Emergent SU(3) Symmetry in Random Spin-1 Chains.
Quito, V L; Hoyos, José A; Miranda, E
2015-10-16
We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random-singlet phase (RSP) of strongly bound spin pairs [SU(3) "mesons"] and (ii) an unconventional RSP of bound SU(3) "baryons," which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior. PMID:26550897
Quantum correlations and coherence in spin-1 Heisenberg chains
NASA Astrophysics Data System (ADS)
Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.
2016-05-01
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
Quantum phase transitions in spin-1 compass chains
NASA Astrophysics Data System (ADS)
Liu, Guang-Hua; Kong, Long-Juan; You, Wen-Long
2015-11-01
The ground-state phase diagram and quantum phase transitions (QPTs) in a spin-1 compass chain are investigated by the infinite time-evolving block decimation (iTEBD) method. Various phases are discerned by energy densities, spin correlations and entanglement entropy. A generalized string correlator is found to be capable of describing the nonlocal string order in the disordered phase. Furthermore, in the noncritical disordered phase, the spin-spin correlations are found to decay exponentially. Except for a multicritical point ( J 1 = 0, J 2 = 0), the QPTs are determined to have second-order characters. In addition, the central charges on these critical phase boundaries are determined to be c = 1 / 2, therefore these QPTs belong to the Ising universality class.
Magnetic entanglement in spin-1/2 XY chains
NASA Astrophysics Data System (ADS)
Fumani, Fatemeh Khastehdel; Nemati, Somayyeh; Mahdavifar, Saeed; Darooneh, Amir Hosein
2016-03-01
In the study of entanglement in a spin chain, people often consider the nearest-neighbor spins. The motivation is the prevailing role of the short range interactions in creating quantum correlation between the 1st neighbor (1N) spins. Here, we address the same question between farther neighbor spins. We consider the one-dimensional (1D) spin-1/2 XY model in a magnetic field. Using the fermionization approach, we diagonalize the Hamiltonian of the system. Then, we provide the analytical results for entanglement between the 2nd, 3rd and 4th neighbor (denoted as 2N, 3N, and 4N respectively) spins. We find a magnetic entanglement that starts from a critical entangled-field (hcE) at zero temperature. The critical entangled-field depends on the distance between the spins. In addition to the analytical results, the mentioned phenomenon is confirmed by the numerical Lanczos calculations. By adding the temperature to the model, the magnetic entanglement remains stable up to a critical temperature, Tc. Our results show that entanglement spreads step by step to farther neighbors in the spin chain by reducing temperature. At first, the 1N spins are entangled and then further neighbors will be entangled respectively. Tc depends on the value of the magnetic field and will be maximized at the quantum critical field.
Spin-1/2 Optical Lattice Clock
Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.
2009-08-07
We experimentally investigate an optical clock based on {sup 171}Yb (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4x10{sup -16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.
Frustration and multicriticality in the antiferromagnetic spin-1 chain
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Shashi, Aditya; Nevidomskyy, Andriy H.
2014-12-01
The antiferromagnetic spin-1 chain has a venerable history and has been thought to be well understood. Here, we show that inclusion of both next-nearest-neighbor (α ) and biquadratic (β ) interactions results in a rich phase diagram with a multicritical point that has not been observed before. We study the problem using a combination of the density matrix renormalization group (DMRG), an analytic variational matrix product state wave function, and conformal field theory. For negative β <β* , we establish the existence of a spontaneously dimerized phase, separated from the Haldane phase by the critical line αc(β ) of second-order phase transitions. In the opposite regime, β >β* , the transition from the Haldane phase becomes first order into the next-nearest-neighbor (NNN) AKLT phase. Based on the field theoretical arguments and DMRG calculations, we find that these two regimes are separated by a multicritical point (β*,α*) of a different universality class, described by the level-4 SU(2) Wess-Zumino-Witten conformal theory. From the DMRG calculations, we estimate this multicritical point to lie in the range -0.2 <β*<-0.15 and 0.47 <α*<0.53 . We further find that the dimerized and NNN-AKLT phases are separated from each other by a line of first-order phase transitions that terminates at the multicritical point. We establish that transitions out of the Haldane phase into the dimer or NNN-AKLT phases are topological in nature and occur either with or without closing of the bulk gap, respectively. We also study short-range incommensurate-to-commensurate transitions in the resulting phase diagram. Inside the Haldane phase, we show the existence of two incommensurate crossovers: the Lifshitz transition and the disorder transition of the first kind, marking incommensurate correlations in momentum and real space, respectively. Notably, these crossover lines stretch across the entire (β ,α ) phase diagram, merging into a single incommensurate
All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra
Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )
1992-12-10
In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.
Quantum phase transition in dimerised spin-1/2 chains
NASA Astrophysics Data System (ADS)
Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali
2015-11-01
Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.
Quasi-local conserved charges and spin transport in spin-1 integrable chains
NASA Astrophysics Data System (ADS)
Piroli, Lorenzo; Vernier, Eric
2016-05-01
We consider the integrable one-dimensional spin-1 chain defined by the Zamolodchikov–Fateev (ZF) Hamiltonian. The latter is parametrized, analogously to the XXZ spin-1/2 model, by a continuous anisotropy parameter and at the isotropic point coincides with the well-known spin-1 Babujian–Takhtajan Hamiltonian. Following a procedure recently developed for the XXZ model, we explicitly construct a continuous family of quasi-local conserved operators for the periodic spin-1 ZF chain. Our construction is valid for a dense set of commensurate values of the anisotropy parameter in the gapless regime where the isotropic point is excluded. Using the Mazur inequality, we show that, as for the XXZ model, these quasi-local charges are enough to prove that the high-temperature spin Drude weight is non-vanishing in the thermodynamic limit, thus establishing ballistic spin transport at high temperature.
The spin- {1}/{2} transverse XX chain with regularly alternating bonds and fields
NASA Astrophysics Data System (ADS)
Derzhko, Oleg; Richter, Johannes; Zaburannyi, Oles'
1999-11-01
We use continued fractions for a study of the thermodynamic properties of the periodic nonuniform spin- {1}/{2} isotropic XY chain in a non-random/random (Lorentzian) transverse field. The obtained results permit to examine the influence of a magnetic field and randomness on the spin-Peierls dimerization.
NASA Astrophysics Data System (ADS)
Souletie, Jean; Drillon, Marc; Rabu, Pierre; Pati, Swapan K.
2004-08-01
The phenomenological expression χT/(Ng2μB2/k)=C1nexp(-W1n/T)+C2nexp(-W2n/T) describes very accurately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of Heisenberg spins S=1 , whose size n is even and ranges from 6 to 20. This expression has been obtained through a strategy justified by scaling considerations together with finite size numerical calculations. For n large, the coefficients of the expression converge towards C1=0.125 , W1=0.451J , C2=0.564 , W2=1.793J ( J is the exchange constant), which are appropriate for describing the susceptibility of the spin-1 Haldane chain. The Curie constant, the paramagnetic Curie-Weiss temperature, the correlation length at T=0 and the Haldane gap are found to be closely related to these coefficients. With this expression, a very good description of the magnetic behavior of Y2BaNiO5 and of Ni(C2H8N2)2NO2ClO4 (NENP), the archetype of the Haldane gap systems, is achieved over the whole temperature range.
NASA Astrophysics Data System (ADS)
Derzhko, Oleg; Richter, Johannes; Krokhmalskii, Taras; Zaburannyi, Oles'
2004-06-01
Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic quantities for the spin- 1 /2 transverse Ising chain with periodically varying intersite interactions and/or on-site fields. We consider in detail the properties of the chains having a period of the transverse field modulation equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points, where the number of transition points for a given period of alternation strongly depends on the specific set of the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However, for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse Ising chain may exhibit plateaulike steps in the zero-temperature dependence of the transverse magnetization vs transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state properties of regularly alternating transverse Ising and transverse XX chains and of regularly alternating quantum and classical chains. Making use of the corresponding unitary transformations we extend the elaborated approach to the study of thermodynamics of regularly alternating spin- 1 /2 anisotropic XY chains without field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the exchange interaction anisotropy destroys the spin-Peierls dimerized phase.
Heisenberg antiferromagnetic chain with multiple spin 1/2 particles of different flavors per site
NASA Astrophysics Data System (ADS)
Duki, Solomon F.; Yu, Yi-Kuo
Motivated by the discoveries of quasi-1D magnetic systems, we studied a quantum mechanical spin lattice system consisting of a one-dimensional antiferromagnetic Heisenberg chain. In this system we considered M spin 1/2 particles of different flavors per site, and the low-lying states, ground state included, of the Hamiltonian was solved numerically using the exact diagonalization method for finite cluster sizes. We have also obtained the corresponding solutions for systems of the same chain length but with one spin M/2 particle per site. The low energy spectra of both systems are then compared. For M = 2 and M =3, our result shows that the two spin chain systems (one spin M/2 per site vs. M spin 1/2 of different flavors per site) have the same excitation spectra at low energy and the number of overlapped states increases as the size of the cluster increases. The observed overlap also indicates that low energy excitations of the M flavored spin 1/2 chain system selects the high spin states, effectively satisfying the Hund's Rule even though the system does not possess the orbital angular momentum. This work was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.
Local Magnetization in the Impure Spin 1/2 Anisotropic Ising-Heisenberg Chains
NASA Astrophysics Data System (ADS)
Gildenblat, Gennady
A theory of the Friedel-type oscillations of the local magnetization in the impure antiferromagnetic spin 1/2 chains is developed using the Green function equations of motion in the pseudo-fermion representation. For the isotropic XY (XX) chain, the problem is solved exactly, while the Ising-Heisenberg model is investigated numerically within a temperature-dependent Hartree-Fock approximation. It is shown that the Hartree-Fock self consistency equations for the uniformly magnetized XXZ chain can be recovered as a particular case of the formalism developed in the present work. Comparison with the earlier perturbation theory treatment in a free-fermion approximation reveals that the magnetic field dependence of the perturbation of the local magnetization is sensitive to the formation of the localized states and the exact form of the energy dispersion law of the quasi-particles. In particular it is shown that the perturbations of the local magnetization in the impure spin 1/2 chains disappear in the absence of the external magnetic field. Using the exact solution for the XY chain it is shown that unless the localized energy levels are formed outside the pseudo-fermion energy band the singularity of the local magnetization existing in the pure chain disappears at an arbitrary distance from the single impurity spin. For the ferromagnetic chain with the ferromagnetically coupled impurity the solution of the Hartree-Fock equations at low temperatures agrees reasonably with the results of the linear spin-wave theory. If the impurity is antiferromagnetically coupled, then, in contrast with the results of the spin -wave theory, the Hartree-Fock approximation agrees with the exact result for the zero-field ground state spin defect at the impurity site. Unlike the previous methods, the technique developed in this work permits investigation of the whole temperature range and predicts the correct Curie-Weiss behavior at sufficiently large temperatures.
Dynamic Structure Factors of the Spin-1/2 XX Chain with Dzyaloshinskii-Moriya Interaction
NASA Astrophysics Data System (ADS)
Derzhko, Oleg; Verkholyak, Taras
2006-10-01
We consider the spin-1/2 isotropic XY chain in a (z) transverse magnetic field with the Dzyaloshinskii-Moriya interaction directed along the z-axis in spin space and examine the effects of the latter interaction on the zz, xx (yy) and xy (yx) dynamic structure factors. The Dzyaloshinskii-Moriya interaction does not manifest itself in the zz dynamic quantities. In contrast, the xx (yy) and xy (yx) dynamic structure factors show dramatical changes owing to the Dzyaloshinskii-Moriya interaction. Implications of our results for electron spin resonance experiments are briefly discussed.
Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio; Collura, Mario; Essler, Fabian H. L.; Calabrese, Pasquale
2014-03-01
We consider the time evolution after quantum quenches in the spin-1/2 Heisenberg XXZ quantum spin chain with Ising-type anisotropy. The time evolution of short-distance spin-spin correlation functions is studied by numerical tensor network techniques for a variety of initial states, including Néel and Majumdar-Ghosh states and the ground state of the XXZ chain at large values of the anisotropy. The various correlators appear to approach stationary values, which are found to be in good agreement with the results of exact calculations of stationary expectation values in appropriate generalized Gibbs ensembles. In particular, our analysis shows how symmetries of the post-quench Hamiltonian that are broken by particular initial states are restored at late times.
Energy as Entanglement Witness in Bilinear-Biquadratic Spin-1 Chain
NASA Astrophysics Data System (ADS)
Xu, Feng; Wang, An-Min; Zhao, Ning-Bo; Su, Xiao-Qiang; Zhu, Ren-Gui
2006-10-01
Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N = 7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.
Symmetry-protected topological phases and transition in a frustrated spin-1/2 XXZ chain
NASA Astrophysics Data System (ADS)
Ueda, Hiroshi; Onoda, Shigeki
2014-12-01
A frustrated spin-1/2 XXZ zigzag chain relevant to Rb2Cu2Mo3O12 is revisited in the light of symmetry-protected topological (SPT) phases. Using a density-matrix renormalization group method for infinite systems, we identify projective representations for four distinct time-reversal invariant SPT phases; two parity-symmetric dimer phases near the Heisenberg and XX limits and two parity-broken vector-chiral (VC) dimer phases in between. A small bond alternation in the nearest-neighbor ferromagnetic exchange coupling induces a direct SPT transition between the two distinct VC dimer phases. It is also found numerically that two Berezinskii-Kosterlitz-Thouless transitions, which occur from the gapless to the two distinct gapped VC phases in the case of δ =0 , meet each other in the case of δ >0 at a Gaussian criticality of the same Tomonaga-Luttinger parameter value as in the SU(2)-symmetric case.
Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.
2016-07-01
We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 is determined for the Yang-Lee edge singularity exponents.
Quantum and classical thermal correlations in the XY spin-(1/2) chain
Maziero, J.; Guzman, H. C.; Celeri, L. C.; Serra, R. M.; Sarandy, M. S.
2010-07-15
We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.
Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain
NASA Astrophysics Data System (ADS)
Paul, Susobhan; Ghosh, Asim Kumar
2016-05-01
Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.
Quantum discord in spin-1/2 Heisenberg chains with Dzyaloshinkii-Moriya interaction
NASA Astrophysics Data System (ADS)
Ma, Xiao San; Wang, An Min
2015-12-01
We have investigated the quantum discord (QD) of the thermal density matrix of spin-1/2 Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction. With fermionization technique, we study the mutual effect of DM interaction and the external magnetic field on the QD and the entanglement. Our analysis implies that the DM interaction can enhance the QD while the external magnetic field will shrink the QD. By a comparison between the entanglement and the QD, we find that the QD is more robust to the temperature and to the external magnetic field than the entanglement of formation (EoF) in the sense that the EoF takes a zero value while the QD does not for high temperature and strong external magnetic field. This point confirms the conclusion that there exist some separable states containing non-zero QD.
Quantum and classical thermal correlations in the XY spin-(1)/(2) chain
NASA Astrophysics Data System (ADS)
Maziero, J.; Guzman, H. C.; Céleri, L. C.; Sarandy, M. S.; Serra, R. M.
2010-07-01
We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.
Thermal conductivity of anisotropic and frustrated spin-1/2 chains
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, F.; Honecker, A.; Cabra, D. C.; Brenig, W.
2002-10-01
We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosonization, and exact diagonalization of systems with N<=18 sites. We present results for the temperature dependence of the zero-frequency weight of the conductivity for several values of the anisotropy Δ. In the gapless regime, we show that the mean-field theory compares well to known results and that the low-temperature limit is correctly described by bosonization. In the antiferromagnetic and ferromagnetic gapped regime, we analyze the temperature dependence of the thermal conductivity numerically. The convergence of the finite-size data is remarkably good in the ferromagnetic case. Finally, we apply our numerical method and mean-field theory to the frustrated chain where we find a good agreement of these two approaches on finite systems. Our numerical data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case of the antiferromagnetic gapped regime of the frustrated chain.
Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions
NASA Astrophysics Data System (ADS)
Prosen, Tomaž
2014-09-01
A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ) spin-1/2 chain for periodic (or twisted) boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian) transfer operator in fundamental representation (with auxiliary spin s=1/2), and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations) we propose a simple explicit construction of infinite time averages of local operators such as the spin current.
Entanglement and quantum phase transitions in matrix-product spin-1 chains
Alipour, S.; Karimipour, V.; Memarzadeh, L.
2007-05-15
We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that the entanglement of two sites have scaling behavior near the critical point.
Kaleidoscope of quantum phases in a long-range interacting spin-1 chain
NASA Astrophysics Data System (ADS)
Gong, Z.-X.; Maghrebi, M. Â. F.; Hu, A.; Foss-Feig, M.; Richerme, P.; Monroe, C.; Gorshkov, A. Â. V.
2016-05-01
Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1 /rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲3 , long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1 ) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.
Spin-stripe phase in a frustrated zigzag spin-1/2 chain
Pregelj, M.; Zorko, A.; Zaharko, O.; Nojiri, H.; Berger, H.; Chapon, L. C.; Arčon, D.
2015-01-01
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole–dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole–dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena. PMID:26068618
Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.
Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T
2013-11-01
Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555
Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement
Wagner, Andreas; Bruder, Christoph; Demler, Eugene
2011-12-15
We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.
NASA Astrophysics Data System (ADS)
Ghosh, Joydip
2014-12-01
Spin-1 systems, in comparison to spin-1/2 systems, offer a better security for encoding and transferring quantum information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy levels, thereby being capable of emulating higher-spin systems. Here I consider a one-dimensional lattice of nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit state (a state encoded in a three-level quantum system) across the chain. I assume adjustable couplings between adjacent transmons, derive an analytic constraint for the control pulse, and show how to satisfy the constraint to achieve a high-fidelity state transfer under current experimental conditions. My protocol thus enables enhanced quantum communication and information processing with promising superconducting qutrits.
NASA Astrophysics Data System (ADS)
Lei, Shuguo; Tong, Peiqing
2016-04-01
The quantum coherence based on Wigner-Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local σ ^z quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local σ ^x and σ ^y quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.
Quantum Phase Transitions in Alternating-Bond Mixed Diamond Chains with Spins 1 and 1/2
NASA Astrophysics Data System (ADS)
Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori
2010-04-01
We investigate the mixed diamond chain composed of spins 1 and 1/2 when the exchange interaction is alternatingly distorted. Depending on the strengths of frustration and distortion, this system has various ground states. Each ground state consists of an array of spin clusters separated by singlet dimers by virtue of an infinite number of local conservation laws. We determine the ground-state phase diagram by numerically analyzing each spin cluster. In particular, for strong distortions, we find an infinite series of quantum phase transitions using the cluster expansion method and conformal field theory. This leads to an infinite series of steps in the behavior of Curie constant and residual entropy.
NASA Astrophysics Data System (ADS)
Zadnik, Lenart; Medenjak, Marko; Prosen, Tomaž
2016-01-01
We construct quasilocal conserved charges in the gapless (| Δ | ≤ 1) regime of the Heisenberg XXZ spin-1/2 chain, using semicyclic irreducible representations of Uq (sl2). These representations are characterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra. Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do not possess the U (1) symmetry of the Hamiltonian. The possibility of application in relaxation dynamics resulting from U (1)-breaking quantum quenches is discussed.
