Science.gov

Sample records for optical reflector system

  1. Design of partially optically stable reflector systems and prisms

    NASA Astrophysics Data System (ADS)

    Tsai, Chuang-Yu

    2010-09-01

    The characteristics and design method of the total optically stable (TOS) reflector systems/prisms were introduced in an early paper (Tsai and Lin in Appl. Opt. 47:4158-4163, 2008), where only two types of TOS reflector system exist, namely preservation or retroreflection. In this paper, we introduce the partially optically stable (POS) reflector system, which is only optically stable about a specific directional vector; nevertheless, the exiting light ray is not restricted to preservation or retroreflection. The proposed paper also presents an analytic method for the design of POS reflector systems comprised of multiple reflectors. Furthermore, it is shown that a POS prism can be obtained by adding two refracting flat boundary surfaces with specific conditions at the entrance and exit positions of the light ray in an optical system with multiple reflectors.

  2. Analysis of a generalized dual reflector antenna system using physical optics

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Lagin, Alan R.

    1992-01-01

    Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.

  3. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    SciTech Connect

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  4. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays.

    PubMed

    Sathishkumar, P; Punyabrahma, P; Mrinalini, R Sri Muthu; Jayanth, G R

    2015-09-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array. PMID:26429493

  5. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    NASA Astrophysics Data System (ADS)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-01

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  6. Conformal Membrane Reflectors for Deployable Optics

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)

    2002-01-01

    This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.

  7. Lightweight composite reflectors for space optics

    NASA Astrophysics Data System (ADS)

    Williams, Brian E.; McNeal, Shawn R.; Ono, Russell M.

    1998-01-01

    The primary goal of this work was to advance the state of the art in lightweight, high optical quality reflectors for space- and Earth-based telescopes. This was accomplished through the combination of a precision silicon carbide (SiC) reflector surface and a high specific strength, low-mass SiC structural support. Reducing the mass of components launched into space can lead to substantial cost savings, but an even greater benefit of lightweight reflectors for both space- and Earth-based optics applications is the fact that they require far less complex and less expensive positioning systems. While Ultramet is not the first company to produce SiC by chemical vapor deposition (CVD) for reflector surfaces, it is the first to propose and demonstrate a lightweight, open-cell SiC structural foam that can support a thin layer of the highly desirable polished SiC reflector material. SiC foam provides a substantial structural and mass advantage over conventional honeycomb supports and alternative finned structures. The result is a reflector component that meets or exceeds the optical properties of current high-quality glass, ceramic, and metal reflectors while maintaining a substantially lower areal density.

  8. Performance characteristics of a narrow-linewidth distributed-Bragg-reflector laser for optical remote sensing systems

    SciTech Connect

    Little, L.M.; Beernink, K.J.; Papen, G.C.; Coleman, J.J.

    1996-10-01

    Optical remote sensing systems designed to track pollutants and greenhouse gases have received increasing interest. Here, the performance of a novel ridge-waveguide, distributed-Bragg-reflector laser was tested for spectroscopic remote sensing applications. The laser exhibits a narrow linewidth, excellent side-mode suppression, and flexible, highly repeatable wavelength tuning. These characteristics are significant improvements over current Fabry-Perot lasers, and indicate that distributed-Bragg-reflector lasers are promising candidates for implementing advanced semiconductor-based optical remote sensing systems.

  9. Optical receivers using rough reflectors

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V. A.

    1985-01-01

    This report examines the possible use of rough, or nondiffraction-limited, reflectors for collecting optical signals. It is shown that in the absence of background radiation, the reflector's surface quality has little effect on the performance of a properly designed receiver, but that the presence of even small amounts of background radiation can lead to severe performance degradation. Techniques are suggested for improving receiver performance in high-background environments, and bounds and approximations to the exact error-probability expressions are derived.

  10. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    SciTech Connect

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  11. A soft actuation system for segmented reflector articulation and isolation

    NASA Technical Reports Server (NTRS)

    Agronin, Michael L.; Jandura, Louise

    1990-01-01

    Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.

  12. System dynamic simulation of precision segmented reflector

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described.

  13. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    2001-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  14. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, M.J.; Page, E.; Gould, C.T.

    1998-09-08

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.

  15. Reflector system for a lighting fixture

    DOEpatents

    Siminovitch, Michael J.; Page, Erik; Gould, Carl T.

    1998-01-01

    Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.

  16. Development of electro-optic systems for self cleaning concentrated solar reflectors

    NASA Astrophysics Data System (ADS)

    Stark, Jeremy W.

    loss as a function of dust deposition, (2) development of a dust deposition analyzer capable of measuring size distribution of deposited dust and provides mass concentration of dust on the surface of the mirror, and (3) optimization of electrode geometry of EDS film for minimizing optical reflection losses caused by the lamination of the film on the mirror surface while maintaining high reflection efficiency with high dust removal efficiency. The non-contact specular reflectometer and the dust deposition analyzer allowed experimental investigation of reflection losses as functions of surface mass concentration of dust on mirrors for validation of the optical model presented in this study.

  17. Optical Reflectance Measurements for Commonly Used Reflectors

    SciTech Connect

    Janecek, Petr Martin; Moses, William

    2008-06-11

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2 pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3o, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 105:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirror(R), Melinex(R) and Tyvek(R). Instead, a more complicated light distribution was measured for these three materials.

  18. Property of radially quadratic reflector systems

    NASA Technical Reports Server (NTRS)

    Mizusawa, M.; Katagi, T.

    1986-01-01

    This report shows that when considered in terms of optical geometry, radially parabolic and radially hyperbolic mirrors used as mirrors for Cassegrain and parabolic antennas possess values similar to common conical horn reflector antennas.

  19. System Would Keep Telescope Reflector Segments Aligned

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Eldred, Daniel B.; Briggs, Hugh C.; Agronin, Michael L.; Kiceniuk, Taras

    1991-01-01

    Proposed actuation system maintains alignments of reflector segments of large telescope. Sensors measure positions and orientations of segments. Figure-control computer calculates orientation and figure of overall reflector surface from sensor data. Responding to computer output, servocontroller for each actuator corrects piston and tilt errors of each segment. Actuators adjust segments in response to sensed positions. Concept applicable to such large segmented space-based reflectors as those used in communication and in collection of solar energy.

  20. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  1. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    NASA Technical Reports Server (NTRS)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  2. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    NASA Astrophysics Data System (ADS)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-01

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  3. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  4. Precision Segmented Reflector figure control system architecture

    NASA Technical Reports Server (NTRS)

    Mettler, E.; Eldred, D.; Briggs, C.; Kiceniuk, T.; Agronin, M.

    1989-01-01

    A control system architecture for an actively controlled segmented reflector is described along with a design realization for achieving precision alignment of reflector panels. Performance requirements are derived in part from the Large Deployable Reflector, which is a representative mission, and error allocations are made which consider mirror panel surface errors, position measurement and figure estimation, and position control of both quasi-static and dynamic disturbances. The design uses multiple wavelength interferometric edge sensors and voice coil actuators in conjunction with a hybrid control strategy to correct panel position errors. A unit cell shown to be central to the concept is analyzed. The cell integrates the sensing, actuation, and mechanical functions of a control module together with a reflector panel to form a unitized assembly.

  5. Analysis of reflector antenna system including frequency selective surfaces

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. L.; Lee, S. W.; Fujikawa, G.

    1992-10-01

    Frequency selective surfaces (FSS's) are often used in spaceborne applications of reflector antennas due to their ability to allow multiple feeds to utilize the same reflector dish. The problems inherent in evaluating the FSS separately from the reflector system are discussed. A method of integrating the FSS effects into the reflector system analysis is presented. An example is given for the proposed Advanced Tracking and Delay Relay Satellite System (ATDRSS) single-access triband reflector antenna.

  6. Analysis of reflector antenna system including frequency selective surfaces

    NASA Technical Reports Server (NTRS)

    Zimmerman, M. L.; Lee, S. W.; Fujikawa, G.

    1992-01-01

    Frequency selective surfaces (FSS's) are often used in spaceborne applications of reflector antennas due to their ability to allow multiple feeds to utilize the same reflector dish. The problems inherent in evaluating the FSS separately from the reflector system are discussed. A method of integrating the FSS effects into the reflector system analysis is presented. An example is given for the proposed Advanced Tracking and Delay Relay Satellite System (ATDRSS) single-access triband reflector antenna.

  7. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  8. Physical optics model of side lobe nulling by discs on a parabolic reflector

    NASA Astrophysics Data System (ADS)

    Trapp, D. A.

    1985-12-01

    By mounting small disc reflectors that are moveable relative to the inner reflector surface of a parabolic dish antenna, nulls can be generated in the side lobe region of the power radiation pattern with minimal distortion effects to the main beam. A physical optics model of this antenna system is developed to investigate in a simplified direct manner the phenomena of phase nulling caused by disc movement. Array theory using isotropic radiators is used to sample the aperture distribution to approximate the far field electric field of the dish. A physical optics approximation for scattering off a flat metal disc is used for discs and feed blockage effects.

  9. Physical optics analysis of a four-reflector antenna

    NASA Technical Reports Server (NTRS)

    Cha, A. G.

    1986-01-01

    Concern has been raised for the 64-m to 70-m antenna upgrade project that the 70-m system may experience greater S-band beam-pointing perturbations than the 64-m system. The S-band perturbations are due to minor (higher order) mode generation, causing subtle cross-polarization fields affecting beam pointing direction, as described herein. For the antennas in their present configuration (64 m), a slight S-band gain degradation of about 0.05 dB can be attributed to these effects. Therefore, a full physical optics analysis was performed for the present-day 64-m system, as described herein. The results were compared with past analyses and experimental observations in order to verify the algebra and computer code with the intent of deriving a valid analysis method for accurately analyzing the 70-m shaped dual reflector Cassegrainian antenna. The results of the new analysis appear to be in excellent agreement with previous analyses and experimental data.

  10. Physical optics analysis of a four-reflector antenna

    NASA Astrophysics Data System (ADS)

    Cha, A. G.

    1986-08-01

    Concern has been raised for the 64-m to 70-m antenna upgrade project that the 70-m system may experience greater S-band beam-pointing perturbations than the 64-m system. The S-band perturbations are due to minor (higher order) mode generation, causing subtle cross-polarization fields affecting beam pointing direction, as described herein. For the antennas in their present configuration (64 m), a slight S-band gain degradation of about 0.05 dB can be attributed to these effects. Therefore, a full physical optics analysis was performed for the present-day 64-m system, as described herein. The results were compared with past analyses and experimental observations in order to verify the algebra and computer code with the intent of deriving a valid analysis method for accurately analyzing the 70-m shaped dual reflector Cassegrainian antenna. The results of the new analysis appear to be in excellent agreement with previous analyses and experimental data.

  11. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.

    1991-01-01

    The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.

  12. Primary reflector for solar energy collection systems

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor); Stephens, J. B.

    1978-01-01

    A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery.

  13. High-frequency acousto-optic effects in Bragg reflectors.

    PubMed

    Farmer, D J; Akimov, A V; Gippius, N A; Bailey, J; Sharp, J S; Kent, A J

    2014-06-16

    Picosecond acoustic interferometry was used to study the acousto-optic properties of a distributed Bragg reflector (DBR) manufactured from two immiscible polymers (cellulose acetate and polyvinylcarbyzole). Picosecond strain pulses were injected into the structure and changes in its reflectance were monitored as a function of time. The reflectance exhibited single-frequency harmonic oscillations as the strain pulse traversed the DBR. A transfer matrix method was used to model the reflectance of the DBR in response to interface modulation and photo-elastic effects. This work shows that photo-elastic effects can account for the acousto-optic response of DBRs with acoustically matched layers. PMID:24977613

  14. Optical device with low electrical and thermal resistance Bragg reflectors

    SciTech Connect

    Lear, K.L.

    1996-10-22

    A compound-semiconductor optical device and method are disclosed. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors. 16 figs.

  15. Optical device with low electrical and thermal resistance bragg reflectors

    SciTech Connect

    Lear, Kevin L.

    1996-01-01

    A compound-semiconductor optical device and method. The optical device is provided with one or more asymmetrically-graded heterojunctions between compound semiconductor layers for forming a distributed Bragg reflector mirror having an improved electrical and thermal resistance. Efficient light-emitting devices such as light-emitting diodes, resonant-cavity light-emitting diodes, and vertical-cavity surface-emitting lasers may be formed according to the present invention, which may be applied to the formation of resonant-cavity photodetectors.

  16. Optical design of retro-reflectors by coordinate transformation

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, F.

    2010-02-01

    Transformation optics based on the form-invariant coordinate transformation of Maxwell’s equations offers an unconventional approach for designing devices with unprecedented electromagnetic (EM) behaviors. In this paper, we expand the coordinate transformation method to design omni-directional (OD) retro-reflectors by extending the conventional Luneberg lens reflectors to work in a much wider angular width. The constitutive medium tensors of the transformation devices are derived. Based on full wave simulations combined with Huygen’s principle, the flat and efficient backscattering responses of the resultant devices have been evaluated quantitatively. We confirm that the proposed structures are highly visible to incident EM waves from all directions, and they can be used as good OD radar cross section (RCS) enhancers in radar applications, such as the reference target for RCS measurements, range finding and position identification.

  17. Optical absorption of thin film on a Lambertian reflector substrate

    NASA Astrophysics Data System (ADS)

    Sheng, P.

    1984-05-01

    A formula is derived for calculating the optical absorption of thin films deposited on a Lambertian reflector substrate. It is shown that compared with the case of flat reflecting substrate, the incoherent absorption is enhanced by a factor of m x epsilon (1) in the weak absorption limit, where epsilon (1) is the real part of the film dielectric constant and m near two is a slightly varying function of epsilon (1). For a 0.5-micron a-SiH(x) (bandgap 1.7 eV) solar cell with a Lambertian reflector substrate, the total absorption in terms of the short-circuit current is calculated to be 18.63 mA/sq cm.

  18. Predicted and measured performance of a shaped reflector in a dual-gridded reflector system

    NASA Astrophysics Data System (ADS)

    Evans, G. D.; Malik, D. P. S.

    Current and proposed satellite communications systems demand dual-linearly polarized transmit/receive antennas for contoured and/or multiple-beam coverages. The proven means of satisfying these requirements is by the use of dual-gridded reflectors with multiple feed blocks for a contoured beam. In this paper practical issues and advantages concerning the choice of using a shaped reflector to replace one of the multiple feed antennas (MFAs) within a dual-gridded pair are addressed. For single contoured beam applications a shaped reflector has several important advantages. Primarily it allows a single feed system to replace a whole feed cluster and associated beamforming networks. In a study for the Orion satellites this resulted in a total mass saving of 7.5 kg per feed block and a considerable reduction in hardware complexity. This resulted in a total mass saving of 15 kg which translates to an extra 6 months life for the spacecraft. The use of a single focussed feed also results in the illumination efficiency being improved by approximately 20%. Interestingly the requirements for the Orion satellites are for both spot beams of one polarization and for a contoured beam of the orthogonal polarization to cover all the spots, for both North America and Europe. These requirements have been met by the use of two dual-gridded reflector systems; one antenna in each system being a multiple-beam-antenna and the other a shaped reflector. This paper uses as an example a realistic MFA design devised during the Orion contract procurement stage and its performance is compared with that of an equivalent shaped reflector design optimized at single and multiple frequencies. The susceptibility to predict in service thermal distortions of the two designs is then assessed. Finally some recent results are presented of measured and predicted feed cross-polar radiation collimated by a gridded shaped reflector; the feed being at the focus of an unshaped reflector behind the shaped dish.

  19. Structural analysis of FAST reflector supporting system

    NASA Astrophysics Data System (ADS)

    Luo, Y. F.; Deng, C. G.; Li, G. Q.; He, Y. M.

    According to the deformation and movement requirements of the FAST reflector, a multi-purpose analysis, including the load-bearing behavior, deformation, construction costs of the reflector supporting structure and its model, is presented in this paper. The advantages and disadvantages of steel and aluminum alloy structures are also discussed and compared through detailed design calculations under load-bearing capacity and normal working conditions.

