Science.gov

Sample records for optical spin-1 chain

  1. Emergent SU(3) Symmetry in Random Spin-1 Chains.

    PubMed

    Quito, V L; Hoyos, José A; Miranda, E

    2015-10-16

    We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random-singlet phase (RSP) of strongly bound spin pairs [SU(3) "mesons"] and (ii) an unconventional RSP of bound SU(3) "baryons," which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior. PMID:26550897

  2. Quantum correlations and coherence in spin-1 Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.

    2016-05-01

    We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.

  3. Quantum phase transitions in spin-1 compass chains

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Kong, Long-Juan; You, Wen-Long

    2015-11-01

    The ground-state phase diagram and quantum phase transitions (QPTs) in a spin-1 compass chain are investigated by the infinite time-evolving block decimation (iTEBD) method. Various phases are discerned by energy densities, spin correlations and entanglement entropy. A generalized string correlator is found to be capable of describing the nonlocal string order in the disordered phase. Furthermore, in the noncritical disordered phase, the spin-spin correlations are found to decay exponentially. Except for a multicritical point ( J 1 = 0, J 2 = 0), the QPTs are determined to have second-order characters. In addition, the central charges on these critical phase boundaries are determined to be c = 1 / 2, therefore these QPTs belong to the Ising universality class.

  4. Magnetic entanglement in spin-1/2 XY chains

    NASA Astrophysics Data System (ADS)

    Fumani, Fatemeh Khastehdel; Nemati, Somayyeh; Mahdavifar, Saeed; Darooneh, Amir Hosein

    2016-03-01

    In the study of entanglement in a spin chain, people often consider the nearest-neighbor spins. The motivation is the prevailing role of the short range interactions in creating quantum correlation between the 1st neighbor (1N) spins. Here, we address the same question between farther neighbor spins. We consider the one-dimensional (1D) spin-1/2 XY model in a magnetic field. Using the fermionization approach, we diagonalize the Hamiltonian of the system. Then, we provide the analytical results for entanglement between the 2nd, 3rd and 4th neighbor (denoted as 2N, 3N, and 4N respectively) spins. We find a magnetic entanglement that starts from a critical entangled-field (hcE) at zero temperature. The critical entangled-field depends on the distance between the spins. In addition to the analytical results, the mentioned phenomenon is confirmed by the numerical Lanczos calculations. By adding the temperature to the model, the magnetic entanglement remains stable up to a critical temperature, Tc. Our results show that entanglement spreads step by step to farther neighbors in the spin chain by reducing temperature. At first, the 1N spins are entangled and then further neighbors will be entangled respectively. Tc depends on the value of the magnetic field and will be maximized at the quantum critical field.

  5. Spin-1/2 Optical Lattice Clock

    SciTech Connect

    Lemke, N. D.; Ludlow, A. D.; Barber, Z. W.; Fortier, T. M.; Diddams, S. A.; Jiang, Y.; Jefferts, S. R.; Heavner, T. P.; Parker, T. E.; Oates, C. W.

    2009-08-07

    We experimentally investigate an optical clock based on {sup 171}Yb (I=1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including a density-dependent collision shift, with a fractional uncertainty of 3.4x10{sup -16}, limited principally by uncertainty in the blackbody radiation Stark shift. We measured the absolute clock transition frequency relative to the NIST-F1 Cs fountain clock and find the frequency to be 518 295 836 590 865.2(0.7) Hz.

  6. Frustration and multicriticality in the antiferromagnetic spin-1 chain

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Shashi, Aditya; Nevidomskyy, Andriy H.

    2014-12-01

    The antiferromagnetic spin-1 chain has a venerable history and has been thought to be well understood. Here, we show that inclusion of both next-nearest-neighbor (α ) and biquadratic (β ) interactions results in a rich phase diagram with a multicritical point that has not been observed before. We study the problem using a combination of the density matrix renormalization group (DMRG), an analytic variational matrix product state wave function, and conformal field theory. For negative β <β* , we establish the existence of a spontaneously dimerized phase, separated from the Haldane phase by the critical line αc(β ) of second-order phase transitions. In the opposite regime, β >β* , the transition from the Haldane phase becomes first order into the next-nearest-neighbor (NNN) AKLT phase. Based on the field theoretical arguments and DMRG calculations, we find that these two regimes are separated by a multicritical point (β*,α*) of a different universality class, described by the level-4 SU(2) Wess-Zumino-Witten conformal theory. From the DMRG calculations, we estimate this multicritical point to lie in the range -0.2 <β*<-0.15 and 0.47 <α*<0.53 . We further find that the dimerized and NNN-AKLT phases are separated from each other by a line of first-order phase transitions that terminates at the multicritical point. We establish that transitions out of the Haldane phase into the dimer or NNN-AKLT phases are topological in nature and occur either with or without closing of the bulk gap, respectively. We also study short-range incommensurate-to-commensurate transitions in the resulting phase diagram. Inside the Haldane phase, we show the existence of two incommensurate crossovers: the Lifshitz transition and the disorder transition of the first kind, marking incommensurate correlations in momentum and real space, respectively. Notably, these crossover lines stretch across the entire (β ,α ) phase diagram, merging into a single incommensurate

  7. All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra

    SciTech Connect

    Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )

    1992-12-10

    In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.

  8. Quantum phase transition in dimerised spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali

    2015-11-01

    Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.

  9. Quasi-local conserved charges and spin transport in spin-1 integrable chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Vernier, Eric

    2016-05-01

    We consider the integrable one-dimensional spin-1 chain defined by the Zamolodchikov–Fateev (ZF) Hamiltonian. The latter is parametrized, analogously to the XXZ spin-1/2 model, by a continuous anisotropy parameter and at the isotropic point coincides with the well-known spin-1 Babujian–Takhtajan Hamiltonian. Following a procedure recently developed for the XXZ model, we explicitly construct a continuous family of quasi-local conserved operators for the periodic spin-1 ZF chain. Our construction is valid for a dense set of commensurate values of the anisotropy parameter in the gapless regime where the isotropic point is excluded. Using the Mazur inequality, we show that, as for the XXZ model, these quasi-local charges are enough to prove that the high-temperature spin Drude weight is non-vanishing in the thermodynamic limit, thus establishing ballistic spin transport at high temperature.

  10. The spin- {1}/{2} transverse XX chain with regularly alternating bonds and fields

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Richter, Johannes; Zaburannyi, Oles'

    1999-11-01

    We use continued fractions for a study of the thermodynamic properties of the periodic nonuniform spin- {1}/{2} isotropic XY chain in a non-random/random (Lorentzian) transverse field. The obtained results permit to examine the influence of a magnetic field and randomness on the spin-Peierls dimerization.

  11. Antiferromagnetic Heisenberg spin-1 chain: Magnetic susceptibility of the Haldane chain described using scaling

    NASA Astrophysics Data System (ADS)

    Souletie, Jean; Drillon, Marc; Rabu, Pierre; Pati, Swapan K.

    2004-08-01

    The phenomenological expression χT/(Ng2μB2/k)=C1nexp(-W1n/T)+C2nexp(-W2n/T) describes very accurately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of Heisenberg spins S=1 , whose size n is even and ranges from 6 to 20. This expression has been obtained through a strategy justified by scaling considerations together with finite size numerical calculations. For n large, the coefficients of the expression converge towards C1=0.125 , W1=0.451J , C2=0.564 , W2=1.793J ( J is the exchange constant), which are appropriate for describing the susceptibility of the spin-1 Haldane chain. The Curie constant, the paramagnetic Curie-Weiss temperature, the correlation length at T=0 and the Haldane gap are found to be closely related to these coefficients. With this expression, a very good description of the magnetic behavior of Y2BaNiO5 and of Ni(C2H8N2)2NO2ClO4 (NENP), the archetype of the Haldane gap systems, is achieved over the whole temperature range.

  12. Regularly alternating spin- 1 /2 anisotropic XY chains: The ground-state and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Richter, Johannes; Krokhmalskii, Taras; Zaburannyi, Oles'

    2004-06-01

    Using the Jordan-Wigner transformation and continued fractions we calculate rigorously the thermodynamic quantities for the spin- 1 /2 transverse Ising chain with periodically varying intersite interactions and/or on-site fields. We consider in detail the properties of the chains having a period of the transverse field modulation equal to 3. The regularly alternating transverse Ising chain exhibits several quantum phase transition points, where the number of transition points for a given period of alternation strongly depends on the specific set of the Hamiltonian parameters. The critical behavior in most cases is the same as for the uniform chain. However, for certain sets of the Hamiltonian parameters the critical behavior may be changed and weak singularities in the ground-state quantities appear. Due to the regular alternation of the Hamiltonian parameters the transverse Ising chain may exhibit plateaulike steps in the zero-temperature dependence of the transverse magnetization vs transverse field and many-peak temperature profiles of the specific heat. We compare the ground-state properties of regularly alternating transverse Ising and transverse XX chains and of regularly alternating quantum and classical chains. Making use of the corresponding unitary transformations we extend the elaborated approach to the study of thermodynamics of regularly alternating spin- 1 /2 anisotropic XY chains without field. We use the exact expression for the ground-state energy of such a chain of period 2 to discuss how the exchange interaction anisotropy destroys the spin-Peierls dimerized phase.

  13. Heisenberg antiferromagnetic chain with multiple spin 1/2 particles of different flavors per site

    NASA Astrophysics Data System (ADS)

    Duki, Solomon F.; Yu, Yi-Kuo

    Motivated by the discoveries of quasi-1D magnetic systems, we studied a quantum mechanical spin lattice system consisting of a one-dimensional antiferromagnetic Heisenberg chain. In this system we considered M spin 1/2 particles of different flavors per site, and the low-lying states, ground state included, of the Hamiltonian was solved numerically using the exact diagonalization method for finite cluster sizes. We have also obtained the corresponding solutions for systems of the same chain length but with one spin M/2 particle per site. The low energy spectra of both systems are then compared. For M = 2 and M =3, our result shows that the two spin chain systems (one spin M/2 per site vs. M spin 1/2 of different flavors per site) have the same excitation spectra at low energy and the number of overlapped states increases as the size of the cluster increases. The observed overlap also indicates that low energy excitations of the M flavored spin 1/2 chain system selects the high spin states, effectively satisfying the Hund's Rule even though the system does not possess the orbital angular momentum. This work was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.

  14. Local Magnetization in the Impure Spin 1/2 Anisotropic Ising-Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Gildenblat, Gennady

    A theory of the Friedel-type oscillations of the local magnetization in the impure antiferromagnetic spin 1/2 chains is developed using the Green function equations of motion in the pseudo-fermion representation. For the isotropic XY (XX) chain, the problem is solved exactly, while the Ising-Heisenberg model is investigated numerically within a temperature-dependent Hartree-Fock approximation. It is shown that the Hartree-Fock self consistency equations for the uniformly magnetized XXZ chain can be recovered as a particular case of the formalism developed in the present work. Comparison with the earlier perturbation theory treatment in a free-fermion approximation reveals that the magnetic field dependence of the perturbation of the local magnetization is sensitive to the formation of the localized states and the exact form of the energy dispersion law of the quasi-particles. In particular it is shown that the perturbations of the local magnetization in the impure spin 1/2 chains disappear in the absence of the external magnetic field. Using the exact solution for the XY chain it is shown that unless the localized energy levels are formed outside the pseudo-fermion energy band the singularity of the local magnetization existing in the pure chain disappears at an arbitrary distance from the single impurity spin. For the ferromagnetic chain with the ferromagnetically coupled impurity the solution of the Hartree-Fock equations at low temperatures agrees reasonably with the results of the linear spin-wave theory. If the impurity is antiferromagnetically coupled, then, in contrast with the results of the spin -wave theory, the Hartree-Fock approximation agrees with the exact result for the zero-field ground state spin defect at the impurity site. Unlike the previous methods, the technique developed in this work permits investigation of the whole temperature range and predicts the correct Curie-Weiss behavior at sufficiently large temperatures.

  15. Dynamic Structure Factors of the Spin-1/2 XX Chain with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Verkholyak, Taras

    2006-10-01

    We consider the spin-1/2 isotropic XY chain in a (z) transverse magnetic field with the Dzyaloshinskii-Moriya interaction directed along the z-axis in spin space and examine the effects of the latter interaction on the zz, xx (yy) and xy (yx) dynamic structure factors. The Dzyaloshinskii-Moriya interaction does not manifest itself in the zz dynamic quantities. In contrast, the xx (yy) and xy (yx) dynamic structure factors show dramatical changes owing to the Dzyaloshinskii-Moriya interaction. Implications of our results for electron spin resonance experiments are briefly discussed.

  16. Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain

    NASA Astrophysics Data System (ADS)

    Fagotti, Maurizio; Collura, Mario; Essler, Fabian H. L.; Calabrese, Pasquale

    2014-03-01

    We consider the time evolution after quantum quenches in the spin-1/2 Heisenberg XXZ quantum spin chain with Ising-type anisotropy. The time evolution of short-distance spin-spin correlation functions is studied by numerical tensor network techniques for a variety of initial states, including Néel and Majumdar-Ghosh states and the ground state of the XXZ chain at large values of the anisotropy. The various correlators appear to approach stationary values, which are found to be in good agreement with the results of exact calculations of stationary expectation values in appropriate generalized Gibbs ensembles. In particular, our analysis shows how symmetries of the post-quench Hamiltonian that are broken by particular initial states are restored at late times.

  17. Symmetry-protected topological phases and transition in a frustrated spin-1/2 XXZ chain

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroshi; Onoda, Shigeki

    2014-12-01

    A frustrated spin-1/2 XXZ zigzag chain relevant to Rb2Cu2Mo3O12 is revisited in the light of symmetry-protected topological (SPT) phases. Using a density-matrix renormalization group method for infinite systems, we identify projective representations for four distinct time-reversal invariant SPT phases; two parity-symmetric dimer phases near the Heisenberg and XX limits and two parity-broken vector-chiral (VC) dimer phases in between. A small bond alternation in the nearest-neighbor ferromagnetic exchange coupling induces a direct SPT transition between the two distinct VC dimer phases. It is also found numerically that two Berezinskii-Kosterlitz-Thouless transitions, which occur from the gapless to the two distinct gapped VC phases in the case of δ =0 , meet each other in the case of δ >0 at a Gaussian criticality of the same Tomonaga-Luttinger parameter value as in the SU(2)-symmetric case.

  18. Partition function zeros and magnetization plateaus of the spin-1 Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Kenna, R.

    2016-07-01

    We study the properties of the generalized spin-1 Ising-Heisenberg model on a diamond chain, which can be considered as a theoretical model for the homometallic magnetic complex [Ni3(C4H2O4)2 -(μ3 - OH) 2(H2O)4 ] n ṡ(2H2 O) n. The model possesses a large variety of ground-state phases due to the presence of biquadratic and single-ion anisotropy parameters. Magnetization and quadrupole moment plateaus are observed at one- and two-thirds of the saturation value. The distributions of Yang-Lee and Fisher zeros are studied numerically for a variety of values of the model parameters. The usual value σ = -1/2 alongside an unusual value σ = -2/3 ​is determined for the Yang-Lee edge singularity exponents.

  19. Quantum and classical thermal correlations in the XY spin-(1/2) chain

    SciTech Connect

    Maziero, J.; Guzman, H. C.; Celeri, L. C.; Serra, R. M.; Sarandy, M. S.

    2010-07-15

    We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.

  20. Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Paul, Susobhan; Ghosh, Asim Kumar

    2016-05-01

    Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.

  1. Quantum discord in spin-1/2 Heisenberg chains with Dzyaloshinkii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Ma, Xiao San; Wang, An Min

    2015-12-01

    We have investigated the quantum discord (QD) of the thermal density matrix of spin-1/2 Heisenberg chains with Dzyaloshinskii-Moriya (DM) interaction. With fermionization technique, we study the mutual effect of DM interaction and the external magnetic field on the QD and the entanglement. Our analysis implies that the DM interaction can enhance the QD while the external magnetic field will shrink the QD. By a comparison between the entanglement and the QD, we find that the QD is more robust to the temperature and to the external magnetic field than the entanglement of formation (EoF) in the sense that the EoF takes a zero value while the QD does not for high temperature and strong external magnetic field. This point confirms the conclusion that there exist some separable states containing non-zero QD.

  2. Energy as Entanglement Witness in Bilinear-Biquadratic Spin-1 Chain

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Wang, An-Min; Zhao, Ning-Bo; Su, Xiao-Qiang; Zhu, Ren-Gui

    2006-10-01

    Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N = 7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.

  3. Quantum and classical thermal correlations in the XY spin-(1)/(2) chain

    NASA Astrophysics Data System (ADS)

    Maziero, J.; Guzman, H. C.; Céleri, L. C.; Sarandy, M. S.; Serra, R. M.

    2010-07-01

    We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.

  4. Quasilocal conservation laws in XXZ spin-1/2 chains: Open, periodic and twisted boundary conditions

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2014-09-01

    A continuous family of quasilocal exact conservation laws is constructed in the anisotropic Heisenberg (XXZ) spin-1/2 chain for periodic (or twisted) boundary conditions and for a set of commensurate anisotropies densely covering the entire easy plane interaction regime. All local conserved operators follow from the standard (Hermitian) transfer operator in fundamental representation (with auxiliary spin s=1/2), and are all even with respect to a spin flip operation. However, the quasilocal family is generated by differentiation of a non-Hermitian highest weight transfer operator with respect to a complex auxiliary spin representation parameter s and includes also operators of odd parity. For a finite chain with open boundaries the time derivatives of quasilocal operators are not strictly vanishing but result in operators localized near the boundaries of the chain. We show that a simple modification of the non-Hermitian transfer operator results in exactly conserved, but still quasilocal operators for periodic or generally twisted boundary conditions. As an application, we demonstrate that implementing the new exactly conserved operator family for estimating the high-temperature spin Drude weight results, in the thermodynamic limit, in exactly the same lower bound as for almost conserved family and open boundaries. Under the assumption that the bound is saturating (suggested by agreement with previous thermodynamic Bethe ansatz calculations) we propose a simple explicit construction of infinite time averages of local operators such as the spin current.

  5. Entanglement and quantum phase transitions in matrix-product spin-1 chains

    SciTech Connect

    Alipour, S.; Karimipour, V.; Memarzadeh, L.

    2007-05-15

    We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that the entanglement of two sites have scaling behavior near the critical point.

  6. Thermal conductivity of anisotropic and frustrated spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, F.; Honecker, A.; Cabra, D. C.; Brenig, W.

    2002-10-01

    We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosonization, and exact diagonalization of systems with N<=18 sites. We present results for the temperature dependence of the zero-frequency weight of the conductivity for several values of the anisotropy Δ. In the gapless regime, we show that the mean-field theory compares well to known results and that the low-temperature limit is correctly described by bosonization. In the antiferromagnetic and ferromagnetic gapped regime, we analyze the temperature dependence of the thermal conductivity numerically. The convergence of the finite-size data is remarkably good in the ferromagnetic case. Finally, we apply our numerical method and mean-field theory to the frustrated chain where we find a good agreement of these two approaches on finite systems. Our numerical data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case of the antiferromagnetic gapped regime of the frustrated chain.

  7. Kaleidoscope of quantum phases in a long-range interacting spin-1 chain

    NASA Astrophysics Data System (ADS)

    Gong, Z.-X.; Maghrebi, M. Â. F.; Hu, A.; Foss-Feig, M.; Richerme, P.; Monroe, C.; Gorshkov, A. Â. V.

    2016-05-01

    Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1 /rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲3 , long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1 ) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.

  8. Spin-stripe phase in a frustrated zigzag spin-1/2 chain

    PubMed Central

    Pregelj, M.; Zorko, A.; Zaharko, O.; Nojiri, H.; Berger, H.; Chapon, L. C.; Arčon, D.

    2015-01-01

    Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole–dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole–dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena. PMID:26068618

  9. Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.

    PubMed

    Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T

    2013-11-01

    Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555

  10. Spin-1 atoms in optical superlattices: Single-atom tunneling and entanglement

    SciTech Connect

    Wagner, Andreas; Bruder, Christoph; Demler, Eugene

    2011-12-15

    We examine spinor Bose-Einstein condensates in optical superlattices theoretically using a Bose-Hubbard Hamiltonian that takes spin effects into account. Assuming that a small number of spin-1 bosons is loaded in an optical potential, we study single-particle tunneling that occurs when one lattice site is ramped up relative to a neighboring site. Spin-dependent effects modify the tunneling events in a qualitative and quantitative way. Depending on the asymmetry of the double well, different types of magnetic order occur, making the system of spin-1 bosons in an optical superlattice a model for mesoscopic magnetism. We use a double-well potential as a unit cell for a one-dimensional superlattice. Homogeneous and inhomogeneous magnetic fields are applied, and the effects of the linear and the quadratic Zeeman shifts are examined. We also investigate the bipartite entanglement between the sites and construct states of maximal entanglement. The entanglement in our system is due to both orbital and spin degrees of freedom. We calculate the contribution of orbital and spin entanglements and show that the sum of these two terms gives a lower bound for the total entanglement.

  11. Emulating quantum state transfer through a spin-1 chain on a one-dimensional lattice of superconducting qutrits

    NASA Astrophysics Data System (ADS)

    Ghosh, Joydip

    2014-12-01

    Spin-1 systems, in comparison to spin-1/2 systems, offer a better security for encoding and transferring quantum information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy levels, thereby being capable of emulating higher-spin systems. Here I consider a one-dimensional lattice of nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit state (a state encoded in a three-level quantum system) across the chain. I assume adjustable couplings between adjacent transmons, derive an analytic constraint for the control pulse, and show how to satisfy the constraint to achieve a high-fidelity state transfer under current experimental conditions. My protocol thus enables enhanced quantum communication and information processing with promising superconducting qutrits.

  12. Wigner-Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Lei, Shuguo; Tong, Peiqing

    2016-04-01

    The quantum coherence based on Wigner-Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local σ ^z quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local σ ^x and σ ^y quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.

  13. Quantum Phase Transitions in Alternating-Bond Mixed Diamond Chains with Spins 1 and 1/2

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo; Takano, Ken'ichi; Suzuki, Hidenori

    2010-04-01

    We investigate the mixed diamond chain composed of spins 1 and 1/2 when the exchange interaction is alternatingly distorted. Depending on the strengths of frustration and distortion, this system has various ground states. Each ground state consists of an array of spin clusters separated by singlet dimers by virtue of an infinite number of local conservation laws. We determine the ground-state phase diagram by numerically analyzing each spin cluster. In particular, for strong distortions, we find an infinite series of quantum phase transitions using the cluster expansion method and conformal field theory. This leads to an infinite series of steps in the behavior of Curie constant and residual entropy.

  14. Quasilocal conservation laws from semicyclic irreducible representations of Uq (sl2) in XXZ spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Zadnik, Lenart; Medenjak, Marko; Prosen, Tomaž

    2016-01-01

    We construct quasilocal conserved charges in the gapless (| Δ | ≤ 1) regime of the Heisenberg XXZ spin-1/2 chain, using semicyclic irreducible representations of Uq (sl2). These representations are characterized by a periodic action of ladder operators, which act as generators of the aforementioned algebra. Unlike previously constructed conserved charges, the new ones do not preserve magnetization, i.e. they do not possess the U (1) symmetry of the Hamiltonian. The possibility of application in relaxation dynamics resulting from U (1)-breaking quantum quenches is discussed.

  15. Quantum Monte Carlo Simulations of Adulteration Effect on Bond Alternating Spin=1/2 Chain

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Zhaoxin; Ying, Heping; Dai, Jianhui; Crompton, Peter

    The S=1/2 Heisenberg chain with bond alternation and randomness of antiferromagnetic (AFM) and ferromagnetic (FM) interactions is investigated by quantum Monte Carlo simulations of loop/cluster algorithm. Our results have shown interesting finite temperature magnetic properties of this model. The relevance of our study to former investigation results is discussed.

  16. Entanglement entropy and fidelity susceptibility in the one-dimensional spin-1 XXZ chains with alternating single-site anisotropy.

    PubMed

    Ren, Jie; Liu, Guang-Hua; You, Wen-Long

    2015-03-18

    We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other. PMID:25707024

  17. Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2015-02-01

    For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.

  18. Exact asymptotic correlation functions of bilinear spin operators of the Heisenberg antiferromagnetic spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Vekua, T.; Sun, G.

    2016-07-01

    Exact asymptotic expressions of the uniform parts of the two-point correlation functions of bilinear spin operators in the Heisenberg antiferromagnetic spin-1/2 chain are obtained. Apart from the algebraic decay, the logarithmic contribution is identified, and the numerical prefactor is determined. We also confirm numerically the multiplicative logarithmic correction of the staggered part of the bilinear spin operators < > =(-1) rd /(r ln3/2r ) +(3 δa ,b-1 ) ln2r /(12 π4r4) , and estimate the numerical prefactor as d ≃0.067 . The relevance of our results for ground-state fidelity susceptibility at the Berezinskii-Kosterlitz-Thouless quantum phase transition points in one-dimensional systems is discussed at the end of our work.

  19. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins.

    PubMed

    Hovhannisyan, V V; Strečka, J; Ananikian, N S

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. PMID:26836749

  20. Exactly solvable spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Strečka, J.; Ananikian, N. S.

    2016-03-01

    The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.

  1. Finite temperature dynamics of spin-1/2 chains with symmetry breaking interactions

    NASA Astrophysics Data System (ADS)

    Manmana, Salvatore R.; Tiegel, Alexander C.; Pruschke, Thomas; Honecker, Andreas

    I will discuss recent developments for flexible matrix product state (MPS) approaches to calculate finite-temperature spectral functions of low-dimensional strongly correlated quantum systems. The main focus will be on a Liouvillian formulation. The resulting algorithm does not specifically depend on the MPS formulation, but is applicable for any wave function based approach which can provide a purification of the density matrix, opening the way for further developments of numerical methods. Based on MPS results for various spin chains, in particular systems with Dzyaloshinskii-Moriya interactions caused by spin-orbit coupling and dimerized chains, I will discuss how symmetry breaking interactions change the nature of the finite-temperature dynamic spin structure factor obtained in ESR and neutron scattering experiments. We acknowledge funding by the Helmholtz Virtual Institute ``New States of Matter and Their Excitations''.

  2. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    SciTech Connect

    Kenzelmann, M.; Cowley, R. A.; Buyers, W. J. L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl{sub 3}. Measurements over a wide range of wave-vector transfers along the chain confirm that above T{sub N} CsNiCl{sub 3} is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length {zeta} = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl{sub 3} for T {approx}< 12 K, possibly caused by multiply frustrated interchain interactions.

  3. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  4. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.

    PubMed

    Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K

    2015-10-14

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions. PMID:26403307

  5. Deformable spin- (1)/(2) XX chain with three-site interactions at zero and finite temperatures

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg; Krokhmalskii, Taras; Stolze, Joachim; Verkholyak, Taras

    2009-03-01

    We study spin-Peierls structural lattice instabilities for a spin-1/2 isotropic XY chain with three-site interactions of (XZX+YZY) type. Within the adopted adiabatic treatment we have to examine the ground-state energy or the Helmholtz free energy of the spin chain with exchange couplings varying coherently with a possible static lattice distortion pattern. Since the considered spin model can be converted into a system of noninteracting spinless fermions the required ground-state energy or the Helmholtz free energy can be calculated accurately without making any approximations. We examine rigorously several lattice distortion patterns focusing on dimerized and trimerized ones, which owe their presence to the spin-Peierls mechanism. We present phase diagrams illustrating the effect of the three-site interaction on the spin-Peierls lattice distortions. Finally we discuss some properties of the deformable spin chain in the ground state and at finite temperatures. In particular, we examine the transverse magnetization, the static transverse susceptibility and the specific heat illustrating the changes in these quantities due to lattice instabilities.

  6. Ground state and zero temperature phase diagrams of the XXZ antiferromagnetic spin- {1}/{2} chain

    NASA Astrophysics Data System (ADS)

    Zhou, P.

    1990-05-01

    An expression of the XXZ model is given from which the Ising, isotropic XY and Heisenberg models may be more properly obtained by varying only one anisotropy parameter. The ground state and spin configuration of the antiferromagnetic quasi-classical s = {1}/{2}XXZ chain in a magnetic field of arbitrary direction are studied. The phase diagrams with a longitudinal ( h⊥ = 0) and a transverse field ( h‖ = 0) are presented. Because we take into account an effect of anisotropy in the Zeeman interaction, the phase diagrams are quite different from those given by Kurmann, et al. [Physica A 112 (1982) 235]. A ferromagnetic-antiferromagnetic first order phase transition is indicated for the Ising case with h⊥=0.

  7. Degeneracies and exotic phases in an isotropic frustrated spin-1/2 chain

    NASA Astrophysics Data System (ADS)

    Parvej, Aslam; Kumar, Manoranjan

    2016-03-01

    In the presence of an axial magnetic field, a frustrated isotropic J1 - J2 model system shows many exotic phases, such as vector chiral and multipolar phases. In this paper, the phase boundaries of these exotic phases are calculated based on the order parameters, energy level crossings and magnetization jumps in the system. The order parameter of the vector chiral phase is calculated using the broken symmetry states at a finite magnetic field. The exact diagonalization and the density matrix renormalization group results are used to show that the vector chiral phase exists only in a narrow range of J2/J1 parameter space. In the quadrupolar phase, the magnetization jumps can be associated with the binding energy of two magnons localized at two different legs of the zigzag chain. The energy level crossings and degeneracies in the presence of the axial magnetic field are studied in detail using the exact diagonalization method.

  8. Thermodynamics of spin- 1/2 antiferromagnet-antiferromagnet-ferromagnet and ferromagnet-ferromagnet-antiferromagnet trimerized quantum Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Gu, Bo; Su, Gang; Gao, Song

    2006-04-01

    The magnetization process, the susceptibility, and the specific heat of the spin- 1/2 antiferromagnet (AF)-AF-ferromagnet (F) and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.

  9. Magnetoelectric effects in the spin 1/2 XX chain with three spin interactions and Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Durganandini, P.

    We consider the spin 1/2 XX chain with three spin interactions of the XZX+YXY and XZY-YZX types in an external magnetic field and with Dzyaloshinskii-Moriya (D-M) interaction. Interpreting the D-M interaction as a local electric polarization, we study the magnetoelectric effects in the system by using the exact solution of the problem. We obtain the ground state phase diagram by calculating the electric polarization, magnetization and isentropes. There are various regimes of magnetic and electric polarization depending on the relative strengths of the three spin interaction as well as that of the external fields. For a certain range of three spin interaction strengths, the system shows the existence of finite magnetization and electric polarization even in the absence of any external fields. The external electric and magnetic fields modify the ground state phases and can be used to tune the various regimes. We also calculate the entropy and analyze the electrocaloric and magnetocaloric effects. We show that the electrocaloric and magnetocaloric effects can be used to obtain information about the magnetoelectric effects in the system. I thank DST, India for financial support through research grant.

  10. Effect of Dzyaloshinskii-Moriya interaction on phase diagrams of spin-1 Heisenberg-Ising alternating chains

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Dou, Jun-Ya; Lu, Peng

    2016-03-01

    The effect of the Dzyaloshinskii-Moriya interaction (DMI) on ground-state phase diagrams of spin-1 Heisenberg-Ising alternating chains is investigated by the infinite time-evolving block decimation method. Three rich phase diagrams for three cases with different DMIs are obtained and discussed systematically. The DMI on even bonds plays a key role in the ground-state phase diagram, especially the appearance of the Haldane phase. However, the DMI on odd bonds seems to have very weak effect on the phase diagram. Both the odd- and even-string orders become nonzero in the Haldane phase, and have their maximum values at θ = π. For the odd-dimer phase, the even-string correlator vanishes absolutely despite varying θ, but a double-peak structure of the odd-string correlator is observed. Odd-string correlator becomes maximum at θ = π / 2 and 3 π / 2, but vanishes at θ = π. It indicates that the generalized string correlator can be used to distinguish the odd-dimer from the Haldane phase. Doubly degenerate entanglement spectrum is observed in the Haldane phase, which can be regarded as a clear signature of the existence of topological orders. Strong enough transverse nearest-neighbor correlations are found to be very important for the appearance of the Haldane and the odd-dimer phases.

  11. Coupled antiferromagnetic spin-1/2 chains in green dioptase Cu6[Si6O18] .6 H2O

    NASA Astrophysics Data System (ADS)

    Podlesnyak, A.; Anovitz, L. M.; Kolesnikov, A. I.; Matsuda, M.; Prisk, T. R.; Toth, S.; Ehlers, G.

    2016-02-01

    In this paper, we report inelastic neutron scattering measurements of the magnetic excitations of green dioptase Cu6[Si6O18] .6 H2O . The observed spectrum contains two magnetic modes and a prominent spin gap that is consistent with the ordered ground state of Cu moments coupled antiferromagnetically in spiral chains along the c axis and ferromagnetically in a b planes on the hexagonal cell. The data are in excellent agreement with a spin-1/2 Hamiltonian that includes antiferromagnetic nearest-neighbor intrachain coupling Jc=10.6 (1 ) meV, ferromagnetic interchain coupling Ja b=-1.2 (1 ) meV, and exchange anisotropy Δ Jc=0.14 (1 ) meV. We calculated the sublattice magnetization to be strongly reduced, ˜0.39 μB . This appears compatible with a reduced Néel temperature, TN=14.5 K≪Jc , and can be explained by a presence of quantum spin fluctuations.

  12. Quantum phase diagrams and time-of-flight pictures of spin-1 Bose systems in honeycomb optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiang, Ying

    2016-09-01

    By treating the hopping parameter as a perturbation, with the help of cumulant expansion and the re-summing technique, the one-particle Green’s function of a spin-1 Bose system in a honeycomb optical lattice is calculated analytically. By the use of the re-summed Green’s function, the quantum phase diagrams of the system in ferromagnetic cases as well as in antiferromagnetic cases are determined. It is found that in antiferromagnetic cases the Mott insulating states with even filling factor are more robust against the hopping parameter than that with odd filling factor, in agreement with results via other different approaches. Moreover, in order to illustrate the effectiveness of the re-summed Green’s function method in calculating time-of-flight pictures, the momentum distribution function of a honeycomb lattice spin-1 Bose system in the antiferromagnetic case is also calculated analytically and the corresponding time-of-flight absorption pictures are plotted.

  13. Commensurate and incommensurate magnetic order in spin-1 chains stacked on the triangular lattice in Li2NiW2O8

    NASA Astrophysics Data System (ADS)

    Ranjith, K. M.; Nath, R.; Majumder, M.; Kasinathan, D.; Skoulatos, M.; Keller, L.; Skourski, Y.; Baenitz, M.; Tsirlin, A. A.

    2016-07-01

    We report the thermodynamic properties, magnetic ground state, and microscopic magnetic model of the spin-1 frustrated antiferromagnet Li2NiW2O8 , showing successive transitions at TN 1≃18 K and TN 2≃12.5 K in zero field. Nuclear magnetic resonance and neutron diffraction reveal collinear and commensurate magnetic order with the propagation vector k =(1/2 ,0 ,1/2 ) below TN 2. The ordered moment of 1.8 μB at 1.5 K is directed along [0.89 (9 ),-0.10 (5 ),-0.49 (6 )] and matches the magnetic easy axis of spin-1 Ni2 + ions, which is determined by the scissor-like distortion of the NiO6 octahedra. Incommensurate magnetic order, presumably of spin-density-wave type, is observed in the region between TN 2 and TN 1. Density-functional band-structure calculations put forward a three-dimensional spin lattice with spin-1 chains running along the [01 1 ¯] direction and stacked on a spatially anisotropic triangular lattice in the a b plane. We show that the collinear magnetic order in Li2NiW2O8 is incompatible with the triangular lattice geometry and thus driven by a pronounced easy-axis single-ion anisotropy of Ni2 +.

  14. Exact quantum numbers of collapsed and non-collapsed two-string solutions in the spin-1/2 Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Deguchi, Tetsuo; Ranjan Giri, Pulak

    2016-04-01

    Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.

  15. Ground-state phase diagram and magnetization process of the exactly solved mixed spin-(1,1/2) Ising diamond chain

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2013-11-01

    The ground state and magnetization process of the mixed spin-(1,1/2) Ising diamond chain are exactly solved by employing the generalized decoration-iteration mapping transformation and the transfer-matrix method. The decoration-iteration transformation is first used in order to establish a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain in a non-zero magnetic field, which is subsequently exactly treated within the framework of the transfer-matrix technique. It is shown that the ground-state phase diagram includes just four different ground states and the low-temperature magnetization curve may exhibit an intermediate plateau precisely at one half of the saturation magnetization. Our rigorous results disprove recent Monte Carlo simulations of Xin et al. [Z. Xin, S. Chen, C. Zhang, J. Magn. Magn. Mater. 324 (2012) 3704], which imply an existence of the other magnetization plateaus at 0.283 and 0.426 of the saturation magnetization.

  16. Quantum fidelity, string order parameter, and topological quantum phase transition in a spin-1/2 dimerized and frustrated Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Liu, Jin Hua; Wang, Hai Tao

    2015-10-01

    Topological quantum phase transitions are numerically investigated in a spin-1/2 dimerized and frustrated Heisenberg chain by using infinite matrix product state representation with the infinite time evolving block decimation method. Quantum fidelity approach is employed to detect the degenerate ground states and quantum phase transitions. By calculating the long-range string order parameters, we find two topological Haldane phases characterized by two long-range string orders. Also, continuous and discontinuous behaviors of von Neumann entropy show that phase transitions between two topological Haldane phases are topologically continuous and discontinuous quantum phase transitions. For the topologically continuous phase transition, the central charge at the critical point is obtained as c = 1, which means that the topologically continuous quantum phase transition belongs to the Gaussian universality class.

  17. Magnetic specific heat studies of two Ising spin 1/2 chain systems M(N3)2(bpy)

    NASA Astrophysics Data System (ADS)

    Hamida, Youcef; Danilovic, Dusan; Yuen, Tan; Li, Kunhao; Li, Jing

    2012-04-01

    M(N3)2(bpy) [where M = Cu(II), Co(II), N3 = azide, and bpy = 4,4'-bipyridine] are two newly synthesized metal-organic framework (MOF) systems, in which the divalent M ions are connected though the azide ligands forming almost ideal magnetic 1 D chains. Specific heat measurements were performed on these compounds and the magnetic specific heats were deduced using appropriate methods for estimating the lattice specific heat. The magnetic specific heat data were analyzed and fit to the Ising model. The exchange interaction J/kB values of 13.1 K for Cu(N3)2(bpy) and 8.2 K for Co(N3)2(bpy) were obtained and compared to the J values from fitting the measured magnetic susceptibility data.

  18. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction.

    PubMed

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-29

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually. PMID:25817273

  19. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang

    2015-04-01

    Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1 while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.

  20. Cooling into the spin-nematic state for a spin-1 Bose gas in an optical lattice

    SciTech Connect

    Chung, M.-C.; Yip Sungkit

    2009-05-15

    The possibility of adiabatically cooling a spin-1 polar Bose gas to a spin-nematic phase is theoretically discussed. The relation between the order parameter of the final spin-nematic phase and the starting temperature of the spinor Bose gas is obtained both using the mean-field approach for high temperature and spin-wave approach for low temperature. We find that there exists a good possibility to reach the spin-nematic ordering starting with spinor antiferromagnetic Bose gases.

  1. Optically controlled periodical chain of quantum rings

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2016-03-01

    We demonstrated theoretically that a circularly polarized electromagnetic field substantially modifies electronic properties of a periodical chain of quantum rings. Particularly, the field opens band gaps in the electron energy spectrum of the chain, generates edge electron currents, and induces the Fano-like features in the electron transport through the finite chain. These effects create physical prerequisites for the development of optically controlled nanodevices based on a set of coupled quantum rings.

  2. Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J 1, J 2 between first and second neighbors.

    PubMed

    Soos, Zoltán G; Parvej, Aslam; Kumar, Manoranjan

    2016-05-01

    The spin-1/2 chain with isotropic exchange J 1, J 2  >  0 between first and second neighbors is frustrated for either sign of J 1 and has a singlet ground state (GS) for J 1/J 2  ⩾  -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J 1/J 2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector q G of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable q G indicates IC phases in two J 1/J 2 intervals, [-4, -  1.24] and [0.44, 2], and a C-IC point at J 1/J 2  =  2. The decoupled C phase in [-1.24, 0.44] has constant q G  =  π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and E σ , are degenerate in finite systems at specific frustration J 1/J 2. Level crossing extrapolates in the thermodynamic limit to the same critical points as q G. The S(q) peak diverges at q G  =  π in the gapless phase with J 1/J 2  >  4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at  ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J 2/J 1 but disagree for the decoupled phase with weak exchange J 1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between. PMID:27028489

  3. Numerical study of incommensurate and decoupled phases of spin-1/2 chains with isotropic exchange J 1, J 2 between first and second neighbors

    NASA Astrophysics Data System (ADS)

    Soos, Zoltán G.; Parvej, Aslam; Kumar, Manoranjan

    2016-05-01

    The spin-1/2 chain with isotropic exchange J 1, J 2  >  0 between first and second neighbors is frustrated for either sign of J 1 and has a singlet ground state (GS) for J 1/J 2  ⩾  -4. Its rich quantum phase diagram supports gapless, gapped, commensurate (C), incommensurate (IC) and other phases. Critical points J 1/J 2 are evaluated using exact diagonalization and density matrix renormalization group calculations. The wave vector q G of spin correlations is related to GS degeneracy and obtained as the peak of the spin structure factor S(q). Variable q G indicates IC phases in two J 1/J 2 intervals, [-4, -  1.24] and [0.44, 2], and a C-IC point at J 1/J 2  =  2. The decoupled C phase in [-1.24, 0.44] has constant q G  =  π/2, nondegenerate GS, and a lowest triplet state with broken spin density on sublattices of odd and even numbered sites. The lowest triplet and singlet excitations, E m and E σ , are degenerate in finite systems at specific frustration J 1/J 2. Level crossing extrapolates in the thermodynamic limit to the same critical points as q G. The S(q) peak diverges at q G  =  π in the gapless phase with J 1/J 2  >  4.148 and quasi-long-range order (QLRO(π)). S(q) diverges at  ±π/2 in the decoupled phase with QLRO(π/2), but is finite in gapped phases with finite-range correlations. Numerical results and field theory agree at small J 2/J 1 but disagree for the decoupled phase with weak exchange J 1 between sublattices. Two related models are summarized: one has an exact gapless decoupled phase with QLRO(π/2) and no IC phases; the other has a single IC phase without a decoupled phase in between.

  4. Optical spin Hall effects in plasmonic chains.

    PubMed

    Shitrit, Nir; Bretner, Itay; Gorodetski, Yuri; Kleiner, Vladimir; Hasman, Erez

    2011-05-11

    Observation of optical spin Hall effects (OSHEs) manifested by a spin-dependent momentum redirection is presented. The effect occurring solely as a result of the curvature of the coupled localized plasmonic chain is regarded as the locally isotropic OSHE, while the locally anisotropic OSHE arises from the interaction between the optical spin and the local anisotropy of the plasmonic mode rotating along the chain. A wavefront phase dislocation was observed in a circular curvature, in which the dislocation strength was enhanced by the locally anisotropic effect. PMID:21513279

  5. Dynamics of spin-1 bosons in an optical lattice: Spin mixing, quantum-phase-revival spectroscopy, and effective three-body interactions

    NASA Astrophysics Data System (ADS)

    Mahmud, K. W.; Tiesinga, E.

    2013-08-01

    We study the dynamics of spin-1 atoms in a periodic optical-lattice potential and an external magnetic field in a quantum quench scenario where we start from a superfluid ground state in a shallow lattice potential and suddenly raise the lattice depth. The time evolution of the nonequilibrium state shows collective collapse-and-revival oscillations of matter-wave coherence as well as oscillations in the spin populations. We show that the complex pattern of these two types of oscillations reveals details about the superfluid and magnetic properties of the initial many-body ground state. Furthermore, we show that the strengths of the spin-dependent and spin-independent atom-atom interactions can be deduced from the observations. The Hamiltonian that describes the physics of the final deep lattice not only contains two-body interactions but also effective multibody interactions, which arise due to virtual excitations to higher bands. We derive these effective spin-dependent three-body interaction parameters for spin-1 atoms and describe how spin mixing is affected. Spinor atoms are unique in the sense that multibody interactions are directly evident in the in situ number densities in addition to the momentum distributions. We treat both antiferromagnetic (e.g., 23Na) and ferromagnetic (e.g., 87Rb and 41K) condensates.

  6. Hybrid ion chains inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  7. Structure and thermodynamic properties of (C5H12N)CuBr3: a new weakly coupled antiferromagnetic spin-1/2 chain complex lying in the 1D-3D dimensional cross-over regime.

    PubMed

    Pan, Bingying; Wang, Yang; Zhang, Lijuan; Li, Shiyan

    2014-04-01

    Single crystals of a metal organic complex (C5H12N)CuBr3 (C5H12N = piperidinium, pipH for short) have been synthesized, and the structure was determined by single-crystal X-ray diffraction. (pipH)CuBr3 crystallizes in the monoclinic group C2/c. Edging-sharing CuBr5 units link to form zigzag chains along the c axis, and the neighboring Cu(II) ions with spin-1/2 are bridged by bibromide ions. Magnetic susceptibility data down to 1.8 K can be well fitted by the Bonner-Fisher formula for the antiferromagnetic spin-1/2 chain, giving the intrachain magnetic coupling constant J ≈ -17 K. At zero field, (pipH)CuBr3 shows three-dimensional (3D) order below TN = 1.68 K. Calculated by the mean-field theory, the interchain coupling constant J' = -0.91 K is obtained and the ordered magnetic moment m0 is about 0.23 μB. This value of m0 makes (pipH)CuBr3 a rare compound suitable to study the 1D-3D dimensional cross-over problem in magnetism, since both 3D order and one-dimensional (1D) quantum fluctuations are prominent. In addition, specific heat measurements reveal two successive magnetic transitions with lowering temperature when external field μ0H ≥ 3 T is applied along the a' axis. The μ0H-T phase diagram of (pipH)CuBr3 is roughly constructed. PMID:24617285

  8. Spin gap in the single spin-1/2 chain cuprate Sr1.9Ca0.1CuO3

    NASA Astrophysics Data System (ADS)

    Hammerath, F.; Brüning, E. M.; Sanna, S.; Utz, Y.; Beesetty, N. S.; Saint-Martin, R.; Revcolevschi, A.; Hess, C.; Büchner, B.; Grafe, H.-J.

    2014-05-01

    We report Cu63 nuclear magnetic resonance and muon spin rotation measurements on the S =1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9Ca0.1CuO3. An exponentially decreasing spin-lattice relaxation rate T1-1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9Ca0.1CuO2, and it confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J'. Our results therefore suggest that the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain is induced by a local bond disorder of the intrachain exchange coupling J. A low-temperature upturn of T1-1 evidences growing magnetic correlations. However, zero-field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound, which is most likely suppressed by the opening of the spin gap.

  9. Decoupled phase of frustrated spin-(1)/(2) antiferromagnetic chains with and without long-range order in the ground state

    NASA Astrophysics Data System (ADS)

    Kumar, Manoranjan; Soos, Z. G.

    2013-10-01

    The quantum phases of one-dimensional spin s=1/2 chains are discussed for models with two parameters, frustrating exchange g=J2>0 between second neighbors and normalized nonfrustrating power-law exchange with exponent α and distance dependence r-α. The ground state (GS) at g=0 has a long-range order (LRO) for α<2 and long-range spin fluctuations for α>2. The models conserve total spin S=SA+SB, have singlet GS for any g, α≥0 and decouple at 1/g=0 to linear Heisenberg antiferromagnets on sublattices A and B of odd- and even-numbered sites. Exact diagonalization of finite chains gives the sublattice spin , the magnetic gap Em to the lowest triplet state, and the excitation Eσ to the lowest singlet with opposite inversion symmetry to the GS. An analytical model that conserves sublattice spin has a first-order quantum transition at gc=1/4ln2 from a GS with perfect LRO to a decoupled phase with SA=SB=0 for g≥4/π2 and no correlation between spins in different sublattices. The model with α=1 has a first-order transition to a decoupled phase that closely resembles the analytical model. The bond order wave (BOW) phase and continuous quantum phase transitions of finite models with α≥2 are discussed in terms of GS degeneracy where Eσ(g)=0, excited state degeneracy where Eσ(g)=Em(g), and . The decoupled phase at large frustration has nondegenerate GS for any exponent α and excited states related to sublattice excitations.

  10. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    NASA Astrophysics Data System (ADS)

    Lin, Zeren; Liu, Zhirong

    2015-12-01

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K' in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T3, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K'.

  11. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    SciTech Connect

    Lin, Zeren; Liu, Zhirong

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensively studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.

  12. Long-range and short-range magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14

    NASA Astrophysics Data System (ADS)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Majumder, M.; Ghoshray, K.; Keller, L.

    2016-05-01

    Spin-spin correlations and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14 have been investigated by powder neutron diffraction. The present study reveals a three-dimensional long-range magnetic ordering below 16 K where the magnetic structure consists of ferromagnetic trimers that are coupled ferromagnetically along the spin-chain direction (b axis). The moment components along the a and c axes arrange antiferromagnetically. Our study establishes that the uncompensated moment components along the b axis (mb) result in a net magnetization per unit cell. The magnetic structure, determined in the present study, is in agreement with the results of recent first-principles calculation; however, it is in contrast to a fascinating experimental prediction of ferrimagnetic ordering based on the periodicity of the exchange interactions in CaNi3P4O14 . Our study also confirms the presence of broad diffuse magnetic scattering, due to one-dimensional short-range spin-spin correlations, over a wide temperature range below ˜50 K down to a temperature well below the Tc. Total neutron scattering analysis by the reverse Monte Carlo (RMC) method reveals that the dominating spin-spin correlation above Tc is ferromagnetic and along the b axis. The nearest-neighbor spin-spin correlations along the a and c axes are found to be weakly antiferromagnetic. The nature of the trimer spin structure of the short-range ordered state (above Tc) is similar to that of the 3D long-range ordered state (below Tc). The present investigation of microscopic nature of the magnetic ground state also explains the condition required for the 1/3 magnetization plateau to be observed in the trimer spin chains. In spite of the S =1 trimer chain system, the present compound CaNi3P4O14 is found to be a good realization of a three-dimensional magnet below Tc=16 K with full ordered moment values of ˜2 μB/Ni2 + (1.98 and 1.96 μB/Ni2 + for two Ni sites, respectively) at 1.5 K.

  13. Spin quantum Hall effects in featureless nonfractionalized spin-1 magnets

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming; Lee, Dung-Hai

    2014-05-01

    The Affleck-Kennedy-Lieb-Tasaki state (or Haldane phase) in a spin-1 chain represents a large class of gapped topological paramagnets that host symmetry-protected gapless excitations on the boundary. In this work, we show how to realize this type of featureless spin-1 state on a generic two-dimensional lattice. These states have a gapped spectrum in the bulk, but they support gapless edge states protected by spin rotational symmetry along a certain direction, and they exhibit the spin quantum Hall effect. Using a fermion representation of integer spins, we show a concrete example of such spin-1 topological paramagnets on a kagome lattice, and we suggest a microscopic spin-1 Hamiltonian that may realize it.

  14. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  15. Quantumness of spin-1 states

    NASA Astrophysics Data System (ADS)

    Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.

    2016-01-01

    We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.

  16. Crystal stability and optical properties of organic chain compounds

    NASA Astrophysics Data System (ADS)

    Zupanovic, P.; Bjelis, A.; Barisic, S.

    1999-01-01

    The solution to the long-standing problem of the cohesion of organic chain compounds is proposed. We consider the tight-binding dielectric matrix with two electronic bands per chain, determine the corresponding hybridized collective modes, and show that three among them are considerably softened due to strong dipole-dipole and monopole-dipole interactions. By this we explain the unusual low-frequency optical activity of TTF-TCNQ, including the observed 10 meV anomaly. The softening of the modes also explains the cohesion of the mixed-stack lattice, the fractional charge transfer almost independent of the material, and the formation of the charged sheets in some compounds.

  17. Optical properties of extended-chain polymers under stress

    NASA Astrophysics Data System (ADS)

    Ramirez, Rafael G.; Eby, R. K.

    1995-09-01

    Birefringence and x-ray diffraction experiments have been carried out on Kevlar 49(superscript R) fibers under tensile stress to monitor structure changes under the stress field. The origin of the observed birefringence is discussed in some detail. Results from theoretical calculations using semi-empirical molecular orbital techniques are presented and contrasted to the experimental observations. The calculations involved the estimation of chain polarizability and were performed under simulated stress conditions using the AM1 Hamiltonian in MOPAC. Polarizability is then used to calculate the birefringence as a function of tensile stress, by using existing internal field theory. This theoretical approach is applied to predict the optical properties of highly oriented extended-chain polyethylene, as well as those for poly(p' phenylene therephtalamide); the latter being the base polymer in Kevlar fibers. Results reveal reasonable birefringence predictions when compared to available experimental results in the literature. Also, it is found that the contribution from orienting crystallites under the stress field, to the measured birefringence in Kevlar fibers, is only a small fraction of the total. However, the calculations predict a significant contribution from deformation (extension) at the molecular level.

  18. Multistability, chains, and cycles in optical multiwave mixing processes.

    PubMed

    Cohen, M S; Julian, W H

    1990-12-10

    We exhibit the information processing capabilities of the first few terms that arise in the amplitude expansion for resonant scattering in a medium with a delay nonlinearity (generalized volume hologram). We begin by showing how the physics of intensity dependent charge transport near a two-photon resonance gives both delayed quadratic and quartic nonlinearities. After reviewing the utility for matrix associative memories exhibited by the delayed quadratic nonlinearity (the ordinary Gabor hologram), we examine the role of the quartic nonlinearity, which is a fourth rank tensor. The symmetries of this tensor determine the information processing capabilities (via multilinear correlations) of the medium in an optical computing paradigm. We find multiple basins of stability, Jordan strings, and cycles as possible dynamic behaviors for the medium. We indicate how each corresponds to an information processing task: multiple basins to multiassociative memory, Jordan strings and cycles to chain and sequence memory and to group-invariant pattern recognition. We briefly indicate how branching processes may be implemented by the fourth rank mode-coupling tensor. PMID:20577548

  19. Topological paramagnetism in frustrated spin-1 Mott insulators

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Nahum, Adam; Senthil, T.

    2015-05-01

    Time-reversal-protected three-dimensional (3D) topological paramagnets are magnetic analogs of the celebrated 3D topological insulators. Such paramagnets have a bulk gap and no exotic bulk excitations, but have non-trivial surface states protected by symmetry. We propose that frustrated spin-1 quantum magnets are a natural setting for realizing such states in three dimensions. We describe a physical picture of the ground-state wave function for such a spin-1 topological paramagnet in terms of loops of fluctuating Haldane chains with nontrivial linking phases. We illustrate some aspects of such loop gases with simple exactly solvable models. We also show how 3D topological paramagnets can be very naturally accessed within a slave particle description of a spin-1 magnet. Specifically, we construct slave-particle mean-field states which are naturally driven into the topological paramagnet upon including fluctuations. We propose bulk projected wave functions for the topological paramagnet based on this slave-particle description. An alternate slave-particle construction leads to a stable U (1 ) quantum spin liquid from which a topological paramagnet may be accessed by condensing the emergent magnetic monopole excitation of the spin liquid.

  20. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  1. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    DOE PAGESBeta

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore » and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less

  2. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    SciTech Connect

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; Ahmed, Aftab; Nykypanchuk, Dmytro; Choueiri, Rachelle M.; Gagnon, Brandon; Muntyanu, Anastasiya; Walker, Gilbert C.; Kumacheva, Eugenia

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, composition and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.

  3. Plasmonic nanoparticle chain in a light field: a resonant optical sail.

    PubMed

    Albaladejo, Silvia; Sáenz, Juan José; Marqués, Manuel I

    2011-11-01

    Optical trapping and driving of small objects has become a topic of increasing interest in multidisciplinary sciences. We propose to use a chain made of metallic nanoparticles as a resonant light sail, attached by one end point to a transparent object and propelling it by the use of electromagnetic radiation. Driving forces exerted on the chain are theoretically studied as a function of radiation's wavelength and chain's alignments with respect to the direction of radiation. Interestingly, there is a window in the frequency spectrum in which null-torque equilibrium configuration, with minimum geometric cross section, corresponds to a maximum in the driving force. PMID:21942220

  4. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  5. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  6. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    SciTech Connect

    Marrone, B.L.; Simpson, D.J.; Unkefer, C.J.; Whaley, T.W.

    1993-05-04

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450[sub scc] enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450[sub scc] catalyzes the conversion of cholesterol to prednesolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  7. Characterizing the Haldane phase in quasi-one-dimensional spin-1 Heisenberg antiferromagnets

    NASA Astrophysics Data System (ADS)

    Wierschem, Keola; Sengupta, Pinaki

    2014-12-01

    We review the basic properties of the Haldane phase in spin-1 Heisenberg antiferromagnetic chains, including its persistence in quasi-one-dimensional (Q1D) geometries. Using large-scale numerical simulations, we map out the phase diagram for a realistic model applicable to experimental Haldane compounds. We also investigate the effect of different chain coupling geometries and confirm a general mean-field universality of the critical coupling times the coordination number of the lattice. Inspired by recent developments in the characterization of symmetry protected topological (SPT) states, of which the Haldane phase of the spin-1 Heisenberg antiferromagnetic chain is a preeminent example, we provide direct evidence that the Q1D Haldane phase is indeed a nontrivial SPT state.

  8. One-dimensional array of ion chains coupled to an optical cavity

    NASA Astrophysics Data System (ADS)

    Cetina, Marko; Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Beck, Kristin M.; Ge, Yufei; Scholz, Matthias; Grier, Andrew T.; Chuang, Isaac; Vuletić, Vladan

    2013-05-01

    We present a novel system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains aligned with the cavity and spaced by 160 μm in a one-dimensional array along the cavity axis. Each chain can contain up to 20 individually addressable Yb+ ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with ≲10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.

  9. Effects of varying surfactant chain lengths on the magnetic, optical and hyperthermia properties of ferrofluids

    NASA Astrophysics Data System (ADS)

    Rablau, Corneliu; Vaishnava, Prem; Regmi, Rajesh; Sudakar, Chandran; Black, Correy; Lawes, Gavin; Naik, Ratna; Lavoie, Melissa; Kahn, David

    2009-03-01

    We report studies of the structural, magnetic, magneto-thermal and magneto-optic properties of dextran, oleic acid, lauric acid and myristic acid surfacted Fe3O4 nanoparticles of hydrodynamic sizes ranging from 32 nm to 92 nm. All the samples showed saturation magnetization of ˜50 emu/g, significantly smaller than the bulk value for Fe3O4, together with superparamagnetic behavior. The ac magnetization measurements on the dextran coated nanoparticles showed frequency dependent blocking temperature, consistent with superparamgnetic blocking. The ferrofluid heating rates in a 250 Gauss, 100 kHz ac magnetic field varied with the chain lengths of the surfactants, with higher heating rates for longer chains. DC-magnetic-field-induced light scattering patterns produced by two orthogonal He-Ne laser beams passing through the ferrofluid sample revealed different optical signatures for different surfactants.

  10. One-dimensional topological chains with Majorana fermions in two-dimensional nontopological optical lattices

    NASA Astrophysics Data System (ADS)

    Jiang, Lei; Qu, Chunlei; Zhang, Chuanwei

    2016-06-01

    The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this paper, we show that such 1D topological chains with MFs may be on demand generated in a two- or three-dimensional nontopological optical lattice with 1D ERD-SOC by modifying local potentials on target locations using experimentally already implemented atomic gas microscopes or patterned (e.g., double- or triple-well) optical lattices. All ingredients in our scheme have been experimentally realized, and the combination of them may pave the way for the experimental observation of MFs in a clean system.

  11. Focusing capability of integrated chains of microspheres in the limit of geometrical optics

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Allen, Kenneth W.; Fardad, Amir; Fried, Nathaniel M.; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.

    2011-03-01

    The effects of periodical focusing of light were studied in chains of sapphire microspheres with 300 μm diameters assembled either on a substrate or inside capillary tubing. Dye-doped fluorescent microspheres were used as multimodal sources of light in experimental studies. Significant reduction of the focused spot sizes was observed for chains of spheres compared to a single sphere case. Numerical ray tracing simulations were performed for similar chains assembled inside hollow waveguides to be used as an optical delivery system with mid-infrared lasers for ultra-precise surgery. The device designs were optimized for contact conditions during laser surgery involving short optical penetration depths of light in tissue. It is shown that chains of spheres with n around 1.65-1.75 provide a two-fold improvement of the spatial resolution over single spheres. Potential applications of these microprobes include ultraprecise laser procedures in the eye and brain or piercing a cell, and coupling of multimodal beams into photonic microstructures.

  12. Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers

    NASA Astrophysics Data System (ADS)

    Yamada, Toshiki; Kaji, Takahiro; Aoki, Isao; Yamada, Chiyumi; Mizuno, Maya; Saito, Shingo; Tominari, Yukihiro; Tanaka, Shukichi; Otomo, Akira

    2016-03-01

    We investigated the dielectric properties of side-chain electro-optic polymers in a broad THz frequency region (90 GHz to 7 THz). For this investigation, we used terahertz time domain spectroscopy and the absorption coefficient in a broader frequency region of up to 20 THz that was obtained by far-infrared spectroscopy. The polymers studied were a new methacrylate polymer with a high-hyperpolarizability chromophore as the sidechain, a side-chain copolymer Disperse Red 1 polymethylmethacrylate, and pure polymethylmethacrylate. The dielectric properties in the low THz frequency region (∼0.1 THz) provide us with important information about the intrinsic refractive index for ultrahigh-speed electro-optic modulation (∼100 GHz), as well as versatile information such as the absorption coefficient and dielectric loss. The THz and far-infrared spectroscopic data in the wide frequency region provide us with the fundamental data for applications of side-chain electro-optic polymers within THz generation and detection.

  13. Mobile impurity approach to the optical conductivity in the Hubbard chain

    NASA Astrophysics Data System (ADS)

    Veness, Thomas; Essler, Fabian H. L.

    2016-05-01

    We consider the optical conductivity in the one-dimensional Hubbard model in the metallic phase close to half-filling. In this regime, most of the spectral weight is located at frequencies above an energy scale Eopt that tends towards the optical gap in the Mott insulating phase for vanishing doping. Using the Bethe ansatz, we relate Eopt to thresholds of particular kinds of excitations in the Hubbard model. We then employ a mobile impurity model to analyze the optical conductivity for frequencies slightly above these thresholds. This entails generalizing mobile impurity models to excited states that are not the highest weight with regards to the SU(2) symmetries of the Hubbard chain, and that occur at a maximum of the impurity dispersion.

  14. Optical Nanofluidic Piston: Assay for Dynamic Force-Compression of Single Confined Polymer Chains

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Zimny, Philip; Macos, Patrick; Massarelli, Geremia; Tétreault-La Roche, David; Reisner, Walter

    2014-03-01

    While single-molecule approaches now have a long-history in polymer physics, past methodology has a key limitation : it is not currently possible to apply well-defined forces to a precise number of chains in a well-defined volume. To this end,we have developed a nanofluidic assay for the study of DNA compression in vitro, the optical nanofluidic piston. The optical nanofluidic piston is a nanofluidic analog of a macroscopic piston-cylinder apparatus based on a nanosphere (``the piston'') optically trapped inside a 200-400nm nanochannel with embedded barrier (the ``cylinder''). The nanofluidic piston enables quantification of force required to compress single or multiple chains within a defined volume. We present combined fluorescence and force-measurements for the compression of T4 DNA under a variety of compression rates. Surprisingly, we find that compression occurs on a force-scale roughly 100x higher than that predicted by equilibrium theories, suggesting that the DNA is present in highly entangled states during the compression. Moreover, we observe that compression at high rates induces a ``shock-wave'' of high-polymer concentration near the bead, suggesting that our setup can quantitatively access novel non-equilibrium polymer phenomena.

  15. Frustrated mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Žukovič, M.; Bobák, A.

    2015-05-01

    Mixed spin-1/2 and spin-1 Ising ferrimagnets on a triangular lattice with sublattices A, B, and C are studied for two spin-value distributions (SA,SB,SC) =(1 /2 ,1 /2 ,1 ) and (1 /2 ,1 ,1 ) by Monte Carlo simulations. The nonbipartite character of the lattice induces geometrical frustration in both systems, which leads to the critical behavior rather different from their ferromagnetic counterparts. We confirm second-order phase transitions belonging to the standard Ising universality class occurring at higher temperatures, however, in both models these change at tricritical points (TCP) to first-order transitions at lower temperatures. In the model (1 /2 ,1 /2 ,1 ) , TCP occurs on the boundary between paramagnetic and ferrimagnetic (±1 /2 ,±1 /2 ,∓1 ) phases. The boundary between two ferrimagnetic phases (±1 /2 ,±1 /2 ,∓1 ) and (±1 /2 ,∓1 /2 ,0 ) at lower temperatures is always first order and it is joined by a line of second-order phase transitions between the paramagnetic and the ferrimagnetic (±1 /2 ,∓1 /2 ,0 ) phases at a critical endpoint. The tricritical behavior is also confirmed in the model (1 /2 ,1 ,1 ) on the boundary between the paramagnetic and ferrimagnetic (0 ,±1 ,∓1 ) phases.

  16. Evolution Equation for a Joint Tomographic Probability Distribution of Spin-1 Particles

    NASA Astrophysics Data System (ADS)

    Korennoy, Ya. A.; Man'ko, V. I.

    2016-07-01

    The nine-component positive vector optical tomographic probability portrait of quantum state of spin-1 particles containing full spatial and spin information about the state without redundancy is constructed. Also the suggested approach is expanded to symplectic tomography representation and to representations with quasidistributions like Wigner function, Husimi Q-function, and Glauber-Sudarshan P-function. The evolution equations for constructed vector optical and symplectic tomograms and vector quasidistributions for arbitrary Hamiltonian are found. The evolution equations are also obtained in special case of the quantum system of charged spin-1 particle in arbitrary electro-magnetic field, which are analogs of non-relativistic Proca equation in appropriate representations. The generalization of proposed approach to the cases of arbitrary spin is discussed. The possibility of formulation of quantum mechanics of the systems with spins in terms of joint probability distributions without the use of wave functions or density matrices is explicitly demonstrated.

  17. Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data

    NASA Astrophysics Data System (ADS)

    Ostir, K.; Cotar, K.; Marsetic, A.; Pehani, P.; Perse, M.; Zaksek, K.; Zaletelj, J.; Rodic, T.

    2015-04-01

    In response to the increasing need for automatic and fast satellite image processing SPACE-SI has developed and implemented a fully automatic image processing chain STORM that performs all processing steps from sensor-corrected optical images (level 1) to web-delivered map-ready images and products without operator's intervention. Initial development was tailored to high resolution RapidEye images, and all crucial and most challenging parts of the planned full processing chain were developed: module for automatic image orthorectification based on a physical sensor model and supported by the algorithm for automatic detection of ground control points (GCPs); atmospheric correction module, topographic corrections module that combines physical approach with Minnaert method and utilizing anisotropic illumination model; and modules for high level products generation. Various parts of the chain were implemented also for WorldView-2, THEOS, Pleiades, SPOT 6, Landsat 5-8, and PROBA-V. Support of full-frame sensor currently in development by SPACE-SI is in plan. The proposed paper focuses on the adaptation of the STORM processing chain to very high resolution multispectral images. The development concentrated on the sub-module for automatic detection of GCPs. The initially implemented two-step algorithm that worked only with rasterized vector roads and delivered GCPs with sub-pixel accuracy for the RapidEye images, was improved with the introduction of a third step: super-fine positioning of each GCP based on a reference raster chip. The added step exploits the high spatial resolution of the reference raster to improve the final matching results and to achieve pixel accuracy also on very high resolution optical satellite data.

  18. Optimization design method of satellite imaging chain related with optical axis jitter

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Wang, Humei; Wang, Shitao

    2014-11-01

    As the improvement of imaging resolution of earth observation satellite, the optical axis disturbance (referred as LOS jitter) introduced by satellite moving components, such as reaction wheel, CMG, cryocooler etc., become one of the important factors that limits the imaging quality. So far as we know, there are several methods to control the frequency and amplitude of LOS jitter, such as satellite attitude control system (ACS), vibration isolator, image stabilization system etc. Each method has its own application range: ACS can only response to low frequency disturbance to about one tenth Hz, but it can deal with large amplitude disturbance; vibration isolator usually attenuates LOS jitter amplitude in high frequency, but may magnify jitter in low frequency; image stabilization can stabilize the LOS jitter in low-mid frequency, but limited to small amplitude. So it is necessary to use several methods together to insure the imaging quality. Here comes the question, how to design and allocate the system specification reasonably to satisfy the requirement of imaging and to make it possible for these methods to realize. This paper presents a new optimization method based on the frequency domain for the satellite imaging chain related with optical axis jitter. First describe the performance of each link of the imaging chain in the frequency domain, then through the calculation of image MTF using LOS jitter PSD, build up the relation between the imaging quality and the frequency performance of mixed links, then combine the frequency performance and the spectral decomposition method, the relation between each link and system imaging quality can be built. Then Based on this method, the requirement of imaging quality related to each link can be allocate and optimize quantitatively, which is essential for the design of imaging chain related with optical axis jitter.

  19. Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations.

    PubMed

    Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W

    2012-04-01

    We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit. PMID:22482543

  20. Optical design of cipher block chaining (CBC) encryption mode by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jung, Jong Rae; Kim, Nam

    2016-03-01

    We propose an optical design of cipher block chaining (CBC) encryption by using digital holographic technique, which has higher security than the conventional electronic method because of the analog-type randomized cipher text with 2-D array. In this paper, an optical design of CBC encryption mode is implemented by 2-step quadrature phase-shifting digital holographic encryption technique using orthogonal polarization. A block of plain text is encrypted with the encryption key by applying 2-step phase-shifting digital holography, and it is changed into cipher text blocks which are digital holograms. These ciphered digital holograms with the encrypted information are Fourier transform holograms and are recorded on CCDs with 256 gray levels quantized intensities. The decryption is computed by these encrypted digital holograms of cipher texts, the same encryption key and the previous cipher text. Results of computer simulations are presented to verify that the proposed method shows the feasibility in the high secure CBC encryption system.

  1. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  2. Visualization of an entangled channel spin-1 system

    SciTech Connect

    Sirsi, Swarnamala; Adiga, Veena

    2010-08-15

    Covariance matrix formalism gives powerful entanglement criteria for continuous as well as finite dimensional systems. We use this formalism to study a mixed channel spin-1 system which is well known in nuclear reactions. A spin-j state can be visualized as being made up of 2j spinors which are represented by a constellation of 2j points on a Bloch sphere using Majorana construction. We extend this formalism to visualize an entangled mixed spin-1 system.

  3. Optical properties of MX chain materials: An extended Peierls-Hubbard model

    SciTech Connect

    Bishop, A.R.; Batistic, I.; Gammel, J.T.; Saxena, A.

    1991-01-01

    We describe theoretical modeling of both pure (MX) and mixed-halide (MX{sub x}X{prime}{sub 1-x}) halogen (X)-bridged transition metal (M) linear chain complexes in terms of an extended Peierls-Hubbard, tight-binding Hamiltonian with 3/4-filling of two-bands. Both inter- and intra-site electron-phonon coupling are included. Electronic (optical absorption), lattice dynamic (IR, Raman) and spin (ESR) signatures are obtained for the ground states, localized excited states produced by impurities, doping or photo-excitation -- excitons, polarons, bipolarons, solitons; and the edge states (which occur in mixed-halide crystals, e.g. PtCl{sub x}Br{sub 1-x}). Adiabatic molecular dynamics is used to explore photodecay channels in pure and impure systems for ground states as well as in the presence of pre-existing polaronic states. 12 refs., 3 figs., 1 tab.

  4. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    NASA Astrophysics Data System (ADS)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  5. Spin-1 Heisenberg ferromagnet using pair approximation method

    NASA Astrophysics Data System (ADS)

    Mert, Murat; Kılıç, Ahmet; Mert, Gülistan

    2016-06-01

    Thermodynamic properties for Heisenberg ferromagnet with spin-1 on the simple cubic lattice have been calculated using pair approximation method. We introduce the single-ion anisotropy and the next-nearest-neighbor exchange interaction. We found that for negative single-ion anisotropy parameter, the internal energy is positive and heat capacity has two peaks.

  6. Measurement-induced disturbance and thermal negativity in 1D optical lattice chain

    SciTech Connect

    Guo, Jin-Liang; Lin-Wang; Long, Gui-Lu

    2013-03-15

    We study the measurement-induced disturbance (MID) in a 1D optical lattice chain with nonlinear coupling. Special attention is paid to the difference between the thermal entanglement and MID when considering the influences of the linear coupling constant, nonlinear coupling constant and external magnetic field. It is shown that MID is more robust than thermal entanglement against temperature T and external magnetic field B, and MID may reveal more properties about quantum correlations of the system, which can be seen from the point of view that MID can be nonzero when there is no thermal entanglement and MID can detect the critical point of quantum phase transition at finite temperature. - Highlights: Black-Right-Pointing-Pointer The nonlinear coupling constant can strengthen the quantum correlation. Black-Right-Pointing-Pointer MID is more robust than entanglement against temperature and magnetic field. Black-Right-Pointing-Pointer MID exhibits more information about quantum correlation than entanglement. Black-Right-Pointing-Pointer MID can detect the critical point of quantum phase transition at finite temperature.

  7. Electron Correlation Effects and Nonlinear Optical Properties of Conjugated Linear and Cyclic Chains.

    NASA Astrophysics Data System (ADS)

    Cai, Yong-Ming

    Reduced dimensionality and quantum confinement place special constraints on electronic excitations that result in unusually large nonlinear optical responses. One major purpose of this study is to provide an experimental basis for the development of a comprehensive microscopic description of the many-electron origin of the second order virtual excitation processes in quasi-one dimensional linear and cyclic chain structures. The experimental results were compared with the calculated results from configuration interaction theory for the magnitude, sign, and dispersion of beta_{rm ijk}( omega_3; omega_1,omega _2). DC field induced second harmonic generation (DCSHG) measurements of molecular units in liquid and gas phases have been performed over a broad frequency range extending from the near infrared through the visible. An infinite dilution extrapolation method which required combined experimental studies of DCSHG, dielectric constant, index of refraction, and specific volume has been employed. Theoretical gas phase values of beta_{rm ijk} can then be compared to experimental infinite dilution values. The DCSHG experimental methodology and techniques receive extensive review in this thesis in addition to the description of a new gas phase measurement.

  8. How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles.

    PubMed

    Esteban, Ruben; Taylor, Richard W; Baumberg, Jeremy J; Aizpurua, Javier

    2012-06-19

    Self-assembled clusters of metallic nanoparticles separated by nanometric gaps generate strong plasmonic modes that support both intense and localized near fields. These find use in many ultrasensitive chemical and biological sensing applications through surface enhanced Raman scattering (SERS). The inability to control at the nanoscale the structure of the clusters on which the optical response crucially depends, has led to the development of general descriptions to model the various morphologies fabricated. Here, we use rigorous electrodynamic calculations to study clusters formed by a hundred nanospheres that are separated by ∼1 nm distance, set by the dimensions of the macrocyclic molecular linker employed experimentally. Three-dimensional (3D) cluster structures of moderate compactness are of special interest since they resemble self-assembled clusters grown under typical diffusion-limited aggregation conditions. We find very good agreement between the simulated and measured far-field extinction spectra, supporting the equivalence of the assumed and experimental morphologies. From these results we argue that the main features of the optical response of two- and three-dimensional clusters can be understood in terms of the excitation of simple units composed of different length resonant chains. Notably, we observe a qualitative difference between short- and long-chain modes in both spectral response and spatial distribution: dimer and short-chain modes are observed in the periphery of the cluster at higher energies, whereas inside the structure longer chain excitation occurs at lower energies. We study in detail different configurations of isolated one-dimensional chains as prototypical building blocks for large clusters, showing that the optical response of the chains is robust to disorder. This study provides an intuitive understanding of the behavior of very complex aggregates and may be generalized to other types of aggregates and systems formed by large

  9. Dynamics of Spin-(1)/(2) Quantum Plasmas

    NASA Astrophysics Data System (ADS)

    Marklund, Mattias; Brodin, Gert

    2007-01-01

    The fully nonlinear governing equations for spin-(1)/(2) quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.

  10. Dynamics of spin-1/2 quantum plasmas.

    PubMed

    Marklund, Mattias; Brodin, Gert

    2007-01-12

    The fully nonlinear governing equations for spin-1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron-ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out. PMID:17358613

  11. Coherent spin mixing dynamics in a spin-1 atomic condensate

    SciTech Connect

    Zhang Wenxian; Chang, M.-S.; Chapman, M.S.; Zhou, D.L.; You, L.

    2005-07-15

    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean-field theory and adopting the single-spatial-mode approximation, the condensate spin dynamics is found to be well described by that of a nonrigid pendulum and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.

  12. EARLINET Single Calculus Chain - technical - Part 2: Calculation of optical products

    NASA Astrophysics Data System (ADS)

    Mattis, Ina; D'Amico, Giuseppe; Baars, Holger; Amodeo, Aldo; Madonna, Fabio; Iarlori, Marco

    2016-07-01

    In this paper we present the automated software tool ELDA (EARLINET Lidar Data Analyzer) for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the calculus modules of the EARLINET Single Calculus Chain (SCC) which allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way. ELDA delivers profiles of particle extinction coefficients from Raman signals as well as profiles of particle backscatter coefficients from combinations of Raman and elastic signals or from elastic signals only. Those analyses start from pre-processed signals which have already been corrected for background, range dependency and hardware specific effects. An expert group reviewed all algorithms and solutions for critical calculus subsystems which are used within EARLINET with respect to their applicability for automated retrievals. Those methods have been implemented in ELDA. Since the software was designed in a modular way, it is possible to add new or alternative methods in future. Most of the implemented algorithms are well known and well documented, but some methods have especially been developed for ELDA, e.g., automated vertical smoothing and temporal averaging or the handling of effective vertical resolution in the case of lidar ratio retrievals, or the merging of near-range and far-range products. The accuracy of the retrieved profiles was tested following the procedure of the EARLINET-ASOS algorithm inter-comparison exercise which is based on the analysis of synthetic signals. Mean deviations, mean relative deviations, and normalized root-mean-square deviations were calculated for all possible products and three height layers. In all cases, the deviations were clearly below the maximum allowed values according to the EARLINET quality requirements.

  13. Spin-1/2 Heisenberg Antiferromagnet on the Spatially Anisotropic Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas; Starykh, Oleg; Balents, Leon

    2008-03-01

    We study the quasi-one-dimensional limit of the Spin-1/2 quantum antiferromagnet on the Kagome lattice, a model Hamiltonian that might be of relevance for the mineral volborthite [1,2]. The lattice is divided into antiferromagnetic spin-chains (exchange J) that are weakly coupled via intermediate ``dangling'' spins (exchange J'). Using bosonization, renormalization group methods, and current algebra techniques we determine the ground state as a function of J'/J. The case of a strictly one-dimensional Kagome strip is also discussed. [1] Z. Hiroi, M. Hanawa, N. Kobayashi, M. Nohara, Hidenori Takagi, Y. Kato, and M. Takigawa, J. Phys. Soc. Japan 70, 3377 (2001). [2] F. Bert, D. Bono, P. Mendels, F. Ladieu, F. Duc, J.-C. Trumbe, and P. Millet, Phys. Rev. Lett. 95, 087203 (2005).

  14. Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Thakur, Pradeep; Durganandini, P.

    2015-06-24

    We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimes of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.

  15. Effect of the side-chain size on the optical and electrical properties of confined-PPV derivatives

    NASA Astrophysics Data System (ADS)

    Benzarti-Ghédira, Maha; Hrichi, Haikel; Jaballah, Nejmeddine; Ben Chaâbane, Rafik; Majdoub, Mustapha; Ben Ouada, Hafedh

    2015-09-01

    We have investigated the influence of side-chain size on the optical and charge transport behavior of thin layers of new conjugated polymers based on separated PPV-type chromophores (P1, P2 and P3). The polymers are soluble in common organic solvents. The optical properties of these materials were investigated by UV-Vis absorption and PL spectroscopy. In thin solid films, the polymers show side-group dependent optical behavior; the PL spectra of polymers P2 and P3 showed a blue emission, whereas a green emission was observed for the polymer P1. The optical gaps of these thin layers have been estimated to be 2.93, 2.96 and 2.98 eV for P1, P2 and P3, respectively. The optical study showed a stronger π-π interaction in the P1 film. The electrical properties of ITO/PPV derivative/Al diodes base on these PPV derivatives were investigated by the current/tension characteristics and modeled by the current space-charge-limited (SCLC) mechanism; a higher mobility was obtained in the P2 thin layer. The morphology of the polymer films was studied and correlated to the optical and electrical properties.

  16. Heisenberg-scaled magnetometer with dipolar spin-1 condensates

    NASA Astrophysics Data System (ADS)

    Xing, Haijun; Wang, Anbang; Tan, Qing-Shou; Zhang, Wenxian; Yi, Su

    2016-04-01

    We propose a scheme to realize a Heisenberg-scaled magnetometer using dipolar spin-1 condensates. The input state of magnetometer is prepared by slowly sweeping a transverse magnetic field to zero, which yields a highly entangled spin state of N atoms. We show that this process is protected by a parity symmetry such that the state preparation time is within the reach of the current experiment. We also propose a parity measurement with a Stern-Gerlach apparatus which is shown to approach the optimal measurement in the large atom number limit. Finally, we show that the phase estimation sensitivity of the proposed scheme roughly follows the Heisenberg scaling.

  17. Universal Coarsening Dynamics of a Quenched Ferromagnetic Spin-1 Condensate

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis A.; Blakie, P. B.

    2016-01-01

    We demonstrate that a quasi-two-dimensional spin-1 condensate quenched to a ferromagnetic phase undergoes universal coarsening in its late time dynamics. The quench can be implemented by a sudden change in the applied magnetic field and, depending on the final value, the ferromagnetic phase has easy-axis (Ising) or easy-plane (X Y ) symmetry, with different dynamical critical exponents. Our results for the easy-plane phase reveal a fractal domain structure and the crucial role of polar-core spin vortices in the coarsening dynamics.

  18. Pair approximation method for spin-1 Heisenberg system

    NASA Astrophysics Data System (ADS)

    Mert, Murat; Kılıç, Ahmet; Mert, Gülistan

    2016-03-01

    Spin-1 Heisenberg system on simple cubic lattice is considered in the pair approximation method assuming that the second-nearest-neighbor exchange interaction parameter has a negative value. The system is described in presence of an external magnetic field. The effects of the negative single-ion anisotropy and the negative second-nearest-neighbor exchange interaction on magnetization, internal energy, heat capacity, entropy and free energy are investigated. There are diverse anomalies at low temperature. In the magnetization and other thermodynamic quantities, the first-order phase transitions from ferromagnetic state to antiferromagnetic state and from ferromagnetic state to paramagnetic state have been observed.

  19. On mono-W signatures in spin-1 simplified models

    NASA Astrophysics Data System (ADS)

    Haisch, Ulrich; Kahlhoefer, Felix; Tait, Tim M. P.

    2016-09-01

    The potential sensitivity to isospin-breaking effects makes LHC searches for mono-W signatures promising probes of the coupling structure between the Standard Model and dark matter. It has been shown, however, that the strong sensitivity of the mono-W channel to the relative magnitude and sign of the up-type and down-type quark couplings to dark matter is an artifact of unitarity violation. We provide three different solutions to this mono-W problem in the context of spin-1 simplified models and briefly discuss the impact that our findings have on the prospects of mono-W searches at future LHC runs.

  20. Electric and magnetic polarizabilities of pointlike spin-1/2 particles

    NASA Astrophysics Data System (ADS)

    Silenko, A. J.

    2014-11-01

    The electric and magnetic polarizabilities of pointlike spin-1/2 particles with an anomalous magnetic moment (AMM) are calculated by the transformation of an initial Hamiltonian into the Foldy-Wouthuysen (FW) representation. Corresponding results for spin-1/2 and spin-1 particles are compared.

  1. What the ultimate polymeric electro-optic materials will be: guest-host, crosslinked, or side-chain?

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Zhang, Hua; Oh, Min-Cheol; Dalton, Larry R.; Steier, William H.