Quantum Monte Carlo Simulations of Adulteration Effect on Bond Alternating Spin=1/2 Chain
NASA Astrophysics Data System (ADS)
Zhang, Peng; Xu, Zhaoxin; Ying, Heping; Dai, Jianhui; Crompton, Peter
The S=1/2 Heisenberg chain with bond alternation and randomness of antiferromagnetic (AFM) and ferromagnetic (FM) interactions is investigated by quantum Monte Carlo simulations of loop/cluster algorithm. Our results have shown interesting finite temperature magnetic properties of this model. The relevance of our study to former investigation results is discussed.
NASA Astrophysics Data System (ADS)
Vekua, T.; Sun, G.
2016-07-01
Exact asymptotic expressions of the uniform parts of the two-point correlation functions of bilinear spin operators in the Heisenberg antiferromagnetic spin-1/2 chain are obtained. Apart from the algebraic decay, the logarithmic contribution is identified, and the numerical prefactor is determined. We also confirm numerically the multiplicative logarithmic correction of the staggered part of the bilinear spin operators <
Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2015-02-01
For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.
Ren, Jie; Liu, Guang-Hua; You, Wen-Long
2015-03-18
We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other. PMID:25707024
Hovhannisyan, V V; Strečka, J; Ananikian, N S
2016-03-01
The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. PMID:26836749
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Strečka, J.; Ananikian, N. S.
2016-03-01
The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.
Finite temperature dynamics of spin-1/2 chains with symmetry breaking interactions
NASA Astrophysics Data System (ADS)
Manmana, Salvatore R.; Tiegel, Alexander C.; Pruschke, Thomas; Honecker, Andreas
I will discuss recent developments for flexible matrix product state (MPS) approaches to calculate finite-temperature spectral functions of low-dimensional strongly correlated quantum systems. The main focus will be on a Liouvillian formulation. The resulting algorithm does not specifically depend on the MPS formulation, but is applicable for any wave function based approach which can provide a purification of the density matrix, opening the way for further developments of numerical methods. Based on MPS results for various spin chains, in particular systems with Dzyaloshinskii-Moriya interactions caused by spin-orbit coupling and dimerized chains, I will discuss how symmetry breaking interactions change the nature of the finite-temperature dynamic spin structure factor obtained in ESR and neutron scattering experiments. We acknowledge funding by the Helmholtz Virtual Institute ``New States of Matter and Their Excitations''.
Kenzelmann, M.; Cowley, R. A.; Buyers, W. J. L.; Tun, Z.; Coldea, Radu; Enderle, M.
2002-01-01
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl{sub 3}. Measurements over a wide range of wave-vector transfers along the chain confirm that above T{sub N} CsNiCl{sub 3} is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length {zeta} = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl{sub 3} for T {approx}< 12 K, possibly caused by multiply frustrated interchain interactions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.
Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K
2015-10-14
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions. PMID:26403307
Deformable spin- (1)/(2) XX chain with three-site interactions at zero and finite temperatures
NASA Astrophysics Data System (ADS)
Derzhko, Oleg; Krokhmalskii, Taras; Stolze, Joachim; Verkholyak, Taras
2009-03-01
We study spin-Peierls structural lattice instabilities for a spin-1/2 isotropic XY chain with three-site interactions of (XZX+YZY) type. Within the adopted adiabatic treatment we have to examine the ground-state energy or the Helmholtz free energy of the spin chain with exchange couplings varying coherently with a possible static lattice distortion pattern. Since the considered spin model can be converted into a system of noninteracting spinless fermions the required ground-state energy or the Helmholtz free energy can be calculated accurately without making any approximations. We examine rigorously several lattice distortion patterns focusing on dimerized and trimerized ones, which owe their presence to the spin-Peierls mechanism. We present phase diagrams illustrating the effect of the three-site interaction on the spin-Peierls lattice distortions. Finally we discuss some properties of the deformable spin chain in the ground state and at finite temperatures. In particular, we examine the transverse magnetization, the static transverse susceptibility and the specific heat illustrating the changes in these quantities due to lattice instabilities.
Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain
NASA Astrophysics Data System (ADS)
Parvej, Aslam; Kumar, Manoranjan
2016-03-01
In the presence of an axial magnetic field, a frustrated isotropic J1 - J2 model system shows many exotic phases, such as vector chiral and multipolar phases. In this paper, the phase boundaries of these exotic phases are calculated based on the order parameters, energy level crossings and magnetization jumps in the system. The order parameter of the vector chiral phase is calculated using the broken symmetry states at a finite magnetic field. The exact diagonalization and the density matrix renormalization group results are used to show that the vector chiral phase exists only in a narrow range of J2/J1 parameter space. In the quadrupolar phase, the magnetization jumps can be associated with the binding energy of two magnons localized at two different legs of the zigzag chain. The energy level crossings and degeneracies in the presence of the axial magnetic field are studied in detail using the exact diagonalization method.
Ground state and zero temperature phase diagrams of the XXZ antiferromagnetic spin- {1}/{2} chain
NASA Astrophysics Data System (ADS)
Zhou, P.
1990-05-01
An expression of the XXZ model is given from which the Ising, isotropic XY and Heisenberg models may be more properly obtained by varying only one anisotropy parameter. The ground state and spin configuration of the antiferromagnetic quasi-classical s = {1}/{2}XXZ chain in a magnetic field of arbitrary direction are studied. The phase diagrams with a longitudinal ( h⊥ = 0) and a transverse field ( h‖ = 0) are presented. Because we take into account an effect of anisotropy in the Zeeman interaction, the phase diagrams are quite different from those given by Kurmann, et al. [Physica A 112 (1982) 235]. A ferromagnetic-antiferromagnetic first order phase transition is indicated for the Ising case with h⊥=0.
NASA Astrophysics Data System (ADS)
Gu, Bo; Su, Gang; Gao, Song
2006-04-01
The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.
NASA Astrophysics Data System (ADS)
Durganandini, P.
We consider the spin 1/2 XX chain with three spin interactions of the XZX+YXY and XZY-YZX types in an external magnetic field and with Dzyaloshinskii-Moriya (D-M) interaction. Interpreting the D-M interaction as a local electric polarization, we study the magnetoelectric effects in the system by using the exact solution of the problem. We obtain the ground state phase diagram by calculating the electric polarization, magnetization and isentropes. There are various regimes of magnetic and electric polarization depending on the relative strengths of the three spin interaction as well as that of the external fields. For a certain range of three spin interaction strengths, the system shows the existence of finite magnetization and electric polarization even in the absence of any external fields. The external electric and magnetic fields modify the ground state phases and can be used to tune the various regimes. We also calculate the entropy and analyze the electrocaloric and magnetocaloric effects. We show that the electrocaloric and magnetocaloric effects can be used to obtain information about the magnetoelectric effects in the system. I thank DST, India for financial support through research grant.
NASA Astrophysics Data System (ADS)
Liu, Guang-Hua; Dou, Jun-Ya; Lu, Peng
2016-03-01
The effect of the Dzyaloshinskii-Moriya interaction (DMI) on ground-state phase diagrams of spin-1 Heisenberg-Ising alternating chains is investigated by the infinite time-evolving block decimation method. Three rich phase diagrams for three cases with different DMIs are obtained and discussed systematically. The DMI on even bonds plays a key role in the ground-state phase diagram, especially the appearance of the Haldane phase. However, the DMI on odd bonds seems to have very weak effect on the phase diagram. Both the odd- and even-string orders become nonzero in the Haldane phase, and have their maximum values at θ = π. For the odd-dimer phase, the even-string correlator vanishes absolutely despite varying θ, but a double-peak structure of the odd-string correlator is observed. Odd-string correlator becomes maximum at θ = π / 2 and 3 π / 2, but vanishes at θ = π. It indicates that the generalized string correlator can be used to distinguish the odd-dimer from the Haldane phase. Doubly degenerate entanglement spectrum is observed in the Haldane phase, which can be regarded as a clear signature of the existence of topological orders. Strong enough transverse nearest-neighbor correlations are found to be very important for the appearance of the Haldane and the odd-dimer phases.
Coupled antiferromagnetic spin-1/2 chains in green dioptase Cu6[Si6O18] .6 H2O
NASA Astrophysics Data System (ADS)
Podlesnyak, A.; Anovitz, L. M.; Kolesnikov, A. I.; Matsuda, M.; Prisk, T. R.; Toth, S.; Ehlers, G.
2016-02-01
In this paper, we report inelastic neutron scattering measurements of the magnetic excitations of green dioptase Cu6[Si6O18] .6 H2O . The observed spectrum contains two magnetic modes and a prominent spin gap that is consistent with the ordered ground state of Cu moments coupled antiferromagnetically in spiral chains along the c axis and ferromagnetically in a b planes on the hexagonal cell. The data are in excellent agreement with a spin-1/2 Hamiltonian that includes antiferromagnetic nearest-neighbor intrachain coupling Jc=10.6 (1 ) meV, ferromagnetic interchain coupling Ja b=-1.2 (1 ) meV, and exchange anisotropy Δ Jc=0.14 (1 ) meV. We calculated the sublattice magnetization to be strongly reduced, ˜0.39 μB . This appears compatible with a reduced Néel temperature, TN=14.5 K≪Jc , and can be explained by a presence of quantum spin fluctuations.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiang, Ying
2016-09-01
By treating the hopping parameter as a perturbation, with the help of cumulant expansion and the re-summing technique, the one-particle Green’s function of a spin-1 Bose system in a honeycomb optical lattice is calculated analytically. By the use of the re-summed Green’s function, the quantum phase diagrams of the system in ferromagnetic cases as well as in antiferromagnetic cases are determined. It is found that in antiferromagnetic cases the Mott insulating states with even filling factor are more robust against the hopping parameter than that with odd filling factor, in agreement with results via other different approaches. Moreover, in order to illustrate the effectiveness of the re-summed Green’s function method in calculating time-of-flight pictures, the momentum distribution function of a honeycomb lattice spin-1 Bose system in the antiferromagnetic case is also calculated analytically and the corresponding time-of-flight absorption pictures are plotted.
NASA Astrophysics Data System (ADS)
Ranjith, K. M.; Nath, R.; Majumder, M.; Kasinathan, D.; Skoulatos, M.; Keller, L.; Skourski, Y.; Baenitz, M.; Tsirlin, A. A.
2016-07-01
We report the thermodynamic properties, magnetic ground state, and microscopic magnetic model of the spin-1 frustrated antiferromagnet Li2NiW2O8 , showing successive transitions at TN 1≃18 K and TN 2≃12.5 K in zero field. Nuclear magnetic resonance and neutron diffraction reveal collinear and commensurate magnetic order with the propagation vector k =(1/2 ,0 ,1/2 ) below TN 2. The ordered moment of 1.8 μB at 1.5 K is directed along [0.89 (9 ),-0.10 (5 ),-0.49 (6 )] and matches the magnetic easy axis of spin-1 Ni2 + ions, which is determined by the scissor-like distortion of the NiO6 octahedra. Incommensurate magnetic order, presumably of spin-density-wave type, is observed in the region between TN 2 and TN 1. Density-functional band-structure calculations put forward a three-dimensional spin lattice with spin-1 chains running along the [01 1 ¯] direction and stacked on a spatially anisotropic triangular lattice in the a b plane. We show that the collinear magnetic order in Li2NiW2O8 is incompatible with the triangular lattice geometry and thus driven by a pronounced easy-axis single-ion anisotropy of Ni2 +.
NASA Astrophysics Data System (ADS)
Deguchi, Tetsuo; Ranjan Giri, Pulak
2016-04-01
Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2013-11-01
The ground state and magnetization process of the mixed spin-(1,1/2) Ising diamond chain are exactly solved by employing the generalized decoration-iteration mapping transformation and the transfer-matrix method. The decoration-iteration transformation is first used in order to establish a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain in a non-zero magnetic field, which is subsequently exactly treated within the framework of the transfer-matrix technique. It is shown that the ground-state phase diagram includes just four different ground states and the low-temperature magnetization curve may exhibit an intermediate plateau precisely at one half of the saturation magnetization. Our rigorous results disprove recent Monte Carlo simulations of Xin et al. [Z. Xin, S. Chen, C. Zhang, J. Magn. Magn. Mater. 324 (2012) 3704], which imply an existence of the other magnetization plateaus at 0.283 and 0.426 of the saturation magnetization.
NASA Astrophysics Data System (ADS)
Liu, Jin Hua; Wang, Hai Tao
2015-10-01
Topological quantum phase transitions are numerically investigated in a spin-1/2 dimerized and frustrated Heisenberg chain by using infinite matrix product state representation with the infinite time evolving block decimation method. Quantum fidelity approach is employed to detect the degenerate ground states and quantum phase transitions. By calculating the long-range string order parameters, we find two topological Haldane phases characterized by two long-range string orders. Also, continuous and discontinuous behaviors of von Neumann entropy show that phase transitions between two topological Haldane phases are topologically continuous and discontinuous quantum phase transitions. For the topologically continuous phase transition, the central charge at the critical point is obtained as c = 1, which means that the topologically continuous quantum phase transition belongs to the Gaussian universality class.
Magnetic specific heat studies of two Ising spin 1/2 chain systems M(N3)2(bpy)
NASA Astrophysics Data System (ADS)
Hamida, Youcef; Danilovic, Dusan; Yuen, Tan; Li, Kunhao; Li, Jing
2012-04-01
M(N3)2(bpy) [where M = Cu(II), Co(II), N3 = azide, and bpy = 4,4'-bipyridine] are two newly synthesized metal-organic framework (MOF) systems, in which the divalent M ions are connected though the azide ligands forming almost ideal magnetic 1 D chains. Specific heat measurements were performed on these compounds and the magnetic specific heats were deduced using appropriate methods for estimating the lattice specific heat. The magnetic specific heat data were analyzed and fit to the Ising model. The exchange interaction J/kB values of 13.1 K for Cu(N3)2(bpy) and 8.2 K for Co(N3)2(bpy) were obtained and compared to the J values from fitting the measured magnetic susceptibility data.
Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang
2015-04-29
Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually. PMID:25817273
NASA Astrophysics Data System (ADS)
Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang
2015-04-01
Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1 while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.
Cooling into the spin-nematic state for a spin-1 Bose gas in an optical lattice
Chung, M.-C.; Yip Sungkit
2009-05-15
The possibility of adiabatically cooling a spin-1 polar Bose gas to a spin-nematic phase is theoretically discussed. The relation between the order parameter of the final spin-nematic phase and the starting temperature of the spinor Bose gas is obtained both using the mean-field approach for high temperature and spin-wave approach for low temperature. We find that there exists a good possibility to reach the spin-nematic ordering starting with spinor antiferromagnetic Bose gases.
Optically controlled periodical chain of quantum rings
NASA Astrophysics Data System (ADS)
Hasan, M.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.
2016-03-01
We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents, and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.
NASA Astrophysics Data System (ADS)
Soos, Zoltán G.; Parvej, Aslam; Kumar, Manoranjan
2016-05-01
The spin-1/2 chain with isotropic exchange J 1, J 2 > 0 between first and second neighbors is frustrated for either sign of J 1 and has a singlet ground state (GS) for J 1/J 2 ⩾ -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J 1/J 2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector q G of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable q G indicates IC phases in two J 1/J 2 intervals, [-4, - 1.24] and [0.44, 2], and a C-IC point at J 1/J 2 = 2. The decoupled C phase in [-1.24, 0.44] has constant q G = π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and E σ , are degenerate in finite systems at specific frustration J 1/J 2. Level crossing extrapolates in the thermodynamic limit to the same critical points as q G. The S(q) peak diverges at q G = π in the gapless phase with J 1/J 2 > 4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J 2/J 1 but disagree for the decoupled phase with weak exchange J 1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between.
Soos, Zoltán G; Parvej, Aslam; Kumar, Manoranjan
2016-05-01
The spin-1/2 chain with isotropic exchange J 1, J 2 > 0 between first and second neighbors is frustrated for either sign of J 1 and has a singlet ground state (GS) for J 1/J 2 ⩾ -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J 1/J 2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector q G of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable q G indicates IC phases in two J 1/J 2 intervals, [-4, - 1.24] and [0.44, 2], and a C-IC point at J 1/J 2 = 2. The decoupled C phase in [-1.24, 0.44] has constant q G = π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and E σ , are degenerate in finite systems at specific frustration J 1/J 2. Level crossing extrapolates in the thermodynamic limit to the same critical points as q G. The S(q) peak diverges at q G = π in the gapless phase with J 1/J 2 > 4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J 2/J 1 but disagree for the decoupled phase with weak exchange J 1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between. PMID:27028489
Optical spin Hall effects in plasmonic chains.
Shitrit, Nir; Bretner, Itay; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez
2011-05-11
Observation of optical spin Hall effects (OSHEs) manifested by a spin-dependent momentum redirection is presented. The effect occurring solely as a result of the curvature of the coupled localized plasmonic chain is regarded as the locally isotropic OSHE, while the locally anisotropic OSHE arises from the interaction between the optical spin and the local anisotropy of the plasmonic mode rotating along the chain. A wavefront phase dislocation was observed in a circular curvature, in which the dislocation strength was enhanced by the locally anisotropic effect. PMID:21513279
NASA Astrophysics Data System (ADS)
Mahmud, K. W.; Tiesinga, E.
2013-08-01
We study the dynamics of spin-1 atoms in a periodic optical-lattice potential and an external magnetic field in a quantum quench scenario where we start from a superfluid ground state in a shallow lattice potential and suddenly raise the lattice depth. The time evolution of the nonequilibrium state shows collective collapse-and-revival oscillations of matter-wave coherence as well as oscillations in the spin populations. We show that the complex pattern of these two types of oscillations reveals details about the superfluid and magnetic properties of the initial many-body ground state. Furthermore, we show that the strengths of the spin-dependent and spin-independent atom-atom interactions can be deduced from the observations. The Hamiltonian that describes the physics of the final deep lattice not only contains two-body interactions but also effective multibody interactions, which arise due to virtual excitations to higher bands. We derive these effective spin-dependent three-body interaction parameters for spin-1 atoms and describe how spin mixing is affected. Spinor atoms are unique in the sense that multibody interactions are directly evident in the in situ number densities in addition to the momentum distributions. We treat both antiferromagnetic (e.g., 23Na) and ferromagnetic (e.g., 87Rb and 41K) condensates.
Hybrid ion chains inside an optical cavity
NASA Astrophysics Data System (ADS)
Zhou, Zichao; Siverns, James; Quraishi, Qudsia
2016-05-01
Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.
Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan
2014-04-01
Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed. PMID:24617285
Spin gap in the single spin-1/2 chain cuprate Sr1.9Ca0.1CuO3
NASA Astrophysics Data System (ADS)
Hammerath, F.; Brüning, E. M.; Sanna, S.; Utz, Y.; Beesetty, N. S.; Saint-Martin, R.; Revcolevschi, A.; Hess, C.; Büchner, B.; Grafe, H.-J.