  20. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  1. Analysis of Reflector Antenna Systems for Wide - Scanning

    NASA Astrophysics Data System (ADS)

    Houshmand, Bijan

    1990-01-01

    A near-field Cassegrain reflector (NFCR) is an effective way to magnify a small phased array into a much larger aperture antenna for limited scan applications. Traditionally, the pattern analysis of NFCR is based on a plane wave approach. This approach simplifies the computation tremendously, but fails to provide design information about the most critical component of the whole antenna system, namely, the feed array. Here, each element in the feed array is considered individually and its diffraction pattern from the subreflector is computed by GTD. The field contributions from all elements are superimposed at the curved main reflector surface, and a physical optics integration is performed to obtain the secondary pattern. Beam-waveguide-fed Cassegrain reflector (BFCR) antennas are increasingly being used in space communication applications. Using a shooting and bouncing ray approach based on geometrical optics and aperture integration, the far-field pattern of the BFCR is calculated. This method is computationally efficient and is not restricted by the number of reflecting surfaces in the antenna configuration. The diffraction loss in the beam waveguide structure is calculated separately by the conventional near-field physical optics integration. The segmented mirror antenna is designed for the radiometer application on the planned NASA Earth Science Geostationary Platforms in the 1990s. The antenna consists of two parts: a regular parabolic dish of 5 m in diameter which converts the radiation from feeds into a collimated beam, and a movable mirror that redirects the beam to a prescribed scan direction. The mirror is composed of 28 segmented planar conducting plates, mostly one square meter in size. Based on a physical optics analysis, we have analyzed the secondary pattern of the antenna. For frequencies between 50 and 230 GHz, and for a scan range of +/- 8^circ (270 beamwidths scan at 230 GHz), the worst calculated beam efficiency is 95%. To cover such a wide

  2. A Cassegrain reflector system for compact range applications

    NASA Technical Reports Server (NTRS)

    Rader, Mark D.; Burnside, Walter D.

    1986-01-01

    An integral part of a compact range is the means of providing a uniform plane wave. A Cassegrain reflector system is one alternative for achieving this goal. Theoretically, this system offers better performance than a simple reflector system. The longer pathlengths in the Cassegrain system lead to a more uniform field in the plane of interest. The addition of the subreflector creates several problems, though. System complexity is increased both in terms of construction and performance analysis. The subreflector also leads to aperture blockage and the orientation of the feed now results in spillover illuminating the target areas as well as the rest of the range. Finally, the addition of the subreflector leads to interaction between the two reflectors resulting in undesired field variations in the plane of interest. These difficulties are addressed and through the concept of blending the surfaces, a Cassegrain reflector system is developed that will provide a uniform plane wave that offers superior performance over large target areas for a given size reflector system. Design and analysis is implemented by considering the main reflector and subreflector separately. Then the system may be put together and the final design and system analysis completed.

  3. Design method for four-reflector type beam waveguide systems

    NASA Technical Reports Server (NTRS)

    Betsudan, S.; Katagi, T.; Urasaki, S.

    1986-01-01

    Discussed is a method for the design of four reflector type beam waveguide feed systems, comprised of a conical horn and 4 focused reflectors, which are used widely as the primary reflector systems for communications satellite Earth station antennas. The design parameters for these systems are clarified, the relations between each parameter are brought out based on the beam mode development, and the independent design parameters are specified. The characteristics of these systems, namely spillover loss, crosspolarization components, and frequency characteristics, and their relation to the design parameters, are also shown. It is also indicated that design parameters which decide the dimensions of the conical horn or the shape of the focused reflectors can be unerringly established once the design standard for the system has been selected as either: (1) minimizing the crosspolarization component by keeping the spillover loss to within acceptable limits, or (2) minimizing the spillover loss by maintaining the crossover components below an acceptable level and the independent design parameters, such as the respective sizes of the focused reflectors and the distances between the focussed reflectors, etc., have been established according to mechanical restrictions. A sample design is also shown. In addition to being able to clarify the effects of each of the design parameters on the system and improving insight into these systems, the efficiency of these systems will also be increased with this design method.

  4. Pressure surge reflector for pipe type cable system

    SciTech Connect

    Chu, H.; El Badaly, H.A.; Ghafurian, R. ); Aabo, T.; Ringlee, R.R.; Williams, J.A. ); Melcher, J. )

    1990-04-01

    This paper describes work performed on the development and testing of a pressure surge reflector, designed to reduce the pressure seen at potheads during an electrical failure in a pipe type cable system. The reflector is designed to protect the potheads from failing due to the pressure surge that may be large enough to fracture the porcelain, particularly when the electrical failure is physically close to the pothead. Test results show that the prototype reflector will lower the pressure significantly, bringing the pressure surge below the factory pressure test level for standard potheads.

  5. Development of the theory and algorithms for synthesis of reflector antenna systems

    NASA Astrophysics Data System (ADS)

    Oliker, Vladimir

    1995-01-01

    The main objective of this work was research and development of the theory and constructive computational algorithms for synthesis of single and dual reflector antenna systems in geometrical optics approximation. During the contracting period a variety of new analytic techniques and computational algorithms have been developed. In particular, for single and dual reflector antenna systems conditions for solvability of the synthesis equations have been established. Numerical algorithms for computing surface data of the reflectors have been developed and successfully tested. In addition, efficient techniques have been developed for computing radiation patterns produced by reflections/refractions off surfaces with arbitrary geometry. These techniques can be used for geometrical optics analysis of complex geometric structures such as aircrafts. They can also be applied to determine effectively the aperture excitations required to produce specified fields at given observation points. The results have a variety of applications in military, civilian, and commercial sectors.

  6. Improved Dichroics For Microwave Reflector Antenna Systems

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1995-01-01

    Panel contains array of grid and square conductive loops as array elements designed to reflect most of incident electromagnetic radiation in K(subu) band (13.5 to 15.5 GHz) and to pass that in X band (7 to 9 GHz). Designed to exhibit this dichroic property at angles of incidence up to 40 degrees in transverse electric, transverse magnetic, or circular polarization. Concept of gridded-square-loop dichroic array related to double-loop dichroic arrays described in "Frequency-Selective Microwave Reflectors" (NPO-18701). Improved version exhibits smaller shift of resonant frequency with angle of incidence.

  7. Angle amplifying optics using plane and ellipsoidal reflectors

    DOEpatents

    Glass, Alexander J.

    1977-01-01

    An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.

  8. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 1: Executive summary, analyses and trades, and system concepts

    NASA Astrophysics Data System (ADS)

    Agnew, Donald L.; Jones, Peter A.

    1989-04-01

    A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.

  9. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 1: Executive summary, analyses and trades, and system concepts

    NASA Technical Reports Server (NTRS)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.

  10. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector.

    PubMed

    Lee, Seung-Min; Gong, Su-Hyun; Kang, Jin-Ho; Ebaid, Mohamed; Ryu, Sang-Wan; Cho, Yong-Hoon

    2015-05-01

    Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices. PMID:25969197

  11. Optical and Durability Evaluation for Silvered Polymeric Mirrors and Reflectors: Cooperative Research and Development Final Report, CRADA Number, CRD-08-316

    SciTech Connect

    Gray, M.

    2014-08-01

    3M is currently developing silvered polymeric mirror reflectors as low-cost replacements for glass mirrors in concentrating solar power (CSP) systems. This effort is focused on development of reflectors comprising both metallized polymeric mirror films based on improved versions of ECP-305+ or other durable mirror film concepts and appropriate mechanically robust substrates. The objectives for this project are to reduce the system capital and operating costs and to lower the levelized cost of energy for CSP installations. The development of mirror reflectors involves work on both full reflectors and mirror films with and without coatings. Mirror reflectors must meet rigid optical specifications in terms of radius of curvature, slope errors and specularity. Mirror films must demonstrate long-term durability and maintain high reflectivity. 3M would like to augment internal capabilities to validate product performance with methods and tools developed at NREL to address these areas.

  12. Application of the theory of coupled waves for analysis of inclined reflectors in optical waveguides

    SciTech Connect

    Kolosovskii, E A; Tsarev, A V

    2008-09-30

    A new method for analysing the transmission and scattering of the guided TE mode in an inclined reflector located in an optical waveguide is proposed and studied. The reflection of an inhomogeneous optical beam from the inclined reflector is described semi-analytically for the first time by using the theory of coupled waves and taking into account the interrelation and transformation of energy between all the waves of the discrete and continuous spectra of the optical 2D-waveguide (even and odd guided, radiation, and evanescent waves). The results of calculations of the propagation of light through the inclined reflector in the form of a thin (10-500 nm) homogeneous strip obtained by our method and by the finite difference time domain (FDTD) method are in excellent quantitative agreement. The calculation rate of our method considerably (by one-two orders of magnitude) exceeds that of the FDTD method and our method has a better accuracy. (optical waveguides)

  13. An opto-mechanical coupled-ring reflector driven by optical force for lasing wavelength control

    NASA Astrophysics Data System (ADS)

    Ren, M.; Cai, H.; Chin, L. K.; Huang, J. G.; Gu, Y. D.; Radhakrishnan, K.; Ser, W.; Liu, A. Q.

    2016-02-01

    In this paper, an opto-mechanical coupled-ring reflector driven by optical gradient force is applied in an external-cavity tunable laser. A pair of mutually coupled ring resonators with a free-standing arc serves as a movable reflector. It obtains a 13.3-nm wavelength tuning range based on an opto-mechanical lasing-wavelength tuning coefficient of 127 GHz/nm. The potential applications include optical network, on-chip optical trapping, sensing, and biology detection.

  14. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    NASA Technical Reports Server (NTRS)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  15. Large Deployable Reflector Science and Technology Workshop. Volume 3: Systems and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Leidich, C. A. (Editor); Pittman, R. B. (Editor)

    1984-01-01

    The results of five technology panels which convened to discuss the Large Deployable Reflector (LDR) are presented. The proposed LDR is a large, ambient-temperature, far infrared/submillimeter telescope designed for space. Panel topics included optics, materials and structures, sensing and control, science instruments, and systems and missions. The telescope requirements, the estimated technology levels, and the areas in which the generic technology work has to be augmented are enumerated.

  16. Bicollimated near-field Gregorian reflector antenna

    NASA Astrophysics Data System (ADS)

    Rao, J. B. L.

    1983-02-01

    A bicollimated near-field Gregorian reflector is structurally similar to a classical confocal parabolic reflector, but its surfaces are shaped to have better scan capability. A geometrical optics procedure is used in designing the reflector surfaces. A three dimensional ray tracing procedure is used in analyzing the aperture phase errors as the beam is scanned to different angles. The results show that the bicollimated configuration has about 45% greater angular scanning range than the corresponding confocal parabolic dual-reflector system.

  17. Novel optical en/decoder based on micro-ring-reflector

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Gao, Zhensen

    2012-02-01

    We propose a novel reconfigurable optical en/decoder to generate and recognize two-dimensional (2-D) optical codes for coherent optical-code-division-multiple-access (OCDMA) application. The proposed device is based on cascaded coupled micro-ring reflectors, which can enable simultaneous tuning of the fast wavelength hopping and spectral phase encoding code patterns. The coding performance is verified by simulation.

  18. Novel optical en/decoder based on micro-ring-reflector

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Gao, Zhensen

    2011-11-01

    We propose a novel reconfigurable optical en/decoder to generate and recognize two-dimensional (2-D) optical codes for coherent optical-code-division-multiple-access (OCDMA) application. The proposed device is based on cascaded coupled micro-ring reflectors, which can enable simultaneous tuning of the fast wavelength hopping and spectral phase encoding code patterns. The coding performance is verified by simulation.

  19. Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system

    DOEpatents

    Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.

    1994-03-29

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.

  20. Studies of beam expansion and distributed Bragg reflector lasers for fiber optics and optical signal processing. Interim report

    SciTech Connect

    Garmire, E.M.

    1981-03-03

    Separate studies were performed on beam expansion and on Distributed Bragg Reflector (DBR) lasers preliminary to monolithic integration on GaAs substrates. These components are proposed for use in optical signal processing, for fiber optic sources and for high-brightness lasers.

  1. Evaluation of frequency-selective reflector antenna systems

    NASA Technical Reports Server (NTRS)

    Wu, T. K.; Lee, S. W.; Zimmerman, M. L.

    1993-01-01

    The performance of a four-frequency (S/X/Ku/Ku bands) frequency-selective surface (FSS) with double-ring elements (the type of geometry particularly well suited for the circular polarization requirement of the NASA's Cassini project) is evaluated for a planar and a curved FSS subreflector in a dual reflector antenna system. Good agreement is obtained between the calculated and measured data for the planar FSS model. The FSS effects in a four-frequency Cassegrain reflector antenna were accurately evaluated by taking into account the surface curvature and the FSS subreflector's transmitted/reflected field variation as functions of the polarization and the incident angles with respect to the local coordinates.

  2. a Modified Sine-Condition for Single Reflector X-Ray Optics.

    NASA Astrophysics Data System (ADS)

    Keski-Kuha, Ritva Anna Marjatta

    1982-03-01

    Any reduction in the amount of coma in an optical system implies that Abbe's sine-condition is being satisfied to some extent. Abbe's sine-condition as stated and sometimes derived in standard optics textbooks refers to refraction optics. The usual admonition accompanying its statement is to keep the object and image size small. It is not clear with what the object and image sizes should be compared. The difficulty of interpreting and applying Abbe's sine-condition is further coufounded when x-ray reflection optical-systems are under consideration. What if any changes in its form or interpretation occur in the case of reflection optics and in particular grazing incidence optics at x-ray wavelengths? Previous applications of the usual form of Abbe's sine -condition would rule out the possibility of using a single x-ray reflector for good imaging, free of coma. However, the high quality of some experimental x-ray images using single reflecting surfaces raised some questions about the interpretation and limits of Abbe's sine-condition. These questions are more satisfactorily answered by the development herein of a new and highly quantitative sine-condition applicable to x-ray reflection from a single surface. Ray tracing results for a number of different surface shapes, such as circular, elliptical and cubic are compared as to attainable resolution and freedom from coma. One use of the new sine-condition is to generate a new reflecting surface and compare its performance with the more common surfaces. Another use is to specify the optical parameters such as magnification, focal length and field of view allowable for an image of specified quality in terms of wave-abberation theory.

  3. Reflector adjustment for a large radio telescope based on active optics

    NASA Astrophysics Data System (ADS)

    Li, Tongying; Zhang, Zhenchao; Li, Aihua; Wang, You

    2012-09-01

    The reflector deformation caused by gravity, temperature, humidity, wind loading and so on can reduce the global performance of a large radio telescope. In this paper, considering the characteristics of the primary reflector of a 13.7 m millimeter-wave telescope a novel reflector adjustment method based on active optics has therefore been proposed to control the active surface of the reflector through the communication between the active surface computer and embedded intelligent controller with a large quantity of displacement actuators, in which the active surface computer estimates and controls the real time active surface figure at any elevation angle, reduces or eliminates the adverse effects of the reflector deformation to increase the resolution and sensitivity of the radio telescope due to the more radio signals collected. A Controller Area Network /Ethernet protocol converter is designed for the communication between the active surface control computer as a host computer in Ethernet and the displacement actuator controller in Controller Area Network. The displacement actuator is driven by a stepper motor and controlled by an intelligent controller with the data from the active surface computer. The closed-loop control of the stepper motor improves the control accuracy greatly through the feedback link based on the optical encoder.

  4. Dual paraboloid reflector and light pipe based systems for projection displays

    NASA Astrophysics Data System (ADS)

    Li, Kenneth; Sillyman, Sheldon; Inatsugu, Seiji

    2005-04-01

    With the pressure to reduce cost for mass-market introduction of microdisplay-based rear projection television (MD-RPTV), the image panel and the related optical components have to be reduced in size and novel optical arrangements have to be created to achieve the target price. One major issue always had been the need for more light. Traditional reflector systems, including elliptical and parabolic reflectors, perform well in most cases, but are inefficient for smaller etendue values corresponding to smaller image panels. The common remedy is to make lamps with shorter and shorter arcs to increase the coupling efficiency, but the corresponding lifetime of the lamps are reduced and most of the time, these short arc lamps can only operate at low power, thus limiting the total output of the illuminating system. This paper summarizes the progress in the last few years related to the dual Paraboloid reflector (DPR) system and the associated components including polarization recovery systems and light pipe based projection engines.

  5. Gregorian all-reflective optical system

    NASA Technical Reports Server (NTRS)

    King, W. L. (Inventor)

    1977-01-01

    An optical heterodyne receiver comprises a system of reflectors forming a folded Gregorian configuration for collecting a signal beam, and an optical detector located at the focus of the system. A paraboloidal primary reflector and an elipsoidal secondary reflector face each other on an optical axis with the focus of the secondary reflector coinciding with the focus of the primary reflector. An auxiliary laser generates a local oscillator beam that is combined with the signal beam after the signal beam emerges from the exit pupil (which is also the aperture stop) of the system, and the resultant is impinged on the detector. A pair of image motion compensators is located as close to the exit pupil as possible for aligning off-axis inputs to the detector.

  6. Control of a small robot using a hybrid optical modulating retro-reflector/RF link

    NASA Astrophysics Data System (ADS)

    Murphy, James L.; Ferraro, Mike S.; Rabinovich, William S.; Goetz, Peter G.; Suite, Michele R.; Uecke, Stanley H.

