Science.gov

Sample records for optical sensing technique

  1. Triangulation technique in optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Brenci, Massimo; Mencaglia, Andrea A.; Mignani, Anna G.

    1990-08-01

    Optical triangulation is a very well-known classical technique which can be advantageously performed by optical fibers, taking profit from their geometrical versatility, intrinsic safety and good transmission properties. The exploitation of different optical architectures provides spatial information over single or multiple sensing zones, so that a wide class of intensity-modulated optical fiber sensors can be achieved.

  2. Gamma radiation influence on silica optical fibers measured by optical backscatter reflectometry and Brillouin sensing technique

    NASA Astrophysics Data System (ADS)

    Wosniok, A.; Sporea, D.; Neguţ, D.; Krebber, K.

    2016-05-01

    We have studied the influence of gamma rays on physical properties of different commercially available silica optical fibers stepwise irradiated up to a total dose of 100 kGy. The detection of radiation-induced changes in silica glass offers the possibility of using selected optical fibers as distributed radiation sensors. The measurements performed by us were based on optical backscatter reflectometry and Brillouin distributed sensing. The measurement methods enable an analysis of radiation-induced modification of the group refractive index and density of the optical fibers. The most distinct physical effect observed by us concerns the increase of the optical attenuation with rising total radiation doses. Quantitative measurement results indicate a crucial impact of fiber dopants on radiation-induced physical and sensory characteristics of silica optical fibers affected by differences in fiber fabrication techniques. Based on the obtained results, the suitability of distributed Brillouin sensing for dosimetry applications seems to be improved by modifying the refractive index profile of the fiber core.

  3. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    PubMed Central

    Ye, Fei; Zhang, Yiwei; Qi, Bing; Qian, Li

    2014-01-01

    Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented. PMID:24955943

  4. Frequency-shifted interferometry--a versatile fiber-optic sensing technique.

    PubMed

    Ye, Fei; Zhang, Yiwei; Qi, Bing; Qian, Li

    2014-01-01

    Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI). This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented. PMID:24955943

  5. Remote sensing of stress using electro-optics imaging technique

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Yuen, Peter; Hong, Kan; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. This paper reports for the first time how Electro-Optics (EO) technologies such as hyperspectral [1,2] and thermal imaging[3] methods can be used for the detection of stress remotely. Preliminary result using hyperspectral imaging technique has shown a positive identification of stress through an elevation of haemoglobin oxygenation saturation level in the facial region, and the effect is seen more prominently for the physical stressor than the emotional one. However, all results presented so far in this work have been interpreted together with the base line information as the reference point, and that really has limited the overall usefulness of the developing technology. The present result has highlighted this drawback and it prompts for the need of a quantitative assessment of the oxygenation saturation and to correlate it directly with the stress level as the top priority of the next stage of research.

  6. Development of fiber-optic current sensing technique and its applications in electric power systems

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  7. Advanced materials and techniques for fibre-optic sensing

    NASA Astrophysics Data System (ADS)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  8. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: including acousto-optic techniques. Final report

    SciTech Connect

    Harrold, R.T.

    1981-09-01

    The feasibility of using acoustic waveguide techniques for sensing incipient faults in underground power transmission cables was determined. Theoretical and practical studies were made of both the acoustic emission spectrum signatures associated with cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguides. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters (approx. 0.5 miles) or less in length. As underground power transmission cables are often several kilometers in length, it was clear at this stage of the study, that simple acoustic waveguide sensing techniques would not be adequate, and some modification would be needed. With DOE approval it was decided to investigate acousto-optic sensing techniques in order to extend the detection range. In particular, a system in which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive indes, and as a consequence, modulate laser light transmitted along the light guide. Experiments based on this concept were successful, and it has been demonstrated that it is possible to sense acoustic emissions with energy levels below one micro-joule. A practical test of this system in the laboratory using a section of compressed gas-insulated cable with an internal flashover was successfully carried out. Long distance fault sensing with this technique should be feasible as laser light can be transmitted several kilometers in fiber optic lightguides. It is believed that laser-acousto-optic fault sensing is a viable technique which, with development, could be applied for fault sensing in power cables and other apparatus.

  9. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  10. An optical fiber sensing technique for temperature distribution measurements in microwave heating

    NASA Astrophysics Data System (ADS)

    Wada, Daichi; Sugiyama, Jun-ichi; Zushi, Hiroaki; Murayama, Hideaki

    2015-08-01

    We introduce an optical fiber sensing technique that can measure the temperature distributions along a fiber during microwave heating. We used a long-length fiber Bragg grating (FBG) as an electromagnetic-immune sensor and interrogated temperature distributions along the FBG by an optical frequency domain reflectometry. Water in a glass tube with a length of 820 mm was heated in a microwave oven, and its temperature distribution along the glass tube was measured using the sensing system. The temperature distribution was obtained in 5 mm intervals. Infrared radiometry was also used to compare the temperature measurement results. Time and spatial variations of the temperature distribution profiles were monitored for several microwave input powers. The results clearly depict inhomogeneous temperature profiles. The applicability and effectiveness of the optical fiber distributed measurement technique in microwave heating are demonstrated.

  11. Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen M.; Vogel, Bernhard H.; Roth, Siegmar; Ebrahimi, Sasan; Kraemer, Karl

    2004-07-01

    Interaction of target molecules with the evanescent wave of light guided in optical fibers is among the most promising sensing schemes for building up smart chemical sensor technologies. If the technique of optical time domain reflectometry (OTDR) is combined with silicone-clad quartz glass fibers distributed chemical sensing is possible. Hydrocarbon (HC) detection and location is done by automated identification of the position of the corresponding step drop (light loss) in the backscatter signal induced by local refractive index increase in the silicone cladding due to a penetrating HC compound. A commercially available mini-OTDR was adapted to sensing fibers of up to nearly 2-kilometer length and location of typical HC fuels could be demonstrated. The instrument is applicable for fuel leakage monitoring in large technical installations such as tanks or pipelines with spatial resolution down to 1 m. A similar technique using measurements in the Vis spectral range is being developed for health monitoring of large structures, e.g., for early detection of corrosion caused by water ingress and pH changes in reinforced concrete. Here, a pH indicator dye and a phase transfer reagent are immobilized in the originally hydrophobic fiber cladding, leading to a pH induced absorption increase and a step drop signal in the backscatter curve. The configuration of the distributed sensing cables, the instrumental setups, and examples for HC and pH sensing are presented.

  12. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  13. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  14. Analysis of field data to evaluate performance of optical remote sensing techniques to estimate fugitive emissions

    SciTech Connect

    Paine, R.J.; Lew, F.; Zwicker, J.O.; Feldman, H.

    1999-07-01

    The American Petroleum Institute (API) has developed data sets for the evaluation of dispersion modeling and optical remote sensing (ORS) techniques. An initial field study featuring several tracer gas releases from simulated point, area, and volume sources was conducted in early 1995 at an open field site (Duke Forest, North Carolina). A second experiment (Project OPTEX) took place at an operational petrochemical facility in Texas and featured tracer releases at heights up to 41 meters from points located in an active process unit. This paper discusses the results of an analysis to evaluate the capability for remote sensing techniques to estimate the magnitude and location of emission sources in an industrial complex setting. Three major issues that the paper reports on are: (1) can ORS technology be used to determine emission rates when the source locations are known; (2) can ORS technology be used to locate sources in unknown locations, therefore promising to replace or at least streamline leak detection and repair (LDAR) programs at petrochemical facilities; and (3) what are the constraints for real-time operation, interpretation, and responsiveness involving ORS technology?

  15. Path integrated optical remote sensing technique to estimate ammonia and methane gas emissions from CAFOs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

  16. Mechanism analysis on biofouling detection based on optical fiber sensing technique

    NASA Astrophysics Data System (ADS)

    Ma, Huiping; Yuan, Feng; Liu, Yongmeng; Jiang, Xiuzhen

    2010-08-01

    More attention is paid to on-line monitoring of biofouling in industrial water process systems. Based on optical fiber sensing technology, biofouling detection mechanism is put forward in the paper. With biofouling formation, optical characteristics and the relation between light intensity and refractive index studied, schematic diagram of optical fiber self-referencing detecting system and technological flowchart are presented. Immunity to electromagnetic interference and other influencing factors by which the precision is great improved is also remarkable characteristic. Absorption spectrum of fluid medium molecule is measured by infrared spectrum and impurity is analyzed by character fingerprints of different liquid. Other pollutant source can be identified by means of infrared spectrum and arithmetic research of artificial neural networks (ANN) technology. It can be used in other fields such as mining, environment protection, medical treatment and transportation of oil, gas and water.

  17. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: Including acousto-optic techniques

    NASA Astrophysics Data System (ADS)

    Harrold, R. T.

    1981-09-01

    Theoretical and practical studies were made of both the acoustic emission, spectrum signatures associated with underground cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguided. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters of less in length. A system were investigated which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive index and modulate laser light transmitted along the light guide. Experiments based on this concept show that is is possible t sense acoustic emissions with energy levels below on micro-joule. A test of this system using a section of compressed gas-insulated cable with an internal flashover was successfully carried out.

  18. Sensing cantilever beam bending by the optical lever technique and its application to surface stress.

    PubMed

    Evans, Drew R; Craig, Vincent S J

    2006-03-23

    Cantilever beams, both microscopic and macroscopic, are used as sensors in a great variety of applications. An optical lever system is commonly employed to determine the deflection and thereby the profile of the cantilever under load. The sensitivity of the optical lever must be calibrated, and this is usually achieved by application of a known load or deflection to the free end of the cantilever. When the sensing operation involves a different type of load or a combination of types of loadings, the calibration and the deflection values derived from it become invalid. Here we develop a master equation that permits the true deflection of the cantilever to be obtained simply from the measurement of the apparent deflection for uniformly distributed loadings and end-moment loadings. These loadings are relevant to the uniform adsorption or application of material to the cantilever or the application of a surface stress to the cantilever and should assist experimentalists using the optical lever, such as in the atomic force microscope, to measure cantilever deflections in a great variety of sensing applications. We then apply this treatment to the experimental evaluation of surface stress. Three forms of Stoney's equation that relate the apparent deflection to the surface stress, which is valid for both macroscopic and microscopic experiments, are derived. Analysis of the errors arising from incorrect modeling of the loading conditions of the cantilever currently applied in experiments is also presented. It is shown that the reported literature values for surface stress in microscopic experiments are typically 9% smaller than their true value. For macroscopic experiments, we demonstrate that the added mass of the film or coating generally dominates the measured deflection and must be accounted for accurately if surface stress measurements are to be made. Further, the reported measurements generally use a form of Stoney's equation that is in error, resulting in an

  19. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  20. Coating-free reflection technique for fiber-optic sensors based on multimode interference: A temperature sensing study

    NASA Astrophysics Data System (ADS)

    Taue, Shuji; Takahashi, Tsuyoshi; Fukano, Hideki

    2016-08-01

    A novel reflection technique for use in fiber-optic sensors is investigated and applied to a multimode interference structure. The reflectivity at a fiber end face is increased with two operations. Firstly, the light intensity is increased toward the periphery of the end-face by adjusting the fiber length, which is determined theoretically. Secondly, the fiber end-face is deformed into an ellipsoid by heating it with a gas torch. The deformed shape is characterized from microscopic images. The reflected light intensity is increased by more than 10 dB as a result of controlling the fiber length and deforming its end-face. Temperature sensing was performed using the reflection-type multimode interference structure immersed in temperature-controlled silicone oil. The resulting sensitivity was 0.028 °C for a 29.60 mm sensing region, achieved without using any reflection coating.

  1. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique. PMID:27607270

  2. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  3. Remote Sensing of Aerosol Optical and Microphysical Properties using Polarization and Lidar Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael

    2003-01-01

    Tropospheric aerosols cause a substantial forcing of the terrestrial climate, but the magnitude of this forcing remains largely unknown. This explains the significant interest of the climate community to the prospect of measuring key aerosol properties from space using advanced remote sensing techniques. It has been known for a long time that polarization of the scattered light is much more sensitive to the aerosol microphysics than the scattered intensity. It is, therefore, not surprising that the most recent addition to the New Polar Orbiting Operational Environmental Satellite System (NPOESS) payload is the so-called Aerosol Polarimetry Sensor (APS). The main objective of this instrument is to measure the aerosol and cloud properties with accuracy and coverage sufficient for a reliable estimate of the direct and indirect aerosol forcings of climate. Accordingly, the first part of this lecture course will focus on describing the basic concept of the APS, the physical principles of polarization data analyses, and the results already obtained with an aircraft version of the APS. Polar stratospheric clouds (PSCs) represent another poorly understood aerosol component of the terrestrial atmosphere which affects the climate by supporting chemical reactions destroying the ozone layer. The high altitude of the PSCs and their predominant occurrence in high latitude and polar regions make it very difficult to study PSCs using conventional in situ techniques. Most of the information that we have about this type of clouds has been gathered using ground-based polarization lidars. The second part of the course will focus on explaining the physical principles of the polarization lidar technique and describing retrievals of PSC particle microphysical characteristics by converting I multispectral lidar measurements of the backscattered intensity and depolarization.

  4. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  5. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  6. Nanostructured Substrates for Optical Sensing

    PubMed Central

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolecules and environmental monitoring. This perspective focuses on recent optical sensor devices that utilize nanostructured substrates. PMID:22174955

  7. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.

    PubMed

    Wu, Chang-fu; Lin, Shih-Chun; Yeh, Cheng-Kai

    2012-04-01

    Previous studies have shown that there was a relatively large amount of uncertainty along the major wind direction in the results of locating emission sources using the one-dimensional radial plume mapping (RPM(1D)) technique based on optical remote sensing measurements. This paper proposes setting up an additional monitoring line that is perpendicular to the original scanning beam geometry to reduce this uncertainty. We first conducted a computer simulation study using the Gaussian dispersion model to generate the downwind concentrations of plumes from 400 source locations in a 201 m × 201 m spatial domain under various wind directions (n = 181). The optical remote sensing instrument was assumed to be at (0, 0) with two perpendicular monitoring lines, each of which had three beam segments of equal length. Each pair of the reconstructed downwind concentration profiles was then used to trace back to the source locations. The results showed that the accuracy of the method and its uncertainty were improved by using the proposed two-line RPM(1D) approach rather than the original one-line RPM(1D) approach at most simulated source locations. In a follow-up field experiment, a tracer gas was released at the coordinate of (100, 100). The release location was covered within the 0.25- to 0.5-probability area of the estimated results, and the distance between the actual and estimated source locations was 18.4 m (9.2% of the longest beam path). PMID:22382995

  8. Multichannel optical sensing device

    DOEpatents

    Selkowitz, S.E.

    1985-08-16

    A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  9. Multichannel optical sensing device

    DOEpatents

    Selkowitz, Stephen E.

    1990-01-01

    A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.

  10. Fiber Loop Ringdown — a Time-Domain Sensing Technique for Multi-Function Fiber Optic Sensor Platforms: Current Status and Design Perspectives

    PubMed Central

    Wang, Chuji

    2009-01-01

    Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471

  11. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  12. Optical techniques for sensing and measurement in hostile environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    SciTech Connect

    Gillespie, C.H.; Greenwell, R.A.

    1987-01-01

    Papers are presented on referencing in fiber optic sensing systems, optical fiber chemical sensing networks, and the radiation response of new pure silica fibers. Also considered are a comparison of gamma, neutron, and proton irradiations of multimode fibers, a pinhole camera for hot environment viewing of electron beam materials processing, and the utilization of optical image data from the advanced test accelerator. Other topics include the application of an interferometer spectrometer aboard the Space Shuttle with a payload specialist in the control loop, hydrogen chloride measurements in launch-vehicle exhaust clouds, and a rocket-borne telescoped Fourier transform spectrometer operating at 10 K.

  13. Discriminative sensing techniques

    NASA Astrophysics Data System (ADS)

    Lewis, Keith

    2008-10-01

    The typical human vision system is able to discriminate between a million or so different colours, yet is able to do this with a chromatic sensor array that is fundamentally based on three different receptors, sensitive to light in the blue, green and red portions of the visible spectrum. Some biological organisms have extended capabilities, providing vision in the ultra-violet, whilst others, such as some species of mantis shrimp reportedly have sixteen different types of photo-receptors. In general the biological imaging sensor takes a minimalist approach to sensing its environment, whereas current optical engineering approaches follow a 'brute' force solution where the challenge of hyperspectral imaging is addressed by various schemes for spatial and spectral dispersion of radiation across existing detector arrays. This results in a problem for others to solve in the processing and communication of the generated hypercube of data. This paper explores the parallels between some of those biological systems and the various design concepts being developed for discriminative imaging, drawing on activity supported by the UK Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS DTC).

  14. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer

    PubMed Central

    Coda, Sergio; Siersema, Peter D.; Stamp, Gordon W. H.; Thillainayagam, Andrew V.

    2015-01-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, “red flag” screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo “optical biopsy.” These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging. PMID:26528489

  15. Assessing Natural Disaster Impacts and Recovery Using Multifrequency, Fully-Polarimetric Synthetic Aperture Radar (SAR) and Optical Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Weissel, J. K.; Czuchlewski, K. R.; Kim, Y.