2014-05-01
We report Cu63 nuclear magnetic resonance and muon spin rotation measurements on the S =1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9Ca0.1CuO3. An exponentially decreasing spin-lattice relaxation rate T1-1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9Ca0.1CuO2, and it confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J'. Our results therefore suggest that the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain is induced by a local bond disorder of the intrachain exchange coupling J. A low-temperature upturn of T1-1 evidences growing magnetic correlations. However, zero-field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound, which is most likely suppressed by the opening of the spin gap.
NASA Astrophysics Data System (ADS)
Kumar, Manoranjan; Soos, Z. G.
2013-10-01
The quantum phases of one-dimensional spin s=1/2 chains are discussed for models with two parameters, frustrating exchange g=J2>0 between second neighbors and normalized nonfrustrating power-law exchange with exponent α and distance dependence r-α. The ground state (GS) at g=0 has a long-range order (LRO) for α<2 and long-range spin fluctuations for α>2. The models conserve total spin S=SA+SB, have singlet GS for any g, α≥0 and decouple at 1/g=0 to linear Heisenberg antiferromagnets on sublattices A and B of odd- and even-numbered sites. Exact diagonalization of finite chains gives the sublattice spin
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
NASA Astrophysics Data System (ADS)
Lin, Zeren; Liu, Zhirong
2015-12-01
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K' in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T3, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K'.
Spin-1 Dirac-Weyl fermions protected by bipartite symmetry
Lin, Zeren; Liu, Zhirong
2015-12-07
We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.
NASA Astrophysics Data System (ADS)
Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Majumder, M.; Ghoshray, K.; Keller, L.
2016-05-01
Spin-spin correlations and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14 have been investigated by powder neutron diffraction. The present study reveals a three-dimensional long-range magnetic ordering below 16 K where the magnetic structure consists of ferromagnetic trimers that are coupled ferromagnetically along the spin-chain direction (b axis). The moment components along the a and c axes arrange antiferromagnetically. Our study establishes that the uncompensated moment components along the b axis (mb) result in a net magnetization per unit cell. The magnetic structure, determined in the present study, is in agreement with the results of recent first-principles calculation; however, it is in contrast to a fascinating experimental prediction of ferrimagnetic ordering based on the periodicity of the exchange interactions in CaNi3P4O14 . Our study also confirms the presence of broad diffuse magnetic scattering, due to one-dimensional short-range spin-spin correlations, over a wide temperature range below ˜50 K down to a temperature well below the Tc. Total neutron scattering analysis by the reverse Monte Carlo (RMC) method reveals that the dominating spin-spin correlation above Tc is ferromagnetic and along the b axis. The nearest-neighbor spin-spin correlations along the a and c axes are found to be weakly antiferromagnetic. The nature of the trimer spin structure of the short-range ordered state (above Tc) is similar to that of the 3D long-range ordered state (below Tc). The present investigation of microscopic nature of the magnetic ground state also explains the condition required for the 1/3 magnetization plateau to be observed in the trimer spin chains. In spite of the S =1 trimer chain system, the present compound CaNi3P4O14 is found to be a good realization of a three-dimensional magnet below Tc=16 K with full ordered moment values of ˜2 μB/Ni2 + (1.98 and 1.96 μB/Ni2 + for two Ni sites, respectively) at 1.5 K.
Spin quantum Hall effects in featureless nonfractionalized spin-1 magnets
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming; Lee, Dung-Hai
2014-05-01
The Affleck-Kennedy-Lieb-Tasaki state (or Haldane phase) in a spin-1 chain represents a large class of gapped topological paramagnets that host symmetry-protected gapless excitations on the boundary. In this work, we show how to realize this type of featureless spin-1 state on a generic two-dimensional lattice. These states have a gapped spectrum in the bulk, but they support gapless edge states protected by spin rotational symmetry along a certain direction, and they exhibit the spin quantum Hall effect. Using a fermion representation of integer spins, we show a concrete example of such spin-1 topological paramagnets on a kagome lattice, and we suggest a microscopic spin-1 Hamiltonian that may realize it.
Dynamical entanglement purification using chains of atoms and optical cavities
Gonta, Denis; Loock, Peter van
2011-10-15
In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.
2016-01-01
We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.
Crystal stability and optical properties of organic chain compounds
NASA Astrophysics Data System (ADS)
Zupanovic, P.; Bjelis, A.; Barisic, S.
1999-01-01
The solution to the long-standing problem of the cohesion of organic chain compounds is proposed. We consider the tight-binding dielectric matrix with two electronic bands per chain, determine the corresponding hybridized collective modes, and show that three among them are considerably softened due to strong dipole-dipole and monopole-dipole interactions. By this we explain the unusual low-frequency optical activity of TTF-TCNQ, including the observed 10 meV anomaly. The softening of the modes also explains the cohesion of the mixed-stack lattice, the fractional charge transfer almost independent of the material, and the formation of the charged sheets in some compounds.
Optical properties of extended-chain polymers under stress
NASA Astrophysics Data System (ADS)
Ramirez, Rafael G.; Eby, R. K.
1995-09-01
Birefringence and x-ray diffraction experiments have been carried out on Kevlar 49(superscript R) fibers under tensile stress to monitor structure changes under the stress field. The origin of the observed birefringence is discussed in some detail. Results from theoretical calculations using semi-empirical molecular orbital techniques are presented and contrasted to the experimental observations. The calculations involved the estimation of chain polarizability and were performed under simulated stress conditions using the AM1 Hamiltonian in MOPAC. Polarizability is then used to calculate the birefringence as a function of tensile stress, by using existing internal field theory. This theoretical approach is applied to predict the optical properties of highly oriented extended-chain polyethylene, as well as those for poly(p' phenylene therephtalamide); the latter being the base polymer in Kevlar fibers. Results reveal reasonable birefringence predictions when compared to available experimental results in the literature. Also, it is found that the contribution from orienting crystallites under the stress field, to the measured birefringence in Kevlar fibers, is only a small fraction of the total. However, the calculations predict a significant contribution from deformation (extension) at the molecular level.
Multistability, chains, and cycles in optical multiwave mixing processes.
Cohen, M S; Julian, W H
1990-12-10
We exhibit the information processing capabilities of the first few terms that arise in the amplitude expansion for resonant scattering in a medium with a delay nonlinearity (generalized volume hologram). We begin by showing how the physics of intensity dependent charge transport near a two-photon resonance gives both delayed quadratic and quartic nonlinearities. After reviewing the utility for matrix associative memories exhibited by the delayed quadratic nonlinearity (the ordinary Gabor hologram), we examine the role of the quartic nonlinearity, which is a fourth rank tensor. The symmetries of this tensor determine the information processing capabilities (via multilinear correlations) of the medium in an optical computing paradigm. We find multiple basins of stability, Jordan strings, and cycles as possible dynamic behaviors for the medium. We indicate how each corresponds to an information processing task: multiple basins to multiassociative memory, Jordan strings and cycles to chain and sequence memory and to group-invariant pattern recognition. We briefly indicate how branching processes may be implemented by the fourth rank mode-coupling tensor. PMID:20577548
Topological paramagnetism in frustrated spin-1 Mott insulators
NASA Astrophysics Data System (ADS)
Wang, Chong; Nahum, Adam; Senthil, T.
2015-05-01
Time-reversal-protected three-dimensional (3D) topological paramagnets are magnetic analogs of the celebrated 3D topological insulators. Such paramagnets have a bulk gap and no exotic bulk excitations, but have non-trivial surface states protected by symmetry. We propose that frustrated spin-1 quantum magnets are a natural setting for realizing such states in three dimensions. We describe a physical picture of the ground-state wave function for such a spin-1 topological paramagnet in terms of loops of fluctuating Haldane chains with nontrivial linking phases. We illustrate some aspects of such loop gases with simple exactly solvable models. We also show how 3D topological paramagnets can be very naturally accessed within a slave particle description of a spin-1 magnet. Specifically, we construct slave-particle mean-field states which are naturally driven into the topological paramagnet upon including fluctuations. We propose bulk projected wave functions for the topological paramagnet based on this slave-particle description. An alternate slave-particle construction leads to a stable U (1 ) quantum spin liquid from which a topological paramagnet may be accessed by condensing the emergent magnetic monopole excitation of the spin liquid.
Dimerized ground state in the one-dimensional spin-1 boson Hubbard model
Apaja, Vesa; Syljuaasen, Olav F.
2006-09-15
We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.
Structural and optical properties of self-assembled chains of plasmonic nanocubes
Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia
2014-10-10
Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore » and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less
Structural and optical properties of self-assembled chains of plasmonic nanocubes
Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia
2014-10-10
Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, composition and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.
Plasmonic nanoparticle chain in a light field: a resonant optical sail.
Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I
2011-11-01
Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force. PMID:21942220
Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme
Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.
1993-01-01
An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.
Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme
Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.
1992-01-01
An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.
Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme
Marrone, B.L.; Simpson, D.J.; Unkefer, C.J.; Whaley, T.W.
1993-05-04
An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450[sub scc] enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450[sub scc] catalyzes the conversion of cholesterol to prednesolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.
Characterizing the Haldane phase in quasi-one-dimensional spin-1 Heisenberg antiferromagnets
NASA Astrophysics Data System (ADS)
Wierschem, Keola; Sengupta, Pinaki
2014-12-01
We review the basic properties of the Haldane phase in spin-1 Heisenberg antiferromagnetic chains, including its persistence in quasi-one-dimensional (Q1D) geometries. Using large-scale numerical simulations, we map out the phase diagram for a realistic model applicable to experimental Haldane compounds. We also investigate the effect of different chain coupling geometries and confirm a general mean-field universality of the critical coupling times the coordination number of the lattice. Inspired by recent developments in the characterization of symmetry protected topological (SPT) states, of which the Haldane phase of the spin-1 Heisenberg antiferromagnetic chain is a preeminent example, we provide direct evidence that the Q1D Haldane phase is indeed a nontrivial SPT state.
One-dimensional array of ion chains coupled to an optical cavity
NASA Astrophysics Data System (ADS)
Cetina, Marko; Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Beck, Kristin M.; Ge, Yufei; Scholz, Matthias; Grier, Andrew T.; Chuang, Isaac; Vuletić, Vladan
2013-05-01
We present a novel system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains aligned with the cavity and spaced by 160 μm in a one-dimensional array along the cavity axis. Each chain can contain up to 20 individually addressable Yb+ ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with ≲10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.
NASA Astrophysics Data System (ADS)
Rablau, Corneliu; Vaishnava, Prem; Regmi, Rajesh; Sudakar, Chandran; Black, Correy; Lawes, Gavin; Naik, Ratna; Lavoie, Melissa; Kahn, David
2009-03-01
We report studies of the structural, magnetic, magneto-thermal and magneto-optic properties of dextran, oleic acid, lauric acid and myristic acid surfacted Fe3O4 nanoparticles of hydrodynamic sizes ranging from 32 nm to 92 nm. All the samples showed saturation magnetization of ˜50 emu/g, significantly smaller than the bulk value for Fe3O4, together with superparamagnetic behavior. The ac magnetization measurements on the dextran coated nanoparticles showed frequency dependent blocking temperature, consistent with superparamgnetic blocking. The ferrofluid heating rates in a 250 Gauss, 100 kHz ac magnetic field varied with the chain lengths of the surfactants, with higher heating rates for longer chains. DC-magnetic-field-induced light scattering patterns produced by two orthogonal He-Ne laser beams passing through the ferrofluid sample revealed different optical signatures for different surfactants.
NASA Astrophysics Data System (ADS)
Jiang, Lei; Qu, Chunlei; Zhang, Chuanwei
2016-06-01
The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this paper, we show that such 1D topological chains with MFs may be on demand generated in a two- or three-dimensional nontopological optical lattice with 1D ERD-SOC by modifying local potentials on target locations using experimentally already implemented atomic gas microscopes or patterned (e.g., double- or triple-well) optical lattices. All ingredients in our scheme have been experimentally realized, and the combination of them may pave the way for the experimental observation of MFs in a clean system.
Focusing capability of integrated chains of microspheres in the limit of geometrical optics
NASA Astrophysics Data System (ADS)
Darafsheh, Arash; Allen, Kenneth W.; Fardad, Amir; Fried, Nathaniel M.; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.
2011-03-01
The effects of periodical focusing of light were studied in chains of sapphire microspheres with 300 μm diameters assembled either on a substrate or inside capillary tubing. Dye-doped fluorescent microspheres were used as multimodal sources of light in experimental studies. Significant reduction of the focused spot sizes was observed for chains of spheres compared to a single sphere case. Numerical ray tracing simulations were performed for similar chains assembled inside hollow waveguides to be used as an optical delivery system with mid-infrared lasers for ultra-precise surgery. The device designs were optimized for contact conditions during laser surgery involving short optical penetration depths of light in tissue. It is shown that chains of spheres with n around 1.65-1.75 provide a two-fold improvement of the spatial resolution over single spheres. Potential applications of these microprobes include ultraprecise laser procedures in the eye and brain or piercing a cell, and coupling of multimodal beams into photonic microstructures.
Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers
NASA Astrophysics Data System (ADS)
Yamada, Toshiki; Kaji, Takahiro; Aoki, Isao; Yamada, Chiyumi; Mizuno, Maya; Saito, Shingo; Tominari, Yukihiro; Tanaka, Shukichi; Otomo, Akira
2016-03-01
We investigated the dielectric properties of side-chain electro-optic polymers in a broad THz frequency region (90 GHz to 7 THz). For this investigation, we used terahertz time domain spectroscopy and the absorption coefficient in a broader frequency region of up to 20 THz that was obtained by far-infrared spectroscopy. The polymers studied were a new methacrylate polymer with a high-hyperpolarizability chromophore as the sidechain, a side-chain copolymer Disperse Red 1 polymethylmethacrylate, and pure polymethylmethacrylate. The dielectric properties in the low THz frequency region (∼0.1 THz) provide us with important information about the intrinsic refractive index for ultrahigh-speed electro-optic modulation (∼100 GHz), as well as versatile information such as the absorption coefficient and dielectric loss. The THz and far-infrared spectroscopic data in the wide frequency region provide us with the fundamental data for applications of side-chain electro-optic polymers within THz generation and detection.
Mobile impurity approach to the optical conductivity in the Hubbard chain
NASA Astrophysics Data System (ADS)
Veness, Thomas; Essler, Fabian H. L.
2016-05-01
We consider the optical conductivity in the one-dimensional Hubbard model in the metallic phase close to half-filling. In this regime, most of the spectral weight is located at frequencies above an energy scale Eopt that tends towards the optical gap in the Mott insulating phase for vanishing doping. Using the Bethe ansatz, we relate Eopt to thresholds of particular kinds of excitations in the Hubbard model. We then employ a mobile impurity model to analyze the optical conductivity for frequencies slightly above these thresholds. This entails generalizing mobile impurity models to excited states that are not the highest weight with regards to the SU(2) symmetries of the Hubbard chain, and that occur at a maximum of the impurity dispersion.
Optical Nanofluidic Piston: Assay for Dynamic Force-Compression of Single Confined Polymer Chains
NASA Astrophysics Data System (ADS)
Khorshid, Ahmed; Zimny, Philip; Macos, Patrick; Massarelli, Geremia; Tétreault-La Roche, David; Reisner, Walter
2014-03-01
While single-molecule approaches now have a long-history in polymer physics, past methodology has a key limitation : it is not currently possible to apply well-defined forces to a precise number of chains in a well-defined volume. To this end,we have developed a nanofluidic assay for the study of DNA compression in vitro, the optical nanofluidic piston. The optical nanofluidic piston is a nanofluidic analog of a macroscopic piston-cylinder apparatus based on a nanosphere (``the piston'') optically trapped inside a 200-400nm nanochannel with embedded barrier (the ``cylinder''). The nanofluidic piston enables quantification of force required to compress single or multiple chains within a defined volume. We present combined fluorescence and force-measurements for the compression of T4 DNA under a variety of compression rates. Surprisingly, we find that compression occurs on a force-scale roughly 100x higher than that predicted by equilibrium theories, suggesting that the DNA is present in highly entangled states during the compression. Moreover, we observe that compression at high rates induces a ``shock-wave'' of high-polymer concentration near the bead, suggesting that our setup can quantitatively access novel non-equilibrium polymer phenomena.
Frustrated mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice
NASA Astrophysics Data System (ADS)
Žukovič, M.; Bobák, A.
2015-05-01
Mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice with sublattices A, B, and C are studied for two spin-value distributions (SA,SB,SC) =(1 /2 ,1 /2 ,1 ) and (1 /2 ,1 ,1 ) by Monte Carlo simulations. The nonbipartite character of the lattice induces geometrical frustration in both systems, which leads to the critical behavior rather different from their ferromagnetic counterparts. We confirm second-order phase transitions belonging to the standard Ising universality class occurring at higher temperatures, however, in both models these change at tricritical points (TCP) to first-order transitions at lower temperatures. In the model (1 /2 ,1 /2 ,1 ) , TCP occurs on the boundary between paramagnetic and ferrimagnetic (±1 /2 ,±1 /2 ,∓1 ) phases. The boundary between two ferrimagnetic phases (±1 /2 ,±1 /2 ,∓1 ) and (±1 /2 ,∓1 /2 ,0 ) at lower temperatures is always first order and it is joined by a line of second-order phase transitions between the paramagnetic and the ferrimagnetic (±1 /2 ,∓1 /2 ,0 ) phases at a critical endpoint. The tricritical behavior is also confirmed in the model (1 /2 ,1 ,1 ) on the boundary between the paramagnetic and ferrimagnetic (0 ,±1 ,∓1 ) phases.
Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data
NASA Astrophysics Data System (ADS)
Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.
2015-04-01
In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.
Evolution Equation for a Joint Tomographic Probability Distribution of Spin-1 Particles
NASA Astrophysics Data System (ADS)
Korennoy, Ya. A.; Man'ko, V. I.
2016-07-01
The nine-component positive vector optical tomographic probability portrait of quantum state of spin-1 particles containing full spatial and spin information about the state without redundancy is constructed. Also the suggested approach is expanded to symplectic tomography representation and to representations with quasidistributions like Wigner function, Husimi Q-function, and Glauber-Sudarshan P-function. The evolution equations for constructed vector optical and symplectic tomograms and vector quasidistributions for arbitrary Hamiltonian are found. The evolution equations are also obtained in special case of the quantum system of charged spin-1 particle in arbitrary electro-magnetic field, which are analogs of non-relativistic Proca equation in appropriate representations. The generalization of proposed approach to the cases of arbitrary spin is discussed. The possibility of formulation of quantum mechanics of the systems with spins in terms of joint probability distributions without the use of wave functions or density matrices is explicitly demonstrated.
Optimization design method of satellite imaging chain related with optical axis jitter
NASA Astrophysics Data System (ADS)
Sun, Xiaofeng; Wang, Humei; Wang, Shitao
2014-11-01
As the improvement of imaging resolution of earth observation satellite, the optical axis disturbance (referred as LOS jitter) introduced by satellite moving components, such as reaction wheel, CMG, cryocooler etc., become one of the important factors that limits the imaging quality. So far as we know, there are several methods to control the frequency and amplitude of LOS jitter, such as satellite attitude control system (ACS), vibration isolator, image stabilization system etc. Each method has its own application range: ACS can only response to low frequency disturbance to about one tenth Hz, but it can deal with large amplitude disturbance; vibration isolator usually attenuates LOS jitter amplitude in high frequency, but may magnify jitter in low frequency; image stabilization can stabilize the LOS jitter in low-mid frequency, but limited to small amplitude. So it is necessary to use several methods together to insure the imaging quality. Here comes the question, how to design and allocate the system specification reasonably to satisfy the requirement of imaging and to make it possible for these methods to realize. This paper presents a new optimization method based on the frequency domain for the satellite imaging chain related with optical axis jitter. First describe the performance of each link of the imaging chain in the frequency domain, then through the calculation of image MTF using LOS jitter PSD, build up the relation between the imaging quality and the frequency performance of mixed links, then combine the frequency performance and the spectral decomposition method, the relation between each link and system imaging quality can be built. Then Based on this method, the requirement of imaging quality related to each link can be allocate and optimize quantitatively, which is essential for the design of imaging chain related with optical axis jitter.
Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W
2012-04-01
We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit. PMID:22482543
Optical design of cipher block chaining (CBC) encryption mode by using digital holography
NASA Astrophysics Data System (ADS)
Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam
2016-03-01
We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.
NASA Astrophysics Data System (ADS)
Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.
2012-06-01
Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.
Visualization of an entangled channel spin-1 system
Sirsi, Swarnamala; Adiga, Veena
2010-08-15
Covariance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.
Optical properties of MX chain materials: An extended Peierls-Hubbard model
Bishop, A.R.; Batistic, I.; Gammel, J.T.; Saxena, A.
1991-01-01
We describe theoretical modeling of both pure (MX) and mixed-halide (MX{sub x}X{prime}{sub 1-x}) halogen (X)-bridged transition metal (M) linear chain complexes in terms of an extended Peierls-Hubbard, tight-binding Hamiltonian with 3/4-filling of two-bands. Both inter- and intra-site electron-phonon coupling are included. Electronic (optical absorption), lattice dynamic (IR, Raman) and spin (ESR) signatures are obtained for the ground states, localized excited states produced by impurities, doping or photo-excitation -- excitons, polarons, bipolarons, solitons; and the edge states (which occur in mixed-halide crystals, e.g. PtCl{sub x}Br{sub 1-x}). Adiabatic molecular dynamics is used to explore photodecay channels in pure and impure systems for ground states as well as in the presence of pre-existing polaronic states. 12 refs., 3 figs., 1 tab.
Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.
2016-02-01
We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.
Spin-1 Heisenberg ferromagnet using pair approximation method
NASA Astrophysics Data System (ADS)
Mert, Murat; Kılıç, Ahmet; Mert, Gülistan
2016-06-01
Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.
Measurement-induced disturbance and thermal negativity in 1D optical lattice chain
Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu
2013-03-15
We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.
NASA Astrophysics Data System (ADS)
Cai, Yong-Ming
Reduced dimensionality and quantum confinement place special constraints on electronic excitations that result in unusually large nonlinear optical responses. One major purpose of this study is to provide an experimental basis for the development of a comprehensive microscopic description of the many-electron origin of the second order virtual excitation processes in quasi-one dimensional linear and cyclic chain structures. The experimental results were compared with the calculated results from configuration interaction theory for the magnitude, sign, and dispersion of beta_{rm ijk}( omega_3; omega_1,omega _2). DC field induced second harmonic generation (DCSHG) measurements of molecular units in liquid and gas phases have been performed over a broad frequency range extending from the near infrared through the visible. An infinite dilution extrapolation method which required combined experimental studies of DCSHG, dielectric constant, index of refraction, and specific volume has been employed. Theoretical gas phase values of beta_{rm ijk} can then be compared to experimental infinite dilution values. The DCSHG experimental methodology and techniques receive extensive review in this thesis in addition to the description of a new gas phase measurement.
Esteban, Ruben; Taylor, Richard W; Baumberg, Jeremy J; Aizpurua, Javier
2012-06-19
Self-assembled clusters of metallic nanoparticles separated by nanometric gaps generate strong plasmonic modes that support both intense and localized near fields. These find use in many ultrasensitive chemical and biological sensing applications through surface enhanced Raman scattering (SERS). The inability to control at the nanoscale the structure of the clusters on which the optical response crucially depends, has led to the development of general descriptions to model the various morphologies fabricated. Here, we use rigorous electrodynamic calculations to study clusters formed by a hundred nanospheres that are separated by ∼1 nm distance, set by the dimensions of the macrocyclic molecular linker employed experimentally. Three-dimensional (3D) cluster structures of moderate compactness are of special interest since they resemble self-assembled clusters grown under typical diffusion-limited aggregation conditions. We find very good agreement between the simulated and measured far-field extinction spectra, supporting the equivalence of the assumed and experimental morphologies. From these results we argue that the main features of the optical response of two- and three-dimensional clusters can be understood in terms of the excitation of simple units composed of different length resonant chains. Notably, we observe a qualitative difference between short- and long-chain modes in both spectral response and spatial distribution: dimer and short-chain modes are observed in the periphery of the cluster at higher energies, whereas inside the structure longer chain excitation occurs at lower energies. We study in detail different configurations of isolated one-dimensional chains as prototypical building blocks for large clusters, showing that the optical response of the chains is robust to disorder. This study provides an intuitive understanding of the behavior of very complex aggregates and may be generalized to other types of aggregates and systems formed by large
Dynamics of Spin-(1)/(2) Quantum Plasmas
NASA Astrophysics Data System (ADS)
Marklund, Mattias; Brodin, Gert
2007-01-01
The fully nonlinear governing equations for spin-(1)/(2) quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.
Dynamics of spin-1/2 quantum plasmas.
Marklund, Mattias; Brodin, Gert
2007-01-12
The fully nonlinear governing equations for spin-1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out. PMID:17358613
Coherent spin mixing dynamics in a spin-1 atomic condensate
Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.
2005-07-15
We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.
EARLINET Single Calculus Chain - technical - Part 2: Calculation of optical products
NASA Astrophysics Data System (ADS)
Mattis, Ina; D'Amico, Giuseppe; Baars, Holger; Amodeo, Aldo; Madonna, Fabio; Iarlori, Marco
2016-07-01
In this paper we present the automated software tool ELDA (EARLINET Lidar Data Analyzer) for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the calculus modules of the EARLINET Single Calculus Chain (SCC) which allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way. ELDA delivers profiles of particle extinction coefficients from Raman signals as well as profiles of particle backscatter coefficients from combinations of Raman and elastic signals or from elastic signals only. Those analyses start from pre-processed signals which have already been corrected for background, range dependency and hardware specific effects. An expert group reviewed all algorithms and solutions for critical calculus subsystems which are used within EARLINET with respect to their applicability for automated retrievals. Those methods have been implemented in ELDA. Since the software was designed in a modular way, it is possible to add new or alternative methods in future. Most of the implemented algorithms are well known and well documented, but some methods have especially been developed for ELDA, e.g., automated vertical smoothing and temporal averaging or the handling of effective vertical resolution in the case of lidar ratio retrievals, or the merging of near-range and far-range products. The accuracy of the retrieved profiles was tested following the procedure of the EARLINET-ASOS algorithm inter-comparison exercise which is based on the analysis of synthetic signals. Mean deviations, mean relative deviations, and normalized root-mean-square deviations were calculated for all possible products and three height layers. In all cases, the deviations were clearly below the maximum allowed values according to the EARLINET quality requirements.
Spin-1/2 Heisenberg Antiferromagnet on the Spatially Anisotropic Kagome Lattice
NASA Astrophysics Data System (ADS)
Schnyder, Andreas; Starykh, Oleg; Balents, Leon
2008-03-01
We study the quasi-one-dimensional limit of the Spin-1/2 quantum antiferromagnet on the Kagome lattice, a model Hamiltonian that might be of relevance for the mineral volborthite [1,2]. The lattice is divided into antiferromagnetic spin-chains (exchange J) that are weakly coupled via intermediate ``dangling'' spins (exchange J'). Using bosonization, renormalization group methods, and current algebra techniques we determine the ground state as a function of J'/J. The case of a strictly one-dimensional Kagome strip is also discussed. [1] Z. Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, Hidenori Takagi, Y. Kato, and M. Takigawa, J. Phys. Soc. Japan 70, 3377 (2001). [2] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J.-C. Trumbe, and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).
Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction
Thakur, Pradeep; Durganandini, P.
2015-06-24
We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.
Effect of the side-chain size on the optical and electrical properties of confined-PPV derivatives
NASA Astrophysics Data System (ADS)
Benzarti-Ghédira, Maha; Hrichi, Haikel; Jaballah, Nejmeddine; Ben Chaâbane, Rafik; Majdoub, Mustapha; Ben Ouada, Hafedh
2015-09-01
We have investigated the influence of side-chain size on the optical and charge transport behavior of thin layers of new conjugated polymers based on separated PPV-type chromophores (P1, P2 and P3). The polymers are soluble in common organic solvents. The optical properties of these materials were investigated by UV-Vis absorption and PL spectroscopy. In thin solid films, the polymers show side-group dependent optical behavior; the PL spectra of polymers P2 and P3 showed a blue emission, whereas a green emission was observed for the polymer P1. The optical gaps of these thin layers have been estimated to be 2.93, 2.96 and 2.98 eV for P1, P2 and P3, respectively. The optical study showed a stronger π-π interaction in the P1 film. The electrical properties of ITO/PPV derivative/Al diodes base on these PPV derivatives were investigated by the current/tension characteristics and modeled by the current space-charge-limited (SCLC) mechanism; a higher mobility was obtained in the P2 thin layer. The morphology of the polymer films was studied and correlated to the optical and electrical properties.
Universal Coarsening Dynamics of a Quenched Ferromagnetic Spin-1 Condensate
NASA Astrophysics Data System (ADS)
Williamson, Lewis A.; Blakie, P. B.
2016-01-01
We demonstrate that a quasi-two-dimensional spin-1 condensate quenched to a ferromagnetic phase undergoes universal coarsening in its late time dynamics. The quench can be implemented by a sudden change in the applied magnetic field and, depending on the final value, the ferromagnetic phase has easy-axis (Ising) or easy-plane (X Y ) symmetry, with different dynamical critical exponents. Our results for the easy-plane phase reveal a fractal domain structure and the crucial role of polar-core spin vortices in the coarsening dynamics.
Pair approximation method for spin-1 Heisenberg system
NASA Astrophysics Data System (ADS)
Mert, Murat; Kılıç, Ahmet; Mert, Gülistan
2016-03-01
Spin-1 Heisenberg system on simple cubic lattice is considered in the pair approximation method assuming that the second-nearest-neighbor exchange interaction parameter has a negative value. The system is described in presence of an external magnetic field. The effects of the negative single-ion anisotropy and the negative second-nearest-neighbor exchange interaction on magnetization, internal energy, heat capacity, entropy and free energy are investigated. There are diverse anomalies at low temperature. In the magnetization and other thermodynamic quantities, the first-order phase transitions from ferromagnetic state to antiferromagnetic state and from ferromagnetic state to paramagnetic state have been observed.
On mono-W signatures in spin-1 simplified models
NASA Astrophysics Data System (ADS)
Haisch, Ulrich; Kahlhoefer, Felix; Tait, Tim M. P.
2016-09-01
The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artifact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.
Heisenberg-scaled magnetometer with dipolar spin-1 condensates
NASA Astrophysics Data System (ADS)
Xing, Haijun; Wang, Anbang; Tan, Qing-Shou; Zhang, Wenxian; Yi, Su
2016-04-01
We propose a scheme to realize a Heisenberg-scaled magnetometer using dipolar spin-1 condensates. The input state of magnetometer is prepared by slowly sweeping a transverse magnetic field to zero, which yields a highly entangled spin state of N atoms. We show that this process is protected by a parity symmetry such that the state preparation time is within the reach of the current experiment. We also propose a parity measurement with a Stern-Gerlach apparatus which is shown to approach the optimal measurement in the large atom number limit. Finally, we show that the phase estimation sensitivity of the proposed scheme roughly follows the Heisenberg scaling.
Electric and magnetic polarizabilities of pointlike spin-1/2 particles
NASA Astrophysics Data System (ADS)
Silenko, A. J.
2014-11-01
The electric and magnetic polarizabilities of pointlike spin-1/2 particles with an anomalous magnetic moment (AMM) are calculated by the transformation of an initial Hamiltonian into the Foldy-Wouthuysen (FW) representation. Corresponding results for spin-1/2 and spin-1 particles are compared.
What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.
2003-07-01
Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.
On the path length of an excess electron interacted with optical phonons in a molecular chain
NASA Astrophysics Data System (ADS)
Lakhno, V. D.
2008-08-01
We show that in a molecular chain with dispersionless phonons at zero temperature, a “quasistationary” moving soliton state of an excess electron is possible. As the soliton velocity vanishes, the path length of the excess electron exponentially tends to infinity. It is demonstrated that in the presence of dispersion, when the soliton initial velocity exceeds the maximum group velocity of the chain, the soliton slows down until it reaches the maximum group velocity and then moves stationarily at this maximum group velocity. A conclusion is made of the fallacy of some works were the existence of moving polarons in a dispersionless medium is considered infeasible.
Mott lobes evolution of the spin-1 Bose-Hubbard model
NASA Astrophysics Data System (ADS)
Hincapie-F, A. F.; Franco, R.; Silva-Valencia, J.
2016-02-01
We study spin-1 bosons confined in a one-dimensional optical lattice, taking into consideration both ferromagnetic and antiferromagnetic interaction. Using the density matrix renormalization group, we determine the phase diagram for the two firsts lobes and report the evolution of the first and second Mott lobes with respect to the spin-exchange interaction parameter (U 2). We determine that for the antiferromagnetic case, the first lobe is suppressed while the second grows as |U 2| increases. For the ferromagnetic case, the first and second Mott lobes are suppressed by the spin-exchange interaction parameter. We propose an expresion to describe the evolution of the critical point with the increase in |U 2| for both cases.
Evidence for a spin-1 particle produced by two photons
NASA Astrophysics Data System (ADS)
Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnes, A. V.; Barnett, B. A.; Bauer, D. A.; Bengtsson, H.-U.; Bintinger, D. L.; Bobbink, G. J.; Bolognese, T. S.; Bross, A. D.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fujii, T.; Gary, J. W.; Gorn, W.; Hauptman, J. M.; Hofmann, W.; Huth, J. E.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kees, K. H.; Kenney, R. W.; Kerth, L. T.; Ko, Winston; Koda, R. I.; Kofler, R. R.; Kwong, K. K.; Lander, R. L.; Langeveld, W. G.; Layter, J. G.; Linde, F. L.; Lindsey, C. S.; Loken, S. C.; Lu, A.; Lu, X.-Q.; Lynch, G. R.; Madaras, R. J.; Maeshima, K.; Magnuson, B. D.; Marx, J. N.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Melnikoff, S. O.; Miller, E. S.; Moses, W.; McNeil, R. R.; Nemethy, P.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, D. A.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shapiro, M. D.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Thompson, J. R.; Toge, N.; Toutounchi, S.; van Tyen, R.; van Uitert, B.; Vandalen, G. J.; van Daalen Wetters, R. F.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y. X.; Wayne, M. R.; Wenzel, W. A.; White, J. T.; Williams, M. C.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; Zhang, W.-M.
1986-11-01
Two-photon production of K08K+/-π-/+ states has been studied by the TPC/Two-Gamma experiment at the SLAC storage ring PEP. A resonance of mass 1.42 GeV was seen when one of the photons was quite virtual but not when both photons were nearly real. Production of a spin-1 meson, which cannot be made by two real photons, would fit these observations. The Q2 dependence of the data in the resonance region agrees with this spin assignment and is incompatible with a spin-0 hypothesis. The mass and width of the resonance are similar to those of the E meson, which has been assigned JP=0- and JP=1+ by different experiments.
Spin waves in a spin-1 normal Bose gas
Natu, Stefan S.; Mueller, Erich J.
2010-05-15
We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.
Investigations of quantum pendulum dynamics in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Phase ordering dynamics in spin-1 ferromagnetic condensates
NASA Astrophysics Data System (ADS)
Williamson, Lewis; Blakie, Peter
2016-05-01
Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.
Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms
NASA Astrophysics Data System (ADS)
Malone, Michael W.
Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen
NASA Astrophysics Data System (ADS)
Lampert, Zachary Evan
Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing
New syndioregic main-chain, nonlinear optical polymers, and their ellipsometric characterization
NASA Astrophysics Data System (ADS)
Lindsay, Geoffrey A.; Nee, Soe-Mie F.; Hoover, James M.; Stenger-Smith, John D.; Henry, Ronald A.; Kubin, R. F.; Seltzer, Michael D.
1991-12-01
New nonlinear optical polymers (NLOP) having potential utility in waveguides for the modulation and switching of optical signals are reported. A new class of chromophoric polymers which assume a folded, polar conformation of the backbone have been prepared. The polymers have a syndioregic arrangement of chromophores within the backbone (i.e., a head-to-head, tail-to-tail configuration). Polymers were synthesized by the polymerization of difunctional, precoupled pairs of chromophores and difunctional, bridging groups. Glassy, noncentrosymmetric films were prepared by electric field poling and by Langmuir-Blodgett (LB) deposition. Characterization of multilayer LB films by null ellipsometry to determine the anisotropic refractive parameters was performed at different angles of incidence and at a wavelength of 1.0 (mu).
Zhang, J. M.; Cui, S.; Jing, H.; Zhou, D. L.; Liu, W. M.
2009-10-15
We propose to probe the quantum ground state of a spin-1 Bose-Einstein condensate with the transmission spectra of an optical cavity. By choosing a circularly polarized cavity mode with an appropriate frequency, we can realize coupling between the cavity mode and the magnetization of the condensate. The cavity transmission spectra then contain information of the magnetization statistics of the condensate and thus can be used to distinguish the ferromagnetic and antiferromagnetic quantum ground states. This technique may also be useful for continuous observation of the spin dynamics of a spinor Bose-Einstein condensate.
Reflective and antireflective coatings for the optical chain of the ASTRI SST-2M prototype
NASA Astrophysics Data System (ADS)
Bonnoli, Giacomo; Canestrari, Rodolfo; Catalano, Osvaldo; Pareschi, Giovanni; Perri, Luca; Stringhetti, Luca
2013-09-01
ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and on-field verification of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype is designed according to the Schwarzschild-Couder optical scheme, and adopts a camera based on Silicon Photo Multipliers (SiPM); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) in the second half of 2014, and will start scientific validation phase soon after. With its 4m wide primary dish, the telescope will be sensitive to multi-TeV Very High Energy (VHE) gamma rays up to 100 TeV and above, with a point spread function of ~2 arcminutes and a wide (semiaperture 4.8°) corrected field of view. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. Fully dielectric multi-layer coatings have been developed and tested as an option for the primary mirror, aiming to filter out the large Night Sky Background contamination at wavelengths λ>~700 nm. On the other hand, for the large monolithic secondary mirror a simpler design with quartz-overcoated aluminium has been optimized for incidences far from normality. The conformation of the ASTRI camera in turn pushed towards the design of a reimaging system based on thin pyramidal light guides, that could be optionally integrated in the focal surface, aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly
Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase
NASA Astrophysics Data System (ADS)
Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.
2016-06-01
The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.
The histone code reader SPIN1 controls RET signaling in liposarcoma
Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland
2015-01-01
The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy. PMID:25749382
Spin-Thermodynamics of Ultra-Cold Spin-1 Atoms
NASA Astrophysics Data System (ADS)
Li, Z. B.; Yao, D. X.; Bao, C. G.
2015-08-01
The spin-thermodynamics of a -body spin-1 condensate containing only the spin-degrees of freedom is studied via a theory in which , the total spin and its Z-component are exactly conserved. The magnetic field is considered as zero at first. Then the effect of a residual is evaluated. A temperature is defined as below that all the spatial degrees of freedom can be considered as being frozen and, accordingly, a pure spin-system will emerge. Effort is made to evaluate . When goes up from zero, the internal energy and the entropy experience sharp changes in two narrow domains of surrounding two turning temperatures and , the latter is higher. When or , and remain unchanged. Whereas when , and . It was found that and originate from the gap (the energy difference between the ground state (g.s.) and the first excited state) and the width (the energy difference between the g.s. and the highest state without spatial excitation) of the spectra, respectively. Thus their appearance is a common feature in spin-thermodynamics. In fact, marks the lowest excitation of the spin-modes, while marks the maximization of the entropy in the spin-space. In particular, the T-dependent population density is defined so that the theory can be checked by experimental data. Two kinds of condensates are notable: (i) the strongly trapped systems with a very small , they can work as pure spin-systems at relatively higher temperature; (ii) the systems with a high magnetization (say, ), the dimensions of their spin-spaces are very low. Furthermore, a larger together with a large N (for Rb) or a large (for Na) will lead to a sufficiently large so that a real g.s. can be experimentally created at a higher temperature. The spin-thermodynamics would remain valid whenever the spatial modes decouple from the spin-modes. This can occur at a higher temperature as demonstrated in Pechkis et al. (Phys Rev Lett 111:025301, 2013).
Hakkarainen, T V; Polojärvi, V; Schramm, A; Tommila, J; Guina, M
2012-03-23
We report on the effect of post-growth thermal annealing of [011]- ,[011(-)]-, and [010]-oriented quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy separation during annealing. The photoluminescence blueshift is more rapid for the quantum dot chains than for self-assembled quantum dots that were used as a reference. Furthermore, we studied polarization resolved photoluminescence and observed that annealing reduces the intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots. PMID:22369789
Optical spectra of the silicon-terminated carbon chain radicals SiCnH (n = 3,4,5).
Kokkin, D L; Reilly, N J; Fortenberry, R C; Crawford, T D; McCarthy, M C
2014-07-28
The gas-phase optical spectra of three silicon-terminated carbon chain radicals, SiCnH (n = 3 - 5), formed in a jet-cooled discharge of silane and acetylene, have been investigated by resonant two-color two-photon ionization and laser-induced fluorescence/dispersed fluorescence. Analysis of the spectra was facilitated by calculations performed using equation-of-motion coupled cluster methods. For SiC3H and SiC5H, the observed transitions are well-described as excitations from a (2)Π ground state to a (2)Σ state, in which vibronic coupling, likely involving a higher-lying Π state with a very large predicted f-value (close to unity), is persistent. The lowest (2)Σ states of both species are characterized by a rare silicon triple bond, which was identified previously [T. C. Smith, H. Y. Li, D. J. Clouthier, C. T. Kingston, and A. J. Merer, J. Chem. Phys. 112, 3662 (2000)] in the lowest (2)Σ state of SiCH. Although a strong Π - Π transition is predicted for SiC4H, the observed spectrum near 505 nm more likely corresponds to excitation to a relatively dark Σ state which is vibronically coupled to a nearby Π state. In contrast to the chains with an odd number of carbon atoms, which exhibit relatively sharp spectral features and lifetimes in the 10-100 ns range, SiC4H shows intrinsically broadened spectral features consistent with a ∼100 fs lifetime, and a subsequent long-lived decay (>50 μs) which we ascribe to mixing with a nearby quartet state arising from the same electronic configuration. The spin-orbit coupling constants for both SiC3H and SiC5H radicals were determined to be approximately 64 cm(-1), similar to that of SiCH (69.8 cm(-1)), suggesting that the unpaired electron in these species is localized on the silicon atom. Motivated by the new optical work, the rotational spectrum of linear SiC3H was detected by cavity Fourier-transform microwave spectroscopy in the 13-34 GHz range. Each rotational transition from the [Formula: see text] ground
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Shi, Jia-Dong; Wang, Dong; Ye, Liu
2016-01-01
We study the global entanglement and quantum phase transition with the anisotropy parameter and Dzyaloshinskii-Moriya (DM) interaction by methodology of quantum renormalization group within a spin 1/2 XXZ model. It has been shown that the global entanglement can develop two different fixed values, which can exhibit quantum phase transition at the critical point, and DM interaction not only can control the occurrence of the critical point, but also can recover the spoiled three-block entanglement. The behavior of the three-block global entanglement of this large 1D spin 1/2 XXZ model with DM interaction can be revealed in this paper. It turns out that the critical exponent had a relation with the correlation length in the neighborhood of the critical point. Furthermore, the scaling behavior and nonanalytic phenomenon in the spin chains are disclosed.
NASA Astrophysics Data System (ADS)
Javad Eslamibidgoli, Mohammad; Lagowski, Jolanta B.
2012-02-01
Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.
Explicit demonstration of spinor character for a spin-1/2 nucleus via NMR interferometry
NASA Technical Reports Server (NTRS)
Stoll, M. E.; Vaughan, R. W.; Vega, A. J.
1977-01-01
The results of a nuclear-magnetic-resonance experiment are presented which directly demonstrate the spinor character of a spin-1/2 nucleus, C-13. The interferometric spectroscopic technique used and its potential applications are discussed.
NASA Astrophysics Data System (ADS)
Niezgoda, Izabela; Szypszak, Ewelina; Dardas, Dorota; Galewski, Zbigniew
2016-04-01
In this manuscript, we report synthesis and physico-chemical characterization of 4-[[4-(butoxy)phenyl]diazenyl]phenyl alkanoates homologous series. For the first time, nineteen derivatives are described here. The enantiotropic nematic phase is typically observed among all members of this series. However, in the case of 4-[[4-(butoxy)phenyl]diazenyl]phenyl stearate, the nematic phase shows a monotropic character. In addition to liquid-crystalline polymorphism, a second crystalline form was observed in some homologs. Furthermore, using a photoelastic modulator, the optical anisotropy in the nematic phase was determined in the first nine compounds of this series. Temperature dependence of optical anisotropy at significantly lower values of reduced temperature is relatively weak. In contrast, optical anisotropy shows a strong temperature effect near isotropization. Moreover, the influence of the ester chain elongation on liquid crystalline and optical properties was established.
Adiabatic demagnetization of spin-1/2 antiferromagnetic J1-J2 Heisenberg hexagon
NASA Astrophysics Data System (ADS)
Deb, Moumita; Ghosh, Asim Kumar
2016-05-01
Analytic expressions of exact eigenvalues of the antiferromagnetic spin-1/2 J1-J2 Heisenberg hexagon in the presence of magnetic field have been obtained. Studies on the magnetization process, nature of isentrops and properties of magnetocaloric effect in terms of adiabatic demagnetization have been carried out. Magnetocaloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6 has been investigated with the help of these theoretical findings.
Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster
NASA Astrophysics Data System (ADS)
Deb, Moumita; Ghosh, Asim Kumar
2016-05-01
Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.
NASA Astrophysics Data System (ADS)
Tang, Jie; Wang, Long-De; Li, Ruo-Zhou; Zhang, Qiang; Zhang, Tong
2016-06-01
A Y-branch electro-optic (EO) polymer modulator has been designed and fabricated. High performance side-chain polyurethane-imide (PUI) with a high EO coefficient of larger than 50 pm/V and a moderate glass-transition temperature (Tg) of 206∘C is used as EO polymer core layer of the modulator. The fabricated phase modulator exhibits a low half-wave voltage of 1.94 V at 1550 nm in single arm modulation with 1 cm EO interaction length and 2 cm total length. The results show that the modulator fabricated by side-chain PUI EO materials possesses potential applications in low driving voltage and low cost optical systems.
Collective spin 1 singlet phase in high-pressure oxygen
Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio
2014-01-01
Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20−96 GPa), and another ε1 (8−20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513
Collective spin 1 singlet phase in high-pressure oxygen.
Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio
2014-07-22
Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20-96 GPa), and another ε1 (8-20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513
Transferring information through a mixed-five-spin chain channel
NASA Astrophysics Data System (ADS)
Arian Zad, Hamid; Movahhedian, Hossein
2016-08-01
We initially introduce one-dimensional mixed-five-spin chain with Ising-XY model which includes mixture of spins-1/2 and spins-1. Here, it is considered that nearest spins (1,1/2) have Ising-type interaction and nearest spins (1/2,1/2) have both XY-type and Dzyaloshinskii–Moriya (DM) interactions together. Nearest spins (1,1) have XX Heisenberg interaction. This system is in the vicinity of an external homogeneous magnetic field B in thermal equilibrium state. We promote the quantum information transmitting protocol verified for a normal spin chain with simple model (refer to Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439) (widely in reference: Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314) by means of considering the suggested mixed-five-spin chain as a quantum communication channel for transmitting both qubits and qutrits ideally. Hence, we investigate some useful quantities such as quantum capacity and quantum information transmission rate for the system. Finally, we conclude that, when the DM interaction between spins (1/2,1/2) increases the system is a more ideal channel for transmitting information.
Quantum-mechanical description of spin-1 particles with electric dipole moments
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2013-04-01
The Proca-Corben-Schwinger equations for a spin-1 particle with an anomalous magnetic moment are added by a term describing an electric dipole moment, then they are reduced to a Hamiltonian form, and finally they are brought to the Foldy-Wouthuysen representation. Relativistic equations of motion are derived. The needed agreement between quantum-mechanical and classical relativistic equations of motion is proved. The scalar and tensor electric and magnetic polarizabilities of pointlike spin-1 particles (W bosons) are calculated for the first time.
Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.
2016-03-01
The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions.
Quantum Correlations of Two Relativistic Spin-{1}/{2} Particles Under Noisy Channels
NASA Astrophysics Data System (ADS)
Mahdian, M.; Mojaveri, B.; Dehghani, A.; Makaremi, T.
2016-02-01
We study the quantum correlation dynamics of bipartite spin-{1}/{2} density matrices for two particles under Wigner rotations induced by Lorentz transformations which is transmitted through noisy channels. We compare quantum entanglement, geometric discord(GD), and quantum discord (QD) for bipartite relativistic spin-{1}/{2} states under noisy channels. We find out QD and GD tend to death asymptotically but a sudden change in the decay rate of the entanglement occurs under noisy channels. Also, bipartite relativistic spin density matrices are considered as a quantum channel for teleportation one-qubit state under the influence of depolarizing noise and compare fidelity for various velocities of observers.
Phases of a polar spin-1 Bose gas in a magnetic field
NASA Astrophysics Data System (ADS)
Kis-Szabó, Krisztián; Szépfalusy, Péter; Szirmai, Gergely
2007-05-01
The two Bose Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.
The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2016-02-01
In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.
Most spin-1/2 transition-metal ions do have single ion anisotropy
Liu, Jia; Whangbo, Myung-Hwan E-mail: mike-whangbo@ncsu.edu; Koo, Hyun-Joo; Xiang, Hongjun E-mail: mike-whangbo@ncsu.edu; Kremer, Reinhard K.
2014-09-28
The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.
Next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form
Steinhoff, Jan; Hergt, Steven; Schaefer, Gerhard
2008-04-15
Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isotropic coordinates. A comparison with other methods is given.
Quantum tunneling of massive spin-1 particles from non-stationary metrics
NASA Astrophysics Data System (ADS)
Sakalli, I.; Övgün, A.
2016-01-01
We focus on the HR of massive vector (spin-1) particles tunneling from Schwarzschild BH expressed in the Kruskal-Szekeres and dynamic Lemaitre coordinates. Using the Proca equation together with the Hamilton-Jacobi and the WKB methods, we show that the tunneling rate, and its consequence Hawking temperature are well recovered by the quantum tunneling of the massive vector particles.
Chiral phase from three-spin interactions in an optical lattice
D'Cruz, Christian; Pachos, Jiannis K.
2005-10-15
A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.
NASA Astrophysics Data System (ADS)
Galindo, Christophe; Soyer, Françoise; Le Barny, Pierre
2010-10-01
The Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) has been investigated as a versatile synthetic pathway to graft highly chemically sensitive "push-pull" chromophores onto a polymer backbone. We demonstrate that the CuAAC is highly efficient in mild conditions, chemioselective and is a powerful tool to design new powerful organic NLO side-chain copolymers.
Magneto-optic far-infrared study of Sr14Cu24O41 : Triplet excitations in chains
NASA Astrophysics Data System (ADS)
Hüvonen, D.; Nagel, U.; Rõõm, T.; Haas, P.; Dressel, M.; Hwang, J.; Timusk, T.; Wang, Y.-J.; Akimitsu, J.
2007-10-01
Using far-infrared spectroscopy, we have studied the magnetic field and temperature dependence of the spin gap modes in the chains of Sr14Cu24O41 . Two triplet modes T1 and T2 were found in the center of the Brillouin zone at Δ1=9.65meV and Δ2=10.86meV in zero magnetic field. The T1 mode was excited when the electric field vector E of the light was polarized along the b axis (perpendicular to the planes of chains and ladders) and T2 was excited for E‖a (perpendicular to the chains and along the rungs). Up to the maximum magnetic field of 18T , applied along the chains, the electron g factors of these two modes were similar, g1c=2.049 and g2c=2.044 . Full linewidth at half maximum for both modes was 1cm-1 (0.12meV) at 4K and increased with T . The temperature dependence of mode energies and line intensities was in agreement with the inelastic neutron scattering results from two groups [M. Matsuda , Phys. Rev. B 59, 1060 (1999); L. P. Regnault , ibid 59, 1055 (1999)]. The T1 mode has not been observed by inelastic neutron scattering in the points of the k space equivalent to the center of the Brillouin zone. Our study indicates that the zone structure model of magnetic excitations of Sr14Cu24O41 must be modified to include a triplet mode at 9.65meV in the center of the magnetic Brillouin zone.
Bartolucci, Martina; Ravera, Silvia; Garbarino, Greta; Ramoino, Paola; Ferrando, Sara; Calzia, Daniela; Candiani, Simona; Morelli, Alessandro; Panfoli, Isabella
2015-11-01
Our previous studies reported evidence for aerobic ATP synthesis by myelin from both bovine brainstem and rat sciatic nerve. Considering that the optic nerve displays a high oxygen demand, here we evaluated the expression and activity of the five Respiratory Complexes in myelin purified from either bovine or murine optic nerves. Western blot analyses on isolated myelin confirmed the expression of ND4L (subunit of Complex I), COX IV (subunit of Complex IV) and β subunit of F1Fo-ATP synthase. Moreover, spectrophotometric and in-gel activity assays on isolated myelin, as well as histochemical activity assays on both bovine and murine transversal optic nerve sections showed that the respiratory Complexes are functional in myelin and are organized in a supercomplex. Expression of oxidative phosphorylation proteins was also evaluated on bovine optic nerve sections by confocal and transmission electron microscopy. Having excluded a mitochondrial contamination of isolated myelin and considering the results form in situ analyses, it is proposed that the oxidative phosphorylation machinery is truly resident in optic myelin sheath. Data may shed a new light on the unknown trophic role of myelin sheath. It may be energy supplier for the axon, explaining why in demyelinating diseases and neuropathies, myelin sheath loss is associated with axonal degeneration. PMID:26334391
SU(3) quantum critical model emerging from a spin-1 topological phase
NASA Astrophysics Data System (ADS)
Rao, Wen-Jia; Zhu, Guo-Yi; Zhang, Guang-Ming
2016-04-01
Different from the spin-1 Haldane gapped phase, we propose an SO(3) spin-1 matrix product state (MPS), whose parent Hamiltonian includes three-site spin interactions. From the entanglement spectrum of a single block with l sites, an enlarged SU(3) symmetry is identified in the edge states, which are conjugate to each other for the l =even block but identical for the l =odd block. By blocking this state, the blocked MPS explicitly displays the SU(3) symmetry with two distinct structures. Under a symmetric bulk bipartition with a sufficient large block length l =even , the entanglement Hamiltonian (EH) of the reduced system characterizes a spontaneous dimerized phase with twofold degeneracy. However, for the block length l =odd , the corresponding EH represents an SU(3) quantum critical point with delocalized edge quasiparticles, and the critical field theory is described by the SU(3) level-1 Wess-Zumino-Witten conformal field theory.
On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole.
Aguirre
2000-01-20
Recently Van Putten has suggested that superradiance of magnetosonic waves in a toroidal magnetosphere around a Kerr black hole may play a role in the central engine of gamma-ray bursts. In this context, he computed (in the WKB approximation) the superradiant amplification of scalar waves confined to a thin equatorial wedge around a Kerr hole and found that the superradiance is higher than for radiation incident over all angles. This Letter presents calculations of both spin-0 (scalar) superradiance (integrating the radial equation rather than using the WKB method) and spin-1 (electromagnetic/magnetosonic) superradiance in Van Putten's wedge geometry. In contrast to the scalar case, spin-1 superradiance decreases in the wedge geometry, decreasing the likelihood of its astrophysical importance. PMID:10615024
Low-energy singlet excitations in spin-1/2 Heisenberg antiferromagnet on square lattice
NASA Astrophysics Data System (ADS)
Aktersky, A. Yu.; Syromyatnikov, A. V.
2016-05-01
We present an approach based on a dimer expansion which describes low-energy singlet excitations (singlons) in spin-1/2 Heisenberg antiferromagnet on simple square lattice. An operator ("effective Hamiltonian") is constructed whose eigenvalues give the singlon spectrum. The "effective Hamiltonian" looks like a Hamiltonian of a spin-1/2 magnet in strong external magnetic field and it has a gapped spectrum. It is found that singlet states lie above triplet ones (magnons) in the whole Brillouin zone except in the vicinity of the point (π , 0), where their energies are slightly smaller. Based on this finding, we suggest that a magnon decay is possible near (π , 0) into another magnon and a singlon which may contribute to the dip of the magnon spectrum near (π , 0) and reduce the magnon lifetime. It is pointed out that the singlon-magnon continuum may contribute to the continuum of excitations observed recently near (π , 0).
Efficiency of quantum energy teleportation within spin-1/2 particle pairs
NASA Astrophysics Data System (ADS)
Frey, Michael R.
2016-03-01
A protocol for quantum energy teleportation (QET) is known for a so-called minimal spin-1/2 particle pair model. We extend this protocol to explicitly admit quantum weak measurements at its first stage. The extended protocol is applied beyond the minimal model to spin-1/2 particle pairs whose Hamiltonians are of a general class characterized by orthogonal pairs of entangled eigenstates. The energy transfer efficiency of the extended QET protocol is derived for this setting, and we show that weaker measurement yields greater efficiency. In the minimal particle pair model, for example, the efficiency can be doubled by this means. We also show that the QET protocol's transfer efficiency never exceeds 100 %, supporting the understanding that quantum energy teleportation is, indeed, an energy transfer protocol, rather than a protocol for remotely catalyzing local extraction of system energy already present.
Violation of Bell’s inequality in a spin 1/2 quantum magnet
Chakraborty, Tanmoy Singh, Harkirat Mitra, Chiranjib
2014-04-24
Violation of Bell’s inequality test has been established as an efficient tool to determine the presence of entanglement in quantum spin 1/2 magnets. Herein, macroscopic thermodynamic quantities, namely, magnetic susceptibility and specific heat have been employed to perform Bell’s inequality test for [NH{sub 4}CuPO{sub 4}, H{sub 2}O], a spin 1/2 antiferromagnet with nearest neighbor interactions. The mean value of the Bell operator is quantified and plotted as a function of temperature. The threshold temperature is determined above which the Bell’s inequality is not violated and a good consistency is found between the analyses done on magnetic and thermal data.
Magnetic properties of two-dimensional charged spin-1 Bose gases
NASA Astrophysics Data System (ADS)
Chen, Yingxue; Qin, Jihong; Gu, Qiang
2014-01-01
Within the mean-field theory, we investigate the magnetic properties of a charged spin-1 Bose gas in two dimensions. In this system the diamagnetism competes with paramagnetism, where the Landé factor g is introduced to describe the strength of the paramagnetic effect. The system presents a crossover from diamagnetism to paramagnetism with the increasing of the Landé factor. gc denotes the critical value of the Landé factor. We get the same value of gc both in the low temperature and strong magnetic field limit. Our results also show that in very weak magnetic field no condensation happens in the two-dimensional charged spin-1 Bose gas.
Oxygen-17 and copper-63 NMR study of spindynamics in low- dimensional spin 1/2 antiferromagnets
NASA Astrophysics Data System (ADS)
Thurber, Kent Robert
63Cu and 17O nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments are reported on copper-oxide compounds related to high temperature superconductors that are nearly ideal realizations of spin 1/2 Heisenberg antiferromagnets with different geometries of the magnetic interactions: 1 dimensional spin chains, 2 dimensional planes, two coupled chains (two-leg ladder), and three coupled chains (three-leg ladder). Comparison of the spin-lattice relaxation rate, 1/T1, for 63Cu and 17O reveals the wave-vector, q, dependence of low-energy magnetic fluctuations, and 1/T2 G the Gaussian spin-spin relaxation rate provides information about the electron spin correlation length, ξ. In the 1d material, Sr 2CuO3, 171/T1(q = 0) ~ aT + bT2 over the whole temperature range 10 to 700 K. Frequency dependence measurements show that diffusive contributions dominate T1(q ~ 0) for the double chain 1d material, SrCuO2. For the undoped 2d copper oxide material, Sr2CuO2Cl2, we demonstrate that 17O 1/T1 measures the spin wave damping in the undoped antiferromagnet for short wavelengths. We find that the spin wave damping is small, clarifying one of the unique properties of these 2d copper-oxide antiferromagnetic materials: there is a wide temperature range where short range spin excitations exist with long lifetimes, without long range 3-dimensional order. The two-leg ladder materials, SrCu2O3 and A 14Cu24O41 (A = La,Sr,Ca), have a large energy gap for spin excitations. There is a crossover in magnetic fluctuations from temperatures below the spin gap to above the spin gap. For the doped two-leg ladders, the effective doping of the ladders changes with temperature, and this temperature is correlated to the magnetic spin gap energy. The three-leg ladder material, Sr2Cu3O5, demonstrates a crossover in the temperature dependence of the spin correlation length, ξ. At high temperatures, we find the ξ ~ 1/T behavior characteristic of a 1d structure (isolated three
Student understanding of the time dependence of spin-1/2 systems
NASA Astrophysics Data System (ADS)
Passante, Gina
2016-03-01
Time dependence is one of the most difficult concepts in quantum mechanics and one that is relevant throughout instruction. In this talk I will explore student responses to written questions regarding the time dependence for spin-1/2 systems after lecture instruction and again after a tutorial on the topic. These questions were asked in a junior-level quantum mechanics course that is taught using a spins-first curriculum.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
Sakalli, I.; Ovgun, A.
2015-09-15
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole
NASA Astrophysics Data System (ADS)
Sakalli, I.; Ovgun, A.
2015-09-01
We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton-Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
NASA Astrophysics Data System (ADS)
Pires, Antonio; Sousa, Griffith
2014-03-01
The square lattice antiferromagnet with next and next nearest neighbor exchange interaction has been the subject of intense research in the last years. It can present the behavior of a frustrated system and can otherwise describe real materials. However, a large part of the work has been dedicated to spin 1/2 and done at zero temperature. A system with spin 1 is of interest because it can have a single ion anisotropy. To study these models simple approaches which yield an analytical description are very useful for practical purposes. Here we use a Modified Spin Wave theory, where corrections owing to spin wave interactions are taken into account self-consistently, to study the easy axis two dimensional spin 1 antiferromagnet with competing interaction and single ion anisotropy. We calculate the phase diagram at zero temperature, and several thermodynamic quantities such as the magnetization, the gap and the specific heat. Their relations with the temperature and anisotropy parameter are analyzed over the entire range of temperature. We have found a Neel and a collinear phase separated by a disordered phase. This disordered phase could be a candidate for a spin liquid. This work was partially supported by CNPQ, FAPEMIG and FAPEAM.
Effects of spacetime curvature on spin-1/2 particle zitterbewegung
NASA Astrophysics Data System (ADS)
Singh, Dinesh; Mobed, Nader
2009-09-01
This paper investigates the properties of spin-1/2 particle zitterbewegung in the presence of a general curved spacetime background described in terms of Fermi normal coordinates, where the spatial part is expressed using general curvilinear coordinates. Adopting the approach first introduced by Barut and Bracken for zitterbewegung in the local rest frame of the particle, it is shown that non-trivial gravitational contributions to the relative position and momentum operators appear due to the coupling of zitterbewegung frequency terms with the Ricci curvature tensor in the Fermi frame, indicating a formal violation of the weak equivalence principle. Explicit expressions for these contributions are shown for the case of quasi-circular orbital motion of a spin-1/2 particle in a Vaidya background. Formal expressions also appear for the time derivative of the Pauli-Lubanski vector due to spacetime curvature effects coupled to the zitterbewegung frequency. Also, the choice of curvilinear coordinates results in non-inertial contributions in the time evolution of the canonical momentum for the spin-1/2 particle, where zitterbewegung effects lead to stability considerations for its propagation, based on the Floquet theory of differential equations.
Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.
Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V
2016-06-01
Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463
Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2010-06-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.
Influence of the nonmagnetic impurities on the spin-1 Heisenberg chain SrNi2V2O8 system
NASA Astrophysics Data System (ADS)
Giapintzakis, J.; Androulakis, J.; Syskakis, E.; Papageorgiou, Th. P.; Apostolopoulos, G.; Thanos, S.; Papastaikoudis, C.
Dc-magnetization and heat capacity measurements on polycrystalline samples of SrNi2-x Mgx V2O8 (x = 0 and 0.05) are reported. The magnetization data suggest that both compounds are S = 1 quasi one-dimensional Heisenberg antiferromagnets. The substitution of non-magnetic impurity Mg2+ ions for Ni2+ induces a magnetic phase transition at ?3.7 K. A simple Hamiltonian model is proposed for these systems giving good quantitative agreement with the experimental magnetization data. The intrachain magnetic exchange constant (J 1/k B) and the Haldane gap (? ) for both compounds are estimated to be ?105 K and ?58.3 K (5.02 meV), respectively.
Comment on ``Sodium Pyroxene NaTiSi2O6: Possible Haldane Spin-1 Chain System''
NASA Astrophysics Data System (ADS)
Streltsov, S. V.; Popova, O. A.; Khomskii, D. I.
2006-06-01
A Comment on the Letter by Zoran S. Popović, Zeljko V. Šlijivančanin, and Filip R. Vukajlović, Phys. Rev. Lett. 93, 036401 (2004).PRLTAO0031-900710.1103/PhysRevLett.93.036401. The authors of the Letter offer a Reply.
Synthesis and Non-Resonant Nonlinear Optical Properties of Push-Pull Side-Chain Azobenzene Polymers
NASA Astrophysics Data System (ADS)
Fedus, K.; Smokal, V.; Krupka, O.; Boudebs, G.
In this work, we report preliminary results obtained for methacrylic polymers incorporating azobenzene side-group as nonlinear optical (NLO) active molecule. The trans-cis isomerization properties are discussed. The third-order non-resonant nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are measured using the Z-scan technique at 1064 nm in the picosecond regime. The influence of different electron-acceptor groups in azobenzene moieties on the nonlinear properties is investigated.
NASA Astrophysics Data System (ADS)
Soskin, Marat S.; Vasil'ev, Vasil I.
2013-04-01
The unique effect of ‘optical damage’ in photorefractive LiNbO3:Fe crystals produces a developing speckle field in the propagating beam of a He-Ne laser (0.63 μm). Elliptic developing speckle fields were created and investigated thoroughly by means of the Stokes polarimetry and monstardom (Dennis 2008 Opt. Lett. 33 2572). The ergodicity of elliptic speckle fields under the index (star, monstar, lemon) and contour (elliptic, hyperbolic) classifications was revealed experimentally by our measurements for developing speckle fields, measurements for static elliptic speckle fields, as well as theory (Flossmann et al 2008 Phys. Rev. Lett. 100 203902). Both hyperbolic (H) and elliptic (E) diabolos were fixed. All the probable topological structures for the neighbour diabolos in the developing elliptic speckle field were measured. All the measured nucleation/annihilation events occur as H(S)+H(M) reactions. The evolution of the singularities occurs separately in the speckle-field areas with fixed handedness and is realized through minimizing the changes needed for the developing speckle fields at each moment. The general regularities of the elliptic speckle-field development were revealed and confirmed. They occur through the time-limited loop and continuous chain reactions in both single and multiple speckles in 1:4 proportion. Strict morphological scenarios for their evolution were found. Applications of the methods of dynamical singular optics are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Xing-Dong; Geng, Z.; Zhao, Xu; Qian, J.; Zhou, Lu; Li, Y.; Zhang, Weiping
2014-06-01
We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose-Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole-dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole-dipole interaction are also investigated.
SPIN-1/2 Particles in Weak Gravitational Fields:. Foldy-Wouthuysen and Cini-Touschek Approximations
NASA Astrophysics Data System (ADS)
Singh, Dinesh; Papini, Giorgio
2002-12-01
We introduce a Hamiltonian for spin-1/2 particles with weak inertial and gravitational field corrections. Low- and high-energy approximations then follow from the Foldy-Wouthuysen and Cini-Touschek transformations.
Constant-coupling approximation study of spin-1 Blume-Capel model
NASA Astrophysics Data System (ADS)
Ekiz, Cesur
2016-07-01
In this paper, the equilibrium properties of spin-1 Blume-Capel model are studied by using constant-coupling approximation. The formulation is based on developed by Obokata and Oguchi method, where the dependence upon the thermodynamic variables is determined by a set of two-couple nonlinear algebraic equations. The temperature dependence of the order parameters is examined to characterize the nature (continuous or discontinuous) of the phase transitions and to obtain the metastable and unstable branches. For the system, the effect of the uniaxial anisotropy parameter to phase transitions and stable, metastable and unstable states is discussed on the simple cubic lattice with the coordination number z = 6.
Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate.
Anquez, M; Robbins, B A; Bharath, H M; Boguslawski, M; Hoang, T M; Chapman, M S
2016-04-15
The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model. PMID:27127974
High precision description and new properties of a spin-1 particle in a magnetic field
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2014-06-01
The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer, and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.
LETTER TO THE EDITOR: Parity-broken ground state for the spin-1 pyrochlore antiferromagnet
NASA Astrophysics Data System (ADS)
Yamashita, Yasufumi; Ueda, Kazuo; Sigrist, Manfred
2001-12-01
The ground-state properties of the spin-1 pyrochlore antiferromagnet are studied by applying the VBS-like tetrahedron-unit decomposition to the original spin system. The symmetrization required on every vertex is taken into account by introducing a ferromagnetic coupling. The pairwise effective Hamiltonian between the adjacent tetrahedrons is obtained by considering the next nearest neighbour and the third neighbour exchange interactions. We find that the transverse component of the spin chirality exhibits a long-range order, breaking the parity symmetry of the tetrahedral group, while the chirality itself is not broken.
Plane waves in de Sitter space: Spin-1/2 field
NASA Astrophysics Data System (ADS)
Reza Tanhayi, M.; Mohsenzadeh, M.; Yusofi, E.
2016-06-01
We employ the coordinate-independent plane wave solution in de Sitter space to study the spin-1/2 particle production. The so-called plane waves in the zero-curvature limit reduce to the usual plane waves in flat space. Previously in (Int. J. Mod. Phys. D 24, 1550052 (2015)) we used such modes to study the instability of the de Sitter space, here, by explicit calculation, we study the sipn-1/2 particle creation in de Sitter space caused by mixing modes.
Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction
Lees, Benjamin
2014-09-15
We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.
NASA Astrophysics Data System (ADS)
Pu, Zhengguo; Zhang, Jun; Yi, Su; Wang, Dajun; Zhang, Wenxian
2016-05-01
We theoretically investigate four types of dynamical instability, in particular the periodic and oscillatory type IO, in an antiferromagnetic spin-1 Bose-Einstein condensate in a nonzero magnetic field, by employing the coupled-mode theory and numerical method. This is in sharp contrast to the dynamical stability of the same system in zero field. Remarkably, a pattern transition from a periodic dynamical instability IO to a uniform one IIIO occurs at a critical magnetic field. All four types of dynamical instability and the pattern transition are ready to be detected in 23Na condensates within the availability of the current experimental techniques.
A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube
NASA Astrophysics Data System (ADS)
El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.
2016-09-01
The applied magnetic field dependencies of the surface shell, core and total magnetizations of a transverse spin-1/2 Ising nanocube are investigated within the effective-field theory with correlations, based on the probability distribution technique, for both ferro- and antiferromagnetic exchange interactions. We have found that interfacial coupling has a strong effect on the shape and the number of hysteresis loops and also on the coercive field and remanent magnetization behaviors. Furthermore, when the temperature exceeds a critical one, the coercivities of the core, the surface shell and the system become zero.
Group velocity of extraordinary waves in superdense magnetized quantum plasma with spin-1/2 effects
Li Chunhua; Ren Haijun; Yang Weihong; Wu Zhengwei; Chu, Paul K.
2012-12-15
Based on the one component plasma model, a new dispersion relation and group velocity of elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2 effects can reduce the transport of energy in such quantum plasma systems. Our work should be of relevance for the dense astrophysical environments and the condensed matter physics.
Exact solution of the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice
NASA Astrophysics Data System (ADS)
Strečka, Jozef
2006-01-01
A star-triangle mapping transformation is used to establish an exact correspondence between the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice and respectively, the spin-1/2 Ising model on a bathroom tile (4 8) lattice. Exact results for the critical temperature and spontaneous magnetization are obtained and compared with corresponding results on the regular Ising lattices.
Nagy, Kornél; Brahmbhatt, Viral Vishnuprasad; Berdeaux, Olivier; Bretillon, Lionel; Destaillats, Frédéric; Acar, Niyazi
2012-01-01
The objective of this work was to detect and identify phosphatidylserine plasmalogen species in human ocular neurons represented by the retina and the optic nerve. Plasmalogens (vinyl-ether bearing phospholipids) are commonly found in the forms of phosphatidylcholine and phosphatidylethanolamine in numerous mammalian cell types, including the retina. Although their biological functions are unclear, the alteration of cellular plasmalogen content has been associated with several human disorders such as rhizomelic chondrodysplasia punctata Type 2 and primary open-angle glaucoma. By using liquid chromatography coupled to high-resolution and tandem mass spectrometry, we have identified for the first time several species of phosphatidylserine plasmalogens, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position. Structural elucidation of the potential phosphatidylserine ether linked species was pursued by performing MS3 experiments, and three fragments are proposed as marker ions to deduce which fatty acid is linked as ether or ester on the glycerol backbone. Interpretation of the fragmentation patterns based on this scheme enabled the assignment of structures to the m/z values, thereby identifying the phosphatidylserine plasmalogens. PMID:22266369
NASA Astrophysics Data System (ADS)
Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Kuzian, Roman; Richter, Johannes; van den Brink, Jeroen
2015-12-01
We quantify the stability of the formation of multipolar states against always present interchain couplings in quasi-one-dimensional spin-1/2 chain systems with a frustrating in-chain J1-J2 exchange, including parameter regimes that are of direct relevance to many edge-shared cuprate spin-chain compounds. Three representative types of antiferromagnetic interchain coupling and the presence of uniaxial exchange anisotropy are considered. The magnetic phase diagrams are determined by density matrix renormalization group calculations and completed by very accurate analytic and numerical results for the nematic and the dipolar phases employing the hard-core-boson approach. We establish that a sizable interchain coupling has a strong influence on the possible instability of multipolar phases at high magnetic fields in the vicinity of the saturation fields in favor of the usual dipolar one-magnon phase. Moreover, skew interchain couplings strongly affect the pitch of spiral states. Our theoretical results bring to the fore candidate materials close to quantum nematic/triatic ordering.
Phase-space spinor amplitudes for spin-1/2 systems
NASA Astrophysics Data System (ADS)
Watson, P.; Bracken, A. J.
2011-04-01
The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1)/(2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1)/(2) magnetic dipole in a time-dependent magnetic field.
Explicit expressions of quantum mechanical rotation operators for spins 1 to 2
NASA Astrophysics Data System (ADS)
Kocakoç, Mehpeyker; Tapramaz, Recep
2016-03-01
Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y and z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.
Raman-dressed spin-1 spin-orbit-coupled quantum gas
NASA Astrophysics Data System (ADS)
Lan, Zhihao; Öhberg, Patrik
2014-02-01
The recently realized spin-orbit-coupled quantum gases [Lin et al., Nature (London) 471, 83 (2011), 10.1038/nature09887; Wang et al., Phys. Rev. Lett. 109, 095301 (2012), 10.1103/PhysRevLett.109.095301; Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012), 10.1103/PhysRevLett.109.095302] mark a breakthrough in the cold atom community. In these experiments, two hyperfine states are selected from a hyperfine manifold to mimic a pseudospin-1/2 spin-orbit-coupled system by the method of Raman dressing, which is applicable to both bosonic and fermionic gases. In this paper, we show that the method used in these experiments can be generalized to create any large pseudospin spin-orbit-coupled gas if more hyperfine states are coupled equally by the Raman lasers. As an example, we study, in detail, a quantum gas with three hyperfine states coupled by the Raman lasers and show, when the state-dependent energy shifts of the three states are comparable, triple-degenerate minima will appear at the bottom of the band dispersions, thus, realizing a spin-1 spin-orbit-coupled quantum gas. A novel feature of this three-minima regime is that there can be two different kinds of stripe phases with different wavelengths, which has an interesting connection to the ferromagnetic and polar phases of spin-1 spinor Bose-Einstein condensates without spin-orbit coupling.
Contribution of the spin-1 diquark to the nucleon's g1 structure function
NASA Astrophysics Data System (ADS)
Zamani, F.
2010-07-01
This is the final installment of a series of work that we have done in the context of the meson cloud model that investigates F2 and g1 structure functions. In our previous work on g1 structure function, we showed that having a spin-0 quark-diquark for the nucleon core along with both pseudoscalar and vector meson clouds was not sufficient to reproduce experimental observation(s) consistently. For the F2 structure function, we found that both superposition of a spin-0 diquark and a spin-1 diquark in the nucleon core along with pseudoscalar and vector meson clouds are needed to reproduce the observed F2(x) and the Gottfried sum rule (GSR) violation. Therefore, in the present work, we consider the contribution of a spin-1 diquark in the nucleon core to the g1 structure function. The calculation is performed in the light-cone frame. The dressed nucleon is assumed to be a superposition of the bare nucleon plus virtual light-cone Fock states of baryon-meson pairs. For the bare nucleon, we consider different quark-diquark configurations along with the possibility that there is no diquark inside the nucleon. The initial distributions are evolved. The final results are compared with experimental results and other theoretical predictions.
Bahar, M.K.; Yasuk, F.
2014-05-15
In this study, we investigate relativistic spin-1 particles in the V(x,y)=(ω{sub 0}{sup 2}/2)(x{sup 2}+y{sup 2})+k{sub 1}/x{sup 2}+k{sub 2}/y{sup 2} type of Smorodinsky–Winternitz potentials. In the first case, since this Smorodinsky–Winternitz potential has two dimensions, the system was transformed into polar coordinates from Cartesian coordinates. By using Duffin–Kemmer–Petiau formalism with the non-central Smorodinsky–Winternitz potential in two dimensions, the exact bound state energy eigenvalues and corresponding eigenfunctions were determined within the framework of the asymptotic iteration method. Bound state eigenfunctions were obtained in terms of confluent hypergeometric functions. -- Highlights: •We introduce formalism of the DKP equation in two dimensions. •The DKP equation with S–W potential is considered for spin-1 particles. •In order to solve the DKP equation, we explain the asymptotic iteration method (AIM). •Bound state energy eigenvalues and eigenfunctions are obtained by using AIM.
Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas
NASA Astrophysics Data System (ADS)
Chen, Guanjun; Chen, Li; Zhang, Yunbo
2016-06-01
We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.
Second order formalism for spin (1/2) fermions and Compton scattering
Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon
2011-04-01
We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finite value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.
Optical spectra of the silicon-terminated carbon chain radicals SiC{sub n}H (n = 3,4,5)
Kokkin, D. L.; Reilly, N. J.; McCarthy, M. C.; Fortenberry, R. C.; Crawford, T. D.
2014-07-28
The gas-phase optical spectra of three silicon-terminated carbon chain radicals, SiC{sub n}H (n = 3 − 5), formed in a jet-cooled discharge of silane and acetylene, have been investigated by resonant two-color two-photon ionization and laser-induced fluorescence/dispersed fluorescence. Analysis of the spectra was facilitated by calculations performed using equation-of-motion coupled cluster methods. For SiC{sub 3}H and SiC{sub 5}H, the observed transitions are well-described as excitations from a {sup 2}Π ground state to a {sup 2}Σ state, in which vibronic coupling, likely involving a higher-lying Π state with a very large predicted f-value (close to unity), is persistent. The lowest {sup 2}Σ states of both species are characterized by a rare silicon triple bond, which was identified previously [T. C. Smith, H. Y. Li, D. J. Clouthier, C. T. Kingston, and A. J. Merer, J. Chem. Phys. 112, 3662 (2000)] in the lowest {sup 2}Σ state of SiCH. Although a strong Π − Π transition is predicted for SiC{sub 4}H, the observed spectrum near 505 nm more likely corresponds to excitation to a relatively dark Σ state which is vibronically coupled to a nearby Π state. In contrast to the chains with an odd number of carbon atoms, which exhibit relatively sharp spectral features and lifetimes in the 10–100 ns range, SiC{sub 4}H shows intrinsically broadened spectral features consistent with a ∼100 fs lifetime, and a subsequent long-lived decay (>50 μs) which we ascribe to mixing with a nearby quartet state arising from the same electronic configuration. The spin-orbit coupling constants for both SiC{sub 3}H and SiC{sub 5}H radicals were determined to be approximately 64 cm{sup −1}, similar to that of SiCH (69.8 cm{sup −1}), suggesting that the unpaired electron in these species is localized on the silicon atom. Motivated by the new optical work, the rotational spectrum of linear SiC{sub 3}H was detected by cavity Fourier-transform microwave spectroscopy in
NASA Astrophysics Data System (ADS)
Gui, Hong; Li, Xin; Zhao, Zhenjie; Xie, Wenhui
2016-03-01
In this paper, we have calculated the structural, electronic, magnetic and optical properties of Sr2NiO3 and Sr2CoO3 using density functional theory (DFT) within generalized gradient approximation (GGA). The crystal structure of both materials is well described with Immm (No. 71) symmetry which are isostructural with Sr2CuO3 and both are quasi-one-dimensional (1D) rectangular lattice G-type antiferromagnets, in consistent with the experimental data. Due to a distortion, Sr2CoO3 lifts the near-degeneracy dxz and dyz states of the local Co electronic configuration, which demonstrates a strong coupling between the structural lattice and the electronic configuration. The calculated band structure shows a band gap of 1.376 eV for Sr2NiO3 and a band gap of 1.735 eV for Sr2CoO3. Ni and Co ions are in the high-spin S = 1 and S = 3/2 configurations with the magnetic moments of 1.585 μB and 2.587 μB, respectively. Based on the Heisenberg Hamiltonian model, we conclude that the superexchange intrachain TM-O-TM superexchange interaction is predominant and interaction between the 1D chains is weak. According to the calculated dielectric function, absorption spectrum and electron energy loss spectrum, the optical responses suggest that Sr2NiO3 shows the unique anisotropic structure and interaction of the application in optoelectronics.
Simulation of the many-body dynamical quantum Hall effect in an optical lattice
NASA Astrophysics Data System (ADS)
Zhang, Dan-Wei; Yang, Xu-Chen
2016-05-01
We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.
Quantum dimer model for the spin-1/2 kagome Z2 spin liquid
NASA Astrophysics Data System (ADS)
Rousochatzakis, Ioannis; Wan, Yuan; Tchernyshyov, Oleg; Mila, Frederic
2015-03-01
We revisit the description of the low-energy singlet sector of the spin-1/2 Heisenberg antiferromagnet on kagome in terms of an effective quantum dimer model. With the help of exact diagonalizations of appropriate finite-size clusters, we show that the embedding of a given process in its kagome environment leads to dramatic modifications of the amplitudes of the elementary loop processes, an effect not accessible to the standard approach based on the truncation of the Hamiltonian to the nearest-neighbour valence-bond basis. The resulting parameters are consistent with a Z2 spin liquid rather than with a valence-bond crystal, in agreement with the last density matrix renormalization group results. Currently at: School of Physics and Astronomy, University of Minnesota.
Dimerized phase and entanglement in the one-dimensional spin-1 bilinear biquadratic model
NASA Astrophysics Data System (ADS)
Chen, Ai Min; Su, Yao Heng; Wang, Honglei
2015-10-01
Dimerized phase and quantum entanglement are investigated in the one-dimensional spin-1 bilinear biquadratic model. Employing the infinite matrix product state representation, groundstate wavefunctions are numerically obtained by using the infinite time evolving block decimation method in the infinite lattice system. From a bipartite entanglement measure of the groundstates, i.e., von Neumann entropy, the phase transition points can be clearly extracted. Moreover, the even-bond and odd-bond von Neumann entropies show two different values in the spontaneous dimerized phase. It implies that the quantum entanglement can distinguish the two degenerate groundstates. Then, we define a dimer entropy in the spontaneous dimerized phase. Comparing to the dimer order parameter, the dimer entropy can play a role of a local order parameter to characterize the spontaneous dimerized phase.
Modulated phases and chaotic behavior in a spin-1 Ising model with competing interactions
NASA Astrophysics Data System (ADS)
Tomé, Tânia; Salinas, S. R.
1989-02-01
We formulate the Blume-Capel spin-1 Ising model, with competing first- and second-neighbor interactions along the branches of a Cayley tree, in the infinite-coordination limit, as a discrete two-dimensional nonlinear mapping problem. The phase diagram displays multicritical points and many modulated phases. Mean-field calculations for the analogous model on a cubic lattice give the same qualitative results. We take advantage of the simplicity of the mapping to show the existence of complete devil's staircases, at low temperatures T, with increasing values of the Hausdorff dimensionality DF with T. We show that there are regions of the phase diagram associated with positive values of the Lyapunov exponents of the mapping, and we give strong numerical evidence to support the existence of a strange attractor with a Lyapunov dimension Dλ>1. We also find a route to chaos, according to the scenario of Feigenbaum, with a reasonable estimate of the exponent δ.
Dirac dynamics on stochastic phase spaces for spin 1/2 particles
NASA Astrophysics Data System (ADS)
Prugovečki, Eduard
1980-06-01
The Foldy-Wouthuysen representation of the dynamics of a free spin {1}/{2} particle is formulated in a Hilbert space H(Γ) of spinor-valued functions over Γ-space. H(Γ) carries a reducible Wigner-type representation of the Poincaré group. The transition to the Dirac representation in a new bispinor Hilbert space K(Γ) is effected by means of a generalized inverse Foldy-Wouthuysen transformation. Explicit expressions are derived for the resolution generators η of invariant subspaces K±(Γ η) carrying irreducible representations of the resulting representations of the Poincaré group. The formalism is recast in a manifestly covariant form and the Dirac equation on H(Γ s) with minimal coupling to a four-potential is examined. It is shown that the resulting external field theory is gauge-invariant and relativistically covariant.
CP-Violation from Spin-1 Resonances in a Left-Right Dynamical Higgs Context
NASA Astrophysics Data System (ADS)
Ruan, Kun-Ming; Shu, Jing; Yepes, Juan
2016-07-01
New physics field content in the nature, more specifically, from spin-1 resonances sourced by the extension of the SM local gauge symmetry to the larger local group SU(2)L ⊗ SU(2)R ⊗ U(1)B-L, may induce CP-violation signalling NP effects from higher energy regimes. In this work we completely list and study all the CP-violating operators up to the p4-order in the Lagrangian expansion, for a non-linear left-right electroweak chiral context and coupled to a light dynamical Higgs. Heavy right handed fields can be integrated out from the physical spectrum, inducing thus a physical impact in the effective gauge couplings, fermionic electric dipole moment, and CP-violation in the decay h → ZZ* → 4l that are briefly analysed. The final relevant set of effective operators have also been identified at low energies. Supported by KITPC financial during the completion of this work
Generalized parton correlation functions for a spin-1/2 hadron
Stephan Meissner, Andreas Metz, Marc Schlegel
2009-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.
Complete positivity of a spin-1/2 master equation with memory
Maniscalco, Sabrina
2007-06-15
We study a non-Markovian spin-1/2 master equation with exponential memory. We derive the conditions under which the dynamical map describing the reduced system dynamics is completely positive, i.e., the nonunitary evolution of the system is compatible with a description in terms of a closed total spin-reservoir system. Our results show that for a zero-T reservoir, the dynamical map of the model here considered is never completely positive. For moderate- and high-T reservoirs, on the contrary, positivity is a necessary and sufficient condition for complete positivity. We also consider the Shabani-Lidar master equation recently introduced [A. Shabani and D.A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we demonstrate that such a master equation is always completely positive.
Spin 1 /2 field and regularization in a de Sitter and radiation dominated universe
NASA Astrophysics Data System (ADS)
Ghosh, Suman
2016-02-01
We construct a simple algorithm to derive number density of spin 1 /2 particles created in spatially flat Friedmann-Lemaitre-Robertson-Walker spacetimes and resulting renormalized energy-momentum tensor within the framework of adiabatic regularization. Physical quantities thus found are in agreement with the known results. This formalism can be considered as an appropriate extension of the techniques originally introduced for scalar fields, applicable to fermions in curved space. We apply this formalism to compute the particle number density and the renormalized energy density and pressure analytically (wherever possible) and numerically, in two interesting cosmological scenarios: a de Sitter spacetime and a radiation dominated universe. Results prove the efficiency of the methodology presented here.
Spin-0 and spin-1/2 particles in a constant scalar-curvature background
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Vakili, B.
2004-03-01
We study the Klein-Gordon and Dirac equations in the presence of a background metric d s2=-d t2+d x2+e -2 gx(d y2+d z2) in a semi-infinite lab ( x>0). This metric has a constant scalar-curvature R=6 g2 and is produced by a perfect fluid with equation of state p=- ρ/3. The eigenfunctions of spin-0 and spin-1/2 particles are obtained exactly, and the quantized energy eigenvalues are compared. It is shown that both of these particles must have nonzero transverse momentum in this background. We show that there is a minimum energy E2min= m2c4+ g2c2ℏ 2 for bosons ( EKG> Emin), while the fermions have no specific ground state ( EDirac> mc2).
Quantum refrigeration cycles using spin-1/2 systems as the working substance.
He, Jizhou; Chen, Jincan; Hua, Ben
2002-03-01
The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply. PMID:11909203
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Lingam, M.
2015-02-01
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of "frozen-in" constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
Fast and slow magnetosonic waves in two-dimensional spin-1/2 quantum plasma
Mushtaq, A.; Vladimirov, S. V.
2010-10-15
Using the spin-1/2 resistive quantum magnetohydrodynamics model, linear and nonlinear relations for slow and fast magnetosonic modes are derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The plasma resistivity is shown to play a role of dissipation in the system. With the aid of tanh method the traveling wave solution of Kadomstev-Petviashvili-Burgers is obtained. The solution shows a general shock wave profile superposed by a perturbative solitary-wave contribution. The dynamics of fast and slow magnetosonic shock and soliton, respectively, in the presence and absence of dissipation is investigated with respect to electron spin magnetization, quantum diffraction, and plasma statistic. It is found that results obtained from the spin quantum plasmas differ significantly from the nonspin quantum plasmas. The relevance of the present work to dense astrophysical plasmas such as pulsar magnetosphere is pointed out.
Stability of nonstationary states of spin-1 Bose-Einstein condensates
Maekelae, H.; Lundh, E.; Johansson, M.; Zelan, M.
2011-10-15
The stability of nonstationary states of homogeneous spin-1 Bose-Einstein condensates is studied by performing Bogoliubov analysis in a frame of reference where the state is stationary. In particular, the effect of an external magnetic field is examined. It is found that a nonzero magnetic field introduces instability in a {sup 23}Na condensate. The wavelengths of this instability can be controlled by tuning the strength of the magnetic field. In a {sup 87}Rb condensate this instability is present already at zero magnetic field. Furthermore, an analytical bound for the size of a stable condensate is found, and a condition for the validity of the single-mode approximation is presented. Realization of the system in a toroidal trap is discussed, and the full time development is simulated.
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
Lingam, M.
2015-02-15
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1984-01-01
The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.
Magnetic phases of spin-1 spin-orbit coupled Bose gases
NASA Astrophysics Data System (ADS)
Campbell, Daniel; Price, Ryan; Putra, Andika; Valdés-Curiel, Ana; Trypogeorgos, Dimitrios; Spielman, Ian; Spielman Team
We experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit coupled atomic Bose gas. We observe ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling's explicit locking between spin and motion. In the limit of weak spin-orbit coupling, these phases are separated by a critical curve of 1st order quantum phase transitions, with an observed width as small as h × 4Hz . These phase transitions give rise to long-lived metastable states. This work was partially supported by the ARO's atomtronics MURI, by the AFOSR's Quantum Matter MURI, NIST, and the NSF through the PFC at the JQI.
Fermi spin current contribution in spin wave spectrum of spin-1/2 fermions
NASA Astrophysics Data System (ADS)
Andreev, Pavel; Kuzmenkov, Leonid
2016-05-01
General theory predicts the presence of the thermal part of the spin current in the spin evolution equation for bosons and fermions. For bosons in Bose-Einstein condensate state, it is equal to zero. However, for degenerate fermions it is non zero and it can give a considerable contribution since it describes the Pauli blocking. In this work, we consider spin-1/2 partially polarized fermions. We derive an equation of state for the thermal part of the spin current of degenerate fermions and call it Fermi spin current. We present the spin evolution equation with the Fermi spin current as a part of applied hydrodynamic model. We consider spectrum of collective excitation and describe contribution of the Fermi spin current in the spin wave spectrum. The work of P.A. was supported by the Russian Foundation for Basic Research (Grant No. 16-32-00886) and the Dynasty foundation.
Magnetic phases of spin-1 spin-orbit-coupled Bose gases.
Campbell, D L; Price, R M; Putra, A; Valdés-Curiel, A; Trypogeorgos, D; Spielman, I B
2016-01-01
Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562
Signals for new spin-1 resonances in electroweak gauge boson pair production at the LHC
Alves, A.; Eboli, O. J. P.; Netto, D. Goncalves; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.
2009-10-01
The mechanism of electroweak symmetry breaking (EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp{yields}l{sup +}l{sup '-}Ee{sub T}, l{sup {+-}}jjEe{sub T}, l{sup '{+-}}l{sup +}l{sup -}Ee{sub T}, l{sup {+-}}jjEe{sub T}, and l{sup +}l{sup -}jj (with l, l{sup '}=e or {mu} and j=jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.
Spin-orbit angular momentum coupling in a spin-1 Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Chen, Li; Pu, Han; Zhang, Yunbo
2016-01-01
We propose a simple model with spin and orbit angular momentum coupling in a spin-1 Bose-Einstein condensate, where three internal atomic states are Raman coupled by a pair of copropagating Laguerre-Gaussian beams. The resulting Raman transition imposes a transfer of orbital angular momentum between photons and the condensate in a spin-dependent way. Focusing on a regime where the single-particle ground state is nearly threefold degenerate, we show that the weak interatomic interaction in the condensate produces a rich phase diagram, and that a many-body Rabi oscillation between two quantum phases can be induced by a sudden quench of the quadratic Zeeman shift. We carried out our calculations using both a variational method and a full numerical method, and found excellent agreement.
Magnetic properties of spin-1/2 Fermi gases with ferromagnetic interaction
NASA Astrophysics Data System (ADS)
Wang, Baobao; Qin, Jihong; Guo, Huaiming
2015-10-01
We investigate the magnetic properties of spin-1/2 charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density bar M increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density bar M decreases smoothly in the high temperature region. The domed shape of the magnetization density bar M variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Landé factor.
Critical Behavior of the Spin-1/2 Baxter-Wu Model: Entropic Sampling Simulations
NASA Astrophysics Data System (ADS)
Jorge, L. N.; Ferreira, L. S.; Leão, S. A.; Caparica, A. A.
2016-08-01
In this work, we use a refined entropic sampling technique based on the Wang-Landau method to study the spin- 1/2 Baxter-Wu model. We adopt the total magnetization as the order parameter and, as a result, do not divide the system into three sub-lattices. The static critical exponents were determined as α = 0.6697(54), β = 0.0813(67), γ = 1.1772(33), and ν = 0.6574(61). The estimate for the critical temperature was T c = 2.26924(2). We compare the present results with those obtained from other well-established approaches, and we find a very good closeness with the exact values, besides the high precision reached for the critical temperature.
Magnetic phases of spin-1 spin–orbit-coupled Bose gases
Campbell, D. L.; Price, R. M.; Putra, A.; Valdés-Curiel, A.; Trypogeorgos, D.; Spielman, I. B.
2016-01-01
Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin–orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562
Mean field study of the topological Haldane-Hubbard model of spin-1/2 fermions
NASA Astrophysics Data System (ADS)
Arun, V. S.; Sohal, R.; Hickey, C.; Paramekanti, A.
2016-03-01
Motivated by exploring the effect of interactions on Chern insulators, and by recent experiments realizing topological bands for ultracold atoms in synthetic gauge fields, we study the honeycomb lattice Haldane-Hubbard model of spin-1/2 fermions. Using an unrestricted mean field approach, we map out the instability of the topological band insulator towards magnetically ordered insulators which emerge with increasing Hubbard repulsion. In addition to the topological Néel phase, we recover various chiral noncoplanar magnetic orders previously identified within a strong-coupling approach. We compute the band structure of these ordered phases, showing that the triple-Q tetrahedral phase harbors topological Chern bands with large Chern numbers.
Small and arbitrary shock structures in spin 1/2 magnetohydrodynamic quantum plasma
Sahu, Biswajit; Choudhury, Sourav; Sinha, Anjana
2015-02-15
The shock structures in spin-1/2 quantum plasma, in the presence of magnetic diffusivity, are studied in the framework of the quantum magnetohydrodynamic model. Linear dispersion relation for the system is carried out analytically, and the results are plotted numerically for several values of the plasma parameters. Numerical analysis for arbitrary amplitude waves is carried out, whereas for waves of small amplitude, the reductive perturbation technique is applied to obtain the Korteweg-de Vries-Burgers equation. Both the analyses are observed to give the same qualitative picture. Most importantly, the different plasma parameters are found to play significant roles in determining the nature of the shock waves. The parametric ranges for which monotonic shock and oscillatory shock solutions are observed, are found analytically.
Polymerase chain reaction system
Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.
2004-03-02
A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.
Core-shell structured square mixed-spin 1 and 1/2 Ising nanowire on the Bethe lattice
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2016-03-01
The square Ising nanowire is constructed by adding square nanoparticles consisting of one spin-1 at the center and four spin-1/2 at the corners along a straight line in both directions. Therefore, this system may be taken to be equivalent to Bethe lattice of coordination number two and can be solved in terms of the exact recursion relations. This core-shell structured model is studied by using ferromagnetic exchange interactions between surface spins (Js), between core spins (Jc) and between surface and core spins (Jsc) and crystal field interaction (D) at the sites of spin-1. The phase diagrams of the model are obtained in terms of these parameters by varying the temperature on the possible planes. It is found that the model presents both second- and first-order phase transitions and tricritical points for the appropriate values of these parameters.
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuya; Tsubota, Makoto
2016-03-01
We theoretically and numerically study spin wave turbulence in spin-1 ferromagnetic spinor Bose-Einstein condensates, finding direct and inverse cascades with power-law behavior. To derive these power exponents analytically, the conventional weak wave turbulence theory is applied to the spin-1 spinor Gross-Pitaevskii equation. Thus we obtain the -7 /3 and -5 /3 power laws in the transverse spin correlation function for the direct and inverse cascades, respectively. To confirm these power laws, numerical calculations are performed that obtain results consistent with these power laws.
Bogomolny-Prasad-Sommerfeld monopoles and open spin chains
NASA Astrophysics Data System (ADS)
Doikou, Anastasia; Ioannidou, Theodora
2011-09-01
We construct SU(n + 1) Bogomolny-Prasad-Sommerfeld (BPS) spherically symmetric monopoles with minimal symmetry breaking by solving the full Weyl equation. In this context, we explore and discuss the existence of open spin chainlike part within the Weyl equation. For instance, in the SU(3) case the relevant spin chain is the 2-site spin 1/2 XXX chain with open boundary conditions. We exploit the existence of such a spin chain part in order to solve the full Weyl equation.
Quench dynamics and relaxation in isolated integrable quantum spin chains
NASA Astrophysics Data System (ADS)
Essler, Fabian H. L.; Fagotti, Maurizio
2016-06-01
We review the dynamics after quantum quenches in integrable quantum spin chains. We give a pedagogical introduction to relaxation in isolated quantum systems, and discuss the description of the steady state by (generalized) Gibbs ensembles. We then turn to general features in the time evolution of local observables after the quench, using a simple model of free fermions as an example. In the second part we present an overview of recent progress in describing quench dynamics in two key paradigms for quantum integrable models, the transverse field Ising chain and the anisotropic spin-1/2 Heisenberg chain.
Localization of Spinons in Random Majumdar-Ghosh Chains
NASA Astrophysics Data System (ADS)
Lavarélo, Arthur; Roux, Guillaume
2013-02-01
We study the effect of disorder on frustrated dimerized spin-1/2 chains at the Majumdar-Ghosh point. Using variational methods and density-matrix renormalization group approaches, we identify two localization mechanisms for spinons which are the deconfined fractional elementary excitations of these chains. The first one belongs to the Anderson localization class and dominates at the random Majumdar-Ghosh point. There, spinons remain gapped and localize in Lifshitz states whose localization length is analytically obtained. The other mechanism is a random confinement mechanism which induces an effective interaction between spinons and brings the chain into a gapless and partially polarized phase for arbitrarily small disorder.
Slowest local operators in quantum spin chains.
Kim, Hyungwon; Bañuls, Mari Carmen; Cirac, J Ignacio; Hastings, Matthew B; Huse, David A
2015-07-01
We numerically construct slowly relaxing local operators in a nonintegrable spin-1/2 chain. Restricting the support of the operator to M consecutive spins along the chain, we exhaustively search for the operator that minimizes the Frobenius norm of the commutator with the Hamiltonian. We first show that the Frobenius norm bounds the time scale of relaxation of the operator at high temperatures. We find operators with significantly slower relaxation than the slowest simple "hydrodynamic" mode due to energy diffusion. Then we examine some properties of the nontrivial slow operators. Using both exhaustive search and tensor network techniques, we find similar slowly relaxing operators for a Floquet spin chain; this system is hydrodynamically "trivial," with no conservation laws restricting their dynamics. We argue that such slow relaxation may be a generic feature following from locality and unitarity. PMID:26274145
Shuaibu, A.; Rahman, M. M.
2014-03-05
We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.
Wang, Y.-S.; Chien, C.-S.
2014-01-01
We describe a novel two-parameter continuation method combined with a spectral-collocation method (SCM) for computing the ground state and excited-state solutions of spin-1 Bose–Einstein condensates (BEC), where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. To compute the ground state solution of spin-1 BEC, we implement the single parameter continuation algorithm with the chemical potential μ as the continuation parameter, and trace the first solution branch of the Gross–Pitaevskii equations (GPEs). When the curve-tracing is close enough to the target point, where the normalization condition of the wave function is going to be satisfied, we add the magnetic potential λ as the second continuation parameter with the magnetization M as the additional constraint condition. Then we implement the two-parameter continuation algorithm until the target point is reached, and the ground state solution of the GPEs is obtained. The excited state solutions of the GPEs can be treated in a similar way. Some numerical experiments on {sup 23}Na and {sup 87}Rb are reported. The numerical results on the spin-1 BEC are the same as those reported in [10]. Further numerical experiments on excited-state solutions of spin-1 BEC suffice to show the robustness and efficiency of the proposed two-parameter continuation algorithm.
Chiral and critical spin liquids in a spin-1/2 kagome antiferromagnet
NASA Astrophysics Data System (ADS)
Zhu, W.; Gong, S. S.; Sheng, D. N.
2015-07-01
The kagome spin-1/2 systems have attracted intensive attention in recent years as the primary candidate for hosting different gapped spin liquids (SLs). To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum X Y model with the nearest-neighbor (NN) (Jx y), the second-NN, and the third-NN couplings (J2 x y=J3 x y=Jxy ' ). We identify the time-reversal-symmetry-broken chiral SL (CSL) with the turn on of a small perturbation Jxy '˜0.06 Jx y , which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the ν =1 /2 fractional quantum Hall state. Interestingly, the NN X Y model (Jxy '=0 ) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet and spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. The effect of the NN spin-z coupling Jz is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.
Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Herdeiro, Carlos A. R.; Radu, Eugen
2016-01-01
We establish that massive complex Abelian vector fields (mass μ) can form gravitating solitons, when minimally coupled to Einstein's gravity. Such Proca stars (PSs) have a stationary, everywhere regular and asymptotically flat geometry. The Proca field, however, possesses a harmonic time dependence (frequency w), realizing Wheeler's concept of geons for an Abelian spin 1 field. We obtain PSs with both a spherically symmetric (static) and an axially symmetric (stationary) line element. The latter form a countable number of families labelled by an integer m ∈Z+. PSs, like (scalar) boson stars, carry a conserved Noether charge, and are akin to the latter in many ways. In particular, both types of stars exist for a limited range of frequencies and there is a maximal ADM mass, Mmax, attained for an intermediate frequency. For spherically symmetric PSs (rotating PSs with m = 1 , 2 , 3), Mmax ≃ 1.058 MPl2 / μ (Mmax ≃ 1.568 , 2.337 , 3.247 MPl2 / μ), slightly larger values than those for (mini-)boson stars. We establish perturbative stability for a subset of solutions in the spherical case and anticipate a similar conclusion for fundamental modes in the rotating case. The discovery of PSs opens many avenues of research, reconsidering five decades of work on (scalar) boson stars, in particular as possible dark matter candidates.
Schelling segregation in an open city: A kinetically constrained Blume-Emery-Griffiths spin-1 system
NASA Astrophysics Data System (ADS)
Gauvin, Laetitia; Nadal, Jean-Pierre; Vannimenus, Jean
2010-06-01
In the 70s Schelling introduced a multiagent model to describe the segregation dynamics that may occur with individuals having only weak preferences for “similar” neighbors. Recently variants of this model have been discussed, in particular, with emphasis on the links with statistical physics models. Whereas these models consider a fixed number of agents moving on a lattice, here, we present a version allowing for exchanges with an external reservoir of agents. The density of agents is controlled by a parameter which can be viewed as measuring the attractiveness of the city lattice. This model is directly related to the zero-temperature dynamics of the Blume-Emery-Griffiths spin-1 model, with kinetic constraints. With a varying vacancy density, the dynamics with agents making deterministic decisions leads to a variety of “phases” whose main features are the characteristics of the interfaces between clusters of agents of different types. The domains of existence of each type of interface are obtained analytically as well as numerically. These interfaces may completely isolate the agents leading to another type of segregation as compared to what is observed in the original Schelling model, and we discuss its possible socioeconomic correlates.
NASA Astrophysics Data System (ADS)
Wu, Ling-Na; You, L.
2016-03-01
We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.
Heat Conductivity of the Heisenberg Spin-1 /2 Ladder: From Weak to Strong Breaking of Integrability
NASA Astrophysics Data System (ADS)
Steinigeweg, Robin; Herbrych, Jacek; Zotos, Xenophon; Brenig, Wolfram
2016-01-01
We investigate the heat conductivity κ of the Heisenberg spin-1 /2 ladder at finite temperature covering the entire range of interchain coupling J⊥, by using several numerical methods and perturbation theory within the framework of linear response. We unveil that a perturbative prediction κ ∝J⊥-2 , based on simple golden-rule arguments and valid in the strict limit J⊥→0 , applies to a remarkably wide range of J⊥, qualitatively and quantitatively. In the large J⊥ limit, we show power-law scaling of opposite nature, namely, κ ∝J⊥2. Moreover, we demonstrate the weak and strong coupling regimes to be connected by a broad minimum, slightly below the isotropic point at J⊥=J∥. Reducing temperature T , starting from T =∞ , this minimum scales as κ ∝T-2 down to T on the order of the exchange coupling constant. These results provide for a comprehensive picture of κ (J⊥,T ) of spin ladders.
Coarsening and thermalization properties of a quenched ferromagnetic spin-1 condensate
NASA Astrophysics Data System (ADS)
Williamson, Lewis A.; Blakie, P. B.
2016-08-01
We examine the dynamics of a quasi-two-dimensional spin-1 condensate in which the quadratic Zeeman energy q is suddenly quenched to a value where the system has a ferromagnetic ground state. There are two distinct types of ferromagnetic phases, i.e., a range of q values where the magnetization prefers to be in the direction of the external field (easy axis) and a range of q values where it prefers to be transverse to the field (easy plane). We study the quench dynamics for a variety of q values and show that there is a single dynamic critical exponent to characterize the scale-invariant domain growth for each ferromagnetic phase. For both quenches we give simple analytic models that capture the essential scale-invariant dynamics and correctly predict the exponents. Because the order parameter for each phase is different, the natures of the domains and the relevant topological defects in each type of coarsening are also different. To explore these differences we characterize the fractal dimension of the domain walls and the relationship of polar-core spin vortices to the domains in the easy-plane phase. Finally, we consider how the energy liberated from the quench thermalizes in the easy-axis quench. We show that local equilibrium is established in the spin waves on moderate time scales, but continues to evolve as the domains anneal.
Geometric phase of a spin-1 2 particle coupled to a quantum vector operator
NASA Astrophysics Data System (ADS)
Aguilar, Pedro; Chryssomalakos, Chryssomalis; Guzmán, Edgar
2016-05-01
We calculate Berry’s phase when the driving field, to which a spin-1 2 is coupled adiabatically, rather than the familiar classical magnetic field, is a quantum vector operator, of noncommuting, in general, components, e.g. the angular momentum of another particle, or another spin. The geometric phase of the entire system, spin plus “quantum driving field”, is first computed, and is then subdivided into the two subsystems, using the Schmidt decomposition of the total wave function — the resulting expression shows a marked, purely quantum effect, involving the commutator of the field components. We also compute the corresponding mean “classical” phase, involving a precessing magnetic field in the presence of noise, up to terms quadratic in the noise amplitude — the results are shown to be in excellent agreement with numerical simulations in the literature. Subtleties in the relation between the quantum and classical case are pointed out, while three concrete examples illustrate the scope and internal consistency of our treatment.
NASA Astrophysics Data System (ADS)
Lovegrove, Justin; Borgh, Magnus O.; Ruostekoski, Janne
2016-03-01
We demonstrate how conservation of longitudinal magnetization can have pronounced effects on both stability and structure of vortices in the atomic spin-1 Bose-Einstein condensate by providing a systematic characterization of nonsingular and singular vortex states. Constructing spinor wave functions for vortex states that continuously connect ferromagnetic and polar phases, we systematically derive analytic models for nonrotating cores of different singular vortices and for composite defect states with distinct small- and large-distance topology. We explain how the conservation law provides a stabilizing mechanism when the coreless vortex imprinted on the condensate relaxes in the polar regime of interatomic interactions. The resulting structure forms a composite defect: The inner ferromagnetic coreless vortex deforms toward an outer singly quantized polar vortex. We also numerically show how other even more complex hierarchies of vortex-core topologies may be stabilized. Moreover, we analyze the structure of the coreless vortex also in a ferromagnetic condensate and show how reducing magnetization leads to a displacement of the vortex from the trap center and eventually to the deformation and splitting of its core where a singular vortex becomes a lower-energy state. For the case of singular vortices, we find that the stability and the core structure are notably less influenced by the conservation of magnetization.
The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology
NASA Astrophysics Data System (ADS)
Wu, Ling-Na; You, Li
2016-05-01
The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.
Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.
2011-07-15
We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.
Ground-state phase structure of the spin-1/2 anisotropic planar pyrochlore.
Li, P H Y; Bishop, R F
2015-09-30
We study the zero-temperature ground-state (GS) properties of the spin-1/2 anisotropic planar pyrochlore, using the coupled cluster method (CCM) implemented to high orders of approximation. The system comprises a J 1-J 2 model on the checkerboard lattice, with isotropic Heisenberg interactions of strength J 1 between all nearest-neighbour pairs of spins on the square lattice, and of strength J 2 between half of the next-nearest-neighbour pairs (in the checkerboard pattern). We calculate results for the GS energy and average local GS on-site magnetization, using various antiferromagnetic classical ground states as CCM model states. We also give results for the susceptibility of one of these states against the formation of crossed-dimer valence-bond crystalline (CDVBC) ordering. The complete GS phase diagram is presented for arbitrary values of the frustration parameter k≡J2/J1, and when each of the exchange couplings can take either sign. PMID:26348836
Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD
Takahashi, Toru T.; Oka, Makoto
2010-02-01
Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).
Anomalous Curie response of an impurity in a quantum critical spin-1/2 Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Höglund, Kaj; Sandvik, Anders
2007-03-01
There is a disagreement concerning the low-temperature (T) magnetic susceptibility χ^zimp˜C/T of a spin-S impurity in a nearly quantum critical antiferromagnetic host. Field-theoretical work [1] predicted an anomalous Curie constant S^2/3
Quantum spin chains with regularly alternating bonds and fields
NASA Astrophysics Data System (ADS)
Derzhko, Oleg
2002-01-01
We consider the spin-1/2 XY chain in a transverse field with regularly varying exchange interactions and on-site fields. In two limiting cases of the isotropic ( XX) and extremely anisotropic (Ising) exchange interaction the thermodynamic quantities are calculated rigorously with the help of continued fractions. We discuss peculiarities of the low-temperature magnetic properties and a possibility of the spin-Peierls instability.
Quantum state transfer in XXZ spin chains: A measurement induced transport method
NASA Astrophysics Data System (ADS)
Pouyandeh, Sima; Shahbazi, Farhad
2015-05-01
We study the information transferring ability of a spin-1/2 XXZ Hamiltonian for two different proposals of state transfer, namely, the well-studied attaching scenario and the recently proposed measurement induced transport. The latter one has been inspired by recent achievements in optical lattice experiments for local addressability of individual atoms and their time evolution when only local rotations and measurements are available and local control of the Hamiltonian is very limited. We show that while the both scenarios performs with almost similar quality in the case of non-interacting free fermionic XX phase, the difference become more pronounced around the isotropic Heisenberg point. Our study shows that the presence of spin-flip symmetry plays a key point in the quality of state transfer and each scenario which benefits from this symmetry transfers the quantum states with higher fidelity. In fact, for even chains this symmetry exists only for the measurement induced dynamics which then gives higher transport quality and for odd chains the spin-flip symmetry is only valid for the attaching scenarios which become more superior. We also study the effect of thermal fluctuations and environmental interactions on both scenarios.