Science.gov

Sample records for optical fiber gratings

  1. Fiber optic diffraction grating maker

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  2. Fiber optic diffraction grating maker

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  3. Measuring Bragg gratings in multimode optical fibers.

    PubMed

    Schmid, Markus J; Müller, Mathias S

    2015-03-23

    Fiber Bragg gratings (FBG) in multimode optical fibers provide a means for cost-effictive devices resulting in simplified and robust optic sensor systems. Parasitic mode effects in optical components of the entire measurement system strongly influence the measured multi-resonance reflection spectrum. Using a mode transfer matrix formalism we can describe these complex mode coupling effects in multimode optical systems in more detail. We demonstrate the accordance of the theory by two experiments. With this formalism it is possible to understand and optimize mode effects in multimode fiber optic systems. PMID:25837146

  4. Magneto-Optic Field Coupling in Optical Fiber Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P. (Inventor); Mohanchandra, Panduranga K. (Inventor); Emmons, Michael C. (Inventor); Richards, William Lance (Inventor)

    2016-01-01

    The invention is a magneto-optic coupled magnetic sensor that comprises a standard optical fiber Bragg grating system. The system includes an optical fiber with at least one Bragg grating therein. The optical fiber has at least an inner core and a cladding that surrounds the inner core. The optical fiber is part of an optical system that includes an interrogation device that provides a light wave through the optical fiber and a system to determine the change in the index of refraction of the optical fiber. The cladding of the optical fiber comprises at least a portion of which is made up of ferromagnetic particles so that the ferromagnetic particles are subject to the light wave provided by the interrogation system. When a magnetic field is present, the ferromagnetic particles change the optical properties of the sensor directly.

  5. Optical characteristics of bending multimode superstructure fiber gratings.

    PubMed

    Fu, Ming-Yue; Liu, Wen-Fung; Sheng, Hao-Jan; Ai, Lung; Peng, Hsin-Wen; Tien, Chuen-Lin

    2009-09-01

    The dispersion characteristics of superstructure fiber gratings written in multimode fibers and side-polished multimode fibers are investigated at different bending curvatures. The experimental results show that the group time delay in multimode superstructure fiber gratings can be tuned more easily than that of superstructure gratings in single-mode fiber. This method can provide tunable dispersion of superstructure fiber gratings by controlling the bending curvatures for application in dispersion compensators, fiber sensors, or suitable optical filters of optical communication systems. PMID:19724306

  6. Theory of Fiber Optical Bragg Grating: Revisited

    NASA Technical Reports Server (NTRS)

    Tai, H.

    2003-01-01

    The reflected signature of an optical fiber Bragg grating is analyzed using the transfer function method. This approach is capable to cast all relevant quantities into proper places and provides a better physical understanding. The relationship between reflected signal, number of periods, index of refraction, and reflected wave phase is elucidated. The condition for which the maximum reflectivity is achieved is fully examined. We also have derived an expression to predict the reflectivity minima accurately when the reflected wave is detuned. Furthermore, using the segmented potential approach, this model can handle arbitrary index of refraction profiles and compare the strength of optical reflectivity of different profiles. The condition of a non-uniform grating is also addressed.

  7. Demountable connection for polymer optical fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Abang, Ada; Webb, David J.

    2012-08-01

    The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.

  8. Optical coupling between a long-period fiber grating and a parallel tilted fiber Bragg grating.

    PubMed

    Liu, Yunqi; Liu, Qing; Chiang, Kin Seng

    2009-06-01

    We experimentally demonstrate the contradirectional optical coupling between two parallel fibers that contain a long-period fiber grating and a tilted fiber Bragg grating, respectively. Strong coupling occurs between the cladding modes of the same order over the overlapped resonance bands of the two gratings. By optimizing the coupling conditions, we achieve a peak coupling efficiency of approximately 80% at approximately 1,534 nm with a 3 dB bandwidth of approximately 0.12 nm and a side-mode suppression ratio of approximately 16 dB, regardless of which fiber light is launched into. This coupler configuration can be explored for the development of narrow-band all-fiber optical components. PMID:19488162

  9. Multiplexing of fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Chan, Kok Cheung Peter

    2000-11-01

    The main objective of this project was to develop a novel technique for multiplexing fiber Bragg grating sensors for strain measurements. Multiplexing is a very important issue for fiber Bragg grating sensors, as it allows them to be used for distributed sensing where their greatest impact is anticipated. Three types of multiplexed fiber Bragg grating sensor system prototypes were developed in this work. Most effort was devoted to a frequency-modulated continuous wave technique for multiplexing fiber Bragg grating sensors. A detailed mathematical analysis of the frequency-modulated continuous wave multiplexing technique was performed. It was identified that the technique can be used to multiplex up to 32 fiber Bragg grating sensors of the same nominal Bragg wavelength with a theoretical crosstalk performance of below -48 dB. This level of crosstalk corresponds to a wavelength detected error of well below 1 pm if fiber Bragg gratings having a bandwidth of around 0.2 nm are used. A few hundreds of sensors could be multiplexed by combining the frequency-modulated continuous wave technique with the well known wavelength-division-multiplexing technique. The practical factors which limit the performance, including the effect of biasing from the optimal working condition and the effect of non-ideal frequency sweeping intensity modulation, were investigated. The system performance, in terms of power budget and inter-sensor crosstalk for a serial and parallel architecture was also determined. A series of experiments were carried out to verify the principle of operation and to study the effects arising from the various practical performance limiting factors and from different network architectures. A three sensor system was experimentally demonstrated with -30 dB crosstalk level and with 2 μɛ resolution in terms of root-mean-square strain value. The system performance was found to be limited by the residual amplitude modulation due to the non-ideal frequency response of

  10. Fiber optical Bragg grating sensors embedded in CFRP wires

    NASA Astrophysics Data System (ADS)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  11. Fabrication of Fiber Optic Grating Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Wang, Ying (Inventor); Sharma, Anup (Inventor); Grant, Joseph (Inventor)

    2005-01-01

    An apparatus and method for forming a Bragg grating on an optical fiber using a phase mask to diffract a beam of coherent energy and a lens combined with a pair of mirrors to produce two symmetrical virtual point sources of coherent energy in the plane of the optical fiber. The two virtual light sources produce an interference pattern along the optical fiber. In a further embodiment, the period of the pattern and therefore the Bragg wavelength grating applied to the fiber is varied with the position of the optical fiber relative the lens.

  12. Automated flexure testing of axially rotated optical fiber gratings

    NASA Astrophysics Data System (ADS)

    Bachim, B. L.; Gaylord, T. K.

    2002-10-01

    The design and performance of an automated system for flexure testing of optical fiber gratings is described. In addition to flexing (bending) a fiber grating through a specified curvature range, the system can change the axial rotational orientation of the grating relative to the plane of curvature. Flexure is accomplished by holding the grating against a smooth plastic platform. A linear stage deflects the center of the pinned platform to create a curved surface. Two small weights, hanging on the optical fiber, hold the fiber grating against the curved platform and provide constant tension on the optical fiber over the entire range of curvatures. The fiber grating is axially rotated to a different orientation by returning the platform to zero curvature, removing the weights from the optical fiber, and rotating the optical fiber about its axis using a pair of rotation stages. After replacing the weights on the optical fiber, flexure testing resumes at the new axial rotational orientation. The grating transmission spectrum during flexure is monitored with a broadband source and optical spectrum analyzer. All of these steps are done in an automated fashion (unattended) under computer program control. The testing system allows complete characterization of the fiber grating response for curvatures from 0 to 4 m-1 and for axial rotational orientations from 0° to 360°. Use of this automated test fixture eliminates the need for human intervention during the measurements and greatly decreases the testing time while still allowing complete characterization of the flexure response with axial rotational orientation as a parameter. Additional advantages of the testing system include an absolute zero curvature starting position, an absence of hysteresis effects, and accurate frictionless rotation.

  13. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  14. Security System Responsive to Optical Fiber Having Bragg Grating

    NASA Technical Reports Server (NTRS)

    Gary, Charles K. (Inventor); Ozcan, Meric (Inventor)

    1997-01-01

    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel.

  15. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  16. Fiber optic security seal including plural Bragg gratings

    DOEpatents

    Forman, Peter R.

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  17. Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers

    PubMed Central

    Tu, Haohua; Liang, Xing; Marks, Daniel L.; Boppart, Stephen A.

    2010-01-01

    A localized long-period fiber grating emerges in a silica optical fiber transmitting femtosecond pulse-induced supercontinuum. Simultaneously, a specific higher-order fiber cladding mode associated with the grating gains amplification at the expense of the fiber core mode. The grating has a period dependent on the dielectric structure of the fiber and is therefore classified as a self-organized structure. PMID:19252587

  18. Fiber optic Bragg grating sensors embedded in GFRP rockbolts

    NASA Astrophysics Data System (ADS)

    Frank, Andreas; Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.

    1999-05-01

    Rockbolt anchors for tunnel or mine roofs are key elements during construction and operation. We report on the fabrication of glass fiber reinforced polymer (GFRP) rockbolts with embedded fiber optical Bragg grating sensors and their first field application in a test tunnel. Optical fibers and in-fiber Bragg grating sensors were embedded in GFRP rockbolts during a continuously ongoing pultrusion process on an industrial production machine. Depending on their outer diameter the rods equipped with fiber sensors serve as measuring rockbolts or as extensometric sensors for the motion of boulders in the tunnel roof. The adhesion and force transfer of different fiber coatings were tested by push-out experiments. By temperature and strain cycle tests the performance of the rockbolt sensors was evaluated. We will present these results and the measurements made during a first installation of fiber optical rockbolt sensors in a tunnel.

  19. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  20. Monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  1. Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing

    NASA Technical Reports Server (NTRS)

    Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram

    2001-01-01

    Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.

  2. Graphene-controlled fiber Bragg grating and enabled optical bistability.

    PubMed

    Gan, Xuetao; Wang, Yadong; Zhang, Fanlu; Zhao, Chenyang; Jiang, Biqiang; Fang, Liang; Li, Dongying; Wu, Hao; Ren, Zhaoyu; Zhao, Jianlin

    2016-02-01

    We report a graphene-assisted all-optical control of a fiber Bragg grating (FBG), which enables in-fiber optical bistability and switching. With an optical pump, a micro-FBG wrapped by graphene evolves into chirped and phase-shifted FBGs, whose characteristic wavelengths and bandwidths could be controlled by the pump power. Optical bistability and multistability are achieved in the controlled FBG based on a shifted Bragg reflection or Fabry-Perot-type resonance, which allow the implementation of optical switching with an extinction ratio exceeding 20 dB and a response time in tens of milliseconds. PMID:26907434

  3. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Hu, X.; Sáez-Rodríguez, D.; Bang, O.; Webb, D. J.; Caucheteur, C.

    2014-05-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed.

  4. Hydrogen loading to the optic fibers for fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Xiao, Chun; Zhang, Wen-yu; Zhu, Yuan; Pan, Zhi-yong

    2014-12-01

    In this paper, fibers with different depths of hermetically coated carbon are hydrogen loaded and radiated, and it's found that too thick of carbon layer around fiber can't bring best radiation-resistant properties, because the thick carbon layer would make the entering of hydrogen difficult although it can help to stop the hydrogen escaping. We also research the duration of saturated hydrogen loading under the temperature of 60°C and 100°C respectively, and it's found that after 120h and 48h, the fibers' photo sensitivities tend to be flat. We also reload hydrogen into the fibers which have been loaded once, and these fibers are etched then, this help us to deep understand the mechanism of hydrogen loading for the fiber gratings.

  5. An optical fiber Bragg grating tactile sensor

    NASA Astrophysics Data System (ADS)

    Cowie, Barbara; Allsop, Thomas; Williams, John; Webb, David; Bennion, Ian; Fisher, Matthew

    2007-05-01

    Tactile sensors are needed for many emerging robotic and telepresence applications such as keyhole surgery and robot operation in unstructured environments. We have proposed and demonstrated a tactile sensor consisting of a fibre Bragg grating embedded in a polymer "finger". When the sensor is placed in contact with a surface and translated tangentially across it measurements on the changes in the reflectivity spectrum of the grating provide a measurement of the spatial distribution of forces perpendicular to the surface and thus, through the elasticity of the polymer material, to the surface roughness. Using a sensor fabricated from a Poly Siloxane polymer (Methyl Vinyl Silicone rubber) spherical cap 50 mm in diameter, 6 mm deep with an embedded 10 mm long Bragg grating we have characterised the first and second moment of the grating spectral response when scanned across triangular and semicircular periodic structures both with a modulation depth of 1 mm and a period of 2 mm. The results clearly distinguish the periodicity of the surface structure and the differences between the two different surface profiles. For the triangular structure a central wavelength modulation of 4 pm is observed and includes a fourth harmonic component, the spectral width is modulated by 25 pm. Although crude in comparison to human senses these results clearly shown the potential of such a sensor for tactile imaging and we expect that with further development in optimising both the grating and polymer "finger" properties a much increased sensitivity and spatial resolution is achievable.

  6. Spectrometer with CMOS demodulation of fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Christiansen, Martin Brokner

    A CMOS imager based spectrometer is developed to interrogate a network containing a large number of Bragg grating sensors. The spectrometer uses a Prism-Grating- Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the spot can be determined by finding the center of the spot produced. The use of a randomly addressable CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a low sampling rate. However, the use of a CMOS imager leads to several unique problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, a long pixel time constant, and software issues. The expected capabilities of the CMOS imager based spectrometer are determined with a theoretical model. The theoretical model tests three algorithms for determining the center of the spot: single row centroid, single row parabolic fit, and entire spot centroid. The theoretical results are compared to laboratory test data and field test data. The CMOS based spectrometer is capable of interrogating many optical fibers, and in the configuration tested, the fiber bundle consisted of 23 fibers. Using this system, a single fiber can be interrogated from 778 nm to 852 nm at 2100 Hz or multiple fibers can be interrogated over the same wavelength so that the total number of fiber interrogations is up to 2100 per second. The reflected Bragg wavelength can be determined within +/-3pm, corresponding to a +/-3μɛ uncertainty.

  7. Fiber optic anemometer based on metal infiltrated microstructured optical fiber inscribed with Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Gao, Shaorui; Liu, Zhengyong; Zhang, A. Ping; Shen, Yonghang; Tam, Hwayaw

    2015-09-01

    An all-fiber optical anemometer with high light-heat conversion efficiency by using an in-house microstructured optical fiber Bragg grating (MOFBG) is presented. Low-molten-temperature BiSnIn alloy was successfully infiltrated into 11- cm length of a six-hole microstructured optical fiber which was inscribed with a fibre Bragg grating (FBG) centered at ~848 nm. Light launched into the MOFBG was strongly absorbed by the metal to generate heat, while the FBG was utilized to monitor temperature change due to surrounding wind speed. The sensitivity of the laser-heated MOFBG anemometer was measured to be ~0.1 nm/(m/s) for wind speed ranged from 0.5 m/s to 2 m/s. The efficiency of the anemometer, defined as effective sensitivity per pump power, is 8.7 nm/(m/s*W).

  8. Optical code division multiplexed fiber Bragg grating sensing networks

    NASA Astrophysics Data System (ADS)

    Triana, Cristian; Varón, Margarita; Pastor, Daniel

    2015-09-01

    We present the application of Optical Code Division Multiplexing (OCDM) techniques in order to enhance the spectral operation and detection capability of fiber Bragg grating (FBG) sensors networks even under overlapping conditions. In this paper, Optical Orthogonal Codes (OOC) are used to design FBG sensors composed of more than one reflection band. Simulation of the interaction between the encoded Gaussian-shaped sensors is presented. Signal decoding is performed in the electrical domain without requiring additional optical components by means of the autocorrelation product between the reflected spectrum and each sensor-codeword. Results illustrate the accuracy and distinction capability of the method.

  9. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  10. Nonpigtail optical coupling to embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Qiu, Liang; Goossen, Keith W.; Heider, Dirk; O'Brien, Daniel J.; Wetzel, Eric D.

    2010-05-01

    In recent decades, optical fiber has proven useful for many sensor applications. Specifically, fiber Bragg grating (FBG) sensors have shown great utility for integrity management and environmental sensing of composite structures. One major drawback of FBG sensors, however, is the lack of a robust, nonpigtail technique for coupling to the embedded FBG sensor. In this paper, a novel method of free-space passive coupling of light into FBG sensors is described. An angled 45-deg mirror integrated directly into the fiber was used as an input coupling technique. We investigated the application of this approach to both single- and multimode glass fibers containing FBGs. For multimode FBGs, we studied the grating's uniformity across the fiber diameter and its effect on normal free-space coupling. In single-mode investigations, a novel method of coupling to the sensor via splicing a multimode fiber to a single-mode FBG (SMFBG) was developed. Finally, free-space coupling to an embedded SMFBG was employed to measure the tensile strain. Excellent agreement was found between the FBG and conventional electrical resistance strain gauges. We conclude that this coupling method might eliminate the need for pigtailing by providing a more robust coupling method for FBG sensors.

  11. Polarization-maintaining fiber-optic-grating vector vibroscope.

    PubMed

    Guo, Tuan; Shang, Libin; Liu, Fu; Wu, Chuang; Guan, Bai-Ou; Tam, Hwa-Yaw; Albert, Jacques

    2013-02-15

    A fiber-optic vector vibroscope based on orthogonal polarization cladding-to-core recoupling is demonstrated. A compact structure in which a short section of polarization-maintained (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single-mode fiber. Two well-defined orthogonally polarized cladding modes reflected by the PM-FBG are recoupled at the junction and the coupling intensity shows an extremely high sensitivity to bending in the corresponding orthogonal directions. Both the orientation and amplitude of the vibrations can be determined unambiguously via dual-path power detection of these recoupled orthogonal-polarimetric cladding modes (LP(1,12) and LP(1,13)). Since spectral information is not required, temperature changes do not affect the sensor response, and power fluctuations can be referenced out by monitoring the power in the core mode (LP(0,1)) resonance. PMID:23455126

  12. 3D printed long period gratings for optical fibers.

    PubMed

    Iezzi, Victor Lambin; Boisvert, Jean-Sébastien; Loranger, Sébastien; Kashyap, Raman

    2016-04-15

    We demonstrate a simple technique for implementing long period grating (LPG) structures by the use of a 3D printer. This Letter shows a way of manipulating the mode coupling within an optical fiber by applying stress through an external 3D printed periodic structure. Different LPG lengths and periods have been studied, as well as the effect of the applied stress on the coupling efficiency from the fundamental mode to cladding modes. The technique is very simple, highly flexible, affordable, and easy to implement without the need of altering the optical fiber. This Letter is part of a growing line of interest in the use of 3D printers for optical applications. PMID:27082365

  13. Bragg gratings in carbon coated optical fibers and their potential sensor applications in harsh environment

    NASA Astrophysics Data System (ADS)

    Li, Yaowen; Kudelko, David J.; Hokansson, Adam S.; Simoff, Debra A.; Stolov, Andrei A.; Ng, Joanna; Mann, Joel

    2014-05-01

    We have demonstrated that fiber Bragg gratings can be written through the carbon layer of carbon-coated optical fibers having different coating thicknesses. Specifically, grating index modulation amplitudes of ~2.5x10-5 and 0.52x10-5 were obtained in optical fibers having carbon layers 29 nm and 56 nm thick, respectively, without any extra photosensitization of the fibers. Subsequent experimental results showed that the carbon coatings in the grating areas didn't change their hermetic properties. Finally, we describe the advantages of these gratings and their potential applications in fiber optic sensing.

  14. Effect of UV Absorption on Fabrication of Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wang, Ying; Sharma, Anup; Burdine, Robert (Technical Monitor)

    2000-01-01

    UV light is used to fabricate fiber-optic gratings also heats up the fiber due to absorption by either the fiber-buffer, fiber-cladding, doped with titania or a thin coating of paint. Significant enhancement in the rate of grating fabrication is observed due to UV light absorption.

  15. Fabrication and Characterization of Tilted Fiber Optic Bragg Grating Filters over Various Wavelengths

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Jackson, Kurt V.; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber Optic Bragg Grating taps are fabricated and characterized at various wavelengths using a modified Talbot interferometric technique. Gratings are fabricated by tilting the photosensitive fiber to angles up to 45 degrees w.r.t. the writing angle. Diffraction characteristics of the tilted grating is monitored in first and second orders.

  16. Polymer optical fiber grating as water activity sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    Controlling the water content within a product has long been required in the chemical processing, agriculture, food storage, paper manufacturing, semiconductor, pharmaceutical and fuel industries. The limitations of water content measurement as an indicator of safety and quality are attributed to differences in the strength with which water associates with other components in the product. Water activity indicates how tightly water is "bound," structurally or chemically, in products. Water absorption introduces changes in the volume and refractive index of poly(methyl methacrylate) PMMA. Therefore for a grating made in PMMA based optical fiber, its wavelength is an indicator of water absorption and PMMA thus can be used as a water activity sensor. In this work we have investigated the performance of a PMMA based optical fiber grating as a water activity sensor in sugar solution, saline solution and Jet A-1 aviation fuel. Samples of sugar solution with sugar concentration from 0 to 8%, saline solution with concentration from 0 to 22%, and dried (10ppm), ambient (39ppm) and wet (68ppm) aviation fuels were used in experiments. The corresponding water activities are measured as 1.0 to 0.99 for sugar solution, 1.0 to 0.86 for saline solution, and 0.15, 0.57 and 1.0 for the aviation fuel samples. The water content in the measured samples ranges from 100% (pure water) to 10 ppm (dried aviation fuel). The PMMA based optical fiber grating exhibits good sensitivity and consistent response, and Bragg wavelength shifts as large as 3.4 nm when the sensor is transferred from dry fuel to wet fuel.

  17. Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fibers.

    PubMed

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Bang, Ole

    2015-02-01

    We report on an incidence angle influence on inscription of the Fiber Bragg Gratings in Polymethyl methacrylate (PMMA) microstructured polymer optical fibers. We have shown experimentally that there is a strong preference of certain angles, labeled ГK, over the other ones. Angles close to ГK showed fast start of inscription, rapid inscription and stronger gratings. We have also shown that gratings can be obtained at almost any angle but their quality will be lower if they are not around ГK angle. Our experimental results verify earlier numerical and experimental predictions of Marshall et al. PMID:25836222

  18. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  19. System Construction for the Measurement of Bragg Grating Characteristics in Optical Fibers

    NASA Technical Reports Server (NTRS)

    West, Douglas P.