    2002-12-01

    Many natural disasters involving landslides, volcanic eruptions, fires, or floods entail terrain resurfacing, followed by subsequent recovery. Modern satellite and airborne remote sensing technologies, which combine broad spatial coverage and high spatial resolution with time-sequential site revisit capability, can provide important information on the extent and duration of major landscape disturbance. In humid climate settings, these hazards temporarily remove or replace a natural vegetation cover and in doing so, modify the physical properties of the land surface. In optical remote sensing, removal of vegetation alters surface albedo in the visible -- near infrared (V-NIR) waveband, particularly the high reflectance from vegetation in the NIR. For SAR remote sensing, removal of vegetation cover causes a change in dominant microwave scattering mechanism for the areas affected. SAR has operational advantages over optical sensors for rapid disaster assessment because of its day/night acquisition capability, the ability to ``see through'' smoke, clouds and dust, and the side-looking viewing geometry, which is an advantage whenever data collection directly above the site would prove dangerous. We show how multifrequency, fully-polarimetric airborne SAR data can be ``inverted'' for parameters that reflect scattering mechanism signatures diagnostic of different surface cover types. We apply a uniform approach to map landslides resulting from the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan, volcanic flows from the major 1996 eruption of Manam volcano in Papua New Guinea, and the extent of damage from the summer 2002 Rodeo -- Chediski wildfire in Arizona. In addition, earlier work has shown that multifrequency SAR polarimetric backscatter is sensitive to total above-ground biomass. This attribute can be exploited to calculate vegetation loss during a disaster and for assessment of regrowth during the recovery phase.

  16. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  17. Optical monitoring of volcanic sulphur dioxide emissions—comparison between four different remote-sensing spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Swartling, J.; Edner, H.; Svanberg, S.; Caltabiano, T.; Condarelli, D.; Cecchi, G.; Pantani, L.

    2002-02-01

    The emissions of sulphur dioxide from the Italian volcanoes Mt. Etna and Stromboli were studied in ship-borne underpasses of their plumes. Four different optical spectroscopy techniques were used and inter-compared. All techniques utilise the absorption signature of the gas in the wavelength region of around 300 nm. A differential absorption lidar was employed in active gas concentration assessment. In parallel, a differential optical absorption spectroscopy system (DOAS) provided spectrally resolved absorption spectra. In one configuration the DOAS used a vertically looking telescope and the absorption of the sky-light was studied, while a different DOAS implementation utilised the sun disc as the light source in slant-angle, long-path absorption measurements. Parallel measurements with the customary correlation spectroscopy method were also performed. Path length Monte Carlo simulations of the down-welling radiation through the volcanic plume at different sun altitude and azimuth angles have been performed taking into account also the effects of other geometric parameters as the plume height and extension. The results are discussed with special emphasis on systematic effects due to scattering.

  18. Sensing properties of periodic stack of nano-films deposited with various vapor-based techniques on optical fiber end-face

    NASA Astrophysics Data System (ADS)

    Koba, Marcin; RóŻycki-Bakon, Radosław; Firek, Piotr; Śmietana, Mateusz

    2015-07-01

    This work presents a study on sensing capabilities of stacks of nano-films deposited on a single-mode optical fiber end-faces. The stacks consist of periodically interchanging thin-film layers of materials characterized by different refractive indices (RI). The number of layers is relatively small to encourage light-analyte interactions. Two different deposition techniques are considered, i.e., radio frequency plasma enhanced chemical vapor deposition (RF PECVD) and physical vapor deposition by reactive magnetron sputtering (RMS). The former technique allows to deposit stacks consisting of silicon nitride nano-films, and the latter is well suited for aluminum and titanium oxides alternating layers. The structures are tested for external RI and temperature measurements.

  19. Suppression of polarization instability in optical pulse correlation remote sensing

    NASA Astrophysics Data System (ADS)

    Lu, Mifang; Kobayashi, Hirokazu; Nonaka, Koji

    2014-05-01

    We have proposed an optical pulse correlation remote sensing technique, which has the advantages of high accuracy and good response linearity. To eliminate the impact of polarization fluctuation on sensing signals, we use a polarization scrambled pulse train (PSP), in which the polarization state of each pulse is randomized. We measure the stability of sensing signal under polarization fluctuation in optical pulse correlation sensing with the PSP light and obtain good stability. Moreover, we demonstrate tensile strain measurement using the optical pulse correlation sensing with the PSP and confirm the linear response to the tensile strain even under polarization changing.

  20. Improving Crop Classification Techniques Using Optical Remote Sensing Imagery, High-Resolution Agriculture Resource Inventory Shapefiles and Decision Trees

    NASA Astrophysics Data System (ADS)

    Melnychuk, A. L.; Berg, A. A.; Sweeney, S.

    2010-12-01

    Recognition of anthropogenic effects of land use management practices on bodies of water is important for remediating and preventing eutrophication. In the case of Lake Simcoe, Ontario the main surrounding landuse is agriculture. To better manage the nutrient flow into the lake, knowledge of the management of the agricultural land is important. For this basin, a comprehensive agricultural resource inventory is required for assessment of policy and for input into water quality management and assessment tools. Supervised decision tree classification schemes, used in many previous applications, have yielded reliable classifications in agricultural land-use systems. However, when using these classification techniques the user is confronted with numerous data sources. In this study we use a large inventory of optical satellite image products (Landsat, AWiFS, SPOT and MODIS) and ancillary data sources (temporal MODIS-NDVI product signatures, digital elevation models and soil maps) at various spatial and temporal resolutions in a decision tree classification scheme. The sensitivity of the classification accuracy to various products is assessed to identify optimal data sources for classifying crop systems.

  1. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    NASA Technical Reports Server (NTRS)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  2. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  3. Optical sensing: recognition elements and devices

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  4. Fiber-Optic Sensing for In-Space Inspection

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  5. Optical display for radar sensing

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  6. Hall Effect and Magneto Optical MFL Sensing

    NASA Astrophysics Data System (ADS)

    Jallouli, Wissem

    The need for a reliable sensing tool has stimulated countless researchers to develop techniques trying to extract maximum information. In the field of nondestructive testing (NDT), various sensors have been established to fulfill that function. Examples include the ultrasonic, eddy current, and magnetic flux leakage (MFL) based techniques. Because they are extremely reliable, MFL based techniques represent one of the best inspection technologies. These technologies have numerous applications in diverse domains, including petroleum pipeline and tank inspections, airplane inspections, and production quality control. In this work, we will present two technologies based on MFL technique. The first is the Hall Effect sensor. This device has been extensively developed during the last century, especially after the use of integrated circuit technology. Its reliable results even under extreme conditions made it an extremely useful tool. The second technology is Magneto Optical Imaging. This technique rose very recently, and scientists hold high expectations about its performance once proper techniques are developed. The study of these two sensing devices gives a better understanding of the MFL technique by allowing us to investigate the potential of each technology, experience each in studied conditions to derive its characteristics, and discuss its performance.

  7. Optical glucose sensing in biological fluids: an overview

    NASA Astrophysics Data System (ADS)

    McNichols, Roger; Cote, Gerard L.

    2000-01-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. This article reviews many of the recent advances in optical glucose sensing including optical absorption spectroscopy, polarimetry, Raman spectroscopy, and fluorescent glucose sensing. In addition a review of calibration and data processing methods useful for optical techniques is presented.

  8. Quantum limited particle sensing in optical tweezers

    SciTech Connect

    Tay, J.W.; Hsu, Magnus T. L.; Bowen, Warwick P.

    2009-12-15

    Particle sensing in optical tweezers systems provides information on the position, velocity, and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper, we show that quadrant detection is nonoptimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacies of both quadrant and spatial homodyne detection are shown. We demonstrate that 1 order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

  9. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  10. Optical techniques in optogenetics

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  11. Uncertainties associated with the use of optical remote sensing technique to estimate surface emissions in landfill applications.

    PubMed

    Abichou, Tarek; Clark, Jeremy; Tan, Sze; Chanton, Jeffery; Hater, Gary; Green, Roger; Goldsmith, Doug; Barlaz, Morton A; Swan, Nathan

    2010-04-01

    Landfills represent a source of distributed emissions source over an irregular and heterogeneous surface. In the method termed "Other Test Method-10" (OTM-10), the U.S. Environmental Protection Agency (EPA) has proposed a method to quantify emissions from such sources by the use of vertical radial plume mapping (VRPM) techniques combined with measurement of wind speed to determine the average emission flux per unit area per time from nonpoint sources. In such application, the VRPM is used as a tool to estimate the mass of the gas of interest crossing a vertical plane. This estimation is done by fitting the field-measured concentration spatial data to a Gaussian or some other distribution to define a plume crossing the vertical plane. When this technique is applied to landfill surfaces, the VRPM plane may be within the emitting source area itself. The objective of this study was to investigate uncertainties associated with using OTM-10 for landfills. The spatial variability of emission in the emitting domain can lead to uncertainties of -34 to 190% in the measured flux value when idealistic scenarios were simulated. The level of uncertainty might be higher when the number and locations of emitting sources are not known (typical field conditions). The level of uncertainty can be reduced by improving the layout of the VRPM plane in the field in accordance with an initial survey of the emission patterns. The change in wind direction during an OTM-10 testing setup can introduce an uncertainty of 20% of the measured flux value. This study also provides estimates of the area contributing to flux (ACF) to be used in conjunction with OTM-10 procedures. The estimate of ACF is a function of the atmospheric stability class and has an uncertainty of 10-30%. PMID:20437781

  12. Surface multiplasmonics for optical sensing

    NASA Astrophysics Data System (ADS)

    Swiontek, Stephen E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2013-09-01

    Multiple surface plasmon-polariton (SPP)-wave modes can be guided by the interface of a metal and a chiral sculptured thin film (STF). Theory predicts that the angular locations of SPP-wave modes will be shifted if the void regions of the chiral STF are infiltrated with a liquid. Therefore, chiral STFs of lanthanum fluoride were fabricated and employed as a partnering dielectric material to an aluminum thin film to guide multiple SPP-wave modes. The SPP-wave modes shifted to higher angular locations when the refractive index of the infiltrant was increased, exhibiting sensitivity comparable to state-of-research values. Thereby, surface multiplasmonics was exploited for optical sensing.

  13. Wavefront sensing applications of binary optics

    SciTech Connect

    Neal, D.R.; Warren, M.E.; Gruetzner, J.K.

    1994-02-01

    The advent of micro- or binary optics technology has made possible the fabrication of a variety of new optical devices. Optical fabrication is no longer limited by surfaces that can be made by grinding and polishing, or even diamond turning. In fact, optics with no symmetry, no smooth surfaces, and that perform multiple functions can be readily fabricated. While these optics have a large number of applications, they are extremely useful for systems that require arrays of small optics or aperture multiplexing, since these are fabricated using computer controlled photo-lithography and etching processes. We have applied binary optics technology to construct various wavefront sensing using four mask processes to create 16 level optics. They are binary in the sense that they use discrete phase levels, not in the sense of using only two levels (they might more properly be called digital optics). We have found that 16 levels is adequate for most systems, giving greater than 99% of efficiency.

  14. Combinatorial Chemistry for Optical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  15. Fiber optic sensing for ultrasonic NDE

    SciTech Connect

    Dudderar, T.D.; Burger, C.P.; Gilbert, J.A.; Smith, J.A.; Peters, B.R.

    1987-09-01

    An innovative approach to nondestructive evaluation (NDE) using noncontacting optical sensors has demonstrated. In this effort a single mode optical fiber interferometer (OFI) was used to sense the presence and form of Rayleigh waves traveling along the surface of a steel test bar at a velocity of nearly 3mm/..mu.. s. Acousto-optic time-domain data was successfully used to detect the presence and locate the position of a test flaw (a machined slot) in the bar, and spectrum analysis was used to estimate its geometry and size. This approach has many potential applications in the ultrasonic evaluation of real flaws in structures with complex geometries. Coupled with the authors' earlier work demonstrating the feasibility of generating acoustic waves in metals using laser light pulses transmitted through the fiber optic probes, this latest achievement points to the development of a fully noncontacting, fiber optic based thermal-acousto-photonic (TAP) NDE system, with potential applications to the reliability testing of many important structures where composition, scale, geometry, or restricted access preclude the use of conventional NDE techniques.

  16. A novel scattering switch-on detection technique for target-induced plasmon-coupling based sensing by single-particle optical anisotropy imaging.

    PubMed

    Peng, Lan; Cao, Xuan; Xiong, Bin; He, Yan; Yeung, Edward S

    2016-06-18

    We reported a novel scattering switch-on detection technique using flash-lamp polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules. PMID:27225076

  17. Development of sensing techniques for weaponry health monitoring

    NASA Astrophysics Data System (ADS)

    Edwards, Eugene; Ruffin, Paul B.; Walker, Ebonee A.; Brantley, Christina L.

    2013-04-01

    Due to the costliness of destructive evaluation methods for assessing the aging and shelf-life of missile and rocket components, the identification of nondestructive evaluation methods has become increasingly important to the Army. Verifying that there is a sufficient concentration of stabilizer is a dependable indicator that the missile's double-based solid propellant is viable. The research outlined in this paper summarizes the Army Aviation and Missile Research, Development, and Engineering Center's (AMRDEC's) comparative use of nanoporous membranes, carbon nanotubes, and optical spectroscopic configured sensing techniques for detecting degradation in rocket motor propellant. The first sensing technique utilizes a gas collecting chamber consisting of nanoporous structures that trap the smaller solid propellant particles for measurement by a gas analysis device. In collaboration with NASA-Ames, sensing methods are developed that utilize functionalized single-walled carbon nanotubes as the key sensing element. The optical spectroscopic sensing method is based on a unique light collecting optical fiber system designed to detect the concentration of the propellant stabilizer. Experimental setups, laboratory results, and overall effectiveness of each technique are presented in this paper. Expectations are for the three sensing mechanisms to provide nondestructive evaluation methods that will offer cost-savings and improved weaponry health monitoring.

  18. Nonlinear methods for distributed optical fiber sensing

    NASA Astrophysics Data System (ADS)

    Rogers, Alan J.; Handerek, Vincent A.

    1994-11-01

    Distributed optical-fiber sensing (DOFS) utilizes the unique advantages of the optical fiber as a passive, dielectric, flexible and one- dimensional measurement medium. It offers full spatial and temporal information concerning the behavior of a large range of measurand fields. Among the many potential application areas of DOFS are those in aerospace, petrochemicals, electricity supply, mining and civil engineering. Methods for realizing DOFS have hitherto concentrated on linear backscatter techniques in the fiber. New explorations to be described in this paper give the emphasis to nonlinear, forward-scatter techniques, and especially to two of these which rely on the optical Kerr effect. The primary advantage of this approach is a significantly improved spatial resolution, down to approximately equals 0.1. m. A description also will be given of a promising quasi-distributed (forward-scatter or backscatter) arrangement which used the (nonlinear) photosensitivity of fibers to devise a DOFS system for simultaneous quasi-distributed measurement of strain and temperature. Prospects for the future of DOFS technology will be reviewed.

  19. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  20. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  1. Diffraction gratings for optical sensing

    NASA Astrophysics Data System (ADS)

    Lu, Patrick P.

    The following document summarizes a journey through the world of diffraction gratings, covering topics such as their history, fabrication, metrology, and uses in some of the most precise scientific experiments ever proposed. Though diffraction gratings have long been used for spectroscopy and pulse compression, it was not until recently that researchers have explored their ability to split and recombine single-frequency CW laser sources for high-precision interferometry. Gravitational-wave detection, one of the most challenging sensing applications to date, is being investigated by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Laser Interferometer Space Antenna (LISA) projects. Future generations of LIGO and LISA detectors may incorporate gratings as key optical components. This thesis describes the ways gratings can improve interferometer performance by simplifying thermal management and discusses the essential challenges that must be overcome before they can be adopted. The use of gratings requires new interferometer geometries. We show cases where these can be implemented simply and compactly. Gravitational-wave interferometry imposes many requirements on grating components. Using improved metrology methods, we demonstrate that large dielectric gratings with uniformly high efficiency can be fabricated and validated. In particular, we measure the diffraction efficiency of two 20-cm-scale gratings over their entire apertures. The values taken from across their surfaces collectively had means and standard deviations of mu = 99.293% and sigma = 0.164%, and mu =99.084% and sigma =0.079%. We also present simplified models of thermal distortions in gratings, and show them to be in good agreement with measurements conducted by a wavefront sensor. Special focus is given to experimental demonstrations that have achieved highly precise measurements of translational and rotational motion, also known as displacement and angular sensing. For the former

  2. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  3. Optical vs. electronic enhancement of remote sensing imagery

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.; Katibah, E. F.

    1976-01-01

    Basic aspects of remote sensing are considered and a description is provided of the methods which are employed in connection with the optical or electronic enhancement of remote sensing imagery. The advantages and limitations of various image enhancement methods and techniques are evaluated. It is pointed out that optical enhancement methods and techniques are currently superior to electronic ones with respect to spatial resolution and equipment cost considerations. Advantages of electronic procedures, on the other hand, are related to a greater flexibility regarding the presentation of the information as an aid for the interpretation by the image analyst.

  4. Pressure sensing with fiber optics and inerferometry

    NASA Astrophysics Data System (ADS)

    Preston, E. J.

    1980-12-01

    a pressure sensing device was analyzed, built, and tested. The device uses a Michelson interferometer to monitor pressure induced fluctuations of a polished silicon diaphragm. Probe flexibility is achieved by mounting the diaphragm on the end of a single mode optical fiber; the coupling apparatus used permits interference to occur with the fiber in one leg of the interferometer. The phase of the resulting pattern is locked using a piezoelectric length transducer and phaselock loop control techniques. Formulas developed to model the system input/output characteristics led to the construction of a working prototype. Long term drift for the system was negligible. Short term drift limited the resolution of the system to 7 mmHg over the region 50 mmHg to 200 mmHg. The limited range resulted from the scanning limit of the piezoelectric length transducer. System linearity was approximately 5 percent.

  5. Laser Remote Sensing: Velocimetry Based Techniques

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl; Steinvall, Ove

    Laser-based velocity measurement is an area of the field of remote sensing where the coherent properties of laser radiation are the most exposed. Much of the published literature deals with the theory and techniques of remote sensing. We restrict our discussion to current trends in this area, gathered from recent conferences and professional journals. Remote wind sensing and vibrometry are promising in their new scientific, industrial, military, and biomedical applications, including improving flight safety, precise weapon correction, non-contact mine detection, optimization of wind farm operation, object identification based on its vibration signature, fluid flow studies, and vibrometry-associated diagnosis.