    2003-07-01

    Material processing and device fabrication of many different electro-optic (EO) polymers developed at USC are reviewed. Detailed discussion is given to guest-host CLD/APCs, crosslinking perfluorocyclobutane (PFCB) polymer CX1, and thermally stable side-chain polymers CX2 and CX3. Excellent EO performance (1.4V at 1.31 μm, 2.1 V at 1.55 μm) was achieved in CLD/APC Mach-Zehnder modulators (2-cm, push-pull). CLD/APCs also possess low optical losses (1.2 dB/cm in slab waveguides and in thick core channel waveguides). However, the guest-host materials only have limited thermal stability (110-132 °C in short term, <60 °C in long term) and require special techniques in device fabrication. The crosslinking polymer CX1 was able to provide long-term stability at 85 oC when fully cured. It also has a low optical loss (comparable to CLD/APCs) before curing and decent EO coefficient when poled at 180 °C. However, after the films were poled at the crosslinking temperatures (200 °C or above), the transmissions of the waveguides and EO activity became very poor due to poling-induced chromophore degradation. By judicial molecular design of both chromophore and monomer structures to suppress thermal motion of polymer segments, we were able to realize the same or even better thermal stability in side-chain polymers CX2 and CX3. Since no curing is needed, devices can be poled at their optimal poling temperatures, and all good properties can be obtained simultaneously. Despite the excellent solubility in chlorinated solvents, these side-chain polymers are resistant to some other organic solvents or solutions such as acetone, photoresist and various UV-curable liquids.

  2. Mott lobes evolution of the spin-1 Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Hincapie-F, A. F.; Franco, R.; Silva-Valencia, J.

    2016-02-01

    We study spin-1 bosons confined in a one-dimensional optical lattice, taking into consideration both ferromagnetic and antiferromagnetic interaction. Using the density matrix renormalization group, we determine the phase diagram for the two firsts lobes and report the evolution of the first and second Mott lobes with respect to the spin-exchange interaction parameter (U 2). We determine that for the antiferromagnetic case, the first lobe is suppressed while the second grows as |U 2| increases. For the ferromagnetic case, the first and second Mott lobes are suppressed by the spin-exchange interaction parameter. We propose an expresion to describe the evolution of the critical point with the increase in |U 2| for both cases.

  3. On the path length of an excess electron interacted with optical phonons in a molecular chain

    NASA Astrophysics Data System (ADS)

    Lakhno, V. D.

    2008-08-01

    We show that in a molecular chain with dispersionless phonons at zero temperature, a “quasistationary” moving soliton state of an excess electron is possible. As the soliton velocity vanishes, the path length of the excess electron exponentially tends to infinity. It is demonstrated that in the presence of dispersion, when the soliton initial velocity exceeds the maximum group velocity of the chain, the soliton slows down until it reaches the maximum group velocity and then moves stationarily at this maximum group velocity. A conclusion is made of the fallacy of some works were the existence of moving polarons in a dispersionless medium is considered infeasible.

  4. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  5. Evidence for a spin-1 particle produced by two photons

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnes, A. V.; Barnett, B. A.; Bauer, D. A.; Bengtsson, H.-U.; Bintinger, D. L.; Bobbink, G. J.; Bolognese, T. S.; Bross, A. D.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fujii, T.; Gary, J. W.; Gorn, W.; Hauptman, J. M.; Hofmann, W.; Huth, J. E.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kees, K. H.; Kenney, R. W.; Kerth, L. T.; Ko, Winston; Koda, R. I.; Kofler, R. R.; Kwong, K. K.; Lander, R. L.; Langeveld, W. G.; Layter, J. G.; Linde, F. L.; Lindsey, C. S.; Loken, S. C.; Lu, A.; Lu, X.-Q.; Lynch, G. R.; Madaras, R. J.; Maeshima, K.; Magnuson, B. D.; Marx, J. N.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Melnikoff, S. O.; Miller, E. S.; Moses, W.; McNeil, R. R.; Nemethy, P.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, D. A.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shapiro, M. D.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Thompson, J. R.; Toge, N.; Toutounchi, S.; van Tyen, R.; van Uitert, B.; Vandalen, G. J.; van Daalen Wetters, R. F.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y. X.; Wayne, M. R.; Wenzel, W. A.; White, J. T.; Williams, M. C.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; Zhang, W.-M.

    1986-11-01

    Two-photon production of K08K+/-π-/+ states has been studied by the TPC/Two-Gamma experiment at the SLAC storage ring PEP. A resonance of mass 1.42 GeV was seen when one of the photons was quite virtual but not when both photons were nearly real. Production of a spin-1 meson, which cannot be made by two real photons, would fit these observations. The Q2 dependence of the data in the resonance region agrees with this spin assignment and is incompatible with a spin-0 hypothesis. The mass and width of the resonance are similar to those of the E meson, which has been assigned JP=0- and JP=1+ by different experiments.

  6. Spin waves in a spin-1 normal Bose gas

    SciTech Connect

    Natu, Stefan S.; Mueller, Erich J.

    2010-05-15

    We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.

  7. Phase ordering dynamics in spin-1 ferromagnetic condensates

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis; Blakie, Peter

    2016-05-01

    Spinor Bose-Einstein condensates present rich phase diagrams for exploring phase transitions between states with different symmetry properties. In this work we simulate the approach to equilibrium of a spin-1 condensate quenched from an unmagnetised phase to three different ferromagnetic phases. The three ferromagnetic phases have Z2, SO(2) and SO(3) symmetries respectively and possess different conservation laws. Following the quench, domains of magnetization form, with each domain making an independent choice of the symmetry breaking order parameter. These domains grow and compete for the global equilibrium state. We find that this growth follows universal scaling laws and identify the dynamic universality class for each of the three quenches. Polar-core spin-vortices play a crucial role in the phase ordering of the SO(2) system and we identify fractal structures in the domain patterns of the SO(2) and SO(3) systems. We acknowledge support from the Marsden Fund of New Zealand.

  8. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  9. The Role of Morphology and Electronic Chain Aggregation on the Optical Gain Properties of Semiconducting Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Lampert, Zachary Evan

    Conjugated polymers (CPs) are a novel class of materials that exhibit the optical and electrical properties of semiconductors while still retaining the durability and processability of plastics. CPs are also intrinsically 4-level systems with high luminescence quantum efficiencies making them particularly attractive as organic gain media for solid-state laser applications. However, before CPs can emerge as a commercially available laser technology, a more comprehensive understanding of the morphological dependence of the photophysics is required. In this thesis, the morphology and chain conformation dependence of amplified spontaneous emission (ASE) and optical gain in thin films of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) was investigated. By changing the chemical nature of the solvent from which films were cast, as well as the temperature at which films were annealed, CP films with different morphologies, and hence different degrees of interchain interactions were achieved. Contrary to the common perception that polymer morphology plays a decisive role in determining the ASE behavior of thin CP films, we found that chromophore aggregation and degree of conformational order have minimal impact on optical gain. In fact, experimental results indicated that an extremely large fraction of interchain aggregate species and/or exciton dissociating defects are required to significantly alter the optical properties and suppress stimulated emission. These results are pertinent to the fabrication and optimization of an electrically pumped laser device, as improvements in charge carrier mobility through controlled increases in chain aggregation may provide a viable means of optimizing injection efficiency without significantly degrading optical gain. To offset charge-induced absorption losses under electrical pumping, and to enable the use of more compact and economical sources under optical pumping, conjugated polymers exhibiting low lasing

  10. New syndioregic main-chain, nonlinear optical polymers, and their ellipsometric characterization

    NASA Astrophysics Data System (ADS)

    Lindsay, Geoffrey A.; Nee, Soe-Mie F.; Hoover, James M.; Stenger-Smith, John D.; Henry, Ronald A.; Kubin, R. F.; Seltzer, Michael D.

    1991-12-01

    New nonlinear optical polymers (NLOP) having potential utility in waveguides for the modulation and switching of optical signals are reported. A new class of chromophoric polymers which assume a folded, polar conformation of the backbone have been prepared. The polymers have a syndioregic arrangement of chromophores within the backbone (i.e., a head-to-head, tail-to-tail configuration). Polymers were synthesized by the polymerization of difunctional, precoupled pairs of chromophores and difunctional, bridging groups. Glassy, noncentrosymmetric films were prepared by electric field poling and by Langmuir-Blodgett (LB) deposition. Characterization of multilayer LB films by null ellipsometry to determine the anisotropic refractive parameters was performed at different angles of incidence and at a wavelength of 1.0 (mu).

  11. Probing the quantum ground state of a spin-1 Bose-Einstein condensate with cavity transmission spectra

    SciTech Connect

    Zhang, J. M.; Cui, S.; Jing, H.; Zhou, D. L.; Liu, W. M.

    2009-10-15

    We propose to probe the quantum ground state of a spin-1 Bose-Einstein condensate with the transmission spectra of an optical cavity. By choosing a circularly polarized cavity mode with an appropriate frequency, we can realize coupling between the cavity mode and the magnetization of the condensate. The cavity transmission spectra then contain information of the magnetization statistics of the condensate and thus can be used to distinguish the ferromagnetic and antiferromagnetic quantum ground states. This technique may also be useful for continuous observation of the spin dynamics of a spinor Bose-Einstein condensate.

  12. Reflective and antireflective coatings for the optical chain of the ASTRI SST-2M prototype

    NASA Astrophysics Data System (ADS)

    Bonnoli, Giacomo; Canestrari, Rodolfo; Catalano, Osvaldo; Pareschi, Giovanni; Perri, Luca; Stringhetti, Luca

    2013-09-01

    ASTRI is a Flagship Project of the Italian Ministry of Education, University and Research, led by the Italian National Institute of Astrophysics, INAF. One of the main aims of the ASTRI Project is the design, construction and on-field verification of a dual mirror (2M) end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array. The ASTRI SST-2M prototype is designed according to the Schwarzschild-Couder optical scheme, and adopts a camera based on Silicon Photo Multipliers (SiPM); it will be assembled at the INAF astronomical site of Serra La Nave on mount Etna (Catania, Italy) in the second half of 2014, and will start scientific validation phase soon after. With its 4m wide primary dish, the telescope will be sensitive to multi-TeV Very High Energy (VHE) gamma rays up to 100 TeV and above, with a point spread function of ~2 arcminutes and a wide (semiaperture 4.8°) corrected field of view. The peculiarities of the optical design and of the SiPM bandpass pushed towards specifically optimized choices in terms of reflective coatings for both the primary and the secondary mirror. Fully dielectric multi-layer coatings have been developed and tested as an option for the primary mirror, aiming to filter out the large Night Sky Background contamination at wavelengths λ>~700 nm. On the other hand, for the large monolithic secondary mirror a simpler design with quartz-overcoated aluminium has been optimized for incidences far from normality. The conformation of the ASTRI camera in turn pushed towards the design of a reimaging system based on thin pyramidal light guides, that could be optionally integrated in the focal surface, aiming to increase the fill factor. An anti-reflective coating optimized for a wide range of incident angles faraway from normality was specifically developed to enhance the UV-optical transparency of these elements. The issues, strategy, simulations and experimental results are thoroughly

  13. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  14. The histone code reader SPIN1 controls RET signaling in liposarcoma

    PubMed Central

    Franz, Henriette; Greschik, Holger; Willmann, Dominica; Ozretić, Luka; Jilg, Cordula Annette; Wardelmann, Eva; Jung, Manfred; Buettner, Reinhard; Schüle, Roland

    2015-01-01

    The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy. PMID:25749382

  15. Spin-Thermodynamics of Ultra-Cold Spin-1 Atoms

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Yao, D. X.; Bao, C. G.

    2015-08-01

    The spin-thermodynamics of a -body spin-1 condensate containing only the spin-degrees of freedom is studied via a theory in which , the total spin and its Z-component are exactly conserved. The magnetic field is considered as zero at first. Then the effect of a residual is evaluated. A temperature is defined as below that all the spatial degrees of freedom can be considered as being frozen and, accordingly, a pure spin-system will emerge. Effort is made to evaluate . When goes up from zero, the internal energy and the entropy experience sharp changes in two narrow domains of surrounding two turning temperatures and , the latter is higher. When or , and remain unchanged. Whereas when , and . It was found that and originate from the gap (the energy difference between the ground state (g.s.) and the first excited state) and the width (the energy difference between the g.s. and the highest state without spatial excitation) of the spectra, respectively. Thus their appearance is a common feature in spin-thermodynamics. In fact, marks the lowest excitation of the spin-modes, while marks the maximization of the entropy in the spin-space. In particular, the T-dependent population density is defined so that the theory can be checked by experimental data. Two kinds of condensates are notable: (i) the strongly trapped systems with a very small , they can work as pure spin-systems at relatively higher temperature; (ii) the systems with a high magnetization (say, ), the dimensions of their spin-spaces are very low. Furthermore, a larger together with a large N (for Rb) or a large (for Na) will lead to a sufficiently large so that a real g.s. can be experimentally created at a higher temperature. The spin-thermodynamics would remain valid whenever the spatial modes decouple from the spin-modes. This can occur at a higher temperature as demonstrated in Pechkis et al. (Phys Rev Lett 111:025301, 2013).

  16. The influence of post-growth annealing on the optical properties of InAs quantum dot chains grown on pre-patterned GaAs(100).

    PubMed

    Hakkarainen, T V; Polojärvi, V; Schramm, A; Tommila, J; Guina, M

    2012-03-23

    We report on the effect of post-growth thermal annealing of [011]- ,[011(-)]-, and [010]-oriented quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy separation during annealing. The photoluminescence blueshift is more rapid for the quantum dot chains than for self-assembled quantum dots that were used as a reference. Furthermore, we studied polarization resolved photoluminescence and observed that annealing reduces the intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots. PMID:22369789

  17. Optical spectra of the silicon-terminated carbon chain radicals SiCnH (n = 3,4,5).

    PubMed

    Kokkin, D L; Reilly, N J; Fortenberry, R C; Crawford, T D; McCarthy, M C

    2014-07-28

    The gas-phase optical spectra of three silicon-terminated carbon chain radicals, SiCnH (n = 3 - 5), formed in a jet-cooled discharge of silane and acetylene, have been investigated by resonant two-color two-photon ionization and laser-induced fluorescence/dispersed fluorescence. Analysis of the spectra was facilitated by calculations performed using equation-of-motion coupled cluster methods. For SiC3H and SiC5H, the observed transitions are well-described as excitations from a (2)Π ground state to a (2)Σ state, in which vibronic coupling, likely involving a higher-lying Π state with a very large predicted f-value (close to unity), is persistent. The lowest (2)Σ states of both species are characterized by a rare silicon triple bond, which was identified previously [T. C. Smith, H. Y. Li, D. J. Clouthier, C. T. Kingston, and A. J. Merer, J. Chem. Phys. 112, 3662 (2000)] in the lowest (2)Σ state of SiCH. Although a strong Π - Π transition is predicted for SiC4H, the observed spectrum near 505 nm more likely corresponds to excitation to a relatively dark Σ state which is vibronically coupled to a nearby Π state. In contrast to the chains with an odd number of carbon atoms, which exhibit relatively sharp spectral features and lifetimes in the 10-100 ns range, SiC4H shows intrinsically broadened spectral features consistent with a ∼100 fs lifetime, and a subsequent long-lived decay (>50 μs) which we ascribe to mixing with a nearby quartet state arising from the same electronic configuration. The spin-orbit coupling constants for both SiC3H and SiC5H radicals were determined to be approximately 64 cm(-1), similar to that of SiCH (69.8 cm(-1)), suggesting that the unpaired electron in these species is localized on the silicon atom. Motivated by the new optical work, the rotational spectrum of linear SiC3H was detected by cavity Fourier-transform microwave spectroscopy in the 13-34 GHz range. Each rotational transition from the [Formula: see text] ground

  18. Exploring the global entanglement and quantum phase transition in the spin 1/2 XXZ model with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Yang; Shi, Jia-Dong; Wang, Dong; Ye, Liu

    2016-01-01

    We study the global entanglement and quantum phase transition with the anisotropy parameter and Dzyaloshinskii-Moriya (DM) interaction by methodology of quantum renormalization group within a spin 1/2 XXZ model. It has been shown that the global entanglement can develop two different fixed values, which can exhibit quantum phase transition at the critical point, and DM interaction not only can control the occurrence of the critical point, but also can recover the spoiled three-block entanglement. The behavior of the three-block global entanglement of this large 1D spin 1/2 XXZ model with DM interaction can be revealed in this paper. It turns out that the critical exponent had a relation with the correlation length in the neighborhood of the critical point. Furthermore, the scaling behavior and nonanalytic phenomenon in the spin chains are disclosed.

  19. The Effect of Side-Chain Length on the Solid-State Structure and Optical Properties of F8BT: A DFT Study

    NASA Astrophysics Data System (ADS)

    Javad Eslamibidgoli, Mohammad; Lagowski, Jolanta B.

    2012-02-01

    Using the long-range corrected hybrid density functional theory (DFT/B97D) approach, we have performed bulk solid state calculations to investigate the influence of side-chain length on the molecular packing and optical properties of poly (9,9-di-n-octylfluorene-alt-benzothiadiazole) or F8BT. Two different packing structures, the lamellar and nearly hexagonal, were obtained corresponding to longer and shorter side-chains respectively. This behavior can be attributed to the micro-phase separations between the flexible side-chains and the rigid backbones and is in agreement with previous investigations for other hairy-rod polymers. In addition, as a result of the efficient inter-chain interactions for the lamellar structure, the dihedral angle between the F8 and BT units is reduced providing a more planar configuration for the backbone which leads to the decreased band gap (by 0.2-0.3 eV) in comparison to the hexagonal phase and the gas phase with no side-chain. Time-dependent DFT (TDDFT/B3LYP) was also used to study the excited states of the monomer of F8BT optimized in solid-state structures with different side-chain lengths. It is found that the absorption spectrum is red shifted for the polymers with lamellar structure relative to the polymers in hexagonal and gas phases.

  20. Explicit demonstration of spinor character for a spin-1/2 nucleus via NMR interferometry

    NASA Technical Reports Server (NTRS)

    Stoll, M. E.; Vaughan, R. W.; Vega, A. J.

    1977-01-01

    The results of a nuclear-magnetic-resonance experiment are presented which directly demonstrate the spinor character of a spin-1/2 nucleus, C-13. The interferometric spectroscopic technique used and its potential applications are discussed.

  1. Adiabatic demagnetization of spin-1/2 antiferromagnetic J1-J2 Heisenberg hexagon

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Analytic expressions of exact eigenvalues of the antiferromagnetic spin-1/2 J1-J2 Heisenberg hexagon in the presence of magnetic field have been obtained. Studies on the magnetization process, nature of isentrops and properties of magnetocaloric effect in terms of adiabatic demagnetization have been carried out. Magnetocaloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6 has been investigated with the help of these theoretical findings.

  2. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    NASA Astrophysics Data System (ADS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-05-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu3WO6.

  3. Influence of the ester chain length on the mesogenic behavior and optical anisotropy of 4-[[4-(butoxy)phenyl]diazenyl]phenyl alkanoates

    NASA Astrophysics Data System (ADS)

    Niezgoda, Izabela; Szypszak, Ewelina; Dardas, Dorota; Galewski, Zbigniew

    2016-04-01

    In this manuscript, we report synthesis and physico-chemical characterization of 4-[[4-(butoxy)phenyl]diazenyl]phenyl alkanoates homologous series. For the first time, nineteen derivatives are described here. The enantiotropic nematic phase is typically observed among all members of this series. However, in the case of 4-[[4-(butoxy)phenyl]diazenyl]phenyl stearate, the nematic phase shows a monotropic character. In addition to liquid-crystalline polymorphism, a second crystalline form was observed in some homologs. Furthermore, using a photoelastic modulator, the optical anisotropy in the nematic phase was determined in the first nine compounds of this series. Temperature dependence of optical anisotropy at significantly lower values of reduced temperature is relatively weak. In contrast, optical anisotropy shows a strong temperature effect near isotropization. Moreover, the influence of the ester chain elongation on liquid crystalline and optical properties was established.

  4. Low half-wave voltage Y-branch electro-optic polymer modulator based on side-chain polyurethane-imide

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Wang, Long-De; Li, Ruo-Zhou; Zhang, Qiang; Zhang, Tong

    2016-06-01

    A Y-branch electro-optic (EO) polymer modulator has been designed and fabricated. High performance side-chain polyurethane-imide (PUI) with a high EO coefficient of larger than 50 pm/V and a moderate glass-transition temperature (Tg) of 206∘C is used as EO polymer core layer of the modulator. The fabricated phase modulator exhibits a low half-wave voltage of 1.94 V at 1550 nm in single arm modulation with 1 cm EO interaction length and 2 cm total length. The results show that the modulator fabricated by side-chain PUI EO materials possesses potential applications in low driving voltage and low cost optical systems.

  5. Collective spin 1 singlet phase in high-pressure oxygen

    PubMed Central

    Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio

    2014-01-01

    Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20−96 GPa), and another ε1 (8−20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513

  6. Collective spin 1 singlet phase in high-pressure oxygen.

    PubMed

    Crespo, Yanier; Fabrizio, Michele; Scandolo, Sandro; Tosatti, Erio

    2014-07-22

    Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20-96 GPa), and another ε1 (8-20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K. PMID:25002513

  7. Transferring information through a mixed-five-spin chain channel

    NASA Astrophysics Data System (ADS)

    Arian Zad, Hamid; Movahhedian, Hossein

    2016-08-01

    We initially introduce one-dimensional mixed-five-spin chain with Ising-XY model which includes mixture of spins-1/2 and spins-1. Here, it is considered that nearest spins (1,1/2) have Ising-type interaction and nearest spins (1/2,1/2) have both XY-type and Dzyaloshinskii–Moriya (DM) interactions together. Nearest spins (1,1) have XX Heisenberg interaction. This system is in the vicinity of an external homogeneous magnetic field B in thermal equilibrium state. We promote the quantum information transmitting protocol verified for a normal spin chain with simple model (refer to Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439) (widely in reference: Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314) by means of considering the suggested mixed-five-spin chain as a quantum communication channel for transmitting both qubits and qutrits ideally. Hence, we investigate some useful quantities such as quantum capacity and quantum information transmission rate for the system. Finally, we conclude that, when the DM interaction between spins (1/2,1/2) increases the system is a more ideal channel for transmitting information.

  8. Quantum-mechanical description of spin-1 particles with electric dipole moments

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2013-04-01

    The Proca-Corben-Schwinger equations for a spin-1 particle with an anomalous magnetic moment are added by a term describing an electric dipole moment, then they are reduced to a Hamiltonian form, and finally they are brought to the Foldy-Wouthuysen representation. Relativistic equations of motion are derived. The needed agreement between quantum-mechanical and classical relativistic equations of motion is proved. The scalar and tensor electric and magnetic polarizabilities of pointlike spin-1 particles (W bosons) are calculated for the first time.

  9. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-03-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions.

  10. Quantum Correlations of Two Relativistic Spin-{1}/{2} Particles Under Noisy Channels

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Mojaveri, B.; Dehghani, A.; Makaremi, T.

    2016-02-01

    We study the quantum correlation dynamics of bipartite spin-{1}/{2} density matrices for two particles under Wigner rotations induced by Lorentz transformations which is transmitted through noisy channels. We compare quantum entanglement, geometric discord(GD), and quantum discord (QD) for bipartite relativistic spin-{1}/{2} states under noisy channels. We find out QD and GD tend to death asymptotically but a sudden change in the decay rate of the entanglement occurs under noisy channels. Also, bipartite relativistic spin density matrices are considered as a quantum channel for teleportation one-qubit state under the influence of depolarizing noise and compare fidelity for various velocities of observers.

  11. Most spin-1/2 transition-metal ions do have single ion anisotropy

    SciTech Connect

    Liu, Jia; Whangbo, Myung-Hwan E-mail: mike-whangbo@ncsu.edu; Koo, Hyun-Joo; Xiang, Hongjun E-mail: mike-whangbo@ncsu.edu; Kremer, Reinhard K.

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  12. Quantum tunneling of massive spin-1 particles from non-stationary metrics

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Övgün, A.

    2016-01-01

    We focus on the HR of massive vector (spin-1) particles tunneling from Schwarzschild BH expressed in the Kruskal-Szekeres and dynamic Lemaitre coordinates. Using the Proca equation together with the Hamilton-Jacobi and the WKB methods, we show that the tunneling rate, and its consequence Hawking temperature are well recovered by the quantum tunneling of the massive vector particles.

  13. Next-to-leading order gravitational spin(1)-spin(2) dynamics in Hamiltonian form

    SciTech Connect

    Steinhoff, Jan; Hergt, Steven; Schaefer, Gerhard

    2008-04-15

    Based on recent developments by the authors a next-to-leading order spin(1)-spin(2) Hamiltonian is derived for the first time. The result is obtained within the canonical formalism of Arnowitt, Deser, and Misner (ADM) utilizing their generalized isotropic coordinates. A comparison with other methods is given.

  14. Phases of a polar spin-1 Bose gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Kis-Szabó, Krisztián; Szépfalusy, Péter; Szirmai, Gergely

    2007-05-01

    The two Bose Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation.

  15. The Hidden Symmetries of Spin-1 Ising Lattice Gas for Usual Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2016-02-01

    In this letter, the most common quantum Hamiltonian is exploited in order to compare the definite equivalences, corresponding to possible spin values in a lattice gas model, to those in a spin-1 Ising model. Our approach also requires interpolating both results in a p-state clock model, in order to find the hidden symmetries of both under consideration models.

  16. Chiral phase from three-spin interactions in an optical lattice

    SciTech Connect

    D'Cruz, Christian; Pachos, Jiannis K.

    2005-10-15

    A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.

  17. Copper(I)-catalyzed azide-alkyne cycloaddition for the synthesis of nonlinear electro-optic side-chain copolymers

    NASA Astrophysics Data System (ADS)

    Galindo, Christophe; Soyer, Françoise; Le Barny, Pierre

    2010-10-01

    The Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) has been investigated as a versatile synthetic pathway to graft highly chemically sensitive "push-pull" chromophores onto a polymer backbone. We demonstrate that the CuAAC is highly efficient in mild conditions, chemioselective and is a powerful tool to design new powerful organic NLO side-chain copolymers.

  18. Magneto-optic far-infrared study of Sr14Cu24O41 : Triplet excitations in chains

    NASA Astrophysics Data System (ADS)

    Hüvonen, D.; Nagel, U.; Rõõm, T.; Haas, P.; Dressel, M.; Hwang, J.; Timusk, T.; Wang, Y.-J.; Akimitsu, J.

    2007-10-01

    Using far-infrared spectroscopy, we have studied the magnetic field and temperature dependence of the spin gap modes in the chains of Sr14Cu24O41 . Two triplet modes T1 and T2 were found in the center of the Brillouin zone at Δ1=9.65meV and Δ2=10.86meV in zero magnetic field. The T1 mode was excited when the electric field vector E of the light was polarized along the b axis (perpendicular to the planes of chains and ladders) and T2 was excited for E‖a (perpendicular to the chains and along the rungs). Up to the maximum magnetic field of 18T , applied along the chains, the electron g factors of these two modes were similar, g1c=2.049 and g2c=2.044 . Full linewidth at half maximum for both modes was 1cm-1 (0.12meV) at 4K and increased with T . The temperature dependence of mode energies and line intensities was in agreement with the inelastic neutron scattering results from two groups [M. Matsuda , Phys. Rev. B 59, 1060 (1999); L. P. Regnault , ibid 59, 1055 (1999)]. The T1 mode has not been observed by inelastic neutron scattering in the points of the k space equivalent to the center of the Brillouin zone. Our study indicates that the zone structure model of magnetic excitations of Sr14Cu24O41 must be modified to include a triplet mode at 9.65meV in the center of the magnetic Brillouin zone.

  19. Functional Expression of Electron Transport Chain and FoF1-ATP Synthase in Optic Nerve Myelin Sheath.

    PubMed

    Bartolucci, Martina; Ravera, Silvia; Garbarino, Greta; Ramoino, Paola; Ferrando, Sara; Calzia, Daniela; Candiani, Simona; Morelli, Alessandro; Panfoli, Isabella

    2015-11-01

    Our previous studies reported evidence for aerobic ATP synthesis by myelin from both bovine brainstem and rat sciatic nerve. Considering that the optic nerve displays a high oxygen demand, here we evaluated the expression and activity of the five Respiratory Complexes in myelin purified from either bovine or murine optic nerves. Western blot analyses on isolated myelin confirmed the expression of ND4L (subunit of Complex I), COX IV (subunit of Complex IV) and β subunit of F1Fo-ATP synthase. Moreover, spectrophotometric and in-gel activity assays on isolated myelin, as well as histochemical activity assays on both bovine and murine transversal optic nerve sections showed that the respiratory Complexes are functional in myelin and are organized in a supercomplex. Expression of oxidative phosphorylation proteins was also evaluated on bovine optic nerve sections by confocal and transmission electron microscopy. Having excluded a mitochondrial contamination of isolated myelin and considering the results form in situ analyses, it is proposed that the oxidative phosphorylation machinery is truly resident in optic myelin sheath. Data may shed a new light on the unknown trophic role of myelin sheath. It may be energy supplier for the axon, explaining why in demyelinating diseases and neuropathies, myelin sheath loss is associated with axonal degeneration. PMID:26334391

  20. On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole.

    PubMed

    Aguirre

    2000-01-20

    Recently Van Putten has suggested that superradiance of magnetosonic waves in a toroidal magnetosphere around a Kerr black hole may play a role in the central engine of gamma-ray bursts. In this context, he computed (in the WKB approximation) the superradiant amplification of scalar waves confined to a thin equatorial wedge around a Kerr hole and found that the superradiance is higher than for radiation incident over all angles. This Letter presents calculations of both spin-0 (scalar) superradiance (integrating the radial equation rather than using the WKB method) and spin-1 (electromagnetic/magnetosonic) superradiance in Van Putten's wedge geometry. In contrast to the scalar case, spin-1 superradiance decreases in the wedge geometry, decreasing the likelihood of its astrophysical importance. PMID:10615024

  1. Low-energy singlet excitations in spin-1/2 Heisenberg antiferromagnet on square lattice

    NASA Astrophysics Data System (ADS)

    Aktersky, A. Yu.; Syromyatnikov, A. V.

    2016-05-01

    We present an approach based on a dimer expansion which describes low-energy singlet excitations (singlons) in spin-1/2 Heisenberg antiferromagnet on simple square lattice. An operator ("effective Hamiltonian") is constructed whose eigenvalues give the singlon spectrum. The "effective Hamiltonian" looks like a Hamiltonian of a spin-1/2 magnet in strong external magnetic field and it has a gapped spectrum. It is found that singlet states lie above triplet ones (magnons) in the whole Brillouin zone except in the vicinity of the point (π , 0), where their energies are slightly smaller. Based on this finding, we suggest that a magnon decay is possible near (π , 0) into another magnon and a singlon which may contribute to the dip of the magnon spectrum near (π , 0) and reduce the magnon lifetime. It is pointed out that the singlon-magnon continuum may contribute to the continuum of excitations observed recently near (π , 0).

  2. SU(3) quantum critical model emerging from a spin-1 topological phase

    NASA Astrophysics Data System (ADS)

    Rao, Wen-Jia; Zhu, Guo-Yi; Zhang, Guang-Ming

    2016-04-01

    Different from the spin-1 Haldane gapped phase, we propose an SO(3) spin-1 matrix product state (MPS), whose parent Hamiltonian includes three-site spin interactions. From the entanglement spectrum of a single block with l sites, an enlarged SU(3) symmetry is identified in the edge states, which are conjugate to each other for the l =even block but identical for the l =odd block. By blocking this state, the blocked MPS explicitly displays the SU(3) symmetry with two distinct structures. Under a symmetric bulk bipartition with a sufficient large block length l =even , the entanglement Hamiltonian (EH) of the reduced system characterizes a spontaneous dimerized phase with twofold degeneracy. However, for the block length l =odd , the corresponding EH represents an SU(3) quantum critical point with delocalized edge quasiparticles, and the critical field theory is described by the SU(3) level-1 Wess-Zumino-Witten conformal field theory.

  3. Magnetic properties of two-dimensional charged spin-1 Bose gases

    NASA Astrophysics Data System (ADS)

    Chen, Yingxue; Qin, Jihong; Gu, Qiang

    2014-01-01

    Within the mean-field theory, we investigate the magnetic properties of a charged spin-1 Bose gas in two dimensions. In this system the diamagnetism competes with paramagnetism, where the Landé factor g is introduced to describe the strength of the paramagnetic effect. The system presents a crossover from diamagnetism to paramagnetism with the increasing of the Landé factor. gc denotes the critical value of the Landé factor. We get the same value of gc both in the low temperature and strong magnetic field limit. Our results also show that in very weak magnetic field no condensation happens in the two-dimensional charged spin-1 Bose gas.

  4. Violation of Bell’s inequality in a spin 1/2 quantum magnet

    SciTech Connect

    Chakraborty, Tanmoy Singh, Harkirat Mitra, Chiranjib

    2014-04-24

    Violation of Bell’s inequality test has been established as an efficient tool to determine the presence of entanglement in quantum spin 1/2 magnets. Herein, macroscopic thermodynamic quantities, namely, magnetic susceptibility and specific heat have been employed to perform Bell’s inequality test for [NH{sub 4}CuPO{sub 4}, H{sub 2}O], a spin 1/2 antiferromagnet with nearest neighbor interactions. The mean value of the Bell operator is quantified and plotted as a function of temperature. The threshold temperature is determined above which the Bell’s inequality is not violated and a good consistency is found between the analyses done on magnetic and thermal data.

  5. Efficiency of quantum energy teleportation within spin-1/2 particle pairs

    NASA Astrophysics Data System (ADS)

    Frey, Michael R.

    2016-03-01

    A protocol for quantum energy teleportation (QET) is known for a so-called minimal spin-1/2 particle pair model. We extend this protocol to explicitly admit quantum weak measurements at its first stage. The extended protocol is applied beyond the minimal model to spin-1/2 particle pairs whose Hamiltonians are of a general class characterized by orthogonal pairs of entangled eigenstates. The energy transfer efficiency of the extended QET protocol is derived for this setting, and we show that weaker measurement yields greater efficiency. In the minimal particle pair model, for example, the efficiency can be doubled by this means. We also show that the QET protocol's transfer efficiency never exceeds 100 %, supporting the understanding that quantum energy teleportation is, indeed, an energy transfer protocol, rather than a protocol for remotely catalyzing local extraction of system energy already present.

  6. Oxygen-17 and copper-63 NMR study of spindynamics in low- dimensional spin 1/2 antiferromagnets

    NASA Astrophysics Data System (ADS)

    Thurber, Kent Robert

    63Cu and 17O nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) experiments are reported on copper-oxide compounds related to high temperature superconductors that are nearly ideal realizations of spin 1/2 Heisenberg antiferromagnets with different geometries of the magnetic interactions: 1 dimensional spin chains, 2 dimensional planes, two coupled chains (two-leg ladder), and three coupled chains (three-leg ladder). Comparison of the spin-lattice relaxation rate, 1/T1, for 63Cu and 17O reveals the wave-vector, q, dependence of low-energy magnetic fluctuations, and 1/T2 G the Gaussian spin-spin relaxation rate provides information about the electron spin correlation length, ξ. In the 1d material, Sr 2CuO3, 171/T1(q = 0) ~ aT + bT2 over the whole temperature range 10 to 700 K. Frequency dependence measurements show that diffusive contributions dominate T1(q ~ 0) for the double chain 1d material, SrCuO2. For the undoped 2d copper oxide material, Sr2CuO2Cl2, we demonstrate that 17O 1/T1 measures the spin wave damping in the undoped antiferromagnet for short wavelengths. We find that the spin wave damping is small, clarifying one of the unique properties of these 2d copper-oxide antiferromagnetic materials: there is a wide temperature range where short range spin excitations exist with long lifetimes, without long range 3-dimensional order. The two-leg ladder materials, SrCu2O3 and A 14Cu24O41 (A = La,Sr,Ca), have a large energy gap for spin excitations. There is a crossover in magnetic fluctuations from temperatures below the spin gap to above the spin gap. For the doped two-leg ladders, the effective doping of the ladders changes with temperature, and this temperature is correlated to the magnetic spin gap energy. The three-leg ladder material, Sr2Cu3O5, demonstrates a crossover in the temperature dependence of the spin correlation length, ξ. At high temperatures, we find the ξ ~ 1/T behavior characteristic of a 1d structure (isolated three

  7. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    SciTech Connect

    Sakalli, I.; Ovgun, A.

    2015-09-15

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  8. Student understanding of the time dependence of spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Passante, Gina

    2016-03-01

    Time dependence is one of the most difficult concepts in quantum mechanics and one that is relevant throughout instruction. In this talk I will explore student responses to written questions regarding the time dependence for spin-1/2 systems after lecture instruction and again after a tutorial on the topic. These questions were asked in a junior-level quantum mechanics course that is taught using a spins-first curriculum.

  9. Hawking radiation of spin-1 particles from a three-dimensional rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Ovgun, A.

    2015-09-01

    We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimensional rotating black hole with scalar hair using a Hamilton-Jacobi ansatz. Using the Proca equation in the WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.

  10. Magnetic properties of a two-dimensional spin 1 easy axis Heisenberg antiferromagnet with competing interaction

    NASA Astrophysics Data System (ADS)

    Pires, Antonio; Sousa, Griffith

    2014-03-01

    The square lattice antiferromagnet with next and next nearest neighbor exchange interaction has been the subject of intense research in the last years. It can present the behavior of a frustrated system and can otherwise describe real materials. However, a large part of the work has been dedicated to spin 1/2 and done at zero temperature. A system with spin 1 is of interest because it can have a single ion anisotropy. To study these models simple approaches which yield an analytical description are very useful for practical purposes. Here we use a Modified Spin Wave theory, where corrections owing to spin wave interactions are taken into account self-consistently, to study the easy axis two dimensional spin 1 antiferromagnet with competing interaction and single ion anisotropy. We calculate the phase diagram at zero temperature, and several thermodynamic quantities such as the magnetization, the gap and the specific heat. Their relations with the temperature and anisotropy parameter are analyzed over the entire range of temperature. We have found a Neel and a collinear phase separated by a disordered phase. This disordered phase could be a candidate for a spin liquid. This work was partially supported by CNPQ, FAPEMIG and FAPEAM.

  11. Renormalization and additional degrees of freedom within the chiral effective theory for spin-1 resonances

    SciTech Connect

    Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2010-06-01

    We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent to the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.

  12. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    PubMed

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463

  13. Effects of spacetime curvature on spin-1/2 particle zitterbewegung

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Mobed, Nader

    2009-09-01

    This paper investigates the properties of spin-1/2 particle zitterbewegung in the presence of a general curved spacetime background described in terms of Fermi normal coordinates, where the spatial part is expressed using general curvilinear coordinates. Adopting the approach first introduced by Barut and Bracken for zitterbewegung in the local rest frame of the particle, it is shown that non-trivial gravitational contributions to the relative position and momentum operators appear due to the coupling of zitterbewegung frequency terms with the Ricci curvature tensor in the Fermi frame, indicating a formal violation of the weak equivalence principle. Explicit expressions for these contributions are shown for the case of quasi-circular orbital motion of a spin-1/2 particle in a Vaidya background. Formal expressions also appear for the time derivative of the Pauli-Lubanski vector due to spacetime curvature effects coupled to the zitterbewegung frequency. Also, the choice of curvilinear coordinates results in non-inertial contributions in the time evolution of the canonical momentum for the spin-1/2 particle, where zitterbewegung effects lead to stability considerations for its propagation, based on the Floquet theory of differential equations.

  14. Comment on ``Sodium Pyroxene NaTiSi2O6: Possible Haldane Spin-1 Chain System''

    NASA Astrophysics Data System (ADS)

    Streltsov, S. V.; Popova, O. A.; Khomskii, D. I.

    2006-06-01

    A Comment on the Letter by Zoran S. Popović, Zeljko V. Šlijivančanin, and Filip R. Vukajlović, Phys. Rev. Lett. 93, 036401 (2004).PRLTAO0031-900710.1103/PhysRevLett.93.036401. The authors of the Letter offer a Reply.

  15. Influence of the nonmagnetic impurities on the spin-1 Heisenberg chain SrNi2V2O8 system

    NASA Astrophysics Data System (ADS)

    Giapintzakis, J.; Androulakis, J.; Syskakis, E.; Papageorgiou, Th. P.; Apostolopoulos, G.; Thanos, S.; Papastaikoudis, C.

    Dc-magnetization and heat capacity measurements on polycrystalline samples of SrNi2-x Mgx V2O8 (x = 0 and 0.05) are reported. The magnetization data suggest that both compounds are S = 1 quasi one-dimensional Heisenberg antiferromagnets. The substitution of non-magnetic impurity Mg2+ ions for Ni2+ induces a magnetic phase transition at ?3.7 K. A simple Hamiltonian model is proposed for these systems giving good quantitative agreement with the experimental magnetization data. The intrachain magnetic exchange constant (J 1/k B) and the Haldane gap (? ) for both compounds are estimated to be ?105 K and ?58.3 K (5.02 meV), respectively.

  16. Synthesis and Non-Resonant Nonlinear Optical Properties of Push-Pull Side-Chain Azobenzene Polymers

    NASA Astrophysics Data System (ADS)

    Fedus, K.; Smokal, V.; Krupka, O.; Boudebs, G.

    In this work, we report preliminary results obtained for methacrylic polymers incorporating azobenzene side-group as nonlinear optical (NLO) active molecule. The trans-cis isomerization properties are discussed. The third-order non-resonant nonlinear refractive index (n2) and nonlinear absorption coefficient (β) are measured using the Z-scan technique at 1064 nm in the picosecond regime. The influence of different electron-acceptor groups in azobenzene moieties on the nonlinear properties is investigated.

  17. Space-time design of the tangled C-points and optical vortex chain and loop reactions in paraxial dynamic elliptic speckle fields

    NASA Astrophysics Data System (ADS)

    Soskin, Marat S.; Vasil'ev, Vasil I.

    2013-04-01

    The unique effect of ‘optical damage’ in photorefractive LiNbO3:Fe crystals produces a developing speckle field in the propagating beam of a He-Ne laser (0.63 μm). Elliptic developing speckle fields were created and investigated thoroughly by means of the Stokes polarimetry and monstardom (Dennis 2008 Opt. Lett. 33 2572). The ergodicity of elliptic speckle fields under the index (star, monstar, lemon) and contour (elliptic, hyperbolic) classifications was revealed experimentally by our measurements for developing speckle fields, measurements for static elliptic speckle fields, as well as theory (Flossmann et al 2008 Phys. Rev. Lett. 100 203902). Both hyperbolic (H) and elliptic (E) diabolos were fixed. All the probable topological structures for the neighbour diabolos in the developing elliptic speckle field were measured. All the measured nucleation/annihilation events occur as H(S)+H(M) reactions. The evolution of the singularities occurs separately in the speckle-field areas with fixed handedness and is realized through minimizing the changes needed for the developing speckle fields at each moment. The general regularities of the elliptic speckle-field development were revealed and confirmed. They occur through the time-limited loop and continuous chain reactions in both single and multiple speckles in 1:4 proportion. Strict morphological scenarios for their evolution were found. Applications of the methods of dynamical singular optics are discussed.