    2014-06-01

    Tele-operated robots used for Explosive Ordnance Disposal (EOD) are ordinarily controlled using a radio frequency (RF) link. Use of RF links on the battlefield presents several challenges including spectrum allocation and jamming effects (both by the enemy and friendly forces). Several solutions have been attempted including electrical or fiber optic umbilicals and spread spectrum radios with varying degrees of success. Modulating Retro-reflector Free Space Optical (MRR-FSO) communications links avoid these effects entirely but are limited to line of sight operation. We have developed a system consisting of an MRR-FSO link with a tracking optical terminal, a conventional RF link and a deployable pod to provide a relay node bridging the FSO link to the operator and the RF link to the robot. The MRRFSO link provides the capability to operate the robot in the presence of jamming while the RF link allows short range non line of sight operation. The operator uses the MRR-FSO link to drive the robot to a position downrange outside the influence of the jammer or other interference. Once the robot is positioned downrange near the area of operation the pod is deployed. This allows the robot to maneuver freely including venturing beyond line of sight using the short range RF link to maintain communications between the vehicle and pod while the FSO link maintains connectivity between the pod and the operator.

  7. Extrinsic chirality: Tunable optically active reflectors and perfect absorbers

    NASA Astrophysics Data System (ADS)

    Plum, Eric

    2016-06-01

    Conventional three-dimensional (3D) chiral media can exhibit optical activity for transmitted waves, but optical activity for reflected waves is negligible. This work shows that mirror asymmetry of the experimental arrangement—extrinsic 3D chirality—leads to giant optical activity for reflected waves with fundamentally different characteristics. It is demonstrated experimentally that extrinsically 3D-chiral illumination of a lossy metasurface backed by a mirror enables tunable circular dichroism and circular birefringence as well as perfect absorption of circularly polarized waves. In contrast, such polarization phenomena vanish for conventional optically active media backed by a mirror.

  8. An eigenvalue-based approach for the design of reflector systems and prisms with a specified image orientation change

    NASA Astrophysics Data System (ADS)

    Tsai, C.-Y.

    2011-01-01

    The image orientation change (IOC) of an object following its reflection by a system comprising an arbitrary number of flat boundary surfaces can be described using a merit function (Γ) expressed in the form of a 3×3 matrix. The present study proposes a design methodology for stable-IOC reflector and prism systems in which the merit function is solved using an eigenvalue-based approach. It is shown that a reflector system remains IOC-stable following its rotation about the eigenvector of the IOC merit function, provided that the image can still physically enter the system's aperture. Furthermore, it is shown that an IOC-stable prism can be obtained by adding two refracting flat boundary surfaces at the entrance and exit positions of the light ray in an optical system comprising multiple reflectors provided that the condition n n =Γ n 1 is maintained. Illustrative examples are provided to demonstrate the validity of the proposed design approach.

  9. Physical optics analysis of a four-reflector antenna, part 1

    NASA Technical Reports Server (NTRS)

    Cha, A. G.

    1986-01-01

    Concern has been raised for the 64-m to 70-m antenna upgrade project that the 70-m system may experience greater S-band beam-pointing perturbations than the 64-m system. The S-band perturbations are due to minor (higher order) mode generation, causing subtle cross-polarization fields affecting beam pointing direction, as described herein. For the antennas in their present configuration (64 m), a slight S-band gain degradation of about 0.05 dB can be attributed to these effects. Therefore, a full physical optics analysis was performed for the present-day 64-m system, as described herein. The results were compared with past analyses and experimental observations in order to verify the algebra and computer code with the intent of deriving a valid analysis method for accurately analyzing the 70-m shaped dual reflector Cassegrainian antenna. The results of the new analysis appear to be in excellent agreement with previous analyses and experimental data.

  10. Physical optics analysis of a four-reflector antenna, part 1

    NASA Astrophysics Data System (ADS)

    Cha, A. G.

    1986-02-01

    Concern has been raised for the 64-m to 70-m antenna upgrade project that the 70-m system may experience greater S-band beam-pointing perturbations than the 64-m system. The S-band perturbations are due to minor (higher order) mode generation, causing subtle cross-polarization fields affecting beam pointing direction, as described herein. For the antennas in their present configuration (64 m), a slight S-band gain degradation of about 0.05 dB can be attributed to these effects. Therefore, a full physical optics analysis was performed for the present-day 64-m system, as described herein. The results were compared with past analyses and experimental observations in order to verify the algebra and computer code with the intent of deriving a valid analysis method for accurately analyzing the 70-m shaped dual reflector Cassegrainian antenna. The results of the new analysis appear to be in excellent agreement with previous analyses and experimental data.

  11. The formation of optical membrane reflector surfaces using uniform pressure loading

    SciTech Connect

    Murphy, L.M.; Tuan, C.

    1987-08-01

    Potentially high quality optical reflector surfaces are attainable with the use of pressure formed membranes. Such reflector surfaces offer the prospect of very low weight and low cost. The formation of such surfaces, using initially flat circular membranes with uniform pressure loading, is studied in this paper. Finite axisymmetric deformations, along with both linear and nonlinear material response is considered. A wide range of focal-length-to-diameter ratios (above 0.6) are addressed and the structural/optical response mechanisms that lead to optical distortions relative to ideal parabolic reflector shapes are also considered. Results show that elastic material response can often lead to a significantly larger deviation from the ideal shape than will inelastic material response. This results primarily from the ability to limit stress nonuniformities when inelastic material response is operative. Furthermore, when under pressure loading the membrane focal length decreases monotonically with increasing radius for both linear and nonlinear material response. Further, the predicted focal length variation is increasingly nonlinear near the membrane support.

  12. Compositionally-Graded Shape Memory Film for Self-Deployment of Membrane Reflectors and Optics

    NASA Technical Reports Server (NTRS)

    Hill, Lisa; Carman, Greg; Brantley, Lott W., Sr. (Technical Monitor)

    2002-01-01

    The next generation of space systems will require large apertures in order to image faint targets or cover large areas of Earth. These large apertures must be able to fit inside a launch vehicle fairing, be light enough for launch into orbit, and deploy on orbit with repeatability and reliability. The current state-of-the-art in flight optics is represented by the 4 meter LAMP telescope, with an areal density of 10 km sq m. Development of a Beryllium mirror demonstration article for NGST (Next Generation Space Telescope) at the University of Arizona indicate areal densities of 0.5 kg sq m with flight hardware in the 12 meter range. With progressive improvements in existing deployment, packaging, and structural technologies, the size of optics and reflectors will continue to increase, while mass is reduced. However, without a breakthrough in materials, packaging and/or deployment technologies, the goal for Gossamer structures of 0.1 kg sq m is unachievable for the near and mid-term NASA missions. Membrane technology provides the best hope of achieving such low areal densities. In combination with advances in membrane materials and structures, development of revolutionary techniques for deployment systems can provide significant improvements in large aperture technology. In this paper, the results of a six-month Phase I research effort to demonstrate the application of thin film NiTi to aerospace-qualified membrane and mesh materials are presented. Deposition of shape memory thin film was achieved Astromesh (trademark) metal mesh and CP-1, and optical-quality polymer membrane. Not only was full-coating deposition demonstrated, but also small segment deposition which holds potential for local surface control. Deployment of these materials was also demonstrated, setting the stage for the development of a larger test article.

  13. System overview on electromagnetic compensation for reflector antenna surface distortion

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.; Zaman, A. J.; Terry, J. D.

    1993-01-01

    The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This

  14. Optical characterization of MEMS-based multiple air-dielectric blue-spectrum distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Ghaderi, M.; Ayerden, N. P.; de Graaf, G.; Wolffenbuttel, R. F.

    2015-05-01

    The optical performance of a distributed Bragg reflector (DBR) is typically the determining factor in many optical MEMS devices and is mainly limited by the number of the periods (number of layers) and the refractive index contrast (RIC) of the materials used. The number of suitable available materials is limited and implementing a large number of periods increases the process complexity. Using air as a low-index material improves the RIC by almost 50% as compared with most conventional layer combinations and hence provides a higher optical performance at a given number of layers. This paper presents the design, fabrication, and optical characterization of multiple air-SiO2 Bragg reflectors with two airgap layers designed for the visible spectrum. Alternate polysilicon deposition and silicon-dioxide growth on the wafers followed by the selective etching of polysilicon layers in a TMAH-based solution results in a layer stack according to the optical design. However, unlike the conventional MEMS processes, fabrication of a blue-band airdielectric DBR demands several sacrificial layers in the range of 100 nm. Therefore, a successful release of the membrane after wet-etching is critical to the successful performance of the device. In this study, several DBRs with two periods have been fabricated using a CO2 supercritical drying process. The wide-area reflection measurements showed a peak reflectance of 65% and an FWHM of about 100 nm for a DBR centered at 500 nm. DBRs centered on 400 nm gave a much wider spectral response. This paper presents preliminary optical characterization results and discusses the challenges for a reflector design in the blue-visible range.

  15. A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis C.

    1993-01-01

    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.

  16. Session: CSP Advanced Systems: Optical Materials (Presentation)

    SciTech Connect

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  17. Optical parameters of the tunable Bragg reflectors in squid

    PubMed Central

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2013-01-01

    system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures. PMID:23740489

  18. Dual reflector antenna design software - Application to offset-fed shaped elliptical aperture systems

    NASA Astrophysics Data System (ADS)

    Kossiavas, Isabelle

    1992-04-01

    To facilitate the design of dual reflector antennas, the interactive, graphic CA2R software package handles centrally or offset-fed structures with quadric or shaped reflectors. Surface shaping, based on geometrical optics, improves the antenna's efficiency and the sidelobe level. Existing techniques are applied to an offset-fed antenna with an elliptical projected aperture. An original numerical method to minimize crosspolar components is also presented.

  19. Silicon integrated optical pressure sensor based on distributed Bragg reflector structure

    NASA Astrophysics Data System (ADS)

    Silva, Milson T.; Manfrin, Stilante K.

    1995-09-01

    A novel integrated optical pressure sensor based on a distributed Bragg reflector structure was designed and simulated. The wavelength-selective device consist of (lambda) /4 shifted distributed Bragg reflectors defined into the glass rib waveguide and a thin diaphragm anisotropically etched into the silicon substrate beneath the region between the reflectors. Pressure sensing is achieved through the detection of the light intensity change induced by the diaphragm deflection. The multilayered diaphragm structure was simulated by using an improved model and the finite-difference method. The effective index method was utilized for designing the rib waveguide. Numerical results revealed that a 1440 micrometers long device presents 19.5 dB of extinction ratio with an insertion loss of 3.6 dB for TM polarization and an applied pressure difference of 1.8 atm. Tenfold length reduction is achieved with the proposed device in relation to the interferometric sensors. The device can also be operated in tandem which is suitable for applications in wavelength division multiplexing sensor networks.

  20. An offset-fed reflector antenna with an axially symmetric main reflector

    NASA Astrophysics Data System (ADS)

    Chang, D.-C.; Rusch, W. V. T.

    1984-11-01

    A design method for an offset-fed, dual reflector antenna (Cassegrain type or Gregorian type) system with an axisymmetric main reflector is presented. Geometrical optics (GO) and the geometrical theory of diffraction (GTD) are used to find the surface-current density on the main reflector. A modified Jacobi-Bessel series (JBS) method is used to find the far-field pattern for the physical optics (PO) integral. In the defocused mode of operation, a new technique is developed to find the reflection point on the subreflector corresponding to the defocused feed and a general field point on the main reflector. Two sample systems are designed.

  1. Distributed Bragg reflector laser for frequency modulated communication systems

    SciTech Connect

    Chraplyvy, A.R.; Koch, T.L.; Tkach, R.W.

    1990-02-27

    This patent describes a lightwave transmitter. It includes a distributed Bragg reflector laser and means for frequency modulating said laser. The laser comprises first and second semiconductor heterostructure regions.

  2. Uniform diffracted fields from a perfectly conducting cylindrical reflector with modified theory of physical optics.

    PubMed

    Yalçın, Uğur; Sarnık, Mücahit

    2013-01-01

    The uniform diffracted fields are calculated on PEC cylindrical reflector by Modified Theory of Physical Optics (MTPO). It is aimed to convert the noncontinuous solution to a continuous solution by finding a uniform equation which does not contain any expression converging to 0 in the denominator part. Three axioms of MTPO theory are used to construct the integral equations for the perfectly electrically conducting surface application. The "edge-point" technique is used to find the diffracted field, and uniform solution is to be found via "detour parameter(s)." Finally, the obtained results are to be compared with the nonuniform ones, numerically. PMID:23766679

  3. Prospective Motion Correction For Magnetic Resonance Spectroscopy Using Single Camera Retro-Grate Reflector Optical Tracking

    PubMed Central

    Andrews-Shigaki, Brian C; Armstrong, Brian S. R.; Zaitsev, Maxim; Ernst, Thomas

    2010-01-01

    Purpose To introduce and evaluate a method of prospective motion correction for localized proton magnetic resonance spectroscopy (1H-MRS), using a single-camera optical tracking system. Materials and Methods Five healthy participants were scanned at 3T using a PRESS sequence with a motion tracking module and phase navigator. Head motion in six degrees was tracked with a Retro-Grate Reflector (RGR) tracking system and target via a mirror mounted inside the bore. Participants performed a series of three predetermined motion patterns during scanning. Results Left-right rotation (Rz) (average 12°) resulted in an increase in the total Choline to total Creatine ratio (Cho/Cr) of +14.6±1.5% [p=0.0009] for scans without correction, but no change for scans with correction (+1.1±1.5%; p=0.76). Spectra with uncorrected Z-translations showed large lipid peaks (skull) with changes in Cho/Cr of −13.2±1.6% (p=0.02, no motion correction) and −2.2±2.4% (p=0.51) with correction enabled. There were no significant changes in the ratios of N-acetylaspartate, Glutamate+Glutamine, or Myo-inositol to Creatine compared to baseline scans for all experiments. Conclusion Prospective motion correction for 1H-MRS, using single-camera RGR tracking, can reduce spectral artifacts and quantitation errors in Cho/Cr ratios due to head motion, and promises improved spectral quality and reproducibility. PMID:21274994

  4. The design of optical module of LED street lamp with non-axial symmetrical reflector

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Jun; Chen, Chi-An; Chen, Yi-Yung; Whang, Allen Jong-Woei

    2010-05-01

    In recently, many research focus on the LED applications for environmental protection so a number of LED street lamps are presented. Although LED has many advantages for environmental protection, its special optical characteristics, such as intensity distribution, always limit the advantages in many applications. Therefore, we always need to do the secondary optical design for LED street lamp to replace the traditional optical designs that are designed for high-pressure sodium lamps and mercury lamps. According to the situation, we design an optical module of LED street lamp with LEDs and secondary optical design. First, the LEDs are placed on freeform reflector for the specific illuminated conditions. We design the optical module of street lamp with the two conditions that include the uniformity and the ratio of length to width in the illuminated area and without any light pollution. According to the simulation with the designed optical module, the uniformity in the illuminated area is about 0.6 that is better than the general condition, 0.3, and the ratio of length to width in the illuminated area is 3:1 in which the length is 30 meters and the width is 10 meters. Therefore, the design could let LED street lamp fits the two conditions, uniformity and ratio in the illuminated area.

  5. Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing

    SciTech Connect

    Kazarinov, R.F.; Henry, C.H.; Olsson, N.A.

    1987-09-01

    The authors propose a new way of making highly resonant integrated optical circuits based on weak side-by-side coupling between waveguides and high Q distributed Bragg resonators. This method can be used to design a resonant optical reflector which, when used as a feedback element to a laser, will result in a compact structure that has both extremely narrow line width and very low chirp. By coupling the resonator to two waveguides, one on either side, an optical analog of the resonant transformer can be made. This device can be used for wavelength division multiplexing. Such multiplexer elements will both resonantly transform optical power from the laser to a common output channel and also provide feedback which locks the laser to the channel wavelength.

  6. Feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.

    1992-01-01

    The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.

  7. High efficiency epitaxial optical reflector solar cells. Final subcontract report, 1 January 1990--31 October 1992

    SciTech Connect

    Dapkus, P.D.; Hummel, S.G.

    1993-08-01

    This report describes work to test the feasibility of a new solar cell concept -- the epitaxial optical reflector (EOR) solar cell. This cell concept alters current designs for high efficiency cells by changing the optical absorption efficiency of single cells. The change is introduced by the use an epitaxial multilayer reflector as an integral part of the cell to increase the optical path length of certain wavelengths of light in the cell. These changes are expected to increase the open circuit voltage at which power is extracted from the cell. The program is designed to test the feasibility of the use of a broad band epitaxial multilayer reflector grown as an integral part of the device structure to reflect the near-band-edge light back through the device for a second absorption pass. This second pass allows the design of a solar cell with a thinner base, and the use of the epitaxial reflector as a heterojunction carrier-reflecting barrier at the rear of the device. The thinner cell design and altered carrier profile that results from the light- and carrier-reflecting barrier will decrease the carrier concentration gradient and increase the open circuit voltage. The program is structured to have three tasks: (1) Solar Cell and Reflector Modeling, (2) Materials Growth and Optimization, and (3) Solar Cell Fabrication and Characterization.