  6. Image Formation in Bio-optical Sensing

    NASA Astrophysics Data System (ADS)

    Miller, Eric

    2012-02-01

    Over the past two decades a number of optical sensing methods have emerged with potential to provide complementary information to traditional medical imaging modalities in application areas ranging from basic science to disease diagnosis and treatment monitoring. Though still largely in the research and development stage, modalities including diffuse optical tomography (DOT), fluorescence molecular tomography (FMT), photo-acoustic tomography (PAT), and bio-luminescence tomography (BLT) have excited much interest due to their natural functional imaging capability, their relatively low cost, and the fact that none required the use of ionizing radiation. These advantages however are tempered by a number of challenges associated with the processing of these data. Specifically, these data types all rely in one way or another on the interaction of light with tissue. The diffusive nature of this interaction inherently limits the spatial resolution of these modalities. As a result the process of forming an image is a far more delicate task than is the case with more standard imaging modalities such as X-ray computed tomography (CT). Two basic methods have been explored to address the ill-posedness of these problems in order to improve the information content in the resulting images. The optical data may be augmented either through the use of spectral diversity or by attempting to integrate optical data types with information from other modalities such as CT or MRI. Alternatively, a mathematical technique known as regularization can be used to impose physically-based constraints on the reconstruction. In this talk, I shall provide an overview of the work in my group in optical image formation within the contexts of DOT for breast cancer imaging and FMT for small animal imaging. The focus of the talk will be on methods that integrate data augmentation and mathematical regularization. In the case of FMT, we shall discuss our work in combining the optical data with information

  7. Optical digital techniques

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Optical interface losses between transmitter-to-fiber interface, connector-to-connector interface, and fiber-to-receiver interface were studied. System effects such as pulse dispersion, risetimes of the sources and detectors, type of fibers used, output power of the sources, and detector sensitivity were considered. Data bus systems such as TEE, Star, and Hybrid were analyzed. The matter of single fiber versus bundle technologies for future avionics systems was considered. The existing data bus system on Space Shuttle was examined and an optical analog was derived for a fiber bundle system, along with the associated power margin. System tests were performed on a feasibility model of a 9-port Star data bus system including BER, star losses, connector losses, etc. The same system was subjected to EMI between the range of 200 Hz to 10 GHz at 20V/m levels. A lightning test was also performed which simulated the conditions similar to those on Space Shuttle. The data bus system was found to be EMI and lightning hard. It is concluded that an optical data bus system is feasible for shuttle orbiter type vehicles.

  8. New Adaptive Optics Technique Demonstrated

    NASA Astrophysics Data System (ADS)

    2007-03-01

    Enrico Marchetti, the MAD Project Manager. "The system behaviour was very stable and the acquisition and closed loop operations were fast and smooth." ESO PR Photo 19d/07 ESO PR Photo 19d/07 AO Strehl Maps After routine checks on the closed loop stability and preliminary scans of the system parameters, the telescope was pointed to Omega Centauri, a very crowded area in the sky, and an optimal test case for extracting accurate measurements on AO correction performance with good spatial resolution on the FoV. Three 11 magnitude stars within a circle of ~1.5 arcmin diameter were selected as the baseline for wavefront sensing and the MCAO loop was closed successfully. Omega Centauri will be observed for several nights more, in order to test the AO correction in different seeing conditions. "This is a tremendous achievement that opens new perspectives in the era of extremely large telescopes," said Catherine Cesarsky, ESO's Director General. " "I am very proud of the ESO staff and wish to congratulate all involved for their prowess," she added. The MAD images perfectly show the validity of the concept. The image quality was almost uniform over the whole field of view and beautifully corrected for some of the atmospheric turbulence. More Information The Multi-Conjugate Adaptive Optics (MCAO) Demonstrator MAD was built by ESO in collaboration with the Astronomical Observatories of Arcetri and Padova (Italy) and the Faculdade de Ciencias da Universidade de Lisboa (Portugal), as a pathfinder for 2nd generation VLT instrumentation and the European Extremely Large Telescope project. The MCAO technique is based on probing the atmospheric turbulence on a large volume of atmosphere by means of several wavefront sensors (WFS), which point at different locations in the observed field of view, and by means of several deformable mirrors - optically conjugated at different altitudes on the atmosphere above the telescope - which correct for the atmospheric disturbance. The signals provided

  9. Optical traffic-sensing concept

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Shimada, K.

    1978-01-01

    Scaled-up optical proximity detector is versatile traffic sensor that replaces or augments existing systems such as inductive loops. Photosensor which does not depend on ambient light has several features that protect it against spurious or ambiguous inputs. It could be implemented in several forms to cope with different roadway conditions.

  10. Remote sensing as a mineral prospecting technique

    NASA Technical Reports Server (NTRS)

    Meneses, P. R. (Principal Investigator)

    1984-01-01

    Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.

  11. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  12. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  13. Optical sensing data processing and management

    NASA Astrophysics Data System (ADS)

    Clark, Timothy

    2009-08-01

    The Defense Advanced Research Projects Agency (DARPA) is in a unique position to question traditional sensing architectures and concepts while possessing both the charter and funding to explore and develop the technologies necessary to accomplish both existing and desired applications. This paper describes the re-thinking of the Optical Processing system when applied to non-imaging sensors.

  14. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  15. On Optical Mark-Sense Scanning

    NASA Astrophysics Data System (ADS)

    Jones, Douglas W.

    Optical mark-sense scanning has lead to a resurgence in the use of paper ballots in the United States, despite a century of strong competition from paperless direct-recording voting systems. By the time mark-sense technology emerged, procedural measures had been developed to counter most of the vulnerabilities of paper ballots. Automatic counting of paper ballots poses technical and legal problems, but by counting the paper ballots automatically in the presence of the voter, mark-sense systems address some of the remaining problems with paper ballots. The best current technology uses precinct-count optical scanners to capture pixelized images of each ballot and then process the marks on that image. While this technology may be among the best voting technologies available today for the conduct of complex general elections, it faces one significant problem, access to voters with disabilities. There are promising solutions to this problem, but work remains to be done.

  16. Information visualization techniques for sensing and biosensing.

    PubMed

    Paulovich, Fernando V; Moraes, Marli L; Maki, Rafael Mitsuo; Ferreira, Marystela; Oliveira, Osvaldo N; de Oliveira, Maria Cristina F

    2011-04-01

    The development of new methods and concepts to visualize massive amounts of data holds the promise to revolutionize the way scientific results are analyzed, especially when tasks such as classification and clustering are involved, as in the case of sensing and biosensing. In this paper we employ a suite of software tools, referred to as PEx-Sensors, through which projection techniques are used to analyze electrical impedance spectroscopy data in electronic tongues and related sensors. The possibility of treating high dimension datasets with PEx-Sensors is advantageous because the whole impedance vs. frequency curves obtained with various sensing units and for a variety of samples can be analyzed at once. It will be shown that non-linear projection techniques such as Sammon's Mapping or IDMAP provide higher distinction ability than linear methods for sensor arrays containing units capable of molecular recognition, apparently because these techniques are able to capture the cooperative response owing to specific interactions between the sensing unit material and the analyte. In addition to allowing for a higher sensitivity and selectivity, the use of PEx-Sensors permits the identification of the major contributors for the distinguishing ability of sensing units and of the optimized frequency range. The latter will be illustrated with sensing units made with layer-by-layer (LbL) films to detect phytic acid, whose capacitance data were visualized with Parallel Coordinates. Significantly, the implementation of PEx-Sensors was conceived so as to handle any type of sensor based on any type of principle of detection, representing therefore a generic platform for treating large amounts of data for sensors and biosensors. PMID:21283854

  17. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    PubMed Central

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P.; Gangopadhyay, Tarun K.; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A.; Loock, Hans-Peter; Lam, Timothy T.-Y.; Chow, Jong H.; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented. PMID:22294902

  18. Optical remote sensing of atmospheric compounds

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.

    1996-02-01

    Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.

  19. Microwave assisted reconstruction of optical interferograms for distributed fiber optic sensing.

    PubMed

    Huang, Jie; Hua, Lei; Lan, Xinwei; Wei, Tao; Xiao, Hai

    2013-07-29

    This paper reports a distributed fiber optic sensing technique through microwave assisted separation and reconstruction of optical interferograms in spectrum domain. The approach involves sending a microwave-modulated optical signal through cascaded fiber optic interferometers. The microwave signal was used to resolve the position and reflectivity of each sensor along the optical fiber. By sweeping the optical wavelength and detecting the modulation signal, the optical spectrum of each sensor can be reconstructed. Three cascaded fiber optic extrinsic Fabry-Perot interferometric sensors were used to prove the concept. Their microwave-reconstructed interferogram matched well with those recorded individually using an optical spectrum analyzer. The application in distributed strain measurement has also been demonstrated. PMID:23938685

  20. Passive remote sensing of ocean optical propagation parameters

    NASA Technical Reports Server (NTRS)

    Austin, R. W.; Mcglamery, B. L.

    1983-01-01

    A method is described for producing a global data of ocean optical properties through the exploitation of optical remote sensing techniques. The diffuse attenuation, K, and the radiance reflectance factor R sub L, of the ocean surface waters can be derived from the radiance data provided by the Coastal Zone Color Scanner and compiled into a computer based atlas of these properties. While these remotely sensed values can only be directly related to the water properties in the first or upper attenuation length, extensive in water measurements have demonstrated that a useful correlation exists between the K that applies to the upper attenuation length, for example, and the mean K over the upper 100 or 200 meters of the ocean. Such an empirical finding greatly enhances the usefulness of this remotely sensed propagation parameter. Examples of the type of information being produced and archived for the atlas are presented.

  1. Strain sensing using optical fibers

    NASA Technical Reports Server (NTRS)

    Houghton, Richard; Hiles, Steven

    1994-01-01

    The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.

  2. Introduction to the physics and techniques of remote sensing

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1987-01-01

    This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.

  3. Nanopaper as an Optical Sensing Platform.

    PubMed

    Morales-Narváez, Eden; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein; Kostiv, Uliana; Horák, Daniel; Pourreza, Nahid; Merkoçi, Arben

    2015-07-28

    Bacterial cellulose nanopaper (BC) is a multifunctional material known for numerous desirable properties: sustainability, biocompatibility, biodegradability, optical transparency, thermal properties, flexibility, high mechanical strength, hydrophilicity, high porosity, broad chemical-modification capabilities and high surface area. Herein, we report various nanopaper-based optical sensing platforms and describe how they can be tuned, using nanomaterials, to exhibit plasmonic or photoluminescent properties that can be exploited for sensing applications. We also describe several nanopaper configurations, including cuvettes, plates and spots that we printed or punched on BC. The platforms include a colorimetric-based sensor based on nanopaper containing embedded silver and gold nanoparticles; a photoluminescent-based sensor, comprising CdSe@ZnS quantum dots conjugated to nanopaper; and a potential up-conversion sensing platform constructed from nanopaper functionalized with NaYF4:Yb(3+)@Er(3+)&SiO2 nanoparticles. We have explored modulation of the plasmonic or photoluminescent properties of these platforms using various model biologically relevant analytes. Moreover, we prove that BC is and advantageous preconcentration platform that facilitates the analysis of small volumes of optically active materials (∼4 μL). We are confident that these platforms will pave the way to optical (bio)sensors or theranostic devices that are simple, transparent, flexible, disposable, lightweight, miniaturized and perhaps wearable. PMID:26135050

  4. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    NASA Astrophysics Data System (ADS)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  5. Computational Intelligence Techniques for Tactile Sensing Systems

    PubMed Central

    Gastaldo, Paolo; Pinna, Luigi; Seminara, Lucia; Valle, Maurizio; Zunino, Rodolfo

    2014-01-01

    Tactile sensing helps robots interact with humans and objects effectively in real environments. Piezoelectric polymer sensors provide the functional building blocks of the robotic electronic skin, mainly thanks to their flexibility and suitability for detecting dynamic contact events and for recognizing the touch modality. The paper focuses on the ability of tactile sensing systems to support the challenging recognition of certain qualities/modalities of touch. The research applies novel computational intelligence techniques and a tensor-based approach for the classification of touch modalities; its main results consist in providing a procedure to enhance system generalization ability and architecture for multi-class recognition applications. An experimental campaign involving 70 participants using three different modalities in touching the upper surface of the sensor array was conducted, and confirmed the validity of the approach. PMID:24949646

  6. High temperature, minimally invasive optical sensing modules

    DOEpatents

    Riza, Nabeel Agha; Perez, Frank

    2008-02-05

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  7. Optical apparatus and method for sensing uranyl

    DOEpatents

    Baylor, L.C.; Buchanan, B.R.

    1994-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  8. Ultra Small Integrated Optical Fiber Sensing System

    PubMed Central

    Van Hoe, Bram; Lee, Graham; Bosman, Erwin; Missinne, Jeroen; Kalathimekkad, Sandeep; Maskery, Oliver; Webb, David J.; Sugden, Kate; Van Daele, Peter; Van Steenberge, Geert

    2012-01-01

    This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs) and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL), fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  9. Toward optical sensing with hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2015-06-01

    A possible means of optical sensing, based on a porous hyperbolic material that is infiltrated by a fluid containing an analyte to be sensed, was theoretically investigated. The sensing mechanism relies on the observation that extraordinary plane waves propagate in the infiltrated hyperbolic material only in directions enclosed by a cone aligned with the optic axis of the infiltrated hyperbolic material. The angle this cone subtends to the plane perpendicular to the optic axis is θc. The sensitivity of θc to changes in the refractive index of the infiltrating fluid, namely nb, was explored; also considered were the permittivity parameters and porosity of the hyperbolic material, as well as the shape and size of its pores. Sensitivity was gauged by the derivative dθc/dnb. In parametric numerical studies, values of dθc/dnb in excess of 500 deg per refractive index unit were computed, depending upon the constitutive parameters of the porous hyperbolic material and infiltrating fluid and the nature of the porosity. In particular, it was observed that exceeding large values of dθc/dnb could be attained as the negative-valued eigenvalue of the infiltrated hyperbolic material approached zero.

  10. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  11. Nonlinearly enhanced sensing in coupled optical microresonators

    NASA Astrophysics Data System (ADS)

    Wang, Chao

    Optical microresonators that confine photons to micron dimensions with low loss at telecommunication wavelengths play an important role in building modern all-optical integrated circuit. Such systems attract a considerable amount of interest because of the compact size and easy fabrication with state-of-art technologies. One can use the microresonators as sensors, optical delay lines, filters, interferometers, and lasers. In this thesis, we investigate nonlinear effects for sensing application in microring resonators. We theoretically analyze the effect of the Kerr index, two-photon absorption, free-carrier absorption, and free-carrier dispersion. In particular, selfphase and cross-phase modulations caused by the Kerr index are shown to lead to a bifurcation of degenerate resonator mode intensities. Using coupled mode equations, we present the transmission properties of our resonator system with nonlinear effects included. New sensing mechanisms based on the nonlinear bistability and bifurcation are proposed to enhance the transmission's sensitivity to perturbations of the resonance frequency of the resonators. This is used to develop models of ultra-sensitive gyroscopes and refractive index sensors for detection of chemical analytes. The bifurcation dramatically enhances the Sagnac phase shift and therefore substantially lowers the minimum detectable rotation rate (< 1deg/hour) in a micro-resonator gyroscope. For index sensing, nonlinearities enhance the resonance frequency shift and a theoretical detection limit of 10-11 RIU is derived assuming common noises in micro-optical systems. In this work, we focus on silicon-on-insulator resonators but we also consider different platforms, including silicon oxynitride, Hydex, and chalcogenide glasses, and discuss the advantages of each. The results we show here highlight novel mechanisms that can be used in practical applications to improve the performance of a microresonator based optical sensor.

  12. Electro-optical Synergy Technique

    PubMed Central

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, My G.

    2010-01-01

    Objectives: Electro-optical synergy technology is one of the most recently described methods for nonablative skin rejuvenation. The aim of this study is to evaluate the effects of electro-optical synergy on connective tissue composition by histological and immunohistochemical techniques coupled with computerized morphometric analysis. Design: A prospective clinical study. Participants: Six volunteers with Fitzpatrick skin types 3 to 4 and Glogau class I to II wrinkles were subjected to three months (6 sessions at 2-week intervals) of electro-optical synergy treatment. Measurements: Standard photographs and skin biopsies were obtained at baseline as well as three and six months after the start of treatment. The authors performed quantitative evaluation of total elastin, tropoelastin, collagen types I, III, and VII, and newly synthesized collagen. Results: Noticeable clinical and histological improvement was observed after electro-optical synergy treatment. A statistically significant increase in the means of collagen types I, III, and VII, as well as newly synthesized collagen, together with increased levels of tropoelastin, were detected, while the mean level of total elastin was significantly decreased at the end of treatment and three months post-treatment. Conclusion: Electro-optical synergy is an effective treatment for contouring facial skin laxity. This modality stimulates the repair processes and reverses the clinical, as well as the histopathological, signs of aging with the advantage of being a relatively risk-free procedure with minimal patient recovery time. PMID:21203352

  13. Distributed Fiber Optic Gas Sensing for Harsh Environment

    SciTech Connect

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The

  14. Amorphous wires in displacement sensing techniques

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Niarchos, D.

    1992-10-01

    In this paper, a new displacement sensor is proposed which is based on the magnetostrictive delay line technique (MDL). Due to this technique, the displacement of a moving magnet at either the acoustic stress point of origin or the detecting coil can be sensed, due to the change of the peak value of the output voltage. This sensor uses the recently developed FeSiB and FeCoCrSiB amorphous wires. Reported results show a linear response for defined regions of displacement, and a monotonic one for the case of the 125 μm FeSiB wires. It is also shown that this sensor arrangement can be used for fabrication of displacement distribution integrated sensors. Finally, it is shown that use of amorphous wires makes the repeatability of the response of the sensor as accurate as 0.6% without using hardware or software calibration.

  15. Soil moisture sensing with microwave techniques

    NASA Technical Reports Server (NTRS)

    Schmugge, T.

