite-difference time-domain method and the volume current method with a Green's function approach, respectively. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  4. Development of an optical parallel logic device and a half-adder circuit for digital optical processing

    NASA Technical Reports Server (NTRS)

    Athale, R. A.; Lee, S. H.

    1978-01-01

    The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.

  5. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  6. Hand-held based near-infrared optical imaging devices: a review.

    PubMed

    Erickson, Sarah J; Godavarty, Anuradha

    2009-06-01

    Near-infrared (NIR) optical imaging is a non-invasive and non-ionizing modality that is emerging as a diagnostic/prognostic tool for breast cancer and other applications related to functional brain mapping. In recent years, hand-held based optical imaging devices are developed for clinical translation of the technology, as opposed to the various bulky optical imagers available. Herein, we review the different hand-held based NIR devices developed to date, in terms of the measurement techniques implemented (continuous wave, time or frequency-domain), the imaging methods used, and the specific applications towards which they were applied. The advantages and disadvantages of the different hand-held optical devices are described and also compared with respect to a novel hand-held based device currently developed in our Optical Imaging Laboratory towards three-dimensional tomography studies. PMID:19054704

  7. Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR)

    NASA Astrophysics Data System (ADS)

    Komatsu, Koji; Fujihashi, Kazuhiko; Okutsu, Masaru

    2002-09-01

    Nippon Telegraph and Telephone Corporation (NTT)has developed a device (BOTDR)for measuring the strain occurring in optical fibers as a means of monitoring the condition of optical fiber telecommunications cables.The authors are promoting development of a system that uses this device to measure and monitor structural and ground deformation. This paper first introduces the measurement principle of the strain measurement method using optical fibers (BOTDR method).It then presents case studies of application to the deformation of telecommunications tunnels,ground subject to landslides and so on,and also an outline of an automatic measuring system.

  8. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    SciTech Connect

    Sosnowchik, Brian D.; Galambos, Paul C.; Hendrix, Jason R.; Zwolinski, Andrew

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  9. An Optically Controllable Transformation-dc Illusion Device.

    PubMed

    Jiang, Wei Xiang; Luo, Chen Yang; Ge, Shuo; Qiu, Cheng-Wei; Cui, Tie Jun

    2015-08-19

    The concept of multifunctional transformation-dc devices is proposed and verified experimentally. The functions of dc metamaterials can be remotely altered by illuminating with visible light. If the light-induced dc illusion effect is activated, the electrostatic behavior of the original object is perceived as multiple equivalent objects with different pre-designed geometries. The experimental verification of the functional device makes it possible to control sophisticated transformation-dc devices with external light illumination. PMID:26177597

  10. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Scholtz, Lubomír.; Müllerová, Jarmila

    2015-01-01

    Fiber Bragg gratings (FBGs) are novel and promising devices for all-optical switching, ADD/DROP multiplexers, AND gates, switches, all-optical memory elements. Optical switching based on optical Kerr effects induced with high pump laser light incident on the FBGs cause the change of spectral characteristics of grating depending on the incident power. In this paper numerical studies of the nonlinear FBGs are presented. Optical switching based on the optical bistability in nonlinear chalcogenide FBGs is investigated. The spectral response of nonlinear FBGs is discussed from theoretical viewpoint. The simulations are based on the nonlinear coupled mode theory.