  8. Characterization of 40-GHz all-optical clock recovery based on a distributed Bragg reflector self-pulsating laser

    NASA Astrophysics Data System (ADS)

    Tang, Xuefeng; Cartledge, John C.; Shen, Alexandre; Dijk, Frederic V.; Duan, Guang-Hua

    2008-06-01

    We investigate the characteristics of 40-GHz all-optical clock recovery based on a distributed Bragg reflector (DBR) self-pulsating laser. With the injection of a low timing jitter clock signal, the timing jitter characteristics of the DBR self-pulsating laser are investigated using both time domain and frequency domain methods. The results reveal that the cause of the timing jitter in the recovered clock signal depends on the injected clock signal power. The system performance of the clock recovery is investigated by the injection of a 40 Gb/s return-to-zero on-off key (RZ-OOK) signal with a 231 - 1 pseudo random bit sequence (PRBS) pattern.

  9. Reflector Surface Error Compensation in Dual-Reflector Antennas

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Imbriale, William

    2010-01-01

    By probing the field on a small subreflector at a minimal number of points, the main reflector surface errors can be obtained and subsequently used to design a phase-correction subreflector that can compensate for main reflector errors. The compensating phase-error profile across the subreflector can be achieved either by a surface deformation or by the use of an array of elements such as patch antennas that can cause a phase shift between the incoming and outgoing fields. The second option is of primary interest here, but the methodology can be applied to either case. The patch array is most easily implemented on a planar surface. Therefore, the example of a flat subreflector and a parabolic main reflector (a Newtonian dual reflector system) is considered in this work. The subreflector is assumed to be a reflector array covered with patch elements. The phase variation on a subreflector can be detected by a small number of receiving patch elements (probes). By probing the phase change at these few selected positions on the subreflector, the phase error over the entire surface can be recovered and used to change the phase of all the patch elements covering the subreflector plane to compensate for main reflector errors. This is accomplished by using a version of sampling theorem on the circular aperture. The sampling is performed on the phase-error function on the circular aperture of the main reflector by a method developed using Zernike polynomials. This method is based upon and extended from a theory previously proposed and applied to reflector aperture integration. This sampling method provides for an exact retrieval of the coefficients of up to certain orders in the expansion of the phase function, from values on a specifically calculated set of points in radial and azimuthal directions in the polar coordinate system, on the circular reflector aperture. The corresponding points on the subreflector are then obtained and, by probing the fields at these points, a

  10. Thin film deployable reflector model for ET gamma ray imaging telescope system (ET-GRITS)

    NASA Technical Reports Server (NTRS)

    Huegele, Vinson B.

    1989-01-01

    The Marshall Space Flight Center is developing a thin film reflector for a Gamma Ray Imaging Telescope System (GRITS) using the Shuttle External Tank (ET). The concept is to install an inflatable reflector in the ET that could be transferred from the orbiter in orbit. This is a study of a scale model reflector for the ET GRITS application. The approach is to form 1/2 mil film into a spherical mirror mounted on a seven-foot diameter metal ring. The ring mount is sealed and slightly evacuated to pressurize the film into shape. Several different fabrication techniques were investigated using seamed gore designs to form the reflector. Also studied was casting a film into a seamless circular sheet. The goal for this model was to achieve a one milliradian (rms) surface curvature error over 90 percent of the reflector area. This curvature was measured by a laser scanning instrument. The results show how different reflector designs and fabrication techniques contribute to surface curvature and focusing errors.

  11. A MAGICTRAC (Microwave Antenna for Whispering-Gallery-Mode Conversion using a Twist Reflector Antenna Converter) design for the MTX (Microwave Tokamak Experiment) transport system

    SciTech Connect

    Makowski, M.A. ); Stallard, B.W.; Byers, J.A. )

    1990-09-01

    A design of a MAGICTRAC (Microwave Antenna for Whispering-Gallery-Mode Conversion using a Twist Reflector Antenna Converter) device is presented for use on the MTX (Microwave Tokamak Experiment) transport system. The MAGICTRAC device, consisting of a mode converting waveguide taper and three metal reflectors, transforms the TE{sub 15,2} circular waveguide mode output of a VARIAN Associates 140 GHz gyrotron into a free-space Gaussian-like beam with >95% efficiency. Dimensions of the MAGICTRAC are chosen to produce a beam matched to the MTX quasi-optical transport system.

  12. A new approach for shaping of dual-reflector antennas

    NASA Technical Reports Server (NTRS)

    Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.

    1987-01-01

    The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.

  13. Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Feipeng; Bai, Pengxiang; Shi, Hongjian; Jiang, Zhencheng; Lei, Dong; He, Xiaoyuan

    2016-06-01

    At present, the accuracy of strain measurement using a common optical extensometer with 2D digital image correlation is not sufficient for experimental applications due to the effect of out-of-plane motion. Therefore, this paper proposes a dual-reflector imaging method to improve the accuracy of strain measurement when using a common optical extensometer, with which the front and rear surfaces of a specimen can be simultaneously recorded in the sensor plane of a digital camera. By averaging the strain in two optical extensometers formed on the front and rear surfaces of a specimen, the effect of any slight out-of-plane motion can be eliminated and therefore the strain measurement accuracy can also be improved. Uniaxial tensile tests with an Al-alloy specimen, including static loading and continuous loading, were conducted to validate the feasibility and reliability of the proposed method. The strain measurement results obtained with the proposed method and those obtained with an electrical-resistance strain gauge were found to be in good agreement. The average errors of the proposed method for the two continuous loading tests were found to be 8  ±  10 με and  ‑6  ±  8 με. Given that no correction sheet or compensation specimen is required, the proposed method is easy to implement and thus especially suitable for determining the mechanical properties of brittle materials due to the high level of accuracy with which strain can be measured.

  14. Solar central receiver heliostat reflector assembly

    DOEpatents

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  15. Solar central receiver heliostat reflector assembly

    SciTech Connect

    Horton, R.H.; Zdeb, J.J.

    1980-06-24

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system. 14 claims.

  16. Solar central receiver heliostat reflector assembly

    SciTech Connect

    Horton, R.H.; Zdeb, J.J.

    1980-06-24

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes a mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system. 14 figs.

  17. Optical coating performance for heat reflectors of JWST-ISIM electronic component

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Bousquet, Robert; Garrison, Matt; Perrygo, Chuck; Threat, Felix; Rashford, Robert

    2008-07-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling reflector.

  18. All-reflective optical target illumination system with high numerical aperture

    DOEpatents

    Sigler, Robert D.

    1978-01-01

    An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.

  19. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  20. VISAR (Velocity Interferometer System for Any Reflector): Line-imaging interferometer

    SciTech Connect

    Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; Whittemore, G.R.

    1990-01-01

    This paper describes a Velocity Interferometer System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface that was proportional to the velocity at each point. The Doppler-shifted image of the illuminated line was focused from the surface through a push-pull VISAR interferometer where the light was split into four quadrature-coded images. When the surface accelerated, the Doppler-shift caused the interference for each point on each line image to oscillate sinusoidally. Coherent fiber optic bundles transmitted images from the interferometer to an electronic streak camera for sweeping in time and recording on film. Data reduction combined the images to yield a continuous velocity and displacement history for all points on the surface that reflected sufficient light. The technique was demonstrated in an experiment where most of the surface was rapidly driven to a saddle shape by an exploding foil. Computer graphics were used to display the measured velocity history and to aid visualization of the surface motion. 6 refs., 8 figs.

  1. 0. 04 Hz relative optical-frequency stability in a 1. 5. mu. m distributed-Bragg-reflector (DBR) laser

    SciTech Connect

    Ishida, O.; Toba, H. ); Tohmori, Y. )

    1989-12-01

    The optical frequency of a 1.5 {mu}m distributed-Bragg-reflector (DBR) laser is stabilized against that of a master laser by heterodyne-type frequency locking with a phase-locked loop (PLL). Despite its wide linewidth of 16 MHz, stable PLL operation with an optical hold-in range of 26 GHz is realized, and residual frequency fluctuations are reduced to 0.04 Hz at an averaging time of 500 s. The combination of DBR laser and PLL is, therefore, suitable for future frequency-controlled light sources. The offset error from the settled frequency caused by the band-limited beat spectrum is also discussed.

  2. Design and optimization of automotive headlamps based on projection system with double ellipsoidal reflector

    NASA Astrophysics Data System (ADS)

    Ma, Chi-Tang; Chou, Kao-Hsu; Chen, Yi-Yung; Whang, Allen Jong-Woei; Chen, Kuan-Yu

    2010-05-01

    Due to the energy crisis, the issue about how to improve the efficiency of lighting gains popularity. Many researches focus on using LED to be the light source of car lamps because LED has the advantages, such as low power consumption, adjustable luminous intensity, high color rendering index, long lifetime, and short reaction time, and the car lamps will become smaller and lighter. In our design, the LED headlamp consists three parts: a double ellipsoidal reflector, an aspherical lens, and a baffle. The double ellipsoidal reflector can improve the luminous flux in front of the headlamp and provide adequate illumination; the aspherical lens can eliminate spherical aberration; and the designed location of baffle can solve the glare problems. According to the optical simulation, the design successfully fits the request of intensity distribution in the ECE regulation.

  3. Solar receiver heliostat reflector having a linear drive and position information system

    DOEpatents

    Horton, Richard H.

    1980-01-01

    A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.

  4. Numerical analysis and synthesis of 2D quasi-optical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretization.

    PubMed

    Nosich, Andrey A; Gandel, Yuriy V; Magath, Thore; Altintas, Ayhan

    2007-09-01

    Considered is the beam wave guidance and scattering by 2D quasi-optical reflectors modeling the components of beam waveguides. The incident field is taken as the complex-source-point field to simulate a finite-width beam generated by a small-aperture source. A numerical solution is obtained from the coupled singular integral equations (SIEs) for the surface currents on reflectors, discretized by using the recently introduced Nystrom-type quadrature formulas. This analysis is applied to study what effect the edge illumination has on the performance of a chain of confocal elliptic reflectors. We also develop a semianalytical approach for shaped reflector synthesis after a prescribed near-field pattern. Here a new point is the use of auxiliary SIEs of the same type as in the scattering analysis problem, however, for the gradient of the objective function. Sample results are presented for the synthesis of a reflector-type beam splitter. PMID:17767252

  5. Improved optical resonance in mid-infrared GaAs-based modulating retro-reflectors

    NASA Astrophysics Data System (ADS)

    Ikpe, Stanley; Triplett, Gregory

    2015-05-01

    In this work, we studied a mid-infrared modulating retro-reflector (MRR) design that is GaAs-based because of the flexibility to monolithically incorporate reflective optics along with quantum well modulator region. Using solid-source molecular beam epitaxy, we produced MRR devices, where the GaAs quantum well(s) in the modulator region contained AlxGa1-xAs barriers to tune the wavelength selectivity beyond three microns. The width of the quantum well was also adjusted in order to achieve free electron absorption within the confined energy subbands and modified by way of the quantum confined Stark effect. When the applied electric field varies in polarity, intensity, or frequency, the fabricated MRRs behave as an optional shutter--absorbing or transmitting the incident mid-infrared energy depending on the applied field. Our work shows that the ability for the modulating region to effectively act as a shutter for mid-infrared radiation depends on the number of cascading quantum wells, though increasing the number of wells directly increases the overall thickness of the modulating region and adversely affects the reflected power of the mid-infrared modulated beam. The shutter operation was achieved by applying an alternating square bias across the QWM region, and the speed at which the quantum wells switch from absorbing to non-absorbing was dependent on the physical size of the device. Increasing the physical size increases the associated device capacitance. The maximum achievable contrast ratio for these devices is calculated to be 1.6:1 for applied voltages between 12V and 25V.

  6. Development of a straightness measurement and compensation system with multiple right-angle reflectors and a lead zirconate titanate-based compensation stage

    SciTech Connect

    Liu, Chien-Hung; Chen, Jui-Hung; Teng, Yun-Feng

    2009-11-15

    This paper presents a real-time straightness measurement and compensation system with an optical straightness measurement system and a single-axis flexure-hinge type lead zirconate titanate (PZT)-based compensation stage. The optical straightness measurement system consists of a He-Ne laser, a quadrant photodiode detector, and five right-angle reflectors. Multiple laser beam reflections between the right-angle reflectors increase the sensitivity of the straightness measurement by a factor of 6. The right-angle reflectors can be moved by the flexure-hinge type PZT-based compensation stage that is actuated by a PZT actuator to ensure that the laser beam is always projected onto the center of the quadrant detector. These two systems are integrated and fixed on a scanning stage. The resolution of the straightness measurement system is 0.1 {mu}m. Using the real-time straightness compensation system, the straightness error of the scanning stage is fed back to the control system. The compensated straightness error of the scanning stage system was reduced from 6.5 {mu}m to less than 1 {mu}m.

  7. DAZZLE project: UAV to ground communication system using a laser and a modulated retro-reflector

    NASA Astrophysics Data System (ADS)

    Thueux, Yoann; Avlonitis, Nicholas; Erry, Gavin

    2014-10-01

    The advent of the Unmanned Aerial Vehicle (UAV) has generated the need for reduced size, weight and power (SWaP) requirements for communications systems with a high data rate, enhanced security and quality of service. This paper presents the current results of the DAZZLE project run by Airbus Group Innovations. The specifications, integration steps and initial performance of a UAV to ground communication system using a laser and a modulated retro-reflector are detailed. The laser operates at the wavelength of 1550nm and at power levels that keep it eye safe. It is directed using a FLIR pan and tilt unit driven by an image processing-based system that tracks the UAV in flight at a range of a few kilometers. The modulated retro-reflector is capable of a data rate of 20Mbps over short distances, using 200mW of electrical power. The communication system was tested at the Pershore Laser Range in July 2014. Video data from a flying Octocopter was successfully transmitted over 1200m. During the next phase of the DAZZLE project, the team will attempt to produce a modulated retro-reflector capable of 1Gbps in partnership with the research institute Acreo1 based in Sweden. A high speed laser beam steering capability based on a Spatial Light Modulator will also be added to the system to improve beam pointing accuracy.

  8. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    SciTech Connect

    Tao, Renchun Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  9. Six-dimensional optical storage utilizing wavelength selective, polarization sensitive, and reflectivity graded Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Liu, Shangqing

    2014-09-01

    An optical storage system which stores data in three spacial and three physical dimensions is designed and investigated. Its feasibility has been demonstrated by theoretical derivation and numerical calculation. This system has comprehensive advantages including very large capacity, ultrafast throughputs, relatively simple structure and compatibility with CD and DVD. It's an actually practicable technology. With two-photon absorption writing/erasing and optical coherence tomography reading, its storage capacity is over 32 Tbytes per DVD sized disk, and its reading speed is over 25 Gbits/s with high signal-to-noise ratio of over 76 dB. The larger capacity of over 1 Pbyte per disk is potential.

  10. Ring retroreflector system consisting of cube-corner reflectors with special coating

    SciTech Connect

    Burmistrov, V B; Sadovnikov, M A; Sokolov, A L; Shargorodskiy, V D

    2013-09-30

    The ring retroreflector system (RS) consisting of cubecorner reflectors (CCRs) with a special coating of reflecting surfaces, intended for uniaxially Earth-oriented navigation satellites, is considered. The error of distance measurement caused by both the laser pulse delay in the CCR and its spatial position (CCR configuration) is studied. It is shown that the ring RS, formed by the CCR with a double-spot radiation pattern, allows the distance measurement error to be essentially reduced. (nanogradient dielectric coatings and metamaterials)

  11. Intervening in Earth's climate system through space-based solar reflectors

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; McInnes, C. R.; Winter, O. C.

    2016-07-01

    Several space-based climate engineering methods, including shading the Earth with a particle ring for active cooling, or the use of orbital reflectors to increase the total insolation of Mars for climate warming have been considered to modify planetary climates in a controller manner. In this study, solar reflectors on polar orbits are proposed to intervene in the Earth's climate system, involving near circular polar orbits normal to the ecliptic plane of the Earth. Similarly, a family of displaced polar orbits (non-Keplerian orbits) are also characterized to mitigate future natural climate variability, producing a modest global temperature increase, again to compensate for possible future cooling. These include deposition of aerosols in the stratosphere from large volcanic events. The two-body problem is considered, taking into account the effects of solar radiation pressure and the Earth's J2 oblateness perturbation.

  12. Secondary pattern computation of an offset reflector antenna

    NASA Technical Reports Server (NTRS)

    Acosta, R. J.