    1980-01-01

    Microwave approaches for the remote sensing of soil moisture are discussed, with the advantages described as follows: (1) the all-weather capability, (2) the greater penetration depth into the soil and through vegetation than with optical or infrared sensors, and (3) the large changes in the dielectric properties of soil produced by changes in water content. Both active and passive microwave approaches are discussed. The dependence of the relationship between microwave response and soil moisture on such things as soil texture, surface roughness, vegetative cover and nonuniform moisture and temperature profiles is analyzed from both the experimental and theoretical viewpoints. The dielectric properties of the soil are analyzed quantitatively, as these control the reflective and emissive properties of the soil surface, and a model for estimating a soil's dielectric properties from its texture and moisture content is also presented. Emissivity is calculated using the Fresnel equation of electromagnetic theory, and reflectivity is shown to be decreased by surface roughness, while the backscatter coefficient increases. It is demonstrated, that microwave radiometers are sensitive to soil moisture for a wide range of surface conditions, and that the longer wavelengths are best for soil moisture sensing.

  16. Optical Microspherical Resonators for Biomedical Sensing

    PubMed Central

    Soria, Silvia; Berneschi, Simone; Brenci, Massimo; Cosi, Franco; Conti, Gualtiero Nunzi; Pelli, Stefano; Righini, Giancarlo C.

    2011-01-01

    Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field. PMID:22346603

  17. Ultrasensitive mass sensing with nonlinear optics in a doubly clamped suspended carbon nanotube resonator

    SciTech Connect

    Chen, Hua-Jun; Zhu, Ka-Di

    2013-12-07

    Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.

  18. Study of 3D remote sensing system based on optical scanning holography

    NASA Astrophysics Data System (ADS)

    Zhao, Shihu; Yan, Lei

    2009-06-01

    High-precision and real-time remote sensing imaging system is an important part of remote sensing development. Holography is a method of wave front record and recovery which was presented by Dennis Gabor. As a new kind of holography techniques, Optical scanning holography (OSH) and remote sensing imaging are intended to be combined together and applied in acquisition and interference measurement of remote sensing. The key principles and applicability of OSH are studied and the mathematic relation between Fresnel Zone Plate number, numerical aperture and object distance was deduced, which are proved to be feasible for OSH to apply in large scale remote sensing. At last, a new three-dimensional reflected OSH remote sensing imaging system is designed with the combination of scanning technique to record hologram patterns of large scale remote sensing scenes. This scheme is helpful for expanding OSH technique to remote sensing in future.

  19. Optical remote sensing of the earth

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Wellman, J. B.; Barnes, W. L.

    1985-01-01

    In the present assessment of the contributions of optical earth resources remote sensing in the 0.4-15.0 micron region, attention is given to underlying principles, applications to scientific disciplines such as geology, hydrology and oceanography, the recent development history of the requisite sensors, and sensor development trends. Development status characterizations are given for thematic mapping, modular optoelectronic multispectral scanning, the telescope/CCD 'SPOT' program of France, the thermal IR multispectral scanner for mineral signature identification, airborne imaging spectrometry, and the Advanced Visible and IR Imaging Spectrometer that is nearing deployment. Technology development trends and the capabilities they portend are projected.

  20. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

    PubMed

    Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai

    2014-07-28

    This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities. PMID:25089493

  1. Distributed fiber optic moisture intrusion sensing system

    DOEpatents

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  2. Multivariate image processing technique for noninvasive glucose sensing

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.; Cameron, Brent D.

    2010-02-01

    A potential noninvasive glucose sensing technique was investigated for application towards in vivo glucose monitoring for individuals afflicted with diabetes mellitus. Three dimensional ray tracing simulations using a realistic iris pattern integrated into an advanced human eye model are reported for physiological glucose concentrations ranging between 0 to 500 mg/dL. The anterior chamber of the human eye contains a clear fluid known as the aqueous humor. The optical refractive index of the aqueous humor varies on the order of 1.5x10-4 for a change in glucose concentration of 100 mg/dL. The simulation data was analyzed with a developed multivariate chemometrics procedure that utilizes iris-based images to form a calibration model. Results from these simulations show considerable potential for use of the developed method in the prediction of glucose. For further demonstration, an in vitro eye model was developed to validate the computer based modeling technique. In these experiments, a realistic iris pattern was placed in an analog eye model in which the glucose concentration within the fluid representing the aqueous humor was varied. A series of high resolution digital images were acquired using an optical imaging system. These images were then used to form an in vitro calibration model utilizing the same multivariate chemometric technique demonstrated in the 3-D optical simulations. In general, the developed method exhibits considerable applicability towards its use as an in vivo platform for the noninvasive monitoring of physiological glucose concentration.

  3. Electrical potential techniques for damage sensing in composite structures

    NASA Astrophysics Data System (ADS)

    Thiagarajan, C.; Sturland, Ian M.; Tunnicliffe, David L.; Irving, P. E.

    1994-09-01

    Aircraft structures made of Carbon Fiber Reinforced Composites (CFRP) are susceptible to impact damage in service. If the damage is of sufficient size, strength and service durability of the structure are degraded. The size and location of the damage are only predictable in a statistical sense; leading to excessive conservatism in design strains. Statistical approaches (1) have been explored, but condition monitoring is increasingly seen as the way forward. Smart materials are an attractive route to condition monitoring, and in the past ten years there has been considerable work to develop optic fiber strain and damage sensing techniques for composites, together with similar work on compliance change, acoustic emission and acoustic injection techniques (2). All of these involve use of discrete sensors, manufactured integral with the composite laminate. Many of the difficulties associated with use of discrete sensors may be overcome by adoption of techniques which rely on changes in the physical properties of the composite as a consequence of damage. A prime candidate is the electrical resistance technique. This relies on changes in electrical resistance, or of potential distributions in the laminate to characterize the damage state.

  4. Nanostructured detector technologies for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Puri, Yash R.; Dhar, Nibir K.; Polla, Dennis L.; Wijewarnasuriya, Priyalal; Dubey, Madan

    2014-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  5. Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets.

    PubMed

    Deneufville, J P; Kasdan, A; Chimenti, R J

    1981-04-15

    The remote sensing of laser-induced uranyl ion fluorescence is examined as a potential indicator of uranium occurring in geologic materials at the earth's surface. The lifetime and brightness of the fluorescence from a wide variety of rocks, minerals, and soils are reported. The distinctive characteristics of uranyl ion absorption and fluorescence were observed in diverse geologic materials such as chalcedonies and opals containing 15-3000 ppm of uranium and in surface coatings of uranyl minerals such as metaautunite, liebigite, and an-dersonite. The conditions which permit the excitation and selective detection of uranyl ion fluorescence from such targets are described. PMID:20309303

  6. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  7. Optically powered active sensing system for Internet Of Things

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  8. Remote Sensing Techniques for Monitoring Aquatic Vegetation

    NASA Astrophysics Data System (ADS)

    Blanco, Alfonso

    Hydrilla is an important submerged aquatic vegetation because it has a large capacity to absorb pollutants and it is an indicator of the eutrophic status of a waterbody. Monitoring and restoration of submerged aquatic vegetation is key for the preservation and restoration of the Chesapeake Bay. Remote sensing techniques have been used for assessing wetlands and non-invasive aquatic species, but there is limited studies of hydrilla monitoring combined with space-borne, airborne and in-situ remote sensing measurements for detecting and mapping hydrilla infestation. The first objective of this research was to establish a database of hydrilla spectral signatures from an experimental tank and from a field setting using a handheld spectrometer. The spectral signatures collected will be used to identify the optimal spectral and spatial characteristics that are required to identify and classify the distribution of hydrilla canopies in water bodies. The second objective is to process and analyze two hyperspectral images from a space-borne (Hyperion) and airborne (AISA) sensors with ENVI for detecting and mapping the infestation of hydrilla vertillicata in a coastal estuary in Chesapeake Bay. The third objective was to validate the satellite and airborne hyperspectral images with the spectral signatures collected with the in-situ field measurements. In addition, the Hyperion and AISA imaging results were compared with ground surveys and aerial photos collected by the Maryland Department of Natural Resources and the Virginia Institute of Marine Sciences for verifying the extent and the location of the hydrilla canopies. The hyperspectral analysis of both sensors provided for a dual results, one is the identification and classification of hydrilla from hyperspectral imaging sensors and secondly the identification of algae blooms in very productive waters. A hydrilla spectral signature database was established and housed in GMU's EastFIRE Lab of Environmental Science and

  9. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: 1. an EOF Approach to the Spatial-Temporal Variability of Aerosol Optical Depth Using Multiple Remote Sensing Data Sets

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2013-01-01

    Many remote sensing techniques and passive sensors have been developed to measure global aerosol properties. While instantaneous comparisons between pixel-level data often reveal quantitative differences, here we use Empirical Orthogonal Function (EOF) analysis, also known as Principal Component Analysis, to demonstrate that satellite-derived aerosol optical depth (AOD) data sets exhibit essentially the same spatial and temporal variability and are thus suitable for large-scale studies. Analysis results show that the first four EOF modes of AOD account for the bulk of the variance and agree well across the four data sets used in this study (i.e., Aqua MODIS, Terra MODIS, MISR, and SeaWiFS). Only SeaWiFS data over land have slightly different EOF patterns. Globally, the first two EOF modes show annual cycles and are mainly related to Sahara dust in the northern hemisphere and biomass burning in the southern hemisphere, respectively. After removing the mean seasonal cycle from the data, major aerosol sources, including biomass burning in South America and dust in West Africa, are revealed in the dominant modes due to the different interannual variability of aerosol emissions. The enhancement of biomass burning associated with El Niño over Indonesia and central South America is also captured with the EOF technique.

  10. Fiber optic sensing of cyanides in solutions

    SciTech Connect

    Park, S.S.; Mackenzie, J.D.; Li, C.Y.; Guerreiro, P.; Peyghambarian, N.

    1996-12-31

    A novel sol-gel technique was used to immobilize malachite green ions (MG{sup +}) in stable, optically transparent, porous silica gel films. A simple and sensitive method was developed for the detection of cyanides in solutions using spectrophotometry to measure changes caused by cyanide ions (CN{sup {minus}}) in the absorption spectra of the green-colored silica gel films. After reaction with cyanide ions, the absorption spectra of the films changed with a typical decrease in absorbance at 620 nm. On the basis of the absorption spectra of the films, a portable and easy to use fiber optic cyanide film sensor was fabricated. Decolorization undergone by the green-colored gel films, as they were exposed to cyanide ions, was detected through a fiber. Preliminary results indicate concentrations on the order of a few ppm are detected using the fiber optic sensor.

  11. Optical sample-position sensing for electrostatic levitation

    NASA Technical Reports Server (NTRS)

    Sridharan, G.; Chung, S.; Elleman, D.; Whim, W. K.

    1989-01-01

    A comparative study is conducted for optical position-sensing techniques applicable to micro-G conditions sample-levitation systems. CCD sensors are compared with one- and two-dimensional position detectors used in electrostatic particle levitation. In principle, the CCD camera method can be improved from current resolution levels of 200 microns through the incorporation of a higher-pixel device and more complex digital signal processor interface. Nevertheless, the one-dimensional position detectors exhibited superior, better-than-one-micron resolution.

  12. Cavity ring-down technique for remote sensing: a proof-of-concept for displacement measurement

    NASA Astrophysics Data System (ADS)

    Silva, Susana; Marques, M. B.; Frazão, O.

    2016-05-01

    This work demonstrates the viability of using a cavity ring-down technique (CRD) for remote sensing. A conventional CRD configuration is used where and optical circulator is added inside the fibre loop to couple 20 km of optical fibre with a gold mirror at its end with the purpose of remote sensing. As a proof-of-concept, an intensity sensor based on an eight-figure configuration is used at the end of the 20 km of fibre for displacement sensing. In this case, a commercial OTDR is used as modulated light source to send impulses down to the fibre ring.

  13. Wavefront Sensing for WFIRST with a Linear Optical Model

    NASA Technical Reports Server (NTRS)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  14. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  15. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  16. Contributed Review: Distributed optical fibre dynamic strain sensing

    NASA Astrophysics Data System (ADS)

    Masoudi, Ali; Newson, Trevor P.

    2016-01-01

    Extensive research on Brillouin- and Raman-based distributed optical fibre sensors over the past two decades has resulted in the commercialization of distributed sensors capable of measuring static and quasi-static phenomena such as temperature and strain. Recently, the focus has been shifted towards developing distributed sensors for measurement of dynamic phenomena such as dynamic strain and sound waves. This article reviews the current state of the art distributed optical fibre sensors capable of quantifying dynamic vibrations. The most important aspect of Rayleigh and Brillouin scattering processes which have been used for distributed dynamic measurement are studied. The principle of the sensing techniques used to measure dynamic perturbations are analyzed followed by a case study of the most recent advances in this field. It is shown that the Rayleigh-based sensors have longer sensing range and higher frequency range, but their spatial resolution is limited to 1 m. On the other hand, the Brillouin-based sensors have shown a higher spatial resolution, but relatively lower frequency and sensing ranges.

  17. Contributed Review: Distributed optical fibre dynamic strain sensing.

    PubMed

    Masoudi, Ali; Newson, Trevor P

    2016-01-01

    Extensive research on Brillouin- and Raman-based distributed optical fibre sensors over the past two decades has resulted in the commercialization of distributed sensors capable of measuring static and quasi-static phenomena such as temperature and strain. Recently, the focus has been shifted towards developing distributed sensors for measurement of dynamic phenomena such as dynamic strain and sound waves. This article reviews the current state of the art distributed optical fibre sensors capable of quantifying dynamic vibrations. The most important aspect of Rayleigh and Brillouin scattering processes which have been used for distributed dynamic measurement are studied. The principle of the sensing techniques used to measure dynamic perturbations are analyzed followed by a case study of the most recent advances in this field. It is shown that the Rayleigh-based sensors have longer sensing range and higher frequency range, but their spatial resolution is limited to 1 m. On the other hand, the Brillouin-based sensors have shown a higher spatial resolution, but relatively lower frequency and sensing ranges. PMID:26827302

  18. An integrated sensing technique for smart monitoring of water pipelines

    NASA Astrophysics Data System (ADS)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  19. Liquid Seal for Temperature Sensing with Fiber-Optic Refractometers

    PubMed Central

    Xu, Ben; Li, Jianqing; Li, Yi; Xie, Jianglei; Dong, Xinyong

    2014-01-01

    Liquid sealing is an effective method to convert a fiber-optic refractometer into a simple and highly sensitive temperature sensor. A refractometer based on the thin-core fiber modal interferometer is sealed in a capillary tube filled with Cargille oil. Due to the thermo-optic effect of the sealing liquid, the high refractive-index sensitivity refractometer is subsequently sensitive to the ambient temperature. It is found that the liquid-sealed sensor produces a highest sensitivity of −2.30 nm/°C, which is over 250 times higher than its intrinsic sensitivity before sealing and significantly higher than that of a grating-based fiber sensors. The sensing mechanisms, including the incidental temperature-induced strain effect, are analyzed in detail both theoretically and experimentally. The liquid sealing technique is easy and low cost, and makes the sensor robust and insensitive to the surrounding refractive index. It can be applied to other fiber-optic refractometers for temperature sensing. PMID:25123468

  20. Sensing RF signals with the optical wideband converter

    NASA Astrophysics Data System (ADS)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  1. Near-infrared fluorescent dyes for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Kim, Jun Seok; Medou-Ovono, Martial; Strekowski, Lucjan

    2005-05-01

    Fiber optic sensing requires the use of molecular probes such as fluorescent dyes or indicators that can be induced during analysis to produce a detectable spectral change. Spectroscopic techniques have long been applied to the determination of analytical and bioanalytical measurements using fiber optic sensors; however, relatively few studies have been reported utilizing near-infrared (NIR) absorbing chromophores. This longer wavelength region of the electromagnetic spectrum is more advantageous because of the inherently lower background interference and the high molar absorptivities of NIR absorbing chromophores. Low background interference is especially important in samples containing a complex matrix. The design and operation of an NIR probe are similar to that of conventional UV-visible probes. In principle optical fiber or other optical sensors can be made selective to a particular analyte. The selectivity will be determined primarily by the selectivity of the sensor dye and by the nature of the matrix entrapping the dye if the probe is non-covalently attached. This presentation discusses the development of different NIR dyes for fiber optic sensor applications. Examples are given for determining basic analytical properties, e.g., pH, metal ion concentration, and solvent hydrophobicity. Similarly, NIR dyes are very useful for bioanalytical probes (immunochemistry, etc.) as well.

  2. Optical sensing for early cardiovascular diagnostics

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Venckus, Girts; Ozols, Maris

    2000-05-01

    A sensor device for noninvasive detection and analysis of the pulsating blood flow waveforms by means of the reflective single-period photoplethysmorgraphy (SPPPG) technique has been designed and clinically tested. The sensor is operated jointly with any standard PC, by connecting the sensor head to the AD-card and using a separate hard disc with the signal processing software; all circuits are fed by the PC power supply. After processing, normalized shape of the mean SPPPG signal and its parameters are calculated and displayed; the measurement/processing time does not exceed 2 minutes. The clinically detected SPPPG signal shapes and corresponding parameters are presented and discussed. The preliminary results confirm good potential of this sensing approach for fast and patient-friendly early cardiovascular diagnostics.

  3. A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Song, C. H.; Han, K. M.; Park, M. E.; Lee, S.-S.; Kim, S.-B.; Shimizu, A.