  18. Controllable magnetic solitons excitations in an atomic chain of spinor Bose-Einstein condensates confined in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-Dong; Geng, Z.; Zhao, Xu; Qian, J.; Zhou, Lu; Li, Y.; Zhang, Weiping

    2014-06-01

    We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose-Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole-dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole-dipole interaction are also investigated.

  19. SPIN-1/2 Particles in Weak Gravitational Fields:. Foldy-Wouthuysen and Cini-Touschek Approximations

    NASA Astrophysics Data System (ADS)

    Singh, Dinesh; Papini, Giorgio

    2002-12-01

    We introduce a Hamiltonian for spin-1/2 particles with weak inertial and gravitational field corrections. Low- and high-energy approximations then follow from the Foldy-Wouthuysen and Cini-Touschek transformations.

  20. Magnetic-field-induced dynamical instabilities in an antiferromagnetic spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Pu, Zhengguo; Zhang, Jun; Yi, Su; Wang, Dajun; Zhang, Wenxian

    2016-05-01

    We theoretically investigate four types of dynamical instability, in particular the periodic and oscillatory type IO, in an antiferromagnetic spin-1 Bose-Einstein condensate in a nonzero magnetic field, by employing the coupled-mode theory and numerical method. This is in sharp contrast to the dynamical stability of the same system in zero field. Remarkably, a pattern transition from a periodic dynamical instability IO to a uniform one IIIO occurs at a critical magnetic field. All four types of dynamical instability and the pattern transition are ready to be detected in 23Na condensates within the availability of the current experimental techniques.

  1. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate.

    PubMed

    Anquez, M; Robbins, B A; Bharath, H M; Boguslawski, M; Hoang, T M; Chapman, M S

    2016-04-15

    The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model. PMID:27127974

  2. High precision description and new properties of a spin-1 particle in a magnetic field

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2014-06-01

    The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer, and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.

  3. LETTER TO THE EDITOR: Parity-broken ground state for the spin-1 pyrochlore antiferromagnet

    NASA Astrophysics Data System (ADS)

    Yamashita, Yasufumi; Ueda, Kazuo; Sigrist, Manfred

    2001-12-01

    The ground-state properties of the spin-1 pyrochlore antiferromagnet are studied by applying the VBS-like tetrahedron-unit decomposition to the original spin system. The symmetrization required on every vertex is taken into account by introducing a ferromagnetic coupling. The pairwise effective Hamiltonian between the adjacent tetrahedrons is obtained by considering the next nearest neighbour and the third neighbour exchange interactions. We find that the transverse component of the spin chirality exhibits a long-range order, breaking the parity symmetry of the tetrahedral group, while the chirality itself is not broken.

  4. Plane waves in de Sitter space: Spin-1/2 field

    NASA Astrophysics Data System (ADS)

    Reza Tanhayi, M.; Mohsenzadeh, M.; Yusofi, E.

    2016-06-01

    We employ the coordinate-independent plane wave solution in de Sitter space to study the spin-1/2 particle production. The so-called plane waves in the zero-curvature limit reduce to the usual plane waves in flat space. Previously in (Int. J. Mod. Phys. D 24, 1550052 (2015)) we used such modes to study the instability of the de Sitter space, here, by explicit calculation, we study the sipn-1/2 particle creation in de Sitter space caused by mixing modes.

  5. Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction

    SciTech Connect

    Lees, Benjamin

    2014-09-15

    We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.

  6. Group velocity of extraordinary waves in superdense magnetized quantum plasma with spin-1/2 effects

    SciTech Connect

    Li Chunhua; Ren Haijun; Yang Weihong; Wu Zhengwei; Chu, Paul K.

    2012-12-15

    Based on the one component plasma model, a new dispersion relation and group velocity of elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2 effects can reduce the transport of energy in such quantum plasma systems. Our work should be of relevance for the dense astrophysical environments and the condensed matter physics.

  7. Constant-coupling approximation study of spin-1 Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Ekiz, Cesur

    2016-07-01

    In this paper, the equilibrium properties of spin-1 Blume-Capel model are studied by using constant-coupling approximation. The formulation is based on developed by Obokata and Oguchi method, where the dependence upon the thermodynamic variables is determined by a set of two-couple nonlinear algebraic equations. The temperature dependence of the order parameters is examined to characterize the nature (continuous or discontinuous) of the phase transitions and to obtain the metastable and unstable branches. For the system, the effect of the uniaxial anisotropy parameter to phase transitions and stable, metastable and unstable states is discussed on the simple cubic lattice with the coordination number z = 6.

  8. A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube

    NASA Astrophysics Data System (ADS)

    El Hamri, M.; Bouhou, S.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2016-09-01

    The applied magnetic field dependencies of the surface shell, core and total magnetizations of a transverse spin-1/2 Ising nanocube are investigated within the effective-field theory with correlations, based on the probability distribution technique, for both ferro- and antiferromagnetic exchange interactions. We have found that interfacial coupling has a strong effect on the shape and the number of hysteresis loops and also on the coercive field and remanent magnetization behaviors. Furthermore, when the temperature exceeds a critical one, the coercivities of the core, the surface shell and the system become zero.

  9. Exact solution of the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef

    2006-01-01

    A star-triangle mapping transformation is used to establish an exact correspondence between the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice and respectively, the spin-1/2 Ising model on a bathroom tile (4 8) lattice. Exact results for the critical temperature and spontaneous magnetization are obtained and compared with corresponding results on the regular Ising lattices.

  10. Interplay of interchain interactions and exchange anisotropy: Stability and fragility of multipolar states in spin-1/2 quasi-one-dimensional frustrated helimagnets

    NASA Astrophysics Data System (ADS)

    Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Kuzian, Roman; Richter, Johannes; van den Brink, Jeroen

    2015-12-01

    We quantify the stability of the formation of multipolar states against always present interchain couplings in quasi-one-dimensional spin-1/2 chain systems with a frustrating in-chain J1-J2 exchange, including parameter regimes that are of direct relevance to many edge-shared cuprate spin-chain compounds. Three representative types of antiferromagnetic interchain coupling and the presence of uniaxial exchange anisotropy are considered. The magnetic phase diagrams are determined by density matrix renormalization group calculations and completed by very accurate analytic and numerical results for the nematic and the dipolar phases employing the hard-core-boson approach. We establish that a sizable interchain coupling has a strong influence on the possible instability of multipolar phases at high magnetic fields in the vicinity of the saturation fields in favor of the usual dipolar one-magnon phase. Moreover, skew interchain couplings strongly affect the pitch of spiral states. Our theoretical results bring to the fore candidate materials close to quantum nematic/triatic ordering.

  11. Comparative study of serine-plasmalogens in human retina and optic nerve: identification of atypical species with odd carbon chains

    PubMed Central

    Nagy, Kornél; Brahmbhatt, Viral Vishnuprasad; Berdeaux, Olivier; Bretillon, Lionel; Destaillats, Frédéric; Acar, Niyazi

    2012-01-01

    The objective of this work was to detect and identify phosphatidylserine plasmalogen species in human ocular neurons represented by the retina and the optic nerve. Plasmalogens (vinyl-ether bearing phospholipids) are commonly found in the forms of phosphatidylcholine and phosphatidylethanolamine in numerous mammalian cell types, including the retina. Although their biological functions are unclear, the alteration of cellular plasmalogen content has been associated with several human disorders such as rhizomelic chondrodysplasia punctata Type 2 and primary open-angle glaucoma. By using liquid chromatography coupled to high-resolution and tandem mass spectrometry, we have identified for the first time several species of phosphatidylserine plasmalogens, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position. Structural elucidation of the potential phosphatidylserine ether linked species was pursued by performing MS3 experiments, and three fragments are proposed as marker ions to deduce which fatty acid is linked as ether or ester on the glycerol backbone. Interpretation of the fragmentation patterns based on this scheme enabled the assignment of structures to the m/z values, thereby identifying the phosphatidylserine plasmalogens. PMID:22266369

  12. Raman-dressed spin-1 spin-orbit-coupled quantum gas

    NASA Astrophysics Data System (ADS)

    Lan, Zhihao; Öhberg, Patrik

    2014-02-01

    The recently realized spin-orbit-coupled quantum gases [Lin et al., Nature (London) 471, 83 (2011), 10.1038/nature09887; Wang et al., Phys. Rev. Lett. 109, 095301 (2012), 10.1103/PhysRevLett.109.095301; Cheuk et al., Phys. Rev. Lett. 109, 095302 (2012), 10.1103/PhysRevLett.109.095302] mark a breakthrough in the cold atom community. In these experiments, two hyperfine states are selected from a hyperfine manifold to mimic a pseudospin-1/2 spin-orbit-coupled system by the method of Raman dressing, which is applicable to both bosonic and fermionic gases. In this paper, we show that the method used in these experiments can be generalized to create any large pseudospin spin-orbit-coupled gas if more hyperfine states are coupled equally by the Raman lasers. As an example, we study, in detail, a quantum gas with three hyperfine states coupled by the Raman lasers and show, when the state-dependent energy shifts of the three states are comparable, triple-degenerate minima will appear at the bottom of the band dispersions, thus, realizing a spin-1 spin-orbit-coupled quantum gas. A novel feature of this three-minima regime is that there can be two different kinds of stripe phases with different wavelengths, which has an interesting connection to the ferromagnetic and polar phases of spin-1 spinor Bose-Einstein condensates without spin-orbit coupling.

  13. Contribution of the spin-1 diquark to the nucleon's g1 structure function

    NASA Astrophysics Data System (ADS)

    Zamani, F.

    2010-07-01

    This is the final installment of a series of work that we have done in the context of the meson cloud model that investigates F2 and g1 structure functions. In our previous work on g1 structure function, we showed that having a spin-0 quark-diquark for the nucleon core along with both pseudoscalar and vector meson clouds was not sufficient to reproduce experimental observation(s) consistently. For the F2 structure function, we found that both superposition of a spin-0 diquark and a spin-1 diquark in the nucleon core along with pseudoscalar and vector meson clouds are needed to reproduce the observed F2(x) and the Gottfried sum rule (GSR) violation. Therefore, in the present work, we consider the contribution of a spin-1 diquark in the nucleon core to the g1 structure function. The calculation is performed in the light-cone frame. The dressed nucleon is assumed to be a superposition of the bare nucleon plus virtual light-cone Fock states of baryon-meson pairs. For the bare nucleon, we consider different quark-diquark configurations along with the possibility that there is no diquark inside the nucleon. The initial distributions are evolved. The final results are compared with experimental results and other theoretical predictions.

  14. Second order formalism for spin (1/2) fermions and Compton scattering

    SciTech Connect

    Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon

    2011-04-01

    We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finite value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.

  15. Relativistic solutions for the spin-1 particles in the two-dimensional Smorodinsky–Winternitz potential

    SciTech Connect

    Bahar, M.K.; Yasuk, F.

    2014-05-15

    In this study, we investigate relativistic spin-1 particles in the V(x,y)=(ω{sub 0}{sup 2}/2)(x{sup 2}+y{sup 2})+k{sub 1}/x{sup 2}+k{sub 2}/y{sup 2} type of Smorodinsky–Winternitz potentials. In the first case, since this Smorodinsky–Winternitz potential has two dimensions, the system was transformed into polar coordinates from Cartesian coordinates. By using Duffin–Kemmer–Petiau formalism with the non-central Smorodinsky–Winternitz potential in two dimensions, the exact bound state energy eigenvalues and corresponding eigenfunctions were determined within the framework of the asymptotic iteration method. Bound state eigenfunctions were obtained in terms of confluent hypergeometric functions. -- Highlights: •We introduce formalism of the DKP equation in two dimensions. •The DKP equation with S–W potential is considered for spin-1 particles. •In order to solve the DKP equation, we explain the asymptotic iteration method (AIM). •Bound state energy eigenvalues and eigenfunctions are obtained by using AIM.

  16. Phase-space spinor amplitudes for spin-1/2 systems

    NASA Astrophysics Data System (ADS)

    Watson, P.; Bracken, A. J.

    2011-04-01

    The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1)/(2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1)/(2) magnetic dipole in a time-dependent magnetic field.

  17. Explicit expressions of quantum mechanical rotation operators for spins 1 to 2

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y and z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.

  18. Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas

    NASA Astrophysics Data System (ADS)

    Chen, Guanjun; Chen, Li; Zhang, Yunbo

    2016-06-01

    We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.

  19. Optical spectra of the silicon-terminated carbon chain radicals SiC{sub n}H (n = 3,4,5)

    SciTech Connect

    Kokkin, D. L.; Reilly, N. J.; McCarthy, M. C.; Fortenberry, R. C.; Crawford, T. D.

    2014-07-28

    The gas-phase optical spectra of three silicon-terminated carbon chain radicals, SiC{sub n}H (n = 3 − 5), formed in a jet-cooled discharge of silane and acetylene, have been investigated by resonant two-color two-photon ionization and laser-induced fluorescence/dispersed fluorescence. Analysis of the spectra was facilitated by calculations performed using equation-of-motion coupled cluster methods. For SiC{sub 3}H and SiC{sub 5}H, the observed transitions are well-described as excitations from a {sup 2}Π ground state to a {sup 2}Σ state, in which vibronic coupling, likely involving a higher-lying Π state with a very large predicted f-value (close to unity), is persistent. The lowest {sup 2}Σ states of both species are characterized by a rare silicon triple bond, which was identified previously [T. C. Smith, H. Y. Li, D. J. Clouthier, C. T. Kingston, and A. J. Merer, J. Chem. Phys. 112, 3662 (2000)] in the lowest {sup 2}Σ state of SiCH. Although a strong Π − Π transition is predicted for SiC{sub 4}H, the observed spectrum near 505 nm more likely corresponds to excitation to a relatively dark Σ state which is vibronically coupled to a nearby Π state. In contrast to the chains with an odd number of carbon atoms, which exhibit relatively sharp spectral features and lifetimes in the 10–100 ns range, SiC{sub 4}H shows intrinsically broadened spectral features consistent with a ∼100 fs lifetime, and a subsequent long-lived decay (>50 μs) which we ascribe to mixing with a nearby quartet state arising from the same electronic configuration. The spin-orbit coupling constants for both SiC{sub 3}H and SiC{sub 5}H radicals were determined to be approximately 64 cm{sup −1}, similar to that of SiCH (69.8 cm{sup −1}), suggesting that the unpaired electron in these species is localized on the silicon atom. Motivated by the new optical work, the rotational spectrum of linear SiC{sub 3}H was detected by cavity Fourier-transform microwave spectroscopy in

  20. Magnetic and optical properties in the 1D TM-O chain compounds Sr2TMO3 (TM = Ni, Co): A first-principle investigation

    NASA Astrophysics Data System (ADS)

    Gui, Hong; Li, Xin; Zhao, Zhenjie; Xie, Wenhui

    2016-03-01

    In this paper, we have calculated the structural, electronic, magnetic and optical properties of Sr2NiO3 and Sr2CoO3 using density functional theory (DFT) within generalized gradient approximation (GGA). The crystal structure of both materials is well described with Immm (No. 71) symmetry which are isostructural with Sr2CuO3 and both are quasi-one-dimensional (1D) rectangular lattice G-type antiferromagnets, in consistent with the experimental data. Due to a distortion, Sr2CoO3 lifts the near-degeneracy dxz and dyz states of the local Co electronic configuration, which demonstrates a strong coupling between the structural lattice and the electronic configuration. The calculated band structure shows a band gap of 1.376 eV for Sr2NiO3 and a band gap of 1.735 eV for Sr2CoO3. Ni and Co ions are in the high-spin S = 1 and S = 3/2 configurations with the magnetic moments of 1.585 μB and 2.587 μB, respectively. Based on the Heisenberg Hamiltonian model, we conclude that the superexchange intrachain TM-O-TM superexchange interaction is predominant and interaction between the 1D chains is weak. According to the calculated dielectric function, absorption spectrum and electron energy loss spectrum, the optical responses suggest that Sr2NiO3 shows the unique anisotropic structure and interaction of the application in optoelectronics.

  1. Simulation of the many-body dynamical quantum Hall effect in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Wei; Yang, Xu-Chen

    2016-05-01

    We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.

  2. Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lingam, M.

    2015-02-01

    A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of "frozen-in" constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.

  3. Fast and slow magnetosonic waves in two-dimensional spin-1/2 quantum plasma

    SciTech Connect

    Mushtaq, A.; Vladimirov, S. V.

    2010-10-15

    Using the spin-1/2 resistive quantum magnetohydrodynamics model, linear and nonlinear relations for slow and fast magnetosonic modes are derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The plasma resistivity is shown to play a role of dissipation in the system. With the aid of tanh method the traveling wave solution of Kadomstev-Petviashvili-Burgers is obtained. The solution shows a general shock wave profile superposed by a perturbative solitary-wave contribution. The dynamics of fast and slow magnetosonic shock and soliton, respectively, in the presence and absence of dissipation is investigated with respect to electron spin magnetization, quantum diffraction, and plasma statistic. It is found that results obtained from the spin quantum plasmas differ significantly from the nonspin quantum plasmas. The relevance of the present work to dense astrophysical plasmas such as pulsar magnetosphere is pointed out.

  4. Stability of nonstationary states of spin-1 Bose-Einstein condensates

    SciTech Connect

    Maekelae, H.; Lundh, E.; Johansson, M.; Zelan, M.

    2011-10-15

    The stability of nonstationary states of homogeneous spin-1 Bose-Einstein condensates is studied by performing Bogoliubov analysis in a frame of reference where the state is stationary. In particular, the effect of an external magnetic field is examined. It is found that a nonzero magnetic field introduces instability in a {sup 23}Na condensate. The wavelengths of this instability can be controlled by tuning the strength of the magnetic field. In a {sup 87}Rb condensate this instability is present already at zero magnetic field. Furthermore, an analytical bound for the size of a stable condensate is found, and a condition for the validity of the single-mode approximation is presented. Realization of the system in a toroidal trap is discussed, and the full time development is simulated.

  5. Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics

    SciTech Connect

    Lingam, M.

    2015-02-15

    A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.

  6. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  7. Magnetic phases of spin-1 spin-orbit coupled Bose gases

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel; Price, Ryan; Putra, Andika; Valdés-Curiel, Ana; Trypogeorgos, Dimitrios; Spielman, Ian; Spielman Team

    We experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit coupled atomic Bose gas. We observe ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling's explicit locking between spin and motion. In the limit of weak spin-orbit coupling, these phases are separated by a critical curve of 1st order quantum phase transitions, with an observed width as small as h × 4Hz . These phase transitions give rise to long-lived metastable states. This work was partially supported by the ARO's atomtronics MURI, by the AFOSR's Quantum Matter MURI, NIST, and the NSF through the PFC at the JQI.

  8. Quantum dimer model for the spin-1/2 kagome Z2 spin liquid

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Wan, Yuan; Tchernyshyov, Oleg; Mila, Frederic

    2015-03-01

    We revisit the description of the low-energy singlet sector of the spin-1/2 Heisenberg antiferromagnet on kagome in terms of an effective quantum dimer model. With the help of exact diagonalizations of appropriate finite-size clusters, we show that the embedding of a given process in its kagome environment leads to dramatic modifications of the amplitudes of the elementary loop processes, an effect not accessible to the standard approach based on the truncation of the Hamiltonian to the nearest-neighbour valence-bond basis. The resulting parameters are consistent with a Z2 spin liquid rather than with a valence-bond crystal, in agreement with the last density matrix renormalization group results. Currently at: School of Physics and Astronomy, University of Minnesota.

  9. Dimerized phase and entanglement in the one-dimensional spin-1 bilinear biquadratic model

    NASA Astrophysics Data System (ADS)

    Chen, Ai Min; Su, Yao Heng; Wang, Honglei

    2015-10-01

    Dimerized phase and quantum entanglement are investigated in the one-dimensional spin-1 bilinear biquadratic model. Employing the infinite matrix product state representation, groundstate wavefunctions are numerically obtained by using the infinite time evolving block decimation method in the infinite lattice system. From a bipartite entanglement measure of the groundstates, i.e., von Neumann entropy, the phase transition points can be clearly extracted. Moreover, the even-bond and odd-bond von Neumann entropies show two different values in the spontaneous dimerized phase. It implies that the quantum entanglement can distinguish the two degenerate groundstates. Then, we define a dimer entropy in the spontaneous dimerized phase. Comparing to the dimer order parameter, the dimer entropy can play a role of a local order parameter to characterize the spontaneous dimerized phase.

  10. Modulated phases and chaotic behavior in a spin-1 Ising model with competing interactions

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; Salinas, S. R.

    1989-02-01

    We formulate the Blume-Capel spin-1 Ising model, with competing first- and second-neighbor interactions along the branches of a Cayley tree, in the infinite-coordination limit, as a discrete two-dimensional nonlinear mapping problem. The phase diagram displays multicritical points and many modulated phases. Mean-field calculations for the analogous model on a cubic lattice give the same qualitative results. We take advantage of the simplicity of the mapping to show the existence of complete devil's staircases, at low temperatures T, with increasing values of the Hausdorff dimensionality DF with T. We show that there are regions of the phase diagram associated with positive values of the Lyapunov exponents of the mapping, and we give strong numerical evidence to support the existence of a strange attractor with a Lyapunov dimension Dλ>1. We also find a route to chaos, according to the scenario of Feigenbaum, with a reasonable estimate of the exponent δ.

  11. Dirac dynamics on stochastic phase spaces for spin 1/2 particles

    NASA Astrophysics Data System (ADS)

    Prugovečki, Eduard

    1980-06-01

    The Foldy-Wouthuysen representation of the dynamics of a free spin {1}/{2} particle is formulated in a Hilbert space H(Γ) of spinor-valued functions over Γ-space. H(Γ) carries a reducible Wigner-type representation of the Poincaré group. The transition to the Dirac representation in a new bispinor Hilbert space K(Γ) is effected by means of a generalized inverse Foldy-Wouthuysen transformation. Explicit expressions are derived for the resolution generators η of invariant subspaces K±(Γ η) carrying irreducible representations of the resulting representations of the Poincaré group. The formalism is recast in a manifestly covariant form and the Dirac equation on H(Γ s) with minimal coupling to a four-potential is examined. It is shown that the resulting external field theory is gauge-invariant and relativistically covariant.

  12. CP-Violation from Spin-1 Resonances in a Left-Right Dynamical Higgs Context

    NASA Astrophysics Data System (ADS)

    Ruan, Kun-Ming; Shu, Jing; Yepes, Juan

    2016-07-01

    New physics field content in the nature, more specifically, from spin-1 resonances sourced by the extension of the SM local gauge symmetry to the larger local group SU(2)L ⊗ SU(2)R ⊗ U(1)B-L, may induce CP-violation signalling NP effects from higher energy regimes. In this work we completely list and study all the CP-violating operators up to the p4-order in the Lagrangian expansion, for a non-linear left-right electroweak chiral context and coupled to a light dynamical Higgs. Heavy right handed fields can be integrated out from the physical spectrum, inducing thus a physical impact in the effective gauge couplings, fermionic electric dipole moment, and CP-violation in the decay h → ZZ* → 4l that are briefly analysed. The final relevant set of effective operators have also been identified at low energies. Supported by KITPC financial during the completion of this work

  13. Generalized parton correlation functions for a spin-1/2 hadron

    SciTech Connect

    Stephan Meissner, Andreas Metz, Marc Schlegel

    2009-08-01

    The fully unintegrated, off-diagonal quark-quark correlator for a spin-1/2 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects, in particular, can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. We find that none of these relations can be promoted to a model-independent status. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist. The present paper is a natural extension of our previous corresponding analysis for spin-0 hadrons.

  14. Complete positivity of a spin-1/2 master equation with memory

    SciTech Connect

    Maniscalco, Sabrina

    2007-06-15

    We study a non-Markovian spin-1/2 master equation with exponential memory. We derive the conditions under which the dynamical map describing the reduced system dynamics is completely positive, i.e., the nonunitary evolution of the system is compatible with a description in terms of a closed total spin-reservoir system. Our results show that for a zero-T reservoir, the dynamical map of the model here considered is never completely positive. For moderate- and high-T reservoirs, on the contrary, positivity is a necessary and sufficient condition for complete positivity. We also consider the Shabani-Lidar master equation recently introduced [A. Shabani and D.A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we demonstrate that such a master equation is always completely positive.

  15. Spin 1 /2 field and regularization in a de Sitter and radiation dominated universe

    NASA Astrophysics Data System (ADS)

    Ghosh, Suman

    2016-02-01

    We construct a simple algorithm to derive number density of spin 1 /2 particles created in spatially flat Friedmann-Lemaitre-Robertson-Walker spacetimes and resulting renormalized energy-momentum tensor within the framework of adiabatic regularization. Physical quantities thus found are in agreement with the known results. This formalism can be considered as an appropriate extension of the techniques originally introduced for scalar fields, applicable to fermions in curved space. We apply this formalism to compute the particle number density and the renormalized energy density and pressure analytically (wherever possible) and numerically, in two interesting cosmological scenarios: a de Sitter spacetime and a radiation dominated universe. Results prove the efficiency of the methodology presented here.

  16. Spin-0 and spin-1/2 particles in a constant scalar-curvature background

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Vakili, B.

    2004-03-01

    We study the Klein-Gordon and Dirac equations in the presence of a background metric d s2=-d t2+d x2+e -2 gx(d y2+d z2) in a semi-infinite lab ( x>0). This metric has a constant scalar-curvature R=6 g2 and is produced by a perfect fluid with equation of state p=- ρ/3. The eigenfunctions of spin-0 and spin-1/2 particles are obtained exactly, and the quantized energy eigenvalues are compared. It is shown that both of these particles must have nonzero transverse momentum in this background. We show that there is a minimum energy E2min= m2c4+ g2c2ℏ 2 for bosons ( EKG> Emin), while the fermions have no specific ground state ( EDirac> mc2).

  17. Quantum refrigeration cycles using spin-1/2 systems as the working substance.

    PubMed

    He, Jizhou; Chen, Jincan; Hua, Ben

    2002-03-01

    The cycle model of a quantum refrigerator composed of two isothermal and two isomagnetic field processes is established. The working substance in the cycle consists of many noninteracting spin-1/2 systems. The performance of the cycle is investigated, based on the quantum master equation and semigroup approach. The general expressions of several important performance parameters, such as the coefficient of performance, cooling rate, and power input, are given. Especially, the case at high temperatures is analyzed in detail. The results obtained are further generalized and discussed, so that they may be directly used to describe the performance of the quantum refrigerator using spin-J systems as the working substance. Finally, the optimum characteristics of the quantum Carnot refrigerator are derived simply. PMID:11909203

  18. Spin-orbit angular momentum coupling in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Chen, Li; Pu, Han; Zhang, Yunbo

    2016-01-01

    We propose a simple model with spin and orbit angular momentum coupling in a spin-1 Bose-Einstein condensate, where three internal atomic states are Raman coupled by a pair of copropagating Laguerre-Gaussian beams. The resulting Raman transition imposes a transfer of orbital angular momentum between photons and the condensate in a spin-dependent way. Focusing on a regime where the single-particle ground state is nearly threefold degenerate, we show that the weak interatomic interaction in the condensate produces a rich phase diagram, and that a many-body Rabi oscillation between two quantum phases can be induced by a sudden quench of the quadratic Zeeman shift. We carried out our calculations using both a variational method and a full numerical method, and found excellent agreement.

  19. Magnetic properties of spin-1/2 Fermi gases with ferromagnetic interaction

    NASA Astrophysics Data System (ADS)

    Wang, Baobao; Qin, Jihong; Guo, Huaiming

    2015-10-01

    We investigate the magnetic properties of spin-1/2 charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density bar M increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density bar M decreases smoothly in the high temperature region. The domed shape of the magnetization density bar M variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Landé factor.

  20. Critical Behavior of the Spin-1/2 Baxter-Wu Model: Entropic Sampling Simulations

    NASA Astrophysics Data System (ADS)

    Jorge, L. N.; Ferreira, L. S.; Leão, S. A.; Caparica, A. A.

    2016-08-01

    In this work, we use a refined entropic sampling technique based on the Wang-Landau method to study the spin- 1/2 Baxter-Wu model. We adopt the total magnetization as the order parameter and, as a result, do not divide the system into three sub-lattices. The static critical exponents were determined as α = 0.6697(54), β = 0.0813(67), γ = 1.1772(33), and ν = 0.6574(61). The estimate for the critical temperature was T c = 2.26924(2). We compare the present results with those obtained from other well-established approaches, and we find a very good closeness with the exact values, besides the high precision reached for the critical temperature.

  1. Magnetic phases of spin-1 spin–orbit-coupled Bose gases

    PubMed Central

    Campbell, D. L.; Price, R. M.; Putra, A.; Valdés-Curiel, A.; Trypogeorgos, D.; Spielman, I. B.

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin–orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  2. Mean field study of the topological Haldane-Hubbard model of spin-1/2 fermions

    NASA Astrophysics Data System (ADS)

    Arun, V. S.; Sohal, R.; Hickey, C.; Paramekanti, A.

    2016-03-01

    Motivated by exploring the effect of interactions on Chern insulators, and by recent experiments realizing topological bands for ultracold atoms in synthetic gauge fields, we study the honeycomb lattice Haldane-Hubbard model of spin-1/2 fermions. Using an unrestricted mean field approach, we map out the instability of the topological band insulator towards magnetically ordered insulators which emerge with increasing Hubbard repulsion. In addition to the topological Néel phase, we recover various chiral noncoplanar magnetic orders previously identified within a strong-coupling approach. We compute the band structure of these ordered phases, showing that the triple-Q tetrahedral phase harbors topological Chern bands with large Chern numbers.

  3. Magnetic phases of spin-1 spin-orbit-coupled Bose gases.

    PubMed

    Campbell, D L; Price, R M; Putra, A; Valdés-Curiel, A; Trypogeorgos, D; Spielman, I B

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  4. Fermi spin current contribution in spin wave spectrum of spin-1/2 fermions

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel; Kuzmenkov, Leonid

    2016-05-01

    General theory predicts the presence of the thermal part of the spin current in the spin evolution equation for bosons and fermions. For bosons in Bose-Einstein condensate state, it is equal to zero. However, for degenerate fermions it is non zero and it can give a considerable contribution since it describes the Pauli blocking. In this work, we consider spin-1/2 partially polarized fermions. We derive an equation of state for the thermal part of the spin current of degenerate fermions and call it Fermi spin current. We present the spin evolution equation with the Fermi spin current as a part of applied hydrodynamic model. We consider spectrum of collective excitation and describe contribution of the Fermi spin current in the spin wave spectrum. The work of P.A. was supported by the Russian Foundation for Basic Research (Grant No. 16-32-00886) and the Dynasty foundation.

  5. Small and arbitrary shock structures in spin 1/2 magnetohydrodynamic quantum plasma

    SciTech Connect

    Sahu, Biswajit; Choudhury, Sourav; Sinha, Anjana

    2015-02-15

    The shock structures in spin-1/2 quantum plasma, in the presence of magnetic diffusivity, are studied in the framework of the quantum magnetohydrodynamic model. Linear dispersion relation for the system is carried out analytically, and the results are plotted numerically for several values of the plasma parameters. Numerical analysis for arbitrary amplitude waves is carried out, whereas for waves of small amplitude, the reductive perturbation technique is applied to obtain the Korteweg-de Vries-Burgers equation. Both the analyses are observed to give the same qualitative picture. Most importantly, the different plasma parameters are found to play significant roles in determining the nature of the shock waves. The parametric ranges for which monotonic shock and oscillatory shock solutions are observed, are found analytically.

  6. Signals for new spin-1 resonances in electroweak gauge boson pair production at the LHC

    SciTech Connect

    Alves, A.; Eboli, O. J. P.; Netto, D. Goncalves; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.

    2009-10-01

    The mechanism of electroweak symmetry breaking (EWSB) will be directly scrutinized soon at the CERN Large Hadron Collider. We analyze the LHC potential to look for new vector bosons associated with the EWSB sector, presenting a possible model independent approach to search for these new spin-1 resonances. We show that the analyses of the processes pp{yields}l{sup +}l{sup '-}Ee{sub T}, l{sup {+-}}jjEe{sub T}, l{sup '{+-}}l{sup +}l{sup -}Ee{sub T}, l{sup {+-}}jjEe{sub T}, and l{sup +}l{sup -}jj (with l, l{sup '}=e or {mu} and j=jet) have a large reach at the LHC and can lead to the discovery or exclusion of many EWSB scenarios such as Higgsless models.

  7. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  8. Core-shell structured square mixed-spin 1 and 1/2 Ising nanowire on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2016-03-01

    The square Ising nanowire is constructed by adding square nanoparticles consisting of one spin-1 at the center and four spin-1/2 at the corners along a straight line in both directions. Therefore, this system may be taken to be equivalent to Bethe lattice of coordination number two and can be solved in terms of the exact recursion relations. This core-shell structured model is studied by using ferromagnetic exchange interactions between surface spins (Js), between core spins (Jc) and between surface and core spins (Jsc) and crystal field interaction (D) at the sites of spin-1. The phase diagrams of the model are obtained in terms of these parameters by varying the temperature on the possible planes. It is found that the model presents both second- and first-order phase transitions and tricritical points for the appropriate values of these parameters.

  9. Direct and inverse cascades of spin-wave turbulence in spin-1 ferromagnetic spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuya; Tsubota, Makoto

    2016-03-01

    We theoretically and numerically study spin wave turbulence in spin-1 ferromagnetic spinor Bose-Einstein condensates, finding direct and inverse cascades with power-law behavior. To derive these power exponents analytically, the conventional weak wave turbulence theory is applied to the spin-1 spinor Gross-Pitaevskii equation. Thus we obtain the -7 /3 and -5 /3 power laws in the transverse spin correlation function for the direct and inverse cascades, respectively. To confirm these power laws, numerical calculations are performed that obtain results consistent with these power laws.

  10. Quench dynamics and relaxation in isolated integrable quantum spin chains

    NASA Astrophysics Data System (ADS)

    Essler, Fabian H. L.; Fagotti, Maurizio

    2016-06-01

    We review the dynamics after quantum quenches in integrable quantum spin chains. We give a pedagogical introduction to relaxation in isolated quantum systems, and discuss the description of the steady state by (generalized) Gibbs ensembles. We then turn to general features in the time evolution of local observables after the quench, using a simple model of free fermions as an example. In the second part we present an overview of recent progress in describing quench dynamics in two key paradigms for quantum integrable models, the transverse field Ising chain and the anisotropic spin-1/2 Heisenberg chain.

  11. Bogomolny-Prasad-Sommerfeld monopoles and open spin chains

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia; Ioannidou, Theodora

    2011-09-01

    We construct SU(n + 1) Bogomolny-Prasad-Sommerfeld (BPS) spherically symmetric monopoles with minimal symmetry breaking by solving the full Weyl equation. In this context, we explore and discuss the existence of open spin chainlike part within the Weyl equation. For instance, in the SU(3) case the relevant spin chain is the 2-site spin 1/2 XXX chain with open boundary conditions. We exploit the existence of such a spin chain part in order to solve the full Weyl equation.

  12. Localization of Spinons in Random Majumdar-Ghosh Chains

    NASA Astrophysics Data System (ADS)

    Lavarélo, Arthur; Roux, Guillaume

    2013-02-01

    We study the effect of disorder on frustrated dimerized spin-1/2 chains at the Majumdar-Ghosh point. Using variational methods and density-matrix renormalization group approaches, we identify two localization mechanisms for spinons which are the deconfined fractional elementary excitations of these chains. The first one belongs to the Anderson localization class and dominates at the random Majumdar-Ghosh point. There, spinons remain gapped and localize in Lifshitz states whose localization length is analytically obtained. The other mechanism is a random confinement mechanism which induces an effective interaction between spinons and brings the chain into a gapless and partially polarized phase for arbitrarily small disorder.

  13. Slowest local operators in quantum spin chains.

    PubMed

    Kim, Hyungwon; Bañuls, Mari Carmen; Cirac, J Ignacio; Hastings, Matthew B; Huse, David A

    2015-07-01

    We numerically construct slowly relaxing local operators in a nonintegrable spin-1/2 chain. Restricting the support of the operator to M consecutive spins along the chain, we exhaustively search for the operator that minimizes the Frobenius norm of the commutator with the Hamiltonian. We first show that the Frobenius norm bounds the time scale of relaxation of the operator at high temperatures. We find operators with significantly slower relaxation than the slowest simple "hydrodynamic" mode due to energy diffusion. Then we examine some properties of the nontrivial slow operators. Using both exhaustive search and tensor network techniques, we find similar slowly relaxing operators for a Floquet spin chain; this system is hydrodynamically "trivial," with no conservation laws restricting their dynamics. We argue that such slow relaxation may be a generic feature following from locality and unitarity. PMID:26274145

  14. Coordinate Bethe ansatz computation for low temperature behavior of a triangular lattice of a spin-1 Heisenberg antiferromagnet

    SciTech Connect

    Shuaibu, A.; Rahman, M. M.

    2014-03-05

    We study the low temperature behavior of a triangular lattice quantum spin-1 Heisenberg antiferromagnet with single-site anisotropy by using coordinate Bethe ansatz method. We compute the standard two-particle Hermitian Hamiltonian, and obtain the eigenfunctions and eigenvalue of the system. The obtained results show a number of advantages in comparison with many results.

  15. A two-parameter continuation method for computing numerical solutions of spin-1 Bose–Einstein condensates

    SciTech Connect

    Wang, Y.-S.; Chien, C.-S.

    2014-01-01

    We describe a novel two-parameter continuation method combined with a spectral-collocation method (SCM) for computing the ground state and excited-state solutions of spin-1 Bose–Einstein condensates (BEC), where the second kind Chebyshev polynomials are used as the basis functions for the trial function space. To compute the ground state solution of spin-1 BEC, we implement the single parameter continuation algorithm with the chemical potential μ as the continuation parameter, and trace the first solution branch of the Gross–Pitaevskii equations (GPEs). When the curve-tracing is close enough to the target point, where the normalization condition of the wave function is going to be satisfied, we add the magnetic potential λ as the second continuation parameter with the magnetization M as the additional constraint condition. Then we implement the two-parameter continuation algorithm until the target point is reached, and the ground state solution of the GPEs is obtained. The excited state solutions of the GPEs can be treated in a similar way. Some numerical experiments on {sup 23}Na and {sup 87}Rb are reported. The numerical results on the spin-1 BEC are the same as those reported in [10]. Further numerical experiments on excited-state solutions of spin-1 BEC suffice to show the robustness and efficiency of the proposed two-parameter continuation algorithm.

  16. Heat Conductivity of the Heisenberg Spin-1 /2 Ladder: From Weak to Strong Breaking of Integrability

    NASA Astrophysics Data System (ADS)

    Steinigeweg, Robin; Herbrych, Jacek; Zotos, Xenophon; Brenig, Wolfram

    2016-01-01

    We investigate the heat conductivity κ of the Heisenberg spin-1 /2 ladder at finite temperature covering the entire range of interchain coupling J⊥, by using several numerical methods and perturbation theory within the framework of linear response. We unveil that a perturbative prediction κ ∝J⊥-2 , based on simple golden-rule arguments and valid in the strict limit J⊥→0 , applies to a remarkably wide range of J⊥, qualitatively and quantitatively. In the large J⊥ limit, we show power-law scaling of opposite nature, namely, κ ∝J⊥2. Moreover, we demonstrate the weak and strong coupling regimes to be connected by a broad minimum, slightly below the isotropic point at J⊥=J∥. Reducing temperature T , starting from T =∞ , this minimum scales as κ ∝T-2 down to T on the order of the exchange coupling constant. These results provide for a comprehensive picture of κ (J⊥,T ) of spin ladders.

  17. Coarsening and thermalization properties of a quenched ferromagnetic spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Williamson, Lewis A.; Blakie, P. B.

    2016-08-01

    We examine the dynamics of a quasi-two-dimensional spin-1 condensate in which the quadratic Zeeman energy q is suddenly quenched to a value where the system has a ferromagnetic ground state. There are two distinct types of ferromagnetic phases, i.e., a range of q values where the magnetization prefers to be in the direction of the external field (easy axis) and a range of q values where it prefers to be transverse to the field (easy plane). We study the quench dynamics for a variety of q values and show that there is a single dynamic critical exponent to characterize the scale-invariant domain growth for each ferromagnetic phase. For both quenches we give simple analytic models that capture the essential scale-invariant dynamics and correctly predict the exponents. Because the order parameter for each phase is different, the natures of the domains and the relevant topological defects in each type of coarsening are also different. To explore these differences we characterize the fractal dimension of the domain walls and the relationship of polar-core spin vortices to the domains in the easy-plane phase. Finally, we consider how the energy liberated from the quench thermalizes in the easy-axis quench. We show that local equilibrium is established in the spin waves on moderate time scales, but continues to evolve as the domains anneal.

  18. Geometric phase of a spin-1 2 particle coupled to a quantum vector operator

    NASA Astrophysics Data System (ADS)

    Aguilar, Pedro; Chryssomalakos, Chryssomalis; Guzmán, Edgar

    2016-05-01

    We calculate Berry’s phase when the driving field, to which a spin-1 2 is coupled adiabatically, rather than the familiar classical magnetic field, is a quantum vector operator, of noncommuting, in general, components, e.g. the angular momentum of another particle, or another spin. The geometric phase of the entire system, spin plus “quantum driving field”, is first computed, and is then subdivided into the two subsystems, using the Schmidt decomposition of the total wave function — the resulting expression shows a marked, purely quantum effect, involving the commutator of the field components. We also compute the corresponding mean “classical” phase, involving a precessing magnetic field in the presence of noise, up to terms quadratic in the noise amplitude — the results are shown to be in excellent agreement with numerical simulations in the literature. Subtleties in the relation between the quantum and classical case are pointed out, while three concrete examples illustrate the scope and internal consistency of our treatment.

  19. Stability and internal structure of vortices in spin-1 Bose-Einstein condensates with conserved magnetization

    NASA Astrophysics Data System (ADS)

    Lovegrove, Justin; Borgh, Magnus O.; Ruostekoski, Janne

    2016-03-01

    We demonstrate how conservation of longitudinal magnetization can have pronounced effects on both stability and structure of vortices in the atomic spin-1 Bose-Einstein condensate by providing a systematic characterization of nonsingular and singular vortex states. Constructing spinor wave functions for vortex states that continuously connect ferromagnetic and polar phases, we systematically derive analytic models for nonrotating cores of different singular vortices and for composite defect states with distinct small- and large-distance topology. We explain how the conservation law provides a stabilizing mechanism when the coreless vortex imprinted on the condensate relaxes in the polar regime of interatomic interactions. The resulting structure forms a composite defect: The inner ferromagnetic coreless vortex deforms toward an outer singly quantized polar vortex. We also numerically show how other even more complex hierarchies of vortex-core topologies may be stabilized. Moreover, we analyze the structure of the coreless vortex also in a ferromagnetic condensate and show how reducing magnetization leads to a displacement of the vortex from the trap center and eventually to the deformation and splitting of its core where a singular vortex becomes a lower-energy state. For the case of singular vortices, we find that the stability and the core structure are notably less influenced by the conservation of magnetization.

  20. The ground state of a spin-1 anti-ferromagnetic atomic condensate for Heisenberg limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, Li

    2016-05-01

    The ground state of a spin-1 atomic condensate with anti-ferromagnetic interaction can be applied to quantum metrology approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, atoms in an anti-ferromagnetic ground state condensate exist as spin singlet pairs, whose inherent correlation promises metrological precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p = 0 . 4 c corresponding to a magnetic field of 28 . 6 μ G with c = h × 50 Hz (for 23 Na atom condensate in the F = 1 state at a typical density of ~1014cm-3), the scaled QFI can reach ~ 0 . 48 N , which is close to the limits of N for NooN state, or 0 . 5 N for twin-Fock state. We hope our work will stimulate experimental efforts towards reaching the anti-ferromagnetic condensate ground state at extremely low magnetic fields.

  1. Enhancement of spin coherence in a spin-1 Bose-Einstein condensate by dynamical decoupling approaches

    SciTech Connect

    Ning Boyuan; Zhuang Jun; Zhang Wenxian; You, J. Q.

    2011-07-15

    We study the enhancement of spin coherence with periodic, concatenated, or Uhrig dynamical decoupling N-pulse sequences in a spin-1 Bose-Einstein condensate, where the intrinsic dynamical instability in such a ferromagnetically interacting condensate causes spin decoherence and eventually leads to a multiple spatial-domain structure or a spin texture. Our results show that all three sequences successfully enhance the spin coherence by pushing the wave vector of the most unstable mode in the condensate to a larger value. Among the three sequences with the same number of pulses, the concatenated one shows the best performance in preserving the spin coherence. More interestingly, we find that all three sequences exactly follow the same enhancement law, k{sub -}T{sup 1/2}=c, with k{sub -} the wave vector of the most unstable mode, T the sequence period, and c a sequence-dependent constant. Such a law between k{sub -} and T is also derived analytically for an attractive scalar Bose-Einstein condensate subjected to a periodic dynamical decoupling sequence.

  2. Proca stars: Gravitating Bose-Einstein condensates of massive spin 1 particles

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Herdeiro, Carlos A. R.; Radu, Eugen

    2016-01-01

    We establish that massive complex Abelian vector fields (mass μ) can form gravitating solitons, when minimally coupled to Einstein's gravity. Such Proca stars (PSs) have a stationary, everywhere regular and asymptotically flat geometry. The Proca field, however, possesses a harmonic time dependence (frequency w), realizing Wheeler's concept of geons for an Abelian spin 1 field. We obtain PSs with both a spherically symmetric (static) and an axially symmetric (stationary) line element. The latter form a countable number of families labelled by an integer m ∈Z+. PSs, like (scalar) boson stars, carry a conserved Noether charge, and are akin to the latter in many ways. In particular, both types of stars exist for a limited range of frequencies and there is a maximal ADM mass, Mmax, attained for an intermediate frequency. For spherically symmetric PSs (rotating PSs with m = 1 , 2 , 3), Mmax ≃ 1.058 MPl2 / μ (Mmax ≃ 1.568 , 2.337 , 3.247 MPl2 / μ), slightly larger values than those for (mini-)boson stars. We establish perturbative stability for a subset of solutions in the spherical case and anticipate a similar conclusion for fundamental modes in the rotating case. The discovery of PSs opens many avenues of research, reconsidering five decades of work on (scalar) boson stars, in particular as possible dark matter candidates.

  3. Schelling segregation in an open city: A kinetically constrained Blume-Emery-Griffiths spin-1 system

    NASA Astrophysics Data System (ADS)

    Gauvin, Laetitia; Nadal, Jean-Pierre; Vannimenus, Jean

    2010-06-01

    In the 70s Schelling introduced a multiagent model to describe the segregation dynamics that may occur with individuals having only weak preferences for “similar” neighbors. Recently variants of this model have been discussed, in particular, with emphasis on the links with statistical physics models. Whereas these models consider a fixed number of agents moving on a lattice, here, we present a version allowing for exchanges with an external reservoir of agents. The density of agents is controlled by a parameter which can be viewed as measuring the attractiveness of the city lattice. This model is directly related to the zero-temperature dynamics of the Blume-Emery-Griffiths spin-1 model, with kinetic constraints. With a varying vacancy density, the dynamics with agents making deterministic decisions leads to a variety of “phases” whose main features are the characteristics of the interfaces between clusters of agents of different types. The domains of existence of each type of interface are obtained analytically as well as numerically. These interfaces may completely isolate the agents leading to another type of segregation as compared to what is observed in the original Schelling model, and we discuss its possible socioeconomic correlates.

  4. Using the ground state of an antiferromagnetic spin-1 atomic condensate for Heisenberg-limited metrology

    NASA Astrophysics Data System (ADS)

    Wu, Ling-Na; You, L.

    2016-03-01

    We show that the ground state of a spin-1 atomic condensate with antiferromagnetic interactions constitutes a useful resource for quantum metrology upon approaching the Heisenberg limit. Unlike a ferromagnetic condensate state where individual atomic spins are aligned in the same direction, the antiferromagnetic ground-state condensate is a condensate of spin-singlet atom pairs. The inherent correlation between paired atoms allows for parameter estimation at precisions beyond the standard quantum limit (SQL) for uncorrelated atoms. The degree of improvement over the SQL is measured by the scaled quantum Fisher information (QFI), whose dependence on the ratio of linear Zeeman shift p to spin-dependent atomic interaction c is studied. At a typical value of p =0.4 c , which corresponds to a magnetic field of 28.6 μ G for c =50 h Hz (for 23Na atom condensate in the F =1 state at a typical density of ˜1014cm-3 ), the scaled QFI can reach ˜0.48 N , which approaches the limit of 0.5 N for the twin-Fock state |N/2 > +|N/2 > - . Our work encourages experimental efforts to reach the ground state of an antiferromagnetic condensate at a extremely low magnetic field.

  5. Chiral and critical spin liquids in a spin-1/2 kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Sheng, D. N.

    2015-07-01

    The kagome spin-1/2 systems have attracted intensive attention in recent years as the primary candidate for hosting different gapped spin liquids (SLs). To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum X Y model with the nearest-neighbor (NN) (Jx y), the second-NN, and the third-NN couplings (J2 x y=J3 x y=Jxy ' ). We identify the time-reversal-symmetry-broken chiral SL (CSL) with the turn on of a small perturbation Jxy '˜0.06 Jx y , which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the ν =1 /2 fractional quantum Hall state. Interestingly, the NN X Y model (Jxy '=0 ) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet and spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. The effect of the NN spin-z coupling Jz is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.

  6. Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD

    SciTech Connect

    Takahashi, Toru T.; Oka, Makoto

    2010-02-01

    Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).

  7. Ground-state phase structure of the spin-1/2 anisotropic planar pyrochlore.

    PubMed

    Li, P H Y; Bishop, R F

    2015-09-30

    We study the zero-temperature ground-state (GS) properties of the spin-1/2 anisotropic planar pyrochlore, using the coupled cluster method (CCM) implemented to high orders of approximation. The system comprises a J 1-J 2 model on the checkerboard lattice, with isotropic Heisenberg interactions of strength J 1 between all nearest-neighbour pairs of spins on the square lattice, and of strength J 2 between half of the next-nearest-neighbour pairs (in the checkerboard pattern). We calculate results for the GS energy and average local GS on-site magnetization, using various antiferromagnetic classical ground states as CCM model states. We also give results for the susceptibility of one of these states against the formation of crossed-dimer valence-bond crystalline (CDVBC) ordering. The complete GS phase diagram is presented for arbitrary values of the frustration parameter k≡J2/J1, and when each of the exchange couplings can take either sign. PMID:26348836

  8. Anomalous Curie response of an impurity in a quantum critical spin-1/2 Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Höglund, Kaj; Sandvik, Anders

    2007-03-01

    There is a disagreement concerning the low-temperature (T) magnetic susceptibility χ^zimp˜C/T of a spin-S impurity in a nearly quantum critical antiferromagnetic host. Field-theoretical work [1] predicted an anomalous Curie constant S^2/30 quantum Monte Carlo simulations in order to resolve the controversy. Our main result is for a vacancy in a quantum critical spin-1/2 Heisenberg antiferromagnet on a bilayer lattice. In our susceptibility data for the S=1/2 impurity we observe a Curie constant C=0.262(2). Although the value falls outside the predicted range, it should correspond to an anomalous impurity response, as proposed in Ref. [1]. [1] S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999); M. Vojta, C. Buragohain, and S. Sachdev, Phys. Rev. B 61, 15152 (2000). [2] O. P. Sushkov, Phys. Rev. B 62, 12135 (2000). [3] M. Troyer, Prog. Theor. Phys. Supp. 145, 326 (2002).

  9. Quantum spin chains with regularly alternating bonds and fields

    NASA Astrophysics Data System (ADS)

    Derzhko, Oleg

    2002-01-01

    We consider the spin-1/2 XY chain in a transverse field with regularly varying exchange interactions and on-site fields. In two limiting cases of the isotropic ( XX) and extremely anisotropic (Ising) exchange interaction the thermodynamic quantities are calculated rigorously with the help of continued fractions. We discuss peculiarities of the low-temperature magnetic properties and a possibility of the spin-Peierls instability.

  10. Quantum state transfer in XXZ spin chains: A measurement induced transport method

    NASA Astrophysics Data System (ADS)

    Pouyandeh, Sima; Shahbazi, Farhad

    2015-05-01

    We study the information transferring ability of a spin-1/2 XXZ Hamiltonian for two different proposals of state transfer, namely, the well-studied attaching scenario and the recently proposed measurement induced transport. The latter one has been inspired by recent achievements in optical lattice experiments for local addressability of individual atoms and their time evolution when only local rotations and measurements are available and local control of the Hamiltonian is very limited. We show that while the both scenarios performs with almost similar quality in the case of non-interacting free fermionic XX phase, the difference become more pronounced around the isotropic Heisenberg point. Our study shows that the presence of spin-flip symmetry plays a key point in the quality of state transfer and each scenario which benefits from this symmetry transfers the quantum states with higher fidelity. In fact, for even chains this symmetry exists only for the measurement induced dynamics which then gives higher transport quality and for odd chains the spin-flip symmetry is only valid for the attaching scenarios which become more superior. We also study the effect of thermal fluctuations and environmental interactions on both scenarios.

  11. Kondo conductance across the smallest spin 1/2 radical molecule

    PubMed Central

    Requist, Ryan; Modesti, Silvio; Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Tosatti, Erio

    2014-01-01

    Molecular contacts are generally poorly conducting because their energy levels tend to lie far from the Fermi energy of the metal contact, necessitating undesirably large gate and bias voltages in molecular electronics applications. Molecular radicals are an exception because their partly filled orbitals undergo Kondo screening, opening the way to electron passage even at zero bias. Whereas that phenomenon has been experimentally demonstrated for several complex organic radicals, quantitative theoretical predictions have not been attempted so far. It is therefore an open question whether and to what extent an ab initio-based theory is able to make accurate predictions for Kondo temperatures and conductance lineshapes. Choosing nitric oxide (NO) as a simple and exemplary spin 1/2 molecular radical, we present calculations based on a combination of density functional theory and numerical renormalization group (DFT+NRG), predicting a zero bias spectral anomaly with a Kondo temperature of 15 K for NO/Au(111). A scanning tunneling spectroscopy study is subsequently carried out to verify the prediction, and a striking zero bias Kondo anomaly is confirmed, still quite visible at liquid nitrogen temperatures. Comparison shows that the experimental Kondo temperature of about 43 K is larger than the theoretical one, whereas the inverted Fano lineshape implies a strong source of interference not included in the model. These discrepancies are not a surprise, providing in fact an instructive measure of the approximations used in the modeling, which supports and qualifies the viability of the density functional theory and numerical renormalization group approach to the prediction of conductance anomalies in larger molecular radicals. PMID:24367113

  12. Kondo conductance across the smallest spin 1/2 radical molecule.

    PubMed

    Requist, Ryan; Modesti, Silvio; Baruselli, Pier Paolo; Smogunov, Alexander; Fabrizio, Michele; Tosatti, Erio

    2014-01-01

    Molecular contacts are generally poorly conducting because their energy levels tend to lie far from the Fermi energy of the metal contact, necessitating undesirably large gate and bias voltages in molecular electronics applications. Molecular radicals are an exception because their partly filled orbitals undergo Kondo screening, opening the way to electron passage even at zero bias. Whereas that phenomenon has been experimentally demonstrated for several complex organic radicals, quantitative theoretical predictions have not been attempted so far. It is therefore an open question whether and to what extent an ab initio-based theory is able to make accurate predictions for Kondo temperatures and conductance lineshapes. Choosing nitric oxide (NO) as a simple and exemplary spin 1/2 molecular radical, we present calculations based on a combination of density functional theory and numerical renormalization group (DFT+NRG), predicting a zero bias spectral anomaly with a Kondo temperature of 15 K for NO/Au(111). A scanning tunneling spectroscopy study is subsequently carried out to verify the prediction, and a striking zero bias Kondo anomaly is confirmed, still quite visible at liquid nitrogen temperatures. Comparison shows that the experimental Kondo temperature of about 43 K is larger than the theoretical one, whereas the inverted Fano lineshape implies a strong source of interference not included in the model. These discrepancies are not a surprise, providing in fact an instructive measure of the approximations used in the modeling, which supports and qualifies the viability of the density functional theory and numerical renormalization group approach to the prediction of conductance anomalies in larger molecular radicals. PMID:24367113

  13. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing

    NASA Astrophysics Data System (ADS)

    Kirwai, Amey; Chandrakumar, N.

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a 1H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a 31P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR.

  14. Triple quantum filtered spectroscopy of homonuclear three spin-1/2 systems employing isotropic mixing.

    PubMed

    Kirwai, Amey; Chandrakumar, N

    2016-08-01

    We report the design and performance evaluation of novel pulse sequences for triple quantum filtered spectroscopy in homonuclear three spin-1/2 systems, employing isotropic mixing (IM) to excite triple quantum coherence (TQC). Our approach involves the generation of combination single quantum coherences (cSQC) from antisymmetric longitudinal or transverse magnetization components employing isotropic mixing (IM). cSQC's are then converted to TQC by a selective 180° pulse on one of the spins. As IM ideally causes magnetization to evolve under the influence of the spin coupling Hamiltonian alone, TQC is generated at a faster rate compared to sequences involving free precession. This is expected to be significant when the spins have large relaxation rates. Our approach is demonstrated experimentally by TQC filtered 1D spectroscopy on a (1)H AX2 system (propargyl bromide in the presence of a paramagnetic additive), as well as a (31)P linear AMX system (ATP in agar gel). The performance of the IM-based sequences for TQC excitation are compared against the standard three pulse sequence (Ernst et al., 1987) and an AX2 spin pattern recognition sequence (Levitt and Ernst, 1983). The latter reaches the unitary bound on TQC preparation efficiency starting from thermal equilibrium in AX2 systems, not considering relaxation. It is shown that in systems where spins relax rapidly, the new IM-based sequences indeed perform significantly better than the above two known TQC excitation sequences, the sensitivity enhancement being especially pronounced in the case of the proton system investigated. An overview of the differences in relaxation behavior is presented for the different approaches. Applications are envisaged to Overhauser DNP experiments and to in vivo NMR. PMID:27253727

  15. Spin frustration of a spin-1/2 Ising-Heisenberg three-leg tube as an indispensable ground for thermal entanglement

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef; Alécio, Raphael Cavalcante; Lyra, Marcelo L.; Rojas, Onofre

    2016-07-01

    The spin-1/2 Ising-Heisenberg three-leg tube composed of the Heisenberg spin triangles mutually coupled through the Ising inter-triangle interaction is exactly solved in a zero magnetic field. By making use of the local conservation for the total spin on each Heisenberg spin triangle the model can be rigorously mapped onto a classical composite spin-chain model, which is subsequently exactly treated through the transfer-matrix method. The ground-state phase diagram, correlation functions, concurrence, Bell function, entropy and specific heat are examined in detail. It is shown that the spin frustration represents an indispensable ground for a thermal entanglement, which is quantified by the quantum concurrence. The specific heat displays diverse temperature dependences, which may include a sharp low-temperature peak mimicking a temperature-driven first-order phase transition. It is convincingly evidenced that this anomalous peak originates from massive thermal excitations from the doubly degenerate ground state towards an excited state with a high macroscopic degeneracy due to chiral degrees of freedom of the Heisenberg spin triangles.

  16. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  17. Efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates based on their characterizations

    SciTech Connect

    Bao, Weizhu; Chern, I-Liang; Zhang, Yanzhi

    2013-11-15

    In this paper, we propose efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates (BECs) with/without the Ioffe–Pritchard magnetic field B(x). When B(x)≠0, a numerical method is introduced to compute the ground states and it is also applied to study properties of ground states. Numerical results suggest that the densities of m{sub F}=±1 components in ground states are identical for any nonzero B(x). In particular, if B(x)≡B≠0 is a constant, the ground states satisfy the single-mode approximation. When B(x)≡0, efficient and simpler numerical methods are presented to solve the ground states of spin-1 BECs based on their ferromagnetic/antiferromagnetic characterizations. Numerical simulations show that our methods are more efficient than those in the literature. In addition, some conjectures are made from our numerical observations.

  18. On the non-relativistic limit of a spin- {1}/{2} particle in a classical gravitational field

    NASA Astrophysics Data System (ADS)

    Bäuerle, G. G. A.; Twelker, H. F.

    1985-04-01

    An external gravitational field modifies the description of a spin- {1}/{2} particle in various ways. For instance, the inner product of Dirac wave functions, and the equal-time anti-commutation relations and the canonical energy-momentum tensor of the quantized Dirac field are modified. This has the following consequences. The Dirac-Hamiltonian (2.29) of a spin- {1}/{2} particle in a time-dependent gravitational field is not Hermitian. Furthermore, the Euler-Lagrange equation and the Heisenberg equation for the quantized Dirac field are not consistent. We obviate these deficiencies by the introduction of the η-field as the fundamental variable instead of the Dirac field. At the same time, the non-relativistic limit is most conveniently discussed in the η-description. For this purpose, we introduce a modification of the Foldy-Wouthuysen transformation.

  19. Spin and quadrupolar orders in the spin-1 bilinear-biquadratic model for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Luo, Cheng; Datta, Trinanjan; Yao, Dao-Xin

    2016-06-01

    Motivated by the recent experimental and theoretical progress of the magnetic properties in iron-based superconductors, we provide a comprehensive analysis of the extended spin-1 bilinear-biquadratic (BBQ) model on the square lattice. Using a variational approach at the mean-field level, we identify the existence of various magnetic phases, including conventional spin dipolar orders (ferro- and antiferromagnet), novel quadrupolar orders (spin nematic), and mixed dipolar-quadrupolar orders. In contrast to the regular Heisenberg model, the elementary excitations of the spin-1 BBQ model are described by the SU(3) flavor-wave theory. By fitting the experimental spin-wave dispersion, we determine the refined exchange couplings corresponding to the collinear antiferromagnetic iron pnictides. We also present the dynamic structure factors of both spin dipolar and quadrupolar components with connections to the future experiments.

  20. Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles

    SciTech Connect

    Alberto, P.; Castro, A. S. de; Malheiro, M.

    2007-04-15

    We show that the conditions which originate the spin and pseudospin symmetries in the Dirac equation are the same that produce equivalent energy spectra of relativistic spin-1/2 and spin-0 particles in the presence of vector and scalar potentials. The conclusions do not depend on the particular shapes of the potentials and can be important in different fields of physics. When both scalar and vector potentials are spherical, these conditions for isospectrality imply that the spin-orbit and Darwin terms of either the upper component or the lower component of the Dirac spinor vanish, making it equivalent, as far as energy is concerned, to a spin-0 state. In this case, besides energy, a scalar particle will also have the same orbital angular momentum as the (conserved) orbital angular momentum of either the upper or lower component of the corresponding spin-1/2 particle. We point out a few possible applications of this result.

  1. Spin structure of spin-1/2 baryon and spinless meson production amplitudes in photonic and hadronic reactions

    SciTech Connect

    Nakayama, K.; Love, W.G.

    2005-09-01

    The most general spin structures of the spin-1/2 baryon and spinless meson production operator for both photon and nucleon induced reactions are derived from the partial-wave expansions of these reaction amplitudes. The present method provides the coefficients multiplying each spin operator in terms of the partial-wave matrix elements. The result should be useful in studies of these reactions based on partial-wave analyses, especially, when spin observables are considered.

  2. On the spin- 1/2 Aharonov–Bohm problem in conical space: Bound states, scattering and helicity nonconservation

    SciTech Connect

    Andrade, F.M.; Silva, E.O.; Pereira, M.

    2013-12-15

    In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.

  3. Dirac operators on the fuzzy AdS2 with the spins 1/2 and 1

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Lotfizadeh, M.

    2011-10-01

    It is shown here how the pseudo chirality and Dirac operators with the spins 1/2 and 1 on the commutative and fuzzy AdS2 should be constructed. The finite-dimensional and nonunitary representations of SU(1, 1) carrying the spin degrees of freedom 1/2 and 1 are used for the Dirac fields on commutative and fuzzy AdS2. In the fuzzy case, an explicit description of pseudo generalization of the Ginsparg-Wilson algebra is used to construct projective modules. The projector couplings left angular momentum and spin on the fuzzy AdS2 are used to produce minimum total angular momenta. They are realized by the first two and three representations of the total angular momentum for the spins 1/2 and 1, respectively. The pseudo projectors, the pseudo chirality, and Dirac operators with the spins 1/2 and 1 on the fuzzy AdS2 tend to their corresponding operators in the commutative limit.

  4. Stripe phase and double-roton excitations in interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    Spin-orbit (SO) coupling plays a major role in many important phenomena in condensed matter physics. However, the SO coupling physics in high-spin systems, especially with superfluids, has not been well explored because of the spin half of electrons in solids. In this context, the recent experimental realization of spin-orbit coupling in spin-1 Bose-Einstein condensates (BECs) has opened a completely new avenue for exploring SO-coupled high-spin superfluids. Nevertheless, the experiment has only revealed the single-particle physics of the system. Here, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 BECs in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting two modulating patterns. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC. Our work could motivate further theoretical and experimental study along this direction.

  5. Exact many-body ground states of a spin-1 Bose gas in Tonks-Girardeau limit

    NASA Astrophysics Data System (ADS)

    Jen, Hsiang-Hua; Yip, Sungkit

    2016-05-01

    We investigate the many-body ground states of a one-dimensional spin-1 Bose gas in Tonks-Girardeau (TG) limit. It is known that in TG gas limit of scalar bosons, the system becomes fermionized that bosons do not penetrate each other, and their wavefunctions take the form of noninteracting fermions. For a spin-1 Bose gas with an infinite atom-atom interaction in a harmonic trap, we construct the many-body ground states from the ones of a noninteracting Fermi gas along with the spin degrees of freedom. With zero magnetic field in the sector of Sz = 0 and in the regime of spin-incoherent Luttinger liquid where we assume negligible | a2 -a0 | , the interaction energy becomes spin-independent, and the many-body wavefunctions of a spin-1 Bose gas is also SU(3) invariant. The many-body wavefunction can be derived by calculating the weightings of spin functions using the conjugacy class G of SN symmetric group for the number of atoms N. We then study the first-order correlation function of the density matrix, from which we extract its momentum distribution. Finite-temperature calculation of the wavefunction by including orbital excitations is also investigated to compare with the case of spinless bosons. Ministry of Science and Technology, Taiwan, under Grant Number MOST-101-2112-M-001-021-MY3.

  6. Electro-optic Pockels and Kerr effects for the determination of X(2)and X(3): thin films of side-chain polymers containing dimethylaminonitrostilbene and of the polydiacetylene poly-(butoxycarbonylmethyleneurethane)

    NASA Astrophysics Data System (ADS)

    Herold, M.; Schmid, W.; Vogtmann, Th.; Schwoerer, M.; Fischer, R.; Haarer, D.

    1995-02-01

    A simple reflection method that is based on ellipsometry and the electro-optic Pockels and Kerr effects is adapted for the determination of the electro-optic susceptibilities chi (2) (- omega ; 0, omega ) and chi (3)(- omega ; 0, 0, omega ). Measurements were made on materials that consist of centrosymmetric molecules like the polydiacetylene poly-(butoxycarbonylmethyleneurethane) (poly-4BCMU) and on a noncentrosymmetric poled side-chain polymer that contains dimethylaminonitrostilbene (ANS). The results are compared with those acquired by other methods (e.g., second-harmonic generation, third-harmonic generation, and degenerate four-wave mixing). Large differences occur, especially for the chi (3) values. The effects of mechanical strains from electrostatic forces and from the field-dependent change of the absorption are discussed.

  7. Entanglement, magnetic and quadrupole moments properties of the mixed spin Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Abgaryan, V. S.; Ananikian, N. S.; Ananikyan, L. N.; Hovhannisyan, V.

    2015-02-01

    Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings. Thermal negativity as a measure of quantum entanglement of the mixed spin system is calculated. Different behavior for the negativity is obtained for the various values of Heisenberg dipolar and quadrupole couplings. The intermediate plateau of the negativity has been observed at the absence of the single-ion anisotropy and quadrupole interaction term. When dipolar and quadrupole couplings are equal there is a similar behavior of negativity and quadrupole moment.

  8. FAST TRACK COMMUNICATION: A Temperley-Lieb quantum chain with two- and three-site interactions

    NASA Astrophysics Data System (ADS)

    Ikhlef, Y.; Jacobsen, J. L.; Saleur, H.

    2009-07-01

    We study the phase diagram of a quantum chain of spin-1/2 particles whose world lines form a dense loop gas with loop weight n. In addition to the usual two-site interaction corresponding to the XXZ spin chain, we introduce a three-site interaction. The resulting model contains a Majumdar-Ghosh-like gapped phase and a new integrable point, which we solve exactly. We also locate a critical line realizing dilute O(n) criticality, without introducing explicit dilution in the loops. Our results have implications for anisotropic spin chains, as well as anyonic quantum chains.

  9. Matrix product solutions of boundary driven quantum chains

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2015-09-01

    We review recent progress on constructing non-equilibrium steady state density operators of boundary driven locally interacting quantum chains, where driving is implemented via Markovian dissipation channels attached to the chain’s ends. We discuss explicit solutions in three different classes of quantum chains, specifically, the paradigmatic (anisotropic) Heisenberg spin-1/2 chain, the Fermi-Hubbard chain, and the Lai-Sutherland spin-1 chain, and discuss universal concepts which characterize these solutions, such as matrix product ansatz and a more structured walking graph state ansatz. The central theme is the connection between the matrix product form of nonequilibrium states and the integrability structures of the bulk Hamiltonian, such as the Lax operators and the Yang-Baxter equation. However, there is a remarkable distinction with respect to the conventional quantum inverse scattering method, namely addressing nonequilibrium steady state density operators requires non-unitary irreducible representations of Yang-Baxter algebra which are typically of infinite dimensionality. Such constructions result in non-Hermitian, and often also non-diagonalisable families of commuting transfer operators which in turn result in novel conservation laws of the integrable bulk Hamiltonians. For example, in the case of the anisotropic Heisenberg model, quasi-local conserved operators which are odd under spin reversal (or spin flip) can be constructed, whereas the conserved operators stemming from orthodox Hermitian transfer operators (via logarithmic differentiation) are all even under spin reversal.

  10. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    fluctuating chains of dipolar particles. Resolving this issue would contribute greatly to the understanding of these interesting and important materials. We have begun to test the predictions of the HT model by both examining the dynamics of individual chains and by measuring the forces between dipolar chains directly to accurately and quantitatively assess the interactions that they experience. To do so, we employ optical trapping techniques and video-microscopy to manipulate and observe our samples on the microscopic level. With these techniques, it is possible to observe chains that are fluctuating freely in three-dimensions, independent of interfacial effects. More importantly, we are able to controllably observe the interactions of two chains at various separations to measure the force-distance profile. The techniques also allow us to study the mechanical properties of individual chains and chain clusters. Our work to this point has focused on reversibly-formed dipolar chains due to field induced dipoles where the combination of this chaining, the dipolar forces, and the hydrodynamic interactions that dictate the rheology of the suspensions. One can envision, however, many situations where optical, electronic, or rheological behavior may be optimized with magneto-responsive anisotropic particles. Chains of polarizable particles may have the best properties as they can coil and flex in the absence of a field and stiffen and orient when a field is applied. We have recently demonstrated a synthesis of stable, permanent paramagnetic chains by both covalently and physically linking paramagnetic colloidal particles. The method employed allows us to create monodisperse chains of controlled length. We observed the stability, field-alignment, and rigidity of this new class of materials. The chains may exhibit unique rheological properties in an applied magnetic field over isotropic suspensions of paramagnetic particles. They are also useful rheological models as bead

  11. A Fortran 90 program to solve the Hartree-Fock equations for interacting spin- 1/2 > fermions confined in harmonic potentials

    NASA Astrophysics Data System (ADS)

    Pal, Hridis Kumar; Shukla, Alok

    2008-08-01

    A set of weakly interacting spin- 1/2 > Fermions, confined by a harmonic oscillator potential, and interacting with each other via a contact potential, is a model system which closely represents the physics of a dilute gas of two-component fermionic atoms confined in a magneto-optic trap. In the present work, our aim is to present a Fortran 90 computer program which, using a basis set expansion technique, solves the Hartree-Fock (HF) equations for spin- 1/2 > Fermions confined by a three-dimensional harmonic oscillator potential, and interacting with each other via pair-wise delta-function potentials. Additionally, the program can also account for those anharmonic potentials which can be expressed as a polynomial in the position operators x, y, and z. Both the restricted-HF (RHF), and the unrestricted-HF (UHF) equations can be solved for a given number of Fermions, with either repulsive or attractive interactions among them. The option of UHF solutions for such systems also allows us to study possible magnetic properties of the physics of two-component confined atomic Fermi gases, with imbalanced populations. Using our code we also demonstrate that such a system exhibits shell structure, and follows Hund's rule. Program summaryProgram title: trap.x Catalogue identifier: AEBB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 17 750 No. of bytes in distributed program, including test data, etc.: 205 138 Distribution format: tar.gz Programming language: mostly Fortran 90 Computer: PCs—SUN, HP Alpha, IBM Operating system: Linux, Solaris, Tru64, AIX Classification: 7.7 Nature of problem: The simplest description of a spin 1/2 >; trapped system at the mean field level is given by the Hartree-Fock method. This

  12. Ground Band and Excited Band of Spin-1 BEC in Cigar Shaped Laser Trap

    NASA Astrophysics Data System (ADS)

    Pang, Wei; Li, Zhi-Bing; Bao, Cheng-Guang

    2007-10-01

    The wavefunctions that conserve the total spin are constructed for the fully condensed states and the states with one particle excited. A set of equations are deduced for the spatial longitudinal wavefunctions and the chemical potentials. These equations are solved numerically for 23Na and 87Rb condensates. The deformed trap shows significant effects on the spectrum. This implies that the spin effect of the spinor BEC are more easily detected in an optical trap of larger aspect ratio.

  13. Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains.

    PubMed

    Ivanov, Dmitri A; Abanov, Alexander G

    2013-02-01

    We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function. PMID:23496467

  14. The open XXZ spin chain model and the topological basis realization

    NASA Astrophysics Data System (ADS)

    Wang, Qingyong; Du, Yangyang; Wu, Chunfeng; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2016-07-01

    In this paper, it is shown that the Hamiltonian of the open spin-1 XXZ chain model can be constructed from the generators of the Birman-Murakami-Wenzl (B-M-W) algebra. Without the topological parameter d (describing the unknotted loop ◯ in topology) reducing to a fixed value, the topological basis states can be connected with the open XXZ spin chain. Then some particular properties of the topological basis states in this system have been investigated. We find that the topological basis states are the three eigenstates of a four-spin-1 XXZ chain model without boundary term. Specifically, all the spin single states of the system fall on the topological basis subspace. And the number of the spin single states of the system is equal to that of the topological basis states.

  15. Entanglement in Mixed-Spin (1/2, 3/2) Heisenberg XXZ Model with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Zhou, Chao-Biao; Xiao, Shu-Yuan; Zhang, Shao-Wu; Ran, Yang-Qiang

    2016-02-01

    In this paper, the entanglement in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous external magnetic field is studied. We not only calculate the ground-state entanglement but also investigate the behaviors of quantum phase transition following the changes of DM interaction and nonuniform magnetic field. More importantly, we note that the DM interaction improves the critical magnetic field B c , the critical temperature T c and broadens the region of entanglement.

  16. Effective spin-1/2 scalar chiral order on kagome lattices in Nd3Sb3Mg2O14

    NASA Astrophysics Data System (ADS)

    Scheie, A.; Sanders, M.; Krizan, J.; Qiu, Y.; Cava, R. J.; Broholm, C.

    2016-05-01

    We introduce Nd3Sb3Mg2O14 with ideal kagome lattices of neodymium ions in ABC stacking. Thermodynamic measurements show a Curie-Weiss temperature of ΘCW=-0.12 K, a Nd3 + spin-1/2 Kramers doublet ground state, and a second-order phase transition at TN=0.56 (2 ) K. Neutron scattering reveals noncoplanar scalar chiral k =0 magnetic order with a correlation length exceeding 400 Å=55 a and an ordered moment of 1.79 (5 ) μB . This order includes a canted ferromagnetic component perpendicular to the kagome planes favored by Dzyaloshinskii-Moriya interactions.

  17. High Resolution Magic Angle Spinning 1H-NMR Metabolic Profiling of Nanoliter Biological Tissues at High Magnetic Field

    SciTech Connect

    Feng, Ju; Hu, Jian Z.; Burton, Sarah D.; Hoyt, David W.

    2013-03-05

    It is demonstrated that a high resolution magic angle spinning 1H-NMR spectrum of biological tissue samples with volumes as small as 150 nanoliters, or 0.15 mg in weight, can be acquired in a few minutes at 21.1 T magnetic field using a commercial 1.6 mm fast-MAS probe with minor modification of the MAS rotor. The strategies of sealing the samples inside the MAS rotor to avoid fluid leakage as well as the ways of optimizing the signal to noise are discussed.

  18. Quantum dynamics of atomic coherence in a spin-1 condensate: Mean-field versus many-body simulation

    NASA Astrophysics Data System (ADS)

    Plimak, L. I.; Weiß, C.; Walser, R.; Schleich, W. P.

    2006-08-01

    We analyse and numerically simulate the full many-body quantum dynamics of a spin-1 condensate in the single spatial mode approximation. Initially, the condensate is in a "ferromagnetic" state with all spins aligned along the y axis and the magnetic field pointing along the z axis. In the course of evolution the spinor condensate undergoes a characteristic change of symmetry, which in a real experiment could be a signature of spin-mixing many-body interactions. The results of our simulations are conveniently visualised within the picture of irreducible tensor operators.

  19. Prospects for spin-1 resonance search at 13 TeV LHC and the ATLAS diboson excess

    NASA Astrophysics Data System (ADS)

    Abe, Tomohiro; Kitahara, Teppei; Nojiri, Mihoko M.

    2016-02-01

    Motivated by ATLAS diboson excess around 2 TeV, we investigate a phenomenology of spin-1 resonances in a model where electroweak sector in the SM is weakly coupled to strong dynamics. The spin-1 resonances, W' and Z', are introduced as effective degrees of freedom of the dynamical sector. We explore several theoretical constraints by investigating the scalar potential of the model as well as the current bounds from the LHC and precision measurements. It is found that the main decay modes are V' → VV and V' → Vh, and the V' width is narrow enough so that the ATLAS diboson excess can be explained. In order to investigate future prospects, we also perform collider simulations at √{s}=13 TeV LHC, and obtain a model independent expected exclusion limit for σ( pp → W' → WZ → JJ). We find a parameter space where the diboson excess can be∫ explained, and are within a reach of the LHC at int dt{L}=10{fb}^{-1}} and √{s}=13 TeV.

  20. Dynamics and stability of stationary states for the spin-1 Bose-Einstein condensates in a standing light wave

    NASA Astrophysics Data System (ADS)

    Wang, Deng-Shan; Han, Wei; Shi, Yuren; Li, Zaidong; Liu, Wu-Ming

    2016-07-01

    The spin-1 Bose-Einstein condensates trapped in a standing light wave can be described by three coupled Gross-Pitaevskii equations with a periodic potential. In this paper, nine families of stationary solutions without phase structures in the form of Jacobi elliptic functions are proposed, and their stabilities are analyzed by both linear stability analysis and dynamical evolutions. Taking the ferromagnetic 87Rb atoms and antiferromagnetic (polar) 23Na atoms as examples, we investigate the stability regions of the nine stationary solutions, which are given in term of elliptic modulus k. It is shown that for the same stationary solution the stability regions of condensates with antiferromagnetic (polar) spin-dependent interactions are larger than that of the condensates with ferromagnetic ones. The dn-dn-dn stationary solution is the most stable solution among the nine families of stationary solutions. Moreover, in the same standing light wave, the spin-1 Bose-Einstein condensates are more stable than the scalar Bose-Einstein condensate.

  1. Comparison of the ferromagnetic Blume-Emery-Griffiths model and the AF spin-1 longitudinal Ising model at low temperature

    NASA Astrophysics Data System (ADS)

    Thomaz, M. T.; Corrêa Silva, E. V.

    2016-03-01

    We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.

  2. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    DOE PAGESBeta

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; et al

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamicsmore » in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less

  3. Investigating the Influence of Alkyl Chain Length in Poly(3-alkylthiophene)s Over the Thin Film Morphology by Optical and Electrical Characterization.

    PubMed

    Bhargava, Kshitij; Bilgaiyan, Anubha; Mohan, S Raj; Itoop, M O; Joshi, Mukesh P; Kukreja, L M; Singh, Vipul

    2016-04-01

    This paper studies the influence of alkyl-chain length in poly(3-alkylthiophene)s over the morphology of thin films and electrical parameters of the devices based on it. Regioregular poly(3-hexylthiophene) and poly(3-octylthiophene) were chosen as the semiconducting materials for the study. The morphological variations were studied by absorption spectroscopy, photoluminescence spectroscopy and X-ray diffraction study. The absorption and photoluminescence showed decreased coplanarity of main chain in poly(3-octylthiophene) over poly(3-hexylthiophene) and which was later confirmed using X-ray diffraction studies which clearly showed increased interchain spacing in case of poly(3-octylthiophene). The schottky diodes fabricated using these materials showed decreased mobility in poly(3-octylthiophene) based diodes as measured by space-charge limiting current method and photo-induced charge carrier extraction by linearly increasing voltage technique. Moreover, we observed a negative field dependence of mobility at room temperature in both the devices and attributed this to the presence of dominant positional disorder in poly(3-alkylthiophene)s. Furthermore, the photocurrent dependence on electric field too showed inferior mobility of poly(3-octylthiophene) based diodes. PMID:27451611

  4. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    PubMed

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band. PMID:25815913

  5. Lattice Vibrations in a Linear Triatomic Chain

    ERIC Educational Resources Information Center

    Kesavasamy, K.; Krishnamurthy, N.

    1978-01-01

    Discusses the vibrations of a linear triatomic chain and shows that the addition of the third atom gives rise to an extra optical branch. The nature of the normal modes in ionic crystals and molecular crystals is also discussed. (GA)

  6. Generalized mutual information of quantum critical chains

    NASA Astrophysics Data System (ADS)

    Alcaraz, F. C.; Rajabpour, M. A.

    2015-04-01

    We study the generalized mutual information I˜n of the ground state of different critical quantum chains. The generalized mutual information definition that we use is based on the well established concept of the Rényi divergence. We calculate this quantity numerically for several distinct quantum chains having either discrete Z (Q ) symmetries (Q -state Potts model with Q =2 ,3 ,4 and Z (Q ) parafermionic models with Q =5 ,6 ,7 ,8 and also Ashkin-Teller model with different anisotropies) or the U (1 ) continuous symmetries (Klein-Gordon field theory, X X Z and spin-1 Fateev-Zamolodchikov quantum chains with different anisotropies). For the spin chains these calculations were done by expressing the ground-state wave functions in two special bases. Our results indicate some general behavior for particular ranges of values of the parameter n that defines I˜n. For a system, with total size L and subsystem sizes ℓ and L -ℓ , the I˜n has a logarithmic leading behavior given by c/˜n4 log[L/π sin(π/ℓ L ) ] where the coefficient c˜n is linearly dependent on the central charge c of the underlying conformal field theory describing the system's critical properties.

  7. Linear chains and chain-like fractals from electrostatic heteroaggregation.

    PubMed

    Kim, Anthony Y; Hauch, Kip D; Berg, John C; Martin, James E; Anderson, Robert A

    2003-04-01

    The internal structure of materials prepared by aggregation of oppositely charged polystyrene spheres (electrostatic heteroaggregation) is investigated by static light scattering, optical microscopy, and Brownian dynamics simulation. Light scattering indicates ultralow mass fractal dimensions, as low as 1.2. Such low fractal dimensions, approaching the theoretical limit of a linear object, imply a chaining mechanism. Optical micrographs reveal linear chains with the particle charge alternating down the chains. Brownian dynamics simulation gives additional support for a chaining mechanism. For the polystyrene system (120-nm primary particle diameters), the fractal dimension is found to increase from 1.2 to 1.7 as the background electrolyte is increased. In terms of electrostatic screening, the results match those reported recently for larger polystyrene spheres. The low fractal dimensions appear to represent a crossover from linear chains to a structure of diffusion-limited aggregates; however, experiments under density-neutral conditions imply that sedimentation plays an important role in the formation of ultralow fractal dimensions. The practical implication is that microcomposites with a locally uniform distribution of starting materials and almost any degree of branching can be prepared from oppositely charged particles. PMID:12742045

  8. Spin (1/2){sup +}, spin (3/2){sup +}, and transition magnetic moments of low lying and charmed baryons

    SciTech Connect

    Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan

    2010-04-01

    Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been

  9. Synthesis and characterization of thermally stable second-order nonlinear optical side-chain polyurethanes containing nitro-substituted oxadiazole and thiazole chromophores

    NASA Astrophysics Data System (ADS)

    Tasaganva, R. G.; Tambe, S. M.; Kariduraganavar, M. Y.

    2011-08-01

    We have newly synthesized nonlinear optical (NLO) active nitro-substituted thiazole and oxadiazole chromophores and condensed with tolylene-2,4-diisocyanate and 4,4'-methylenedi(phenyl isocyanate) to yield a series of polyurethanes. Molecular structural characterization of the resulting chromophores and polyurethanes was achieved by FTIR, UV-vis, 1H NMR and CHN elemental analyzer. The inherent viscosities ( η inh) of polyurethanes measured with an Ubbelohde viscometer were in the range of 0.26-0.30 dl/g. Thermal behavior of polyurethanes was investigated using differential scanning calorimetry and thermogravimetric analysis. The glass transition temperatures ( Tg) of the polyurethanes were in the range of 121-192 °C. Thin films of polyurethanes were prepared and achieved molecular orientation by inducing electric field. The change in the surface morphology of polyurethanes films before and after poling was investigated using atomic force microscopy. All the polyurethanes exhibited an excellent solubility in most of the common organic solvents, suggesting that these polyurethanes offered good processability. The second harmonic generation (SHG) coefficients ( d33) of the poled polyurethanes ranged from 29.7 to 44.2 pm/V at 532 nm. High thermal endurance of the poled dipoles was observed for all the polyurethanes and this was attributed to the formation of extensive hydrogen bonds between urethane linkages. Furthermore, none of the developed polyurethanes showed SHG decay below 115 °C, and this signified their acceptability for nonlinear optical devices.

  10. Quasiparticle interactions in frustrated Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Vanderstraeten, Laurens; Haegeman, Jutho; Verstraete, Frank; Poilblanc, Didier

    2016-06-01

    Interactions between elementary excitations in quasi-one-dimensional antiferromagnets are of experimental relevance and their quantitative theoretical treatment has been a theoretical challenge for many years. Using matrix product states, one can explicitly determine the wave functions of the one- and two-particle excitations, and, consequently, the contributions to dynamical correlations. We apply this framework to the (nonintegrable) frustrated dimerized spin-1/2 chain, a model for generic spin-Peierls systems, where low-energy quasiparticle excitations are bound states of topological solitons. The spin structure factor involving two quasiparticle scattering states is obtained in the thermodynamic limit with full momentum and frequency resolution. This allows very subtle features in the two-particle spectral function to be revealed which, we argue, could be seen, e.g., in inelastic neutron scattering of spin-Peierls compounds under a change of the external pressure.

  11. The ± J model for the mixed-spin 1/2 and 3/2 Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2016-08-01

    The effects of the bimodal bilinear exchange interaction, ± J model, are investigated for the mixed-spin 1/2 and 3/2 Blume-Capel (BC) model on the Bethe lattice (BL). The bilinear exchange interaction is either turned on ferrimagnetically (J > 0) or turned off antiferrimagnetically (J < 0) with probabilities p and 1 - p for the nearest-neighbor sites on the BL. The phase diagrams of the model are obtained with the inclusion of the crystal field interactions on the sites of spin-3/2 for the coordination number, q=3,4 and 6, for given p values. It was found that the model gives either second- or first-order phase transition lines for each given value of p. The temperatures of these lines increase with the increasing values of q.

  12. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gerving, C. S.; Hoang, T. M.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2012-11-01

    A pendulum prepared perfectly inverted and motionless is a prototype of unstable equilibrium and corresponds to an unstable hyperbolic fixed point in the dynamical phase space. Here, we measure the non-equilibrium dynamics of a spin-1 Bose-Einstein condensate initialized as a minimum uncertainty spin-nematic state to a hyperbolic fixed point of the phase space. Quantum fluctuations lead to non-linear spin evolution along a separatrix and non-Gaussian probability distributions that are measured to be in good agreement with exact quantum calculations up to 0.25s. At longer times, atomic loss due to the finite lifetime of the condensate leads to larger spin oscillation amplitudes, as orbits depart from the separatrix. This demonstrates how decoherence of a many-body system can result in apparent coherent behaviour. This experiment provides new avenues for studying macroscopic spin systems in the quantum limit and for investigations of important topics in non-equilibrium quantum dynamics.

  13. A relativistic one-particle Time of Arrival operator for a free spin- 1 / 2 particle in (1 + 1) dimensions

    NASA Astrophysics Data System (ADS)

    Bunao, Joseph; Galapon, Eric A.

    2015-05-01

    As a follow-up to a recent study in the spin-0 case (Bunao and Galapon, 2015), we construct a one-particle Time of Arrival (TOA) operator conjugate to a Hamiltonian describing a free relativistic spin- 1 / 2 particle in one spatial dimension. Upon transformation in a representation where the Hamiltonian is diagonal, it turns out that the constructed operator consists of an operator term T ˆ whose action is the same as in the spin-0 case, and another operator term Tˆ0 which commutes with the Hamiltonian but breaks invariance under parity inversion. If we must impose this symmetry on our TOA operator, then we can throw away Tˆ0 so that the TOA operator is just T ˆ .

  14. Compensation temperature of the two-dimension mixed spin-1 and spin-3/2 anisotropic Heisenberg ferrimagnet

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Hu, Ai-Yuan; Wang, Huai-Yu

    2016-08-01

    We study a two-dimensional Heisenberg ferrimagnet composed of spin-1 and spin-3/2 sublattices considering both exchange and single-ion anisotropies. The adjoint effects of the two anisotropies on the possible compensation point are investigated. It is concluded that a primary condition for the compensation point to appear is that the single-ion anisotropy of the smaller spins should be nonzero and be greater than a certain value which depends on other parameters. The exchange anisotropy can raise the compensation point slightly. The thermodynamic functions are evaluated. All the thermodynamic functions with various parameter values are smooth no matter whether there is a compensation point or not. Thus, from the thermodynamic functions, one is unable to judge if the compensation occurs.

  15. Quantum enhanced measurement of rotations with a spin-1 Bose-Einstein condensate in a ring trap

    NASA Astrophysics Data System (ADS)

    Nolan, Samuel P.; Sabbatini, Jacopo; Bromley, Michael W. J.; Davis, Matthew J.; Haine, Simon A.

    2016-02-01

    We present a model of a spin-squeezed rotation sensor utilizing the Sagnac effect in a spin-1 Bose-Einstein condensate in a ring trap. The two input states for the interferometer are seeded using Raman pulses with Laguerre-Gauss beams and are amplified by the bosonic enhancement of spin-exchange collisions, resulting in spin-squeezing and potential quantum enhancement of the interferometry. The ring geometry has an advantage over separated beam path atomic rotation sensors due to the uniform condensate density. We model the interferometer both analytically and numerically for realistic experimental parameters and find that significant quantum enhancement is possible, but this enhancement is partially degraded when working in a regime with strong atomic interactions.

  16. Exact results for the spin-1 Ising model on pure "square" Husimi lattices: Critical temperatures and spontaneous magnetization

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2016-02-01

    We investigate the second order phase transitions of the ferromagnetic spin-1 Ising model on pure Husimi lattices built up from elementary squares with arbitrary values of the coordination number. It is shown that the critical temperatures of the second order phase transitions are driven by a single equation simultaneously on all such lattices. It is also shown that for arbitrary given value of the coordination number this equation is equivalent to the corresponding polynomial equation. The explicit form of these polynomial equations is present for the lattices with the coordination numbers z = 4 , 6, and 8. It is proven that, at least for the small values of the coordination number, the positions of the critical temperatures are uniquely determined. In addition, it is shown that the properties of all phases of the model are also driven by the corresponding single equations simultaneously on all pure Husimi lattices built up from elementary squares. The spontaneous magnetization of the model is investigated in detail.

  17. Effects of a space modulation on the behavior of a 1D alternating Heisenberg spin-1/2 model.

    PubMed

    Mahdavifar, Saeed; Abouie, Jahanfar

    2011-06-22

    The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field. However, the space modulation induces a new gap in the spectrum of the system and the system experiences different quantum phases which are separated by four critical fields. By opening the new gap, a magnetization plateau appears at ½M(sat). The effects of the space modulation are reflected in the emergence of a plateau in other physical functions such as the F-dimer and the bond-dimer order parameters, and the pair-wise entanglement. PMID:21613724

  18. Enhancement of tunneling density of states at a Y junction of spin-1/2 Tomonaga-Luttinger liquid wires

    NASA Astrophysics Data System (ADS)

    Mardanya, Sougata; Agarwal, Amit

    2015-07-01

    We calculate the tunneling density of states (TDOS) in a dissipationless three-wire junction of interacting spin-1/2 electrons, and find an anomalous enhancement of the TDOS in the zero-bias limit, even for repulsive interactions for several bosonic fixed points. This enhancement is physically related to the reflection of holes from the junction for incident electrons, and it occurs only in the vicinity of the junction (x

  19. Composite nonlinear structure within the magnetosonic soliton interactions in a spin-1/2 degenerate quantum plasma

    SciTech Connect

    Han, Jiu-Ning Luo, Jun-Hua; Li, Jun-Xiu; Li, Sheng-Chang; Liu, Shi-Wei; Yang, Yang; Duan, Wen-Shan; Han, Juan-Fang

    2015-06-15

    We study the basic physical properties of composite nonlinear structure induced by the head-on collision of magnetosonic solitons. Solitary waves are assumed to propagate in a quantum electron-ion magnetoplasma with spin-1/2 degenerate electrons. The main interest of the present work is to investigate the time evolution of the merged composite structure during a specific time interval of the wave interaction process. We consider three cases of colliding-situation, namely, compressive-rarefactive solitons interaction, compressive-compressive solitons interaction, and rarefactive-rarefactive solitons interaction, respectively. Compared with the last two colliding cases, the changing process of the composite structure is more complex for the first situation. Moreover, it is found that they are obviously different for the last two colliding cases.

  20. Crystal Structure of the Spin 1/2 Honeycomb-Lattice Antiferromagnet Cu2(pymca)3(ClO4)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Kodama, Takafumi; Kikukawa, Reo; Hagiwara, Masayuki; Kida, Takanori; Sakai, Masamichi; Fukuda, Takeshi; Fujihara, Takashi; Kamata, Norihiko

    2015-03-01

    Using X-ray diffraction techniques, we have studied the crystal structure of a copper polynuclear coordination polymer Cu2(pymca)3(ClO4) (pymca = pyrimidine-2-carboxylate), which is found to crystallize as a trigonal crystal system, space group P31m, with the lattice constants a = 9.5904(18) Å and c = 5.9000(11) Å, at temperature T = 150 K. Each pymca ligand connects to two Cu2+ ions, forming a honeycomb network in the ab plane. The T dependence of the magnetic susceptibility of Cu2(pymca)3(ClO4) shows a broad maximum near T = 26 K, indicating low-dimensional antiferromagnetic interactions. From the crystal structure and magnetic properties, we conclude that Cu2(pymca)3(ClO4) is a good realization of a spin-1/2 honeycomb lattice antiferromagnet.

  1. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis

    PubMed Central

    Silva, Jailthon C; Zacarias, Danielle A; Silva, Vladimir C; Rolão, Nuno; Costa, Dorcas L; Costa, Carlos HN

    2016-01-01

    Currently, the only method for identifying infective hosts with Leishmania infantum to the vector Lutzomyia longipalpis is xenodiagnosis. More recently, quantitative polymerase chain reaction (qPCR) has been used to model human reservoir competence by assuming that detection of parasite DNA indicates the presence of viable parasites for infecting vectors. Since this assumption has not been proven, this study aimed to verify this hypothesis. The concentration of amastigotes in the peripheral blood of 30 patients with kala-azar was microscopically verified by leukoconcentration and was compared to qPCR estimates. Parasites were identified in 4.8 mL of peripheral blood from 67% of the patients, at a very low concentration (average 0.3 parasites/mL). However, qPCR showed 93% sensitivity and the estimated parasitaemia was over a thousand times greater, both in blood and plasma, with higher levels in plasma than in blood. Furthermore, the microscopic count of circulating parasites and the qPCR parasitaemia estimates were not mathematically compatible with the published proportions of infected sandflies in xenodiagnostic studies. These findings suggest that qPCR does not measure the concentration of circulating parasites, but rather measures DNA from other sites, and that blood might not be the main source of infection for vectors. PMID:27439033

  2. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis.

    PubMed

    Silva, Jailthon C; Zacarias, Danielle A; Silva, Vladimir C; Rolão, Nuno; Costa, Dorcas L; Costa, Carlos Hn

    2016-07-18

    Currently, the only method for identifying infective hosts with Leishmania infantum to the vector Lutzomyia longipalpis is xenodiagnosis. More recently, quantitative polymerase chain reaction (qPCR) has been used to model human reservoir competence by assuming that detection of parasite DNA indicates the presence of viable parasites for infecting vectors. Since this assumption has not been proven, this study aimed to verify this hypothesis. The concentration of amastigotes in the peripheral blood of 30 patients with kala-azar was microscopically verified by leukoconcentration and was compared to qPCR estimates. Parasites were identified in 4.8 mL of peripheral blood from 67% of the patients, at a very low concentration (average 0.3 parasites/mL). However, qPCR showed 93% sensitivity and the estimated parasitaemia was over a thousand times greater, both in blood and plasma, with higher levels in plasma than in blood. Furthermore, the microscopic count of circulating parasites and the qPCR parasitaemia estimates were not mathematically compatible with the published proportions of infected sandflies in xenodiagnostic studies. These findings suggest that qPCR does not measure the concentration of circulating parasites, but rather measures DNA from other sites, and that blood might not be the main source of infection for vectors. PMID:27439033

  3. Propagation of nonclassical correlations across a quantum spin chain

    SciTech Connect

    Campbell, S.; Apollaro, T. J. G.; Di Franco, C.; Banchi, L.; Cuccoli, A.; Vaia, R.; Plastina, F.; Paternostro, M.

    2011-11-15

    We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.

  4. Localization of Spinons in Random Majumdar-Ghosh Chains

    NASA Astrophysics Data System (ADS)

    Roux, Guillaume; Lavarelo, Arthur

    2014-03-01

    We study the effect of disorder on frustrated dimerized spin-1/2 chains at the Majumdar-Ghosh point. Using variational methods and density-matrix renormalization group approaches, we identify two localization mechanisms for spinons which are the deconfined fractional elementary excitations of these chains. The first one belongs to the Anderson localization class and dominates at the random Majumdar-Ghosh point. There, spinons remain gapped and localize in Lifshitz states whose localization length is analytically obtained. The other mechanism is a random confinement mechanism which induces an effective interaction between spinons and brings the initially gapped antiferromagnetic chain into a gapless and partially polarized phase for arbitrarily small disorder. This Imry-Ma mechanism induces domains which statistics is analyzed. Last, the connection to the real-space renormalization group method suited for the strong disorder limit is discussed.

  5. Synthesis, crystal structure and non-linear optical properties of inorganic-organic hybrid compound based on face-sharing octahedral [PbBr3]∞ chains

    NASA Astrophysics Data System (ADS)

    Ben Ahmed, A.; Feki, H.; Abid, Y.

    2015-09-01

    4-BenzylPiPeridine-PbBr3 has been synthesized. The crystal structures of the title compound have been defined by X-ray diffraction analysis and characterized by FT-IR, Raman and UV-visible instrumental methods. The recorded spectrum by UV-visible spectroscopy for the investigated compound show good transparency in the visible region. This result indicates a non-zero value of the first Hyperpolarizability. We also report DFT calculations of the electric dipole moments (μ), Polarizability (α), the first Hyperpolarizability (β) and HOMO-LUMO analysis of the title compound was theoretically investigated by Gaussian 03 package. Our results suggest that the investigated material might have microscopic nonlinear optical behavior with non-zero values.

  6. Q-operators for the open Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Frassek, Rouven; Szécsényi, István M.

    2015-12-01

    We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.

  7. Operator space entanglement entropy in a transverse Ising chain

    SciTech Connect

    Prosen, Tomaz; Pizorn, Iztok

    2007-09-15

    The efficiency of time-dependent density matrix renormalization group methods is intrinsically connected to the rate of entanglement growth. We introduce a measure of entanglement in the space of operators and show, for a transverse Ising spin-1/2 chain, that the simulation of observables, contrary to the simulation of typical pure quantum states, is efficient for initial local operators. For initial operators with a finite index in Majorana representation, the operator space entanglement entropy saturates with time to a level which is calculated analytically, while for initial operators with infinite index the growth of operator space entanglement entropy is shown to be logarithmic.

  8. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  9. K e4 decay as a source of information about the σ-particle mass and about the nature of spin-1 mesons

    NASA Astrophysics Data System (ADS)

    Shabalin, E. P.

    2014-12-01

    Data on the form factors for K e4 decay make it possible to fix the value of a parameter that is not determined by the theory itself and which is contained in the Lagrangian for the system formed by 0+ and 0- mesons. This makes it possible to find the mass of the lightest σ meson: mσ = 663 MeV. As for the nature of spin-1 mesons, which also contribute to the form factors for K e4 decay, data on them give no way to interpret spin-1 mesons as gauge bosons of chiral theory

  10. Loading an Equidistant Ion Chain in a Ring Shaped Surface Trap and Anomalous Heating Studies with a High Optical Access Trap

    SciTech Connect

    Tabakov, Boyan

    2015-07-01

    Microfabricated segmented surface ion traps are one viable avenue to scalable quantum information processing. At Sandia National Laboratories we design, fabricate, and characterize such traps. Our unique fabrication capabilities allow us to design traps that facilitate tasks beyond quantum information processing. The design and performance of a trap with a target capability of storing hundreds of equally spaced ions on a ring is described. Such a device could aid experimental studies of phenomena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov - Bohm effect. The fabricated device is demonstrated to hold a ~ 400 ion circular crystal, with 9 μm average spacing between ions. The task is accomplished by first characterizing undesired electric fields in the trapping volume and then designing and applying an electric field that substantially reduces the undesired fields. In addition, experimental efforts are described to reduce the motional heating rates in a surface trap by low energy in situ argon plasma treatment that reduces the amount of surface contaminants. The experiment explores the premise that carbonaceous compounds present on the surface contribute to the anomalous heating of secular motion modes in surface traps. This is a research area of fundamental interest to the ion trapping community, as heating adversely affects coherence and thus gate fidelity. The device used provides high optical laser access, substantially reducing scatter from the surface, and thus charging that may lead to excess micromotion. Heating rates for different axial mode frequencies are compared before and after plasma treatment. The presence of a carbon source near the plasma prevents making a conclusion on the observed absence of change in heating rates.

  11. Synthesis and characterization of novel, optically active polyamides derived from S-valine natural amino acid and bulky anthracenic side chain.

    PubMed

    Mallakpour, Shadpour; Mirkarimi, Fatemeh

    2010-11-01

    This is the first description of the application of molten tetrabutylammonium bromide (TBAB) in the presence of triphenyl phosphite (TPP) for the synthesis of novel polyamides (PAs). Monomer diacid, 5-[(9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-3-methylbutanoylamino]isophthalic acid (4), having anthracenic and amino acid S-valine pendant group, was synthesized in four steps. Several novel, optically active PAs were prepared by the condensation of synthesized diacid monomer 4 with various aromatic diamines using two different techniques: a mixture of N-methyl-2-pyrrolidone (NMP)/TPP/pyridine/calcium chloride (method I) and combination of TPP with TBAB (method II). The main goal of the present paper was to prepare novel PAs in a green media by removal of toxic reagents. Therefore, TBAB/TPP was used as a novel, easy, safe and eco-friendly method for the preparation of aromatic PAs. This method is compared with the polymerization reaction under conventional solvent and in the case of TBAB as a new method, higher yields, inherent viscosities and thermally stable of PAs are gained. The resulting polymers showed good solubility in polar aprotic solvents such as dimethyl sulfoxide, NMP, N,N-dimethylacetamide and N,N-dimethylformamide. These polymers are characterized with respect to chemical structure and purity by means of specific rotation experiments, FT-IR, 1H NMR spectroscopy techniques and elemental analysis. The obtained PAs exhibit good thermal stability up to 335°C for 10% weight loss in nitrogen atmosphere and glass transition temperatures fell in the rang of 177-185°C. PMID:20352462

  12. Absence of actual plateaus in zero-temperature magnetization curves of quantum spin clusters and chains

    NASA Astrophysics Data System (ADS)

    Ohanyan, Vadim; Rojas, Onofre; Strečka, Jozef; Bellucci, Stefano

    2015-12-01

    We examine the general features of the noncommutativity of the magnetization operator and Hamiltonian for small quantum spin clusters. The source of this noncommutativity can be a difference in the Landé g factors for different spins in the cluster, X Y anisotropy in the exchange interaction, and the presence of the Dzyaloshinskii-Moriya term in a direction different from the direction of the magnetic field. As a result, zero-temperature magnetization curves for small spin clusters mimic those for the macroscopic systems with the band(s) of magnetic excitations, i.e., for the given eigenstate of the spin cluster the corresponding magnetic moment can be an explicit function of the external magnetic field yielding the nonconstant (nonplateau) form of the magnetization curve within the given eigenstate. In addition, the X Y anisotropy makes the saturated magnetization (the eigenstate when all spins in cluster are aligned along the magnetic field) inaccessible for finite magnetic field magnitude (asymptotical saturation). We demonstrate all these features on three examples: a spin-1/2 dimer, mixed spin-(1/2,1) dimer, and a spin-1/2 ring trimer. We consider also the simplest Ising-Heisenberg chain, the Ising-X Y Z diamond chain, with four different g factors. In the chain model the magnetization curve has a more complicated and nontrivial structure than that for clusters.

  13. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  14. Heat Conductivity of the Heisenberg Spin-1/2 Ladder: From Weak to Strong Breaking of Integrability.

    PubMed

    Steinigeweg, Robin; Herbrych, Jacek; Zotos, Xenophon; Brenig, Wolfram

    2016-01-01

    We investigate the heat conductivity κ of the Heisenberg spin-1/2 ladder at finite temperature covering the entire range of interchain coupling J(⊥), by using several numerical methods and perturbation theory within the framework of linear response. We unveil that a perturbative prediction κ∝J(⊥)(-2), based on simple golden-rule arguments and valid in the strict limit J(⊥)→0, applies to a remarkably wide range of J(⊥), qualitatively and quantitatively. In the large J(⊥) limit, we show power-law scaling of opposite nature, namely, κ∝J(⊥)(2). Moreover, we demonstrate the weak and strong coupling regimes to be connected by a broad minimum, slightly below the isotropic point at J(⊥)=J(∥). Reducing temperature T, starting from T=∞, this minimum scales as κ∝T(-2) down to T on the order of the exchange coupling constant. These results provide for a comprehensive picture of κ(J(⊥),T) of spin ladders. PMID:26799041

  15. Bound states of two spin-(1/2) fermions in a synthetic non-Abelian gauge field

    SciTech Connect

    Vyasanakere, Jayantha P.; Shenoy, Vijay B.

    2011-03-01

    We study the bound states of two spin-(1/2) fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters ({lambda}{sub x},{lambda}{sub y},{lambda}{sub z}). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ''BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., {lambda}{sub x}={lambda}{sub y}={lambda}{sub z}) for which there is a two-body bound state for anyscattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid {sup 3}He. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.

  16. Localization and quasilocalization of a spin-1 /2 fermion field on a two-field thick braneworld

    NASA Astrophysics Data System (ADS)

    Guo, Heng; Xie, Qun-Ying; Fu, Chun-E.

    2015-11-01

    Localization of a spin-1 /2 fermion on the braneworld is an important and interesting problem. It is well known that a five-dimensional free massless fermion Ψ minimally coupled to gravity cannot be localized on the Randall-Sundrum braneworld. In order to trap such a fermion, the coupling between the fermion and bulk scalar fields should be introduced. In this paper, localization and quasilocalization of a bulk fermion on the thick braneworld generated by two scalar fields (a kink scalar ϕ and a dilaton scalar π ) are investigated. Two types of couplings between the fermion and two scalars are considered. One coupling is the usual Yukawa coupling -η Ψ ¯ϕ Ψ between the fermion and kink scalar, another one is λ Ψ ¯ΓM∂Mπ γ5Ψ between the fermion and dilaton scalar. The left-chiral fermion zero mode can be localized on the brane, and both the left- and right-chiral fermion massive Kaluza-Klein modes may be localized or quasilocalized. Hence the four-dimensional massless left-chiral fermion and massive Dirac fermions, whose lifetime is infinite or finite, can be obtained on the brane.

  17. Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer.

    PubMed

    Chen, Xu; Wang, Ya-Wen; Xing, Ai-Yan; Xiang, Shuai; Shi, Duan-Bo; Liu, Lei; Li, Yan-Xiang; Gao, Peng

    2016-08-01

    Drug resistance is one of the major obstacles for improving the prognosis of breast cancer patients. Increasing evidence has linked the association of aberrantly expressed microRNAs (miRNAs) with tumour development and progression as well as chemoresistance. Despite recent advances, there is still little known about the potential role and mechanism of miRNAs in breast cancer chemoresistance. Here we describe that 16 miRNAs were found to be significantly down-regulated and 11 up-regulated in drug-resistant breast cancer tissues compared with drug-sensitive tissues, using a miRNA microarray. The results also showed miR-489 to be one of the most down-regulated miRNAs in drug-resistant tissues and cell lines, as confirmed by miRNA microarray screening and real-time quantitative PCR. A decrease in miR-489 expression was associated with chemoresistance as well as lymph node metastasis, increased tumour size, advanced pTNM stage and poor prognosis in breast cancer. Functional analysis revealed that miR-489 increased breast cancer chemosensitivity and inhibited cell proliferation, migration and invasion, both in vitro and in vivo. Furthermore, SPIN1, VAV3, BCL2 and AKT3 were found to be direct targets of miR-489. SPIN1 was significantly elevated in drug-resistant and metastatic breast cancer tissues and inversely correlated with miR-489 expression. High expression of SPIN1 was associated with higher histological grade, lymph node metastasis, advanced pTNM stage and positive progesterone receptor (PR) status. Increased SPIN1 expression enhanced cell migration and invasion, inhibited apoptosis and partially antagonized the effects of miR-489 in breast cancer. PIK3CA, AKT, CREB1 and BCL2 in the PI3K-Akt signalling pathway, demonstrated to be elevated in drug-resistant breast cancer tissues, were identified as downstream effectors of SPIN1. It was further found that either inhibition of SPIN1 or overexpression of miR-489 suppressed the PI3K-Akt signalling pathway. These data

  18. Atomic spin chains as testing ground for quantum magnetism

    NASA Astrophysics Data System (ADS)

    Otte, Sander

    2015-03-01

    The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.

  19. Exact asymptotics of the current in boundary-driven dissipative quantum chains in large external fields.

    PubMed

    Lenarčič, Zala; Prosen, Tomaž

    2015-03-01

    A boundary-driven quantum master equation for a general inhomogeneous (nonintegrable) anisotropic Heisenberg spin-1/2 chain, or an equivalent nearest neighbor interacting spinless fermion chain, is considered in the presence of a strong external field f. We present an exact closed form expression for large f asymptotics of the current in the presence of a pure incoherent source and sink dissipation at the boundaries. In application, we demonstrate an arbitrary large current rectification in the presence of the interaction. PMID:25871030

  20. Infinite-randomness fixed points for chains of non-Abelian quasiparticles.

    PubMed

    Bonesteel, N E; Yang, Kun

    2007-10-01

    One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entropy of a region of size L in these phases scales as S(L) approximately lnd/3 log(2)L for large L, where d is the quantum dimension of the particles. PMID:17930652

  1. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors. PMID:20407173

  2. Adjusting the Chain Gear

    NASA Astrophysics Data System (ADS)

    Koloc, Z.; Korf, J.; Kavan, P.

    The adjustment (modification) deals with gear chains intermediating (transmitting) motion transfer between the sprocket wheels on parallel shafts. The purpose of the adjustments of chain gear is to remove the unwanted effects by using the chain guide on the links (sliding guide rail) ensuring a smooth fit of the chain rollers into the wheel tooth gap.

  3. Local Spin Relaxation within the Random Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Herbrych, J.; Kokalj, J.; Prelovšek, P.

    2013-10-01

    Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.

  4. Matrix product states for su(2) invariant quantum spin chains

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas

    2016-08-01

    A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.

  5. Communication at the quantum speed limit along a spin chain

    SciTech Connect

    Murphy, Michael; Montangero, Simone; Giovannetti, Vittorio; Calarco, Tommaso

    2010-08-15

    Spin chains have long been considered as candidates for quantum channels to facilitate quantum communication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type interactions. We build on the work of Balachandran and Gong [V. Balachandran and J. Gong, Phys. Rev. A 77, 012303 (2008)] and show that by applying optimal control to an external parabolic magnetic field, one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes the form of a dispersed wave. We conclude that optimal control is not only a useful tool for experimental application, but also for theoretical inquiry into the physical limits and dynamics of many-body quantum systems.

  6. Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.

    2016-06-01

    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.

  7. Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.

    2015-05-01

    We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.

  8. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  9. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  10. Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from separation of variables

    NASA Astrophysics Data System (ADS)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.

    2014-05-01

    We solve the longstanding problem of defining a functional characterization of the spectrum of the transfer matrix associated with the most general spin-1/2 representations of the six-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variables (SOV) representation, hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial form of the Q-function allows us to show that a finite system of generalized Bethe equations can also be used to describe the complete transfer matrix spectrum.

  11. Bogoliubov theory and Lee-Huang-Yang corrections in spin-1 and spin-2 Bose-Einstein condensates in the presence of the quadratic Zeeman effect

    SciTech Connect

    Uchino, Shun; Kobayashi, Michikazu; Ueda, Masahito

    2010-06-15

    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, pressure, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relations but do not belong to the NG modes.

  12. Plaquette-triplon analysis of magnetic disorder and order in a trimerized spin-1 kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ghosh, Pratyay; Verma, Akhilesh Kumar; Kumar, Brijesh

    2016-01-01

    A spin-1 Heisenberg model on trimerized kagome lattice is studied by doing a low-energy bosonic theory in terms of plaquette triplons defined on its triangular unit cells. The model considered has an intratriangle antiferromagnetic exchange interaction J (set to 1) and two intertriangle couplings J'>0 (nearest neighbor) and J″ (next nearest neighbor; of both signs). The triplon analysis performed on this model investigates the stability of the trimerized singlet ground state (which is exact in the absence of intertriangle couplings) in the J'-J″ plane. It gives a quantum phase diagram that has two gapless antiferromagnetically ordered phases separated by the spin-gapped trimerized singlet phase. The trimerized singlet ground state is found to be stable on J″=0 line (the nearest-neighbor case), and on both sides of it for J″≠0 , in an extended region bounded by the critical lines of transition to the gapless antiferromagnetic phases. The gapless phase in the negative J″ region has a coplanar 120∘ antiferromagnetic order with √{3 }×√{3 } structure. In this phase, all the magnetic moments are of equal length, and the angle between any two of them on a triangle is exactly 120∘. The magnetic lattice in this case has a unit cell consisting of three triangles. The other gapless phase, in the positive J″ region, is found to exhibit a different coplanar antiferromagnetic order with ordering wave vector q =(0 ,0 ) . Here, two magnetic moments in a triangle are of the same magnitude, but shorter than the third. While the angle between two short moments is 120∘-2 δ , it is 120∘+δ between a short and the long one. Only when J″=J' , their magnitudes become equal and the relative angles 120∘. The magnetic lattice in this q =(0 ,0 ) phase has the translational symmetry of the kagome lattice with triangular unit cells of reduced (isosceles) symmetry. This reduction in the point-group symmetry is found to show up as a difference in the intensities of

  13. An inhomogeneous T-Q equation for the open XXX chain with general boundary terms: completeness and arbitrary spin

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.

    2013-11-01

    An inhomogeneous T-Q equation has recently been proposed by Cao, Yang, Shi and Wang for the open spin-1/2 XXX chain with general (nondiagonal) boundary terms. We argue that a simplified version of this equation describes all the eigenvalues of the transfer matrix of this model. We also propose a generating function for the inhomogeneous T-Q equations of arbitrary spin.

  14. Relations in Chains

    ERIC Educational Resources Information Center

    Mineur, B. W.

    1973-01-01

    The criticisms made against chain indexing are reviewed, and PRECIS briefly considered as a possible (but improbable) general substitute for indexing. The failures of chain indexing arise mainly from an overemphasis on generic relationships. The use of symbols to represent relations between terms is suggested for the chain index. (80 references)…

  15. Measurement backaction on the quantum spin-mixing dynamics of a spin-1 Bose-Einstein condensate

    SciTech Connect

    Zhang Keye; Zhou Lu; Zhang Weiping; Ling, Hong Y.; Pu Han

    2011-06-15

    We consider a small F=1 spinor condensate inside an optical cavity driven by an optical probe field, and subject the output of the probe to a homodyne detection, with the goal of investigating the effect of measurement backaction on the spin dynamics of the condensate. Using the stochastic master equation approach, we show that the effect of backaction is sensitive to not only the measurement strength but also the quantum fluctuation of the spinor condensate. The same method is also used to estimate the atom numbers below which the effect of backaction becomes so prominent that extracting spin dynamics from this cavity-based detection scheme is no longer practical.

  16. Entanglement properties of correlated random spin chains and similarities with conformally invariant systems

    NASA Astrophysics Data System (ADS)

    Getelina, João C.; Alcaraz, Francisco C.; Hoyos, José A.

    2016-01-01

    We study the Rényi entanglement entropy and the Shannon mutual information for a class of spin-1/2 quantum critical XXZ chains with random coupling constants which are partially correlated. In the XX case, distinctly from the usual uncorrelated random case where the system is governed by an infinite-disorder fixed point, the correlated-disorder chain is governed by finite-disorder fixed points. Surprisingly, we verify that, although the system is not conformally invariant, the leading behavior of the Rényi entanglement entropies are similar to those of the clean (no randomness) conformally invariant system. In addition, we compute the Shannon mutual information among subsystems of our correlated-disorder quantum chain and verify the same leading behavior as the n =2 Rényi entanglement entropy. This result extends a recent conjecture concerning the same universal behavior of these quantities for conformally invariant quantum chains. For the generic spin-1/2 quantum critical XXZ case, the true asymptotic regime is identical to that in the uncorrelated disorder case. However, these finite-disorder fixed points govern the low-energy physics up to a very long crossover length scale, and the same results as in the XX case apply. Our results are based on exact numerical calculations and on a numerical strong-disorder renormalization group.

  17. Gushing metal chain

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  18. Entanglement Perturbation Theory for Antiferromagnetic Heisenberg Spin Chains

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Chung, Sung Gong

    2012-11-01

    A recently developed numerical method, entanglement perturbation theory (EPT), is used to study the antiferromagnetic Heisenberg spin chains with z-axis anisotropy λ and magnetic field B. To demonstrate its accuracy, we first apply EPT to the isotropic spin-1/2 antiferromagnetic Heisenberg model, and find that EPT successfully reproduces the exact Bethe ansatz results for the ground state energy, the local magnetization, and the spin correlation functions (Bethe ansatz result is available for the first seven lattice separations). In particular, EPT confirms for the first time the asymptotic behavior of the spin correlation functions predicted by the conformal field theory, which realizes only for lattice separations larger than 1000. Next, turning on the z-axis anisotropy and the magnetic field, the 2- and 4-spin correlation functions are calculated, and the results are compared with those obtained by bosonization and density matrix renormalization group methods. Finally, for the spin-1 antiferromagnetic Heisenberg model, the ground state phase diagram in λ space is determined by Roomany--Wyld renormalization group (RG) finite size scaling. The results are in good agreement with those obtained by the level-spectroscopy method.

  19. Structural and magnetic properties of quasi-1 and 2D pyrazine-containing spin-1/2 antiferromagnets.

    SciTech Connect

    Manson, J. L.; Connor, M. M.; Schlueter, J. A.; Hyzer, K. A.; Kykeem, A.; Materials Science Division; Eastern Washington Univ.

    2007-06-01

    Aqueous reaction of Cu(BF{sub 4}){sub 2}, NH{sub 4}HF{sub 2}, and pyrazine leads to formation of a novel 3D framework, [Cu(HF{sub 2})(pyz){sub 2}]BF{sub 4} (1), where 2D [Cu(pyz){sub 2}]{sup 2+} square layers are connected via HF{sub 2}{sup -}. A second compound, Cu(ReO{sub 4}){sub 2}(H{sub 2}O){sub 2}(pyz) (2), was the result of our attempt to create the perrhenate analog of 1; a linear chain compound consisting of CuO{sub 4}N{sub 2} octahedra linked through pyrazine ligands formed instead. Both compounds exhibit extensive hydrogen bonding interactions where bifluoride, F...H...F{sup -}, and O-H...O link layers and chains together in 1 and 2, respectively. Broad maxima indicative of short-range magnetic ordering (SRO) were observed in the magnetic susceptibility at 5.5 (1) and 7.7 K (2) while no evidence for the transition to long-range magnetic ordering (LRO) was detected above 2 K.

  20. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  1. Carbon Chains in the Diffuse Interstellar Gas

    NASA Astrophysics Data System (ADS)

    Thaddeus, P.

    1999-05-01

    Linear carbon chain molecules are the dominant fraction of the 125 molecules which have now been identified in interstellar clouds or circumstellar shells, and the only molecules which have been conclusively identified as carriers of optical diffuse interstellar bands are carbon chains (as discussed by Maier at this meeting). In our laboratory over the past two years we have succeeded in detecting 46 carbon chains by applying Fourier transform microwave spectroscopy to supersonic molecular beams of reactive species produced in a gas discharge. The radio spectrum of all - including hyperfine structure when present - has been measured to the point that the laboratory astrophysics is complete: very precise rest frequencies are in hand for astronomical searches, and six of the chains have in fact already been detected with large radio telescopes. Because the longer chains tend to have their strongest lines at low frequencies, the resurfaced Arecibo telescope and the Green Bank Telescope under construction promise to be especially effective search instruments. Carbon chains are by far the best candidates for the several hundred diffuse bands which have been identified since 1922, and since the chain densities achieved in the laboratory are fairly high by the standards of laser spectroscopy, the classical problem of the diffuse bands may be on the point of general solution.

  2. Analysis of heavy spin-3/2 baryon-heavy spin-1/2 baryon-light vector meson vertices in QCD

    SciTech Connect

    Aliev, T. M.; Savci, M.; Azizi, K; Zamiralov, V. S.

    2011-05-01

    The heavy spin-3/2 baryon-heavy spin-1/2 baryon vertices with light vector mesons are studied within the light cone QCD sum rules method. These vertices are parametrized in terms of three coupling constants. These couplings are calculated for all possible transitions. It is shown that correlation functions for these transitions are described by only one invariant function for every Lorenz structure. The obtained relations between the correlation functions of the different transitions are structure independent while explicit expressions of invariant functions depend on the Lorenz structure.

  3. Lower bound for the variation of the hyperfine populations in the ground state of spin-1 condensates against a magnetic field

    NASA Astrophysics Data System (ADS)

    Xie, W. F.; He, Y. Z.; Bao, C. G.

    2015-10-01

    A simple and analytical expression for the variation of the lower bound and upper bound of the population density ρ0 of hyperfine component μ = 0 particles in the ground state of spin-1 condensates against a magnetic field B has been derived. The lower bound has a distinguished feature, namely, it will tend to the actual ρ0 when B tends to zero and infinite. This feature assures that, in the whole range of B, the lower bound can provide an effective constraint. Numerical examples are given to demonstrate the applicability of the bound.

  4. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  5. Optical Spectroscopy of the M2 and T Phases of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Qazilbash, M. M.; Hendriks, C.; Walter, E. J.; Krakauer, H.; Yoon, Joonseok; Ju, Honglyoul; Smith, R.; Carr, G. L.

    The salient feature of the familiar structural transition that accompanies the metal-insulator transition in bulk VO2 is a pairing of all of the vanadium ions in the M1 insulating phase. This pairing has long been thought critical to the emergence of insulating behavior. However, there exist two less familiar insulating states, M2 and T. These phases notably exhibit distinctly different V-V pairing. In the M2 phase, only half of the vanadium ions exhibit pairing while the other half carry local spin 1/2 magnetic moments and are equally spaced in quasi-one dimensional chains. The T phase has two types of inequivalent vanadium chains, each consisting of V-V pairs but with different spacing between V ions in the pairs. The M1 phase has been studied extensively with optical spectroscopy. By studying the two less familiar insulating phases, M2 and T, one can investigate how changes in V-V pairing affect the properties of the VO2 insulating state. We performed infrared and optical spectroscopy on the M2 and T phases in the same sample. Despite a clear change in the lattice structure, the inter-band transitions are insensitive to changes in the V-V pairing. This result conclusively establishes that intra-atomic Coulomb repulsion between electrons provides the dominant contribution to the energy gap in all insulating phases of VO2. Our work highlights the necessity of considering the M2 and T phases of VO2 in future experimental and theoretical research.

  6. Quantum coherence and uncertainty in the anisotropic XY chain

    NASA Astrophysics Data System (ADS)

    Karpat, G.; ćakmak, B.; Fanchini, F. F.

    2014-09-01

    We explore the local quantum coherence and the local quantum uncertainty, based on Wigner-Yanase skew information, in the ground state of the anisotropic spin-1/2 XY chain in a transverse magnetic field. We show that the skew information, as a figure of merit, supplies the necessary information to reveal the occurrence of the second-order phase transition and the completely factorized ground state in the XY model. Additionally, in the same context, we also discuss the usefulness of a simple experimentally friendly lower bound of local quantum coherence. Furthermore, we demonstrate how the connection between the appearance of nonanalyticities in the local quantum uncertainty of the ground state and the quantum phase transitions does not hold in general, by providing explicit examples of the situation. Lastly, we discuss the ability of the local quantum coherence to accurately estimate the critical point of the phase transition, and we investigate the robustness of the factorization phenomenon at low temperatures.

  7. Entropy and correlation functions of a driven quantum spin chain

    SciTech Connect

    Cherng, R. W.; Levitov, L. S.

    2006-04-15

    We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.

  8. Symmetry-protected intermediate trivial phases in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Kshetrimayum, Augustine; Tu, Hong-Hao; Orús, Román

    2016-06-01

    Symmetry-protected trivial (SPt) phases of matter are the product-state analog of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to nontrivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses matrix product states and the infinite time evolving block decimation method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by conformal field theories with central charge c =1 . Our results are in agreement with, and further generalize, those of Y. Fuji, F. Pollmann, and M. Oshikawa [Phys. Rev. Lett. 114, 177204 (2015), 10.1103/PhysRevLett.114.177204].

  9. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  10. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  11. Spin-lattice relaxation of heavy spin-1/2 nuclei in diamagnetic solids: A Raman process mediated by spin-rotation interaction

    NASA Astrophysics Data System (ADS)

    Vega, Alexander J.; Beckmann, Peter A.; Bai, Shi; Dybowski, Cecil

    2006-12-01

    We present a theory for the nuclear spin-lattice relaxation of heavy spin-1/2 nuclei in solids, which explains within an order of magnitude the unexpectedly effective lead and thallium nuclear spin-lattice relaxation rates observed in the ionic solids lead molybdate, lead chloride, lead nitrate, thallium nitrate, thallium nitrite, and thallium perchlorate. The observed rates are proportional to the square of the temperature and are independent of magnetic field. This rules out all known mechanisms usually employed to model nuclear spin relaxation in lighter spin-1/2 nuclei. The relaxation is caused by a Raman process involving the interactions between nuclear spins and lattice vibrations via a fluctuating spin-rotation magnetic field. The model places an emphasis on the time dependence of the angular velocity of pairs of adjacent atoms rather than on their angular momentum. Thus the spin-rotation interaction is characterized not in the traditional manner by a spin-rotation constant but by a related physical parameter, the magnetorotation constant, which relates the local magnetic field generated by spin rotation to an angular velocity. Our semiclassical relaxation model involves a frequency-mode description of the spectral density that can directly be related to the mean-square amplitudes and mode densities of lattice vibrations in the Debye model.

  12. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs2CuBr4

    SciTech Connect

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; Wosnitza, J.; Krzystek, J.; Yoshizawa, D.; Hagiwara, M.; Hu, Rongwei; Ryu, Hyejin; Petrovic, C.; Zhitomirsky, M. E.

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs2CuBr4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs2CuBr4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above TN. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even below TN the high-energy spin dynamics in Cs2CuBr4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.

  13. Efficient rotational echo double resonance recoupling of a spin-1/2 and a quadrupolar spin at high spinning rates and weak irradiation fields

    NASA Astrophysics Data System (ADS)

    Nimerovsky, Evgeny; Goldbourt, Amir

    2010-09-01

    A modification of the rotational echo (adiabatic passage) double resonance experiments, which allows recoupling of the dipolar interaction between a spin-1/2 and a half integer quadrupolar spin is proposed. We demonstrate efficient and uniform recoupling at high spinning rates ( ν r), low radio-frequency (RF) irradiation fields ( ν1), and high values of the quadrupolar interaction ( ν q) that correspond to values of α=ν12/νqνr, the adiabaticity parameter, which are down to less than 10% of the traditional adiabaticity limit for a spin-5/2 (α = 0.55). The low-alpha rotational echo double resonance curve is obtained when the pulse on the quadrupolar nucleus is extended to full two rotor periods and beyond. For protons (spin-1/2) and aluminum (spin-5/2) species in the zeolite SAPO-42, a dephasing curve, which is significantly better than the regular REAPDOR experiment (pulse length of one-third of the rotor period) is obtained for a spinning rate of 13 kHz and RF fields down to 10 and even 6 kHz. Under these conditions, α is estimated to be approximately 0.05 based on an average quadrupolar coupling in zeolites. Extensive simulations support our observations suggesting the method to be robust under a large range of experimental values.

  14. Chiral spin liquid emerging between competing magnetic order states in the spin-1/2 J1-J2-J3 kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Gong, Shoushu; Zhu, Wei; Balents, Leon; Sheng, Dongning

    2015-03-01

    We studied the extended spin- 1 / 2 kagome model with the first neighbor (J1), the second (J2) and third neighbor (J3) couplings using density matrix renormalization group. We established a quantum phase diagram for 0 <= J 2 <= 0 . 25J1 and 0 <=J3 <=J1 , where we find a q = (0 , 0) Neel phase, a chiral spin liquid (CSL), a cuboc1 phase that breaks both time-reversal and spin rotational symmetries, and a valence-bond solid at the neighbor of the Heisenberg model, where a possible Z2 spin liquid has been previously identified. Interestingly, the classical cuboc1 phase could survive in the spin- 1 / 2 system with strong quantum fluctuations, and the CSL emerges between the q = (0 , 0) and the cuboc1 phases. We discover that the CSL has the short spin correlation pattern consistent with the cuboc1 phase, but the chiral order structure is totally different. The CSL might be understood as a result of the competitions between the q = (0 , 0) and the cuboc1 phases in the presence of strong quantum fluctuations. We further studied the quantum phase transitions from the CSL to the magnetically ordered phases, and to the possible Z2 spin liquid of the Heisenberg kagome model. Interestingly, the exotic continuous topological phase transition might be realized in the system.

  15. Entangled rings, matrix product states, and exact solutions of XYZ spin chains

    SciTech Connect

    Asoudeh, Marzieh; Karimipour, Vahid; Sadrolashrafi, Afsaneh

    2007-07-15

    We show that the ground state of the Heisenberg spin-1/2 chain in an external magnetic field, can be exactly expressed as a matrix product state, provided that the coupling constants are constrained to be on a specific two dimensional surface. This ground state has a very interesting property: all the pairs of spins are equally entangled with each other. In this last respect, the results are of interest for engineering long-range entanglement in experimentally realizable finite arrays of qubits, where the ground state will act as the initial state of a quantum computer.

  16. Boundary energy of the open XXX chain with a non-diagonal boundary term

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Wang, Chunguang

    2014-01-01

    We analyze the ground state of the open spin-1/2 isotropic quantum spin chain with a non-diagonal boundary term using a recently proposed Bethe ansatz solution. As the coefficient of the non-diagonal boundary term tends to zero, the Bethe roots split evenly into two sets: those that remain finite, and those that become infinite. We argue that the former satisfy conventional Bethe equations, while the latter satisfy a generalization of the Richardson-Gaudin equations. We derive an expression for the leading correction to the boundary energy in terms of the boundary parameters.

  17. Critical exponents of random XX and XY chains: Exact results via random walks

    NASA Astrophysics Data System (ADS)

    Rieger, H.; Juhász, R.; Iglói, F.

    2000-01-01

    We study random XY and (dimerized) XX spin-1/2 quantum spin chains at their quantum phase transition driven by the anisotropy and dimerization, respectively. Using exact expressions for magnetization, correlation functions and energy gap, obtained by the free fermion technique, the critical and off-critical (Griffiths-McCoy) singularities are related to persistence properties of random walks. In this way we determine exactly the decay exponents for surface and bulk transverse and longitudinal correlations, correlation length exponent and dynamical exponent.

  18. The Phases of an Interacting Spin-1/2 Fermi Gas as seen from a New Variational Ansatz

    NASA Astrophysics Data System (ADS)

    Chung, Sangwoo; Sun, Kuei; Bolech, Carlos

    2015-05-01

    Since its introduction, the continuous matrix product states (cMPS) have demonstrated success in predicting low energy properties of repulsive one-dimensional (1D) Bose gas systems. We have extended those efforts to nonrelativistic fermions and shown that the cMPS, moreover, is able to correctly describe the ground-state superfluid and magnetic properties of interacting Fermi gases in 1D. This includes the signatures of a partially polarized superfluid regime, in agreement with the large amount of theoretical and experimental work from recent years by the cold-atoms community. The new type of ansatz promises to be ideally posed to be able to describe atomic gases in optical lattices economically but without making a lattice-model (tight-binding) approximation. Funding for this work was provided by the University of Cincinnati and by the DARPA OLE program through ARO W911NF-07-1-0464; parallel computing resources were from the Ohio Supercomputer Center (OSC).

  19. New Freeform Manufacturing Chains Based on Atmospheric Plasma Jet Machining

    NASA Astrophysics Data System (ADS)

    Arnold, T.; Boehm, G.; Paetzelt, H.

    2016-01-01

    New manufacturing chains for precise fabrication of asphere and freeform optical surfaces including atmospheric Plasma Jet Machining (PJM) technology will be presented. PJM is based on deterministic plasma-assisted material removal. It has the potential for flexible and cost-efficient shape generation and correction of small and medium-sized optical freeform elements. The paper discusses the interactions between the plasma tools and optical fused silica samples in the context of the pre-machined and intermediate surface states and identifies several plasma jet machining methods for freeform generation, surface correction, and finishing as well as suitable auxiliary polishing methods. The successful application of either processing chain is demonstrated.

  20. SUMO chains: polymeric signals.

    PubMed

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  1. Structural and Magnetic Behavior of a Quasi-1D Antiferromagnetic Chain Compound Cu(NCS)(2)(PYZ)

    SciTech Connect

    Bordallo, H. N.; Chapon, L. C.; Manson, Jamie L; Qualls, J. S.; Hall, D.; Argyriou, D. N.

    2003-01-01

    Synchrotron X-ray diffraction (XRD) and neutron powder diffraction (NPD) were used to determine the structure of Cu(NCS){sub 2}(pyz) (pyz=pyrazine=C{sub 4}N{sub 2}H{sub 4}), which consists of a stacking of Cu-pyz-Cu chains. While NPD measurements showed no evidence of long-range magnetic ordering, the temperature dependence of the magnetic susceptibility and magnetization suggests that the system can be adequately described on the local scale as a spin-1/2 antiferromagnet (AFM) chain with an intrachain exchange interaction J/k{sub B} = -8 K ({approx}0.7 meV). Comparison of isothermal magnetization data acquired up to 30 T at 1.6 K to a linear chain model shows excellent agreement, making this material a nearly ideal example of an isotropic Heisenberg AFM chain.

  2. Absence of spin order in a two-dimensional orbital optical lattice

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenyu; Liu, Vincent; Zhao, Erhai

    2015-03-01

    Mott insulators with both spin and orbital degeneracy are pertinent to a family of transition metal oxides. The intertwined spin and orbital fluctuations can lead to exotic phases such as quantum spin-orbital liquids. Here we consider two-component spin 1/2 fermionic atoms with strong repulsive interaction on the p-band of the square optical lattice. We derive the spin-orbital exchange for quarter filling of the p-band in the Mott limit, and show it frustrates the development of long range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s-band. Our model serves as an example of how orbital order enhances quantum fluctuations to prevent spin order and leads to dimension reduction in a quantum gas system. This work is supported by AFOSR FA9550-12-1-0079, NSF PHY-1205504, and ARO W911NF-11-1-0230.

  3. Translocation of reptating chains

    NASA Astrophysics Data System (ADS)

    Żurek, S.; Drzewiński, A.; van Leeuwen, J. M. J.

    2011-05-01

    Voltage-driven translocation is modeled with the Rubinstein-Duke rules for hopping reptons in one- and two-dimensional lattices. The chain is driven through the pore by a bias potential promoting the transition of stored length in one direction. Coupling states give a semi-periodicity of the process that enables us to relate the properties to the stationary state of the master equation. The exact solution for short chains and Monte Carlo simulations for longer chains are used to calculate displacements, velocities and the translocation time.

  4. Optical Nanodozers

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Reisner, Walter; Sakaue, Takahiro

    2015-03-01

    Experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behaviour of nanochannel confined semiflexible, self-avoiding chains. Yet, strongly non-equilibrium behaviour of confined polymers is largely unexplored from either an experimental or theoretical point of view. Combining optical trapping and nanofluidics, we have developed a ``nanodozer'' assay for quantifying confined polymer dynamics. An optical trap is used to slide a nanosphere at a fixed velocity along a nanochannel. The trapped bead acts as a permeable gasket, letting fluid escape but preventing the polymer from passing. As the sliding bead comes in contact with a nanochannel extended DNA, the molecule is dynamically compressed, undergoing transient dynamics characterized by a traveling concentration ``shockwave'' before reaching a final steady state with a ramp-like concentration profile. Remarkably, these strongly non-equilibrium measurements can be quantified via a simple nonlinear convective-diffusion formalism and yield insights into the local blob statistics, allowing us to conclude that the compressed nanochannel confined chain exhibits mean-field behaviour.

  5. Quasiclassical magnetic order and its loss in a spin-1/2 Heisenberg antiferromagnet on a triangular lattice with competing bonds

    NASA Astrophysics Data System (ADS)

    Li, P. H. Y.; Bishop, R. F.; Campbell, C. E.

    2015-01-01

    We use the coupled cluster method (CCM) to study the zero-temperature ground-state (GS) properties of a spin-1/2 J1-J2 Heisenberg antiferromagnet on a triangular lattice with competing nearest-neighbor and next-nearest-neighbor exchange couplings J1>0 and J2≡κ J1>0 , respectively, in the window 0 ≤κ <1 . The classical version of the model has a single GS phase transition at κcl=1/8 in this window from a phase with 3-sublattice antiferromagnetic (AFM) 120∘ Néel order for κ <κcl to an infinitely degenerate family of 4-sublattice AFM Néel phases for κ >κcl . This classical accidental degeneracy is lifted by quantum fluctuations, which favor a 2-sublattice AFM striped phase. For the quantum model we work directly in the thermodynamic limit of an infinite number of spins, with no consequent need for any finite-size scaling analysis of our results. We perform high-order CCM calculations within a well-controlled hierarchy of approximations, which we show how to extrapolate to the exact limit. In this way we find results for the case κ =0 of the spin-1/2 model for the GS energy per spin, E /N =-0.5521 (2 ) J1 , and the GS magnetic order parameter, M =0.198 (5 ) (in units where the classical value is Mcl=1/2), which are among the best available. For the spin-1/2 J1-J2 model we find that the classical transition at κ =κcl is split into two quantum phase transitions at κ1c=0.060 (10 ) and κ2c=0.165 (5 ) . The two quasiclassical AFM states (viz., the 120∘ Néel state and the striped state) are found to be the stable GS phases in the regime κ <κ1c and κ >κ2c , respectively, while in the intermediate regimes κ1c<κ <κ2c the stable GS phase has no evident long-range magnetic order.

  6. Quantized spin waves in antiferromagnetic Heisenberg chains.

    PubMed

    Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2008-10-24

    The quantized stationary spin wave modes in one-dimensional antiferromagnetic spin chains with easy axis on-site anisotropy have been studied by means of Landau-Lifshitz-Gilbert spin dynamics. We demonstrate that the confined antiferromagnetic chains show a unique behavior having no equivalent, neither in ferromagnetism nor in acoustics. The discrete energy dispersion is split into two interpenetrating n and n' levels caused by the existence of two sublattices. The oscillations of individual sublattices as well as the standing wave pattern strongly depend on the boundary conditions. Particularly, acoustical and optical antiferromagnetic spin waves in chains with boundaries fixed (pinned) on different sublattices can be found, while an asymmetry of oscillations appears if the two pinned ends belong to the same sublattice. PMID:18999780

  7. Nova chain design and performance

    SciTech Connect

    Simmons, W.W.; Glaze, J.A.; Trenholme, J.B.; Hagen, W.F.

    1980-09-04

    During the past year design of the Nova laser has undergone significant change as a result of developments in our laser glass and optical coating evaluation programs. Two notable aspects of the glass development program deserve emphasis. First, vendor qualification for production of fluorophosphate laser glass is progressing satisfactorily. There is a reasonable expectation that vendors can meet fluorophosphate glass specifications within Nova schedule constraints. Secondly, recent gain saturation measurements have shown that the saturation fluence of the fluorophosphate glass is larger than previously supposed (approx. 5.5 J/cm/sup 2/) and in fact is somewhat larger than Shiva silicate glasses. Hence, performance of Nova for pulses in the 3 ns and longer range should be satisfactory. For pulses in the 1 ns regime, of course, the fluorophosphate chain will have superior performance to that of silicate because of its low nonlinear index of refraction (approx. 30% that of silicate). These and other considerations have led us to choose a chain design based upon the use of fluorophosphate glass in our amplifiers.

  8. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  9. Factorialsum Number Chains.

    ERIC Educational Resources Information Center

    Lamb, John, Jr.

    1989-01-01

    Describes several phenomena in which interesting properties of numbers are demonstrated. Includes discussions of amicable, perfect, and sociable numbers. Presents computer programs for conducting a number chain search. (RT)

  10. Respiratory chain supercomplexes.

    PubMed

    Schägger, H

    2001-01-01

    Respiratory chain supercomplexes have been isolated from mammalian and yeast mitochondria, and bacterial membranes. Functional roles of respiratory chain supercomplexes are catalytic enhancement, substrate channelling, and stabilization of complex I by complex III in mammalian cells. Bacterial supercomplexes are characterized by their relatively high detergent-stability compared to yeast or mammalian supercomplexes that are stable to sonication. The mobility of substrate cytochrome c increases in the order bacterial, yeast, and mammalian respiratory chain. In bacterial supercomplexes, the electron transfer between complexes III and IV involves movement of the mobile head of a tightly bound cytochrome c, whereas the yeast S. cerevisiae seems to use substrate channelling of a mobile cytochrome c, and mammalian respiratory chains have been described to use a cytochrome c pool. Dimeric ATP synthase seems to be specific for mitochondrial OXPHOS systems. Monomeric complex V was found in Acetobacterium woodii and Paracoccus denitrificans. PMID:11798023

  11. Light chain nephropathy.

    PubMed

    Darouich, Sihem; Bettaieb, Ilhem; Aouadia, Raja; Hedri, Hafedh; Abderrahim, Ezzeddine; Goucha, Rym; Khedher, Adel

    2015-01-01

    Light chain deposition disease (LCDD) is characterized by the tissue deposition of monotypic immunoglobulin light chains of either kappa or lambda isotype. It is the archetypal systemic disease that is most frequently diagnosed on a kidney biopsy, although the deposits may involve several other organs. This brief review focuses on the clinicopathological features of LCDD-associated nephropathy with an emphasis on the diagnostic and therapeutic difficulties related to this elusive condition. PMID:26022011

  12. Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate

    SciTech Connect

    Phuc, Nguyen Thanh; Kawaguchi, Yuki; Ueda, Masahito

    2011-10-15

    We investigate the effects of thermal and quantum fluctuations on the phase diagram of a spin-1 {sup 87}Rb Bose-Einstein condensate (BEC) under the quadratic Zeeman effect. Due to the large ratio of spin-independent to spin-dependent interactions of {sup 87}Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the broken-axisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero and find that the ground-state phase diagram is significantly altered by quantum depletion.

  13. Observation of Overlapping Spin-1 and Spin-3 D¯0K- Resonances at Mass 2.86 GeV /c2

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianı, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2014-10-01

    The resonant substructure of Bs0→D¯ 0K-π+ decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb-1 of p p collision data recorded by the LHCb detector. An excess at m (D¯ 0K-)≈2.86 GeV /c2 is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the DsJ *(2860 )- state previously observed in inclusive e+e-→D¯ 0K-X and p p →D¯ 0K-X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the Ds2 *(2573 )- meson are measured, giving the most precise determinations to date.

  14. Optimal control of the signal-to-noise ratio per unit time of a spin 1/2 particle: The crusher gradient and the radiation damping cases

    SciTech Connect

    Lapert, M.; Glaser, S. J.; Assémat, E.; Sugny, D.

    2015-01-28

    We show to which extent the signal to noise ratio per unit time of a spin 1/2 particle can be maximized. We consider a cyclic repetition of experiments made of a measurement followed by a radio-frequency magnetic field excitation of the system, in the case of unbounded amplitude. In the periodic regime, the objective of the control problem is to design the initial state of the system and the pulse sequence which leads to the best signal to noise performance. We focus on two specific issues relevant in nuclear magnetic resonance, the crusher gradient and the radiation damping cases. Optimal control techniques are used to solve this non-standard control problem. We discuss the optimality of the Ernst angle solution, which is commonly applied in spectroscopic and medical imaging applications. In the radiation damping situation, we show that in some cases, the optimal solution differs from the Ernst one.

  15. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.

    PubMed

    Strečka, Jozef; Ekiz, Cesur

    2015-05-01

    The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice. PMID:26066155

  16. Collinear order in the frustrated three-dimensional spin-1/2 antiferromagnet Li2CuW2O8

    NASA Astrophysics Data System (ADS)

    Ranjith, K. M.; Nath, R.; Skoulatos, M.; Keller, L.; Kasinathan, D.; Skourski, Y.; Tsirlin, A. A.

    2015-09-01

    Magnetic frustration in three dimensions (3D) manifests itself in the spin-1/2 insulator Li2CuW2O8 . Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low Néel temperature TN≃3.9 K . Magnetic order below TN is collinear with the propagation vector (0 ,1/2 ,0 ) and an ordered moment of 0.65(4) μB according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R ≃0.35 ) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play a crucial role in this system, where a noncollinear spiral state would be stabilized classically.

  17. Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba_{3}CoSb_{2}O_{9}.

    PubMed

    Ma, J; Kamiya, Y; Hong, Tao; Cao, H B; Ehlers, G; Tian, W; Batista, C D; Dun, Z L; Zhou, H D; Matsuda, M

    2016-02-26

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba_{3}CoSb_{2}O_{9}. Besides confirming that the Co^{2+} magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Thus, our results call for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects. PMID:26967439

  18. Gapless quantum spin liquid ground state in the spin-1 antiferromagnet 6HB-Ba3NiSb2O9

    NASA Astrophysics Data System (ADS)

    Quilliam, J. A.; Bert, F.; Manseau, A.; Darie, C.; Guillot-Deudon, C.; Payen, C.; Baines, C.; Amato, A.; Mendels, P.

    2016-06-01

    We present an in-depth study of the magnetic properties of the spin-1 antiferromagnet 6HB-Ba3NiSb2O9 . μ SR measurements demonstrate that this material shows no static magnetism down to temperatures as low as 20 mK, making it a likely candidate for a quantum spin liquid state. 121Sb NMR shift measurements show that the local, intrinsic susceptibility levels off at temperatures below ˜60 K. The NMR spin-lattice relaxation rate 1 /T1 is essentially constant in temperature and the muon relaxation rate exhibits a low-temperature relaxation plateau, all indications of gapless spin excitations. Our local probe measurements are discussed in the context of several theories proposed for this material.

  19. Static and dynamical properties of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9

    DOE PAGESBeta

    Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; Cao, H. B.; Ehlers, Georg; Tian, Wei; Batista, C. D.; Dun, Z. L.; Zhou, H. D.; Matsuda, Masaaki

    2016-02-24

    We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba3CoSb2O9. Besides confirming that the Co2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results call for a new theoreticalmore » framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less

  20. Spin compensation temperature in the Monte Carlo study of a mixed spin-1 and spin-3/2 Ising ferrimagnetic system on the decorated triangular lattice

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.

    2016-07-01

    Mixed-spin-1 and spin-3/2 Ising model on the decorated triangular lattice is studied by the use of Monte Carlo simulation. Within this approach, the results for the ground-state of the antiferromagnetic and ferromagnetic of decorated triangular lattice are obtained. The reduced transition temperature of each sublattice are obtained. The reduced temperature of compensation is also obtained. The thermal total ratio of magnetic susceptibilities of sublattices is given. The effect of crystal field and exchange interactions on the magnetization of the system are detailed. The magnetic hysteresis cycles are found for different values of exchanges interactions between the same lattice and the two sublattices different, for different crystal filed and temperatures. In addition, very weak exchange interactions and for a higher temperatures and a higher crystal filed values the decorated triangular lattice has been exhibited the superparamagnetic behavior.

  1. Local magnetic moments in a dinuclear Co{sup 2+} complex as seen by polarized neutron diffraction:Beyond the effective spin-(1/2) model

    SciTech Connect

    Borta, Ana; Luneau, Dominique; Jeanneau, Erwann; Gillon, Beatrice; Gukasov, Arsen; Cousson, Alain; Ciumacov, Iurii; Sakiyama, Hiroshi; Tone, Katsuya; Mikuriya, Masahiro

    2011-05-01

    Polarized neutron diffraction investigations of a paramagnetic molecular dinuclear Co{sup 2+} complex, using the local site susceptibility method, show that the Co{sup 2+} ions carry opposite magnetic moments of 3.1(1) and 3.2(1) {mu}{sub B}, making an angle of 37(1) deg. which is in agreement with the value (39 deg.) provided by the theoretical analysis of the magnetic susceptibility using the model of effective spin 1/2. Polarized neutron diffraction (PND) shows that this dinuclear Co{sup 2+} complex behaves more like a system of two antiferromagnetically coupled ions with spin 3/2, the directions of which are imposed by the distortion axis of the octahedra around each Co{sup 2+} ion due to ligand field. This first application of the local susceptibility tensor method to a molecular compound demonstrates the efficiency of the PND method as a tool for exploring magnetic anisotropy in molecular paramagnets.

  2. Infectious optic neuropathy.

    PubMed

    Golnik, Karl C

    2002-03-01

    A wide variety of infectious agents are known to cause optic neuropathy. This article will consider the bacteria, spirochetes, fungi, and viruses that most commonly affect the optic nerve. Clinical presentation is variable, but some pathogens often produce a characteristic funduscopic pattern. Diagnosis is usually made on the basis of clinical suspicion and serologic testing. Polymerase chain reaction is also increasingly utilized. Most infectious agents can be effectively treated but visual recovery is highly variable. PMID:15513450

  3. A spinor boson AB chain

    NASA Astrophysics Data System (ADS)

    Cruz Reyes, Greis Julieth; Franco, Roberto; Silva Valencia, Jereson; Universidad Santo Tomas Collaboration; Universidad Nacional de Colombia Collaboration

    Recent research is focused on superlattices arising from optical lattices, which allow a tunable environment. Experimentally bosons present transitions from superfluid to Mott insulator by changing the energy offset in the unit cell [Nat. Commun. 5:5735 (2014)]. Many studies displayed that ground state of spinless boson systems on superlattices present superfluid, Mott insulator and an additional CDW phase created by the energy shift between the sites into the unit cell [Phys. Rev. A 83, 053621 (2011)]. The first confinement methods were magnetic traps, which freezes the spin; with optical lattices the grade of freedom of spin plays an important role. We consider bosons with spin S =1 on a superlattice made by two sites with energy offset per unit cell (AB chain). The Hamiltonian that describes the system is the Bose-Hubbard model with the superlattice potential (W) and the exchange interaction (V) parameters. This model supports CDW, Mott insulator and superfluid phases. For W near to U, with V =0, Mott phase disappears, but for V increasing, a new CDW appears due to the spin interaction, while the half-integer CDW decrease. These results are widely different from spinless boson, where the CDW phases are stables.

  4. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  5. Long-distance entanglement and quantum teleportation in XX spin chains

    SciTech Connect

    Campos Venuti, L.; Giampaolo, S. M.; Illuminati, F.; Zanardi, P.

    2007-11-15

    Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supports 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.

  6. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  7. Neutron scattering study in the spin-1/2 ladder system: Sr{sub 14}Cu{sub 24}O{sub 41}

    SciTech Connect

    Matsuda, M.; Katsumata, K.; Shapiro, S.M.; Shirane, G.

    1996-10-01

    Inelastic neutron scattering measurements were performed on the S=1/2 quasi-one-dimensional system Sr{sub 14}Cu{sub 24}O{sub 41}, which has both simple chains and two-leg ladders of copper ions. We have observed that both the chain and the ladder exhibit a spin gap, which originates from a dimerized state.

  8. Chain formation and chain dynamics in a dilute magnetorheological fluid.

    PubMed

    Hagenbüchle, M; Liu, J

    1997-10-20

    Magnetorheological fluids are suspensions of magnetizable particles that reversibly change from liquid to solid when subjected to a magnetic field. A field-induced structure of dipolar chains is responsible for these changes. Our work aimed at understanding chain dynamics and the kinetics of chain formation by using dynamic light scattering. Chain length is determined by measurement of the diffusion coefficient. Chain-length growth shows a Smoluchowski behavior. PMID:18264283

  9. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  10. Negative magnetization of Li2Ni2Mo3O12 including two spin subsystems, distorted honeycomb lattice and linear chain

    NASA Astrophysics Data System (ADS)

    Hase, Masashi; Pomjakushin, Vladimir Yu; Sikolenko, Vadim; Keller, Lukas; Dönni, Andreas; Kitazawa, Hideaki

    2012-12-01

    We studied magnetism of a spin-1 insulating substance Li2Ni2Mo3O12. The spin system consists of distorted honeycomb lattices and linear chains of Ni2+ spins. A magnetic phase transition occurs at Tc = 8.0 K in the zero magnetic field. In low magnetic fields, the magnetization increases rapidly below Tc, decreases below 7 K and becomes negative at low temperatures. We determined the magnetic structure using neutron powder diffraction data. The honeycomb lattices and linear chains show antiferromagnetic and ferromagnetic long-range order, respectively. We discuss the origin of the negative magnetization.

  11. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  12. Solitons in Granular Chains

    SciTech Connect

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-04-12

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.

  13. INTERACTING QUANTUM SPIN CHAINS

    SciTech Connect

    ZHELUDEV,A.

    2001-09-09

    A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.

  14. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  15. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  16. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  17. Breaking the Chains

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    In 1792 more than 350,000 people in Britain signed a petition calling for an end to the slave trade. It was, writes historian Adam Hochschild in his book "Bury the Chains," "the first time in history that a large number of people became outraged, and stayed outraged for many years, over someone else's rights". In 1807--after 15 years of…

  18. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  19. Detection of gapped phases of a one-dimensional spin chain with on-site and spatial symmetries

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishodh; West, Colin G.; Wei, Tzu-Chieh

    2016-07-01

    We investigate the phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant under a global on-site A4, translation, and lattice inversion symmetries. We detect different gapped phases characterized by a symmetry protected topological (SPT) order and symmetry breaking using matrix product state order parameters. We observe a rich variety of phases of matter characterized by a combination of symmetry breaking and symmetry fractionalization and also the interplay between the on-site and spatial symmetries. Examples of continuous phase transitions directly between topologically nontrivial SPT phases are also observed.

  20. Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals

    SciTech Connect

    Levi, Michele; Steinhoff, Jan E-mail: jan.steinhoff@ist.utl.pt

    2014-12-01

    The next-to-next-to-leading order spin1-spin2 potential for an inspiralling binary, that is essential for accuracy to fourth post-Newtonian order, if both components in the binary are spinning rapidly, has been recently derived independently via the ADM Hamiltonian and the Effective Field Theory approaches, using different gauges and variables. Here we show the complete physical equivalence of the two results, thereby we first prove the equivalence of the ADM Hamiltonian and the Effective Field Theory approaches at next-to-next-to-leading order with the inclusion of spins. The main difficulty in the spinning sectors, which also prescribes the manner in which the comparison of the two results is tackled here, is the existence of redundant unphysical spin degrees of freedom, associated with the spin gauge choice of a point within the extended spinning object for its representative worldline. After gauge fixing and eliminating the unphysical degrees of freedom of the spin and its conjugate at the level of the action, we arrive at curved spacetime generalizations of the Newton-Wigner variables in closed form, which can also be used to obtain further Hamiltonians, based on an Effective Field Theory formulation and computation. Finally, we make use of our validated result to provide gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to fourth post-Newtonian order, including all known sectors up to date.

  1. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  2. Gapless quantum spin liquid ground state in the two-dimensional spin-1/2 triangular antiferromagnet YbMgGaO4

    PubMed Central

    Li, Yuesheng; Liao, Haijun; Zhang, Zhen; Li, Shiyan; Jin, Feng; Ling, Langsheng; Zhang, Lei; Zou, Youming; Pi, Li; Yang, Zhaorong; Wang, Junfeng; Wu, Zhonghua; Zhang, Qingming

    2015-01-01

    Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO4 with symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite θw ~ −4 K), the power-law temperature dependence of heat capacity and nonzero susceptibility at low temperatures suggest that YbMgGaO4 is a promising gapless (≤|θw|/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO4, approaches zero (<0.6%). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures. PMID:26552727

  3. Spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice: A bosonic approach

    NASA Astrophysics Data System (ADS)

    Carvalho, D. C.; Pires, A. S. T.; Mól, L. A. S.

    2016-06-01

    We examine the phase diagram of the spin-1 J1 -J2 -J3 ferromagnetic Heisenberg model with an easy-plane crystal field on the cubic lattice, in which J1 is the ferromagnetic exchange interaction between nearest neighbors, J2 is the antiferromagnetic exchange interaction between next-nearest neighbors and J3 is the antiferromagnetic exchange interaction between next-next-nearest neighbors. Using the bond-operator formalism, we investigate the phase transitions between the disordered paramagnetic phase and the ordered ones. We show that the nature of the quantum phase transitions changes as the frustration parameters (J2/J1, J3/J1) are varied. The zero-temperature phase diagram exhibits second- and first-order transitions, depending on the energy gap behavior. Remarkably, we find a disordered nonmagnetic phase, even in the absence of a crystal field, which is suggested to be a quantum spin liquid candidate. We also depict the phase diagram at finite temperature for some values of crystal field and frustration parameters.

  4. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  5. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism. PMID:26382378

  6. Observation of overlapping spin-1 and spin-3 D0K- resonances at mass 2.86 GeV/c2.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, Rf; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-17

    The resonant substructure of B(s)(0) → D(0)K(-)π(+) decays is studied using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collision data recorded by the LHCb detector. An excess at m(D(0)K(-))≈ 2.86 GeV/c(2) is found to be an admixture of spin-1 and spin-3 resonances. Therefore, the D(sJ)*(2860)(-) state previously observed in inclusive e(+)e(-) → D(0)K(-)X and pp → D(0)K(-)X processes consists of at least two particles. This is the first observation of a heavy flavored spin-3 resonance, and the first time that any spin-3 particle has been seen to be produced in B decays. The masses and widths of the new states and of the D(s2)*(2573)(-) meson are measured, giving the most precise determinations to date. PMID:25361252

  7. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor)

    1988-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on a normal probability chart, enables prediction of the yield of good integrated circuits from the wafer.

  8. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, U. (Inventor)

    1986-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on normal probability chart enables prediction of the yield of good integrated circuits from the wafer.

  9. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management. PMID:12866156

  10. Callisto Crater Chain Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of three images shows an area within the Valhalla region on Jupiter's moon, Callisto. North is to the top of the mosaic and the Sun illuminates the surface from the left. The smallest details that can be discerned in this picture are knobs and small impact craters about 160 meters (175 yards) across. The mosaic covers an area approximately 45 kilometers (28 miles) across. It shows part of a prominent crater chain located on the northern part of the Valhalla ring structure.

    Crater chains can form from the impact of material ejected from large impacts (forming secondary chains) or by the impact of a fragmented projectile, perhaps similar to the Shoemaker-Levy 9 cometary impacts into Jupiter in July 1994. It is believed this crater chain was formed by the impact of a fragmented projectile. The images which form this mosaic were obtained by the solid state imaging system aboard NASA's Galileo spacecraft on Nov. 4, 1996 (Universal Time).

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  11. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain. PMID:17580654

  12. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented. PMID:23611335

  13. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  14. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  15. Monte Carlo without chains

    SciTech Connect

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  16. Quantum phase transition, universality, and scaling behaviors in the spin-1/2 Heisenberg model with ferromagnetic and antiferromagnetic competing interactions on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Zhen; Xi, Bin; Chen, Xi; Li, Wei; Wang, Zheng-Chuan; Su, Gang

    2016-06-01

    The quantum phase transition, scaling behaviors, and thermodynamics in the spin-1/2 quantum Heisenberg model with antiferromagnetic coupling J >0 in the armchair direction and ferromagnetic interaction J'<0 in the zigzag direction on a honeycomb lattice are systematically studied using the continuous-time quantum Monte Carlo method. By calculating the Binder ratio Q2 and spin stiffness ρ in two directions for various coupling ratios α =J'/J under different lattice sizes, we found that a quantum phase transition from the dimerized phase to the stripe phase occurs at the quantum critical point αc=-0.93 . Through the finite-size scaling analysis on Q2, ρx, and ρy, we determined the critical exponent related to the correlation length ν to be 0.7212(8), implying that this transition falls into a classical Heisenberg O(3) universality. A zero magnetization plateau is observed in the dimerized phase, whose width decreases with increasing α . A phase diagram in the coupling ratio α -magnetic field h plane is obtained, where four phases, including dimerized, stripe, canted stripe, and polarized, are identified. It is also unveiled that the temperature dependence of the specific heat C (T ) for different α 's intersects precisely at one point, similar to that of liquid 3He under different pressures and several magnetic compounds under various magnetic fields. The scaling behaviors of Q2, ρ , and C (T ) are carefully analyzed. The susceptibility is compared with the experimental data to give the magnetic parameters of both compounds.

  17. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2015-06-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  18. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  19. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  20. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains

    NASA Astrophysics Data System (ADS)

    Xiong, Min; Jin, Xiulong; Ye, Jian

    2016-02-01

    Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide.Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible

  1. [Trophic chains in soil].

    PubMed

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25508107

  2. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25438576

  3. Initializing an unmodulated spin chain to operate as a high-quality quantum data bus

    NASA Astrophysics Data System (ADS)

    Bayat, Abolfazl; Banchi, Leonardo; Bose, Sougato; Verrucchi, Paola

    2011-06-01

    We study the quality of state and entanglement transmission through quantum channels described by spin chains varying both the system parameters and the initial state of the channel. We consider a vast class of one-dimensional many-body models which contains some of the most relevant experimental realizations of quantum data buses. In particular, we consider spin-1/2 XY and XXZ models with open boundary conditions. Our results show a significant difference between free-fermionic (noninteracting) systems (XY) and interacting ones (XXZ), where in the former case initialization can be exploited for improving the entanglement distribution, while in the latter case it also determines the quality of state transmission. In fact, we find that in noninteracting systems the exchange with fermions in the initial state of the chain always has a destructive effect, and we prove that it can be completely removed in the isotropic XX model by initializing the chain in a ferromagnetic state. On the other hand, in interacting systems constructive effects can arise by scattering between hopping fermions and a proper initialization procedure. Our results are an example in which state and entanglement transmission show maxima at different points as the interactions and initializations of spin chain channels are varied.

  4. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. PMID:26113717

  5. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  6. Myosin light-chain phosphatase.

    PubMed Central

    Morgan, M; Perry, S V; Ottaway, J

    1976-01-01

    1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain. Images PLATE 1 PMID:186030

  7. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  8. The glassy wormlike chain

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Glaser, Jens

    2007-11-01

    We introduce a new model for the dynamics of a wormlike chain (WLC) in an environment that gives rise to a rough free energy landscape, which we name the glassy WLC. It is obtained from the common WLC by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single parameter \\boldsymbol{\\cal E} . Predictions for pertinent observables such as the dynamic structure factor and the microrheological susceptibility exhibit the characteristics of soft glassy rheology and compare favourably with experimental data for reconstituted cytoskeletal networks and live cells. We speculate about the possible microscopic origin of the stretching, implications for the nonlinear rheology, and the potential physiological significance of our results.

  9. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics. PMID:23384180

  10. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  11. Thermal transport in disordered one-dimensional spin chains

    NASA Astrophysics Data System (ADS)

    Poboiko, Igor; Feigel'man, Mikhail

    2015-12-01

    We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =

    /J2≪1 and anisotropy parameter Δ =Jz/Jx y , we find the range of these parameters where disorder is irrelevant in the infrared limit and spin-spin correlations are described by power laws, and compare it with previously obtained numerical and analytical results. Then we use the diagram technique in terms of plasmon excitations to study the low-temperature (T ≪J ) behavior of heat conductivity κ and spin conductivity σ in this power-law phase. The obtained Lorentz number L ≡κ /σ T differs from the value derived earlier by means of the memory function method. We argue also that in the studied region inelastic scattering is strong enough to suppress quantum interference in the low-temperature limit.

  12. Overlap distributions for quantum quenches in the anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Mazza, Paolo P.; Stéphan, Jean-Marie; Canovi, Elena; Alba, Vincenzo; Brockmann, Michael; Haque, Masudul

    2016-01-01

    The dynamics after a quantum quench is determined by the weights of the initial state in the eigenspectrum of the final Hamiltonian, i.e. by the distribution of overlaps in the energy spectrum. We present an analysis of such overlap distributions for quenches of the anisotropy parameter in the one-dimensional anisotropic spin-1/2 Heisenberg model (XXZ chain). We provide an overview of the form of the overlap distribution for quenches from various initial anisotropies to various final ones, using numerical exact diagonalization. We show that if the system is prepared in the antiferromagnetic Néel state (infinite anisotropy) and released into a non-interacting setup (zero anisotropy, XX point) only a small fraction of the final eigenstates gives contributions to the post-quench dynamics, and that these eigenstates have identical overlap magnitudes. We derive expressions for the overlaps, and present the selection rules that determine the final eigenstates having nonzero overlap. We use these results to derive concise expressions for time-dependent quantities (Loschmidt echo, longitudinal and transverse correlators) after the quench. We use perturbative analyses to understand the overlap distribution for quenches from infinite to small nonzero anisotropies, and for quenches from large to zero anisotropy.

  13. Geometric phases in electric dipole searches with trapped spin-1/2 particles in general fields and measurement cells of arbitrary shape with smooth or rough walls

    NASA Astrophysics Data System (ADS)

    Golub, R.; Kaufman, C.; Müller, G.; Steyerl, A.

    2015-12-01

    The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first noted by Commins [Am. J. Phys. 59, 1077 (1991), 10.1119/1.16616] and investigated in detail by Pendlebury et al. [Phys. Rev. A 70, 032102 (2004), 10.1103/PhysRevA.70.032102]. Their analysis was based on the Bloch equations. In subsequent work using the spin-density matrix, Lamoreaux and Golub [Phys. Rev. A 71, 032104 (2005), 10.1103/PhysRevA.71.032104] showed the relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently, we presented a solution of the Schrödinger equation for spin-1 /2 particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [A. Steyerl et al., Phys. Rev. A 89, 052129 (2014), 10.1103/PhysRevA.89.052129]. Here, we extend this work to show how the Redfield theory follows directly from the Schrödinger equation solution. This serves to highlight the conditions of validity of the Redfield theory, a subject of considerable discussion in the literature [e.g., M. P. Nicholas et al., Prog. Nucl. Magn. Reson. Spectrosc. 57, 111 (2010), 10.1016/j.pnmrs.2010.04.003]. Our results can be applied where the Redfield result no longer holds, such as observation times on the order of or shorter than the correlation time and nonstochastic systems, and thus we can illustrate the transient spin dynamics, i.e., the gradual development of the shift with increasing time subsequent to the start of the free precession. We consider systems with rough, diffuse reflecting walls, cylindrical trap geometry with arbitrary cross section, and field perturbations that do not, in the frame of the moving particles, average to zero in time. We show by direct, detailed, calculation the agreement of the results from the Schrödinger equation with the Redfield theory for the

  14. Finite-temperature scaling at the quantum critical point of the Ising chain in a transverse field

    NASA Astrophysics Data System (ADS)

    Haelg, Manuel; Huvonen, Dan; Guidi, Tatiana; Quintero-Castro, Diana Lucia; Boehm, Martin; Regnault, Louis-Pierre; Zheludev, Andrey

    2015-03-01

    Inelastic neutron scattering is used to study the finite-temperature scaling behavior of spin correlations at the quantum critical point in an experimental realization of the one-dimensional Ising model in a transverse field. The target compound is the well-characterized, anisotropic and bond-alternating Heisenberg spin-1 chain material NTENP. The validity and the limitations of the dynamic structure factor scaling are tested, discussed and compared to theoretical predictions. For this purpose neutron data have been collected on the three-axes spectrometers IN14 at ILL and FLEXX at HZB as well as on the time of flight multi-chopper spectrometer LET at ISIS. In addition to the general statement about quantum criticality and universality, present study also reveals new insight into the properties of the spin chain compound NTENP in particular.

  15. Chains, bombs, potrzebies and slugs

    NASA Astrophysics Data System (ADS)

    Jewess, Mike; McDowell, Alex; Maxfield, Stephen; Hunt, A. G.; Hicks, Bruce

    2010-03-01

    I read with pleasure Robert Crease's article on unusual units (February pp17-19). However, the article stated that an acre is 10×10 chains, when it is in fact 10×1 chains. Incidentally, a distance of 10 chains (220 yards) is known as a furlong, a word that suggests the length of a ploughed furrow and that is still used in horse-racing.

  16. Supply Chain Coordination in Hospitals

    NASA Astrophysics Data System (ADS)

    Rego, Nazaré; de Sousa, Jorge Pinho

    This paper presents an innovative approach to support the definition of strategies for the design of alternative configurations of hospital supply chains. This approach was developed around a hybrid Tabu Search / Variable Neighbourhood Search metaheuristic, that uses several neighbourhood structures. The flexibility of the procedure allows its application to supply chains with different topologies and atypical cost characteristics. A preliminary computational experience shows the approach potential in solving large scale supply chain configuration problems. The future incorporation of this approach in a broader Decision Support System (DSS) will provide a tool that can significantly contribute to an increase of healthcare supply chains efficiency and encourage the establishment of collaborative partnerships between their members.

  17. Dynamical Aspects of Inextensible Chains

    NASA Astrophysics Data System (ADS)

    Ferrari, Franco; Pyrka, Maciej

    In the present work, a method to impose the inextensibility constraints on the dynamics of a chain fluctuating in a thermal bath at fixed temperature is investigated. The final goal is to construct the probability function of the chain and the generating functional of the correlation functions of the relevant degrees of freedom of the system. First, we study the dynamics of a freely hinged chain composed by massive beads connected together by massless segments of fixed length. It is shown that a system of this kind may be described by a set of Langevin equations in which the noise is characterized by a non-gaussian probability distribution. Starting from these Langevin equations, the generating functional of the freely hinged chain is derived in path integral form. A connection with a stochastic process governed by a Fokker-Planck equation is established. Next, a chain composed by one-dimensional bars with constant mass distribution is considered. A path integral expression of the generating functional for a chain of this type is derived. Finally, it is verified that in the limit in which the chain becomes continuous, both generating functionals of the freely hinged chain and of the freely jointed bar chain converge to the same result as expected.

  18. Human laminin B2 chain

    SciTech Connect

    Pikkarainen, T.; Kallunki, T.; Tryggvason, K.

    1988-05-15

    The complete amino acid sequence of the human laminin B2 chains has been determined by sequencing of cDNA clones. The six overlapping clones studied cover approximately 7.5 kilobases of which 5312 nucleotides were sequenced from the 5' end. The open reading frame codes for a 33-residue signal peptide and a 1576-residue B2 chain proper, which is 189 residues less than in the highly homologous B1 chain. Computer analysis revealed that the B2 chain consists of distinct domains that contain helical structures, cysteine-rich repeats, and globular regions, as does the B1 chain. However, domain ..cap alpha.. and domain ..beta.. of the B1 chain have no counterpart in B2, and the number of cysteine-rich repeats is 12, or 1 less than in the B1 chain. The degree of homology between the two chains is highest in the cysteine repeat-containing domains III and V where 40% of the residues match. However, in helical domains I/II only 16% of residues match. The results demonstrate that the B1 and B2 chains of laminin are highly homologous proteins that are probably the products of related genes.

  19. Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble.

    PubMed

    Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G

    2014-09-12

    We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case. PMID:25260003

  20. Magnetization plateaus in the antiferromagnetic Ising chain with single-ion anisotropy and quenched disorder.

    PubMed

    Neto, Minos A; de Sousa, J Ricardo; Branco, N S

    2015-05-01

    We have studied the presence of plateaus on the low-temperature magnetization of an antiferromagnetic spin-1 chain, as an external uniform magnetic field is varied. A crystal-field interaction is present in the model and the exchange constants follow a random quenched (Bernoulli or Gaussian) distribution. Using a transfer-matrix technique we calculate the largest Lyapunov exponent and, from it, the magnetization at low temperatures as a function of the magnetic field, for different values of the crystal field and the width of the distributions. For the Bernoulli distribution, the number of plateaus increases, with respect to the uniform case [Litaiff et al., Solid State Commun. 147, 494 (2008)] and their presence can be linked to different ground states, when the magnetic field is varied. For the Gaussian distributions, the uniform scenario is maintained, for small widths, but the plateaus structure disappears as the width increases. PMID:26066165

  1. A new integral representation for the scalar products of Bethe states for the XXX spin chain

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Komatsu, Shota; Nishimura, Takuya

    2013-09-01

    Based on the method of separation of variables due to Sklyanin, we construct a new integral representation for the scalar products of the Bethe states for the SU(2) XXX spin 1/2 chain obeying the periodic boundary condition. Due to the compactness of the symmetry group, a twist matrix must be introduced at the boundary in order to extract the separated variables properly. Then by deriving the integration measure and the spectrum of the separated variables, we express the inner product of an on-shell and an off-shell Bethe states in terms of a multiple contour integral involving a product of Baxter wave functions. Its form is reminiscent of the integral over the eigenvalues of a matrix model and is expected to be useful in studying the semi-classical limit of the product.

  2. Spin Transport in the XXZ Chain at Finite Temperature and Momentum

    NASA Astrophysics Data System (ADS)

    Brenig, Wolfram; Steinigeweg, Robin

    2012-02-01

    We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum [1]. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cut-off momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cut-off momentum for diffusion decreases. Above the cut-off momentum diffusion breaks down completely.[4pt] [1] Robin Steinigeweg and Wolfram Brenig, arXiv:1107.3103

  3. Characterizing gapped phases of a 1D spin chain with on-site and spatial symmetries

    NASA Astrophysics Data System (ADS)

    West, Colin; Prakash, Abhishodh; Wei, Tzu-Chieh

    We investigate the phase diagram of a spin-1 chain whose Hamiltonian is invariant under translation, lattice inversion and a global A4 symmetry in the spin degrees of freedom. The classification scheme by Chen, Gu, and Wen allows us to enumerate all possible phases under the given symmetry. Then, we determine which of these phases actually occur in the two-parameter Hamiltonian. Using numerical methods proposed by Pollmann and Turner (2012) we determine the characteristic projective parameters for the Symmetry Protected Topological (SPT) phases. In addition, we present a method for determining the projective commutation parameter in these phases. The resulting phase diagram is rich and contains at least nine different SPT phases. This work was supported in part by the National Science Foundation.

  4. Algebraic Bethe ansatz for the quantum group invariant open XXZ chain at roots of unity

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat M.; Nepomechie, Rafael I.

    2016-08-01

    For generic values of q, all the eigenvectors of the transfer matrix of the Uq sl (2)-invariant open spin-1/2 XXZ chain with finite length N can be constructed using the algebraic Bethe ansatz (ABA) formalism of Sklyanin. However, when q is a root of unity (q =e iπ / p with integer p ≥ 2), the Bethe equations acquire continuous solutions, and the transfer matrix develops Jordan cells. Hence, there appear eigenvectors of two new types: eigenvectors corresponding to continuous solutions (exact complete p-strings), and generalized eigenvectors. We propose general ABA constructions for these two new types of eigenvectors. We present many explicit examples, and we construct complete sets of (generalized) eigenvectors for various values of p and N.

  5. Integrable spin chain for the SL(2,R)/U(1) black hole sigma model.

    PubMed

    Ikhlef, Yacine; Jacobsen, Jesper Lykke; Saleur, Hubert

    2012-02-24

    We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-Hermitian "Hamiltonian" and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole conformal field theory. This identification goes beyond the appearance of a noncompact spectrum; we are also able to determine the density of states, and show that it agrees with the formulas in [J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys. (N.Y.) 42, 2961 (2001)] and [A. Hanany, N. Prezas, and J. Troost, J. High Energy Phys. 04 (2002) 014], hence providing a direct "physical measurement" of the associated reflection amplitude. PMID:22463514

  6. The finite scaling for S = 1 XXZ chains with uniaxial single-ion-type anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Xiong, Xingliang

    2014-03-01

    The scaling behavior of criticality for spin-1 XXZ chains with uniaxial single-ion-type anisotropy is investigated by employing the infinite matrix product state representation with the infinite time evolving block decimation method. At criticality, the accuracy of the ground state of a system is limited by the truncation dimension χ of the local Hilbert space. We present four evidences for the scaling of the entanglement entropy, the largest eigenvalue of the Schmidt decomposition, the correlation length, and the connection between the actual correlation length ξ and the energy. The result shows that the finite scalings are governed by the central charge of the critical system. Also, it demonstrates that the infinite time evolving block decimation algorithm by the infinite matrix product state representation can be a quite accurate method to simulate the critical properties at criticality.

  7. Entanglement spectrum and entangled modes of highly excited states in random XX spin chains

    NASA Astrophysics Data System (ADS)

    Pouranvari, Mohammad; Yang, Kun

    We examine the newly developed real space renormalization group method of finding excited eigenstate (RSRG-X) of the XX spin-1/2 chain, from entanglement perspectives. Eigenmodes of the entanglement Hamiltonian, especially the maximally entangled mode (that contributes the most to the entanglement entropy) and corresponding entanglement energies are studied and compared with predictions of RSRG-X. Our numerical results demonstrate the accuracy of the RSRG-X method in the strong disorder limit, and quantify its error when applied to weak disorder regime. Overall, our results validate the RSRG-X method qualitatively, but as in the case of real space renormalization group method for the ground state (RSRG) there are quantitative errors for weaker randomness, and also such error grows with increasing temperature/excitation energy density.

  8. Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains.

    PubMed

    Xiong, Min; Jin, Xiulong; Ye, Jian

    2016-03-01

    Construction of ordered patterns of plasmonic nanoparticles is greatly important for nanophotonics relevant applications. We have reported a facile and low-cost magnetic field induced self-assembly approach to construct plasmonic superparamagnetic nanoshell (SN) chains up to several hundred micrometers in a few seconds in a large area without templates or other assistance processes. Experimental and theoretical investigations of the near- and far-field optical properties indicate that the super- and sub-radiant modes of the SN chains continuously redshift with the increase of SN number and the Fano resonance emerges in the infinite double- and triple-line SN chains. Strong plasmon coupling effects in the SN chains result in great electric field enhancements at visible and infrared wavelengths, which indicates that these chain structures potentially can be used as a common substrate for both surface enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) application. This fabrication method also offers a general strategy alternative to top-down processing that enables the construction of nanostructures for metamaterials, electromagnetic energy transport, and optical waveguide. PMID:26864389

  9. Exploring membrane respiratory chains.

    PubMed

    Marreiros, Bruno C; Calisto, Filipa; Castro, Paulo J; Duarte, Afonso M; Sena, Filipa V; Silva, Andreia F; Sousa, Filipe M; Teixeira, Miguel; Refojo, Patrícia N; Pereira, Manuela M

    2016-08-01

    Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27044012

  10. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  11. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices. PMID:17766237

  12. Optic neuritis

    MedlinePlus

    ... pneumonia and other common upper respiratory tract infections Multiple sclerosis ... have optic neuritis without a disease such as multiple sclerosis have a good chance of recovery. Optic neuritis ...

  13. Side chain directly participates in the solar absorption of fullerene derivative PC61BM

    NASA Astrophysics Data System (ADS)

    Xing, Xiu-Na; Chen, Guang-Hua; Du, Ying-Ying; Li, Wen-Jie; Li, Hai-Yang; Li, Hong-Nian; Li, Wei-Yin; Chen, Fu-Yi

    2014-11-01

    We have studied the role of the phenyl-butyric-acid-methyl-ester side chain in the solar absorption of fullerene derivatives PC61BM. The UV-Vis-NIR spectra are calculated with the linear response theory within time-dependent density functional theory. The initial and final orbitals of the optical transitions in solar spectrum range are analyzed in detail. The electronic states of the side chain hybridize with the states of C60 cage, increasing the number of the initial orbitals of the solar absorption. So the side chain directly participates in the solar absorption. A distortion or length change of the side chain has obvious effects on the photoabsorption.

  14. Uniaxial magnetic anisotropy of quasi-one-dimensional Fe chains on Pb /Si

    NASA Astrophysics Data System (ADS)

    Sun, Da-Li; Wang, De-Yong; Du, Hai-Feng; Ning, Wei; Gao, Jian-Hua; Fang, Ya-Peng; Zhang, Xiang-Qun; Sun, Young; Cheng, Zhao-Hua; Shen, Jian

    2009-01-01

    We fabricated quasi-one-dimensional Fe chains on a 4° miscut Si (111) substrate with a Pb film as a buffer layer. The magnetic properties and morphology of Fe chains were investigated by means of scanning tunneling microscope (STM) and surface magneto-optical Kerr effect (SMOKE). STM images show that Fe chains are formed by Fe random islands along the steps of the Pb film due to step decoration. SMOKE data indicate that the Fe chains exhibit in-plane uniaxial magnetic anisotropy along the step direction. The effective in-plane uniaxial anisotropy constant at room temperature was determined by means of electron spin resonance.

  15. Uniaxial magnetic anisotropy of quasi-one-dimensional Fe chains on Pb/Si

    SciTech Connect

    Sun, Da-li; Wang, De-yong; Du, Hai-Feng; Ning, Wei; Gao, Jian-Hua; Fang, Ya-Peng; Zhang, Xiang-Qun; Sun, Young; Cheng, Zhao-Hua; Shen, Jian

    2009-01-01

    We fabricated quasi-one-dimensional Fe chains on a 4{sup o} miscut Si (111) substrate with a Pb film as a buffer layer. The magnetic properties and morphology of Fe chains were investigated by means of scanning tunneling microscope (STM) and surface magneto-optical Kerr effect (SMOKE). STM images show that Fe chains are formed by Fe random islands along the steps of the Pb film due to step decoration. SMOKE data indicate that the Fe chains exhibit in-plane uniaxial magnetic anisotropy along the step direction. The effective in-plane uniaxial anisotropy constant at room temperature was determined by means of electron spin resonance.

  16. Mixed Species Ion Chains for Scalable Quantum Computation

    NASA Astrophysics Data System (ADS)

    Wright, John Albert

    Mixed species chains of barium and ytterbium ions are investigated as a tool for building scalable quantum computation devices. Ytterbium ions provide a stable, environmentally-insensitive qubit that is easily initialized and manipulated, while barium ions are easily entangled with photons that can allow quantum information to be transmitted between systems in modular quantum computation units. Barium and ytterbium are trapped together in a linear chain in a linear rf trap and their normal mode structure and the thermal occupation numbers of these modes are measured with a narrow band laser addressing an electric quadrupole transition in barium ions. Before these measurements, barium ions are directly cooled using Doppler cooling, while the ytterbium ions are sympathetically cooled by the barium. For radial modes strongly coupled to ytterbium ions the average thermal occupation numbers vary between 400 and 12,000 depending on ion species configuration and trap parameters. Ion chain temperatures are also measured using a technique based on ion species reordering. Surface traps with many dc electrodes provide the ability to controllably reorder the chain to optimize normal mode cooling, and initial work towards realizing this capability are discussed. Quantum information can be transferred between ions in a linear chain using an optical system that is well coupled to the motional degrees of freedom of the chain. For this reason, a 532 nm Raman system is developed and its expected performance is evaluated.

  17. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  18. AgCuVO4 : A quasi-one-dimensional S=(1)/(2) chain compound

    NASA Astrophysics Data System (ADS)

    Möller, A.; Schmitt, M.; Schnelle, W.; Förster, T.; Rosner, H.

    2009-09-01

    We present a joint experimental and computational study of the recently synthesized spin 1/2 system silver-copper-orthovanadate AgCuVO4 [A. Möller and J. Jainski, Z. Anorg. Allg. Chem. 634, 1669 (2008)] exhibiting chains of trans corner-sharing [CuO4] plaquettes. The static magnetic susceptibility and specific heat measurements of AgCuVO4 can be described to a good approximation by the Bonner-Fisher spin-chain model with Jintra≈330K . Evidence for a Néel-type of order at ˜2.5K is obtained from the specific heat and corroborated by ESR studies. To independently obtain a microscopically based magnetic model, density functional electronic structure calculations were performed. In good agreement with the experimental data, we find pronounced one-dimensional magnetic exchange along the corner-sharing chains with small interchain couplings. The difference between the experimentally observed and the calculated ordering temperature can be assigned to a sizable interchain frustration derived from the calculations.

  19. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    SciTech Connect

    Chen, Ying

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  20. Food Chain Security and Vulnerability

    NASA Astrophysics Data System (ADS)

    Brunet, Sébastien; Delvenne, Pierre; Claisse, Frédéric

    In our contemporary societies, the food chain could be defined as a macro-technical system, which depends on a wide variety of actors and risks analysis methods. In this contribution, risks related to the food chain are defined in terms of "modern risks" (Beck 1992). The whole national economic sector of food production/distribution is vulnerable to a local accident, which can affect the functioning of food chain, the export programs and even the political system. Such a complex socio-technical environment is undoubtedly vulnerable to intentional act such as terrorism.

  1. Fast and slow light in zigzag microring resonator chains.

    PubMed

    Chamorro-Posada, P; Fraile-Pelaez, F J

    2009-03-01

    We analyze fast- and slow-light transmission in a zigzag microring resonator chain. In the superluminal case, a new light-transmission effect is found whereby the input optical pulse is reproduced in an almost-simultaneous manner at the various system outputs. When the input carrier is tuned to a different frequency, the system permits to slow down the propagating optical signal. Between these two extreme cases, the relative delay can be tuned within a broad range. We propose, and analyze numerically, a laser-array configuration for the stable operation of active devices. PMID:19252573

  2. Bibliometric Application of Markov Chains.

    ERIC Educational Resources Information Center

    Pao, Miranda Lee; McCreery, Laurie

    1986-01-01

    A rudimentary description of Markov Chains is presented in order to introduce its use to describe and to predict authors' movements among subareas of the discipline of ethnomusicology. Other possible applications are suggested. (Author)

  3. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-01

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data. PMID:18851233

  4. Formation and properties of magnetic chains for 100 nm nanoparticles used in separations of molecules and cells

    PubMed Central

    Wilson, Robert J.; Hu, Wei; Fu, Cheryl Wong Po; Koh, Ai Leen; Gaster, Richard S.; Earhart, Christopher M.; Fu, Aihua; Heilshorn, Sarah C.; Sinclair, Robert; Wang, Shan X.

    2009-01-01

    Optical observations of 100 nm metallic magnetic nanoparticles are used to study their magnetic field induced self assembly. Chains with lengths of tens of microns are observed to form within minutes at nanoparticle concentrations of 1010 per mL. Chain rotation and magnetophoresis are readily observed, and SEM reveals that long chains are not simple single particle filaments. Similar chains are detected for several 100 nm commercial bio-separation nanoparticles. We demonstrate the staged magnetic condensation of different types of nanoparticles into composite structures and show that magnetic chains bind to immunomagnetically labeled cells, serving as temporary handles which allow novel magnetic cell manipulations. PMID:20161001

  5. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  6. Search for an Atomic EDM with Optical-Coupling Nuclear Spin Oscillator

    SciTech Connect

    Asahi, K.; Uchida, M.; Inoue, T.; Hatakeyama, N.; Yoshimi, A.

    2007-06-13

    We have constructed a nuclear spin oscillator of a new type, that employs a feedback scheme based on an optical spin detection and suceeding spin control by a transverse field application. This spin oscillator parallels the conventional spin maser in many points, but exhibits advantages and requirements that are different from those with the spin maser. By means of the optical-coupling nuclear spin oscillator, an experimental setup to search for an electric dipole moment (EDM) in a spin 1/2 diamagnetic atom 129Xe is being developed.

  7. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice. PMID:19885962

  8. Elastic properties of magnetosome chains

    NASA Astrophysics Data System (ADS)

    Kiani, Bahareh; Faivre, Damien; Klumpp, Stefan

    2015-04-01

    Magnetotactic bacteria swim and orient in the direction of a magnetic field thanks to the magnetosome chain, a cellular ‘compass needle’ that consists of a string of vesicle-enclosed magnetic nanoparticles aligned on a cytoskeletal filament. Here we investigate the mechanical properties of such a chain, in particular the bending stiffness. We determine the contribution of magnetic interactions to the bending stiffness and the persistence length of the chain. This contribution is comparable to, but typically smaller than the contribution of the semiflexible filament. For a chain of magnetic nanoparticles without a semiflexible filament, the linear configuration is typically metastable and the lowest energy structures are closed chains (flux closure rings) without a net magnetic moment that are thus not functional as a cellular compass. Our calculations show that the presence of the cytoskeletal filament stabilizes the chain against ring closure, either thermodynamically or kinetically, depending on the stiffness of the filament, confirming that such stabilization is one of the roles of this structure in these bacterial cells.

  9. Optically tunable optical filter

    NASA Astrophysics Data System (ADS)

    James, Robert T. B.; Wah, Christopher; Iizuka, Keigo; Shimotahira, Hiroshi

    1995-12-01

    We experimentally demonstrate an optically tunable optical filter that uses photorefractive barium titanate. With our filter we implement a spectrum analyzer at 632.8 nm with a resolution of 1.2 nm. We simulate a wavelength-division multiplexing system by separating two semiconductor laser diodes, at 1560 nm and 1578 nm, with the same filter. The filter has a bandwidth of 6.9 nm. We also use the same filter to take 2.5-nm-wide slices out of a 20-nm-wide superluminescent diode centered at 840 nm. As a result, we experimentally demonstrate a phenomenal tuning range from 632.8 to 1578 nm with a single filtering device.

  10. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles.

    PubMed

    Biswal, Sibani Lisa; Gast, Alice P

    2003-08-01

    Magnetorheological particles, permanently linked into chains, provide a magnetically actuated means to manipulate microscopic fluid flow. Paramagnetic colloidal particles form reversible chains by acquiring dipole moments in the presence of an external magnetic field. By chemically connecting paramagnetic colloidal particles, flexible magnetoresponsive chains can be created. We link the paramagnetic microspheres using streptavidin-biotin binding. Streptavidin coated microspheres are placed in a flow cell and a magnetic field is applied, causing the particles to form chains. Then a solution of polymeric linkers of bis-biotin-poly(ethylene glycol) molecules is added in the presence of the field. These linked chains remain responsive to a magnetic field; however, in the absence of an external magnetic field these chains bend and flex due to thermal motion. The chain flexibility is determined by the length of the spacer molecule between particles and is quantified by the flexural rigidity or bending stiffness. To understand the mechanical properties of the chains, we use a variety of optical trapping experiments to measure the flexural rigidity. Increasing the length of the poly(ethylene glycol) chain in the linker increases the flexibility of the chains. PMID:14524968

  11. Gyromagnetic gs factors of the spin-1/2 particles in the (1/2+-1/2--3/2-) triad of the four-vector spinor, ψμ, irreducibility and linearity

    NASA Astrophysics Data System (ADS)

    Delgado Acosta, E. G.; Banda Guzmán, V. M.; Kirchbach, M.

    2015-07-01

    The gauged Klein-Gordon equation, extended by a gsσμνFμν/4 interaction, the contraction of the electromagnetic field strength tensor, Fμν, with the generators, σμν/2, of the Lorentz group in (1/2, 0) ⊕ (0, 1/2), and gs being the gyromagnetic factor, is examined with the aim to find out as to what extent it qualifies as a wave equation for general relativistic spin-1/2 particles transforming as (1/2, 0) ⊕ (0, 1/2) and possibly distinct from the Dirac fermions. This equation can be viewed as the generalization of the gs = 2 case, known under the name of the Feynman-Gell-Mann equation, the only one which allows for a bilinearization into the gauged Dirac equation and its conjugate. At the same time, it is well-known a fact that a gs = 2 value can also be obtained upon the bilinearization of the nonrelativistic Schrödinger into nonrelativistic Pauli equations. The inevitable conclusion is that it must not be necessarily relativity which fixes the gyromagnetic factor of the electron to g(1/2) = 2, but rather the specific form of the primordial quadratic wave equation obeyed by it, that is amenable to a linearization. The fact is that space-time symmetries alone define solely the kinematic properties of the particles and neither fix the values of their interacting constants, nor do they necessarily prescribe linear Lagrangians. Information on such properties has to be obtained from additional physical inputs involving the dynamics. We here provide an example in support of the latter statement. Our case is that the spin-1/2- fermion residing within the four-vector spinor triad, ψμ (1/2+-1/2--3/2-), whose sectors at the free particle level are interconnected by spin-up and spin-down ladder operators, does not allow for a description within a linear framework at the interacting level. Upon gauging, despite transforming according to the irreducible (1/2, 1) ⊕ (1, 1/2) building block of ψμ, and being described by 16-dimensional four-vector spinors, though

  12. Disentangling of two intertwined chains

    NASA Astrophysics Data System (ADS)

    Baumgärtner, A.; Muthukumar, M.

    1986-01-01

    The nonequilibrium process of disentangling of two self-avoiding polymer chains is investigated using Monte Carlo methods. The initial configuration of the two chains corresponds to a double helix of M turns. Chains consisting of N=8M+1 segments with M=2, 4, and 8 have been simulated. The disentangling process is found to take place in two distinct stages. The first step is the softening of the original double helix configuration to form interpenetrating chains with their centers of mass not far away from each other. This process takes a typical time of the order of N3.0 ± 0.2 . During the first stage, the center of mass of the either strand obeys the diffusion law, with the diffusion coefficient D˜N-(1.6±0.2) . The second stage involves the actual unraveling of the interpenetrating chains to form the isolated coils. The time taken for this step is found to scale as N3.3±0.2 . After the disentangling is complete, we recover the Rouse behavior, D˜N-1 for the center of mass diffusion of each coil.

  13. Data-driven backward chaining

    NASA Technical Reports Server (NTRS)

    Haley, Paul

    1991-01-01

    The C Language Integrated Production System (CLIPS) cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such mimicry requires manual coding of additional rules which can assert an inadequate goal representation for every condition in every rule that can have corresponding facts derived by backward chaining. In general, for N rules with an average of M conditions per rule the number of goal generation rules required is on the order of N*M. This is clearly intractable from a program maintenance perspective. We describe the support in Eclipse for backward chaining which it automatically asserts as it checks rule conditions. Important characteristics of this extension are that it does not assert goals which cannot match any rule conditions, that 2 equivalent goals are never asserted, and that goals persist as long as, but no longer than, they remain relevant.

  14. Optical to optical interface device

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Vohl, P.; Nisenson, P.

    1972-01-01

    The development, fabrication, and testing of a preliminary model of an optical-to-optical (noncoherent-to-coherent) interface device for use in coherent optical parallel processing systems are described. The developed device demonstrates a capability for accepting as an input a scene illuminated by a noncoherent radiation source and providing as an output a coherent light beam spatially modulated to represent the original noncoherent scene. The converter device developed under this contract employs a Pockels readout optical modulator (PROM). This is a photosensitive electro-optic element which can sense and electrostatically store optical images. The stored images can be simultaneously or subsequently readout optically by utilizing the electrostatic storage pattern to control an electro-optic light modulating property of the PROM. The readout process is parallel as no scanning mechanism is required. The PROM provides the functions of optical image sensing, modulation, and storage in a single active material.

  15. Modeling of polypeptide chains as C alpha chains, C alpha chains with C beta, and C alpha chains with ellipsoidal lateral chains.

    PubMed

    Fogolari, F; Esposito, G; Viglino, P; Cattarinussi, S

    1996-03-01

    In an effort to reduce the number of degrees of freedom necessary to describe a polypeptide chain we analyze the statistical behavior of polypeptide chains when represented as C alpha chains, C alpha chains with C beta atoms attached, and C alpha chains with rotational ellipsoids as models of side chains. A statistical analysis on a restricted data set of 75 unrelated protein structures is performed. The comparison of the database distributions with those obtained by model calculation on very short polypeptide stretches allows the dissection of local versus nonlocal features of the distributions. The database distribution of the bend angles of polypeptide chains of pseudo bonded C alpha atoms spans a restricted range of values and shows a bimodal structure. On the other hand, the torsion angles of the C alpha chain may assume almost all possible values. The distribution is bimodal, but with a much broader probability distribution than for bend angles. The C alpha - C beta vectors may be taken as representative of the orientation of the lateral chain, as the direction of the bond is close to the direction of the vector joining C alpha to the ad hoc defined center of the "steric mass" of the side chain. Interestingly, both the bend angle defined by C alpha i-C alpha i+1-C beta i+1 and the torsional angle offset of the pseudo-dihedral C alpha i-C alpha i+1-C alpha i+2-C beta i+2 with respect to C alpha i-C alpha i+1-C alpha i+2-C alpha i+3 span a limited range of values. The latter results show that it is possible to give a more realistic representation of polypeptide chains without introducing additional degrees of freedom, i.e., by just adding to the C alpha chain a C beta with given side-chain properties. However, a more realistic description of side chains may be attained by modeling side chains as rotational ellipsoids that have roughly the same orientation and steric hindrance. To this end, we define the steric mass of an atom as proportional to its van der

  16. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  17. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  18. Precise Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.

  19. Ligand chain length conveys thermochromism.

    PubMed

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  20. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  1. Leading a supply chain turnaround.

    PubMed

    Slone, Reuben E

    2004-10-01

    Just five years ago, salespeople at Whirlpool were in the habit of referring to their supply chain organization as the "sales disablers." Now the company excels at getting products to the right place at the right time--while managing to keep inventories low. How did that happen? In this first-person account, Reuben Slone, Whirlpool's vice president of Global Supply Chain, describes how he and his colleagues devised the right supply chain strategy, sold it internally, and implemented it. Slone insisted that the right focal point for the strategy was the satisfaction of consumers at the end of the supply chain. Most supply chain initiatives do the opposite: They start with the realities of a company's manufacturing base and proceed from there. Through a series of interviews with trade customers large and small, his team identified 27 different capabilities that drove industry perceptions of Whirlpool's performance. Knowing it was infeasible to aim for world-class performance across all of them, Slone weighed the costs of excelling at each and found the combination of initiatives that would provide overall competitive advantage. A highly disciplined project management office and broad training in project management were key to keeping work on budget and on benefit. Slone set an intense pace--three "releases" of new capabilities every month--that the group maintains to this day. Lest this seem like a technology story, however, Slone insists it is just as much a "talent renaissance." People are proud today to be part of Whirlpool's supply chain organization, and its new generation of talent will give the company a competitive advantage for years to come. PMID:15559580

  2. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  3. Differential evolution Markov chain with snooker updater and fewer chains

    SciTech Connect

    Vrugt, Jasper A; Ter Braak, Cajo J F

    2008-01-01

    Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50--100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5--26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25--50 dimensional Student T{sub 3} distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.

  4. Catenary optics for achromatic generation of perfect optical angular momentum.

    PubMed

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  5. Catenary optics for achromatic generation of perfect optical angular momentum

    PubMed Central

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  6. Global multipartite nonlocality and Bell-type inequalities in infinite-size quantum spin chains

    NASA Astrophysics Data System (ADS)

    Sun, Zhao-Yu; Guo, Bin; Huang, Hai-Lin

    2015-08-01

    In this paper, we characterize the global multipartite nonlocality in one-dimensional infinite-size spin-1/2 chains. For this purpose, we calculate the multipartite nonlocality of n -site subchains, and take the large-n limit. As n increases from 2 to 100, we find that the average revenue and the marginal revenue of nonlocality converge gradually, thus they can be used to characterize the global multipartite nonlocality in infinite-size chains. Furthermore, in the vicinity of the quantum phase transition (QPT) points of the transverse-field Ising model and the XXZ model, in the large-n limit, multipartite nonlocality becomes extremely sensitive to external perturbation, that is, arbitrarily small perturbation away from the QPT points would lead to a drastic change in the global nonlocality. This signal of QPTs is easily distinguishable, and can be used to detect QPTs. We also draw a vivid physical picture of multipartite correlations and QPTs by analogy with magnetic domains in ferromagnets.

  7. Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Juhász, Róbert; Rieger, Heiko

    2000-05-01

    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities, and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random-walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confirmed by numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution shows multiscaling character. In the Griffiths phase, which is an extended part of the off-critical region, average autocorrelations have a power-law form with a nonuniversal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.

  8. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  9. Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Jones, Philip H.; Maragò, Onofrio M.; Volpe, Giovanni

    2015-12-01

    1. Introduction; Part I. Theory: 2. Ray optics; 3. Dipole approximation; 4. Optical beams and focusing; 5. Electromagnetic theory; 6. Computational methods; 7. Brownian motion; Part II. Practice: 8. Building an optical tweezers; 9. Data acquisition and optical tweezers calibration; 10. Photonic force microscope; 11. Wavefront engineering and holographic optical tweezers; 12. Advanced techniques; Part III. Applications: 13. Single molecule biophysics; 14. Cell biology; 15. Spectroscopy; 16. Optofluidics and lab on a chip; 17. Colloid science; 18. Microchemistry; 19. Aerosol science; 20. Statistical physics; 21. Nanothermodynamics; 22. Plasmonics; 23. Nanostructures; 24. Laser cooling and trapping of atoms; 25. Towards the quantum regime at the mesoscale; Index.

  10. Counting solutions of the Bethe equations of the quantum group invariant open XXZ chain at roots of unity

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat M.; Hao, Wenrui; Nepomechie, Rafael I.; Sommese, Andrew J.

    2015-12-01

    We consider the {U}q{sl}(2)-invariant open spin-1/2 XXZ quantum spin chain of finite length N. For the case that q is a root of unity, we propose a formula for the number of admissible solutions of the Bethe ansatz equations in terms of dimensions of irreducible representations of the Temperley-Lieb algebra; and a formula for the degeneracies of the transfer matrix eigenvalues in terms of dimensions of tilting {U}q{sl}(2)-modules. These formulas include corrections that appear if two or more tilting modules are spectrum-degenerate. For the XX case (q={{{e}}}{{i}π /2}), we give explicit formulas for the number of admissible solutions and degeneracies. We also consider the cases of generic q and the isotropic (q\\to 1) limit. Numerical solutions of the Bethe equations up to N = 8 are presented. Our results are consistent with the Bethe ansatz solution being complete.

  11. Spinon excitation spectra of the J1-J2 chain from analytical calculations in the dimer basis and exact diagonalization

    NASA Astrophysics Data System (ADS)

    Lavarélo, Arthur; Roux, Guillaume

    2014-10-01

    The excitation spectrum of the frustrated spin-1/2 Heisenberg chain is reexamined using variational and exact diagonalization calculations. We show that the overlap matrix of the short-range resonating valence bond states basis can be inverted which yields tractable equations for single and two spinons excitations. Older results are recovered and new ones, such as the bond-state dispersion relation and its size with momentum at the Majumdar-Ghosh point are found. In particular, this approach yields a gap opening at J 2 = 0.25 J 1 and an onset of incommensurability in the dispersion relation at J 2 = 9/17 J 1 as in [S. Brehmer et al., J. Phys.: Condens. Matter 10, 1103 (1998)]. These analytical results provide a good support for the understanding of exact diagonalization spectra, assuming an independent spinons picture.

  12. Smallest Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    This viewgraph presentation is focused on the general aspect of atomic chain electronics that I have been studying. Results have been published before, but are being rederived here using a new physical/mathematical picture/model, which deepens the physical understanding. Precise adatom structures can be used as a template on a regulated surface with no uncertainty.

  13. Novette chain design and performance

    SciTech Connect

    Hunt, J.T.; Speck, D.R.

    1980-12-11

    The design and performance of the Novette laser system, which is a two-beam, two-wavelength (1.05 ..mu.. and 0.53 ..mu..) target irradiation facility using phosphate glass laser chains, are discussed with information on the glass properties, controlling factors in the design selection, and projected performance with varying operating conditions. (LCL)

  14. Categorization Using Chains of Examples.

    ERIC Educational Resources Information Center

    Heit, Evan

    1992-01-01

    Presents a mathematical-categorization model using multiple-step chains of reasoning (CORs) and memory for examples. In 5 experiments, 144 undergraduates memorized descriptions of fictional people, then made predictions from incomplete descriptions using 1-, 2-, or 3-step CORs. The multiple-step context model with one- and two-step inference…

  15. Quantum information processing with trapped ion chains

    NASA Astrophysics Data System (ADS)

    Manning, Timothy Andrew

    Trapped atomic ion systems are currently the most advanced platform for quantum information processing. Their long coherence times, pristine state initialization and detection, and precisely controllable and versatile interactions make them excellent quantum systems for experiments in quantum computation and quantum simulation. One of the more promising schemes for quantum computing consists of performing single and multi-qubit quantum gates on qubits in a linear ion crystal. Some of the key challenges of scaling such a system are the individual addressing of arbitrary subsets of ions and controlling the growing complexity of motional mode interactions as the number of qubits increases or when the gates are performed faster. Traditional entangling quantum gates between ion qubits use laser pulses to couple the qubit states to the collective motion of the crystal, thereby generating a spin-spin interaction that can produce entanglement between selected qubits. The intrinsic limitations on the performance of gates using this method can be alleviated by applying optimally shaped pulses instead of pulses with constant amplitude. This thesis explains the theory behind this pulse shaping scheme and how it is implemented on a chain of Yb ions held in a linear radiofrequency 'Paul' trap. Several experiments demonstrate the technique in chains of two, three, and five ions using various types of pulse shapes. A tightly focused individual addressing beam allows us to apply the entangling gates to a target pair of ions, and technical issues related to such tight focusing are discussed. Other advantages to the pulse shaping scheme include a robustness against detuning errors and the possibility of suppressing undesirable coupling due to optical spillover on neighboring ions. Combined with ion shuttling, we harness these features to perform sequential gates to different qubit pairs in order to create genuine tripartite entangled states and demonstrate the programmable quantum

  16. Supply chain challenges. building relationships.

    PubMed

    Beth, Scott; Burt, David N; Copacino, William; Gopal, Chris; Lee, Hau L; Lynch, Robert Porter; Morris, Sandra

    2003-07-01

    Supply chain management is all about software and systems, right? Put in the best technology, sit back, and watch as your processes run smoothly and the savings roll in? Apparently not. When HBR convened a panel of leading thinkers in the field of supply chain management, technology was not top of mind. People and relationships were the dominant issues of the day. The opportunities and problems created by globalization, for example, are requiring companies to establish relationships with new types of suppliers. The ever-present pressure for speed and cost containment is making it even more important to break down stubbornly high internal barriers and establish more effective cross-functional relationships. The costs of failure have never been higher. The leading supply chain performers are applying new technology, new innovations, and process thinking to far greater advantage than the laggards, reaping tremendous gains in all the variables that affect shareholder value: cost, customer service, asset productivity, and revenue generation. And the gap between the leaders and the losers is growing in almost every industry. This roundtable gathered many of the leading thinkers and doers in the field of supply chain management, including practitioners Scott Beth of Intuit, Sandra Morris of Intel, and Chris Gopal of Unisys. David Burt of the University of San Diego and Stanford's Hau Lee bring the latest research from academia. Accenture's William Copacino and the Warren Company's Robert Porter Lynch offer the consultant's perspectives. Together, they take a wide-ranging view of such topics as developing talent, the role of the chief executive, and the latest technologies, exploring both the tactical and the strategic in the current state of supply chain management. PMID:12858712

  17. Observation of Aubry-type transition in finite atom chains via friction.

    PubMed

    Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian; Vuletić, Vladan

    2016-07-01

    The highly nonlinear many-body physics of a chain of mutually interacting atoms in contact with a periodic substrate gives rise to complex static and dynamical phenomena, such as structural phase transitions and friction. In the limit of an infinite chain incommensurate with the substrate, Aubry predicted a transition with increasing substrate potential, from the chain's intrinsic arrangement free to slide on the substrate, to a pinned arrangement favouring the substrate pattern. So far, the Aubry transition has not been observed. Here, using spatially resolved position and friction measurements of cold trapped ions in an optical lattice, we observed a finite version of the Aubry transition and the onset of its hallmark fractal atomic arrangement. Notably, the observed critical lattice depth for few-ion chains agrees well with the infinite-chain prediction. Our results elucidate the connection between competing ordering patterns and superlubricity in nanocontacts-the elementary building blocks of friction. PMID:26998915

  18. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. PMID:27258171

  19. Spin guides and spin splitters: waveguide analogies in one-dimensional spin chains.

    PubMed

    Makin, Melissa I; Cole, Jared H; Hill, Charles D; Greentree, Andrew D

    2012-01-01

    Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures. PMID:22304287

  20. Exact results of a mixed spin-1/2 and spin- S Ising model on a bathroom tile (4-8) lattice: Effect of uniaxial single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef

    2006-02-01

    Effect of uniaxial single-ion anisotropy upon magnetic properties of a mixed spin-1/2 and spin- S ( S⩾1) Ising model on a bathroom tile (4-8) lattice is examined within the framework of an exact star-triangle mapping transformation. Particular attention is focused on the phase diagrams established for several values of the quantum spin number S. It is shown that the mixed-spin bathroom tile lattice exhibits very similar phase boundaries as the mixed-spin honeycomb lattice whose critical points are merely slightly enhanced with respect to the former ones. The influence of uniaxial single-ion anisotropy upon the total magnetization vs. temperature dependence is particularly investigated as well.