    1985-01-01

    Reflector antennas are widely used in communications satellite systems because they provide high gain at low cost. In analyzing reflector antennas the computation of the secondary pattern is the main concern. A computer program for calculating the secondary pattern of an offset reflector has been developed and implemented at the NASA Lewis Research Center. The theoretical foundation for this program is based on the use of geometrical optics to describe the fields from the feed to the reflector surface and to the aperture plane. The resulting aperture field distribution is then transformed to the far-field zone by the fast Fourier transform algorithm. Comparing this technique with other well-known techniques (the geometrical theory of diffraction, physical optics (Jacobi-Bessel), etc.) shows good agreement for large (diameter of 100 lambda or greater) reflector antennas.

  13. Satellite-Tracking Millimeter-Wave Reflector Antenna System For Mobile Satellite-Tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    2001-01-01

    A miniature dual-band two-way mobile satellite-tracking antenna system mounted on a movable vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  14. A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur C. (Inventor); Jamnejad, Vahraz (Inventor); Woo, Kenneth E. (Inventor)

    1995-01-01

    A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.

  15. Fabrication and Thermo-Optical Properties of the MLS Composite Primary Reflector

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Dyer, Jack; Dummer, Sam

    2000-01-01

    The Microwave Limb Sounder (MLS) is a limb-sounding radiometer sensing emissions in the millimeter and sub-millimeter range. MLS will contribute to an understanding of atmospheric chemistry by assessing stratospheric and tropospheric ozone depletion, climate forcings and volcanic effects. The heart of the antenna is the primary reflector, constructed from graphite/cyanate composites in a facesheet/core construction. The reflector has an aperture of one square meter, a mass of 8.7 kilos and final figure accuracy of 4.37 microns rms. The surface is also modified to ensure RF reflectivity, prevent solar concentration and provide thermal balance to the spacecraft The surface is prepared by precision beadblasting, then coated with vapor deposited aluminum (VDA) and finally a layer of silicon suboxide (SiO(x)) to control the infrared emissivity. The resulting surface has a solar absorptance of 0.43 and an absorptance/emittance ratio of 1.3. BRDF analysis shows that 93% of the incident thermal energy is reflected outside a 10 degree angle of cone. For its mass and aperture, we believe this reflector to have the highest figure accuracy yet achieved in a composite antenna construction.

  16. A figure control sensor for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  17. Advanced Manufacture of Reflectors

    SciTech Connect

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of

  18. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    SciTech Connect

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  19. Primary reflector for solar energy collection systems and method of making same

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    Solar energy is reflected to a movably supported collector that is kept at the concentrated line focus of the reflector primary by a fixed, linear, ground-based primary reflector having an extended curved sawtooth contoured surface covered with a metalized polymeric reflecting material. The primary reflector was constructed by a process utilizing well-known freeway paving machinery.

  20. Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  1. Measuring preheat in laser-drive aluminum using velocity interferometer system for any reflector: Experiment

    SciTech Connect

    Shu, Hua; Fu, Sizu; Huang, Xiuguang; Wu, Jiang; Xie, Zhiyong; Zhang, Fan; Ye, Junjian; Jia, Guo; Zhou, Huazhen

    2014-08-15

    In this paper, we systematically study preheating in laser-direct-drive shocks by using a velocity interferometer system for any reflector (VISAR). Using the VISAR, we measured free surface velocity histories of Al samples over time, 10–70 μm thick, driven directly by a laser at different frequencies (2ω, 3ω). Analyzing our experimental results, we concluded that the dominant preheating source was X-ray radiation. We also discussed how preheating affected the material initial density and the measurement of Hugoniot data for high-Z materials (such as Au) using impedance matching. To reduce preheating, we proposed and tested three kinds of targets.

  2. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  3. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    SciTech Connect

    Tuninetti, G. . Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. . Nuclear Div.); Giammanco, F. . Dipt. di Fisica); Rosa-Clot, M. . Dipt. di Fisica)

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.

  4. Design tradeoff study for reflector antenna systems for the shuttle imaging microwave system

    NASA Technical Reports Server (NTRS)

    Hansen, R. C.

    1974-01-01

    A general tradeoff is made of the symmetric Cassegrain antenna with regard to the possibility of meeting a 90% beam efficiency. The effects of aperture taper and blockage are calculated using an adjustable sidelobe circular distribution. Numerical integration is used. For the feed spillover calculation, a low sidelobe symmetric feed pattern is used with the equivalent parabola and numerical integration. Reflector cross polarization is calculated using double numerical integration. Reflector back lobes are estimated from radiation pattern envelopes of commercial common carrier dish antennas. The curves allow a range of f/D to be determined for a specified edge taper and blockage diameter ratio, and with a table of Cassegrain parameters, a range of possible designs that meet the 90% beam efficiency is obtained. It is shown that the feed and reflector design and implementation must be carefully done.

  5. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOEpatents

    Weiss, J.D.

    1995-08-29

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.

  6. Fiber optic sensor employing successively destroyed coupled points or reflectors for detecting shock wave speed and damage location

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.

  7. Wave optics analysis of corner-cube retro-reflectors in near-to-eye displays based on scanning laser projectors

    NASA Astrophysics Data System (ADS)

    Kazempourradi, Seyedmahdi; Ulusoy, Erdem; Holmstrom, Sven; Urey, Hakan

    2015-09-01

    In near to eye displays based on scanning laser projectors, retro-reflectors seem as convenient image relay components since they can ideally be placed at any location on the scanned beam path. In case of practical retro reflectors though, such as corner cube retro-reflectors (CCRs), the relayed image suffers from loss in quality and resolution due to the positional shift in the retro-reflected rays and the diffraction effects. We perform a wave optics simulation to analyze the image relay performance of a CCR. Our model assumes that the scanned spot of the projector is imaged by the CCR into an array of spots, which superpose and interfere to yield the effective scan spot seen by an eye looking at the CCR. The results indicate that the CCR results in a significant broadened spot size. Experimental results verify the simulation model in terms of achievable resolution and image quality.

  8. Bragg reflectors

    SciTech Connect

    Caplan, M.; Kulke, B. )

    1992-06-01

    A Bragg reflector composed of periodic cylindrically symmetric corrugations can provide a reflection of nearly unity through the principles of constructive interference, allowing the formation of a frequency selective resonator. Mode conversion will occur, but can be reduced by tapering the amplitude of the corrugations. In this paper reflection measurements are compared with theoretical predictions for untapered sinusoidal and rectangular corrugation as well as a reflector tapered according to the Hamming-window prescription. Measurements of Bragg resonators are also presented.

  9. Special test equipment and fixturing for MSAT reflector assembly alignment

    NASA Technical Reports Server (NTRS)

    Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.

    1994-01-01

    The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.

  10. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    SciTech Connect

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. )

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  11. Estimates of the error caused by atmospheric turbulence in optical determination of the orientation angle of a series of reflectors

    NASA Astrophysics Data System (ADS)

    Valley, M. T.; Dudorov, V. V.; Kolosov, V. V.; Filimonov, G. A.

    2006-11-01

    The error caused by atmospheric turbulence, in determining the orientation angle of an object (a series of reflectors) has been studied. The orientation angle was determined by studying the image of the object. Numerical modeling was performed involving construction of the image of a series of reflectors as if they were observed through a turbulent medium, calculation of the coordinates of reflector mass centers, finding of the line closest to the reflector mass centers, and determination of its slope angle. Variance of the slope angle fluctuations is calculated.

  12. Welding torch with arc light reflector

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1986-01-01

    A welding torch arc light reflector is disclosed for welding torches having optical viewing systems. A schematic of a welding torch having an internal coaxial viewing system consisting of a lens which focuses the field of view of the weld scene of the workpiece onto the end of the fiberoptic bundle is provided. The transmitted image of the fiberoptic bundle is provided to a camera lens which focuses it onto a TV sensor array for transmission. To improve the parity of the image of the monitoring system, an arc light reflector is shown fitted to the end of the torch housing or gas cup. The arc light reflector has an internal conical section portion which is polished to serve as a mirror which reflects the bright arc light back onto the darker areas of the weld area and thereby provides a more detailed image for the monitoring system. The novelty of the invention lies in the use of an arc light reflector on welding torches having optical viewing systems.

  13. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  14. Optically pumped distributed feedback dye lasing with slide-coated TiO₂ inverse-opal slab as Bragg reflector.

    PubMed

    Han, Sung Gu; Lim, Jongchul; Shin, Jinsub; Lee, Sung-Min; Park, Taiho; Yoon, Jongseung; Woo, Kyoungja; Lee, Hyunjung; Lee, Wonmok

    2014-08-15

    We demonstrate an optical amplification of organic dye within a TiO2 inverse-opal (IO) distributed feedback (DFB) reflector prepared by a slide-coating method. Highly reflective TiO2 IO film was fabricated by slide coating the binary aqueous dispersions of polystyrene microspheres and charge-stabilized TiO2 nanoparticles on a glass slide and subsequently removing the polymer-opal template. TiO2 IO film was infiltrated, in turn, with the solutions of DCM, a fluorescent dye in various solvents with different indices of refraction. Optical pumping by frequency-doubled Nd:YAG laser resulted in amplified spontaneous emission in each dye solution. In accordance with the semi-empirical simulation by the FDTD method, DCM in ethanol showed the best emission/stopband matching for the TiO2 IO film used in this study. Therefore, photo excitation of a DCM/ethanol cavity showed a single-mode DFB lasing at 640 nm wavelength at moderate pump energy. PMID:25121863

  15. An analysis of thermionic space nuclear reactor power system: I. Effect of disassembling radial reflector, following a reactivity initiated accident

    SciTech Connect

    El-Genk, M.S.; Paramonov, D. )

    1993-01-10

    An analysis is performed to determine the effect of disassembling the radial reflector of the TOPAZ-II reactor, following a hypothetical severe Reactivity Initiated Accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the drums to rotate the full 180[degree] outward at their maximum speed of 1.4[degree]/s. Results indicate that disassembling only three of twelve radial reflector panels would successfully shutdown the reactor, with little overheating of the fuel and the moderator.

  16. Disordered animal multilayer reflectors and the localization of light

    PubMed Central

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  17. Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear.

    PubMed

    Park, Jesung; Carbajal, Esteban F; Chen, Xi; Oghalai, John S; Applegate, Brian E

    2014-11-01

    Phase-sensitive optical coherence tomography (PhOCT) offers exquisite sensitivity to mechanical vibration in biological tissues. There is growing interest in using PhOCT for imaging the nanometer scale vibrations of the ear in animal models of hearing disorders. Swept-source-based systems offer fast acquisition speeds, suppression of common mode noise via balanced detection, and good signal roll-off. However, achieving high phase stability is difficult due to nonlinear laser sweeps and trigger jitter in a typical swept laser source. Here, we report on the initial application of a Vernier-tuned distributed Bragg reflector (VT-DBR) swept laser as the source for a fiber-based PhOCT system. The VT-DBR swept laser is electronically tuned and precisely controls sweeps without mechanical movement, resulting in highly linear sweeps with high wavelength stability and repeatability. We experimentally measured a phase sensitivity of 0.4 pm standard deviation, within a factor of less than 2 of the computed shot-noise limit. We further demonstrated the system by making ex vivo measurements of the vibrations of the mouse middle ear structures. PMID:25361322

  18. Reflector antennas for ultrawideband usage

    NASA Astrophysics Data System (ADS)

    Foster, P. R.

    1993-01-01

    The provision of high gain antennas for ultrawideband systems is limited not only by the electromagnetic problems but also by the mechanical aspects such as the volume required. Single antenna elements such as TEM horns can provide gains of 20.0 dBi at the highest operating frequencies but any additional gain requires the use of other techniques. The simplest techniques are to use an array of elements or to use a reflector antenna. This paper deals with the design of reflector antennas. The transforming effect of the reflector surface is such that a constant aperture feed results in a constant gain reflector while a constant gain feed results in a constant aperture reflector. However this elegant postulate is somewhat degraded in practice by the presence of blockage, spillover and diffraction from the rim in a reflector antenna.

  19. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  20. Electromagnetic backscattering by corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, C. A.; Griesser, T.

    1986-01-01

    The Geometrical Theory of Diffraction (GTD), which supplements Geometric Optics (GO), and the Physical Theory of Diffraction (PTD), which supplements Physical Optics (PO), are used to predict the backscatter cross sections of dihedral corner reflectors which have right, obtuse, or acute included angles. These theories allow individual backscattering mechanisms of the dihedral corner reflectors to be identified and provide good agreement with experimental results in the azimuthal plane. The advantages and disadvantages of the geometrical and physical theories are discussed in terms of their accuracy, usefulness, and complexity. Numerous comparisons of analytical results with experimental data are presented. While physical optics alone is more accurate and more useful than geometrical optics alone, the combination of geometrical optics and geometrical diffraction seems to out perform physical optics and physical diffraction when compared with experimental data, especially for acute angle dihedral corner reflectors.

  1. High resolution on-chip optical filter array based on double subwavelength grating reflectors.

    PubMed

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; Faraon, Andrei

    2015-11-16

    An optical filter array consisting of vertical narrow-band Fabry-Pérot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths (Δλ/λ = 5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. Operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate. PMID:26698468

  2. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  3. Solar passive ceiling system. Final report. [Passive solar heating system with venetian blind reflectors and latent heat storage in ceiling

    SciTech Connect

    Schneider, A.R.

    1980-01-01

    The construction of a 1200 square foot building, with full basement, built to be used as a branch library in a rural area is described. The primary heating source is a passive solar system consisting of a south facing window system. The system consists of: a set of windows located in the south facing wall only, composed of double glazed units; a set of reflectors mounted in each window which reflects sunlight up to the ceiling (the reflectors are similar to venetian blinds); a storage area in the ceiling which absorbs the heat from the reflected sunlight and stores it in foil salt pouches laid in the ceiling; and an automated curtain which automatically covers and uncovers the south facing window system. The system is totally passive and uses no blowers, pumps or other active types of heat distribution equipment. The building contains a basement which is normally not heated, and the north facing wall is bermed four feet high around the north side.

  4. High power (130 mW) 40 GHz 1.55 μm mode-locked distributed Bragg reflector lasers with integrated optical amplifiers.

    PubMed

    Akbar, Jehan; Hou, Lianping; Haji, Mohsin; Strain, Michael J; Marsh, John H; Bryce, A Catrina; Kelly, Anthony E

    2012-02-01

    High output power 40 GHz 1.55 μm passively mode-locked surface-etched distributed Bragg reflector (DBR) lasers with monolithically integrated semiconductor optical amplifiers are reported. These are based on an optimized AlGaInAs/InP epitaxial structure with a three quantum well active layer and an optical trap layer. The device produces near transform limited Gaussian pulses with a pulse duration of 3.3 ps. An average output power during mode-locked operation of 130 mW was achieved with a corresponding peak power of >1 W. PMID:22297347

  5. Single-crystal silicon beams formed by merged epitaxial lateral overgrowth (MELO) for optical reflectors

    NASA Astrophysics Data System (ADS)

    Neudeck, Gerold W.; Kabir, Abul E.

    1995-05-01

    Single crystalline silicon has very well known and predictable mechanical, optical, and electrical properties and is easily manufactured with consistent results. It is also integrated circuit compatible and leads to incorporation of circuits and high quality piezoresistors which are available to monitor motion for self-testing. We present for the first time a novel surface micro-machining process using merged epitaxial lateral overgrowth (MELO) silicon to demonstrate the fabrication of single crystal silicon, free standing cantilever beams 1 mm long and 5 micrometers X 10 micrometers in cross section. These beams had no evidence of stress related bending and were free from the substrate, returning to its original position after numerous electrostatic deflections. MELO has also shown great potential for advanced BJT and MOSFET device applications, hence active devices can be incorporated into the deflecting beam arrays. Diodes fabricated in the beams show excellent characteristics with average ideality factors of 1.01. Note that the technology permits adding of single crystal silicon to selected areas, hence it is an additive process as compared to traditional subtractive methods that deposit films over the entire wafer.

  6. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  7. Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector

    SciTech Connect

    Forsman, A. C.; Kyrala, G. A.

    2001-05-01

    Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers , Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.

  8. Reflective optical imaging system

    DOEpatents

    Shafer, David R.

    2000-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  9. Surface Accuracy Measurement Sensor for Deployable Reflector Antennas (SAMS DRA)

    NASA Technical Reports Server (NTRS)

    Neiswander, R. S.

    1980-01-01

    Specifications, system configurations, and concept tests for surface measurement sensors for deployable reflector antennas are presented. Two approaches toward the optical measurement of remote target displacements are discussed: optical ranging, in which the basic measurement is target-to-sensor range; and in particular, optical angular sensing, in which the principle measurements are of target angular displacements lateral to the line of sight. Four representative space antennas are examined.

  10. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  11. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  12. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  13. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  14. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  15. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  16. A Method for Producing a Shaped Contour Radiation Pattern Using a Single Shaped Reflector and a Single Feed

    NASA Technical Reports Server (NTRS)

    Cherrette, A. R.; Lee, S. W.; Acosta, R. J.

    1988-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  17. A method for producing a shaped contour radiation pattern using a single shaped reflector and a single feed

    NASA Technical Reports Server (NTRS)

    Cherrette, Alan R.; Lee, Shung-Wu; Acosta, Roberto J.

    1989-01-01

    Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.

  18. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    DOEpatents

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  19. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  20. Compact triple coupled quantum well system for electrical/optical control of optical bi/multistability.

    PubMed

    Sattari, Hamed; Sahrai, Mostafa; Ebadollahi-Bakhtevar, Solmaz

    2015-03-20

    Optical bistability (OB) and optical multistability (OM) are investigated in a triple coupled quantum wells system inside a semiconductor cavity sandwiched by distributed Bragg reflector mirrors. By proper manipulation of the optical and electrical parameters, the behaviors of OB and OM can be efficiently controlled. We show that, by tuning the tunneling rates between the quantum wells, the threshold and hysteresis cycle of OB and OM can be engineered. The effect of the incoherent pump field as well as the cooperation parameter on creation of OB is also discussed. PMID:25968535

  1. Increasing the operating distance of a phase-shift laser range-finding system by using an active reflector

    NASA Astrophysics Data System (ADS)

    Hu, Pengcheng; Yu, Liang; Mei, Jianting; Tan, Jiubin

    2015-12-01

    A new phase-shift laser ranging method is developed by combining the conventional phase-shift ranging and the concept of transponder, in which the passive mirror in a phase-shift laser range-finding system is replaced with an active reflector whose light source power is the same as that at the measurement terminal. As a result, the power of the returned light is inversely proportional to the 2nd instead of the 4th power of the distance being measured. Section 3 indicate that by using the active reflector, the operating distance is dramatically increased without increasing the laser power or lens aperture. With a transmitted power of 20 mW and an aperture of 100 mm, the operating distance increased from 1.5 km to 9.4 km, and a 15-fold range gain can be forecasted for a transmitted power of 1 W. This strongly confirms the suitability of the developed phase-shift method with an active reflector for measuring longer distances.

  2. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  3. SEISMIC-REFLECTOR DATABASE SOFTWARE.

    USGS Publications Warehouse

    Wright, Evelyn L.; Hosom, John-Paul

    1986-01-01

    The seismic data analysis (SDA) software system facilitates generation of marine seismic reflector databases composed of reflector depths, travel times, root-mean-square and interval velocities, geographic coordinates, and identifying information. System processes include digitizing of seismic profiles and velocity semblance curves, merging of velocity and navigation data with profile travel-time data, calculation of reflector depths in meters, profile and map graphic displays, data editing and smoothing, and entry of finalized data into a comprehensive database. An overview of concepts, file structures, and programs is presented.

  4. Analysis of bonding stress with high strength adhesive between the reflector and the mounts in space camera

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Yongming; Li, Yingcai; Qu, Youshan; Ding, Jiaoteng

    2010-05-01

    The bond stress is analyzed when the optics were attached to their mounts with high strength adhesive in space camera. The model was founded that a circular planar reflector supported by one, three, six or twelve adhesive points, which evenly distributed on different circles. The surface deformation of reflector is mainly caused by the shrinkage after solidity. The functional relation was deduced between the bonding force of the reflector and the characteristic dimension of the adhesive spot using piecewise function, and then analyzing the RMS error of no gravity assuming that the adhesive spot is fixed connect to the reflector using Nastran. The analytical RMS error was the aberration which added by solidification of adhesive. The calculation result is in good agreement with the experiment results. This analyzing method will be useful for the microstress clamping of high performance reflector system for application in space optical systems.

  5. Design of optical system for collimating the light of an LED uniformly.

    PubMed

    Chen, Chen; Zhang, Xiaohui

    2014-05-01

    A type of optical system consisting of one total internal reflection (TIR) lens and two reflectors is designed for collimating the light of an LED to a uniform pattern. Application of this kind of optical system includes underwater light communication and an underwater image system. The TIR lens collimates all the light of the LED to a nonuniform plane wavefront. The double-reflector system redistributes the plane wavefront uniformly and collimates again. Three optical systems that produce a different radius of the output light patterns are designed. The simulation result shows that the uniformity of the designed optical system is greater than 0.76, and the total output efficiency (TOE) is greater than 89%. At the same time, we conclude that the radius of the output reflector should not be smaller than that of the input reflector in order to keep high uniformity and TOE. One of the designed optical systems is fabricated by computer numeric control, and the experiment results satisfy that goal. PMID:24979645

  6. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  7. Caustic Singularities Of High-Gain, Dual-Shaped Reflectors

    NASA Technical Reports Server (NTRS)

    Galindo, Victor; Veruttipong, Thavath W.; Imbriale, William A.; Rengarajan, Sambiam

    1991-01-01

    Report presents study of some sources of error in analysis, by geometric theory of diffraction (GTD), of performance of high-gain, dual-shaped antenna reflector. Study probes into underlying analytic causes of singularity, with view toward devising and testing practical methods to avoid problems caused by singularity. Hybrid physical optics (PO) approach used to study near-field spillover or noise-temperature characteristics of high-gain relector antenna efficiently and accurately. Report illustrates this approach and underlying principles by presenting numerical results, for both offset and symmetrical reflector systems, computed by GTD, PO, and PO/GO methods.

  8. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector

    NASA Astrophysics Data System (ADS)

    Fu, H.; Tang, X. R.; Li, J. L.; Tan, D. W.

    2014-04-01

    A novel non-contact measurement technique had been developed for the mechanical properties of materials in Split Hopkinson Pressure Bars (SHPB). Instead of the traditional strain gages mounted on the surfaces of bars, two shutters were mounted on the end of bars to directly measure interfacial velocity using Fiber Micro-Displacement Interferometer System for Any Reflector. Using the new technique, the integrated stress-strain responses could be determined. The experimental technique was validated by SHPB test simulation. The technique had been used to investigate the dynamic response of a brittle explosive material. The results showed that the new experimental technique could be applied to the dynamic behavior in SHPB test.

  9. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  10. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  11. Reflectors for SAR performance testing.

    SciTech Connect

    Doerry, Armin Walter

    2008-01-01

    Synthetic Aperture Radar (SAR) performance testing and estimation is facilitated by observing the system response to known target scene elements. Trihedral corner reflectors and other canonical targets play an important role because their Radar Cross Section (RCS) can be calculated analytically. However, reflector orientation and the proximity of the ground and mounting structures can significantly impact the accuracy and precision with which measurements can be made. These issues are examined in this report.

  12. Optical Disk Testing System

    NASA Astrophysics Data System (ADS)

    Manns, Basil H.

    1987-01-01

    This paper describes the development of the basics of an optical disk testing system used to test 12 inch, write once, Alcatel Thomson Gigadisk (ATG) media that are used at the Library of Congress in a pilot document storage and retrieval system. Since very little is known regarding the longevity of optical disk media and the fact that disk manufacturers are still refining processing techniques, any conclusions regarding error patterns, failure modes, or longevity may be superceded by a new "batch" of disks. Therefore, this paper focuses on the development of procedures for testing disks that can be used as the write once optical disk technology continues to advance.

  13. Thermal state of the safety system, reactor, side reflector and shielding of the {open_quote}{open_quote}TOPAZ-2{close_quote}{close_quote} system under conditions of fire caused by a launcher accident at the launch pad

    SciTech Connect

    Grinberg, E.I.; Doschatov, V.V.; Nikolaev, V.S.; Sokolov, N.S.; Usov, V.A.

    1996-03-01

    The paper presents some results of calculational analyses performed to determine thermal state of the TOPAZ II safety system structure, radiation shielding, reactor without the side reflector, rods and inserts of the side reflector under conditions of fire at the launch pad when an accident occurs to a launch vehicle. {copyright} {ital 1996 American Institute of Physics.}

  14. Dual-shaped offset reflector antenna designs from solutions of the geometrical optics first-order partial differential equations

    NASA Technical Reports Server (NTRS)

    Galindo-Israel, V.; Imbriale, W.; Shogen, K.; Mittra, R.

    1990-01-01

    In obtaining solutions to the first-order nonlinear partial differential equations (PDEs) for synthesizing offset dual-shaped reflectors, it is found that previously observed computational problems can be avoided if the integration of the PDEs is started from an inner projected perimeter and integrated outward rather than starting from an outer projected perimeter and integrating inward. This procedure, however, introduces a new parameter, the main reflector inner perimeter radius p(o), when given a subreflector inner angle 0(o). Furthermore, a desired outer projected perimeter (e.g., a circle) is no longer guaranteed. Stability of the integration is maintained if some of the initial parameters are determined first from an approximate solution to the PDEs. A one-, two-, or three-parameter optimization algorithm can then be used to obtain a best set of parameters yielding a close fit to the desired projected outer rim. Good low cross-polarization mapping functions are also obtained. These methods are illustrated by synthesis of a high-gain offset-shaped Cassegrainian antenna and a low-noise offset-shaped Gregorian antenna.

  15. Stereoscopic optical viewing system

    DOEpatents

    Tallman, C.S.

    1986-05-02

    An improved optical system which provides the operator with a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  16. Stereoscopic optical viewing system

    DOEpatents

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  17. Modular optical detector system

    DOEpatents

    Horn, Brent A.; Renzi, Ronald F.

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  18. Optical parallel selectionist systems

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John

    1993-01-01

    There are at least two major classes of computers in nature and technology: connectionist and selectionist. A subset of connectionist systems (Turing Machines) dominates modern computing, although another subset (Neural Networks) is growing rapidly. Selectionist machines have unique capabilities which should allow them to do truly creative operations. It is possible to make a parallel optical selectionist system using methods describes in this paper.

  19. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  20. Electrical and optical characteristics of AlAsSb/GaAsSb distributed Bragg reflectors for surface emitting lasers

    SciTech Connect

    Blum, O.; Hafich, M.J.; Klem, J.F.; Lear, K.L.; Chu, S.N.G.

    1995-11-27

    We demonstrate an undoped 20 1/2 pair AlAsSb/GaAsSb distributed Bragg reflector (DBR) grown lattice matched to an InP substrate by molecular beam epitaxy. Reflectivity measurements indicate a stop band centered at 1.78 {mu}m with a maximum reflectivity exceeding 99%. We also measure current--voltage characteristics in a similar 10 1/2 period {ital p}-type DBR and find that a current density of 1 {ital kA}/{ital cm}{sup 2} produces a 2.5 V drop. Hole mobilities and doping concentrations in AlAsSb and GaAsSb are also reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Optics Supply Planning System

    SciTech Connect

    Gaylord, J

    2009-04-30

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  2. Optic-electronic systems for measurement the three-dimension angular deformation of axles at the millimeter wave range radiotelescope

    NASA Astrophysics Data System (ADS)

    Konyakhin, Igor A.; Kopylova, Tatyana V.; Konyakhin, Alexsey I.; Smekhov, Andrey A.

    2013-01-01

    Researches in the millimetre wave range require the high accuracy for position of the mirror components of the radiotelescope. A mirror weight is the cause of the three-dimension angular deformation of the elevation axle and azimuth axle relatively bearings. At result the elevation angle and azimuth angle of a parabolic mirror axis orientation is not equal to the set values. For the measuring roll, pitch and yaw angular deformations the autocollimation system with new type of the reflector are used. Reflector for autocollimation measurements as compositions of the anamorphic prism and special tetrahedral reflector is described. New methods for roll, pitch, yaw angles measuring are discussed. Optical scheme for the measurement system, structure the anamorphic prism and tetrahedral reflector are proposed. Equations for the static characteristic of the measuring system are shown.

  3. Curvature of blended rolled edge reflectors at the shadow boundary contour

    NASA Technical Reports Server (NTRS)

    Ellingson, S. W.

    1988-01-01

    A technique is advanced for computing the radius of curvature of blended rolled edge reflector surfaces at the shadow boundary, in the plane perpendicular to the shadow boundary contour. This curvature must be known in order to compute the spurious endpoint contributions in the physical optics (PO) solution for the scattering from reflectors with rolled edges. The technique is applicable to reflectors with radially-defined rim-shapes and rolled edge terminations. The radius of curvature for several basic reflector systems is computed, and it is shown that this curvature can vary greatly along the shadow boundary contour. Finally, the total PO field in the target zone of a sample compact range system is computed and corrected using the shadow boundary radius of curvature, obtained using the technique. It is shown that the fields obtained are a better approximation to the true scattered fields.

  4. Realization of LOS (Line of Sight) stabilization based on reflector using carrier attitude compensation method

    NASA Astrophysics Data System (ADS)

    Mao, Yao; Tian, Jing; Ma, Jia-guang

    2015-02-01

    The techonology of LOS stabilization is widely applicated in moving carrier photoelectric systems such as shipborne, airborne and so on. In application situations with compact structure, such as LOS stabilization system of unmanned aerial vehicle, LOS stabilization based on reflector is adopted, and the detector is installed on the carrier to reduce the volume of stabilized platform and loading weight. However, the LOS deflection angle through reflector and the rotation angle of the reflector has a ratio relation of 2:1, simple reflector of stable inertial space can not make the optical axis stable. To eliminate the limitation of mirror stabilizing method, this article puts forward the carrier attitude compensation method, which uses the inertial sensor installed on the carrier to measure the attitude change of the carrier, and the stabilized platform rotating half of the carrier turbulence angle to realize the LOS stabilization.

  5. Actuator Grouping Optimization on Flexible Space Reflectors

    NASA Technical Reports Server (NTRS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-01-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required surface accuracy, precision surface control is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton reflector with Polyvinylidene fluoride (PVDF) actuators for surface control. Surface errors are introduced that are similar to real world scenarios, and a least squares control algorithm is developed for surface control. Experimental results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies in the reflector it cannot be used for online control. A new method called the En Mass Elimination algorithm is used to determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power supplies available.

  6. Optical key system

    DOEpatents

    Hagans, Karla G.; Clough, Robert E.

    2000-01-01

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  7. Optical key system

    SciTech Connect

    Hagans, K.G.; Clough, R.E.

    2000-04-25

    An optical key system comprises a battery-operated optical key and an isolated lock that derives both its operating power and unlock signals from the correct optical key. A light emitting diode or laser diode is included within the optical key and is connected to transmit a bit-serial password. The key user physically enters either the code-to-transmit directly, or an index to a pseudorandom number code, in the key. Such person identification numbers can be retained permanently, or ephemeral. When a send button is pressed, the key transmits a beam of light modulated with the password information. The modulated beam of light is received by a corresponding optical lock with a photovoltaic cell that produces enough power from the beam of light to operate a password-screen digital logic. In one application, an acceptable password allows a two watt power laser diode to pump ignition and timing information over a fiberoptic cable into a sealed engine compartment. The receipt of a good password allows the fuel pump, spark, and starter systems to each operate. Therefore, bypassing the lock mechanism as is now routine with automobile thieves is pointless because the engine is so thoroughly disabled.

  8. Development of silicon optics for an integrated micro-optical system-on-a-chip

    NASA Astrophysics Data System (ADS)

    Ng, David C.; Kandasamy, Sasikaran; Skafidas, Efstratios

    2013-12-01

    Development of silicon-based passive optical components such as reflectors, waveguides, and beam splitters coupled with active elements such as light emitters and detectors enable miniaturisation of a low-cost system-on-a-chip sensing device. In this work, we investigate methods to fabricate passive silicon elements on a chip. We use a combination of wet and dry etching techniques to realise angled and vertical sidewalls normal to the surface of a silicon wafer, respectively. For wet etching, we used Triton-X, a surfactant, added to an alkaline solution TMAH as the etchant. This allows perfect 45° inclined sidewalls to be fabricated. Dry etching using DRIE is to be performed on the reverse-side of the same wafer to realize through-hole vias with straight vertical sidewalls. A final Au metal layer can then be coated onto the sidewalls to realize reflective surfaces. Photolithography masks used in the wet and dry etch processes were designed and fabricated. By careful alignment of these masks using a mask aligner, we can fabricate a combination of inclined and vertical sidewalls to build optical reflectors and beam splitters with complex geometries. When integrated with active Si-optical devices, a fully integrated micro-optical system-on-a-chip can be realised.

  9. Computer prediction of dual reflector antenna radiation properties

    NASA Technical Reports Server (NTRS)

    Christodoulou, C.

    1981-01-01

    A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.

  10. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.

    PubMed

    Fu, H; Tang, X R; Li, J L; Tan, D W

    2014-04-01

    A novel non-contact measurement technique had been developed for the mechanical properties of materials in Split Hopkinson Pressure Bars (SHPB). Instead of the traditional strain gages mounted on the surfaces of bars, two shutters were mounted on the end of bars to directly measure interfacial velocity using Fiber Micro-Displacement Interferometer System for Any Reflector. Using the new technique, the integrated stress-strain responses could be determined. The experimental technique was validated by SHPB test simulation. The technique had been used to investigate the dynamic response of a brittle explosive material. The results showed that the new experimental technique could be applied to the dynamic behavior in SHPB test. PMID:24784672

  11. Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells

    DOE PAGESBeta

    Bills, Braden; Morris, Nathan; Dubey, Mukul; Wang, Qi; Fan, Qi Hua

    2015-01-16

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectric breakdownmore » approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less

  12. Application of parabolic reflector on Raman analysis of gas samples

    NASA Astrophysics Data System (ADS)

    Yu, Anlan; Zuo, Duluo; Gao, Jun; Li, Bin; Wang, Xingbing

    2016-05-01

    Studies on the application of a parabolic reflector in spontaneous Raman scattering for low background Raman analysis of gas samples are reported. As an effective signal enhancing sample cell, photonic bandgap fiber (HC-PBF) or metallined capillary normally result in a strong continuous background in spectra caused by the strong Raman/fluorescence signal from the silica wall and the polymer protective film. In order to obtain enhanced signal with low background, a specially designed sample cell with double-pass and large collecting solid angle constructed by a parabolic reflector and a planar reflector was applied, of which the optical surfaces had been processed by diamond turning and coated by silver film and protective film of high-purity alumina. The influences of optical structure, polarization characteristic, collecting solid-angle and collecting efficiency of the sample cell on light propagation and signal enhancement were studied. A Raman spectrum of ambient air with signal to background ratio of 94 was acquired with an exposure time of 1 sec by an imaging spectrograph. Besides, the 3σ limits of detection (LOD) of 7 ppm for H2, 8 ppm for CO2 and 12 ppm for CO were also obtained. The sample cell mainly based on parabolic reflector will be helpful for compact and high-sensitive Raman system.

  13. Binary optics at Hughes Danbury Optical Systems

    NASA Technical Reports Server (NTRS)

    Logue, James; Power, Michael

    1993-01-01

    An overview of binary optics development at Hughes Danbury Optical Systems is presented. Design software used for mask design is presented. A brief discussion of fabrication follows. Two examples of actual projects are used to highlight the discussion: (1) a large aspheric lens; and (2) a set of grating and lenslet arrays.

  14. All-reflective optical target illumination system with high numerical aperture

    DOEpatents

    Thomas, Carlton E.; Sigler, Robert D.; Hoeger, John G.

    1979-01-01

    An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of confluent collimated light beams. The collimated beams are each incident upon an associated concave eccentric pupil paraboloidal reflective surface, and thereby each focused through an opening in an associated outer ellipsoidal reflective surface onto a plane reflector. Each beam is reflected by its associated plane reflector onto the opposing concave surface of the outer ellipsoids to be focused through an opening in the plane surface onto an opposing inner concave ellipsoidal reflective surface, and thence onto the target region.

  15. Optical systems integrated modeling

    NASA Technical Reports Server (NTRS)

    Shannon, Robert R.; Laskin, Robert A.; Brewer, SI; Burrows, Chris; Epps, Harlan; Illingworth, Garth; Korsch, Dietrich; Levine, B. Martin; Mahajan, Vini; Rimmer, Chuck

    1992-01-01

    An integrated modeling capability that provides the tools by which entire optical systems and instruments can be simulated and optimized is a key technology development, applicable to all mission classes, especially astrophysics. Many of the future missions require optical systems that are physically much larger than anything flown before and yet must retain the characteristic sub-micron diffraction limited wavefront accuracy of their smaller precursors. It is no longer feasible to follow the path of 'cut and test' development; the sheer scale of these systems precludes many of the older techniques that rely upon ground evaluation of full size engineering units. The ability to accurately model (by computer) and optimize the entire flight system's integrated structural, thermal, and dynamic characteristics is essential. Two distinct integrated modeling capabilities are required. These are an initial design capability and a detailed design and optimization system. The content of an initial design package is shown. It would be a modular, workstation based code which allows preliminary integrated system analysis and trade studies to be carried out quickly by a single engineer or a small design team. A simple concept for a detailed design and optimization system is shown. This is a linkage of interface architecture that allows efficient interchange of information between existing large specialized optical, control, thermal, and structural design codes. The computing environment would be a network of large mainframe machines and its users would be project level design teams. More advanced concepts for detailed design systems would support interaction between modules and automated optimization of the entire system. Technology assessment and development plans for integrated package for initial design, interface development for detailed optimization, validation, and modeling research are presented.

  16. Compressive optical imaging systems

    NASA Astrophysics Data System (ADS)

    Wu, Yuehao

    Compared to the classic Nyquist sampling theorem, Compressed Sensing or Compressive Sampling (CS) was proposed as a more efficient alternative for sampling sparse signals. In this dissertation, we discuss the implementation of the CS theory in building a variety of optical imaging systems. CS-based Imaging Systems (CSISs) exploit the sparsity of optical images in their transformed domains by imposing incoherent CS measurement patterns on them. The amplitudes and locations of sparse frequency components of optical images in their transformed domains can be reconstructed from the CS measurement results by solving an l1-regularized minimization problem. In this work, we review the theoretical background of the CS theory and present two hardware implementation schemes for CSISs, including a single pixel detector based scheme and an array detector based scheme. The first implementation scheme is suitable for acquiring Two-Dimensional (2D) spatial information of the imaging scene. We demonstrate the feasibility of this implementation scheme by developing a single pixel camera, a multispectral imaging system, and an optical sectioning microscope for fluorescence microscopy. The array detector based scheme is suitable for hyperspectral imaging applications, wherein both the spatial and spectral information of the imaging scene are of interest. We demonstrate the feasibility of this scheme by developing a Digital Micromirror Device-based Snapshot Spectral Imaging (DMD-SSI) system, which implements CS measurement processes on the Three-Dimensional (3D) spatial/spectral information of the imaging scene. Tens of spectral images can be reconstructed from the DMD-SSI system simultaneously without any mechanical or temporal scanning processes.

  17. Design of blended rolled edges for compact range main reflectors

    NASA Technical Reports Server (NTRS)

    Ericksen, K. P.; Gupta, I. J.; Burnside, W. D.

    1988-01-01

    A procedure to design blended rolled edge terminations for arbitrary rim shape compact range main reflectors is presented. The reflector may be center-fed or offset-fed. The design procedure leads to a reflector which has a continuous and smooth surface. This procedure also ensures small diffracted fields from the junction between the paraboloid and the blended rolled edge while satisfying certain constraints regarding the maximum height of the reflector and minimum operating frequency of the system. The prescribed procedure is used to design several reflectors and the performance of these reflectors is presented.

  18. A fixed tilt solar collector employing reversible vee-through reflectors and evaluated tube receivers for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1978-01-01

    The Vee-Trough/Evacuated Tube Collector (VTETC) was analyzed rigorously and various mathematical models were developed to calculate the optical performance of the vee-trough concentrators, and the quasi-steady state thermal performance of the evacuated tube receivers. Tests were run to verify the mathematical analyses. Back-silvered glass mirror, Alzak, Aluminized Teflon, and Kinglux (electropolished aluminum reflectors) were tested. Additional tests were run at temperatures ranging from 80 to 190 C (176-374 F). For the glass mirror reflectors, peak efficiencies, based on aperture area and operating temperatures of 125 C (257 F), were over 40%. Efficiencies of about 40% were observed at temperatures of 150 C (302 F) and 30% at 175 C (347 F). Test data for several days, predicted daily useful heats, and efficiency values are presented for a full year. These theoretical values were then compared with actual data points for the same temperature range.

  19. Shaped cassegrain reflector antenna. [design equations

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    Design equations are developed to compute the reflector surfaces required to produce uniform illumination on the main reflector of a cassegrain system when the feed pattern is specified. The final equations are somewhat simple and straightforward to solve (using a computer) compared to the ones which exist already in the literature. Step by step procedure for solving the design equations is discussed in detail.

  20. Design of a high precision microwave reflector. [for earth upper atmosphere study

    NASA Technical Reports Server (NTRS)

    Noller, E. W.; Bauer, J. L.

    1980-01-01

    Development of a high accuracy spherical microwave reflector to support contour RMS and pointing requirements for a new series of space instruments is reported. The reflector system is composed of precision machined aluminum tile reflectors supported from a eutectic coated graphite epoxy structure by flexures. Several basic technologies have been integrated into a manufacturing process that accommodates fabrication techniques of both optical and composite constraints. The optical figure and its change due to thermal gradient was measured in a thermal vacuum environment with a Ronchi system. The radiometer system is in support of the Microwave Limb Sounder, an experiment to measure emissions from earth's atmospheric limb thus obtaining wind, temperature, pressure and chemical composition measurements.

  1. Dish-based high concentration PV system with Köhler optics.

    PubMed

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24922230

  2. Dish-based high concentration PV system with Köhler optics.

    PubMed

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24800277

  3. Optical gyroscope system

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Goldstein, R. (Inventor)

    1981-01-01

    Light beams pass in opposite directions through a single mode fiber optic wave guide that extends in a circle or coil in an optical gyroscope system which measures the rotation rate of the coil by measuring the relative phase shifts of the beams by interferometric techniques. Beam splitting and phase shifting of the light are facilitated by utilizing brief pulses of light and by using light-controlling devices which are operated for a brief time only when the light pulse passes in one direction through the device but not at a different time when the pulse is passing in the opposite direction through the device. High accuracy in rotation measurement is achieved at both very slow and very fast rotation rates, by alternately operating the system so that at zero rotation the interfering waves are alternately 90 out of phase and in phase. Linear polarization of the light beams is maintained by coiling the full length of the optic fiber in a single plane.

  4. Optical fiber inspection system

    DOEpatents

    Moore, F.W.

    1985-04-05

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected. 10 figs.

  5. Optical fiber inspection system

    DOEpatents

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  6. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  7. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  8. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  9. Beam scanning offset Cassegrain reflector antennas by subreflector movement

    NASA Technical Reports Server (NTRS)

    Lapean, James W., Jr.; Stutzman, Warren L.

    1994-01-01

    In 1987 a NASA panel recommended the creation of the Mission to Planet Earth. This mission was intended to apply to remote sensing experience of the space community to earth remote sensing to enhance the understanding of the climatological processes of our planet and to determine if, and to what extent, the hydrological cycle of Earth is being affected by human activity. One of the systems required for the mission was a wide scanning, high gain reflector antenna system for use in radiometric remote sensing from geostationary orbit. This work describes research conducted at Virginia Tech into techniques for beam scanning offset Cassegrain reflector antennas by subreflector translation and rotation. Background material relevant to beam scanning antenna systems and offset Cassegrain reflector antenna system is presented. A test case is developed based on the background material. The test case is beam scanned using two geometrical optics methods of determining the optimum subreflector position for the desired scanned beam direction. Physical optics far-field results are given for the beam scanned systems. The test case system is found to be capable of beam scanning over a range of 35 half-power beamwidths while maintaining a 90 percent beam efficiency or 50 half-power beamwidths while maintaining less than l dB of gain loss during scanning.

  10. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  11. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  12. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  13. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1993-01-01

    Part 1 of this report continues the investigation, initiated in previous reports, of scattering from rectangular plates coated with lossy dielectrics. The hard polarization coefficients given in the last report are incorporated into a model, which includes second- and third-order diffractions, for the coated plate. Computed results from this model are examined and compared to measured data. A breakdown of the contribution of each of the higher-order terms to the total radar cross section (RCS) is given. The effectiveness of the uniform theory of diffraction (UTD) model in accounting for the coating effect is investigated by examining a Physical Optics (PO) model which incorporates the equivalent surface impedance approximation used in the UTD model. The PO, UTD, and experimental results are compared. Part 2 of this report presents a RCS model, based on PO and the Method of Equivalent Currents (MEC), for a trihedral corner reflector. PO is used to account for the reflected fields, while MEC is used for the diffracted fields. Single, double, and triple reflections and first-order diffractions are included in the model. A detailed derivation of the E(sub theta)-polarization, monostatic RCS is included. Computed results are compared with finite-difference time-domain (FDTD) results for validation. The PO/MEC model of this report compares very well with the FDTD model, and it is a much faster model in terms of computational speed.

  14. Optical system defect propagation in ABCD systems.

    PubMed

    McKinley, W G; Yura, H T; Hanson, S G

    1988-05-01

    We describe how optical system defects (tilt/jitter, decenter, and despace) propagate through an arbitrary paraxial optical system that can be described by an ABCD ray transfer matrix. A pedagogical example is given that demonstrates the effect of alignment errors on a typical optical system. PMID:19745889

  15. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  16. Focal region fields of distorted reflectors

    NASA Technical Reports Server (NTRS)

    Buris, N. E.; Kauffman, J. F.

    1988-01-01

    The problem of the focal region fields scattered by an arbitrary surface reflector under uniform plane wave illumination is solved. The physical optics (PO) approximation is used to calculate the current induced on the reflector. The surface of the reflector is described by a number of triangular domain-wise 5th degree bivariate polynomials. A 2-dimensional Gaussian quadrature is employed to numerically evaluate the integral expressions of the scattered fields. No Freshnel or Fraunhofer zone approximations are made. The relation of the focal fields problem to surface compensation techniques and other applications are mentioned. Several examples of distorted parabolic reflectors are presented. The computer code developed is included, together with instructions on its usage.

  17. Identification of a precision segmented reflector

    NASA Astrophysics Data System (ADS)

    Parsons, Eric K.

    A major example of control/structure interaction in future active optics occurs in precision segmented reflectors. The Advanced Structures/Controls Integrated Experiment (ASCIE) is designed as a testbed for controls/structures technology for such systems. The desire for greater performance motivates this research to model and verify the ASCIE dynamics. First, an analytical model of the open-loop dynamics of the segment alignment system is constructed from an FEM. This model predicts the modes that the alignment control would destabilize, which are critical for the control design. Subsequently, comparison of predicted and measured transfer functions indicates errors in the analytical model that adjustments to the FEM and system identification need to correct. Finally, the paper gives a brief description of a systematic approach for improving the ASCIE structural dynamic model.

  18. Fiber optic control system integration

    NASA Technical Reports Server (NTRS)

    Poppel, G. L.; Glasheen, W. M.; Russell, J. C.

    1987-01-01

    A total fiber optic, integrated propulsion/flight control system concept for advanced fighter aircraft is presented. Fiber optic technology pertaining to this system is identified and evaluated for application readiness. A fiber optic sensor vendor survey was completed, and the results are reported. The advantages of centralized/direct architecture are reviewed, and the concept of the protocol branch is explained. Preliminary protocol branch selections are made based on the F-18/F404 application. Concepts for new optical tools are described. Development plans for the optical technology and the described system are included.

  19. High-frequency techniques for RCS prediction of plate geometries and a physical optics/equivalent currents model for the RCS of trihedral corner reflectors, parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polka, Lesley A.; Polycarpou, Anastasis C.

    1994-01-01

    Formulations for scattering from the coated plate and the coated dihedral corner reflector are included. A coated plate model based upon the Uniform Theory of Diffraction (UTD) for impedance wedges was presented in the last report. In order to resolve inaccuracies and discontinuities in the predicted patterns using the UTD-based model, an improved model that uses more accurate diffraction coefficients is presented. A Physical Optics (PO) model for the coated dihedral corner reflector is presented as an intermediary step in developing a high-frequency model for this structure. The PO model is based upon the reflection coefficients for a metal-backed lossy material. Preliminary PO results for the dihedral corner reflector suggest that, in addition to being much faster computationally, this model may be more accurate than existing moment method (MM) models. An improved Physical Optics (PO)/Equivalent Currents model for modeling the Radar Cross Section (RCS) of both square and triangular, perfectly conducting, trihedral corner reflectors is presented. The new model uses the PO approximation at each reflection for the first- and second-order reflection terms. For the third-order reflection terms, a Geometrical Optics (GO) approximation is used for the first reflection; and PO approximations are used for the remaining reflections. The previously reported model used GO for all reflections except the terminating reflection. Using PO for most of the reflections results in a computationally slower model because many integrations must be performed numerically, but the advantage is that the predicted RCS using the new model is much more accurate. Comparisons between the two PO models, Finite-Difference Time-Domain (FDTD) and experimental data are presented for validation of the new model.

  20. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  1. One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector.

    PubMed

    Lee, KyeoReh; Lee, Junsung; Park, Jung-Hoon; Park, Ji-Ho; Park, YongKeun

    2015-10-01

    Rewinding the arrow of time via phase conjugation is an intriguing phenomenon made possible by the wave property of light. Here, we demonstrate the realization of a one-wave optical phase conjugation mirror using a spatial light modulator. An adaptable single-mode filter is created, and a phase-conjugate beam is then prepared by reverse propagation through this filter. Our method is simple, alignment free, and fast while allowing high power throughput in the time-reversed wave, which has not been simultaneously demonstrated before. Using our method, we demonstrate high throughput full-field light delivery through highly scattering biological tissue and multimode fibers, even for quantum dot fluorescence. PMID:26550723

  2. Building automation system of payment platform weight component for large spacecraft reflector

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Badanina, J. O.

    2016-04-01

    Considered Design and the logic of opening large convertible antenna. The necessity of compensation weight component in the assembly and testing of the design. Given the logic of the movement elements of power spokes, concluded that the use of the tracking system to compensate for the weight component. The analysis of the existing equipment and control systems. Produced selection of the manufacturer of automated equipment that meets the stated objectives of management and control. It is concluded that the design component of the weight compensation system based on servo controllers and sensors combined platform automation, controlled by special software. The structure of the platform automation, consistent workflow testing. It defines the principles of interaction between subsystems of the weight compensation component for receiving, processing and monitoring of process parameters testing. It is concluded that the proposed system can be integrated into the automation system and the perspective of process control testing of disclosure of large spacecraft.

  3. Intelligent Optical Systems Using Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2012-01-01

    Until recently, the phrase adaptive optics generally conjured images of large deformable mirrors being integrated into telescopes to compensate for atmospheric turbulence. However, the development of smaller, cheaper devices has sparked interest for other aerospace and commercial applications. Variable focal length lenses, liquid crystal spatial light modulators, tunable filters, phase compensators, polarization compensation, and deformable mirrors are becoming increasingly useful for other imaging applications including guidance navigation and control (GNC), coronagraphs, foveated imaging, situational awareness, autonomous rendezvous and docking, non-mechanical zoom, phase diversity, and enhanced multi-spectral imaging. The active components presented here allow flexibility in the optical design, increasing performance. In addition, the intelligent optical systems presented offer advantages in size and weight and radiation tolerance.

  4. Compact color schlieren optical system

    NASA Technical Reports Server (NTRS)

    Buchele, Donald R.; Griffin, Devon W.

    1993-01-01

    A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements.

  5. Optical system for multispectral scanner

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G.

    1979-01-01

    Optical system designed for scanning eight spectra bands simultaneously from aircraft at variety of speeds and altitudes is compact, easy to align, and reliable. System efficiently and effectively circumvents many problems associated with previous systems.

  6. Electrophoretic deposited TiO2 pigment-based back reflectors for thin film solar cells

    SciTech Connect

    Bills, Braden; Morris, Nathan; Dubey, Mukul; Wang, Qi; Fan, Qi Hua

    2015-01-16

    Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectric breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.

  7. X-ray resonator with pear-shaped reflectors

    SciTech Connect

    Churikov, V A

    2003-11-30

    An X-ray resonator design is proposed in which peculiar pear-shaped reflectors, which are grazing-incidence X-ray mirrors, serve as optical elements. Special features of this resonator are relatively high reflector efficiencies and the axial symmetry of the output radiation. (resonators)

  8. Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction.

    PubMed

    Shin, Jin-Soo; Park, Tea-Hyun; Chu, Woo-Sung; Lee, Chang-Hee; Shin, Sang-Yung; Oh, Min-Cheol

    2015-06-29

    A tunable channel-drop filter as essential component for the wavelength-division-multiplexing optical communication system has been demonstrated, which is based on polymer waveguide Bragg reflectors. For an ordinary Bragg reflector, the filtered signal is reflected toward the input waveguide. Thus an external circulator is required to separate the filtered signal from the input port, though it increases the total footprint and cost. For this purpose, we employed dual Bragg reflectors and a mode sorting asymmetric X-junction. The Bragg reflector exhibited a maximum reflectivity of 94% for a 6-mm long grating, a 3-dB bandwidth of 0.39 nm and a 20-dB bandwidth of 2.6 nm. The mode sorting crosstalk in asymmetric X-junction was less than -20 dB, and linear wavelength tuning was achieved over 10 nm at the applied thermal power of 377 mW. PMID:26191731

  9. Optical modulator system

    NASA Technical Reports Server (NTRS)

    Brand, J.

    1972-01-01

    The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.

  10. Astigmatism in reflector antennas.

    NASA Technical Reports Server (NTRS)

    Cogdell, J. R.; Davis, J. H.

    1973-01-01

    Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.

  11. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space

  12. Optical power distribution system

    SciTech Connect

    Lalmond, R.G.

    1987-09-08

    This patent describes an apparatus for supplying electrical power to electrical components mounted on a circuit board. It consists of: a printed circuit board; electrical components mounted on the printed circuit board; electrically powered sources of optical energy; photovoltaic cell arrays; each photovoltaic cell array being mounted on a corresponding one of the electrical components to provide electrical power to the electrical component on which it is mounted; and means for coupling the optical energy from the electrically powered sources of optical energy to the photovoltaic cell arrays.

  13. High-index dielectric meta-materials for near-perfect broadband reflectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhengqi; Liu, Xiaoshan; Wang, Yan; Pan, Pingping

    2016-05-01

    All-dielectric meta-materials offer a potential alternative to plasmonic meta-materials at optical frequencies. Herein, we take advantage of loss-less as well as simple unit cell geometry to demonstrate near-perfect broadband reflectors made from all-dielectric materials. These near-perfect reflectors, consisting of high-index cross-shaped resonators (n  =  3.5, Si), operating in the telecommunications bands, exhibit novel optical properties including polarization-independent, wide-angle near-unity reflection. The average reflectance is exceeding 98% at the wavelength range from 1.261 μm to 1.533 μm. At 1.310 μm, the average reflectance (R) reaches 99.7%, surpassing the reflectance of metallic mirrors. A near-perfect super-broadband reflection spectrum with bandwidth of 0.330 μm (R  >  98%) is achieved for a system with a higher index dielectric resonator array (n  =  4.0, Ge). Moreover, the optical properties of the reflector provide high scalability across the wavelength range via tuning of dielectric resonators. The whole structure, with common triple-layer features, can be mass-produced using standard lithography methods and deposition techniques. These optical and structural features make the proposed near-perfect broadband reflectors feasible avenues for manipulating light in important applications in spectroscopy, photovoltaics and light emission.

  14. Ultraviolet reflector materials for solar detoxification of hazardous waste

    SciTech Connect

    Jorgensen, G.; Govindarajan, R.

    1991-07-01

    Organic waste detoxification requires cleavage of carbon bonds. Such reactions can be photo-driven by light that is energetic enough to disrupt such bonds. Alternately, light can be used to activate catalyst materials, which in turn can break organic bonds. In either case, photons with wavelengths less than 400 nm are required. Because the terrestrial solar resource below 400 nm is so small (roughly 3% of the available spectrum), highly efficient optical concentrators are needed that can withstand outdoor service conditions. In the past, optical elements for solar application have been designed to prevent ultraviolet (uv) radiation from reaching the reflective layer to avoid the potentially harmful effects of such light on the collector materials themselves. This effectively forfeits the uv part of the spectrum in return for some measure of protection against optical degradation. To optimize the cost/performance benefit of photochemical reaction systems, optical materials must be developed that are not only highly efficient but also inherently stable against the radiation they are designed to concentrate. The requirements of uv optical elements in terms of appropriate spectral bands and level of reflectance are established based upon the needs of photochemical applications. Relevant literature on uv reflector materials is reviewed which, along with discussions with industrial contacts, allows the establishment of a data base of currently available materials. Although a number of related technologies exist that require uv reflectors, to date little attention has been paid to achieving outdoor durability required for solar applications. 49 refs., 3 figs.

  15. Vibration analysis of the Thomson Scattering diagnostics optical transmission system on EAST tokamak

    NASA Astrophysics Data System (ADS)

    Shao, Chunqiang; Zang, Qing; Zhao, Junyu; Hu, Ailan; Han, Xiaofeng; Chen, Hui; He, Liangliang; Wang, Tengfei

    2014-09-01

    A series of vibration source from the EAST tokamak complicated experimental environment would result in the laser path misalignment and the collected scattered laser signal attenuation, which leads to a measurement error of the Thomson Scattering (TS) diagnostics system. Two methods have been designed for the vibration analysis of the TS diagnostics optical transmission system, a passive one and an active one. The optical transmission system contains of a double deck optical table with 4 reflectors and a photon collection system. The vibration analysis includes 4 points of reflectors along the laser path, 1 point of the photon collection system, and the ground of EAST experimental hall. The passive method used a vibration spectrum analyzer and 7 vertical speed sensors measuring the standard deviation of the vibration noise, which refers to the virtual value of vibration, and a data analysis system. The active method used a hammer to simulate the vibration source of the experimental hall ground, and 15 accelerometers to measure the three-dimensional vibration spectrum of 5 points along the optical transmission system. The vibration isolation efficiency (IE) of the optical transmission system has been presented, and the vibration asynchrony of the 5 points also has been observed. The results of two methods are comparatively studied, and the active one is considered to be more credible.

  16. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  17. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  18. Correcting Thermal Deformations in an Active Composite Reflector

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.

    2011-01-01

    Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several

  19. Perception for a large deployable reflector telescope

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. M.; Swanson, P. N.; Meinel, A. B.; Meinel, M. P.

    1984-01-01

    Optical science and technology concepts for a large deployable reflector for far-infrared and submillimeter astronomy from above the earth's atmosphere are discussed. Requirements given at the Asilomar Conference are reviewed. The technical challenges of this large-aperture (about 20-meter) telescope, which will be diffraction limited in the infrared, are highlighted in a brief discussion of one particular configuration.

  20. Enhanced imaging of reflector antenna surface distortion using microwave holography

    NASA Technical Reports Server (NTRS)

    Gilmore, Sean W.; Rudduck, Roger C.

    1989-01-01

    Two signal processing techniques are discussed that improve the accuracy of a microwave holographic measurement by removing unwanted signals from the aperture distribution: pattern simulation and subtraction, and time domain filtering. Pattern simulation and subtraction involves modeling unwanted scattering mechanisms and then removing them from the measured far-field data. Measurements taken on a focal point geometry and a Cassegrain geometry at 11 GHz were processed by the holographic analysis system. Pattern simulation and subtraction was applied to both geometries. Surface deformation profiles generated for the Cassegrain antenna by this system were compared to an optical measurement of the main reflector surface.

  1. Color uniformity in spotlights optimized with reflectors and TIR lenses.

    PubMed

    Teupner, Anne; Bergenek, Krister; Wirth, Ralph; Benítez, Pablo; Miñano, Juan Carlos

    2015-02-01

    We analyze the color uniformity in the far field of spotlight systems to estimate visual perception with a merit function derived from human factor experiments. A multi-colored light-emitting diode (LED) light engine with different light mixing levels is combined with several reflectors and total internal reflection (TIR) lenses. The optimized systems are analyzed at several color uniformity levels with regard to the efficiency, peak luminous intensity and dimensions. It is shown that these properties cannot all be optimized at the same time. Furthermore, excellent color uniformity can be reached by a light mixing layer in the light engine or by adding mixing elements to the secondary optics. PMID:25836237

  2. An assessment of potential weather effects due to operation of the Space Orbiting Light Augmentation Reflector Energy System (SOLARES)

    NASA Technical Reports Server (NTRS)

    Allen, N. C.

    1978-01-01

    Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.

  3. Uniform sunlight concentration reflectors for photovoltaic cells.

    PubMed

    Rabady, Rabi Ibrahim

    2014-03-20

    Sunlight concentration is essential to reach high temperatures of a working fluid in solar-thermal applications and to reduce the cost of photovoltaic (PV) electricity generation systems. Commonly, sunlight concentration is realized by parabolic or cylindrical reflectors, which do not provide uniform concentration on the receiver finite surface. Uniform concentration of sunlight is favored especially for the PV conversion applications since it not only enhances the conversion efficiency of sunlight but also reduces the thermal variations along the receiving PV cell, which can be a performance and life-span limiting factor. In this paper a reflector profile that uniformly infiltrates the concentrated sunlight into the receiving unit is attempted. The new design accounts for all factors that contribute to the nonuniform concentration, like the reflector curvature, which spatially reflects the sunlight nonuniformly, and the angular dependency of both the reflector reflectivity and the sunlight transmission through the PV cell. PMID:24663464

  4. Diffraction analysis of frequency selective reflector antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Tulintseff, Ann N.

    1993-01-01

    In this paper, a unified computational technique is presented which allows the incorporation of the curved frequency-selective surface (FSS) geometry in the computation of the reflector antenna radiation pattern. The scattered fields from an illuminated FSS reflector are formalized using Huygens' principle in such a way that the 'reflecting' and the 'transparent' FSS subreflector cases are treated identically and the thickness of the FSS subreflector remains arbitrary. The analysis utilizes local surface coordinates to describe the reflection/transmission matrices of the FSS subreflector where it is assumed that these matrices are available. In most cases one may use the local tangent plane for approximating the plane of the FSS in the local coordinate surface of the reflector. The paper demonstrates how the local curved coordinate system can be introduced in the diffraction modeling of FSS reflectors and its importance in accurately predicting the side-lobe and crosspolarization levels. Results of numerical simulations are presented for several FSS subreflector configurations.

  5. Compact color schlieren optical system.

    PubMed

    Buchele, D R; Griffin, D W

    1993-08-01

    A compact optical system for use with rainbow schlieren deflectometry is described. Both halves of the optical system consist of well-corrected telescopes whose refractive elements are all from manufacturer's stock catalogs, with the reflective primary being a spherical surface. As a result, the system is relatively easy to construct and meets the requirement of long focal length for quantitative rainbow schlieren measurements. PMID:20830072

  6. VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    NASA Astrophysics Data System (ADS)

    Francini, R.; Montereali, R. M.; Nichelatti, E.; Vincenti, M. A.; Canci, N.; Segreto, E.; Cavanna, F.; Di Pompeo, F.; Carbonara, F.; Fiorillo, G.; Perfetto, F.

    2013-09-01

    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photo-sensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission.

  7. Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study.

    PubMed

    O'Brien, P G; Chutinan, A; Leong, K; Kherani, N P; Ozin, G A; Zukotynski, S

    2010-03-01

    Wave-optics analysis is performed to investigate the benefits of utilizing Bragg-reflectors and inverted ZnO opals as intermediate reflectors in micromorph cells. The Bragg-reflector and the inverted ZnO opal intermediate reflector increase the current generated in a 100 nm thick upper a-Si:H cell within a micromorph cell by as much as 20% and 13%, respectively. The current generated in the bottom muc-Si:H cell within the micromorph is also greater when the Bragg-reflector is used as the intermediate reflector. The Bragg-reflector outperforms the ZnO inverted opal because it has a larger stop-gap, is optically thin, and due to greater absorption losses that occur in the opaline intermediate reflectors. PMID:20389460

  8. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1998-10-06

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference lines a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  9. Nonimaging optical illumination system

    DOEpatents

    Winston, R.; Ries, H.

    1996-12-17

    A nonimaging illumination optical device for producing a selected far field illuminance over an angular range. The optical device includes a light source, a light reflecting surface, and a family of light edge rays defined along a reference line with the reflecting surface defined in terms of the reference line as a parametric function R(t) where t is a scalar parameter position and R(t)=k(t)+Du(t) where k(t) is a parameterization of the reference line, and D is a distance from a point on the reference line to the reflection surface along the desired edge ray through the point. 35 figs.

  10. Secure optical communication system utilizing deformable MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Ziph-Schatzberg, Leah; Bifano, Thomas; Cornelissen, Steven; Stewart, Jason; Bleier, Zvi

    2009-02-01

    An optical communication system suitable for voice, data retrieval from remote sensors and identification is described. The system design allows operation at ranges of several hundred meters. The heart of the system is a modulated MEMS mirror that is electrostatically actuated and changes between a flat reflective state and a corrugated diffractive state. A process for mass producing these mirrors at low cost was developed and is described. The mirror was incorporated as a facet in a hollow retro-reflector, allowing temporal modulation of an interrogating beam and the return of the modulated beam to the interrogator. This system thus consists of a low power, small and light communication node with large (about 60°) angular extent. The system's range and pointing are determined by the interrogator /detector/demodulator (Transceiver) unit. The transceiver is comprised of an optical channel to establish line of sight communication, an interrogating laser at 1550nm, an avalanche photo diode to detect the return signal and electronics to drive the laser and demodulate the detected signal and convert it to an audio signal. A functional prototype system was built using a modified compact optical sight as the transceiver. Voice communication in free space was demonstrated. The design and test of major components and the complete system are discussed.