    2011-08-01

    To more accurately estimate direct radiative forcing (DRF) by aerosols, and better investigate particulate pollution over East Asia, precise calculations of the optical properties of aerosols, such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol extinction coefficient (σext), are of primary importance. The aerosol optical properties over East Asia were investigated in this study, based on US EPA Models-3/CMAQ v4.5.1 model simulations. The CMAQ model simulations in this study were improved in several ways compared to those in a previous study (Song et al., 2008). Although the details of the improvements were described in the manuscript, the following points should be emphasized: (1) two data assimilation techniques were employed for producing more accurate AOD products and meteorological fields over East Asia; (2) updated/upgraded emission inventories were used in the CMAQ model simulations with a fine grid resolution of 30 × 30 km2; and (3) the 4-D particulate composition obtained from the CMAQ model simulations was converted into 3-D or 4-D aerosol optical products, using the Malm and Hand (2007) algorithm with significant further modifications. The results from the CMAQ model simulations (without assimilation) showed great improvements compared to those from a previous study. For example, in terms of the regression coefficients (R), R-values were increased from 0.48-0.68 (previous study) to 0.77-0.89 (this study). The monthly-averaged CMAQ-simulated single scattering albedo (SSA) also agreed well with the AERONET SSA, with the exceptions of the Honk Kong and Taipei sites, where the air qualities were strongly influenced by active biomass burning events from January to April. There were also excellent matches between the vertical profiles of the CMAQ-simulated σext and LIDAR-retrieved σext. It was also found that the contributions of (NH4)2SO4 during summer, NH4NO3 during winter, sea-salt particles during winter and dust particles

  4. A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Song, C. H.; Han, K. M.; Park, M. E.; Lee, S.-S.; Kim, S.-B.; Shimizu, A.

    2011-12-01

    To more accurately estimate direct radiative forcing (DRF) by aerosols, and better investigate particulate pollution over East Asia, precise calculations of the optical properties of aerosols, such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol extinction coefficient (σext), are of primary importance. The aerosol optical properties over East Asia were investigated in this study, based on US EPA Models-3/CMAQ v4.5.1 model simulations. The CMAQ model simulations in this study were improved in several ways compared to those in a previous study (Song et al., 2008). Although the details of the improvements were described in the manuscript, the following points should be emphasized: (1) two data assimilation techniques were employed for producing more accurate AOD products and meteorological fields over East Asia; (2) updated/upgraded emission inventories were used in the CMAQ model simulations with a fine grid resolution of 30 × 30 km2; and (3) the 4-D particulate composition calculated from the CMAQ model simulations was converted into 3-D or 4-D aerosol optical products, using the Malm and Hand (2007) algorithm with significant further modifications. The results from the CMAQ model simulations (without assimilation) showed great improvements compared to those from a previous study. For example, in terms of the regression coefficients (R), R values were increased from 0.48-0.68 (previous study) to 0.62-0.79 (this study). The monthly-averaged CMAQ-simulated single scattering albedo (SSA) also agreed well with the AERONET SSA, with the exceptions of the Hong Kong and Taipei sites, where the air qualities were strongly influenced by active biomass burning events from January to April. There were also excellent matches between the vertical profiles of the CMAQ-simulated σext and LIDAR-retrieved σext. It was also found that the contributions of (NH4)2SO4 during summer, NH4NO3 during winter, sea-salt particles during winter and dust particles

  5. A Ubiquitous Optical Microsystem Platform with Application to Optical Metrology and Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Gerling, John David

    This dissertation is concerned with the development of a novel, versatile optical sensor platform for optical metrology and chemical sensing. We demonstrate the feasibility of embedding optical components between bonded silicon wafers with receptor cavities and optical windows to create a self-contained sensor microsystem that can be used for in-situ measurement of hostile environments. Arrays of these sensors internal to a silicon wafer can enable optical sensing for in-situ, real-time mapping and process development for the semiconductor industry in the form of an instrumented substrate. Single-die versions of these optical sensor platforms can also enable point-of-care diagnostics, high throughput disease screening, bio-warfare agent detection, and environmental monitoring. Our first discussion will focus on a single-wavelength interferometry-based prototype sensor. Several applications are demonstrated using this single wavelength prototype: refractive index monitoring, SiO2 plasma etching, chemical mechanical polishing, photoresist cure and dissolution, copper etch end-point detection, and also nanopore wetting phenomena. Subsequent sections of this dissertation will describe efforts to improve the optical sensor platform to achieve multi-wavelength sensing function. We explore the use of an off-the-shelf commercial RGB sensor for colorimetric monitoring of copper and aluminum thin-film etchings. We then expand upon our prior work and concepts to realize a fully integrated, chip-sized microspectrometer with a photon engine based on a diffraction grating. The design, fabrication, and demonstration of a working prototype with dimensions < 1 mm thick using standard planar microfabrication techniques is described. Proof-of-concept demonstrations indicate the working principle of dispersion, although with a low spectral resolution of 120 nm. With working knowledge of the issues of the first prototype, we present an improved 5-channel microspectrometer with a

  6. IR fiber optic sensing on biological tissue

    NASA Astrophysics Data System (ADS)

    Bindig, Uwe; Gersonde, I.; Meinke, M.; Becker, Y.; Mueller, Gerhard

    2003-10-01

    A diagnostic method is described to detect differences between diseased and normal tissue from bladder carcinoma by FTIR-microspectroscopy and fiber-optics methods. Regions of interest on 10 μm thin tissue sections were mapped using an IR-microscope in transmission mode. Afterwards the specimens were analyzed using standard pathological techniques. Quadratic discriminant as well as correlation analysis was applied for data analysis. IR optical fibers, not only allowed measurements to be made in the attenuated total reflectance (ATR)-mode but also absorption measurements to be carried out at a remote location. The IR-sensor is in contact with the sample which shows characteristic absorption lines. This method can be used to determine the absorption of a sample in a non-destructive manner. In this paper we report our efforts to develop a fiber-optic infrared sensor to differentiate between malignant and healthy tissue in vivo. Silver halide fibers and a special sensor tip were used for the ATR measurements on human tissue specimens. The results indicate that IR-spectrometry will be a useful tool for bio-diagnostics.

  7. Downhole fiber optic sensing: the oilfield service provider's perspective: from the cradle to the grave

    NASA Astrophysics Data System (ADS)

    Skinner, Neal G.; Maida, John L.

    2014-06-01

    For almost three decades, interest has continued to increase with respect to the application of fiber-optic sensing techniques for the upstream oil and gas industry. This paper reviews optical sensing technologies that have been and are being adopted downhole, as well as their drivers. A brief description of the life of a well, from the cradle to the grave, and the roles fiber-optic sensing can play in optimizing production, safety, and protection of the environment are also presented. The performance expectations (accuracy, resolution, stability, and operational lifetime) that oil companies and oil service companies have for fiber-optic sensing systems is described. Additionally, the environmental conditions (high hydrostatic pressures, high temperatures, shock, vibration, crush, and chemical exposure) that these systems must tolerate to provide reliable and economically attractive oilfield monitoring solutions are described.

  8. Optical Omega network: a compact implementation technique

    NASA Astrophysics Data System (ADS)

    Wong, K. W.; Cheng, L. M.

    1995-10-01

    We propose a technique for the compact implementation of an optical Omega network. This technique utilizes the concept that both the perfect-shuffle interconnection and the switching stages can be realized by the same procedures, i.e., duplicate, shift, superimpose, and mask. As a result, a single set of optics is sufficient to realize the whole Omega network in a time-multiplexed recursive manner. Optical setups were designed and a proof-of-principle experiment was performed.

  9. Instrumentation for optical ocean remote sensing

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1991-01-01

    Instruments used in ocean color remote sensing algorithm development, validation, and data acquisition which have the potential for further commercial development and marketing are discussed. The Ocean Data Acquisition System (ODAS) is an aircraft-borne radiometer system suitable for light aircraft, which has applications for rapid measurement of chlorophyll pigment concentrations along the flight line. The instrument package includes a three channel radiometer system for upwelling radiance, an infrared temperature sensor, a three-channel downwelling irradiance sensor, and Loran-C navigation. Data are stored on a PC and processed to transects or interpolated 'images' on the ground. The instrument has been in operational use for two and one half years. The accuracy of pigment concentrations from the instrument is quite good, even in complex Chesapeake Bay waters. To help meet the requirement for validation of future satellite missions, a prototype air-deployable drifting buoy for measurement of near-surface upwelled radiance in multiple channnels is undergoing test deployment. The optical drifter burst samples radiance, stores and processes the data, and uses the Argos system as a data link. Studies are underway to explore the limits to useful lifetime with respect to power and fouling.

  10. Live Cell Optical Sensing for High Throughput Applications

    NASA Astrophysics Data System (ADS)

    Fang, Ye

    Live cell optical sensing employs label-free optical biosensors to non-invasively measure stimulus-induced dynamic mass redistribution (DMR) in live cells within the sensing volume of the biosensor. The resultant DMR signal is an integrated cellular response, and reflects cell signaling mediated through the cellular target(s) with which the stimulus intervenes. This article describes the uses of live cell optical sensing for probing cell biology and ligand pharmacology, with an emphasis of resonant waveguide grating biosensor cellular assays for high throughput applications.

  11. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    NASA Astrophysics Data System (ADS)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  12. Optical Sensing of Microbial Life on Surfaces.

    PubMed

    Fischer, M; Triggs, G J; Krauss, T F

    2016-03-01

    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface. PMID:26637605

  13. Optical Sensing of Microbial Life on Surfaces

    PubMed Central

    Triggs, G. J.; Krauss, T. F.

    2015-01-01

    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface. PMID:26637605

  14. Planar Waveguiding Systems for Optical Sensing

    NASA Astrophysics Data System (ADS)

    Lambeck, Paul V.; Hoekstra, Hugo J. W. M.

    Driving force of the research in Integrated Optics is the optical (tele-) communication, but in its slipstream a lot of research on Integrated Optical (IO-) sensors has been performed during last decade.

  15. Optical signature utilization of remote sensing of nearshore waters

    SciTech Connect

    Bagheri, S.; Dios, R.A.; Pan, Zhengxiang

    1997-08-01

    Existing satellite sensors lack the spectral capabilities to discriminate phytoplankton pigments in water bodies. New satellite sensors (EOS planned for 1998 and SeaWIFS forthcoming) with narrow bandwidths can provide detailed spectral resolution necessary to distinguish optical properties of nearshore waters provided calibrated seatruth data are available. This will facilitate utility of spaceborne water color sensors for discrimination of bloom forming phytoplankton species and support oceanographic/coastal zone remote sensing missions of NASA, Navy and other agencies. The objective of the research was to develop a library of absorption spectra for the most common phytoplankton found locally within the Hudson/Raritan Estuary. Both culture grown and field samples of phytoplankton were concentrated and analyzed using standard techniques. Chlorophyll-a and phaeopigment concentrations were determined based on spectrometric analysis, producing characteristic absorption spectra. To further refine and discriminate pigment compositions which affect remote color sensing recorded by sensors, spectral derivative and polynomial regression analysis were applied to the absorption spectra. Using these models, it was possible to identify optimum wavelengths characterizing pigment compositions of phytoplankton species in the estuary. Future work will integrate the spectral library into GenIsis--hyperspectral image processing to establish correlation with remotely sensed data.

  16. Optical CO2 sensing with ionic liquid doped electrospun nanofibers.

    PubMed

    Aydogdu, Sibel; Ertekin, Kadriye; Suslu, Aslihan; Ozdemir, Mehtap; Celik, Erdal; Cocen, Umit

    2011-03-01

    The first use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based optical CO(2) sensors is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric materials. Sensing slides were fabricated by electrospinning technique. A fiber-optic bundle was used for the gas detection. CO(2) sensors based on the change in the fluorescence signal intensity of ion pair form of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The sensor slides showed high sensitivities due to the high surface area-to-volume ratio of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect CO(2) are 24 to 120 fold higher than those of the thin film based sensors. The response times of the sensing reagents were short and the signal changes were fully reversible. The stability of ion pair form of HPTS in the employed matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 7 months. Our stability tests are still in progress. PMID:20945079

  17. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  18. Heterogeneously integrated optical detection platform for on-chip sensing applications

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Song, Youngsik; Seo, Sang-Woo

    2015-10-01

    This paper introduces a resonant waveguide grating (RWG) integrated with a photodetector for on-chip sensing applications. An inverted thin film indium gallium arsenide (InGaAs) metal-semiconductor-metal photodetector is heterogeneously integrated on silicon dioxide (SiO2)/ silicon substrate using fluidic self-assembly. The inverted optical waveguide and the RWG structure are subsequently fabricated utilizing layer-by-layer post-processing techniques. Detailed electrical, optical, and optoelectronic characterization were performed to analyze the functionality of the sensing platform. This approach can open new avenues allowing the development of low-cost complementary metal-oxide semiconductor compatible integrated optical sensors.

  19. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  20. INTERCOMPARISON OF OPTICAL REMOTE SENSING SYSTEMS FOR ROADSIDE MEASUREMENTS

    EPA Science Inventory

    The presentation describes results of an intercomparison of three optical remote sensing systems for measurements of nitric oxide emitted from passenger cars and light-duty trucks. The intercomparison included a standards comparison to establish comparability of standards, follo...

  1. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  2. Optical tweezers technique and its applications

    NASA Astrophysics Data System (ADS)

    Guo, HongLian; Li, ZhiYuan

    2013-12-01

    Since their advent in the 1980s, optical tweezers have attracted more and more attention due to their unique non-contact and non-invasion characteristics and their wide applications in physics, biology, chemistry, medical science and nanoscience. In this paper, we introduce the basic principle, the history and typical applications of optical tweezers and review our recent experimental works on the development and application of optical tweezers technique. We will discuss in detail several technological issues, including high precision displacement and force measurement in single-trap and dual-trap optical tweezers, multi-trap optical tweezers with each trap independently and freely controlled by means of space light modulator, and incorporation of cylindrical vector optical beams to build diversified optical tweezers beyond the conventional Gaussian-beam optical tweezers. We will address the application of these optical tweezers techniques to study biophysical problems such as mechanical deformation of cell membrane and binding energy between plant microtubule and microtubule associated proteins. Finally we present application of the optical tweezers technique for trapping, transporting, and patterning of metallic nanoparticles, which can be harnessed to manipulate surface plasmon resonance properties of these nanoparticles.

  3. Evaluation of reforestation using remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Filho, P. H.; Shimabukuro, Y. E.; Dossantos, J. R.

    1982-01-01

    The utilization of remotely sensed orbital data for forestry inventory. The study area (approximately 491,100 ha) encompasses the municipalities of Ribeirao Preto, Altinopolis, Cravinhos, Serra Azul, Luis Antonio, Sao Simao, Sant Rita do Passa Quatro and Santa Rosa do Viterbo (Sao Paulo State). Materials used were LANDSAT data from channels 5 and 7 (scale 1:250,000) and CCT's. Visual interpretation of the imagery showed that for 1977 a total of 37,766.00 ha and for 1979 38,003.75 ha were reforested with Pinus and Eucalyptus within the area under study. The results obtained show that LANDSAT data can be used efficiently in forestry inventory studies.

  4. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  5. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  6. Remote sensing techniques for mining waste characterization

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.; Miclos, S. I.; Tautan, M. N. M.

    2009-09-01

    Environmental monitoring is essential information routinely required by the mining industry and regulators to demonstrate that the environment is not adversely impacted by exploration and mining. New mining technologies can not only exploit low-grade ores but also produce high volumes of tailings as mining wastes. Satellite remote sensing imagery provided by Landsat TM and ETM sensors is an important investigation tool of mining waste cover screening, mapping and monitoring at local and regional scales of areas containing multiple sources of mining-related heavy metals. By this, satellite remote sensing data can help to rapidly assess the dimension of mining waste risk and therefore better manage such a geohazard as well as for remediation programs. Based on Landsat TM, ETM satellite data over 1989-2007 period, was possible to be achieved a discrimination between weathered materials and other prone to acidification as well as to perform a spatio temporal landcover change detection analysis in some mining waste areas in Maramures County, Romania. Accuracy of image processing results (mineralogical classification) was confirmed through ground sampling and analysis of reflectance spectra with portable GER 2600 spectroradiometer.

  7. All-optical signal processing technique for secure optical communication

    NASA Astrophysics Data System (ADS)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  8. Optical Microcavity: Sensing down to Single Molecules and Atoms

    PubMed Central

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling. PMID:22319393

  9. Layered classification techniques for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Swain, P. H.; Wu, C. L.; Landgrebe, D. A.; Hauska, H.

    1975-01-01

    The single-stage method of pattern classification utilizes all available features in a single test which assigns the unknown to a category according to a specific decision strategy (such as the maximum likelihood strategy). The layered classifier classifies the unknown through a sequence of tests, each of which may be dependent on the outcome of previous tests. Although the layered classifier was originally investigated as a means of improving classification accuracy and efficiency, it was found that in the context of remote sensing data analysis, other advantages also accrue due to many of the special characteristics of both the data and the applications pursued. The layered classifier method and several of the diverse applications of this approach are discussed.

  10. Optical source and apparatus for remote sensing

    NASA Technical Reports Server (NTRS)

    Coyle, Donald Barry (Inventor)

    2011-01-01

    An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.

  11. RF modulated fiber optic sensing systems and their applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Eustace, John G.

    1992-01-01

    A fiber optic sensing system with an intensity sensor and a Radio Frequency (RF) modulated source was shown to have sensitivity and resolution much higher than a comparable system employing low modulating frequencies or DC mode of operation. Also the RF modulation with an appropriate configuration of the sensing system provides compensation for the unwanted intensity losses. The basic principles and applications of a fiber optic sensing system employing an RF modulated source are described. In addition the paper discusses various configurations of the system itself, its components, and modulation and detection schemes. Experimental data are also presented.

  12. Correlated electron perovskite films for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Schultz, Andrew M.; Brown, Thomas D.; Ohodnicki, Paul R.