    1995-01-01

    Bragg gratings are used to measure strain in optical fibers. To measure strain they are sometimes used as a smart structure. They must be characterized after they are written to determine their spectral response. This paper deals with the test setup to characterize Bragg grating spectral responses.Bragg gratings are a photo-induced phenomena in optical fibers. The gratings can be used to measure strain by measuring the shift in wavelength. They placed the fibers into a smart structure to measure the stress and strain produced on support columns placed in bridges. As the cable is subjected to strain the grating causes a shift to a longer wavelength if the fiber is stretched and a shift to a shorter wavelength shift if the fiber is compacted. Our applications involve using the fibers to measure stress and strain on airborne systems. There are many ways to write Bragg gratings into optical fibers. Our focus is on side writing the grating. Our capabilities are limited in the production rate of the gratings. The Bragg grating is written into a fiber and becomes a permanent fixture. We are writing the grating to be centered at 1300 nm because that is the standard phase mask wavelength.

  20. Mechanically induced long period fiber gratings on single mode tapered optical fiber for structure sensing applications

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, María. G.; Marrujo-García, Sigifredo; Álvarez-Chávez, José A.; Velázquez-González, Jesús S.; Martínez-Piñón, Fernando; Escamilla-Ambrosio, Ponciano J.

    2015-08-01

    The modal characteristics of tapered single mode optical fibers and its strain sensing characteristics by using mechanically induced long period fiber gratings are presented in this work. Both Long Period Fiber Gratings (LPFG) and fiber tapers are fiber devices that couple light from the core fiber into the fiber cladding modes. The mechanical LPFG is made up of two plates, one flat and the other grooved. For this experiment the grooved plate was done on an acrylic slab with the help of a computer numerical control machine. The manufacturing of the tapered fiber is accomplished by applying heat using an oxygen-propane flame burner and stretching the fiber, which protective coating has been removed. Then, a polymer-tube-package is added in order to make the sensor sufficiently stiff for the tests. The mechanical induced LPFG is accomplished by putting the tapered fiber in between the two plates, so the taper acquires the form of the grooved plate slots. Using a laser beam the transmission spectrum showed a large peak transmission attenuation of around -20 dB. The resultant attenuation peak wavelength in the transmission spectrum shifts with changes in tension showing a strain sensitivity of 2pm/μɛ. This reveals an improvement on the sensitivity for structure monitoring applications compared with the use of a standard optical fiber. In addition to the experimental work, the supporting theory and numerical simulation analysis are also included.

  1. Fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser

    NASA Astrophysics Data System (ADS)

    Kuang, Zeyuang; Cheng, Linghao; Liang, Yizhi; Liang, Hao; Guan, Bai-Ou

    2015-07-01

    A fiber-optic Doppler velocimeter based on a dual-polarization fiber grating laser is demonstrated. The fiber grating laser produces two orthogonally polarized laser outputs with their frequency difference proportional to the intra-cavity birefringence. When the laser outputs are reflected from a moving targets, the laser frequencies will be shifted due to the Doppler effect. It shows that the frequency difference between the beat note of the laser outputs and the beat note of the reflected lasers is proportional to the velocity. The proposed fiber-optic Doppler velocimeter shows a high sensitivity of 0.64 MHz/m/s and is capable of measurement of wide range of velocity.

  2. Microstructured optical fiber Bragg grating sensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Sozzi, M.; Coscelli, E.; Poli, F.; Cucinotta, A.; Bertucci, A.; Corradini, R.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Selleri, S.

    2013-03-01

    In this work the inner surface of a microstructured optical fiber, where a Bragg grating was previously inscribed, has been functionalized using peptide nucleic acid probe targeting a DNA sequence of the cystic fibrosis disease. The solution of DNA molecules, matched with the PNA probes, has been infiltrated inside the fiber capillaries and hybridization has been realized according to the Watson - Crick Model. In order to achieve signal amplification, oligonucleotide-functionalized gold nanoparticles were then infiltrated and used to form a sandwich-like system. Experimental measurements show a clear wavelength shift of the reflected high order mode for a 100 nM DNA solution. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation and proving a good reproducibility of the results, suggesting the possibility of the reuse of the sensor. Measurements have been also made using a 100 nM mis-matched DNA solution, containing a single nucleotide polymorphism, demonstrating the high selectivity of the sensor.

  3. Hydrogen loading to the optic fibers for fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Pan, Zhi-yong; Zhang, Xiao-qiang; Xiao, Chun; Zhu, Yuan; Wei, Wen-jie

    2015-10-01

    Fibers with different depths of hermetically coated carbon are hydrogen loaded and radiated, and it's found that too thick of carbon layer around fiber can't bring best radiation-resistant properties, because the thick carbon layer would make the entering of hydrogen difficult although it can help to stop the hydrogen escaping. We also research the duration of saturated hydrogen loading under the temperature of 30°C, 50°C and 80°C respectively, and it's found that after 150h, 100h and 48h, the fibers' photo sensitivities tend to be flat. Besides, in order to research the period of validity of hydrogen, some hydrogen loaded fibers are idle for from 1 day to 1 months before etched. The additional loss of these fibers are tested and compared.

  4. Optically heated fiber Bragg grating in active fibers for low temperature sensing application

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Jin, Long; Guan, Bai-Ou

    2013-09-01

    Optically heated fiber Bragg gratings due to the absorption over the fiber core in rare-earth doped fibers are experimentally demonstrated. Bragg wavelength variations with pump power are measured for different fibers. We found that the Er/Yb-codoped fiber presents the strongest thermal effect, due to the high absorption. A maximum wavelength shift of 1.34 nm can be obtained when the 980 nm pump power is 358 mW under room temperature, suggesting the fiber is heated up to over 100 °C. Furthermore, the thermal effect is enhanced by pumping the surrounding air to close to vacuum. A wavelength shift of 1.69 nm is attained, due to the weakened ability of heat transfer at the silica-air interface. The optical heating presents a very short response time and can found applications in low temperature circumstances.

  5. An Optical Fiber Lateral Displacement Measurement Method and Experiments Based on Reflective Grating Panel

    PubMed Central

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui; Chen, Yanxiang

    2016-01-01

    An optical fiber sensing method based on a reflective grating panel is demonstrated for lateral displacement measurement. The reflective panel is a homemade grating with a periodic variation of its refractive index, which is used to modulate the reflected light intensity. The system structure and operation principle are illustrated in detail. The intensity calculation and simulation of the optical path are carried out to theoretically analyze the measurement performance. A distinctive fiber optic grating ruler with a special fiber optic measuring probe and reflective grating panel is set up. Experiments with different grating pitches are conducted, and long-distance measurements are executed to accomplish the functions of counting optical signals, subdivision, and discerning direction. Experimental results show that the proposed measurement method can be used to detect lateral displacement, especially for applications in working environments with high temperatures. PMID:27271624

  6. Design of a high voltage source to fabricate fiber optic arc induced gratings

    NASA Astrophysics Data System (ADS)

    Mata-Chavez, R. I.; Estudillo-Ayala, J. M.; Hernández-Garcia, J. C.; Rojas-Laguna, R.; Anzueto-Sanchez, G.; Martínez-Ríos, A.; Trejo-Duran, M.; Alvarado-Méndez, E. A.; Andrade-Lucio, J. A.

    2007-03-01

    In this paper we propose a high voltage source which is controlled by a communication port I/O of a data acquisition card. The graphical programming language LabView is employed for this task. We make use of this source to produce optical fiber gratings by inducing an electric arc with the point by point procedure. It has a control section to modify the arc duration time and thus the voltage and current applied to the fiber by means of two electrodes. The experimental setup by which we characterized the gratings is depicted and we also present the transmitting spectrum. The gratings were fabricated with SMF-28 fiber but microstructured fiber can be exploited too. These gratings can be used with optical fiber lasers as optical filters and in the implementation of optical sensors.

  7. Small biomolecule immunosensing with plasmonic optical fiber grating sensor.

    PubMed

    Ribaut, Clotilde; Voisin, Valérie; Malachovská, Viera; Dubois, Valentin; Mégret, Patrice; Wattiez, Ruddy; Caucheteur, Christophe

    2016-03-15

    This study reports on the development of a surface plasmon resonance (SPR) optical fiber biosensor based on tilted fiber Bragg grating technology for direct detection of small biomarkers of interest for lung cancer diagnosis. Since SPR principle relies on the refractive index modifications to sensitively detect mass changes at the gold coated surface, we have proposed here a comparative study in relation to the target size. Two cytokeratin 7 (CK7) samples with a molecular weight ranging from 78 kDa to 2.6 kDa, respectively CK7 full protein and CK7 peptide, have been used for label-free monitoring. This work has first consisted in the elaboration and the characterization of a robust and reproducible bioreceptor, based on antibody/antigen cross-linking. Immobilized antibodies were then utilized as binding agents to investigate the sensitivity of the biosensor towards the two CK7 antigens. Results have highlighted a very good sensitivity of the biosensor response for both samples diluted in phosphate buffer with a higher limit of detection for the larger CK7 full protein. The most groundbreaking nature of this study relies on the detection of small biomolecule CK7 peptides in buffer and in the presence of complex media such as serum, achieving a limit of detection of 0.4 nM. PMID:26432194

  8. Experiences with fiber optic Bragg grating sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Brownjohn, James M. W.; Moyo, Pilate; Wang, Yong; Tjin, Chuan S.; Lim, Tuan-Kay

    2001-06-01

    Initially developed for applications in the aerospace industry, fiber-optic Bragg grating sensors (FBG) have attracted attention in the civil engineering community. The interest in FBG sensors has been motivated by the potential advantages they can offer over existing sensing technologies. They are, immune to electromagnetic interference, small in size and can be easier to install than traditional electrical resistance strain gauges. They can also be multiplexed, that is, a single fiber may have more than one change. Although field test of FBG sensors have been reported in literature, there is a dearth of information on their installation procedures, their precision in quantifying strains of concrete structures, and robustness requirements for embedment in concrete structures. In particular the harsh environment during the construction of concrete structures is a great challenge in the installation of these fragile sensors. The paper reports on our experiences with FBG sensors in concrete structures. FBG sensor have been sued to quantify strain, temperature and to capture vibration signals. Th result of these studies indicate that, if properly installed, FBG sensors can survive the sever conditions associated with the embedment process and yield accurate measurements of strains and vibration response, so it is possible to benefit from their potential advantages.

  9. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    PubMed Central

    Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih

    2013-01-01

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously. PMID:23681094

  10. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  11. Intensity-modulated optical fiber sensors based on chirped-fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Dong, Xinyong

    2011-09-01

    Intensity-modulated fiber Bragg grating (FBG) sensors, compared with normal wavelength-encoding FBG sensors, can reduce the cost of sensor system significantly by using cost-efficient optical power detection devices, instead of expensive wavelength measurement instruments. Chirped-FBG (CFBG) based intensity-modulated sensors show potential applications in various sensing areas due to their many advantages, including inherent independence of temperature, high measurement speed, and low cost, in addition to the merits of all fiber-optic sensors. This paper theoretically studies the sensing principle of CFBG-based intensity-modulated sensors and briefly reviews their recent progress in measurement of displacement, acceleration, and tilt angle.

  12. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding.

    PubMed

    Rong, Qiangzhou; Qiao, Xueguang; Guo, Tuan; Bao, Weijia; Su, Dan; Yang, Hangzhou

    2014-12-01

    An orientation-sensitive fiber-optic accelerometer based on grating inscription over fiber cladding has been demonstrated. The sensor probe comprises a compact structure in which a short section of thin-core fiber (TCF) stub containing a "cladding" fiber Bragg grating (FBG) is spliced to another single-mode fiber (SMF) without any lateral offset. A femtosecond laser side-illumination technique was utilized to ensure that the grating inscription remains close to the core-cladding interface of the TCF. The core mode and the cladding mode of the TCF are coupled at the core-mismatch junction, and two well-defined resonances in reflection appear from the downstream FBG, in which the cladding resonance exhibits a strong polarization and bending dependence due to the asymmetrical distribution of the cladding FBG along the fiber cross section. Strong orientation dependence of the vibration (acceleration) measurement has been achieved by power detection of the cladding resonance. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental core resonance. PMID:25490635

  13. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Bai, Wei; Guo, Huiyong; Wen, Hongqiao; Yu, Haihu; Jiang, Desheng

    2016-03-01

    This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.

  14. THUNDER Piezoelectric Actuators as a Method of Stretch-Tuning an Optical Fiber Grating

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Fox, Robert L.; Froggatt, Mark E.; Childers, Brooks A.

    2000-01-01

    A method of stretching optical fiber holds interest for measuring strain in smart structures where the physical displacement may be used to tune optical fiber lasers. A small, light weight, low power tunable fiber laser is ideal for demodulating strain in optical fiber Bragg gratings attached to smart structures such as the re-usable launch vehicle that is being developed by NASA. A method is presented for stretching optical fibers using the THUNDER piezoelectric actuators invented at NASA Langley Research Center. THUNDER actuators use a piezoelectric layer bonded to a metal backing to enable the actuators to produce displacements larger than the unbonded piezoelectric material. The shift in reflected optical wavelength resulting from stretching the fiber Bragg grating is presented. Means of adapting THUNDER actuators for stretching optical fibers is discussed, including ferrules, ferrule clamp blocks, and plastic hinges made with stereo lithography.

  15. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  16. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  17. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  18. Time-dependent variation of fiber Bragg grating reflectivity in PMMA-based polymer optical fibers.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Bang, O; Webb, D J

    2015-04-01

    In this Letter, we investigate the effects of viscoelasticity on both the strength and resonance wavelength of two fiber Bragg gratings (FBGs) inscribed in microstructured polymer optical fiber (mPOF) made of undoped PMMA. Both FBGs were inscribed under a strain of 1% in order to increase the material photosensitivity. After the inscription, the strain was released, and the FBGs spectra were monitored. We initially observed a decrease of the reflection down to zero after which it began to increase. After that, strain tests were carried out to confirm the results, and finally the gratings were monitored for a further 120 days, with a stable reflection response being observed beyond 50 days. PMID:25831363

  19. Optical Bragg grating sensor fibers for ultra-high temperature applications

    NASA Astrophysics Data System (ADS)

    Bartelt, Hartmut; Elsmann, Tino; Habisreuther, Tobias; Schuster, Kay; Rothhardt, Manfred

    2015-07-01

    Sapphire based optical fibers provide an attractive basis for ultra-high temperature stable optical sensor elements. Fiber Bragg gratings can be inscribed in such fibers by means of femtosecond-laser pulses with a wavelength of 400 nm in combination with a two-beam phase mask interferometer. We have investigated crystalline optical fibers as well as structured sapphire-derived all glass optical fibers with aluminum content in the core of up to 50 mol%. The reflection properties, the index modulation and the attenuation effects will be discussed. Results concerning the temperature and strain sensitivity for use as sensor elements at high temperatures will be presented.

  20. [The refractive index sensing characteristics of polarization maintaining microstructured optical fiber chirped grating].

    PubMed

    Guo, Xuan; Bi, Wei-Hong; Liu, Feng

    2013-01-01

    The refractive index sensing characteristics of the polarization maintaining (PM) microstructured optical fiber (MOF) chirped grating was systematically investigated based on finite element method (FEM) and transfer matrix method (TMM). The chirp Bragg grating reflection spectrum was numerically analyzed with the fiber air holes injected with different refractive index medium, and the relation between the reflection spectrum area and the analyte refractive index is discussed here. The analysis results show that when the analyte refractive index increases, the reflection spectrum area will be reduced; and the detection demodulation is simplified with the light intensity demodulation. Moreover, the dependence of the reflection spectrum on the center big holes size, the chirp coefficient and the site function was studied. Since two polarization modes respond similarly to the outside perturbation, the fiber possesses high stability. The results provide the theoretical basis for the application of PM-MOF grating in the optical fiber refractive index sensor and the optical fiber label-free biosensing. PMID:23586270

  1. All Fiber Grating (AFG): a new platform for fiber optic sensing technologies

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yu, Haihu; Jiang, Desheng; Yang, Minghong

    2015-09-01

    A versatile all fiber grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) was firstly proposed and demonstrated. On-line writing identically weak fiber Bragg grating array by the phase mask technique was developed. The sensing network is interrogated with time- and wavelength-division multiplexing method. The proposed ultra-weak FBG system was very promising for the large-scale sensing network.

  2. All-optical low noise fiber Bragg grating microphone.

    PubMed

    Bandutunga, Chathura P; Fleddermann, Roland; Gray, Malcolm B; Close, John D; Chow, Jong H

    2016-07-20

    We present an all-fiber design for a microphone using a fiber Bragg grating Fabry-Perot resonator attached to a diaphragm transducer. We analytically model and verify the fiber-diaphragm mechanical interaction, using the Hänsch-Couillaud readout technique to provide necessary sensitivity. We achieved a noise-equivalent strain sensitivity of 7.1×10-12  ϵ/Hz, which corresponds to a sound pressure of 74  μPa/Hz at 1 kHz limited by laser frequency noise and yielding a signal-to-noise ratio of 47±2  dB with a 1 Pa drive at 1 kHz, in close agreement with modeled results. PMID:27463906

  3. Imaging of various optical fiber Bragg gratings using differential interference contrast microscopy: analysis and comparison.

    PubMed

    Rollinson, Claire M; Wade, Scott A; Baxter, Greg W; Collins, Stephen F

    2016-02-01

    Differential interference contrast images of various optical fibers and optical fiber Bragg gratings (FBGs), written with the phase mask technique, are presented to provide information about the resultant refractive index variations present in each case. Use of different fiber types using two distinct phase masks producing four Type I FBGs and a Type In FBG allowed similarities and differences in these FBG images due to variations in the Talbot diffraction patterns produced to be studied. PMID:26836080

  4. Fiber optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D. J.

    2015-09-01

    A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.

  5. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Scholtz, Lubomír.; Müllerová, Jarmila

    2015-01-01

    Fiber Bragg gratings (FBGs) are novel and promising devices for all-optical switching, ADD/DROP multiplexers, AND gates, switches, all-optical memory elements. Optical switching based on optical Kerr effects induced with high pump laser light incident on the FBGs cause the change of spectral characteristics of grating depending on the incident power. In this paper numerical studies of the nonlinear FBGs are presented. Optical switching based on the optical bistability in nonlinear chalcogenide FBGs is investigated. The spectral response of nonlinear FBGs is discussed from theoretical viewpoint. The simulations are based on the nonlinear coupled mode theory.

  6. Optical fiber long-period grating with solgel coating for gas sensor

    NASA Astrophysics Data System (ADS)

    Gu, Zhengtian; Xu, Yanping; Gao, Kan

    2006-08-01

    The novel long-period fiber grating (LPFG) film sensor is composed of the long-period grating coated with solgel-derived sensitive films. The characteristics of the transmissivity of the LPFG film sensor are studied. By analyzing the relation among the sensitivity Sn, the thin film optical parameters, and the fiber grating parameters, the optimal design parameters of the LPFG film sensor are obtained. Data simulation shows that the resolution of the refractive index of this LPFG film sensor is predicted to be 10-8. Experimentally, a LPFG film sensor for detection of C2H5OH was fabricated, and a preliminary gas-sensing test was performed.

  7. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop.

    PubMed

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  8. Multi-Stress Monitoring System with Fiber-Optic Mandrels and Fiber Bragg Grating Sensors in a Sagnac Loop

    PubMed Central

    Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-01-01

    Fiber Bragg grating sensors are placed in a fiber-optic Sagnac loop to combine the grating temperature sensors and the fiber-optic mandrel acoustic emission sensors in single optical circuit. A wavelength-scanning fiber-optic laser is used as a common light source for both sensors. A fiber-optic attenuator is placed at a specific position in the Sagnac loop in order to separate buried Bragg wavelengths from the Sagnac interferometer output. The Bragg wavelength shifts are measured with scanning band-pass filter demodulation and the mandrel output is analyzed by applying a fast Fourier transform to the interference signal. This hybrid-scheme could greatly reduce the size and the complexity of optical circuitry and signal processing unit, making it suitable for low cost multi-stress monitoring of large scale power systems. PMID:26230700

  9. Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhou, Bin; Zhang, Liang; He, Sailing

    2015-06-01

    In this paper, a tunable fiber Fabry-Perot (F-P) filter by all-optical heating is proposed. Two high reflective fiber Bragg gratings (FBG) fabricated in cobalt doped single mode fiber form the F-P cavity. The cobalt-doped fiber used here is an active fiber, and it transforms optical power from a control laser into heat effectively due to the nonradiative processes. The generated heat raises the refraction index of the fiber and enlarges the F-P cavity's length, realizing the all-optical tuning characteristics. By adjusting the power of the control laser, the resonant wavelength of our proposed fiber F-P filter can be high precisely controlled. The cavity length of the filter is carefully designed to make sure the longitude mode spacing is comparable to the grating bandwidth, making it single mode operating.

  10. Factors influencing the temperature sensitivity of PMMA based optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Webb, David J.

    2014-05-01

    The Bragg wavelength of a PMMA based fiber grating is determined by the effective core index and the grating pitch, which, in temperature sensing, depend on the thermo-optic and thermal expansion coefficients of PMMA. These two coefficients are a function of surrounding temperature and humidity. Amorphous polymers including PMMA exhibit a certain degree of anisotropic thermal expansion. The anisotropic nature of expansion mainly depends on the polymer processing history. The expansion coefficient is believed to be lower in the direction of the molecular orientation than in the direction perpendicular to the draw direction. Such anisotropic behavior of polymers can be expected in drawn PMMA based optical fiber, and will lead to a reduced thermal expansion coefficient and larger temperature sensitivity than would be the case were the fiber to be isotropic. Extensive work has been carried out to identify these factors. The temperature responses of gratings have been measured at different relative humidity. Gratings fabricated on annealed and non-annealed PMMA optical fibers are used to compare the sensitivity performance as annealing is considered to be able to mitigate the anisotropic effect in PMMA optical fiber. Furthermore an experiment has been designed to eliminate the thermal expansion contribution to the grating wavelength change, leading to increased temperature sensitivity and improved response linearity.

  11. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    PubMed

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-01

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles. PMID:27607663

  12. Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Webb, David J.; Kalli, Kyriacos; Carroll, Karen; Zhang, Chi; Komodromos, Michalis; Argyros, Alex; Large, Maryanne; Emiliyanov, Grigoriy; Bang, Ole; Kjaer, Eric

    2007-11-01

    We report on the temperature response of FBGs recorded in pure PMMA and TOPAS holey fibers. The gratings are fabricated for operational use at near IR wavelengths, using a phase mask and a cw He-Cd laser operating at 325nm. The room temperature grating response is non-linear and characterized by quadratic behavior for temperatures from room temperature to the glass transition temperature, and this permanent change is affected by the thermal history of the gratings. We also report the first FBG inscription in microstructured polymer optical fibers fabricated from TOPAS. This material is fully polymerized and has very low moisture absorption, leading to very good fiber drawing properties. Furthermore, although TOPAS is chemically inert and bio-molecules do not readily bind to its surface, treatment with Antraquinon and subsequent UV activation allows sensing molecules to be deposited in well defined spatial locations. When combined with grating technology this provides considerable potential for label-free bio-sensing.

  13. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber

    NASA Astrophysics Data System (ADS)

    Mao, Guopei; Sun, Bo; Yuan, Tingting; Zhong, Xing; Shi, Jinhui; Guan, Chunying; Yuan, Libo

    2015-07-01

    A novel Bragg fiber grating (FBG) in an embedded-core hollow optical fiber (ECHOF) has been proposed and experimentally demonstrated. The high-quality FBG fabricated with phase-mask technique by using 248 nm ultraviolet laser, has a resonant wavelength of ~943.1 nm and a dip of ~24.2 dB. Subsequently, the dependences of the resonant peak on the temperature and the axial strain were studied. Experimental results show that the temperature and axial stain sensitivity are 6.5 pm/°С and 1.1 pm/μɛ, respectively. In addition, a 0.03 nm shift of the transmission dip can be obtained when the polarization state changes from X polarization to Y polarization.

  14. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying; Zhong, Chuan; Dong, Xinyong; Tong, Limin

    2016-07-01

    A fiber optic relative humidity (RH) sensor based on the tilted fiber Bragg grating (TFBG) coated with graphene oxide (GO) film was presented. Amplitudes of the cladding mode resonances of the TFGB varies with the water sorption and desorption processes of the GO film, because of the strong interactions between the excited backward propagating cladding modes and the GO film. By detecting the transmission intensity changes of the cladding mode resonant dips at the wavelength of 1557 nm, the maximum sensitivity of 0.129 dB/%RH with a linear correlation coefficient of 99% under the RH range of 10-80% was obtained. The Bragg mode of TFBG can be used as power or wavelength references, since it is inherently insensitive to RH changes. In addition, the proposed humidity sensor shows a good performance in repeatability and stability.

  15. Fiber-optical grating sensors for wind turbine blades: a review

    NASA Astrophysics Data System (ADS)

    Glavind, Lars; Olesen, Ib Svend; Skipper, Bjarne Funch; Kristensen, Martin

    2013-03-01

    With the rapid growth of wind turbines and focus on maintenance costs structural measurements are becoming essential. Fiber-optical sensors have physical properties that make them suitable for embedding in wind turbine blades, such as small size and immunity to electrical interferences. Fiber-optical grating sensors can be utilized to provide important information regarding strain, temperature, and curvature of the blades, which can be applied in condition-monitoring to detect fatigue failure and furthermore for optimization of the production from the wind turbine. We provide an overview of the current status and a discussion on research and implementation of fiber Bragg gratings and long-period gratings in wind turbine blade sensors.

  16. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  17. Single- and Two-Phase Flow Characterization Using Optical Fiber Bragg Gratings

    PubMed Central

    Baroncini, Virgínia H.V.; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E.M.

    2015-01-01

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications. PMID:25789494

  18. Influence of pre-annealing on the thermal regeneration of fiber Bragg gratings in standard optical fibers.

    PubMed

    Holmberg, Patrik; Laurell, Fredrik; Fokine, Michael

    2015-10-19

    A detailed study of the dynamics during thermal regeneration of fiber Bragg gratings, written in hydrogen-loaded standard single-mode fibers using a ns pulsed 213 nm UV laser, is reported. Isothermal pre-annealing performed in the range 85 °C to 1100 °C, with subsequent grating regeneration at 1100 °C, resulted in a maximum refractive index modulation, Δn(m) ~1.4⋅10(-4), for gratings pre-annealed near 900 °C while a minimum value of Δn(m) ~2⋅10(-5) was achieved irrespective of pre-annealing temperature. This optimum denote an inflection point between opposing thermally triggered processes, which we ascribe to the reaction-diffusion mechanism of molecular water and hydroxyl species in silica. The results shed new light on the mechanisms underlying thermal grating regeneration in optical fibers. PMID:26480412

  19. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  20. Continuous wave ultraviolet light-induced fiber Bragg gratings in few- and single-mode microstructured polymer optical fibers.

    PubMed

    Dobb, Helen; Webb, David J; Kalli, Kyriacos; Argyros, Alexander; Large, Maryanne C J; van Eijkelenborg, Martijn A

    2005-12-15

    We report observations and measurements of the inscription of fiber Bragg gratings (FBGs) in two different types of microstructured polymer optical fiber: few-mode and an endlessly single mode. Contrary to the FBG inscription in silica microstructured fiber, where high-energy laser pulses are a prerequisite, we have successfully used a low-power cw laser source operating at 325 nm to produce 1 cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed. PMID:16389810

  1. Contact printing of Bragg gratings in optical fibers: rigorous diffraction analysis.

    PubMed

    Hegedus, Z S

    1997-01-01

    The fabrication of Bragg gratings inside the core of single-mode optical fibers has been greatly simplified by the application of contact printing [Appl. Phys. Lett. 62, 1035 (1993)]. According to this technique, the fiber is placed in proximity to an appropriate phase grating, which is illuminated with nominally monochromatic UV light. The transmitted light is redistributed into an ideally sinusoidal variation of optical intensity (more properly, irradiance), which is imprinted into the core as a result of photoinduced refractive index changes. In accordance with normal practice in this field, intensity is used instead of optical intensity throughout the text. The main advantage of such a writing method, apart from its simplicity, is that the illumination source need not be highly coherent. Rigorous analysis of this method is given with a new phase grating design. PMID:18250665

  2. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism.

    PubMed

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15-213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  3. Distributed characterization of localized and stationary dynamic Brillouin gratings in polarization maintaining optical fibers.

    PubMed

    Chiarello, Fabrizio; Sengupta, Dipankar; Palmieri, Luca; Santagiustina, Marco

    2016-03-21

    We experimentally generate localized and stationary dynamic Brillouin gratings in a 5 m long polarization maintaining fiber by phase-modulation of the pumps with a pseudo-random bit sequence. The dynamic Brillouin gratings are characterized in terms of length, bandwidth, group delay and group delay ripple, optical signal-to-noise ratio and peak to sidelobe ratio by measuring the distribution of the complex reflected signal along the fiber through swept-wavelength interferometry. By numerical processing, the performance of an optimal modulation format enabling null off-peak reflections are estimated and compared to the pseudo-random bit sequence case. PMID:27136783

  4. Theoretical analysis of novel fiber grating pair

    NASA Astrophysics Data System (ADS)

    Wang, Liao; Jia, Hongzhi; Fang, Liang; You, Bei

    2016-06-01

    A novel fiber grating pair that consists of a conventional long-period fiber grating and a fiber Bragg cladding grating (FBCG) is proposed. The FBCG is a new type of fiber grating in which refractive index modulation is formed in the cladding. Through the coupled-mode theory, we accurately calculate the coupling coefficients between modes supported in the fibers. And some other mode coupling features in the fiber cladding gratings are analyzed in detail. The calculation of the modes involved in this paper is based on a model of three-layer step-index fiber geometry. Then, we have investigated the sensitivity characteristics for variation of the modulation strengths of the fiber Bragg cladding gratings' resonance peaks and the long-period cladding gratings' (LPCGs) dual resonant peaks. Finally, the modulation strength sensitivity of the grating pair's three resonant peaks is demonstrated, and the results indicate that these grating pairs may find potential applications in optical fiber sensing.

  5. Fiber optic Bragg grating sensor network installed in a concrete road bridge

    NASA Astrophysics Data System (ADS)

    Maaskant, Robert; Alavie, A. Tino; Measures, Raymond M.; Ohn, Myo M.; Karr, Shawn E.; Glennie, Derek J.; Wade, C.; Tadros, Gamil; Rizkalla, Sami

    1994-05-01

    The installation of a fiber optic Bragg grating strain sensor network in a new road bridge is described. These sensors are attached to prestressing tendons embedded in prefabricated concrete girders. Three types of prestressing tendons are being monitored: conventional steel strand and two types of carbon fibers reinforced plastic tendons. Sensor durability issues are reviewed and the installation is described. Initial measurements indicate that the sensors are operational and provide some early comparison of tendon performance.

  6. Study of sensing properties and contrastive analysis of metal coating optical fiber grating

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Ning; Shi, Bin; Sui, Qingmei; Guan, Congsheng; Wei, Guangqing; Li, Shuhua

    2014-02-01

    Optical fiber grating (FBG) has been widely used in the measurement of parameters such as temperature and strain. However, FBG is too slim to broken, whose outside protective layer tends to shedding easily, and it is also hard to change the temperature and strain sensitivity. In order to overcome the above disadvantages and to further expand the application range of FBG, this paper improves the technology of fiber grating metal film plating process firstly. It adopts a compositive method including chemical plating and electroplating to gild FBG, copper FBG and galvanize FBG, which all get good metal coating. Then, the temperature and strain sensing properties of metalized FBG is studied in detail. Multiple metal coating FBGs were put in high-low temperature test-box together, and then the test-box worked continuously at the temperature range of 0°C~95°C. After several experiments, it concludes that metal plating enhances the temperature sensitivity of fiber grating, and the one with galvanization has the highest temperature sensitivity of 0.0235. At last, FBGs with various cladding were pasted on carbon fiber cantilever beam respectively and the pressure on the top of the cantilever increased gradually. The experimental results show that wavelength of fiber grating shift toward the long wavelength with the increase of the pressure, and the one with galvanization has the maximum strain sensitivity which has minimal impact on fiber properties.

  7. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  8. Population gratings in saturable optical fibers with randomly oriented rare-earth ions

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.

    2015-07-01

    Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.

  9. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  10. Fiber Bragg grating writing technique for multimode optical fibers providing stimulation of few-mode effects in measurement systems

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.; Vasilets, Alexander A.; Burdin, Vladimir A.; Morozov, Oleg G.; Nureev, Ilnur I.; Kuznetzov, Artem A.; Faskhutdinov, Lenar M.; Kafarova, Anastasia M.; Minaeva, Alina Y.; Sevruk, Nikita L.

    2016-03-01

    This work is concerned with fiber Bragg grating (FBG) writing technique developed for graded-index multimode optical fibers applied in measurement systems based on a few-mode effects. We present some results of experimental approbation of proposed technique with Bragg wavelength 1310 and 1550 nm on samples of graded-index multimode optical fibers 50/125 of both new-generations Cat. OM2+/OM3 and old Cat. OM2 with preliminary measured refractive index profiles. While the first group fibers of Cat. OM2+/OM3 was characterized by almost ideal smooth graded refractive index profile and some fiber profile samples of this group contains thin central peak, the second fiber group profiles of Cat. OM2 differ by great central core defects representing dip or thick peak. Results of described FBG spectral response measurements under excitation of laser pigtailed by single-mode fiber are represented.

  11. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism

    PubMed Central

    Wang, Jian-Neng; Tang, Jaw-Luen

    2010-01-01

    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15–213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer. PMID:22163519

  12. Optical fiber long-period grating with solgel coating for gas sensor.

    PubMed

    Gu, Zhengtian; Xu, Yanping; Gao, Kan

    2006-08-15

    The novel long-period fiber grating (LPFG) film sensor is composed of the long-period grating coated with solgel-derived sensitive films. The characteristics of the transmissivity of the LPFG film sensor are studied. By analyzing the relation among the sensitivity Sn, the thin film optical parameters, and the fiber grating parameters, the optimal design parameters of the LPFG film sensor are obtained. Data simulation shows that the resolution of the refractive index of this LPFG film sensor is predicted to be 10(-8). Experimentally, a LPFG film sensor for detection of C(2)H(5)OH was fabricated, and a preliminary gas-sensing test was performed. PMID:16880837

  13. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  14. Optical Sensing using Fiber Bragg Gratings for Monitoring Structural Damage in Composite Over-Wrapped Vessels

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Composite Over-Wrap Vessels are widely used in the aerospace community. They are made of thin-walled bottles that are over wrapped with high strength fibers embedded in a matrix material. There is a strong drive to reduce the weight of space borne vehicles and thus pushes designers to adopt COPVs that are over wrapped with graphite fibers embedded in its epoxy matrix. Unfortunately, this same fiber-matrix configuration is more susceptible to impact damage than others and to make matters worse; there is a regime where impacts that damage the over wrap leave no visible scar on the COPV surface. In this paper FBG sensors are presented as a means of monitoring and detecting these types of damage. The FBG sensors are surface mounted to the COPVs and optically interrogated to explore the structural properties of these composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in the composite matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 4500 psi. A Fiber Optic Demodulation System built by Blue Road Research, is used for interrogation of the Bragg gratings.

  15. Shear stress sensing with Bragg grating-based sensors in microstructured optical fibers.

    PubMed

    Sulejmani, Sanne; Sonnenfeld, Camille; Geernaert, Thomas; Luyckx, Geert; Van Hemelrijck, Danny; Mergo, Pawel; Urbanczyk, Waclaw; Chah, Karima; Caucheteur, Christophe; Mégret, Patrice; Thienpont, Hugo; Berghmans, Francis

    2013-08-26

    We demonstrate shear stress sensing with a Bragg grating-based microstructured optical fiber sensor embedded in a single lap adhesive joint. We achieved an unprecedented shear stress sensitivity of 59.8 pm/MPa when the joint is loaded in tension. This corresponds to a shear strain sensitivity of 0.01 pm/µε. We verified these results with 2D and 3D finite element modeling. A comparative FEM study with conventional highly birefringent side-hole and bow-tie fibers shows that our dedicated fiber design yields a fourfold sensitivity improvement. PMID:24105585

  16. Fiber Grating Environmental Sensing System

    DOEpatents

    Schulz, Whitten L.; Udd, Eric

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  17. Coherent Optical Frequency Domain Reflectometry (OFDR) using a fiber grating external cavity laser

    NASA Astrophysics Data System (ADS)

    Huang, Kao-Yang; Carter, Gary M.

    1994-12-01

    An optical frequency domain reflectometry (OFDR) system containing a narrow linewidth fiber grating external cavity laser is demonstrated to have 62-dB of sensitivity when detecting Fresnel backreflection and 2 m of resolution at a 115 m range in optical fiber. With this system we were able to detect Rayleigh backscattering in optical fiber with 20-dB signal-to-noise ratio. The phase noise limitation on the distance range for the OFDR was investigated, and the measured signal-to-noise ratio (SNR) data followed the theoretical simulation over the ranges measured. This technique has potential to be applied to the OFDR at 1550 nm with very high dynamic range by using an erbium doped fiber laser.

  18. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    PubMed

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mégret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 × 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser. PMID:25089498

  19. [INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Xie, Zhenwei; Zhang, Mile; Cui, Hailin; He, Jingsuo; Feng, Shengfei; Wang, Xinke; Sun, Wenfeng; Ye, Jiasheng; Han, Peng; Zhang, Yan

    2016-04-01

    A miniaturized optical fiber microphone (OFM) is created by fabricating a concentric nanorings grating and microsprings structured half spherical diaphragm on the end facet of a single-mode fiber (SMF). The diaphragm is fabricated via the method of two-photon 3D lithography. The thin nanorings grating patterned diaphragm is actually a resonant grating-waveguide. It exhibits high reflectivity when resonance is excited. A microlens is fabricated at the core of the fiber, which is used to diverge the output light to make it be normally incident onto the diaphragm, then reflected back to the fiber. The intensities of the reflected back light will be changed if the resonant conditions of the resonant grating-waveguide are broken due to the sound pressure induced geometrical changes of the configuration. This makes such device be an acoustic sensor. The microsprings are designed to improve the sensitivity to the sound pressure. Acoustic inspections show that this OFM can detect the weak sound in air with frequency band from 400 to 2000 Hz.

  20. Microwave-Photonic Frequency Multiplication Utilizing Optical Four-Wave Mixing and Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Wiberg, Andreas; Pérez-Millán, Pere; Andrés, Miguel V.; Hedekvist, Per Olof

    2006-01-01

    A novel technique for optical multiplication of a millimeter-wave carrier is presented. It utilizes optical four-wave mixing (FWM) in a highly nonlinear fiber (HNLF) and the filtering properties of matched fiber Bragg gratings (FBGs). The technique includes a sixfold electrical frequency multiplication in the optical domain. In this experiment, the multiplicator is driven electronically at 6.67 GHz, and the created millimeter wave has a frequency of 40 GHz. The generated carrier has a linewidth lower than 3 Hz and a carrier to noise ratio exceeding 50 dB. Furthermore, successful data transmission over the optical fiber of 2.5 Gb/s on the generated millimeter-wave carrier was performed.

  1. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  2. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  3. Parametric Study of the Reflective Periodic Grating for In-Plane Displacement Measurement Using Optical Fibers

    PubMed Central

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-01-01

    This paper presents a technique for a simple sensing principle that can be used for the measurement of displacement. The proposed sensor head is composed of a reflective grating panel and an optical fiber as a transceiver. The simplified layout contributes to resolving the issues of space restraints during installation and complex cabling problems in transmission fiber optic sensors. In order to verify the effectiveness of the proposed technique, it is important to obtain the sinusoidal signal reflected from the grating for reasonable phase tracking. In the numerical analysis, a real wave based optical beam model is proposed for the extraction of predicted signal according to the grating width and ratio of reflection bar width to spacing. The grating pattern design to obtain a sine wave reflected sensor signal was determined within an R-square value of 0.98 after sine curve fitting analysis. Consequently, the proposed sensor principle achieved the in-plane displacement measurement with a maximum accuracy error of 5.34 μm. PMID:22666030

  4. A high-resolution compact optical true-time delay beamformer using fiber Bragg grating and highly dispersive fiber

    NASA Astrophysics Data System (ADS)

    Gao, Xinlu; Huang, Shanguo; Wei, Yongfeng; Gao, Chao; Zhou, Jing; Zhang, Hanyi; Gu, Wanyi

    2014-10-01

    A high resolution optical true-time delay (OTTD) beamformer constructed by fiber Bragg grating (FBG) and highly dispersive fiber (HDF) is presented. It can produce the true time delay with the resolution of 1 ps. Besides the proposed system has compact structure and light weight even when a large number of antenna elements are present in a practical antenna array, this is because the used FBG fibers and HDFs are short and independent of the antenna element number. Theoretical analysis and numerical simulations are made. Proof-of-concept experiment results that demonstrate the feasibility of the system are presented.

  5. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    PubMed

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-01

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached. PMID:24921583

  6. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  7. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Zhang, Guoquan; Mei, Ting; Zhao, Jianlin

    2016-08-22

    We presented a method to actualize the optical vortex generation with wavelength tunability via an acoustically-induced fiber grating (AIFG) driven by a radio frequency source. The circular polarization fundamental mode could be converted to the first-order optical vortex through the AIFG, and its topological charges were verified by the spiral pattern of coaxial interference between the first-order optical vortex and a Gaussian-reference beam. A spectral tuning range from 1540 nm to 1560 nm was demonstrated with a wavelength tunability slope of 4.65 nm/kHz. The mode conversion efficiency was 95% within the whole tuning spectral range. PMID:27557207

  8. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Zongjian

    2011-09-01

    Fiber Bragg grating (FBG) is a mature sensing technology for the measurement of strain, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion. It has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. The most prominent advantages of FBG are: small size and light weight, distributed array of FBG transducers on a single fiber, and immunity to radio frequency interference. However, a major disadvantage of FBG technology is that conventional state-of-the-art FBG interrogation system is typically bulky, heavy, and costly bench top instruments that are typically assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the industrial need for a compact FBG interrogation system, this paper describes recent progress towards the development of miniature fiber Bragg grating sensor interrogator (FBG-Transceiver™) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables monolithic integration of all functionalities, both passive and active, of conventional bench top FBG sensor interrogator system, packaged in a miniaturized, low power operation, 2 cm×5 cm small form factor (SFF) package suitable for long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  9. Acousto-optic modulation of a fiber Bragg grating in suspended core fiber for mode-locked all-fiber lasers

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo E.; Tiess, Tobias; Becker, Martin; Eschrich, Tina; Rothhardt, Manfred; Jäger, Matthias; Pohl, Alexandre A. P.; Bartelt, Hartmut

    2015-04-01

    The interaction of a fiber Bragg grating and longitudinal acoustic waves in a three-air-holes suspended core fiber is experimentally investigated and employed to mode-lock an ytterbium-doped fiber laser. An optimized design of an acousto-optic modulator based on two piezoelectric transducers and 1 cm grating length is also proposed. For an electrical signal strength of 10 V applied to the modulator, the results indicate output pulses with a width of less than 550 ps at a repetition rate of 10 MHz. The reduction of the grating length and the power consumed by the transducer, when compared to previous studies, points out to more efficient, compact and fast acousto-optic modulators for mode-locked all-fiber lasers.

  10. Design of a radiation-hard optical fiber Bragg grating temperature sensor

    NASA Astrophysics Data System (ADS)

    Gusarov, Andrei I.; Starodubov, Dmitry S.; Berghmans, Francis; Deparis, Olivier; Defosse, Yves; Fernandez, Alberto F.; Decreton, Marc C.; Megret, Patrice; Blondel, Michel

    1999-12-01

    Optical fiber sensors (OFSs) offer numerous advantages, which include immunity to electromagnetic interference, intrinsic safety, small size, a possibly high sensitivity, multiplexing capabilities, and the possibility of remote interrogation. However, OFSs have a relatively low penetration in the commercial market, which is still dominated by standard electromechanical sensors. Nuclear environments are an example where particular OFSs might have a distinct superiority in the competition, but the feasibility of using OFSs in radiation environments still needs to be assessed. In the present paper we report on irradiation experiments performed to provide a sound basis for the design of a fiber Bragg grating based sensor capable to operate even under high total dose exposure.

  11. Optical single sideband modulation radio over fiber system by using a fiber-Bragg-grating-based acousto-optic filter

    NASA Astrophysics Data System (ADS)

    Gao, Song; Pei, Li; Li, Zhuoxuan; Liu, Chao; Wang, Yiqun; Weng, Sijun

    2013-03-01

    An optical single sideband (OSSB) modulation radio over a fiber system, by using an acousto-optic filter (AOF), is proposed and demonstrated. In the AOF, a uniform fiber Bragg grating is etched and modulated by an axially propagating acoustic wave. Due to the acousto-optic superlattice modulation, two secondary reflection peaks, centered on the primary reflection peak, are generated. In the scheme, an optical double-sideband signal passes though the AOF to realize OSSB modulation. Because the reflect depth of the primary peak is much deeper than those of the secondary peaks, the carrier experiences higher attenuation than the upper sideband, which means the carrier-to-sideband ratio (CSR) can be optimized at the same time. We demonstrate this scheme via simulations, and successfully reduce the CSR from 9.73 to 2.9 dB. As a result, the receiving sensitivity improved from -23.43 to -31.18 dBm at BER of 10-9 with 30 km long SMF.

  12. Fiber-Optic Bragg Gratings and Optical Holography Compared as Vibration Detectors

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory

    2003-01-01

    The NASA Glenn Research Center is interested in determining structural damage in engine components during flight to evaluate the health of aerospace propulsion systems. On the ground, we can use holography to detect structural damage by examining the characteristic mode shapes and frequencies of vibrating objects. We are studying the feasibility of using embedded fiber Bragg gratings (FBGs) to accomplish this goal in a flight-worthy system, by using the minimal intrusion and high sensitivity afforded by fiber optics. We have recently compared holographically imaged modes of vibrating plates with the corresponding dynamic strains detected by embedded FBGs. We constructed an experimental setup for studying the responses of FBGs to dynamic excitations. One of the plates was made of a polymer matrix composite (PMC) with an FBG embedded in it, and the other one was made of copper with surface-mounted FBGs. The instrumented plates were mounted and vibrated, and time-averaged holography was used to measure their surface displacements. Simultaneously, the signals from the FBGs were detected and sent via fiber-optic cable to a quiet location about 20 m away for interrogation. The the test configuration used for the PMC plate is shown. Experimental results are also shown. The FBG was embedded in the middle of the PMC plates, roughly within the center circular fringe in each of the interferograms shown. Two resonant excitation frequencies were used: 706 and 3062 Hz. The plot in this paper shows a larger FBG signal at the higher frequency; this is because the plate bends more at higher order resonant modes, causing higher strain. This contrasts to the smaller displacements characteristic of higher frequencies, which are measured by holographic techniques.

  13. Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings.

    PubMed

    Yang, Jingyi; Dong, Xinyong; Ni, Kai; Chan, Chi Chu; Shun, Perry Ping

    2015-04-01

    A relative humidity (RH) sensor in reflection mode is proposed and experimentally demonstrated by using a polyvinyl alcohol (PVA)-coated tilted-fiber Bragg grating (TFBG) cascaded by a reflection-band-matched chirped-fiber Bragg grating (CFBG). The sensing principle is based on the RH-dependent refractive index of the PVA coating, which modulates the transmission function of the TFBG. The CFBG is properly designed to reflect a broadband of light spectrally suited at the cladding mode resonance region of the TFBG, thus the reflected optical signal passes through and is modulated by the TFBG again. As a result, RH measurements with enhanced sensitivity of ∼1.80  μW/%RH are realized and demodulated in the range from 20% RH to 85% RH. PMID:25967167

  14. Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors.

    PubMed

    Zhang, Wei; Webb, David J; Peng, Gang-Ding

    2015-09-01

    In poly(methyl methacrylate) (PMMA)-based optical fiber gratings (POFBGs), the temperature response is determined by thermal expansion and the thermo-optic effect of the fiber. Because thermal expansion introduces a positive change and the thermo-optic effect introduces a negative change in the Bragg wavelength of the POFBG, they cancel out each other to some extent, leading to reduced and varying temperature sensitivity. By pre-straining a POFBG, the contribution of thermal expansion can be removed, and, consequently, the temperature sensitivity of POFBG can be greatly enhanced. Theoretical analysis also indicates a reduced thermo-optic coefficient of POFBG due to restrained linear expansion that matches experimental results. PMID:26368708

  15. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    PubMed

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs. PMID:26832507

  16. All optical mode controllable Er-doped random fiber laser with distributed Bragg gratings.

    PubMed

    Zhang, W L; Ma, R; Tang, C H; Rao, Y J; Zeng, X P; Yang, Z J; Wang, Z N; Gong, Y; Wang, Y S

    2015-07-01

    An all-optical method to control the lasing modes of Er-doped random fiber lasers (RFLs) is proposed and demonstrated. In the RFL, an Er-doped fiber (EDF) recoded with randomly separated fiber Bragg gratings (FBG) is used as the gain medium and randomly distributed reflectors, as well as the controllable element. By combining random feedback of the FBG array and Fresnel feedback of a cleaved fiber end, multi-mode coherent random lasing is obtained with a threshold of 14 mW and power efficiency of 14.4%. Moreover, a laterally-injected control light is used to induce local gain perturbation, providing additional gain for certain random resonance modes. As a result, active mode selection of the RFL is realized by changing locations of the laser cavity that is exposed to the control light. PMID:26125397

  17. On the use of optical fiber Bragg grating (FBG) sensor technology for strain modal analysis

    NASA Astrophysics Data System (ADS)

    Peeters, Bart; dos Santos, Fábio Luis Marques; Pereira, Andreia; Araujo, Francisco

    2014-05-01

    This paper discusses the use of optical fiber Bragg grating (FBG) strain sensors for structural dynamics measurements. For certain industrial applications, there is an interest to use strain sensors rather than or in combination with accelerometers for experimental modal analysis. Classical electrical strain gauges can be used hereto, but optical strain sensors are an interesting alternative with some very specific advantages. This paper gives an overview of dynamic strain measurements in industrial applications, discusses the benefits of FBG sensors and reviews their measurement principle. Finally, the concept of strain modal analysis is introduced and a helicopter main rotor blade vibration testing and analysis case study is presented.

  18. Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids.

    PubMed

    Candiani, Alessandro; Margulis, Walter; Sterner, Carola; Konstantaki, Maria; Pissadakis, Stavros

    2011-07-01

    Results are presented on the efficient spectral manipulation of uniform and chirped Bragg reflectors inscribed in microstructured optical fibers utilizing short lengths of ferrofluids infiltrated in their capillaries. The infiltrated ferrofluidic defects can generate either parasitic reflection notch features in uniform Bragg reflectors of up to 80% visibility and ~0.1 nm spectral shift or tunability of the bandwidth and strength reflection up to 100% when introduced into chirped gratings. Spectra are presented for different spatial positions and optical characteristics of the ferrofluidic section. PMID:21725475

  19. Detection and calculation of reflected spectral shifts in fiber-Bragg gratings (FBG) in polarization maintaining optical fiber

    NASA Astrophysics Data System (ADS)

    Quintana, Joel; Gonzalez, Virgilio

    2014-04-01

    Fiber-Bragg Gratings (FBG) for Structural Health Monitoring (SHM) have been studied extensively as they offer electrically passive operation, EMI immunity, high sensitivity, and multiple multiplexing schemes, as compared to conventional electricity based strain sensors. FBG sensors written in Polarization Maintaining (PM) optical fiber offer an additional dimension of strain measurement simplifying sensor implementation within a structure. This simplification however, adds complexity to the detection of the sensor's optical response to its corresponding applied strain. We propose a method that calculates spectral shifts caused by axial and traversal strains for PM FBG sensors. The system isolates the orthogonal propagating optical waves incident to the optical interrogators. The post-processing algorithm determines the wavelength shifts, and compares to a predetermined baseline then correlates the shift magnitudes to a respective strain. This exercise validates the method of optical detection and shift calculation of multi-axis sensors as an automated, integrated system.

  20. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  1. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  2. Design and implementation of ROADM based on fiber Bragg grating and optical switch

    NASA Astrophysics Data System (ADS)

    Zheng, Liming; Zeng, Simin; Wang, Faqiang

    2007-11-01

    With the development of optical communication technology, all-optical network is promising in next generation networks. Characterized by good transparency, wavelength routing, compatibility and scalability, all-optical network has become the most promising candidate for future high-capacity network. And reconfigurable optical add/drop multiplexer (ROADM) has been regarded as one of the key equipments of the intelligent WDM optical communication network. In this paper, we compare several design methods of ROADM, and introduce the design and implementation of ROADM based on fiber Bragg grating (FBG) and optical switch (OSW). We also propose the new idea of FBGs OSW composed OSW and FBG collimator, which is the integration package of FBGs and collimator. Benefited from the filter characteristics of FBGs and the selectivity of OSW, the performance of ROADM can be optimized. In addition, the ROADM has been tested and analyzed.

  3. Antireflection subwavelength gratings on optical fiber tips fabricated by a dedicated UV nano imprint lithography system

    NASA Astrophysics Data System (ADS)

    Kanamori, Yoshiaki; Okochi, Masaaki; Hane, Kazuhiro

    2015-02-01

    Antireflection (AR) layers at the tips of optical fibers are indispensable in order to reduce propagation loss and optical noise. Conventional thin-film AR layers have problems about cost due to vacuum apparatus usage in the fabrication and requirement of many thin-film layers to obtain excellent AR characteristics. Thus, easy AR coating methods are needed to reduce Fresnel reflection. AR structures consisting of subwavelength gratings (SWGs), which have periodic structures with the periods smaller than operating wavelengths, have been extensively investigated. Desired refractive index to realize the ideal AR condition can be obtained by SWGs. Nano imprint lithography (NIL) is known as the low cost fabrication technology of SWGs. However, it is difficult to carry out an NIL process on the tips of flexible and long optical fibers. In this study, we developed a dedicated UV-NIL system for optical fiber end-faces. An SWG with a period of 700 nm, a width of 560 nm, and a height of 250 nm was successfully fabricated at the tip of a single-mode optical fiber for optical communications system. We evaluated that reflectance decreased by using the SWG over measured spectral range. For example, reflectance decreased to 0.2% at a wavelength of 1550 nm.

  4. Optimization and efficient routing scenario of system using C-band: reconfigurable multiwavelength optical cross connect based on tunable fiber Bragg grating and optical circulator

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Dewra, Sanjeev; Kaler, Rajinder S.

    2016-07-01

    The impact of physical parameters such as grating length, effective index of grating, and apodization on the performance of 5×5 reconfigurable multiwavelength optical cross connect based on tunable fiber Bragg grating and optical circulator in DWDM system with 0.8-nm channel spacing at 15×10 Gbps is evaluated. It is observed that least BER is achieved at the minimum input transmission power with specific values of grating length, effective index of grating, and apodization change of a T-FBG. It shows that BER increases as the values of T-FBG grating length, effective index of grating, and apodization decrease. The data can be transmitted over a distance of 60 km in the presence of fiber nonlinearities without optical amplifier and dispersion compensating techniques.

  5. Opportunities for designing microstructured optical fibers for efficient femtosecond laser grating inscription

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Tigran; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis

    2015-03-01

    Microstructured optical fibers (MOFs) are a major achievement in the field of optical fiber technology. Owing to their unprecedented design flexibility, MOFs have found numerous applications in various fields of photonics. By adapting the parameters of the holey cladding, MOFs with tailored dispersion properties, large mode area, endlessly single mode operation and high non-linear response can be designed and fabricated. This paper deals with designing MOFs with a specific microstructure that would allow increasing the efficiency with which fiber gratings can be photo-inscribed in a MOF. The air holes are usually impeding the delivery of optical power to the core region, which results in a lower grating writing efficiency. This problem is exacerbated when using IR femtosecond laser sources for the inscription, as the induced refractive index changes stem from a highly non-linear multi-photon absorption process and are hence very dependent on the optical intensity that actually reaches the MOF core. In this paper we first study regular hexagonal lattice MOFs to find a range of lattice parameters that would facilitate femtosecond grating inscription, considering the non-linear nature of the index change. To assess the influence of the microstructured cladding on the transverse delivery of light to the core region, we introduce a figure of merit to which we refer as `transverse coupling efficiency' (TCE). Second, we evaluate the index changes that would be obtained when implementing a special type of holey structure that acts as a transversely focusing microstructure - known as Mikaelian lens - in the cladding of the MOF.

  6. Enhancing the humidity response time of polymer optical fiber Bragg grating by using laser micromachining.

    PubMed

    Chen, Xianfeng; Zhang, Wei; Liu, Chen; Hong, Yanhua; Webb, David J

    2015-10-01

    The humidity sensors constructed from polymer optical fiber Bragg gratings (POFBG) respond to the water content change in the fiber induced by varying environmental condition. The water content change is a diffusion process. Therefore the response time of the POFBG sensor strongly depends on the geometry and size of the fiber. In this work we investigate the use of laser micromachining of D-shaped and slotted structures to improve the response time of polymer fiber grating based humidity sensors. A significant improvement in the response time has been achieved in laser micromachined D-shaped POFBG humidity sensors. The slotted geometry allows water rapid access to the core region but this does not of itself improve response time due to the slow expansion of the bulk of the cladding. We show that by straining the slotted sensor, the expansion component can be removed resulting in the response time being determined only by the more rapid, water induced change in core refractive index. In this way the response time is reduced by a factor of 2.5. PMID:26480109

  7. Ground movement monitoring using an optic fiber Bragg grating sensored system

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Te; Huang, An-Bin; Ma, Jiming; Zhang, Baishan

    2005-05-01

    The authors have developed a fiber optic ground movement monitoring system using the optic Fiber Bragg Grating (FBG). A series of FBG's are glued to the outside of flexible plastic elements. These flexible elements are connected together to form a single probe. When the flexible element is bent, the FBG's sense the flexural strain as a result of the bending. Twice integration of the strains along the longitudinal axis of the probe yields the distribution of the displacement of the monitoring probe associated with the bending. The sensitivity and range of allowable bending of the monitoring probe can be adjusted according to the need in the field. The FBG based monitoring system has been experimented to measure the displacement distribution of a laterally loaded pile in Yuin-Lin, Taiwan. This paper describes the principles of the FBG sensor monitoring probe system and presents a case of field application of the sensor system.

  8. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    PubMed

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed. PMID:27139682

  9. Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings

    SciTech Connect

    Moslehi, B.; Harvey, P.; Ng, J.; Jannson, T. )

    1989-10-01

    We present theoretical and experimental results of a novel fiber-optic wavelength-division multiplexing (WDM) design employing a broadband (>150-nm) dichromated gelatin volume holographic grating operating in a reflective Littrow configuration with on-axis optics, a single lens, and one fiber array. This configuration can achieve better than {minus}1.5-dB insertion loss and {minus}40-dB cross talk for a 6-channel system and {minus}2.5-dB insertion loss and {minus}20-dB cross talk for a 12-channel system with 15-nm channel spacing. For an experimental 4-channel WDM unit we measured better than {minus}1.5-dB insertion loss for all channels and less than {minus}32-dB cross talk. This design can provide cost and performance benefits for local area network communication applications.

  10. Detection of adulteration in virgin olive oil using a fiber optic long period grating based sensor

    NASA Astrophysics Data System (ADS)

    Libish, T. M.; Bobby, M. C.; Linesh, J.; Mathew, S.; Pradeep, C.; Nampoori, V. P. N.; Biswas, P.; Bandyopadhyay, S.; Dasgupta, K.; Radhakrishnan, P.

    2013-04-01

    A fiber optic sensing system for the detection of adulteration of virgin olive oil by less expensive sunflower oil is presented. The fundamental principle of detection is the sensitive dependence of the resonance peaks of a long period grating (LPG) on the changes in the refractive index of the environmental medium surrounding the cladding surface of the grating. The performance of the sensor has been tested by monitoring the amplitude changes of the attenuation bands of the LPG in response to variation of adulteration level. With good repeatability, the detection limit of adulteration is 4% and the sensor sensitivity is around 0.07 dB vol%-1 of adulterant in the measurement range. The developed sensor is user-friendly, reusable and allows instantaneous measurement of the amount of adulteration without involving any reagents.

  11. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor.

    PubMed

    Woyessa, Getinet; Nielsen, Kristian; Stefani, Alessio; Markos, Christos; Bang, Ole

    2016-01-25

    The effect of humidity on annealing of poly (methyl methacrylate) (PMMA) based microstructured polymer optical fiber Bragg gratings (mPOFBGs) and the resulting humidity responsivity are investigated. Typically annealing of PMMA POFs is done in an oven without humidity control around 80°C and therefore at low humidity. We demonstrate that annealing at high humidity and high temperature improves the performances of mPOFBGs in terms of stability and sensitivity to humidity. PMMA POFBGs that are not annealed or annealed at low humidity level will have a low and highly temperature dependent sensitivity and a high hysteresis in the humidity response, in particular when operated at high temperature. PMMA mPOFBGs annealed at high humidity show higher and more linear humidity sensitivity with negligible hysteresis. We also report how annealing at high humidity can blue-shift the FBG wavelength more than 230 nm without loss in the grating strength. PMID:26832503

  12. Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings.

    PubMed

    Eom, Tae Joong; Ahn, Yeh-Chan; Kim, Chang-Seok; Chen, Zhongping

    2011-03-01

    We present a calibration protocol to obtain the alignment factors of a custom-made spectrometer and the nonlinear fitting function between the measured CCD pixel domain and the wavelength domain to apply to the spectral-domain optical coherence tomography (SD-OCT) using fiber Bragg gratings. We have used five gratings with different center wavelengths covering the broadband source spectral range. All have a narrow spectral bandwidth (0.05 nm) and the same reflectivity (92%) to calibrate and align the custom-made spectrometer. The implemented SD-OCT system following the proposed protocol showed the alignment factors as 44.37 deg incident angle, 53.11 deg diffraction angle, and 70.0-mm focal length. The spectral resolution of 0.187 nm was recalculated from the alignment factors. PMID:21456856

  13. Solution concentration measurements by means of optical fiber long-period gratings

    NASA Astrophysics Data System (ADS)

    Falciai, Riccardo; Mignani, Anna G.; Vannini, Andrea

    1998-06-01

    The measurement of the concentration of stock solutions, dilutions, oils, and water-soluble industrial fluids is of interest in many quality control industrial processes in order to check the concentration stability and abnormal aging effects. Off-line refractometers, such as the Abbe type, which offer a resolution of 0.2 percent, are commonly used. This paper presents an optical fiber long-period grating which has been tested for the refractometry of sodium chloride and calcium chloride aqueous solutions for a range of density varying from that of distilled water to that of a nearly-saturated condition.

  14. Fabrication of Fiber-Optic Tilted Bragg Grating Filter in 40 nm Range with A Single Phase Mask

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Wang, Y.; Sharma, A.; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    Fiber-optic Bragg grating filters are fabricated with a range of Bragg wavelength between 1296 and 1336 nm, using a single phase mask. 30 mW of continuous-wave light at 244 nm is used from a frequency-doubled argon-ion laser having an intracavity etalon. Gratings are fabricated by tilting the photosensitive fiber with respect to the phase mask up to an angle of 15 degrees. The variation of Bragg wavelength with the fiber-tilt is explained with a simple formula. High spatial coherence of 244 nm light makes it possible to displace the fiber as much as 6 mm in front of the phase mask and tilt the fiber by as much as 15 degrees. This results in nearly constant band-width and near 100% reflectively for all gratings throughout the 40 nm range.

  15. VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor.

    PubMed

    Guo, Tuan; Liu, Fu; Du, Fa; Zhang, Zhaochuan; Li, Chunjie; Guan, Bai-Ou; Albert, Jacques

    2013-08-12

    A compact fiber-optic vector rotation sensor in which a short section of polarization-maintaining (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single mode fiber without any lateral offset is proposed and experimentally demonstrated. Due to the intrinsic birefringence of the PM fiber, two well-defined resonances (i.e. orthogonally polarized FBG core modes) with wavelength separation of 0.5 nm have been achieved in reflection, and they exhibit a high sensitivity to fiber rotation. Both the orientation and the angle of rotation can be determined unambiguously via simple power detection of the relative amplitudes of the orthogonal core reflections. Meanwhile, instead of using a broadband source (BBS), the sensor is powered by a commercial vertical cavity surface emitting laser (VCSEL) with the laser wavelength matched to the PM-FBG core modes, which enables the sensor to work at much higher power levels (~15 dB better than BBS). This improves the signal-to-noise ratio considerably (~50 dB), and makes a demodulation filter unnecessary. Vector rotation measurement with a sensitivity of 0.09 dB/deg has been achieved via cost-effective single detector real time power measurement, and the unwanted power fluctuations and temperature perturbations can be effectively referenced out. PMID:23938824

  16. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees.

    PubMed

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian; Rasmussen, Henrik K; Yuan, Wu; Bang, Ole

    2013-02-25

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1 dB/m, close to the fiber loss minimum of 3.67 dB/m at 787 nm. PMID:23482009

  17. Polarization dependence of the strain sensitivity of fiber Bragg gratings inscribed in highly birefringent optical fibers

    NASA Astrophysics Data System (ADS)

    Singh, Paul; Jülich, Florian; Roths, Johannes

    2012-04-01

    It can be expected that the range of applications for FBG-based strain and temperature sensors would expand if the accuracy of this sensor technique was improved. In this study, polarization effects of FBG sensors, which contribute significantly to the measurement uncertainty of this technique, were investigated. Therefore, FBGs were inscribed into highly birefringent optical fibers. These sensor elements were attached to a specimen with defined orientations of the fiber's slow and fast axes with regard the specimen's surface. We observed a change of the fiber's birefringence in the order of 5 10-5 as a consequence of the gluing process, that was employed to attach the fiber onto the specimen. The strain sensitivities were determined for each polarization mode and for different fiber orientations using a highly accurate strain calibration facility. It was found that in all experiments the strain sensitivity for the slow axis was significantly higher (about 0.8%) than for the fast axis. The strain sensitivity also depends on the orientation of the fiber's birefringent axes with regard to the surface of the specimen. Although the investigations were performed with FBGs inscribed into birefringent fibers, the findings are still of importance for understanding the polarization-dependant accuracy limits of FBGs in standard single-mode fibers.

  18. Long-period gratings for the optimization of cladding-pumped microstructured optical fiber laser

    NASA Astrophysics Data System (ADS)

    Mescia, Luciano; Palmisano, Tommaso; Surico, Michele; Prudenzano, Francesco

    2010-12-01

    The design of a laser constituted by an ytterbium doped, double-cladding microstructured optical fiber (DCMOF) with an optimized optical coupler inscribed in the doped core region is illustrated. The coupler is constituted by a long-period grating (LPG) which increases the pump power transfer from the inner cladding modes towards the fundamental core mode. A home-made numerical code solving the coupled-mode equations and the rate equations is ad hoc developed to investigate the dependence of the fiber laser performance on the LPG parameters such as the grating period and the length. The simulations highlight that it is possible to transfer a lot of the total input pump power from the inner cladding modes towards the fundamental mode guided into the core, leading to a significant improvement of both the pump power absorption and the output signal power. Moreover, a reduction of the total length of the laser and a minimization of the length-dependent nonlinear effects can be obtained.

  19. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    PubMed

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated. PMID:23938421

  20. Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber

    NASA Astrophysics Data System (ADS)

    Zang, Zhigang

    2012-03-01

    We demonstrate a new optical bistability devise by using two Fiber Bragg Gratings (FBG), in which an erbium-doped fiber (EDF) is inserted to form a nonlinear Fabry-Perot cavity (EDF FBG/F-P). The operation principle of this device is described by the resonant nonlinearity theory combining with the transfer matrix method. The optical bistability behaviors under different parameters are investigated. It shows that EDF FBG/F-P device has an evident merit in reducing the threshold switching power to 7 mW, resulting in a reduction about 6 orders, compared with that of single FBG device. Moreover, the ultra-fast response time about 35 ps is also confirmed.

  1. Bragg gratings inscription in step-index PMMA optical fiber by femtosecond laser pulses at 400 nm

    NASA Astrophysics Data System (ADS)

    Hu, X.; Kinet, D.; Chah, K.; Mégret, P.; Caucheteur, C.

    2016-05-01

    In this paper, we report photo-inscription of uniform Bragg gratings in trans-4-stilbenemethanol-doped photosensitive step-index polymer optical fiber. Gratings were produced at ~1575 nm by the phase mask technique with a femtosecond laser emitting at 400 nm with different average optical powers (8 mW, 13 mW and 20 mW). The grating growth dynamics in transmission were monitored during the manufacturing process, showing that the grating grows faster with higher power. Using 20 mW laser beam power, the reflectivity reaches 94 % (8 dB transmission loss) in 70 seconds. Finally, the gratings were characterized in temperature in the range 20 - 45 °C. The thermal sensitivity has been computed equal to - 86.6 pm/°C.

  2. Overwritten fiber Bragg grating and its application in an optical single sideband with carrier modulation radio over a fiber system

    NASA Astrophysics Data System (ADS)

    Ning, Tigang; Li, Jing; Pei, Li; Zhang, Fan; Zhou, Qian; Wen, Xiaodong; Qi, Chunhui; Zheng, Jingjing

    2011-03-01

    We present a prototype for optical single sideband (SSB) modulation with carrier (OSSB+C) by employing an overwritten fiber Bragg grating (FBG) is proposed and demonstrated. The grating is written using two different uniform phase masks of slight variation in the period. Then it is used in millimeter-wave SSB modulation scheme. Its operation principle can be concluded as the following two steps: (i) first, an intensity modulator double sideband (DSB) modulates the lightwave with millimeter-wave driving signals; (ii) then, the generated DSB modulation signals are reflected by the overwritten FBG. The overwritten FBG can reflect the carrier and the sideband simultaneously, resulting in two coherent subcarriers. Thus the conversion from DSB to OSSB+C can be easily achieved by using only one grating. Also, carrier-to-sideband ratio (CSR) can be optimized by using grating with different reflection depth. We demonstrate this scheme via simulation and successfully reduce signals' CSR from 14.44 to 1.25 dB.

  3. In Search of Multi-Peaked Reflective Spectrum with Optic Fiber Bragg Grating Sensor for Dynamic Strain Measurement

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2006-01-01

    In a typical optic fiber Bragg grating (FBG) strain measurement, unless in an ideal static laboratory environment, the presence of vibration or often disturbance always exists, which often creates spurious multiple peaks in the reflected spectrum, resulting in a non-unique determination of strain value. In this report we attempt to investigate the origin of this phenomenon by physical arguments and simple numerical simulation. We postulate that the fiber gratings execute small amplitude transverse vibrations changing the optical path in which the reflected light traverses slightly and non-uniformly. Ultimately, this causes the multi-peak reflected spectrum.

  4. Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity.

    PubMed

    Caucheteur, Christophe; Voisin, Valérie; Albert, Jacques

    2015-02-01

    Plasmonic optical fiber sensors are continuously developed for (bio)chemical sensing purposes. Recently, surface plasmon resonance (SPR) generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute a unique configuration to probe all the fiber cladding modes individually. We use them to analyze the modal distribution of gold-coated telecommunication-grade optical fibers immersed in aqueous solutions. Theoretical investigations with a finite-difference complex mode solver are confirmed by experimental data obtained on TFBGs. We show that the refractometric sensitivity varies with the mode order and that the global SPR envelope shift in response to surrounding refractive index (SRI) changes higher than 1e-2 RIU (refractive index unit) can be ~25% bigger than the local SPR mode shift arising from SRI changes limited to 1e-4 RIU. We bring clear evidence that the optimum gold thickness for SPR generation lies in the range between 50 and 70 nm while a cladding diameter decrease from 125 µm to 80 µm enhances the refractometric sensitivity by ~20%. Finally, we demonstrate that the ultimate refractometric sensitivity of cladding modes is ~550 nm/RIU when they are probed by gold-coated TFBGs. PMID:25836153

  5. Acoustic emission detection in carbon composite materials using Fiber Bragg Grating optical sensors

    NASA Astrophysics Data System (ADS)

    Mabry, Nehemiah J.

    In light of ongoing efforts to reduce weight but maintain durability, designers have examined the use of carbon fiber reinforced polymer (CFRP) composite materials for a number of aerospace and civil structures. Along with this research has been the study of determining reliable sensing and monitoring capabilities to avoid catastrophic failure. Fiber Bragg Grating (FBG) sensors are known to carry several advantages in this area, one of which is their proven ability to detect acoustic emission (AE) Lamb waves in composite structures. AE is produced in these materials by failure mechanisms such as resin cracking, fiber debonding, fiber pullout and fiber breakage. In this study FBG sensors were attached to CFRP laminates to detect acoustic emission events. Also Felicity Ratio (FR) measurements were made as they accumulated damage. FR is obtained directly from the ratio of the stress level at the onset of significant emission versus the maximum prior stress at the same AE level. The main objective of this paper is to describe the results of acousto-optic experiments using FBG sensors and present it as a way of determining accumulated damage in a carbon composite structure.

  6. Voltage-controllable wavelength-selective optical switching based on multiply cascaded long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Choi, Sun-Min; Kim, Sang Hyuck; Lee, Sang Bae

    2003-11-01

    A novel wavelength-selective optical switching device based on multiply cascaded long-period fiber gratings is proposed and experimentally demonstrated. The on and off states of each channel in the optical switching device can be effectively switched by voltage-controllable coil heaters. The device has advantages of multichannel operation, multiwavelength selectivity, and bandwidth controllability. It can be useful for applications in multiwavelength operational signal gating, optical switching devices, routers, and multiplexers in optical communication systems.

  7. Transmissive grating-reflective mirror-based fiber optic accelerometer for stable signal acquisition in industrial applications

    NASA Astrophysics Data System (ADS)

    Lee, Yeon-Gwan; Kim, Dae-Hyun; Kim, Chun-Gon

    2012-05-01

    This paper discusses an applicable fiber-optic accelerometer composed of a transmissive grating panel, a reflection mirror, and two optical fibers with a separation of quarter grating pitch as transceivers that monitor the low-frequency accelerations of civil engineering structures. This sensor structure brings together the advantages of both a simple sensor structure, which leads to simplified cable design by 50% in comparison with the conventional transmission-type fiber optic accelerometer, and a stable reflected signals acquisition with repeatability in comparison to the researched grating-reflection type fiber optic accelerometer. The vibrating displacement and sinusoidal acceleration measured from the proposed fiber optic sensor demonstrated good agreement with those of a commercial laser displacement sensor and a MEMS accelerometer without electromagnetic interference. The developed fiber optic accelerometer can be used in frequency ranges below 4.0 Hz with a margin of error that is less than 5% and a high sensitivity of 5.06 rad/(m/s)2.

  8. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  9. Study on the weighing system based on optical fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaona; Yu, Qingxu; Li, Yefang

    2010-10-01

    The optical fiber sensor based on wavelength demodulation such as fiber Bragg grating(FBG), with merits of immunity to electromagnetic interference, low drift and high precision, has been widely used in many areas, such as structural health monitoring and smart materials, and the wavelength demodulation system was also studied widely. In the paper, a weighing system based on FBG was studied. The optical source is broadband Erbium-doped fiber ring laser with a spectral range of 1500~1600nm and optical power of 2mW; A Fabry-Perot Etalon with orientation precision of 1pm was adopted as real-time wavelength calibration for the swept laser; and multichannel high resolution simultaneous sampling card was used in the system to acquire sensing signals simultaneously, thus high-resolution and real-time calibration of sweep-wavelength can be achieved. The FBG was adhered to a cantilever beam and the Bragg wavelength was demodulated with the system. The weighing system was done after calibrated with standard weight. Experimental results show that the resolution of the weighing system is 0.5 g with a full scale of 2Kg.

  10. Structural health monitoring of composite-based UAVs using simultaneous fiber optic interrogation by static Rayleigh-based distributed sensing and dynamic fiber Bragg grating point sensors

    NASA Astrophysics Data System (ADS)

    Tur, Moshe; Sovran, Ido; Bergman, Arik; Motil, Avi; Shapira, Osher; Ben-Simon, Uri; Kressel, Iddo

    2015-09-01

    Embedded fiber-optic strain sensing networks for airworthy assessment of operational Unmanned Aerial Vehicles (UAVs) are presented. Sensing is based on in-flight fiber Bragg grating technology, as well as on on-ground Rayleigh backscattering distributed strain sensing. While the in-flight instrumentation monitors loads, looking for excessive values, the Rayleigh-based technique is used for high spatial resolution strain distribution along the UAV wings, under prescribed loading. Consistency of measurements over time indicates structural integrity. Simultaneous strain measurements using both distributed Rayleigh and fiber Bragg gratings, on the same fiber, promises to combine high spatial resolution, though practically static measurements with dynamic, though discrete ones.

  11. Optic fiber hydrogen sensor based on high-low reflectivity Bragg gratings and WO3-Pd-Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Dai, Jixiang; Yang, Minghong; Li, Zhi; Wang, Gaopeng; Huang, Chujia; Qi, Chongjie; Dai, Yutang; Wen, Xiaoyan; Cheng, Cheng; Guo, Huiyong

    2015-09-01

    A novel optic fiber hydrogen sensor is proposed in this paper. Two Bragg gratings with different reflectivity were written in single mode fiber with phase mask method by 248 nm excimer laser. The end-face of singe mode fiber was deposited with WO3-Pd-Pt multilayer films as sensing element. The peak intensity of low reflectivity FBG is employed for hydrogen characterization, while that of high reflectivity FBG is used as reference. The experimental results show the hydrogen sensor still has good repeatability when the optic intensity in the fiber is only 1/3 of its initial value. The hydrogen sensor has great potential in measurement of hydrogen concentration.

  12. Fiber Bragg grating sensors array based on optical frequency domain reflectometry technology

    NASA Astrophysics Data System (ADS)

    Xiong, Yanling; He, Lijuan; Chen, Tao; Wang, Xuan; Yang, Wenlong

    2007-01-01

    In this paper, the optimized Fiber Bragg Grating Sensor Arrays system, which was based on Optical Frequency Domain Reflectometry(OFDR) Multiplexing and Fabry-Perot Tunable Optical Filter(TOF) Demodulation Technology was Introduced, that FBG sensors in the same operating waveband can be used in different beat frequencies positions was proposed, and then a simulation was made for this proposition. As a result, in the case of duty ratio of the modulation signal w=1, the maximum amplitude B=4OMHz, and saw-tooth frequency f s=5kHz,the maximum measurement range can reach 4000m and , the minimum resolution can be reduced to 2.58m. In addition, A/D converting circuits and a DSP COMS chip were suggested to be designed for the function of frequency mixing, wavelength filtering and Fast Fourier Transform so that instead of expensive frequency analyzer, so that the system cost can be reduced.

  13. Phase-shifted helical long-period grating-based temperature-insensitive optical fiber twist sensors

    NASA Astrophysics Data System (ADS)

    Gao, Ran; Zhu, Yinian; Krishnaswamy, Sridhar; Yi, Jiang

    2015-03-01

    In smart structure monitoring, twist angle is one of the most critical mechanical parameters for infrastructure deterioration. A compact temperature-insensitive optical fiber twist sensor based on multi-phase-shifted helical long period fiber grating has been proposed and experimentally demonstrated in this paper. A multi-phase-shifted helical long period fiber grating is fabricated with a multi-period rotation technology. A π / 2 and a 3π / 2 phase shift is introduced in the helical long period fiber grating by changing the period. The helical pitch can be effectively changed with a different twist rate, which is measured by calculating the wavelength difference between two phase shift peaks. Although the wavelength of the phase shift peak also shifts with a change of the temperature, the wavelength difference between two phase shift peaks is constant due to two fixed phase shifts in the helical long period fiber grating, which is extremely insensitive to temperature change for the multi-phase-shifted helical long period fiber grating. The experimental results show that a sensitivity of up to 1.959 nm/(rad/m) is achieved.

  14. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings.

    PubMed

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m(-1) (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m(-1). In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  15. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    PubMed Central

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from −0.33 to + 0.21 dB/m−1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m−1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  16. Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching

    NASA Astrophysics Data System (ADS)

    Nguyen, H. C.; Yeom, D.-I.; Mägi, E. C.; Fu, L. B.; Kuhlmey, B. T.; Martijn de Sterke, C.; Eggleton, B. J.

    2008-03-01

    We present experimental demonstration of all-optical switching using long-period gratings (LPGs) in highly nonlinear As2Se3 chalcogenide fiber. We use a 135mm grating which is generated using acoustic waves. We characterize the nonlinear pulse propagation through the LPG using picosecond pulses tuned to different wavelengths with respect to the grating resonance. We compare the results with numerical simulations and observe switching at pulse peak powers around 50W, two orders of magnitude smaller than previously demonstrated in silica.

  17. DNA biosensors implemented on PNA-functionalized microstructured optical fibers Bragg gratings

    NASA Astrophysics Data System (ADS)

    Candiani, A.; Giannetti, S.; Cucinotta, A.; Bertucci, A.; Manicardi, A.; Konstantaki, M.; Margulis, W.; Pissadakis, S.; Corradini, R.; Selleri, S.

    2013-05-01

    A novel DNA sensing platform based on a Peptide Nucleic Acid - functionalized Microstructured Optical Fibers gratings has been demonstrated. The inner surface of different MOFs has been functionalized using PNA probes, OligoNucleotides mimic that are well suited for specific DNA target sequences detection. The hybrid sensing systems were tested for optical DNA detection of targets of relevance in biomedical application, using the cystic fibrosis gene mutation, and food-analysis, using the genomic DNA from genetic modified organism soy flour. After the solutions of DNA molecules has been infiltrated inside the fibers capillaries and hybridization has occurred, oligonucleotidefunctionalized gold nanoparticles were infiltrated and used to form a sandwich-like system to achieve signal amplification. Spectral measurements of the reflected signal reveal a clear wavelength shift of the reflected modes when the infiltrated complementary DNA matches with the PNA probes placed on the inner fiber surface. Measurements have also been made using the mismatched DNA solution for the c, containing a single nucleotide polymorphism, showing no significant changes in the reflected spectrum. Several experiments have been carried out demonstrating the reproducibility of the results and the high selectivity of the sensors, showing the simplicity and the potential of this approach.

  18. Cost-effective optical coherence tomography spectrometer based on a tilted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Remund, Stefan; Bossen, Anke; Chen, Xianfeng; Wang, Ling; Adebayo, Adedotun; Zhang, Lin; Považay, Boris; Meier, Christoph

    2014-02-01

    A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution.

  19. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  20. Force Monitoring in a Maxilla Model and Dentition Using Optical Fiber Bragg Gratings

    PubMed Central

    Milczewski, Maura Scandelari; da Silva, Jean Carlos Cardozo; Martelli, Cicero; Grabarski, Leandro; Abe, Ilda; Kalinowski, Hypolito José

    2012-01-01

    The aim of this work is to show the possibility of using fiber optic sensors to instrument inside parts of an artificial maxilla and measure internal tension transmitted by the orthodontic and orthopedic appliances to the dentition and the adjacent bone. Bragg gratings written in a standard optical fiber were used to monitor the maxillary teeth and a multiplexed fiber was used to monitor the surface of the maxillary bone, transversally to the longest axis of the teeth. A Universal Test Machine was used to evaluate the sensitivity of the sensor to the vertical and lateral forces applied on the teeth. A wavelength shift of approximately 0.30 nm was detected when applying loads ranging from 0 to 20 N. By applying forces using the standard orthodontic appliances installed on the dentition it was possible to detect a range of forces between 0.025 N to 0.035 N during the activation of the arch wire and extra-oral forces. The use of the internal sensors in an artificial model made possible the monitoring of the resulting forces on the internal parts of the teeth and at the position where the strain takes place within the maxilla. The sensors detected that the orthodontic forces were not transmitted to the surface of the maxilla. This information is important to elucidate and to correlate undesirable effects as tooth root absorption and local pain during the orthodontic treatment. PMID:23112693

  1. Investigation of Structural Properties of Carbon-Epoxy Composites Using Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Osei, Albert J.

    2003-01-01

    Real time monitoring of the mechanical integrity and stresses on key aerospace composite structures like aircraft wings, walls of pressure vessels and fuel tanks or any other structurally extended components and panels as in space telescopes is very important to NASA. Future military and commercial aircraft as well as NASA space systems such as Space Based Radar and International Space Station will incorporate a monitoring system to sense any degradation to the structure. In the extreme flight conditions of an aerospace vehicle it might be desirable to measure the strain every ten centimeters and thus fully map out the strain field of a composite component. A series of missions and vehicle health management requirements call for these measurements. At the moment thousands of people support a few vehicle launches per year. This number can be significantly reduced by implementing intelligent vehicles with integral nervous systems (smart structures). This would require maintenance to be performed only as needed. Military and commercial aircrafts have an equally compelling case. Annual maintenance costs are currently reaching astronomical heights. Monitoring techniques are therefore required that allow for maintenance to be performed only when needed. This would allow improved safety by insuring that necessary tasks are performed while reducing costs by eliminating procedures that are costly and not needed. The advantages fiber optical sensors have over conventional electro-mechanical systems like strain gauges have been widely extolled in the research literature. These advantages include their small size, low weight, immunity to electrical resistance, corrosion resistance, compatibility with composite materials and process conditions, and multiplexing capabilities. One fiber optic device which is suitable for distributed sensing is the fiber Bragg grating (FBG). This is a periodic perturbation in the refractive index of the fiber core. When a broadband light is

  2. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  3. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  4. Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds.

    PubMed

    Oliveira, Ricardo; Bilro, Lúcia; Nogueira, Rogério

    2015-04-20

    We report the inscription of a Bragg grating in an undoped polymethylmethacrylate based microstructured fiber in a time record. The fiber has been irradiated with a 248 nm ultraviolet radiation, through the phase mask technique using low fluence and low repetition rate. The experimental conditions were chosen to modify the core refractive index of the fiber at the incubation regime and avoiding polymer ablation. The peak reflection of the Bragg grating was centered in the infrared region with 20 dB reflection and 0.16 nm bandwidth. These spectral properties are well attractive for sensors and communications applications. PMID:25969060

  5. Optical fiber strain sensor based on sandwiched long-period fiber gratings with a surface bonding layer

    NASA Astrophysics Data System (ADS)

    Chiang, Chia-Chin; Li, Chien-Hsing

    2014-10-01

    An optical fiber strain sensor based on sandwiched long-period fiber gratings (OFSS-SLPFG) with a surface bonding layer is proposed. The proposed OFSS-SLPFG is an etched optical fiber that is sandwiched between two thick photoresists with a periodic structure. To prevent the glue effect in the surface bonding process, where glue flows into the SLPFG structure, reducing the coupling strength, a surface bonding layer (thickness: 16 μm) is used as the base layer on the bottom of the OFSS-SLPFG. The OFSS-SLPFG is, therefore, more effective for use as a strain sensor. When external strain loading is applied, the resonant dip loss of the OFSS-SLPFG is reflected linearly. A bending strain calibration experiment is demonstrated by the four-point bending test. The results show an average linearity (R2) of 0.980, with a sensitivity of 0.00788 dB/με. This phenomenon suggests that the OFSS-SLPFG can be utilized as a sensitive strain transducer.

  6. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings.

    PubMed

    Zeng, Fei; Wang, Jun; Yao, Jianping

    2005-09-01

    A novel all-optical microwave bandpass filter with negative coefficients is presented. Positive and negative coefficients are obtained through conversion from phase modulation to intensity modulation by passing the phase-modulated optical carriers through chirped fiber Bragg gratings having group-delay responses with positive and negative slopes. A two-tap transversal microwave filter with one negative coefficient is experimentally implemented. PMID:16190418

  7. Stimulated Brillouin scattering in ultra-long distributed feedback Bragg gratings in standard optical fiber.

    PubMed

    Loranger, Sébastien; Lambin-Iezzi, Victor; Wahbeh, Mamoun; Kashyap, Raman

    2016-04-15

    Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth. PMID:27082348

  8. Smart sensing of aviation structures with fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Trutzel, Michael N.; Wauer, Karsten; Betz, Daniel; Staudigel, Lothar; Krumpholz, Oskar; Muehlmann, Hans-Christian; Muellert, Thomas; Gleine, Wolfgang

    2000-06-01

    We developed a surface mounting technique where fiber-optic Bragg grating (FBG) sensors are glued to the surface of structures and tested the technique on the surface of a CFRP- wing at the DASA Airbus test center Hamburg for over one year. The FBG sensors were interrogated with a measurement system capable of determining the Bragg wavelength in a few seconds over a spectral range of 60 nm (around 1.53 μm) with an absolute accuracy better than 1 pm. A polarization scrambler was used to account for polarization effects. Excellent consistence between the values of electrical strain gauges and the FBG sensors were found during all measurements. However because this method shows drawbacks in a harsher environment such as a flight test, we are currently investigating the possibilities of integrating FBG sensors into the varnish of the structures. For reasons of their better mechanical performance we use FBG sensors produced on the fiber draw-tower with a special UV-curable coating. The sensors are integrated into an original Airbus varnish build- up. We observed linear strain sensitivities in a temperature range between -50 and +100 °C. Furthermore, at negative temperatures we found a vanish- induced polarization dependence which could be used to differentiate between strain and temperature effects.

  9. Fiber Bragg gratings as a candidate technology for satellite optical communication payloads: radiation-induced spectral effects

    NASA Astrophysics Data System (ADS)

    Gusarov, Andrei I.; Doyle, Dominic B.; Karafolas, Nikos; Berghmans, Francis

    2000-10-01

    Intra-core Fiber Bragg Gratings is a candidate technology for a number of future applications in satellite payloads that plan to use multi-wavelength optical links for communicating with other satellites or with ground stations. Applications include wavelength multiplexing and demultiplexing units in multi- wavelength inter-satellite links as well as Add/Drop Multiplexers in the context of broadband satellite constellations using optical networking with on board optical routing. The main advantages of fiber Bragg gratings is that these devices are passive requiring no electric al power, have low mass, and can be compactly packaged. When considered for applications in space the main parameters of concern to be controlled are the stability in wavelength selectivity and throughput loss.

  10. Structural health monitoring of wind turbine blade using fiber Bragg grating sensors and fiber optic rotary joint

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.

    2012-04-01

    Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.

  11. Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system.

    PubMed

    Bertucci, Alessandro; Manicardi, Alex; Candiani, Alessandro; Giannetti, Sara; Cucinotta, Annamaria; Spoto, Giuseppe; Konstantaki, Maria; Pissadakis, Stavros; Selleri, Stefano; Corradini, Roberto

    2015-01-15

    Microstructured optical fibers containing microchannels and Bragg grating inscribed were internally functionalized with a peptide nucleic acid (PNA) probe specific for a gene tract of the genetically modified Roundup Ready soy. These fibers were used as an optofluidic device for the detection of DNA by measuring the shift in the wavelength of the reflected IR light. Enhancement of optical read-out was obtained using streptavidin coated gold-nanoparticles interacting with the genomic DNA captured in the fiber channels (0%, 0.1%, 1% and 10% RR-Soy), enabling to achieve statistically significant, label-free, and amplification-free detection of target DNA in low concentrations, low percentages, and very low sample volumes. Computer simulations of the fiber optics based on the finite element method (FEM) were consistent with the formation of a layer of organic material with an average thickness of 39 nm for the highest percentage (10% RR soy) analysed. PMID:25104434

  12. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  13. Utilization of fiber optic Bragg grating sensors in concrete columns confined with glass-fiber-reinforced plastic (GFRP) laminate under uniaxial compression test

    NASA Astrophysics Data System (ADS)

    Chan, Peter K. C.; Lau, Alan K.; Jin, Wei; Zhou, Limin

    1999-01-01

    In this paper we report of experimental studies on strain monitoring by using fiber Bragg grating sensors in concrete structures. The strain variation of the specimen under different loading conditions were monitored by the Fiber- optic Bragg grating (FBG) sensors. The FBG sensors have been pre-installed in the structure by embedding either inside the concrete specimen or at the interface between the concrete and the composites. The strain reading from the fiber grating sensor compares favorably with that obtained from the conventional strain gauge in uni-axial compression testing. The test result generally indicated that the concrete structures can be strengthened significantly by wrapping with glassfiber composites. The sensor embedded at the notch tip provides a very good indication of the health condition of the strengthened structure, especially in high stress concentration area. The strain sensitivity by using FBG sensor is 67 (mu) (epsilon) .

  14. High spatial resolution, dynamic, and distributed fiber optic strain sensing based on phasorial Brillouin dynamic gratings reflectometry

    NASA Astrophysics Data System (ADS)

    Bergman, A.; Langer, T.; Tur, M.

    2016-05-01

    We present a novel fiber-optic sensing technique based on the distributed measurement of Brillouin-induced phase-shift in the reflection from Brillouin dynamic gratings in polarization-maintaining fibers. Subject to signal to noise considerations, the strain sensitivity of the phase-shift in the reflection of a pulsed probe, orthogonally polarized to the gratings-generating pumps, is independent of the pulse width, suggesting the potential to achieve higher spatial resolutions than those offered by slope-assisted, phasorial Brillouin sensing techniques in standard single-mode fibers. We report the measurement of 500Hz strain vibrations (at a sampling rate of 1MHz) with a spatial resolution of 20cm.

  15. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  16. Optical resonance analysis of reflected long period fiber gratings with metal film overlay

    NASA Astrophysics Data System (ADS)

    Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu

    2008-11-01

    We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.

  17. Coherent tunnelling adiabatic passage in optical fibres using superimposed long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Thyagarajan, K.; Gupta, Ruchi

    2016-08-01

    In this paper, we present the optical analogue of stimulated Raman adiabatic passage (STIRAP) technique for three level atomic system in optical fibre geometry. Considering linearly polarized modes of an optical fibre, it is shown that using a pair of superimposed long-period gratings with peak refractive index perturbation varying spatially along the propagation axis, light can be transferred adiabatically from one core mode to another core mode via an intermediate cladding mode which itself does not get appreciably excited; thus acting like a dark mode. We compare the transmission spectrum of superimposed long-period gratings involved in adiabatic transfer with the transmission spectrum of conventional long-period grating. The analogue output is further analysed for its tolerance to the changes in the ambient refractive index, temperature and other fabrication parameters.

  18. An acceleration transducer based on optical fiber Bragging grating with temperature self-compensating function

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Lu, Qiyu; Ou, Jinping

    2013-04-01

    Along with the maturity and development of Optical Fiber Bragg Grating (OFBG) sensing technology, OFBG sensors with different functions have been developed and applied in large-scale engineering structure health monitoring and construction monitoring. In this paper, an acceleration transducer with a characteristic of temperature self-compensating is introduced. It is a cantilever structure model with equal strength beam, fixed with a mass block at the end of the beam, and two consecutive OFBGs are pasted on the upper and lower surface axis of the beam at the corresponding places. Because of the two OFBGs are near to each other, the wavelength changes caused by the environment temperature is the same. According to the temperature self-compensating principle and acceleration measurement principle developed in this paper, we can achieve the temperature self-compensating function of real acceleration measurement by simply calculating the test results. The experimental results show that this type of acceleration transducer has high sensitivity and stability and its measuring range can also be changed according to the practical requirements. This type of acceleration transducer is suitable for engineering structure acceleration measurement in different environment conditions.

  19. Sensitive detection of C-reactive protein using optical fiber Bragg gratings.

    PubMed

    Sridevi, S; Vasu, K S; Asokan, S; Sood, A K

    2015-03-15

    An accurate and highly sensitive sensor platform has been demonstrated for the detection of C-reactive protein (CRP) using optical fiber Bragg gratings (FBGs). The CRP detection has been carried out by monitoring the shift in Bragg wavelength (ΔλB) of an etched FBG (eFBG) coated with an anti-CRP antibody (aCRP)-graphene oxide (GO) complex. The complex is characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. A limit of detection of 0.01mg/L has been achieved with a linear range of detection from 0.01mg/L to 100mg/L which includes clinical range of CRP. The eFBG sensor coated with only aCRP (without GO) show much less sensitivity than that of aCRP-GO complex coated eFBG. The eFBG sensors show high specificity to CRP even in the presence of other interfering factors such as urea, creatinine and glucose. The affinity constant of ∼1.1×10(10)M(-1) has been extracted from the data of normalized shift (ΔλB/λB) as a function of CRP concentration. PMID:25461166

  20. Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium.

    PubMed

    Coelho, L; de Almeida, J M M M; Santos, J L; Viegas, D

    2015-12-10

    A study of a sensor for hydrogen (H2) detection based on fiber Bragg gratings coated with palladium (Pd) with self-temperature compensation is presented. The cladding around the gratings was reduced down to 50 μm diameter by a chemical etching process. One of the gratings was left uncoated, and the other was coated with 150 nm of Pd. It was observed that palladium hydride has unstable behavior in environments with high humidity level. A simple solution to overcome this problem based on a Teflon tape is presented. The sensing device studied was able to respond to H2 concentrations in the range 0%-1% v/v at room temperature and atmospheric pressure, achieving sensitivities larger than 20 pm/% v/v. Considering H2 concentrations in nitrogen up to 1%, the performance of the sensing head was characterized for different thicknesses of Pd coating ranging from 50 to 200 nm. PMID:26836856

  1. Use of 3000 Bragg Grating Strain Sensors Distributed on Four Eight-meter Optical Fibers During Static Load Tests of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Childers, Brooks A.; Froggatt, Mark E.; Allison, Sidney G.; Moore, Thomas C., Sr.; Hare, David A.; Batten, Christopher F.; Jegley, Dawn C.

    2001-01-01

    This paper describes the use of a fiber optic system to measure strain at thousands of locations along optical fibers where weakly reflecting Bragg gratings have been photoetched. The optical fibers were applied to an advanced composite transport wing along with conventional foil strain gages. A comparison of the fiber optic and foil gage systems used for this test will be presented including: a brief description of both strain data systems; a discussion of the process used for installation of the optical fiber; comparative data from the composite wing test; the processes used for the location and display of the high density fiber optic data. Calibration data demonstrating the potential accuracy of the fiber optic system will also be presented. The opportunities for industrial and commercial applications will be discussed. The fiber optic technique is shown to be a valuable augmentation to foil strain gages providing insight to structural behavior previously requiring reliance on modeling.

  2. Interferometric fiber Bragg grating shift demodulation

    NASA Astrophysics Data System (ADS)

    Stepien, Karol; Jóźwik, Michalina; Nasilowski, Tomasz

    2015-09-01

    In this paper we present a fiber Bragg grating shift demodulator with changeable resolution based on an unbalanced fiber Mach-Zehnder interferometer. Preliminary research proves phase sensitivity to Bragg wavelength changes of 6,83 rad/mɛ. Phase sensitivity can be modified by changing the optical path difference witch is only limited by the coherence length of light reflected by the fiber Bragg grating. This solution can be used as a single sensor or as a part of a more complex system.

  3. Long-period fiber phase grating devices

    NASA Astrophysics Data System (ADS)

    Stegall, David Brian

    In recent years, the explosive growth of the internet has virtually surpassed the limits of the global communications infrastructure. As a result, the fiber- optic communications industry is spearheading research and development to transmit information at ever increasing rates and over longer distances. The industry faces several obstacles to improving the performance of these systems. One problem is dispersion, which manifests at faster transmission rates when pulse spreading and distortion scramble the signal. Furthermore, high transmission powers needed for longer distances introduce deleterious optical nonlinearity phenomenon. Several waveguide and bulk devices have been implemented to address these issues, but each have shortcomings. Many of these problems and challenges have also impacted other fiber-optic industries, such as sensor systems. Long- period optical fiber gratings pose simple solutions to these problems and offer novel applications previously impractical through any other means. In this dissertation, research is presented in which modeling and fabrication of long-period gratings is improved over existing techniques by incorporating the effects of waveguide dispersion. An arbitrary dispersion also can be introduced into a long-period grating intentionally and a theoretical examination is made relating the chirp of a long-period grating and the resulting dispersion. In addition, several device applications such as a biological sensor and the concept of an actively controlled transmission spectrum of a long-period grating are explored. Finally, multiple in-series Bragg and long- period gratings are investigated for novel device configurations.

  4. Intracore and extracore examination of fiber gratings with coherent detection

    NASA Astrophysics Data System (ADS)

    Froggatt, Mark Earl

    2001-06-01

    This thesis introduces several new methods of measurement to aid in the production and evaluation of Bragg gratings in optical fiber. Five measurements are described: UV fringe visualization for grating production, weak grating measurement for distributed sensing, strong grating measurement for telecommunication applications, second harmonic grating measurement for grating chirp assessment, and grating visualization using radiation diffraction from strong Bragg gratings. The weak grating measurement for distributed strain sensing is a summary of work published prior to beginning the thesis research, and is provided for background purposes. The UV fringe visualization is accomplished by using a phase mask very close to the plane of the fiber to diffract the incoming beams used to write the Bragg grating into nearly parallel alignment, leading to macroscopic fringes indicative of the phase, frequency, amplitude, and contrast of the microscopic fringes incident on the fiber. The weak grating measurement uses Optical Frequency Domain Reflectometry (OFDR) to measure the spatial distribution of the coupling strength of weak gratings. Included in the description of the OFDR technique are recent advances in the precision monitoring of the emission wavelength of tunable lasers. The precise monitoring of wavelength is critical to the functioning of OFDR. The strong grating measurement is based on a modified form of OFDR and an analysis of the problem in the time and frequency domains to produce accurate measurements of both the reflection and transmission Transfer Functions for Bragg gratings. This measurement technique is also applicable to a wide variety of optical fiber devices, and is shown to be scalable to multiple port devices. The second-harmonic measurement for grating chirp analysis is similar to the weak grating measurement, but it was done at a wavelength resonant with the second- harmonic grating in the fiber-780 nm for 1550 nm reflection gratings. The second

  5. Optimizing the external optical cavity parameters for performance improvement of a fiber grating Fabry-Perot laser

    NASA Astrophysics Data System (ADS)

    Hisham, Hisham Kadhum; Abas, Ahmad Fauzi; Amouzad Mahdiraji, Ghafour; Mahdi, Mohd Adzir; Mahamd Adikan, Faisal Rafiq

    2015-04-01

    The effects of the external optical cavity parameters (external optical cavity length ( L ext), amplitude coupling ( C o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature ( T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density ( N th,fe) has been derived. The TD of N th,fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature ( T o) and current ( I o). Results show that the optimum external fiber length ( L ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 × 10-2 is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.

  6. Holographic Gratings for Optical Processing

    NASA Technical Reports Server (NTRS)

    Kukhtarev, Nickolai

    2002-01-01

    Investigation of astronomical objects and tracking of man-made space objects lead to generation of huge amount of information for optical processing. Traditional big-size optical elements (such as optical telescopes) have a tendency for increasing aperture size in order to improve sensitivity. This tendency leads to increasing of weight and costs of optical systems and stimulate search for the new, more adequate technologies. One approach to meet these demands is based on developing of holographic optical elements using new polymeric materials. We have investigated possibility to use new material PQ-PMMA (phenantrenequinone-doped PMMA (Polymethyl Methacrylate)) for fabrication of highly selective optical filters and fast spatial-temporal light modulators. This material was originally developed in Russia and later was tested in CalTech as a candidate material for optical storage. Our theoretical investigation predicts the possibility of realization of fast spatial and temporal light modulation, using volume reflection-type spectral filter. We have developed also model of holographic-grating recording in PQ-PMMA material, based on diffusional amplification. This mechanism of recording allow to receive high diffraction efficiency during recording of reflection-type volume holographic grating (holographic mirror). We also investigated recording of dynamic gratings in the photorefractive crystals LiNbO3 (LN) for space-based spectroscopy and for adaptive correction of aberrations in the telescope's mirrors. We have shown, that specific 'photogalvanic' mechanism of holographic grating recording in LN allow to realize recording of blazed gratings for volume and surface gratings. Possible applications of dynamic gratings in LN for amplification of images, transmitted through an imaging fiber guide was also demonstrated.

  7. A short baseline strainmeter using fiber-optic Bragg-Grating (FBG) sensor and a nano-optic interferometer

    NASA Astrophysics Data System (ADS)

    Coutant, O.; Demengin, M.; Le Coarer, E.; Gaffet, S.

    2013-12-01

    Strain recordings from tiltmeters or borehole volumetric strainmeters on volcanoes reveal extremely rich signal of deformation associated with eruptive processes. The ability to detect and record signals of the order of few tens of nanostrain is complementary to other monitoring techniques, and of great interest to monitor and model the volcanic processes. Strain recording remains however a challenge, for both the instrumental and the installation point of view. We present in this study the first results of strain recordings, using a new fiber-optic Bragg-Grating (FBG) sensor. FBG sensors are known for many years and used as strain gauges in civil engineering. They are however limited in this case to microstrain capability. We use here a newly developped interferometer named SWIFTS whose main characteristics are i) an extremely high optical wavelength precision and ii) a small design and low power requirements allowing an easy field deployment. Our FBG sensor uses a short baseline, 3cm long Bragg network. We show preliminary results obtained from a several months recordings in the low noise underground laboratory at Rustrel (LSBB), south of France.

  8. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  9. Cross-fiber Bragg grating transducer

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  10. Centre of mass determination based on an optical weighing machine using fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Oliveira, Rui; Roriz, Paulo; Marques, Manuel B.; Frazão, Orlando

    2015-09-01

    The purpose of the present work was to construct a weighing machine based on fiber Bragg gratings (FBGs) for the location of the 2D coordinates of the center of gravity (COG) of objects with complex geometry and density distribution. The apparatus consisted of a rigid equilateral triangular platform mounted on three supports at its vertices, two of them having cantilevers instrumented with FBGs. As an example, two femur bone models, one with and one without a hip stem prosthesis, are used to discuss the changing of the COM caused by the implementation of the prosthesis.

  11. Biosensor based on excessively tilted fiber grating in thin-cladding optical fiber for sensitive and selective detection of low glucose concentration.

    PubMed

    Luo, Binbin; Yan, Zhijun; Sun, Zhongyuan; Liu, Yong; Zhao, Mingfu; Zhang, Lin

    2015-12-14

    We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514 nm·(mg/ml)⁻¹, which the detection accuracy is ~0.2857 nm⁻¹ at pH 5.2, and the limit of detection (LOD) is 0.013~0.02 mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02 nm. PMID:26699032

  12. Application of fiber-optic bragg grating sensors in monitoring environmental loads of overhead power transmission lines.

    PubMed

    Bjerkan, L

    2000-02-01

    We demonstrate the capability of using fiber-optic sensors for measurements on environmental loads on a high-power, overhead transmission line. A trial system with three Bragg gratings, including a temperature reference, was installed on a 160-m span of a 60-kV line. An interrogation system with a tunable distributed Bragg reflector laser source was used. Several measurements of the induced loads on a conductor were recorded in various wind conditions. In particular, aeolian vibrations were frequently observed, and several measurements of this phenomenon were made. The results correlate well with simple theoretical predictions and visual observations. PMID:18337925

  13. A fiber-integrated optical component fabricated via photopolymerization: Mode-selective grating coupler

    NASA Astrophysics Data System (ADS)

    Sümer, Can; Dinleyici, M. Salih

    2013-11-01

    We demonstrate a mode-selective directional coupler based on a grating structure, which is fabricated by laser direct-writing on a photopolymer thin film. The device is implemented on the flat planar surface of the D-Fiber, enabling fiber integration, where an Acrylamide/Polyvinyl Alcohol based photopolymer material is used in the fabrication of the device. While the refractive index modulation properties of the polymer material are well known, surface relief and corrugation properties due to photopolymerization are investigated in this study. Theoretical model of the device is presented together with the optimization and simulation results of the final device; experimental results have been found to be in good agreement with simulations.

  14. Metal embedded Fiber Brag Grating Sensors

    NASA Astrophysics Data System (ADS)

    Khanal, Chooda; Vargas, Garman; Balani, Kantesh; Keshri, Anup; Barbosa, Carmen; Agarwal, Arvind; Panepucci, Roberto

    2009-03-01

    A novel method of embedding optical fibers and optical fiber sensors, inside metallic structures will be discussed. We specifically report results for embedding fiber bragg grating sensors in an aluminum coating onto a steel plate. Characterization of an embedded FBG sensor and its effects on the sensor operation are also presented. Temperature sensitivity and the strain sensitivity will be discussed. The novel high throughput deposition method show the potential of embedding optical sensors onto metallic structures which make it suitable for many engineering applications in biomedical, civil, mechanical and aeronautical, among other fields.

  15. Tailored draw tower fiber Bragg gratings for various sensing applications

    NASA Astrophysics Data System (ADS)

    Lindner, Eric; Mörbitz, Julia; Chojetzki, Christoph; Becker, Martin; Brückner, Sven; Schuster, Kay; Rothhardt, Manfred; Willsch, Reinhardt; Bartelt, H.

    2012-02-01

    The idea of fabricating fiber Bragg gratings during the drawing process of an optical fiber dates back almost 20 years. The application of a transverse holographic writing method on a fiber draw tower offers a promising solution for a highly effective Bragg grating production. Because of the high technology requirements it took more than 10 years to develop the method into a reliable process. The improvements in the technical development during the last five years enable today a cost efficient industrial production of draw tower grating (DTG®) arrays. In this paper we report about new possibilities of the improved process with respect to the grating type (type I gratings, type II gratings), the coating type (2ORMOCER®, metals) and the fiber diameter (125μm, 80μm and below). Furthermore, we present an example for the application of draw tower fiber Bragg gratings in sensing technologies for medical applications.

  16. Experimental investigations on nonlinear dynamics of a semiconductor laser subject to optical injection and fiber Bragg grating feedback

    NASA Astrophysics Data System (ADS)

    Song, Jian; Zhong, Zhu-Qiang; Wei, Li-Xia; Wu, Zheng-Mao; Xia, Guang-Qiong

    2015-11-01

    Nonlinear dynamical characteristics of a slave semiconductor laser (S-SL) subject to optical injection from a master SL (M-SL) and optical feedback from a fiber Bragg grating (FBG) are investigated experimentally. First, we investigate the nonlinear dynamics of the S-SL subject to only optical injection. Through varying the injection coefficient and fixing the frequency detuning between the M-SL and S-SL, some dynamical states with typical characteristics are recorded and identified. Next, the variations of these dynamical states are further investigated with the introduction of a FBG feedback, and the according results show that these dynamical states may be changed after a FBG feedback is introduced into the S-SL. Finally, after collecting the mappings of the dynamical states of S-SL in the parameter space of injection coefficient and frequency detuning under different FBG feedback coefficients, the influences of FBG feedback on the nonlinear dynamics of the S-SL are analyzed.

  17. Magnetically-controllable optical multi-stability in magneto-optic fiber Bragg gratings with potential applications to multi-level all-optical regeneration

    NASA Astrophysics Data System (ADS)

    Wan, Qing-Yao; Wu, Bao-Jian; Zhou, Xing-Yu; Wen, Feng

    2015-08-01

    Starting with the nonlinear coupled-mode equations of guided optical waves in the magneto-optic fiber Bragg grating (MFBG), the amplitude transfer curve of the transmitted light is numerically calculated for the incident right-circularly polarized wave, and the multi-stability is analyzed by introducing the parameter of jitter suppression. It is shown that, (i) the performance of amplitude jitter suppression in the stable states of high level is better than that of low level; (ii) the jitter suppression in the multi-stable regions can be enhanced when the magnetic field is applied to the MFBG in the opposite direction of the incident wave; and (iii) by adjusting the applied magnetic field, the multi-stable levels can be tuned flexibly, which is helpful for developing the intelligent all-optical devices for multilevel regeneration.

  18. Dual polarization fiber grating laser hydrophone.

    PubMed

    Guan, Bai-Ou; Tan, Yan-Nan; Tam, Hwa-Yaw

    2009-10-26

    A novel fiber optic hydrophone based on the integration of a dual polarization fiber grating laser and an elastic diaphragm is proposed and experimentally demonstrated. The diaphragm transforms the acoustic pressure into transversal force acting on the laser cavity which changes the fiber birefringence and therefore the beat frequency between the two polarization lines. The proposed hydrophone has advantages of ease of interrogation, absolute frequency encoding, and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique. PMID:19997174

  19. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration.

    PubMed

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-15

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of approximately 60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of approximately 170 mW at a wavelength of 1455 nm and a low EDFA pump power of approximately 40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge. PMID:16936857

  20. Long-distance fiber Bragg grating sensor system with a high optical signal-to-noise ratio based on a tunable fiber ring laser configuration

    NASA Astrophysics Data System (ADS)

    Rao, Yun-Jiang; Ran, Zeng-Ling; Chen, Rong-Rui

    2006-09-01

    A novel tunable fiber ring laser configuration with a combination of bidirectional Raman amplification and dual erbium-doped fiber (EDF) amplification is proposed for realizing high optical signal-to-noise ratio (SNR), long-distance, quasi-distributed fiber Bragg grating (FBG) sensing systems with large capacities and low cost. The hybrid Raman-EDF amplification configuration arranged in the ring laser can enhance the optical SNR of FBG sensor signals significantly owing to the good combination of the high gain of the erbium-doped fiber amplifier (EDFA) and the low noise of the Raman amplification. Such a sensing system can support a large number of FBG sensors because of the use of a tunable fiber Fabry-Perot filter located within the ring laser and spatial division multiplexing for expansion of sensor channels. Experimental results show that an excellent optical SNR of ˜60 dB has been achieved for a 50 km transmission distance with a low Raman pump power of ˜170 mW at a wavelength of 1455 nm and a low EDFA pump power of ˜40 mW at a wavelength of 980 nm, which is the highest optical SNR achieved so far for a 50 km long FBG sensor system, to our knowledge.

  1. All-optical clock extraction from 40-Gbit/s NRZ data using cascaded long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Jeon, Sie-Wook; Hann, Swook; Park, Chang-Soo

    2010-06-01

    All-optical clock extraction from a 40-Gbit/s NRZ input signal is demonstrated using a cascaded long-period fiber grating (CLPG) and a mode-locked fiber ring laser. The CLPG has a Mach-Zehnder configuration with two arms along the core and cladding regions. Using the difference in propagation delay between two arms, the non-return-to-zero (NRZ) signal is converted to the pseudo-return-to-zero (PRZ) signal. To obtain repetitive pulses as a clock signal from the PRZ signal, a ring laser with a semiconductor optical amplifier (SOA) is used. Subsequently, the measured carrier-to-noise ratio (CNR) of the PRZ and clock signals are enhanced up to 30 dB and 31 dB, respectively, compared to that of the original NRZ signal. Also, the clock signal centered at 40 GHz has a low timing jitter of <1.3 ps. It is expected that this method can be applied to high speed fiber-optic systems of >40 Gbit/s due to its small time delay between the core and cladding regions.

  2. Synthesis of chirped apodized fiber Bragg grating parameters using Direct Tabu Search algorithm: Application to the determination of thermo-optic and thermal expansion coefficients

    NASA Astrophysics Data System (ADS)

    Karim, Fethallah; Seddiki, Omar

    2010-05-01

    In this paper, Direct Tabu Search (DTS) is proposed to synthesize the physical parameters of a fiber Bragg grating (FBG) numerically from its reflection response. A reflected spectrum is being calculated by using the Transfer Matrix Method (TMM). Direct search based strategies are used to direct a tabu search. These strategies are based on a new pattern search procedure called Adaptive Pattern Search (APS). In addition, the well-known Nelder-Mead (NME) algorithm is used as a local search method at the final stage of the optimization process. Direct Tabu Search (DTS) is applied for reconstruction of a raised cosine chirped fiber Bragg grating (CFBG) and a Gaussian multi channel fiber grating. The method is then used to synthesize a CFBG from its reflectivity taken at different temperatures. It gives a good estimate of the thermal expansion coefficient and the thermo-optic coefficient of the fiber.

  3. Temperature sensing in high voltage transmission lines using fiber Bragg grating and free-space-optics

    NASA Astrophysics Data System (ADS)

    Floridia, Claudio; Rosolem, Joao B.; Leonardi, Ariovaldo A.; Hortencio, Claudio A.; Fonseca, Romeu F.; Moreira, Rodrigo O. C.; Souza, Giovani C. L.; Melo, Altair L.; Nascimento, Carlos A. M.

    2013-05-01

    In this work we proposed the use of free-space-optics (FSO) to transmit and receive the optical signals from optical fiber placed in ground potential to the FBG fiber optics at high voltage potential, using a pair of optical collimators. The technique evaluation was performed in a prototype for the study of sensitivity to optical alignment and in an external environment using emulated sensing systems for both bus bar and overhead transmission line with real isolator chain. It has been shown that the FSO system allows collimators operate at distances of 500 mm to 2.000 mm. This range of distances is similar to the length of insulator's chain up to 230 kV. It was also shown that the proposed system can be used in real external environment for bus bar temperature monitoring in substations, where, even if the time out of the system is of 45%, with major interruption time of almost 15 hours, the majority of the interruption time was less than 18 minutes long. On the other hand, system has to be improved in order to be used in overhead transmission line. As tested for a real isolator chain the system shown a time out of 80.3%, with significant number of events of interruption acquisition time greater than 150 minutes. It is believed that for overhead power lines, system must be installed in rigid surge arresters or in a line post where it is expected to have similar results as in substation bus bars monitoring.

  4. Inscription of long period gratings using an ultraviolet laser beam in the diffusion-doped microstructured polymer optical fiber.

    PubMed

    Kowal, Dominik; Statkiewicz-Barabach, Gabriela; Mergo, Pawel; Urbanczyk, Waclaw

    2015-07-10

    We show that diffusion of azobenzene from the solution in methanol into a cladding of a polymer fiber facilitates fabrication of long period gratings by the use of a He-Cd focused laser beam. We have measured a diffusion rate into PMMA cladding of the microstructured fibers annealed in advance at different temperatures and showed that the diffusion rate is strongly affected by temperature treatment of the fiber. We have also investigated an impact of the azobenzene diffusion on fiber spectral loss and cladding surface quality. Furthermore, we have examined a temporal stability of the fabricated long period gratings and their response to temperature and tensile strain. PMID:26193411

  5. System and method for determination of the reflection wavelength of multiple low-reflectivity bragg gratings in a sensing optical fiber

    NASA Technical Reports Server (NTRS)

    Moore, Jason P. (Inventor)

    2009-01-01

    A system and method for determining a reflection wavelength of multiple Bragg gratings in a sensing optical fiber comprise: (1) a source laser; (2) an optical detector configured to detect a reflected signal from the sensing optical fiber; (3) a plurality of frequency generators configured to generate a signal having a frequency corresponding to an interferometer frequency of a different one of the plurality of Bragg gratings; (4) a plurality of demodulation elements, each demodulation element configured to combine the signal produced by a different one of the plurality of frequency generators with the detected signal from the sensing optical fiber; (5) a plurality of peak detectors, each peak detector configured to detect a peak of the combined signal from a different one of the demodulation elements; and (6) a laser wavenumber detection element configured to determine a wavenumber of the laser when any of the peak detectors detects a peak.

  6. Post-exposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Miller, Gary A.

    This thesis explains the development and characterization of a novel technique to fabricate weak fiber Bragg gratings for highly specific multi-element sensor arrays. This method, termed the "rescan technique," involves re-exposing a local region of a grating to fringeless ultraviolet light to "trim" unwanted portions of the reflection spectrum. The spectral effects that result from a rescan can only be adequately described by inventing the concept of a three-dimensional index growth surface, where induced index is a function of both the writing intensity and the exposure time. Using this information, it is possible to predict the spectral response of a rescanned grating using a numerical model. For our model, we have modified the piecewise-uniform approach to include coefficients within the coupled-mode formulism that imitate the same scattering properties as the actual grating. By taking high accuracy measurements of the refractive index change in germanosilicate fiber, we have created the necessary 3D map of photoinduced index to accurately model gratings and their post-exposure spectra. We will also demonstrate that optical fiber exhibits what we call "exposure history"; the final index change in a region depends on the previous exposures conditions.

  7. High-resolution low-frequency fluctuation map of a multimode laser diode subject to filtered optical feedback via a fiber Bragg grating.

    PubMed

    Baladi, Fadwa; Lee, Min Won; Burie, Jean-René; Bettiati, Mauro A; Boudrioua, Azzedine; Fischer, Alexis P A

    2016-07-01

    A highly detailed and extended map of low-frequency fluctuations is established for a high-power multi-mode 980 nm laser diode subject to filtered optical feedback from a fiber Bragg grating. The low-frequency fluctuations limits and substructures exhibit substantial differences with previous works. PMID:27367073

  8. Fiber Bragg grating cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjay; Mizunami, Toru; Yamao, Takashi; Shimomura, Teruo

    1996-09-01

    Temperature sensing to as low as 80 K was demonstrated with 1.55- mu m fiber Bragg gratings. The gratings were bonded on substrates to increase sensitivity, and a shift of the reflection wavelength was measured. The temperature sensitivity was 0.02 nm/K at 100 K when an aluminum substrate was used and 0.04 nm/K at 100 K when a poly(methyl methacrylate) substrate was used. These values are smaller than those at room temperature because of the nonlinearity of both the thermal expansion and the thermo-optic effect. Extension to the liquid helium temperature is also discussed.

  9. Spectral characteristics of draw-tower step-chirped fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Idrisov, Ravil F.; Varzhel, Sergey V.; Kulikov, Andrey V.; Meshkovskiy, Igor K.; Rothhardt, Manfred; Becker, Martin; Schuster, Kay; Bartelt, Hartmut

    2016-06-01

    This paper presents research results on the spectral properties of step-chirped fiber Bragg grating arrays written during the fiber drawing process into a birefringent optical fiber with an elliptical stress cladding. The dependences of resonance shift of the step-chirped fiber Bragg grating on bending, on applied tensile stress and on temperature have been investigated. A usage of such step-chirped fiber Bragg gratings in fiber-optic sensing elements creation has been considered.

  10. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    PubMed Central

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  11. Interrogation of a linearly chirped fiber Bragg grating sensor with high resolution using a linearly chirped optical waveform.

    PubMed

    Wang, Yiping; Zhang, Jiejun; Coutinho, Olympio; Yao, Jianping

    2015-11-01

    An approach to the interrogation of a linearly chirped fiber Bragg grating (LCFBG) sensor using a linearly frequency-modulated (or chirped) optical waveform (LFMOW) with a high resolution is proposed and experimentally demonstrated. An LFMOW is generated at a laser diode through linear frequency modulation. The generated LFMOW is then launched into an LCFBG pair consisting of two identical LCFBGs, with one serving as a sensing LCFBG and the other as a reference LCFBG. The reflection of the LFMOW from the two LCFBGs would lead to two time delayed LFMOWs. By beating the LFMOWs at a photodetector, a microwave signal with a beat frequency that is proportional to the time delay difference between the two reflected LFMOWs is generated. By measuring the frequency change of the beat signal, the strain applied to the sensing LCFBG is estimated. The proposed approach is experimentally evaluated. An LCFBG sensor with a resolution of 0.25 με is experimentally demonstrated. PMID:26512484

  12. Fiber Bragg grating sensing system using a TO-can-based compact optical module for wavelength demodulation

    NASA Astrophysics Data System (ADS)

    Song, Hong Joo; Lee, Jun Ho; Roh, Cheong Hyun; Hahn, Cheol-Koo; Choi, Young Bok; Kim, Jeong Soo; Park, Jung Ho

    2015-12-01

    A combined scheme using the light source of a reflective semiconductor optical amplifier (RSOA) and an optical signal processing unit (OSPU) based on the compact TO-can package is fabricated and characterized for a fiber Bragg grating (FBG) sensing system. Due to the optical feedback behavior from the FBG sensor, the RSOA is self-injection locked and lasing occurs at the Bragg wavelength. Using the wavelength-dependent filter method, all of the components in the OSPU are compactly integrated on the TO-can package with a height of 17.6 mm and diameter of 6.0 mm. The wavelength demodulating output signals are based on the optical power difference, depending only on the wavelengths without the effect of input optical power variations. The sensitivity of the output signal to temperature shows 0.026 dB/°C. The entire FBG sensing system has an excellent linear response to temperatures controlled with an accuracy of ±0.3°C.

  13. Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings

    NASA Astrophysics Data System (ADS)

    Gifford, Erika; Wang, Z.; Ramachandran, S.; Heflin, J. R.

    2007-09-01

    Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive, robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody- PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and robust platform for designing and building efficient optical biosensors.

  14. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    PubMed

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied. PMID:26696156

  15. Writing Bragg Gratings in Multicore Fibers.

    PubMed

    Lindley, Emma Y; Min, Seong-Sik; Leon-Saval, Sergio G; Cvetojevic, Nick; Lawrence, Jon; Ellis, Simon C; Bland-Hawthorn, Joss

    2016-01-01

    Fiber Bragg gratings in multicore fibers can be used as compact and robust filters in astronomical and other research and commercial applications. Strong suppression at a single wavelength requires that all cores have matching transmission profiles. These gratings cannot be inscribed using the same method as for single-core fibers because the curved surface of the cladding acts as a lens, focusing the incoming UV laser beam and causing variations in exposure between cores. Therefore we use an additional optical element to ensure that the beam shape does not change while passing through the cross-section of the multicore fiber. This consists of a glass capillary tube which has been polished flat on one side, which is then placed over the section of the fiber to be inscribed. The laser beam enters the fiber through the flat surface of the capillary tube and hence maintains its original dimensions. This paper demonstrates the improvements in core-to-core uniformity for a 7-core fiber using this method. The technique can be generalized to larger multicore fibers. PMID:27167576

  16. Dynamic optical coupled system employing Dammann gratings

    NASA Astrophysics Data System (ADS)

    Di, Caihui; Zhou, Changhe; Ru, Huayi

    2004-10-01

    With the increasing of the number of users in optical fiber communications, fiber-to-home project has a larger market value. Then the need of dynamic optical couplers, especially of N broad-band couplers, becomes greater. Though some advanced fiber fusion techniques have been developed, they still have many shortcomings. In this paper we propose a dynamic optical coupled system employing even-numbered Dammann gratings, which have the characteristic that the phase distribution in the first half-period accurately equals to that in the second-period with π phase inversion. In our experiment, we divide a conventional even-numbered Dammann grating into two identical gratings. The system can achieve the beam splitter and combiner as the switch between them according to the relative shift between two complementary gratings. When there is no shift between the gratings, the demonstrated 1×8 dynamic optical coupler achieves good uniformity of 0.06 and insertion loss of around 10.8 dB for each channel as a splitter. When the two gratings have an accurate shift of a half-period between them, our system has a low insertion loss of 0.46 dB as a combiner at a wavelength of 1550 nm.

  17. A Bragg Wavelength-Insensitive Fiber Bragg Grating Ultrasound Sensing System that Uses a Broadband Light and No Optical Filter

    PubMed Central

    Tsuda, Hiroshi

    2011-01-01

    An optical filter is incorporated in a conventional ultrasound detection system that uses a fiber Bragg grating (FBG) and broadband light source, to demodulate the FBG sensor signal. A novel ultrasound sensing system that does not require an optical filter is presented herein. Ultrasound could be detected via the application of signal processing techniques, such as signal averaging and frequency filters, to the photodetector output that corresponds to the intensity of the reflected light from a broadband light-illuminated FBG. Ultrasonic sensitivity was observed to be enhanced when an FBG was installed as a resonant sensor. This FBG ultrasound detection system is small and cheap to fabricate because it does not use a demodulating optical filter. The experimental results demonstrate that this system could be applied to ultrasonic damage inspection and acoustic emission measurements. Furthermore, this system was able to detect ultrasound despite the amount of strain or temperature that was applied to the FBG sensor because the ultrasound detection was not sensitive to the Bragg wavelength of the FBG sensor. PMID:22163995

  18. Amplitude-squeezed fiber-Bragg-grating solitons

    SciTech Connect

    Lee, R.-K.; Lai Yinchieh

    2004-02-01

    Quantum fluctuations of optical fiber-Bragg-grating solitons are investigated numerically by the back-propagation method. It is found that the band-gap effects of the grating act as a nonlinear filter and cause the soliton to be amplitude squeezed. The squeezing ratio saturates after a certain grating length and the optimal squeezing ratio occurs when the pulse energy is slightly above the fundamental soliton energy.

  19. From planar to fiber chiral gratings (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Genack, Azriel Z.; Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Chao, Norman; Neugroschl, Daniel

    2005-04-01

    We describe the development of fiber chiral gratings and discuss salient similarities and differences from planar chiral structures. Planar chiral structures include cholesteric liquid crystals and structured thin films produced by oblique deposition of dielectric materials on a rotating substrate. These are composed of uniform anisotropic planes with 180 degrees rotation symmetry which rotate uniformly with displacement perpendicular to the planes so that the pitch is equal to twice the period. The sinusoidal modulation of the structure which possesses double-helix symmetry results in a single band gap for co-handed light with the same sense of circular polarization as the handedness of the helical structure. Orthogonally polarized light is freely transmitted. Within the band gap the wavelength in the medium equals the structure pitch. Double-helix symmetry may also be implemented into a fiber geometry by twisting glass optical fiber with noncircular core cross section as it passes through a miniature oven. In addition to the polarization-selective resonant band observed in planar chiral gratings, we observe two additional modes of optical interaction when the pitch exceeds the wavelength in the fiber. In chiral long period gratings, dips in transmission are observed at wavelengths associated with coupling of the core mode and distinct cladding modes mediated by the chiral grating. In chiral intermediate period gratings, a broad scattering band is observed due to scattering out of the fiber into a continuum of states. Gratings with uniform pitch as well as with a specially designed pitch profile can be utilized to produce a variety of polarization selective devices. In addition to describing optical chiral gratings, we describe studies of microwave planar and fiber gratings, which played a key role in the development of optical fiber chiral gratings.

  20. Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings.

    PubMed

    Chen, L R; Smith, P W; de Sterke, C M

    1999-07-20

    We propose an optical code division multiple-access (OCDMA) system that uses in-fiber chirped moiré gratings (CMG's) for encoding and decoding of broadband pulses. In reflection the wavelength-selective and dispersive nature of CMG's can be used to implement wavelength-encoding/temporal-spreading OCDMA. We give examples of codes designed around the constraints imposed by the encoding devices and present numerical simulations that demonstrate the proposed concept. PMID:18323934

  1. Fiber grating systems used to measure strain in cylindrical structures

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.; Crowe, C. Robert; Vandiver, Terry L.; Evans, Robert N.

    1997-07-01

    Fiber optic grating systems are described that have been used to measure strain in cylindrical structures. The applications of these systems to a composite utility pole and to a composite missile body are described. Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity; light weight for ease of deployment; the ability to be recycled, reducing hazardous waste associated with chemically treated wooden poles; and compatibility with embedded fiber optic sensors, allowing structural loads to be monitored. Tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22-ft composite pole are reported. Monitoring strain in composite missile bodies has the potential to improve the quality of manufactured parts, support performance testing, and enhance safety during long periods of storage. Strain measurements made with fiber optic grating and electrical strain gauges are described.

  2. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings.

    PubMed

    Antipov, Sergei; Ams, Martin; Williams, Robert J; Magi, Eric; Withford, Michael J; Fuerbach, Alexander

    2016-01-11

    We compare and contrast novel techniques for the fabrication of chirped broadband fiber Bragg gratings by ultrafast laser inscription. These methods enable the inscription of gratings with flexible period profiles and thus tailored reflection and dispersion characteristics in non-photosensitive optical fibers. Up to 19.5 cm long chirped gratings with a spectral bandwidth of up to 30 nm were fabricated and the grating dispersion was characterized. A maximum group delay of almost 2 ns was obtained for linearly chirped gratings with either normal or anomalous group velocity dispersion, demonstrating the potential for using these gratings for dispersion compensation. Coupling to cladding modes was reduced by careful design of the inscribed modification features. PMID:26832235

  3. Improvement of the accuracy of the aircraft center of gravity by employing optical fiber Bragg grating technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Fan, LingLing; Guan, Liang; Zhao, Qiming; Cui, Hong-Liang

    2010-04-01

    Safety flight of aircrafts requires that the aircraft center of gravity (CG) must fall within specified limits established by the manufacturer. However, the aircraft CG depends not only on the structure of planes, but also on the passengers and their luggage. The current method of estimating the weight of passengers and luggage by the average weight may result in a violation of this requirement. To reduce the discrepancy between the actual weight and estimated weight, we propose a method of improving the accuracy of calculating the CG of the plane by weighing the passengers and their personal luggage. This method is realized by a Weigh-In-Motion (WIM) system installed at boarding gates based on optical fiber Bragg grating (FBG) technology. One prototype of WIM is fabricated and tested at lab. The resolution of this system is 2 kg and can be further improved by advanced manufacture technology. With the accurate weight of passengers and luggage coming from the WIM system and the locations of passengers and luggage obtained from boarding cards, the aircraft CG can be calculated correctly. This method can be applied into other fields, such as escalators, boarding gates for ferries.

  4. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide.

    PubMed

    Sridevi, S; Vasu, K S; Sampath, S; Asokan, S; Sood, A K

    2016-07-01

    An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules. PMID:26266873

  5. Shallow-grating coupler with optimized anti-reflection coating for high-efficiency optical output into multimode fiber

    NASA Astrophysics Data System (ADS)

    Tokushima, Masatoshi; Ushida, Jun; Uemura, Toshinori; Kurata, Kazuhiko

    2015-09-01

    We present an optimized design of a shallow grating coupler in a silicon-on-insulator (SOI) wafer with a quadruple anti-reflection coating (ARC) of multiple layers of SiO2 and SiOxNy for coupling to a multimode fiber. The ARC is designed to generate sufficient destructive interference for downward emission while maintaining constructive interference for upward emission. We confirm numerically that the upward directionality of the grating is as high as -0.58 dB. Because the grating is shallow and the ARC is away from the SOI core layer, the back reflection along the input waveguide can be suppressed to -27 dB.

  6. Magnetomechanically induced long period fiber gratings

    SciTech Connect

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  7. Performance Evaluation of Fiber Bragg Gratings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey; Adamovsky, Grigory; Floyd, Bertram

    2004-01-01

    The development of integrated fiber optic sensors for smart propulsion systems demands that the sensors be able to perform in extreme environments. In order to use fiber optic sensors effectively in an extreme environment one must have a thorough understanding of the sensor s limits and how it responds under various environmental conditions. The sensor evaluation currently involves examining the performance of fiber Bragg gratings at elevated temperatures. Fiber Bragg gratings (FBG) are periodic variations of the refractive index of an optical fiber. These periodic variations allow the FBG to act as an embedded optical filter passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change what wavelengths are transmitted and what wavelengths are reflected by the grating. Both thermal and mechanical forces acting on the grating will alter its physical characteristics allowing the FBG sensor to detect both temperature variations and physical stresses, strain, placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. This paper reports on test results of the performance of FBGs at elevated temperatures. The gratings looked at thus far have been either embedded in polymer matrix materials or freestanding with the primary focus of this paper being on the freestanding FBGs. Throughout the evaluation process, various parameters of the FBGs performance were monitored and recorded. These parameters include the peak Bragg wavelength, the power of the Bragg wavelength, and total power returned by the FBG. Several test samples were subjected to identical test conditions to

  8. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges.

    PubMed

    Goodwin, Peter M; Marshall, Bruce R; Stevens, Gerald D; Dattelbaum, Dana M

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated. PMID:23556841

  9. Non-invasive timing of gas gun-launched projectiles using external surface-mounted optical fiber-Bragg grating strain gauges

    NASA Astrophysics Data System (ADS)

    Goodwin, Peter M.; Marshall, Bruce R.; Stevens, Gerald D.; Dattelbaum, Dana M.

    2013-03-01

    Non-invasive detection methods for tracking gun-launched projectiles are important not only for assessment of gun performance but are also essential for timing a variety of diagnostics, for example, to investigate plate-impact events for shock compression experiments. Measurement of the time of passage of a projectile moving inside of the gun barrel can be achieved by detection of the transient hoop strain induced in the barrel of a light-gas gun by the passage of the projectile using external, barrel surface-mounted optical fiber-Bragg grating strain gauges. Optical fiber-Bragg gratings have been implemented and their response characterized on single-stage and two-stage light gas guns routinely used for dynamic experimentation at Los Alamos National Laboratory. Two approaches, using either broadband or narrowband illumination, were used to monitor changes in the Bragg wavelength of the fiber-Bragg gratings. The second approach, using narrowband laser illumination, offered the highest sensitivity. The feasibility of using these techniques to generate early, pre-event signals useful for triggering high-latency diagnostics was demonstrated.

  10. Free water in fuel sensor using fiber long period grating

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Grice, S.; Sugden, K.; Bennion, I.

    2011-05-01

    A fiber optic free water in fuel (WIF) sensor is proposed by utilizing a long period fiber grating (LPFG). The existence of free water in fuel is indicated by the appearance of a characteristic loss band. The free water level in fuel can be determined by measuring the transmissions of two characteristic loss bands.

  11. Real-time monitoring in passive optical access networks using L-band ASE and varied bandwidth and reflectivity of fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2016-05-01

    This paper presents a passive optical access network monitoring approach using an L-band amplified spontaneous emission source and varied bandwidths, reflectivity and Bragg wavelengths of fiber Bragg gratings (FBGs). In this technique, the reflection spectra of dedicated FBGs are used as the branch identifier to monitor the integrity of the distribution fiber in a point-to-multipoint network. FBGs with different bandwidths, reflectivity and Bragg wavelengths were used to monitor an increased number of optical network units within the limited bandwidth of the monitoring source. Simulations and experimental testing have been conducted to ensure the feasibility of this system. An experimental setup using four FBGs was conducted for different types of splitters. The signal processing to determine the faulty branches is presented. This system is capable of monitoring up to 32 distribution fibers using a limited monitoring source bandwidth of 10.8 nm with a power margin of 2 dB.

  12. Fabrication of Optical Fiber Devices

    NASA Astrophysics Data System (ADS)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  13. Detection of methicillin-resistant staphylococci by biosensor assay consisting of nanoscale films on optical fiber long-period gratings.

    PubMed

    Bandara, Aloka B; Zuo, Ziwei; Ramachandran, Siddharth; Ritter, Alfred; Heflin, James R; Inzana, Thomas J

    2015-08-15

    Methicillin-resistance among Staphylococcus species is a major health problem in hospitals, communities, and animals. There is a need for culture-free diagnostic assays that can be carried out rapidly, and maintain a high degree of sensitivity and specificity. To address this need an ionic self-assembled multilayer (ISAM) film was deposited on the surface of a long-period grating (LPG) optical fiber by immersion alternately in poly-allylamine hydrochloride and in poly-1-[p-(3'-carboxy-4'-hydroxyphenylazo) benzenesulfonamido]-1,2-ethandiyl (PCBS), resulting in terminal carboxyl groups on the LPG-ISAM. The terminal carboxyl groups were covalently conjugated to monoclonal antibodies (MAb) specific to penicillin-binding-protein 2a of methicillin resistant (MR) staphylococci. After exposure of the LPG-ISAM to 10(2) colony forming units (CFU)/ml of MR S. aureus (MRSA) for 50 min., light transmission was reduced by 19.7%. In contrast, after exposure to 10(6) CFU/ml of methicillin-sensitive S. aureus (MSSA) attenuation of light transmission was less than 1.8%. Exposure of the LPG-ISAM to extracts of liver, lungs, or spleen from mice infected with MRSA attenuated light transmission by 11.7-73.5%. In contrast, exposure of the biosensor to extracts from MSSA-infected mice resulted in 5.6% or less attenuation of light transmission. When the sensor was tested with 36 strains of MR staphylococci, 15 strains of methicillin-sensitive staphylococci, 10 strains of heterologous genera (all at 10(4) CFU/ml), or tissue samples from mice infected with MRSA, there was complete agreement between MR and non-MR bacteria determined by antibiotic susceptibility testing and the biosensor assay when the cutoff value for attenuation of light transmission was 6.3%. Thus, the biosensor described has the potential to detect MR staphylococci in clinical samples with a high degree of sensitivity and specificity. PMID:25845336

  14. Hydrogen sensing array based on weak fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Li, Zhi; Yu, Haihu

    2015-09-01

    Optical fiber hydrogen sensing system based on weak fiber Bragg grating (WFBG) array deposited with palladium (Pd) film is proposed and experimentally demonstrated. For multi-point measurement, three hydrogen WFBG sensors array are weld in a single optical fiber. A time-division multiplexing (TDM) interrogation system is employed to demodulate the sensing array. Sensing experiments to different hydrogen concentrations ranging from 0 to 3.6% are conducted, and the results show good agreement with standard FBG technology. Due to its strong multiplexing capability of weak FBG, the system is possible to integrate thousands of WFBG hydrogen sensors in a single optical fiber.

  15. A multi-wavelength fiber laser based on superimposed fiber grating and chirp fiber Bragg grating for wavelength selection

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Bi, Wei-hong; Fu, Xing-hu; Jiang, Peng; Wu, Yang

    2015-11-01

    In this paper, a new type of multi-wavelength fiber laser is proposed and demonstrated experimentally. Superimposed fiber grating (SIFG) and chirp fiber Bragg grating (CFBG) are used for wavelength selection. Based on gain equalization technology, by finely adjusting the stress device in the cavity, the gain and loss are equal, so as to suppress the modal competition and achieve multi-wavelength lasing at room temperature. The experimental results show that the laser can output stable multi-wavelength lasers simultaneously. The laser coupling loss is small, the structure is simple, and it is convenient for integration, so it can be widely used in dense wavelength division multiplexing (DWDM) system and optical fiber sensors.

  16. Fiber Bragg gratings for microwave photonics subsystems.

    PubMed

    Wang, Chao; Yao, Jianping

    2013-09-23

    Microwave photonics (MWP) is an emerging filed in which photonic technologies are employed to enable and enhance functionalities in microwave systems which are usually very challenging to fulfill directly in the microwave domain. Various photonic devices have been used to achieve the functions. A fiber Bragg grating (FBG) is one of the key components in microwave photonics systems due to its unique features such as flexible spectral characteristics, low loss, light weight, compact footprint, and inherent compatibility with other fiber-optic devices. In this paper, we discuss the recent development in employing FBGs for various microwave photonics subsystems, with an emphasis on subsystems for microwave photonic signal processing and microwave arbitrary waveform generation. The limitations and potential solutions are also discussed. PMID:24104174

  17. Shape Sensing a Morphed Wing with an Optical Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang

    2005-01-01

    We suggest using distributed fiber Bragg sensors systems which were developed locally at Langley Research Center carefully placed on the wing surface to collect strain component information at each location. Then we used the fact that the rate change of slope in the definition of linear strain is very small and can be treated as a constant. Thereby the strain distribution information of a morphed surface can be reduced into a distribution of local slope information of a flat surface. In other words a morphed curve surface is replaced by the collection of individual flat surface of different slope. By assembling the height of individual flat surface, the morphed curved surface can be approximated. A more sophisticated graphic routine can be utilized to restore the curved morphed surface. With this information, the morphed wing can be further adjusted and controlled. A numerical demonstration is presented.

  18. Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier.

    PubMed

    Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Tang, Dingyuan; Hao, Jianzhong; Dong, Bo; Liang, Sheng

    2010-12-20

    We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector. PMID:21173817

  19. Ultrashort pulse propagation in multiple-grating fiber structures.

    PubMed

    Chen, L R; Benjamin, S D; Smith, P W; Sipe, J E; Juma, S

    1997-03-15

    We propose a multiple-grating fiber structure that decomposes an ultrashort broadband optical pulse simultaneously in both wavelength and time. As an initial demonstration, we used a transform-limited 1-ps Gaussian pulse centered at 1.55 mu;m as the ultrashort broadband input into a three-grating fiber structure and generated three output pulses separated in wavelength and time with good correlation between experimental results and simulations. This device structure can be used to generate a multiwavelength train of pulses for use in wavelength-division-multiplexed systems or to implement frequency-domain encoding of coherent pulses for optical code-division multiple access. PMID:18183215

  20. Strain Measurement Validation of Embedded Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Emmons, Michael C.; Karnani, Sunny; Trono, Stefano; Mohanchandra, Kotekar P.; Richards, W. Lance; Carman, Gregory P.

    2010-03-01

    This study investigates the influence of strain state distribution on the accuracy of embedded optical fiber Bragg gratings (FBGs) used as strain sensors. An optical fiber embedded parallel to adjacent structural fibers in a graphite epoxy quasi-isotropic [(90/ ±45/0)S]3 lay-up is evaluated with mechanical loading parallel to the fiber optic direction. Finite element analysis (FEA) is used to evaluate the fiber optic sensors' responses both in the far field and near field regions of the mechanical grips. Comparison between experimental fiber optic strains, strain gauges, and FEA provides good correlation in the far field with differences of less than 1%. However, in the near field region, some discrepancies are found and attributed to birefringence arising from complex strain states.

  1. Chemical vapor deposition of anisotropic ultrathin gold films on optical fibers: real-time sensing by tilted fiber Bragg gratings and use of a dielectric pre-coating

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Giorgi, Javier B.; Gordon, Peter; Albert, Jacques; Barry, Seán. T.

    2014-09-01

    Tilted fiber Bragg gratings (TFBGs) are refractometry-based sensor platforms that have been employed herein as devices for the real-time monitoring of chemical vapour deposition (CVD) in the near-infrared range (NIR). The coreguided light launched within the TFBG core is back-reflected off a gold mirror sputtered onto the fiber-end and is scattered out into the cladding where it can interact with a nucleating thin film. Evanescent fields of the growing gold nanostructures behave differently depending on the polarization state of the core-guided light interrogating the growing film, therefore the resulting spectral profile is typically decomposed into two separate peak families for the orthogonal S- and P-polarizations. Wavelength shifts and attenuation profiles generated from gold films in the thickness regime of 5-100 nm are typically degenerate for deposition directly onto the TFBG. However, a polarization-dependence can be imposed by adding a thin dielectric pre-coating onto the TFBG prior to using the device for CVD monitoring of the ultrathin gold films. It is found that addition of the pre-coating enhances the sensitivity of the P-polarized peak family to the deposition of ultrathin gold films and renders the films optically anisotropic. It is shown herein that addition of the metal oxide coating can increase the peak-to-peak wavelength separation between orthogonal polarization modes as well as allow for easy resonance tracking during deposition. This is also the first reporting of anisotropic gold films generated from this particular gold precursor and CVD process. Using an ensemble of x-ray techniques, the local fine structure of the gold films deposited directly on the TFBG is compared to gold films of similar thicknesses deposited on the Al2O3 pre-coated TFBG and witness slides.

  2. Research on the fire alarming system of fiber grating

    NASA Astrophysics Data System (ADS)

    Qi, Yaobin

    2007-09-01

    The application of fiber grating sensing technology in fire alarming based on temperature detection has the advantages of high accuracy, high reliability and strong immunity from electronic and magnetic fields. It is especially advantageous to use this system in the petroleum and chemistry industry because it can provide an extraordinary safe means for the fire alarm. But due to the traditional optical Wavelength Division Multiplexing (WDM) technology is limited by the optic source bandwidth, the number of its multiplexing points is few. In this paper WDM technology will be developed mixing with Identified Bragg, which is called Identified and Wavelength Multiplexing, to build the Fiber Grating (FBG) fire alarm system integrated with computers. Some technologies applied in fire alarming system of fiber grating such as the transmission of test signals which pass through modulate and demodulate, the disposal of software system, the output of control signal and the strong ability of anti-disturbance have been studied and discussed.

  3. Improved stabilization of a 1.3 microm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating.

    PubMed

    Kim, K; Diddams, S A; Westbrook, P S; Nicholson, J W; Feder, K S

    2006-01-15

    We report significant enhancement (+24 dB) of the optical beat note between a 657 nm cw laser and the second-harmonic generation of the tailored continuum at 1314 nm generated with a femtosecond Cr:forsterite laser and a nonlinear fiber Bragg grating. The same continuum is used to stabilize the carrier-envelope offset frequency of the Cr:forsterite femtosecond laser and permits improved optical stabilization of the frequency comb from 1.0 to 2.2 microm. Using a common optical reference at 657 nm, a relative fractional frequency instability of 2.0 x 10(-15) is achieved between the repetition rates of Cr:forsterite and Ti:sapphire laser systems in 10 s averaging time. The fractional frequency offset between the optically stabilized frequency combs of the Cr:forsterite and Ti:sapphire lasers is +/-(0.024 +/- 6.1) x 10(-17). PMID:16441055

  4. Analytical investigation of a novel interrogation approach of fiber Bragg grating sensors using Optical Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Yüksel, Kivilcim; Pala, Deniz

    2016-06-01

    This work presents a novel approach in interrogating Polarization Dependent Loss (PDL) of cascaded identical FBGs using Optical Frequency Domain Reflectometer (OFDR). The fundamentals of both polarisation properties of uniform FBGs and polarisation-sensitive OFDR are explained and the benefits of this novel approach in measuring transversal load are discussed. The numerical programs computing the spectral evolution of PDL of the FBGs in the array as a function of grating parameters (grating length and birefringence) are presented. Our simulation results show an excellent agreement with the previously reported simulation (and experimental) results in the literature obtained on a single FBG by using classical state-of-the-art measurement techniques. As an envisaged application, the proposed system shows the feasibility of measuring the residual stresses during manufacturing process of composite materials which is not straightforward by amplitude spectrum measurements and/or considering only the axial strains.

  5. Reannealed Fiber Bragg Gratings Demonstrated High Repeatability in Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.

    2004-01-01

    Fiber Bragg gratings (FBGs) are formed by periodic variations of the refractive index of an optical fiber. These periodic variations allow an FBG to act as an embedded optical filter, passing the majority of light propagating through a fiber while reflecting back a narrow band of the incident light. The peak reflected wavelength of the FBG is known as the Bragg wavelength. Since the period and width of the refractive index variation in the fiber determines the wavelengths that are transmitted and reflected by the grating, any force acting on the fiber that alters the physical structure of the grating will change the wavelengths that are transmitted and reflected by it. Both thermal and mechanical forces acting on the grating will alter its physical characteristics, allowing the FBG sensor to detect both the temperature variations and the physical stresses and strains placed upon it. This ability to sense multiple physical forces makes the FBG a versatile sensor. To assess the feasibility of using Bragg gratings as temperature sensors for propulsion applications, researchers at the NASA Glenn Research Center evaluated the performance of Bragg gratings at elevated temperatures for up to 300 C. For these purposes, commercially available polyimide-coated high-temperature gratings were used that were annealed by the manufacturer to 300 C. To assure the most thermally stable gratings at the operating temperatures, we reannealed the gratings to 400 C at a very slow rate for 12 to 24 hr until their reflected optical powers were stabilized. The reannealed gratings were then subjected to periodic thermal cycling from room temperature to 300 C, and their peak reflected wavelengths were monitored. The setup shown is used for reannealing and thermal cycling the FBGs. Signals from the photodetectors and the spectrum analyzer were fed into a computer equipped with LabVIEW software. The software synchronously monitored the oven/furnace temperature and the optical spectrum analyzer

  6. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  7. Electro-optic polymer waveguide grating with fast tuning capability.

    PubMed

    Wang, Yi-Ping; Chen, Jian-Ping; Li, Xin-Wan; Zhou, Jun-He; Shen, Hao; Zhang, Xiao-Hong; Ye, Ai-Lun

    2005-06-10

    A novel fast tunable electro-optic (EO) polymer waveguide grating is proposed and designed. Its resonant wavelength can be linearly tuned via the first-order EO effect with a high sensitivity of 6.1 pm/V. We find that the spectrum characteristics of EO polymer waveguide gratings depend strongly on many grating parameters, such as refractive-index modulation, modulation function, grating period, and period number. Material selection, fabrication technology, EO tuning ability, and polarization dependence of EO polymer waveguide gratings are also discussed. Such a waveguide grating not only overcomes the disadvantages of fiber-optic gratings, such as slow wavelength tuning ability and large-scale integration inconvenience, but also has many advantages, such as high resonant-wavelength tuning sensitivity, the same fabrication technology used for semiconductors, and polarization independence. PMID:16007840

  8. Fabrication of fiber optic long period gratings operating at the phase matching turning point using an amplitude mask

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Correia, R.; Korposh, S.

    2016-05-01

    A fast method for the fabrication of the long period gratings (LPG) optical fibres operating at or near the phase matching turning point (PMTP) with the period of 109.0, 109.5 and 110.0 μm based on an amplitude mask writing system is described. The proposed system allows fabricating 3 cm long LPG sensors operating at PMPT within 20 min that is approximately 8 times faster than point-by-point approach. The reproducibility of the fabrication process was thoroughly studied. The response of the fabricated LPGs to the external change of the refractive index was investigated using water and methanol.

  9. Modeling of bend effects on fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Cadusch, Peter J.; Thompson, Alexander C.; Stoddart, Paul R.; Wade, Scott A.

    2012-02-01

    Sensing and telecommunication applications requiring the bending of optical fibers to small diameters are on the increase. Recent work has shown that the centre wavelength of fiber Bragg gratings has a bend dependence the magnitude of which varies with the type of fiber in which the grating is written. In this work the basis of the centre wavelength shift is investigated by modeling the effects of several potential causes for standard and depressed cladding fiber designs. The majority of the expected affects, including bend induced stress and mode field deformation, were found to result in small wavelength shifts in the opposite direction to those observed experimentally. However, a new account of the shift, based on simplistic geometrical optics, does show wavelength changes in the observed direction, of up to -0.15 nm, which is in the range of the experimentally measured shifts.

  10. The analysis on long-period fiber grating bending sensing rules

    NASA Astrophysics Data System (ADS)

    Luo, Yingxiang

    2011-12-01

    Solve the problem of fiber grating measuring calibration pressure, temperature, dip Angle and other important parameters, it is a satisfactory solution to use high strength dielectric-coated metallic structure of the hollow fiber grating sensors too Hertz. Preliminary theory analysis and simulation and test results show that the absorption of polyethylene with smaller in the terahertz wave band an ideal choice to the terahertz hollow fiber membrane materials. Use of metal and metal structure dielectric-coated hollow fiber grave phase-shifted fiber grating, constitute a kind of fiber grating sensor calibration. Differential structure can be used to overcome the influence of the environment. Dielectric-coated metallic structure of the hollow fiber the coherent detection methods of obtaining high gain, phase-shifted fiber grating optical heterodyne method to detect frequency, use the frequency range is 1012 kHz, and the frequency resolution 1 KHz.