    2015-10-01

    Advanced power generation technologies including solid oxide fuel cells require advancements in sensor technologies for efficient operation. Gas sensors for SOFC anode streams must be stable in high temperature and under reducing atmospheres. Optical sensing technologies offer the potential for good stability and sensing response under harsh conditions but are relatively new as compared to alternative sensing approaches and require significant developments in underlying device and enabling materials technology. In this paper, the near infrared optical sensing response of La0.8Sr0.2MnO3, a representative correlated perovskite material, is presented. Hydrogen sensing performance was measured in laboratory scale sensing experiments in the range of 1-4% hydrogen. The effect of oxygen on sensor recovery behavior was also examined. The films show a large, recoverable response to the introduction of hydrogen to the gas stream. The results presented here suggest this unique class of materials is a strong candidate for future sensor development efforts targeted at optical sensor applications but also requires additional fundamental research to understand the mechanistic origin of observed optical sensing responses.

  13. MTF online compensation in space optical remote sensing camera

    NASA Astrophysics Data System (ADS)

    Qu, Youshan; Zhai, Bo; Han, Yameng; Zhou, Jiang

    2015-02-01

    An ordinary space optical remote sensing camera is an optical diffraction-limited system and a low-pass filter from the theory of Fourier Optics, and all the digital imaging sensors, whether the CCD or CMOS, are low-pass filters as well. Therefore, when the optical image with abundant high-frequency components passes through an optical imaging system, the profuse middle-frequency information is attenuated and the rich high-frequency information is lost, which will blur the remote sensing image. In order to overcome this shortcoming of the space optical remote sensing camera, an online compensating approach of the Modulation Transfer Function in the space cameras is designed. The designed method was realized by a hardware analog circuit placed before the A/D converter, which was composed of adjustable low-pass filters with a calculated value of quality factor Q. Through the adjustment of the quality factor Q of the filters, the MTF of the processed image is compensated. The experiment results display that the realized compensating circuit in a space optical camera is capable of improving the MTF of an optical remote sensing imaging system 30% higher than that of no compensation. This quantized principle can efficiently instruct the MTF compensating circuit design in practice.

  14. Wavefront Sensing Analysis of Grazing Incidence Optical Systems

    NASA Technical Reports Server (NTRS)

    Rohrbach, Scott; Saha, Timo

    2012-01-01

    Wavefront sensing is a process by which optical system errors are deduced from the aberrations in the image of an ideal source. The method has been used successfully in near-normal incidence, but not for grazing incidence systems. This innovation highlights the ability to examine out-of-focus images from grazing incidence telescopes (typically operating in the x-ray wavelengths, but integrated using optical wavelengths) and determine the lower-order deformations. This is important because as a metrology tool, this method would allow the integration of high angular resolution optics without the use of normal incidence interferometry, which requires direct access to the front surface of each mirror. Measuring the surface figure of mirror segments in a highly nested x-ray telescope mirror assembly is difficult due to the tight packing of elements and blockage of all but the innermost elements to normal incidence light. While this can be done on an individual basis in a metrology mount, once the element is installed and permanently bonded into the assembly, it is impossible to verify the figure of each element and ensure that the necessary imaging quality will be maintained. By examining on-axis images of an ideal point source, one can gauge the low-order figure errors of individual elements, even when integrated into an assembly. This technique is known as wavefront sensing (WFS). By shining collimated light down the optical axis of the telescope and looking at out-of-focus images, the blur due to low-order figure errors of individual elements can be seen, and the figure error necessary to produce that blur can be calculated. The method avoids the problem of requiring normal incidence access to the surface of each mirror segment. Mirror figure errors span a wide range of spatial frequencies, from the lowest-order bending to the highest order micro-roughness. While all of these can be measured in normal incidence, only the lowest-order contributors can be determined

  15. Development of self-sensing BFRP bars with distributed optic fiber sensors

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Shen, Sheng; Wu, Gang; Hong, Wan

    2009-03-01

    In this paper, a new type of self-sensing basalt fiber reinforced polymer (BFRP) bars is developed with using the Brillouin scattering-based distributed optic fiber sensing technique. During the fabrication, optic fiber without buffer and sheath as a core is firstly reinforced through braiding around mechanically dry continuous basalt fiber sheath in order to survive the pulling-shoving process of manufacturing the BFRP bars. The optic fiber with dry basalt fiber sheath as a core embedded further in the BFRP bars will be impregnated well with epoxy resin during the pulling-shoving process. The bond between the optic fiber and the basalt fiber sheath as well as between the basalt fiber sheath and the FRP bar can be controlled and ensured. Therefore, the measuring error due to the slippage between the optic fiber core and the coating can be improved. Moreover, epoxy resin of the segments, where the connection of optic fibers will be performed, is uncured by isolating heat from these parts of the bar during the manufacture. Consequently, the optic fiber in these segments of the bar can be easily taken out, and the connection between optic fibers can be smoothly carried out. Finally, a series of experiments are performed to study the sensing and mechanical properties of the propose BFRP bars. The experimental results show that the self-sensing BFRP bar is characterized by not only excellent accuracy, repeatability and linearity for strain measuring but also good mechanical property.

  16. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    PubMed

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  17. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure

    PubMed Central

    Tang, Yongsheng; Wu, Zhishen

    2016-01-01

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures. PMID:26927110

  18. Techniques for Solution- Assisted Optical Contacting

    NASA Technical Reports Server (NTRS)

    DeVine, Glenn; Ware, Brent; Wuchenich, Danielle M.; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk

    2012-01-01

    A document discusses a solution-assisted contacting technique for optical contacting. An optic of surface flatness Lambda/20 was successfully contacted with one of moderate surface quality, or Lambda/4. Optics used were both ultra-low expansion (ULE) glass (Lambda/4 and Lambda/20) and fused silica (Lambda/20). A stainless steel template of the intended interferometer layout was designed and constructed with three contact points per optic. The contact points were all on a common side of the template. The entire contacting jig was tilted at about 30 . Thus, when the isopropanol was applied, each optic slid due to gravity, resting on the contact points. All of the contacting was performed in a relatively dusty laboratory. A number of successful contacts were achieved where up to two or three visible pieces of dust could be seen. These were clearly visible due to refraction patterns between the optic and bench. On a number of optics, the final step of dropping isopropyl between the surfaces was repeated until a successful contact was achieved. The new procedures realized in this work represent a simplification for optical contacting in the laboratory. They will both save time and money spent during the contacting process, and research and development phases. The techniques outlined are suitable for laboratory experiments, research, and initial development stages.

  19. Optical remote sensing of the mesosphere, thermosphere, and ionosphere

    NASA Astrophysics Data System (ADS)

    McCoy, Robert P.

    1995-01-01

    Over the next five years the Naval Research Laboratory (NRL) will fly a series of ultraviolet satellite instrument packages to measure vertical profiles of atmospheric airglow emission. The objective of this program is to test new techniques for optical remote sensing of the mesosphere, thermosphere, and ionosphere using limb scanning spectrographs. Emphasis will be placed on day- and night-remote sensing of the F-region through measurement of profiles of airglow emission from the O+ ion. Other objectives include remote sensing of vertical profiles of neutral density, minor species and temperature. These observations will be used to study the composition, photochemistry, thermodynamics, and couplings between atmospheric regions. A phased approach will be used which provides for: (1) comprehensive multi-parameter measurements; (2) high spectral resolution studies; and (3) long-term operational observations from DoD weather satellites. The first of these payloads is the multi- sensor experiment called the remote atmospheric & ionospheric detection (RAIDS). RAIDS, a collaboration between NRL and The Aerospace Corporation, contains two spectrographs, three scanning grating spectrometers, and three photometers. Space flight for RAIDS will be provided by the Air Force Space Test Program (STP). The phase 2 component is the high resolution airglow/aurora spectroscopy (HIRAAS) experiment, a collaboration between NRL and the Naval Postgraduate School. HIRAAS will fly aboard the STP ARGOS Satellite in early 1996. The third phase of this program involves flight of a series of five limb scanning instruments called the special sensor ultraviolet limb imager (SSULI) aboard Defense Meteorological Satellite Program weather satellites in the last quarter of this decade. The long- term observations from these satellite experiments will provide a comprehensive database of mesospheric, thermospheric, and ionospheric density profiles from which to search for the effects of global change.

  20. Novel optical password security technique based on optical fractal synthesizer

    NASA Astrophysics Data System (ADS)

    Wu, Kenan; Hu, Jiasheng; Wu, Xu

    2009-06-01

    A novel optical security technique for safeguarding user passwords based on an optical fractal synthesizer is proposed. A validating experiment has been carried out. In the proposed technique, a user password is protected by being converted to a fractal image. When a user sets up a new password, the password is transformed into a fractal pattern, and the fractal pattern is stored in authority. If the user is online-validated, his or her password is converted to a fractal pattern again to compare with the previous stored fractal pattern. The converting process is called the fractal encoding procedure, which consists of two steps. First, the password is nonlinearly transformed to get the parameters for the optical fractal synthesizer. Then the optical fractal synthesizer is operated to generate the output fractal image. The experimental result proves the validity of our method. The proposed technique bridges the gap between digital security systems and optical security systems and has many advantages, such as high security level, convenience, flexibility, hyper extensibility, etc. This provides an interesting optical security technique for the protection of digital passwords.

  1. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  2. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  3. Monitoring asphalt pavement damages using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Mettas, Christodoulos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Christofe, Andreas; Pilakoutas, Kypros; Hadjimitsis, Diofantos

    2015-06-01

    One of the main issues in the maintenance plans of road agencies or governmental organizations is the early detection of damaged asphalt pavements. The development of a smart and non-destructive systematic technique for monitoring damaged asphalt pavements is considered a main priority to fill this gap. During the 1970's, remote sensing was used to map road surface distress, while during the last decade, remote sensing became more advanced, thereby assisting in the evolution of the identification and mapping of roads. Various techniques were used in order to explore condition, age, weaknesses and imperfections of asphalted pavements. These methods were fairly successful in the classification of asphalted surfaces and in the detection of some of their characteristics. This paper explores the state of the art of using remote sensing techniques for monitoring damaged pavements and some typical spectral profiles of various asphalt pavements in Cyprus area acquired using the SVC1024 field spectroradiometer.

  4. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    SciTech Connect

    Baltrus, John P.; Ohodnicki, Paul R.

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  5. Non-iterative adaptive optical microscopy using wavefront sensing

    NASA Astrophysics Data System (ADS)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  6. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  7. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  8. Compact Optical Technique for Streak Camera Calibration

    SciTech Connect

    Curt Allen; Terence Davies; Frans Janson; Ronald Justin; Bruce Marshall; Oliver Sweningsen; Perry Bell; Roger Griffith; Karla Hagans; Richard Lerche

    2004-04-01

    The National Ignition Facility is under construction at the Lawrence Livermore National Laboratory for the U.S. Department of Energy Stockpile Stewardship Program. Optical streak cameras are an integral part of the experimental diagnostics instrumentation. To accurately reduce data from the streak cameras a temporal calibration is required. This article describes a technique for generating trains of precisely timed short-duration optical pulses that are suitable for temporal calibrations.

  9. Optical Sensing and Trapping Based on Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  10. A study on the aerosol optical properties over East Asia using a combination of CMAQ-simulated aerosol optical properties and remote-sensing data via a data assimilation technique

    NASA Astrophysics Data System (ADS)

    Park, R.; Song, C. H.; Park, M.; Han, K. M.

    2011-12-01

    For the purpose of producing the accurate aerosol optical properties, AOD over East Asia was first investigated in this study. The CMAQ model simulations were conducted for the entire year, 2006, and were improved in several ways including the evaluations of emission inventories, the adoption of Malm and Hand (2007)'s algorithm and the data assimilations of meteorological wind fields and AOD. The results from the CMAQ model simulations (without assimilation) were improved greatly, compared to the previous study (Song et al., 2008) (e.g., from R=0.48-0.68 to R=0.77-0.89 for four seasons, R is correlation coefficient between CMAQ-simulated and MODIS-retrieved AODs). It was also found that there were great matches between the vertical profiles of CMAQ-simulated σext and LIDAR-derived σext. The contributions of sulfate in summer, nitrate in winter, sea-salt in winter and dust in spring were large in East Asia. Especially, the large contribution of nitrate in winter to the AOD distribution over East Asia is remarkable compared to the previous study (Chung et al., 2010). In order to produce more accurate AOD products, the CMAQ-simulated AOD was assimilated with MODIS-retrieved AOD. Both the assimilated and AERONET AODs were better correlated with each other, compared to the correlation between CMAQ-simulated AOD and AERONET AODs (e.g., from R=0.59-0.79 to R=0.71-0.8 for four seasons: R is correlation between the assimilated or CMAQ-simulated AOD and AERONET AOD). The obvious benefits for this study are that, with the improved aerosol optical properties, particulate pollution or PM forecasting over East Asia (e.g., AOD can be served as a proxy to PM2.5) and direct radiative forcing by aerosols can be much better estimated in future.

  11. Optical fiber sensing of human skin emanations

    NASA Astrophysics Data System (ADS)

    Lee, S.-W.; Wang, T.; Selyanchyn, R.; Korposh, S.; James, S. W.

    2015-07-01

    An evanescent-wave optical fibre sensor modified with tetrakis(4-sulfophenyl)porphine (TSPP) and poly(allylamine hydrochloride) (PAH) bilayers using an layer-by-layer (LbL) approach was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed through principal component analysis (PCA). This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  12. Optical sensing for characterization of bubble plumes from methane seeps

    NASA Astrophysics Data System (ADS)

    Pizarro, O.; Camilli, R.; Whelan, J.

    2004-12-01

    Methane seeps are potentially a key contributor to atmospheric methane and to the global greenhouse gas budget. Improved estimates of methane flux from ocean floor seeps is required to understand the magnitude and characteristics of this contribution to the carbon cycle. % State of the art In steady, slow seeps a large portion of the gas is dissolved and oxidized before reaching the surface. However, in high-intensity methane seeps the bubble density, speed and size are such that a significant fraction of the gas can reach the atmosphere. Dissolved methane can be measured fairly reliably at the sea surface with traditional equilibration techniques. New types of in-situ chemical sensors can quantify dissolved methane deeper in the water column. Quantifying methane within the water column in the free gas phase (i.e., in the form of bubbles) remains a challenging problem. Current approaches rely either on indirect acoustic methods or direct collection of bubbles. Acoustic methods have the disadvantage of requiring extensive calibration, and can fail to distinguish the bubble signal from other sources of acoustic noise. Gas-capture techniques are mechanically complex, have a surface expression that introduces some noise, and can potentially alias episodic events. %how slow ? In both cases the fine scale structure such as herogeneity of the bubbling plume is lost. % Proposed We propose a vision-based system to detect and track bubble plumes. High speed optical imagery is propenables precise measurements of the motion of bubbles through a process involving identification of the individual bubbles (and rejection of other particles). Additional image processing steps are then used to estimate each bubble's volume and velocity. These are then integrated to produce an estimate of volumetric flux rate. This technique can also reveal fine scale variabilities in the spatial and temporal structure within the plume. %We discuss sensing configurations based on a stereo setup and

  13. Research on spectral resource optimization and self-healing technology of hybrid optical fiber sensing network

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Sang, Mei; Ge, Chunfeng; Chen, Guanghui; Liu, Tiegen

    2015-08-01

    We propose an optical-fiber-sensing-network (OFSN) to allow hybrid fiber sensors working in the same network and it achieves self-healing function. The discrete and distributed optical fiber sensors can be connected in sub-layers of the network. WDM-OTDM technique is introduced to convert multi-wavelengths of light source into a specific arranged wavelength in each sub-layer. Thus every sub-layer can share the system spectrum resources, and sensing signals of each sub-layer are transmitted together in the backbone network. To achieve self-healing function, double-ring structure is adopted in the backbone network. Node microprocessor program is designed to make switching to the protect fiber when working fiber is broken. The experimental backbone setup of the network demonstrates the practical reliability and intelligence of the optical sensing network.

  14. Optical sensing in a directional hearing aid microphone

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang

    This thesis describes the simulation and analysis of the use of optical sensing for a MEMS directional microphone. Diffraction gratings integrated with micro-electromechanical-systems (MEMS) offer an optical sensing scheme with high detection sensitivity, low noise level and compact device structure. An optical sensing method is applied in a hearing aid microphone to detect the movement of the diaphragm due to sound. Diffraction grating fingers are fabricated on both sides of the diaphragm with a gold mirror on top. Two photo detectors are placed on the substrate symmetrically to detect the positive and negative first order diffraction of 850 nm VCSEL light. A finite element analysis model is built in COMSOL to study the light distribution and energy loss. The signal output, predicted using an analytical model is shown to agree well with those obtained using the finite element model.

  15. Macrobend optical sensing for pose measurement in soft robot arms

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  16. Measuring artificial recharge with fiber optic distributed temperature sensing.

    PubMed

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. PMID:23110559

  17. Nanocomposite thin films for optical gas sensing

    SciTech Connect

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  18. Spatially-resolved spectroscopic technique for measuring optical properties of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of optical properties is important to understand light interaction with biological materials, and to develop effective optical sensing techniques for property characterization and quality measurement of food products. This chapter reviews spatially-resolved method, with the focus on f...

  19. Application of Sensing Techniques to Cellular Force Measurement

    PubMed Central

    Li, Bin; Wang, James H.-C.

    2010-01-01

    Cell traction forces (CTFs) are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research. PMID:22163449

  20. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  1. Remote sensing techniques for support of coastal zone resource management.

    NASA Technical Reports Server (NTRS)

    Piland, R. O.

    1973-01-01

    Description of remote sensing studies carried out for the purpose of developing and/or demonstrating techniques which can be employed for land use inventory, marsh vegetation classification, and water characteristics surveys. Attention is given to results obtained with (1) photo interpretation techniques and procedures for the development of land use information from high-altitude aircraft and satellite imagery, (2) computer based pattern recognition techniques utilizing multispectral scanner data for marsh vegetation classification, and (3) infrared and microwave techniques for the monitoring and surveying of coastal water temperature and salinity characteristics.

  2. Natural resource inventory for urban planning utilizing remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  3. INVESTIGATION OF REMOTE SENSING TECHNIQUES FOR AGRICULTURAL FEEDLOT POLLUTION DETECTION

    EPA Science Inventory

    This research effort was directed toward the application of remote sensing techniques to the detection and monitoring of pollution from cattle feeding operations. Five livestock feeding operations were selected for the study along the James River from Huron to Redfield, South Dak...

  4. Estimation of sugarcane sucrose and biomass with remote sensing techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing techniques were used to predict sucrose levels (TRS) and gross cane yield in field-grown sugarcane. To estimate sucrose levels, leaves were collected from plant-cane and first-ratoon sugarcane plants from the variety maturity studies conducted at the USDA-ARS-SRRC, Sugarcane Research...

  5. A torque sensing technique for robots with harmonic drives

    SciTech Connect

    Hashimoto, M. . Dept. of Mechanical Engineering); Kiyosawa, Yoshihide ); Paul, R.P. . Dept. of Computer Information Science)

    1993-02-01

    The authors propose a joint torque sensing technique making use of the existing structural elasticity of robots. The technique provides joint torque sensing without reducing the stiffness of the robot or changing the mechanical structure of the joints. The elasticity of the flexsplines of the harmonic drives is utilized to measure the joint torque. The flexsplines are flexible thin cups, made from steel, in the harmonic drives that are driven by the wave generators. In this paper, they perform a finite-element analysis of the flexsplines that shows that a special configuration of strain gauges, mounted on the flexspline, has to be employed to eliminate errors in sensor information due to rotation of the wave generator. Characteristics of the torque sensor are then examined experimentally. The linearity and the dynamic response are almost the same as those of a conventional sensing technique. Joint torque control, using the proposed sensor, is implemented for a one-link robot arm. Both theoretical and experimental investigations support the validity of the proposed sensing technique.

  6. Nonlinear optical techniques for surface studies. [Monolayers

    SciTech Connect

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed.

  7. Dental diagnostics using optical coherence techniques

    SciTech Connect

    Nathel, H.; Colston, B.; Armitage, G.

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  8. Optical technologies for UV remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  9. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  10. Hyperspectral remote sensing techniques for early detection of plant diseases

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  11. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  12. RF switching network: a novel technique for IR sensing

    NASA Astrophysics Data System (ADS)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  13. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    SciTech Connect

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our research in

  14. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  15. Tamper indicating and sensing optical-based smart structures

    SciTech Connect

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid.

  16. Coherent optical data processing and remotely sensed imagery

    NASA Technical Reports Server (NTRS)

    Macdougall, E. B.

    1969-01-01

    It is shown that an automatic imaging system consisting of a combination of optical and digital computer elements is feasible and has considerable advantages over direct image scanning systems. With such a system, it is possible to process very large quantities of remotely sensed image spectra.

  17. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  18. Optics, illumination and image sensing for machine vision

    SciTech Connect

    Svetkoff, D.J.

    1986-01-01

    This book presents papers given at a conference on optics, illumination and image sensing for machine vision. Topics included the following; computer vision in industry; mathematical models of human vision for machines; laser light for machine vision illuminations; illumination methods for machine vision; supercomputers and interferometry; and, computers and depth perception.

  19. Photoinduced Electron Transfer Based Ion Sensing within an Optical Fiber

    PubMed Central

    Englich, Florian V.; Foo, Tze Cheung; Richardson, Andrew C.; Ebendorff-Heidepriem, Heike; Sumby, Christopher J.; Monro, Tanya M.

    2011-01-01

    We combine suspended-core microstructured optical fibers with the photoinduced electron transfer (PET) effect to demonstrate a new type of fluorescent optical fiber-dip sensing platform for small volume ion detection. A sensor design based on a simple model PET-fluoroionophore system and small core microstructured optical fiber capable of detecting sodium ions is demonstrated. The performance of the dip sensor operating in a high sodium concentration regime (925 ppm Na+) and for lower sodium concentration environments (18.4 ppm Na+) is explored and future approaches to improving the sensor’s signal stability, sensitivity and selectivity are discussed. PMID:22163712

  20. Spider silk: a novel optical fibre for biochemical sensing

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2015-09-01

    Whilst being thoroughly used in the textile industry and biomedical sector, silk has not yet been exploited for fibre optics-based sensing although silk fibres directly obtained from spiders can guide light and have shown early promises to being sensitive to some solvents. In this communication, a pioneering optical fibre sensor based on spider silk is reported, demonstrating for the first time the use of spider silk as an optical fibre sensor to detect polar solvents such as water, ammonia and acetic acid.

  1. Quantum-dot-doped polymer nanofibers for optical sensing.

    PubMed

    Meng, Chao; Xiao, Yao; Wang, Pan; Zhang, Lei; Liu, Yanxin; Tong, Limin

    2011-09-01

    High-quality quantum-dot/polystyrene nanofibers (QD/PS NFs) are synthesized by drawing solvated PS doped with CdSe/ZnS QDs. As-drawn QD/PS NFs offer ultra-long-term photostability, flexibility, and excellent optical properties for sensing applications. Based on these active NFs, optical humidity sensors with extremely low power consumption, fast response, and long-term stability are successfully demonstrated, which may lead to a new category of nanometer-scale optical sensors. PMID:21766349

  2. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  3. High-Throughput Optical Sensing Immunoassays on Smartphone.

    PubMed

    Wang, Li-Ju; Sun, Rongrong; Vasile, Tina; Chang, Yu-Chung; Li, Lei

    2016-08-16

    We present an optical sensing platform on a smartphone for high-throughput screening immunoassays. For the first time, a designed microprism array is utilized to achieve a one-time screening of 64 samples. To demonstrate the capability and the reliability of this optical sensing platform on smartphone, human interleukin 6 (IL-6) protein and six types of plant viruses are immunoassayed. The ability of quantification is shown by a sigmoidal dose-response curve fitting to analyze IL-6 protein. The accuracy in measuring the concentrations of IL-6 protein achieves 99.1%. On the other hand, to validate on-field immunoassays by our device, a total of 1030 samples are assayed using three immunoassay methods to detect six types of plant viruses. The accuracy is up to 96.2-99.9%; in addition, there is a high degree of agreement with lab instruments. The total cost for this high-throughput optical screening platform is ∼$50 USD. The reading time is only 2 s for 64 samples. The size is just as big as a portable hard drive. Our optical sensing platform on the smartphone offers a route toward in situ high-throughput screening immunoassays for viruses, pathogens, biomarkers, and toxins by decentralizing laboratory tests. With this mobile point-of-care optical platform, the spread of disease can be timely stopped within a very short turnaround time. PMID:27434250

  4. Zeptonewton force sensing with nanospheres in an optical lattice

    NASA Astrophysics Data System (ADS)

    Ranjit, Gambhir; Cunningham, Mark; Casey, Kirsten; Geraci, Andrew A.

    2016-05-01

    Optically trapped nanospheres in high vacuum experience little friction and hence are promising for ultrasensitive force detection. Here we demonstrate measurement times exceeding 105 s and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors by over an order of magnitude, and enables a variety of applications including electric-field sensing, inertial sensing, and gravimetry. The particle is confined at the antinodes of the optical standing wave, and by studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the antinodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the particle in vacuum without feedback cooling.

  5. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  6. Distributed fiber-optic sensing system with OFDR and its applications to structural health monitoring

    NASA Astrophysics Data System (ADS)

    Murayama, H.; Kageyama, K.; Uzawa, K.; Igawa, H.; Omichi, K.; Machijima, Y.

    2009-07-01

    In the field of fiber-optic sensing technology, distributed sensors that return a value of the measurand as a function of linear position along an optical fiber are regarded as a promising sensor which can be applied to structural health monitoring (SHM). We have developed a distributed strain sensing technique using long gauge fiber Bragg grating (FBG) based on optical frequency domain reflectometry (OFDR). FBGs functioning as mirrors with wavelengthselective reflectivity have been used as strain or temperature sensors. OFDR is a technique designed to measure backreflections from optical fiber networks and components. In our system, we use a longer gauge FBG whose length is ordinarily more than 100 mm and we can measure strain at an arbitrary position along the FBG. Therefore, we can obtain continuous strain data along the FBG. Furthermore, since the spatial resolution in strain measurements is less than 1 mm, it enables us to measure the strain distribution of stress concentrated area, such as welded and bonded joints, precisely. In this paper, we describe the principle of the distributed sensing technique based on OFDR and the applications to strain monitoring of a bonded joint and a wing box structure.

  7. Analytical methods for optical remote sensing

    SciTech Connect

    Spellicy, R.L.

    1997-12-31

    Optical monitoring systems are very powerful because of their ability to see many compounds simultaneously as well as their ability to report results in real time. However, these strengths also present unique problems to analysis of the resulting data and validation of observed results. Today, many FTIR and UV-DOAS systems are in use. Some of these are manned systems supporting short term tests while others are totally unmanned systems which are expected to operate without intervention for weeks or months at a time. The analytical methods needed to support both the diversity of compounds and the diversity of applications is challenging. In this paper, the fundamental concepts of spectral analysis for IR/UV systems are presented. This is followed by examples of specific field data from both short term measurement programs looking at unique sources and long-term unmanned monitoring systems looking at ambient air.

  8. Molecular biology techniques and applications for ocean sensing

    NASA Astrophysics Data System (ADS)

    Zehr, J. P.; Hewson, I.; Moisander, P.

    2009-05-01

    The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Molecular techniques can form the basis of remote instrumentation sensing technologies for marine microbial diversity and ecological function. Here we review some of the most commonly used molecular biological techniques. These techniques include the polymerase chain reaction (PCR) and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity), oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  9. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  10. The Application of Remote Sensing Techniques to Urban Data Acquisition

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1971-01-01

    The application of remote sensing techniques useful in acquiring data concerning housing quality is discussed. Conclusions reached from the investigation were: (1) Use of individuals with a higher degree of training in photointerpretation should significantly increase the percentage of successful classifications. (2) Small area classification of urban housing quality can definitely be accomplished via high resolution aerial photography. Such surveys, at the levels of accuracy demonstrated, can be of major utility in quick look surveys. (3) Survey costs should be significantly reduced.

  11. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  12. Investigation of sensing properties of microstructured polymer optical fibres

    NASA Astrophysics Data System (ADS)

    Witt, J.; Steffen, M.; Schukar, M.; Krebber, K.

    2010-04-01

    We investigated sensing properties of single mode poly methyl methacrylate (PMMA) microstructured polymer optical fibres (MPOF) with mechanically imprinted long period gratings (LPG). After preparation of the MPOF end-faces the samples were elongated with silica fibres. These samples were used to measure the influence of strain to the LPG wavelength which showed the viscoelastic nature of PMMA. We also measured the influence of temperature and humidity. The results show that MPOF LPGs are well suited for strain sensing. One MPOF LPG was stitched to a textile. Using this textile we measured a simulated respiratory motion.

  13. Novel sensing concept based on optical Tamm plasmon.

    PubMed

    Zhang, Wei Li; Wang, Fen; Rao, Yun Jiang; Jiang, Yao

    2014-06-16

    This paper proposes a novel concept of refractive index sensing taking advantage of a high-refractive-index-contrast optical Tamm plasmon (OTP) structure, i.e., an air/dielectric alternate-layered distributed Bragg reflector (DBR) coated with metal. In the reflection spectrum of the structure, a dip related to the formation of OTP appears. The wavelength and reflectivity of this dip are sensitive to variation of ambient refractive index, which provides a potential way to realize refractive index sensing with a large measuring range and high sensitivity. PMID:24977548

  14. Optical remote sensing of aircraft emissions with the K300

    SciTech Connect

    Bittner, H.; Klein, V.; Eisenmann, T.; Engler, F.; Resch, M.; Mosebach, H.; Erhard, M.; Rippel, H. )

    1993-01-01

    The K300 Double Pendulum Interferometer is a compact high resolution Fourier Transform spectrometer designed for outdoor optical remote sensing in the infrared spectral region. Apart from the known atmospheric pollution monitoring by long-path measurements and smoke stack remote sensing at power plants, the remote diagnostic of hot aircraft engine emissions is a very interesting application of the infrared spectroscopy. First results of such measurements performed with the Kayser-Threde Double Pendulum Interferometer K300 at the DLR airport, Oberpfaffenhofen on January 15, 1992 are presented and discussed.

  15. Pattern Recognition in Optical Remote Sensing Data Processing

    NASA Astrophysics Data System (ADS)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  16. Remote sensing techniques in cultural resource management archaeology

    NASA Astrophysics Data System (ADS)

    Johnson, Jay K.; Haley, Bryan S.

    2003-04-01

    Cultural resource management archaeology in the United States concerns compliance with legislation set in place to protect archaeological resources from the impact of modern activities. Traditionally, surface collection, shovel testing, test excavation, and mechanical stripping are used in these projects. These methods are expensive, time consuming, and may poorly represent the features within archaeological sites. The use of remote sensing techniques in cultural resource management archaeology may provide an answer to these problems. Near-surface geophysical techniques, including magnetometry, resistivity, electromagnetics, and ground penetrating radar, have proven to be particularly successful at efficiently locating archaeological features. Research has also indicated airborne and satellite remote sensing may hold some promise in the future for large-scale archaeological survey, although this is difficult in many areas of the world where ground cover reflect archaeological features in an indirect manner. A cost simulation of a hypothetical data recovery project on a large complex site in Mississippi is presented to illustrate the potential advantages of remote sensing in a cultural resource management setting. The results indicate these techniques can save a substantial amount of time and money for these projects.

  17. Electrophoretic deposition as a new approach to produce optical sensing films adaptable to microdevices

    NASA Astrophysics Data System (ADS)

    Marín-Suárez, Marta; Medina-Rodríguez, Santiago; Ergeneman, Olgaç; Pané, Salvador; Fernández-Sánchez, Jorge F.; Nelson, Bradley J.; Fernández-Gutiérrez, Alberto

    2013-12-01

    We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is the first time that polymeric optical sensing films have been obtained by EPD from dispersions of oxygen sensing nanoparticles.We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is

  18. Laser machining of sensing components on the end of optical fibres

    NASA Astrophysics Data System (ADS)

    Albri, Frank; Li, Jun; Maier, Robert R. J.; MacPherson, William N.; Hand, Duncan P.

    2013-04-01

    Micro-cantilevers play a major role in sensing, especially since the invention of the atomic force microscope. Applications range from surface profiling to bio-medical sensing enabled through coating-activated cantilevers. Current readout methods are based on either optical deflection (of a laser beam reflected from the cantilever surface) or piezo-resistive response (of piezo-electric elements bonded to the cantilever surface). The first of these approaches requires significant space whilst the second is sensitive to electromagnetic effects. An alternative solution is to manufacture a cantilever onto the end of an optical fibre and use interferometry to monitor its deflection; in this paper we describe the development and application of a picosecond-laser machining process to fabricate such a device. The development of techniques to avoid cracking and debris re-deposition during this machining process is described, and a cantilever sensor with excellent optical performance is demonstrated and tested.

  19. Guided wave generation and sensing system using a single laser source and optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonseok; Park, Hyun-Jun; Sohn, Hoon; Kwon, Il-bum

    2010-04-01

    Structural health monitoring (SHM) techniques based on guided waves have been of great interests to many researchers. Among various SHM devices used for guided wave generation and sensing, lead zirconate titanate (PZT) transducers and fiber Bragg grating (FBG) sensors have been widely used because of their light weight, non-intrusive nature and compactness. To best take advantage of their merits, combination of PZT-based guided wave excitation and FBG-based sensing has been attempted by a few researchers. However, the PZT-based actuation and the FBG-based sensing are basically two independent systems in the past studies. This study proposes an integrated PZT/FBG system using a single laser source. Since power and data delivery is based on optical fibers, it may alleviate problems associated with conventional wire cables such as electromagnetic interference (EMI) and power/data attenuation. The experimental procedure for the proposed system is as follows. First, a tunable laser is used as the common power source for guided wave generation and sensing. The tunable laser beam is modulated and amplified to contain an arbitrary waveform. Then, it is transmitted to the PZT transducer node through an optical fiber for guided wave actuation. The transmitted laser beam is also used with the FBG sensor to measure high-speed strain changes induced by guided waves. Feasibility of the proposed technique has been experimentally demonstrated using aluminum plates. The results show that the proposed system could properly generate and sense the guided waves compared to the conventional methods.

  20. Optical systems for applications in ocean color remote sensing and interdisciplinary study

    NASA Astrophysics Data System (ADS)

    Cao, Wenxi; Yang, Yuezhong; Ke, Tianchun; Wu, Tingfang; Li, Cai; Lu, Guixing; Guo, Chaoying

    2003-05-01

    A shipboard ocean optical profiling system (SOOPS) has been developed to meet the needs of ocean color remote sensing. This system is an integrated one that provide measurements of optical properies of seawater. Specifications of SOOPS are described. Shading errors are modeled by Monte Carlo simulation, the field experimental data and some optical properties derived from these data are described and analyzed. Also presented in this paper is an optical buoy system underdeveloped, which can provide time series observations of both inherent optical properties and apparent optical properties of sea water. This system consistents of two buoys, master buoy and slave bouy. Several optical instruments are mouted on the buoys or on the mooring cable of the buoys to provide optical measurements at depths up to 70m. Self shading of the buoy has been simulated via Monte Carlo method. Effective anti-biofouling techniques are used for protecting biofouling on the optical window. Bluetooth radio is used for the communication between the master buoy and the slave buoy. An Inmarsat satellite telemetry system is used to transmit data daily. These optical systems are useful for both verification of ocean color satellite data and understanding the time changes of physical, biological and optical parameters.

  1. Innovative optical alignment technique for CMP wafers

    NASA Astrophysics Data System (ADS)

    Sugaya, Ayako; Kanaya, Yuho; Nakajima, Shinichi; Nagayama, Tadashi; Shiraishi, Naomasa

    2002-07-01

    Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.

  2. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  3. Nanoimprinting on optical fiber end faces for chemical sensing

    NASA Astrophysics Data System (ADS)

    Kostovski, G.; White, D. J.; Mitchell, A.; Austin, M. W.; Stoddart, P. R.

    2008-04-01

    Optical fiber surface-enhanced Raman scattering (SERS) sensors offer a potential solution to monitoring low chemical concentrations in-situ or in remote sensing scenarios. We demonstrate the use of nanoimprint lithography to fabricate SERS-compatible nanoarrays on the end faces of standard silica optical fibers. The antireflective nanostructure found on cicada wings was used as a convenient template for the nanoarray, as high sensitivity SERS substrates have previously been demonstrated on these surfaces. Coating the high fidelity replicas with silver creates a dense array of regular nanoscale plasmonic resonators. A monolayer of thiophenol was used as a low concentration analyte, from which strong Raman spectra were collected using both direct endface illumination and through-fiber interrogation. This unique combination of nanoscale replication with optical fibers demonstrates a high-resolution, low-cost approach to fabricating high-performance optical fiber chemical sensors.

  4. Biological and chemical sensing with electronic THz techniques

    NASA Astrophysics Data System (ADS)

    Choi, Min K.; Bettermann, Alan D.; van der Weide, Daniel W.

    2004-02-01

    The terahertz regime (0.1 to 10 THz) is rich with emerging possibilities in sensing, imaging and communications, with unique applications to screening for weapons, explosives and biohazards, imaging of concealed objects, water content and skin. Here we present initial surveys to evaluate the possibility of sensing bacterial spores and chemical material using field-deployable electronic terahertz techniques that use short-pulse generation and coherent detection based on nonlinear transmission lines and diode sampling bridges. We also review the barriers and approaches to achieving greater sensing-at-a-distance (stand-off) capabilities for THz sensing systems. We have made several reflection measurements of metallic and non-metallic targets in our laboratory, and have observed high contrast relative to reflection from skin. In particular, we have taken small quantities of materials such as dimethyl methylphosphonate (DMMP) and several variants of Bacillus spores, and measured them in transmission and in reflection using a broadband pulsed electronic THz reflectometer. The pattern of reflection versus frequency gives rise to signatures that indicate specificity of the target. Although more work needs to be done to reduce the effects of standing waves through time gating or attenuators, the possibility of mapping out this contrast for imaging and detection is very attractive.

  5. Effective application of optical sensing technology for sustainable liquid level sensing and rainfall measurement

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad Hassan Bin

    2015-05-01

    Rainfall measurement is performed on regular basis to facilitate effectively the weather stations and local inhabitants. Different types of rain gauges are available with different measuring principle for rainfall measurement. In this research work, a novel optical rain sensor is designed, which precisely calculate the rainfall level according to rainfall intensity. This proposed optical rain sensor model introduced in this paper, which is basically designed for remote sensing of rainfall and it designated as R-ORMS (Remote Optical Rainfall Measurement sensor). This sensor is combination of some improved method of tipping bucket rain gauge and most of the optical hydreon rain sensor's principle. This optical sensor can detect the starting time and ending time of rain, rain intensity and rainfall level. An infrared beam from Light Emitting Diode (LED) through powerful convex lens can accurately determines the diameter of each rain drops by total internal reflection principle. Calculations of these accumulative results determine the rain intensity and rainfall level. Accurate rainfall level is determined by internal optical LED based sensor which is embedded in bucket wall. This internal sensor is also following the total internal reflection (TIR) principle and the Fresnel's law. This is an entirely novel design of optical sensing principle based rain sensor and also suitable for remote sensing rainfall level. The performance of this proposed sensor has been comprehensively compared with other sensors with similar attributes and it showed better and sustainable result. Future related works have been proposed at the end of this paper, to provide improved and enhanced performance of proposed novel rain sensor.

  6. Optical gas sensing responses in transparent conducting oxides with large free carrier density

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Andio, M.; Wang, C.

    2014-07-01

    Inherent advantages of optical-based sensing devices motivate a need for materials with useful optical responses that can be utilized as thin film functional sensor layers. Transparent conducting metal oxides with large electrical conductivities as typified by Al-doped ZnO (AZO) display attractive properties for high temperature optical gas sensing through strong optical transduction of responses conventionally monitored through changes in measured electrical resistivity. An enhanced optical sensing response in the near-infrared and ultraviolet/visible wavelength ranges is demonstrated experimentally and linked with characteristic modifications to the dielectric constant due to a relatively high concentration of free charge carriers. The impact of light scattering on the magnitude and wavelength dependence of the sensing response is also discussed highlighting the potential for tuning the optical sensing response by controlling the surface roughness of a continuous film or the average particle size of a nanoparticle-based film. The physics underpinning the optical sensing response for AZO films on planar substrates yields significant insight into the measured sensing response for optical fiber-based evanescent wave absorption spectroscopy sensors employing an AZO sensing layer. The physics of optical gas sensing discussed here provides a pathway towards development of sensing materials for extreme temperature optical gas sensing applications. As one example, preliminary results are presented for a Nb-doped TiO2 film with sufficient stability and relatively large sensing responses at sensing temperatures greater than 500 °C.

  7. innoFSPEC: fiber optical spectroscopy and sensing

    NASA Astrophysics Data System (ADS)

    Roth, Martin M.; Löhmannsröben, Hans-Gerd; Kelz, Andreas; Kumke, Michael

    2008-07-01

    innoFSPEC Potsdam is presently being established as in interdisciplinary innovation center for fiber-optical spectroscopy and sensing, hosted by Astrophysikalisches Institut Potsdam and the Physical Chemistry group of Potsdam University, Germany. The center focuses on fundamental research in the two fields of fiber-coupled multi-channel spectroscopy and optical fiber-based sensing. Thanks to its interdisciplinary approach, the complementary methodologies of astrophysics on the one hand, and physical chemistry on the other hand, are expected to spawn synergies that otherwise would not normally become available in more standard research programmes. innoFSPEC targets future innovations for next generation astrophysical instrumentation, environmental analysis, manufacturing control and process monitoring, medical diagnostics, non-invasive imaging spectroscopy, biopsy, genomics/proteomics, high-throughput screening, and related applications.

  8. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  9. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  10. A novel self-sensing technique for tapping-mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  11. A novel self-sensing technique for tapping-mode atomic force microscopy.

    PubMed

    Ruppert, Michael G; Moheimani, S O Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging. PMID:24387461

  12. Modeling the optical coupling across the anterior chamber of the eye towards polarimetric glucose sensing

    NASA Astrophysics Data System (ADS)

    Pirnstill, Casey W.; Coté, Gerard L.

    2014-02-01

    Millions of people worldwide are affected by diabetes. While glucose sensing technology has come a long way over the past several decades, the current commercially available techniques are still invasive, often leading to poor patient compliance. To minimize invasiveness, focus has been placed on optical techniques to ascertain blood glucose concentrations. Optical polarimetry has shown promise and progress as a viable technique for glucose sensing. Recent developments in polarimetric glucose sensing have been focused on overcoming time varying corneal birefringence due to motion artifacts. Beyond corneal birefringence, the next hurdle toward making this approach viable is the ability to couple polarized light across the eye's anterior chamber. The eye is ideally suited to couple light to the retina. The index mismatch between the air and cornea is partially responsible for the beam bending toward the retina and, while good for vision, it complicates our ability to couple light across the anterior chamber without using an index matching device when performing polarimetric glucose monitoring. In this report, we have designed and modeled a non-index matched coupling scheme constructed with commercially available optics. The optical ray tracing model was performed using CODE V to verify the feasibility of a reflective based non-index matched coupling scheme with respect to index of refraction and anatomical restraints. The ray tracing model was developed for a dual-wavelength system and the effect of refraction and reflection at each optical interface within the setup was evaluated. The modeling results indicate a reflective based optical coupling design could be added to existing polarimetric glucose systems thus removing the need for placing an index matched eye-coupling mechanism over the eye prior to data collection.

  13. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  14. USE OF REMOTE SENSING TECHNIQUES IN A SYSTEMATIC INVESTIGATION OF AN UNCONTROLLED HAZARDOUS WASTE SITE

    EPA Science Inventory

    This report describes the use and evaluation of several remote sensing techniques in conjunction with direct sample collection in order to develop a systematic approach for subsurface investigations at uncontrolled hazardous waste sites. Remote sensing techniques (electrical resi...

  15. A satellite remote sensing technique for geological structure horizon mapping

    SciTech Connect

    Fraser, A.; Huggins, P.; Rees, J.

    1996-08-01

    A Satellite Remote Sensing Technique is demonstrated for generating near surface geological structure data. This technique enables the screening of large areas and targeting of seismic acquisition during hydrocarbon exploration. This is of particular advantage in terrains where surveying is logistically difficult. Landsat Thematic Mapper (TM) data and a high resolution Digital Elevation Model (DEM), are used to identify and map outcropping horizons. These are used to reconstruct the near surface structure. The technique is applied in Central Yemen which is characterised by a {open_quote}layer-cake{close_quote} geological and low dipping terrain. The results are validated using 2D seismic data. The near surface map images faults and structure not apparent in the raw data. Comparison with the structure map generated from a 2D seismic data indicates very good structural and fault correlation. The near surface map successfully highlights areas of potential closure at reservoir depths.

  16. Remote sensing techniques for prediction of watershed runoff

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.

    1975-01-01

    Hydrologic parameters of watersheds for use in mathematical models and as design criteria for flood detention structures are sometimes difficult to quantify using conventional measuring systems. The advent of remote sensing devices developed in the past decade offers the possibility that watershed characteristics such as vegetative cover, soils, soil moisture, etc., may be quantified rapidly and economically. Experiments with visible and near infrared data from the LANDSAT-1 multispectral scanner indicate a simple technique for calibration of runoff equation coefficients is feasible. The technique was tested on 10 watersheds in the Chickasha area and test results show more accurate runoff coefficients were obtained than with conventional methods. The technique worked equally as well using a dry fall scene. The runoff equation coefficients were then predicted for 22 subwatersheds with flood detention structures. Predicted values were again more accurate than coefficients produced by conventional methods.

  17. LIFES: Laser Induced Fluorescence and Environmental Sensing. [remote sensing technique for marine environment

    NASA Technical Reports Server (NTRS)

    Houston, W. R.; Stephenson, D. G.; Measures, R. M.

    1975-01-01

    A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.

  18. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  19. Optical properties of volcanic ash: improving remote sensing observations.

    NASA Astrophysics Data System (ADS)

    Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon

    2016-04-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.

  20. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.

    1994-01-01

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.

  1. Extrinsic fiber optic displacement sensors and displacement sensing systems

    DOEpatents

    Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.

    1994-04-05

    An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.

  2. Space optical navigation techniques: an overview

    NASA Astrophysics Data System (ADS)

    Rebordão, J. M.

    2013-11-01

    Optical or vision-based navigation is an enabling technology for satellite autonomous navigation associated to different navigation approaches such as cruising, fly-by, terrain relative navigation, landing, rendezvous and docking between spacecrafts, rigidity of multi-satellite constellations. Since 2001, in many different ESA projects, the author and his team (at INETI and currently at FCUL) have been associated to most of the developments of the optical components of autonomous navigation, in cooperation with space primes or GNC subsystems suppliers. A unique experience related to seemingly simple photonic concepts associated to computational vision, photonic noises, camera tradeoffs and system concepts has emerged, and deserves a synthesis especially because some of these concepts are being implemented in the ESA Proba 3 mission and ESA is currently updating the technology in view of forthcoming planetary missions to Jupiter, Jupiter moons and asteroids. It is important to note that the US have already flown several missions relying on autonomous navigation and that NASA experience is at least one decade old. System approaches, sources of difficulty, some tradeoffs in both (and between) hardware and software, critical interface issues between the imaging and GNC (Guidance, Navigation and Control) subsystems, image processing techniques, utilization of apriori or to be estimated information, uncertainties, simulation of the imaging chain and non-cooperative environments will be addressed synthetically for both passive (optical) and active (lidar) systems.

  3. Study on optical measurement conditions for noninvasive blood glucose sensing

    NASA Astrophysics Data System (ADS)

    Xu, Kexin; Chen, Wenliang; Jiang, Jingying; Qiu, Qingjun

    2004-05-01

    Utilizing Near-infrared Spectroscopy for non-invasive glucose concentration sensing has been a focusing topic in biomedical optics applications. In this paper study on measuring conditions of spectroscopy on human body is carried out and a series of experiments on glucose concentration sensing are conducted. First, Monte Carlo method is applied to simulate and calculate photons" penetration depth within skin tissues at 1600 nm. The simulation results indicate that applying our designed optical probe, the detected photons can penetrate epidermis of the palm and meet the glucose sensing requirements within the dermis. Second, we analyze the influence of the measured position variations and the contact pressure between the optical fiber probe and the measured position on the measured spectrum during spectroscopic measurement of a human body. And, a measurement conditions reproduction system is introduced to enhance the measurement repeatability. Furthermore, through a series of transmittance experiments on glucose aqueous solutions sensing from simple to complex we found that though some absorption variation information of glucose can be obtained from measurements using NIR spectroscopy, while under the same measuring conditions and with the same modeling method, choices toward measured components reduce when complication degree of components increases, and this causes a decreased prediction accuracy. Finally, OGTT experiments were performed, and a PLS (Partial Least Square) mathematical model for a single experiment was built. We can easily get a prediction expressed as RMSEP (Root Mean Square Error of Prediction) with a value of 0.5-0.8mmol/dl. But the model"s extended application and reliability need more investigation.

  4. Analysis of non-linearity in differential wavefront sensing technique.

    PubMed

    Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi

    2016-03-01

    An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079

  5. Fiber vibration sensor multiplexing techniques for quasi-distributed sensing

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Taiwo, Sulaiman; Sahbudin, R. K. Z.; Yaacob, M. H.; Mokhtar, M.

    2014-12-01

    A multiplexing technique for fiber vibration sensors is experimentally investigated using Khazani Syed (KS) code in SAC/OCDMA with direct decoding. The system is proposed to implement vibration sensor multiplexing which can eliminate the Multiple Access Interference (MAI) at low cost and complexity. The results show the proposed system having better SNR, less complex, and low cost when compared with complementary decoding, and higher power level when compared with simplified WDM. A frequency range of 0 to 400 Hz measured shows its suitability for quasi-distributed sensing in bridges, pipelines, transformers, and industrial machine that exhibit low vibrations within this range.

  6. Recognition as a challenging label-free optical sensing system

    NASA Astrophysics Data System (ADS)

    Gauglitz, Günter

    2013-05-01

    Optical biosensors are increasingly used in application areas of environmental analysis, healthcare and food safety. The quality of the biosensor's results depends on the interaction layer, the detection principles, and evaluation strategies, not only on the biopolymer layer but also especially on recognition elements. Using label-free optical sensing, non-specific interaction between sample and transducer has to be reduced, and the selectivity of recognition elements has to be improved. For this reason, strategies to avoid non-specific interaction even in blood and milk are discussed, a variety of upcoming recognition is given. Based on the classification of direct optical detection methods, some examples for the above mentioned applications are reviewed. Trends as well as advantages of parallel multisport detection for kinetic evaluation are also part of the lecture.

  7. An investigation into Voigt wave propagation for optical sensing

    NASA Astrophysics Data System (ADS)

    Mackay, Tom G.

    2013-09-01

    In the nonsingular case of optical propagation in a linear, homogeneous, anisotropic, dielectric material, two independent plane waves, with orthogonal polarizations and different phase speeds, can propagate in a given direction. However, in certain dissipative biaxial materials there are particular directions along which these two waves coalesce to form a single plane wave. This coalescent Voigt wave represents the singular case. Most conspicuously, the amplitude of Voigt waves are linearly dependent upon propagation direction. A porous nanostructured thin film which supports Voigt wave propagation was investigated, with a view to possible optical sensing applications. The directions along which Voigt waves propagate can be highly sensitive to the refractive index of a fluid which infiltrates this porous material. Indeed, in our theoretical studies sensitivities which compare favourably to those of surface-plasmon-polariton-based optical sensors were found.

  8. Long-distance fiber optic sensing solutions for pipeline leakage, intrusion, and ground movement detection

    NASA Astrophysics Data System (ADS)

    Nikles, Marc

    2009-05-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions where pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Third party intentional interference or accidental intrusions are a major cause of pipeline failures leading to large leaks or even explosions. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. The description is supported by case studies and illustrated by field data.

  9. Electronic implementation of optical burst switching techniques

    NASA Astrophysics Data System (ADS)

    Albanese, Ilijc; Darcie, Thomas E.; Ganti, Sudhakar

    2013-10-01

    Extensive research effort is ongoing in energy-efficient Internet-based communications. Optical Flow Switching (OFS) and Optical Burst Switching (OBS) offer potentially efficient alternatives to IP-router-based networks for large data transactions, but significant challenges remain. OFS requires each user to install expensive core network technology, limiting application to highly specialized nodes. OBS can achieve higher scalability but burst assembly/disassembly procedures reduce power efficiency. Finally both OFS and OBS use all-optical switching technologies for which energy efficiency and flexibility remain subject to debate. Our study aims at combining the advantages of both OBS and OFS while avoiding their shortcomings. We consider using a two-way resource reservation protocol for periodic concatenations of large (e.g. 1 Mb) packets or Media Frames (MFs). These chains of MFs (MFCs) are semi-transparent with a periodicity referred to as the "transparency degree". Each MFC is assembled and stored at an end-user machine during the resource reservation procedure and is then switched and buffered electronically along its path. The periodic configuration of each MFC enables interleaving of several chains using buffering only to align the MFs in each MFC in time, largely reducing the buffer requirements with respect to OBS. This periodicity also enables a simple scheduling algorithm to schedule large transactions with minimal control plane processing, achieving link utilization approaching 99.9%. In summary, results indicate that implementing optical burst switching techniques in the electronic domain is a compelling path forward to high-throughput power-efficient networking.

  10. Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Leite, I. T.; Rocha-Rodrigues, P.; Fernandes, P.; Araujo, J. P.; Jorge, P. A. S.; Santos, J. L.; Teixeira, J. M.; Guerreiro, A.

    2016-05-01

    A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures.