Science.gov

Sample records for optically controlled three-dimensional

  1. Design of hybrid optical tweezers system for controlled three-dimensional micromanipulation

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshio; Tsutsui, Shogo; Kitajima, Hiroyuki

    2013-04-01

    Three-dimensional (3D) micro/nano-manipulation using optical tweezers is a significant technique for various scientific fields ranging from biology to nanotechnology. For the dynamic handling of multiple/individual micro-objects in a true 3D working space, we present an improved hybrid optical tweezers system consisting of two multibeam techniques. These two techniques include the generalized phase contrast method with a spatial light modulator and the time-shared scanning method with a two-axis steering mirror and an electrically focus-tunable lens. Unlike our previously reported system that could only handle micro-objects in a two and half dimensional working space, the present system has high versatility for controlled manipulation of multiple micro-objects in a true 3D working space. The controlled rotation of five beads forming a pentagon, that of four beads forming a tetrahedron about arbitrary axes, and the fully automated assembly and subsequent 3D translation of micro-bead arrays are successfully demonstrated as part of the 3D manipulation experiment.

  2. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-01

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics. PMID:27137595

  3. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  4. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  5. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  6. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  7. Three-dimensional optical holography using a plasmonic metasurface

    PubMed Central

    Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger; Zhang, Hao; Chen, Shumei; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Cheah, Kok-Wai; Qiu, Cheng-Wei; Li, Jensen; Zentgraf, Thomas; Zhang, Shuang

    2013-01-01

    Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.

  8. Three-dimensional invisibility cloak at optical wavelengths.

    PubMed

    Ergin, Tolga; Stenger, Nicolas; Brenner, Patrice; Pendry, John B; Wegener, Martin

    2010-04-16

    We have designed and realized a three-dimensional invisibility-cloaking structure operating at optical wavelengths based on transformation optics. Our blueprint uses a woodpile photonic crystal with a tailored polymer filling fraction to hide a bump in a gold reflector. We fabricated structures and controls by direct laser writing and characterized them by simultaneous high-numerical-aperture, far-field optical microscopy and spectroscopy. A cloaking operation with a large bandwidth of unpolarized light from 1.4 to 2.7 micrometers in wavelength is demonstrated for viewing angles up to 60 degrees. PMID:20299551

  9. Observation of three dimensional optical rogue waves through obstacles

    SciTech Connect

    Leonetti, Marco; Conti, Claudio

    2015-06-22

    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.

  10. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  11. Three-dimensional theory of the magneto-optical trap

    SciTech Connect

    Prudnikov, O. N. Taichenachev, A. V.; Yudin, V. I.

    2015-04-15

    The kinetics of atoms in a three-dimensional magneto-optical trap (MOT) is considered. A three-dimensional MOT model has been constructed for an atom with the optical transition J{sub g} = 0 → J{sub e} = 1 (J{sub g,} {sub e} is the total angular momentum in the ground and excited states) in the semiclassical approximation by taking into account the influence of the relative phases of light fields on the kinetics of atoms. We show that the influence of the relative phases can be neglected only in the limit of low light field intensities. Generally, the choice of relative phases can have a strong influence on the kinetics of atoms in a MOT.

  12. Ghost imaging for three-dimensional optical security

    SciTech Connect

    Chen, Wen Chen, Xudong

    2013-11-25

    Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.

  13. Three-dimensional metallic photonic crystals with optical bandgaps.

    PubMed

    Vasilantonakis, Nikos; Terzaki, Konstantina; Sakellari, Ioanna; Purlys, Vytautas; Gray, David; Soukoulis, Costas M; Vamvakaki, Maria; Kafesaki, Maria; Farsari, Maria

    2012-02-21

    The fabrication of fully three-dimensional photonic crystals with a bandgap at optical wavelengths is demonstrated by way of direct femtosecond laser writing of an organic-inorganic hybrid material with metal-binding moieties, and selective silver coating using electroless plating. The crystals have 600-nm intralayer periodicity and sub-100 nm features, and they exhibit well-defined diffraction patterns. PMID:22278944

  14. Three-dimensional multifunctional optical coherence tomography for skin imaging

    NASA Astrophysics Data System (ADS)

    Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki

    2016-02-01

    Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.

  15. Three-dimensional optical encryption based on ptychography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi

    2015-10-01

    We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.

  16. Optical Security Card by Three-dimensional Random Phase Distribution

    NASA Astrophysics Data System (ADS)

    Matoba, Osamu; Nitta, Kouichi

    2007-10-01

    An optical security card based on a three-dimensional (3D) phase object is presented. This card enables us to develop a personal authentification system and secure data storage in a highly scattering medium. The authentification is implemented by the correlation between a speckle pattern of the 3D phase object and stored speckle patterns. For secure data storage, absorption distribution is involved in a scattering volume medium. Appropriate user can only reconstruct the absorption distribution by solving inverse problem. Experimental and numerical results are presented to show the effectiveness of the proposed system.

  17. Tunable optical anisotropy in three-dimensional photonic crystals

    SciTech Connect

    Che Ming; Li Zhiyuan; Liu Rongjuan

    2007-08-15

    Artificial optical birefringence can be realized in three-dimensional photonic crystals with a uniaxial structural symmetry: e.g., woodpile photonic crystals with a tetragonal lattice structure in the long-wavelength limit. The ordinary and extraordinary indices of refraction are determined from calculation of the reflection coefficient for a plane wave incident on the surface of a semi-infinite photonic crystal at different angles. We find that the anisotropy can be widely tuned by simply changing the width and thickness of the dielectric rod. A large relative negative anisotropy over 33% is found. A transition from positive anisotropy to negative anisotropy can be readily achieved. At certain parameters, a structurally anisotropic nanostructure can behave like an optically isotropic medium. Our study opens a window to use artificial nanostructures to create an arbitrary optical anisotropy that is not possible in natural crystals.

  18. Photopolymer-based three-dimensional optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Kagami, M.; Yamashita, T.; Yonemura, M.; Kawasaki, A.; Watanabe, O.; Tomiki, M.

    2012-02-01

    Photopolymer based three-dimensional (3D) waveguide devices are very attractive in low-cost optical system integration. Especially, Light-Induced Self-Written (LISW) technology is suitable for this application, and the technology enables low-loss 3D optical circuitry formation from an optical fiber tip which soaked in photopolymer solution by employing its photo-polymerization due to own irradiation from the fiber tip. This technology is expected drastic mounting cost reduction in fields of micro-optic and hybrid integration devices assembly. The principle of the LISW optical waveguides is self-trapping effect of the irradiation flux into the self-organized waveguide, where, used wavelength can be chosen to fit photopolymer's reactivity from visible to infrared. Furthermore, this effect also makes possible grating formation and "optical solder" interconnection. Actually fabricated self-written grating shows well defined deep periodic index contrast and excellent optical property for the wavelength selectivity. And the "optical solder" interconnection realizes a passive optical interconnection between two faceted fibers or devices by the LISW waveguide even if there is a certain amount of gap and a small degree of misalignment exist. The LISW waveguides grow towards each other from both sides to a central point where the opposing beams overlap and are then combined into one waveguide. This distinctive effect is confirmed in all kind optical fibers, such as from a singlemode to 1-mm-corediameter multimode optical fiber. For example of complicated WDM optical transceiver module, mounted a branchedwaveguide and filter elements, effectiveness of LISW technology is outstanding. In assembling and packaging process, neither dicing nor polishing is needed. In this paper, we introduce LISW technology principles and potential application to integrated WDM optical transceiver devices for both of singlemode and multimode system developed in our research group.

  19. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam

    PubMed Central

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light–matter interaction. PMID:22893122

  20. Three-dimensional multiway power dividers based on transformation optics

    PubMed Central

    Wu, Yong-Le; Zhuang, Zheng; Deng, Li; Liu, Yuan-An

    2016-01-01

    The two-dimensional (2D) or three-dimensional (3D) multiway power dividers based on transformation optical theory are proposed in this paper. It comprises of several nonisotropic mediums and one isotropic medium without any lumped and distributed elements. By using finite embedded coordinate transformations, the incident beam can be split and bent arbitrarily in order to achieve effective power division and transmission. In addition, the location of the split point can be employed to obtain unequal power dividers. Finally, several typical examples of the generalized power divider without limitation in 3D space are performed, which shows that the proposed power divider can implement required functions with arbitrary power division and arbitrary transmission paths. The excellent simulated results verify the novel design method for power dividers. PMID:27091541

  1. Three-dimensional multiway power dividers based on transformation optics

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Le; Zhuang, Zheng; Deng, Li; Liu, Yuan-An

    2016-04-01

    The two-dimensional (2D) or three-dimensional (3D) multiway power dividers based on transformation optical theory are proposed in this paper. It comprises of several nonisotropic mediums and one isotropic medium without any lumped and distributed elements. By using finite embedded coordinate transformations, the incident beam can be split and bent arbitrarily in order to achieve effective power division and transmission. In addition, the location of the split point can be employed to obtain unequal power dividers. Finally, several typical examples of the generalized power divider without limitation in 3D space are performed, which shows that the proposed power divider can implement required functions with arbitrary power division and arbitrary transmission paths. The excellent simulated results verify the novel design method for power dividers.

  2. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  3. Remote state preparation of three-dimensional optical vortices.

    PubMed

    Su, Ming; Chen, Lixiang

    2014-05-01

    We propose a feasible scheme to remotely prepare three-dimensional (3D) optical vortex lines. Our scheme relies on the complete description of high-dimensional orbital angular momentum (OAM) entanglement in terms of the Laguerre-Gaussian modes. It is theoretically demonstrated that by simply changing the pump beam waist, we can remotely prepare the target photons in the vortex states of 3D interesting morphology, appearing as twisted vortex strands, separated vortex loops, and vortex link or knot. Furthermore, we employ the biphoton Klyshko picture to illustrate the conservation law of the OAM index ℓ and the spreading effect of the radial mode index p, where the Schmidt numbers are calculated to show the high-dimensional capacity of the quantum channels involved in the present remote state preparation. PMID:24921788

  4. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  5. Three-dimensional multiway power dividers based on transformation optics.

    PubMed

    Wu, Yong-Le; Zhuang, Zheng; Deng, Li; Liu, Yuan-An

    2016-01-01

    The two-dimensional (2D) or three-dimensional (3D) multiway power dividers based on transformation optical theory are proposed in this paper. It comprises of several nonisotropic mediums and one isotropic medium without any lumped and distributed elements. By using finite embedded coordinate transformations, the incident beam can be split and bent arbitrarily in order to achieve effective power division and transmission. In addition, the location of the split point can be employed to obtain unequal power dividers. Finally, several typical examples of the generalized power divider without limitation in 3D space are performed, which shows that the proposed power divider can implement required functions with arbitrary power division and arbitrary transmission paths. The excellent simulated results verify the novel design method for power dividers. PMID:27091541

  6. Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj

    2009-02-01

    We demonstrate the existence of localized optical vortex and necklace solitons in three-dimensional (3D) highly nonlocal nonlinear media, both analytically and numerically. The 3D solitons are constructed with the help of Kummer’s functions in spherical coordinates and their unique properties are discussed. The procedure we follow offers ways for generation, control, and manipulation of spatial solitons.

  7. Three dimensional tracking with misalignment between display and control axes

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence

    1992-01-01

    Human operators confronted with misaligned display and control frames of reference performed three dimensional, pursuit tracking in virtual environment and virtual space simulations. Analysis of the components of the tracking errors in the perspective displays presenting virtual space showed that components of the error due to visual motor misalignment may be linearly separated from those associated with the mismatch between display and control coordinate systems. Tracking performance improved with several hours practice despite previous reports that such improvement did not take place.

  8. Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis

    NASA Astrophysics Data System (ADS)

    Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min

    2012-01-01

    We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.

  9. Optical tunneling by arbitrary macroscopic three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Mishchenko, Michael I.

    2015-07-01

    Electromagnetic wavefront portions grazing or nearly grazing the surface of a macroscopic particle contribute to the extinction of the incident radiation through a tunneling process similar to the scenario of barrier penetration in quantum mechanics. The aforesaid tunneling contribution, referred to as the edge effect, is critical to a correct depiction of the physical mechanism of electromagnetic extinction. Although an analytical solution for the edge effect in the case of a sphere has been reported in the literature, the counterparts for nonspherical particles remain unknown. The conventional curvature-based formalism of the edge effect breaks down in the case of faceted particles. This paper reports a method, based on the invariant imbedding principle and the Debye expansion technique, to accurately quantify the edge effect associated with an arbitrarily shaped three-dimensional object. The present method also provides a rigorous capability to facilitate the validation of various empirical approximations for electromagnetic extinction. Canonical results are presented to illustrate optical tunneling for two nonspherical geometries.

  10. Radiation dosimetry using three-dimensional optical random access memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Phillips, G. W.

    2001-01-01

    Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.

  11. Three-dimensional tracker for spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Iftimia, Nicusor V.; Bigelow, Chad E.; Ustun, Teoman E.; Bloom, Benjamin; Ferguson, R. Daniel; Milner, Thomas E.

    2007-02-01

    Spectral domain optical coherence tomography (SDOCT) is a relatively new imaging technique that allows high-speed cross-sectional scanning of retinal structures with little motion artifact. However, instrumentation for these systems is not yet fast enough to collect high-density three-dimensional retinal maps free of the adverse effects of lateral eye movements. Low coherence interferometry instruments must also contend with axial motion primarily from head movements that shift the target tissue out of the coherence detection range. Traditional SDOCT instruments suffer from inherent deficiencies that exacerbate the effect of depth motion, including limited range, depth-dependent signal attenuation, and complex conjugate overlap. We present initial results on extension of our transverse retinal tracking system to three-dimensions especially for SDOCT imagers. The design and principle of operation of two depth tracking techniques, adaptive ranging (AR) and Doppler velocity (DV) tracking, are presented. We have integrated the threedimensional tracking hardware into a hybrid line scanning laser ophthalmoscope (LSLO)/SDOCT imaging system. Imaging and tracking performance was characterized by tests involving a limited number of human subjects. The hybrid imager could switch between wide-field en-face confocal LSLO images, high-resolution cross-sectional OCT images, and an interleaved mode of sequential LSLO and OCT images. With 3-D tracking, the RMS error for axial motion decreased to <50 µm and for lateral motion decreased to <10 µm. The development of real-time tracking and SDOCT image processing hardware is also discussed. Future implementation of 3-D tracking should increase the yield of usable images and decrease the patient measurement time for clinical SDOCT systems.

  12. Three-dimensional Bayesian optical diffusion tomography with experimental data.

    PubMed

    Milstein, Adam B; Oh, Seungseok; Reynolds, Jeffery S; Webb, Kevin J; Bouman, Charles A; Millane, Rick P

    2002-01-15

    Reconstructions of a three-dimensional absorber embedded in a scattering medium by use of frequency domain measurements of the transmitted light in a single source-detector plane are presented. The reconstruction algorithm uses Bayesian regularization and iterative coordinate descent optimization, and it incorporates estimation of the detector noise level, the source-detector coupling coefficient, and the background diffusion coefficient in addition to the absorption image. The use of multiple modulation frequencies is also investigated. The results demonstrate the utility of this algorithm, the importance of a three-dimensional model, and that out-of-plane scattering permits recovery of three-dimensional features from measurements in a single plane. PMID:18007723

  13. Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures.

    PubMed

    Qian, Li-Hua; Ding, Yi; Fujita, Takeshi; Chen, Ming-Wei

    2008-05-01

    Three-dimensional porous core-shell nanostructures consisting of gold skeletons and silver shells were fabricated by controllable electroless plating. Optical properties of the 3D nanocomposite with a heterogeneous interface exhibit a significant shell-thickness dependence. The porous core-shell structure with an optimized shell thickness of approximately 3-5 nm exhibits a considerable improvement in surface-enhanced Raman scattering. This study has important implications in the functionalization of nanoporous metals by surface modification. PMID:18355096

  14. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials.

    PubMed

    Wang, Zhuoxian; Meng, Xiangeng; Choi, Seung Ho; Knitter, Sebastian; Kim, Young L; Cao, Hui; Shalaev, Vladimir M; Boltasseva, Alexandra

    2016-04-13

    Plasmonics has brought revolutionary advances to laser science by enabling deeply subwavelength nanolasers through surface plasmon amplification. However, the impact of plasmonics on other promising laser systems has so far remained elusive. Here, we present a class of random lasers enabled by three-dimensional plasmonic nanorod metamaterials. While dense metallic nanostructures are usually detrimental to laser performance due to absorption losses, here the lasing threshold keeps decreasing as the volume fraction of metal is increased up to ∼0.07. This is ∼460 times higher than the optimal volume fraction reported thus far. The laser supports spatially confined lasing modes and allows for efficient modulation of spectral profiles by simply tuning the polarization of the pump light. Full-field speckle-free imaging at micron-scales has been achieved by using plasmonic random lasers as the illumination sources. Our findings show that plasmonic metamaterials hold potential to enable intriguing coherent optical sources. PMID:27023052

  15. Three dimensional laser microfabrication in diamond using a dual adaptive optics system.

    PubMed

    Simmonds, Richard D; Salter, Patrick S; Jesacher, Alexander; Booth, Martin J

    2011-11-21

    Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element. PMID:22109438

  16. Three-dimensional solidification and melting using magnetic field control

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.; Ahuja, Vineet

    1993-01-01

    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.

  17. Three-dimensional visuo-motor control of saccades.

    PubMed

    Hess, Bernhard J M

    2013-01-01

    Although the motion of the line of sight is a straightforward consequence of a particular rotation of the eye, it is much trickier to predict the rotation underlying a particular motion of the line of sight in accordance with Listing's law. Helmholtz's notion of the direction-circle together with the notion of primary and secondary reference directions in visual space provide an elegant solution to this reverse engineering problem, which the brain is faced with whenever generating a saccade. To test whether these notions indeed apply for saccades, we analyzed three-dimensional eye movements recorded in four rhesus monkeys. We found that on average saccade trajectories closely matched with the associated direction-circles. Torsional, vertical, and horizontal eye position of saccades scattered around the position predicted by the associated direction-circles with standard deviations of 0.5°, 0.3°, and 0.4°, respectively. Comparison of saccade trajectories with the likewise predicted fixed-axis rotations yielded mean coefficients of determinations (±SD) of 0.72 (±0.26) for torsion, 0.97 (±0.10) for vertical, and 0.96 (±0.11) for horizontal eye position. Reverse engineering of three-dimensional saccadic rotations based on visual information suggests that motor control of saccades, compatible with Listing's law, not only uses information on the fixation directions at saccade onset and offset but also relies on the computation of secondary reference positions that vary from saccade to saccade. PMID:23054597

  18. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  19. Measuring three-dimensional interaction potentials using optical interference.

    PubMed

    Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi

    2013-04-22

    We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution. PMID:23609648

  20. Three-dimensional optical tomography of the premature infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Gibson, Adam; Yusof, Rozarina Md; Everdell, Nick; Hillman, Elizabeth M. C.; Delpy, David T.; Arridge, Simon R.; Austin, Topun; Meek, Judith H.; Wyatt, John S.

    2002-12-01

    For the first time, three-dimensional images of the newborn infant brain have been generated using measurements of transmitted light. A 32-channel time-resolved imaging system was employed, and data were acquired using custom-made helmets which couple source fibres and detector bundles to the infant head. Images have been reconstructed using measurements of mean flight time relative to those acquired on a homogeneous reference phantom, and using a head-shaped 3D finite-element-based forward model with an external boundary constrained to match the measured positions of the sources and detectors. Results are presented for a premature infant with a cerebral haemorrhage predominantly located within the left ventricle. Images representing the distribution of absorption at 780 nm and 815 nm reveal an asymmetry consistent with the haemorrhage, and corresponding maps of blood volume and fractional oxygen saturation are generally within expected physiological values.

  1. Three-dimensional surface phase imaging based on integrated thermo-optic swept laser

    NASA Astrophysics Data System (ADS)

    Kim, Hyo Jin; Cho, Jaedu; Noh, Young-Ouk; Oh, Min-Cheol; Chen, Zhongping; Kim, Chang-Seok

    2014-03-01

    We developed an optical frequency domain imaging (OFDI) system based on an integrated thermo-optic swept laser to achieve three-dimensional surface imaging. The wavelength was swept by applying a heating signal to a thermo-optic polymeric waveguide. The sub-micrometer surface profile was converted from the three-dimensional phase information of the OFDI system on various samples used as resolution targets with a step height of 120 nm.

  2. Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Chao J.; Black, Adam J.; Wang, Hui; Akkin, Taner

    2016-07-01

    The optic axis of birefringent samples indicates the direction of optical anisotropy, which should be described in three-dimensional (3-D) space. We present a method to quantify the complete 3-D optic axis orientation calculated from in-plane optic axis measurements from a polarization-sensitive optical coherence tomography system. The in-plane axis orientations with different illumination angles allow the calculation of the necessary polar angle. The method then provides the information to produce the actual birefringence. The method and results from a biological sample are presented.

  3. Three-Dimensional Displacement Measurement Using Diffractive Optic Interferometry

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Cole, Helen J.; Shepherd, Robert L.; Ashley Paul R.

    1999-01-01

    This paper introduces a powerful new optical method which utilizes diffractive optic interferometry (DOI) to measure both in-plane and out-of-plane displacement with variable sensitivity using the same optical system. Sensitivity is varied by utilizing various combinations of the different wavefronts produced by a conjugate pair of binary Optical elements; a transmission grating is used to produce several illumination beams while a reflective grating replicated on the surface of a specimen, provides the reference for the undeformed state. A derivation of the equations which govern the method is included along with a discussion Of the experimental tests conducted to verify the theory. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.

  4. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.

    PubMed

    Spesyvtsev, Roman; Rendall, Helen A; Dholakia, Kishan

    2015-11-01

    A contemporary challenge across the natural sciences is the simultaneous optical imaging or stimulation of small numbers of cells or colloidal particles organized into arbitrary geometries. We demonstrate the use of temporal focusing with holographic optical tweezers in order to achieve depth-resolved two-photon imaging of trapped objects arranged in arbitrary three-dimensional (3D) geometries using a single objective. Trapping allows for the independent position control of multiple objects by holographic beam shaping. Temporal focusing of ultrashort pulses provides the wide-field two-photon depth-selective activation of fluorescent samples. We demonstrate the wide-field depth-resolved illumination of both trapped fluorescent beads and trapped HL60 cells in suspension with full 3D positioning control. These approaches are compatible with implementation through scattering media and can be beneficial for emergent studies in colloidal science and particularly optogenetics, offering targeted photoactivation over a wide area with micrometer-precision depth control. PMID:26512465

  5. Rewritable three-dimensional holographic data storage via optical forces

    NASA Astrophysics Data System (ADS)

    Yetisen, Ali K.; Montelongo, Yunuen; Butt, Haider

    2016-08-01

    The development of nanostructures that can be reversibly arranged and assembled into 3D patterns may enable optical tunability. However, current dynamic recording materials such as photorefractive polymers cannot be used to store information permanently while also retaining configurability. Here, we describe the synthesis and optimization of a silver nanoparticle doped poly(2-hydroxyethyl methacrylate-co-methacrylic acid) recording medium for reversibly recording 3D holograms. We theoretically and experimentally demonstrate organizing nanoparticles into 3D assemblies in the recording medium using optical forces produced by the gradients of standing waves. The nanoparticles in the recording medium are organized by multiple nanosecond laser pulses to produce reconfigurable slanted multilayer structures. We demonstrate the capability of producing rewritable optical elements such as multilayer Bragg diffraction gratings, 1D photonic crystals, and 3D multiplexed optical gratings. We also show that 3D virtual holograms can be reversibly recorded. This recording strategy may have applications in reconfigurable optical elements, data storage devices, and dynamic holographic displays.

  6. Plastinated tissue samples as three-dimensional models for optical instrument characterization

    PubMed Central

    Marks, Daniel L.; Chaney, Eric J.; Boppart, Stephen A.

    2010-01-01

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating three-dimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography. PMID:18825267

  7. Plastinated tissue samples as three-dimensional models for optical instrument characterization.

    PubMed

    Marks, Daniel L; Chaney, Eric J; Boppart, Stephen A

    2008-09-29

    Histology of biological specimens is largely limited to investigating two-dimensional structure because of the sectioning required to produce optically thin samples for conventional microscopy. With the advent of three-dimensional optical imaging technologies such as optical coherence tomography (OCT), diffuse optical tomography (DOT), and multiphoton microscopy (MPM), methods of tissue preparation that minimally disrupt three-dimensional structure are needed. We propose plastination as a means of transforming tissues into three-dimensional models suitable for optical instrument characterization. Tissues are plastinated by infusing them with transparent polymers, after which they can be safely handled, unlike fresh or fixed tissues. Such models are useful for investigating three-dimensional structure, testing and comparing the performance of optical instruments, and potentially investigating tissue properties not normally observed after the three-dimensional scattering properties of a biological samples are lost. We detail our plastination procedures and show examples of imaging several plastinated tissues from a pre-clinical rat model using optical coherence tomography. PMID:18825267

  8. Non-contact optical three dimensional liner metrology.

    SciTech Connect

    Sebring, R. J.; Anderson, W. E.; Bartos, J. J.; Garcia, F.; Randolph, B.; Salazar, M. A.; Edwards, J. M.

    2001-01-01

    We optically captured the 'as-built' liner geometry of NTLX (near term liner experiments) for Shiva Star using ultra-precision ranging lasers. We subsequently verified the resulting digitized geometry against the 3D CAD model of the part. The results confirmed that the Liner contours are within designed tolerances but revealed subtle fabrication artifacts that would typically go undetected. These features included centimeters long waviness and saddle and bulge regions of 1 micron or less in magnitude. The laser technology typically provided 10 micron spatial resolution with {+-}12 nanometer ranging precision. Atlas liners in the future may have to be diamond turned and will have the centimeter wavelength and 100 angstrom amplitude requirements. The advantages of using laser technology are (1) it avoids surface damage that may occur with conventional contact probes and (2) dramatically improves spatial resolution over CMM, capacitance and inductance type probes. Our work is the result of a perceived future need to develop precision, non-contact, liner inspection techniques to verify geometry, characterize machining artifacts and map wall thickness on delicate diamond turned surfaces. Capturing 'as-built' geometry in a non-contact way coupled with part-to-CAD verification software tools creates a new metrology competency for MST-7.

  9. Three-dimensional holographic optical tweezers implemented on spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ferrari, Enrico; Cojoc, Dan; Emiliani, Valentina; Garbin, Valeria; Coppey-Moisan, Maïté; Di Fabrizio, Enzo

    2005-08-01

    We have developed a holographic optical tweezers system based on diffractive optical elements (DOES) implemented on a liquid crystal spatial light modulator (LC-SLM) able to generate fine positioned traps on the sample. Our own algorithms and code allows to calculate phase DOES that can transform a single laser beam into an array of independent traps, each with individually specified characteristics, arranged in arbitrary three-dimensional (3D) geometrical configurations. Different DOEs can be dynamically projected to the SLM in order to achieve a rearrangement of the configuration of the trapping spots. Silica or latex micro-beads are trapped in different configurations of spots to demonstrate the fine control capability on each trap. Our setup is built on a standard video microscope coupled with a laser source, a spatial light modulator and a three axis nano-positioning system. It allows to obtain 3D multi-trapping and a fine calibration for the positioning of the traps.

  10. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks

    PubMed Central

    Yoshida, H.; Asakura, K.; Fukuda, J.; Ozaki, M.

    2015-01-01

    Topological defects in liquid crystals not only affect the optical and rheological properties of the host, but can also act as scaffolds in which to trap nano or micro-sized colloidal objects. The creation of complex defect shapes, however, often involves confining the liquid crystals in curved geometries or adds complex-shaped colloidal objects, which are unsuitable for device applications. Using topologically patterned substrates, here we demonstrate the controlled generation of three-dimensional defect lines with non-trivial shapes and even chirality, in a flat slab of nematic liquid crystal. By using the defect lines as templates and the electric response of the liquid crystals, colloidal superstructures are constructed, which can be reversibly reconfigured at a voltage as low as 1.3 V. Three-dimensional engineering of the defect shapes in liquid crystals is potentially useful in the fabrication of self-healing composites and in stabilizing artificial frustrated phases. PMID:25994837

  11. Complex three-dimensional polymer-metal core-shell structures towards emission control.

    PubMed

    Ren, Lin; Wang, De-Gong; Niu, Li-Gang; Xu, Bin-Bin; Song, Jun-Feng; Chen, Qi-Dai; Sun, Hong-Bo

    2013-06-28

    We report the fabrication of three-dimensional periodic metal nickel nanostructures achieved by the combination of femtosecond laser-induced two-photon polymerization and electroless plating technology. We can control the deposition speed of 10 nm per second by adjusting the reaction time. The thermal stability is good under 500 °C for the three-dimensional graphite-lattice polymer structure with 200 nm nickel film. Optical reflectivity and thermal emission measurements under 550 °C showed that the fabricated metallic structure was thermally excited and emitted light at λ = 4.50, 4.95 μm. The emission peak wavelengths agree with the absorption peaks. These data demonstrate that creating metallic photonic crystals by incorporation of metals to laser-fabricated templates is a simple and cost-efficient method. The emitters can work at such low temperatures, which is more important for realistic operation in applications. PMID:23666225

  12. Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers

    PubMed Central

    Brzobohatý, Oto; Šiler, Martin; Trojek, Jan; Chvátal, Lukáš; Karásek, Vítězslav; Paták, Aleš; Pokorná, Zuzana; Mika, Filip; Zemánek, Pavel

    2015-01-01

    It was previously believed that larger metal nanoparticles behave as tiny mirrors that are pushed by the light beam radiative force along the direction of beam propagation, without a chance to be confined. However, several groups have recently reported successful optical trapping of gold and silver particles as large as 250 nm. We offer a possible explanation based on the fact that metal nanoparticles naturally occur in various non-spherical shapes and their optical properties differ significantly due to changes in localized plasmon excitation. We demonstrate experimentally and support theoretically three-dimensional confinement of large gold nanoparticles in an optical trap based on very low numerical aperture optics. We showed theoretically that the unique properties of gold nanoprisms allow an increase of trapping force by an order of magnitude at certain aspect ratios. These results pave the way to spatial manipulation of plasmonic nanoparticles using an optical fibre, with interesting applications in biology and medicine. PMID:25630432

  13. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    SciTech Connect

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A

    1998-11-30

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  14. Structured light optical microscopy for three-dimensional reconstruction of technical surfaces

    NASA Astrophysics Data System (ADS)

    Kettel, Johannes; Reinecke, Holger; Müller, Claas

    2016-04-01

    In microsystems technology quality control of micro structured surfaces with different surface properties is playing an ever more important role. The process of quality control incorporates three-dimensional (3D) reconstruction of specularand diffusive reflecting technical surfaces. Due to the demand on high measurement accuracy and data acquisition rates, structured light optical microscopy has become a valuable solution to solve this problem providing high vertical and lateral resolution. However, 3D reconstruction of specular reflecting technical surfaces still remains a challenge to optical measurement principles. In this paper we present a measurement principle based on structured light optical microscopy which enables 3D reconstruction of specular- and diffusive reflecting technical surfaces. It is realized using two light paths of a stereo microscope equipped with different magnification levels. The right optical path of the stereo microscope is used to project structured light onto the object surface. The left optical path is used to capture the structured illuminated object surface with a camera. Structured light patterns are generated by a Digital Light Processing (DLP) device in combination with a high power Light Emitting Diode (LED). Structured light patterns are realized as a matrix of discrete light spots to illuminate defined areas on the object surface. The introduced measurement principle is based on multiple and parallel processed point measurements. Analysis of the measured Point Spread Function (PSF) by pattern recognition and model fitting algorithms enables the precise calculation of 3D coordinates. Using exemplary technical surfaces we demonstrate the successful application of our measurement principle.

  15. Transmitting part of optical interconnect module with three-dimensional optical path

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chi; Shen, Po-Kuan; Chen, Chin-Ta; Hsiao, Hsu-Liang; Chang, Yen-Chung; Lee, Yun-Chih; Wu, Mount-Learn

    2012-01-01

    Transmitting part of optical interconnection module with three-dimensional optical path is demonstrated. In this module, electronic-device and photonic-device are separated on the front and rear sides of SOI substrate. The key component of this module are 45° micro reflector and trapezoidal waveguide which are fabricated by single-step wet etching on front side of SOI substrate. High-frequency transmission lines for 4-channel × 2.5-GHz and VCSELs are constructed on rear side of SOI substrate. In this module, the measurement result of optical coupling efficiency is -8.09 dB, and the 1-dB alignment tolerances are 25 μm and 26 μm on the horizontal and vertical direction, respectively. Eye diagrams are measured at data rate of 1-Gbps and 2.5-Gbps with the 215-1 PRBS pattern and the clearly open eyes are demonstrated.

  16. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-01-01

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process. PMID:24810563

  17. Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data

    NASA Astrophysics Data System (ADS)

    Duan, Qi; Angelini, Elsa D.; Herz, Susan L.; Ingrassia, Christopher M.; Gerard, Olivier; Costa, Kevin D.; Holmes, Jeffrey W.; Laine, Andrew F.

    2005-04-01

    With relatively high frame rates and the ability to acquire volume data sets with a stationary transducer, 3D ultrasound systems, based on matrix phased array transducers, provide valuable three-dimensional information, from which quantitative measures of cardiac function can be extracted. Such analyses require segmentation and visual tracking of the left ventricular endocardial border. Due to the large size of the volumetric data sets, manual tracing of the endocardial border is tedious and impractical for clinical applications. Therefore the development of automatic methods for tracking three-dimensional endocardial motion is essential. In this study, we evaluate a four-dimensional optical flow motion tracking algorithm to determine its capability to follow the endocardial border in three dimensional ultrasound data through time. The four-dimensional optical flow method was implemented using three-dimensional correlation. We tested the algorithm on an experimental open-chest dog data set and a clinical data set acquired with a Philips' iE33 three-dimensional ultrasound machine. Initialized with left ventricular endocardial data points obtained from manual tracing at end-diastole, the algorithm automatically tracked these points frame by frame through the whole cardiac cycle. A finite element surface was fitted through the data points obtained by both optical flow tracking and manual tracing by an experienced observer for quantitative comparison of the results. Parameterization of the finite element surfaces was performed and maps displaying relative differences between the manual and semi-automatic methods were compared. The results showed good consistency between manual tracing and optical flow estimation on 73% of the entire surface with fewer than 10% difference. In addition, the optical flow motion tracking algorithm greatly reduced processing time (about 94% reduction compared to human involvement per cardiac cycle) for analyzing cardiac function in three-dimensional

  18. Estimation of trapping position in three-dimensional off-axis trapping with optical vortices

    NASA Astrophysics Data System (ADS)

    Ando, Taro; Otsu, Tomoko; Takiguchi, Yu; Ohtake, Yoshiyuki; Toyoda, Haruyoshi; Itoh, Hiroyasu

    2014-08-01

    Dynamics of micrometer-sized dielectric objects can be controlled by optical tweezers with scanning light, however, the trapped objects fail to track the scan when drag exceeds the trapping by too quick movement. On the other hand, optical vortices (OVs), which have a property of carrying angular momenta, can directly control torque on objects rather than their position. Laguerre-Gaussian (LG) beams are the most familiar examples of OV and have been studied extensively so far. Revolution of the objects trapped by the LG beams provides typical models of nonequilibrium statistical system, but stable mid-water trapping by the LG beams becomes essential to evaluate physical properties of the system without extrinsic hydrodynamic effects,. Nevertheless, off-axis revolutions of small objects trapped in mid-water by the LG beams have not yet been established with secure evidences. Here we report stable off-axis trapping of dielectric spheres in mid-water using high-quality LG beams generated by a holographic complex-amplitude modulation method. Direct evidence of the three-dimensional off-axis LG trapping was established via estimating the trapping position by measuring the change of revolution radii upon pressing the spheres onto glass walls. Resultantly, the axial trapping position was determined as about half the wavelength behind the beam waist position. This result provides a direct scientific evidence for possibility of off-axis three-dimensional trapping with a single LG beam, moreover, suggests applications as powerful tools for studying energy-conversion mechanisms and nonequilibrium nature in biological molecules under torque.

  19. New advances in three-dimensional controlled-sourceelectromagnetic inversion

    SciTech Connect

    Commer, Michael; Newman, Gregory A.

    2007-05-19

    New techniques for improving both the computational andimaging performance of the three dimensional (3D) electromagnetic inverseproblem are presented. A non-linear conjugate gradient algorithm is theframework of the inversion scheme. Full wave equation modelling forcontrolled sources is utilized for data simulation along with anefficient gradient computation approach for the model update. Improvingthe modelling efficiency of the 3D finite difference method involves theseparation of the potentially large modelling mesh, defining the set ofmodel parameters, from the computational finite difference meshes usedfor field simulation. Grid spacings and thus overall grid sizes can bereduced and optimized according to source frequencies and source-receiveroffsets of a given input data set. Further computational efficiency isobtained by combining different levels of parallelization. While theparallel scheme allows for an arbitrarily large number of parallel tasks,the relative amount of message passing is kept constant. Imageenhancement is achieved by model parameter transformation functions,which enforce bounded conductivity parameters and thus prevent parameterovershoots. Further, a remedy for treating distorted data within theinversion process is presented. Data distortions simulated here includepositioning errors and a highly conductive overburden, hiding the desiredtarget signal. The methods are demonstrated using both synthetic andfield data.

  20. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation.

    PubMed

    Wallace, Vincent P; Macpherson, Emma; Zeitler, J Axel; Reid, Caroline

    2008-12-01

    Terahertz electromagnetic radiation has already been shown to have a wide number of uses. We consider specific applications of terahertz time-domain imaging that are inherently three-dimensional. This paper highlights the ability of terahertz radiation to reveal subsurface information as we exploit the fact that the radiation can penetrate optically opaque materials such as clothing, cardboard, plastics, and to some extent biological tissue. Using interactive science publishing tools, we concentrate on full three-dimensional terahertz data from three specific areas of application, namely, security, pharmaceutical, and biomedical. PMID:19037404

  1. Finite-element model for three-dimensional optical scattering problems.

    PubMed

    Wei, Xiuhong; Wachters, Arthur J; Urbach, H Paul

    2007-03-01

    We present a three-dimensional model based on the finite-element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals and to many configurations such as an isolated scatterer in a multilayer, bi-gratings, and crystals. We discuss the application of the model to near-field optical recording. PMID:17301875

  2. Optical chracterization and lasing in three-dimensional opal-structures

    NASA Astrophysics Data System (ADS)

    Nishijima, Yoshiaki; Juodkazis, Saulius

    2015-06-01

    The lasing properties of dye-permeated opal pyramidal structures are compared with the lasing properties of opal films. The opal-structures studied were made by sedimentation of micro-spheres and by sol-gel inversion of the direct-opals. Forced-sedimentation by centrifugation inside wet-etched pyramidal pits on silicon surfaces was used to improve the structural quality of the direct-opal structures. Single crystalline pyramids with the base length of ˜ 100 µm were formed by centrifuged sedimentation. The lasing of dyes in the well-ordered crystalline and poly-crystalline structures showed a distinct multi-modal spectrum. Gain via a distributed feedback was responsible for the lasing since the photonic band gap was negligible in a low refractive index contrast medium; the indices of silica and ethylene glycol are 1.46 and 1.42, respectively. A disordered lasing spectrum was observed from opal films with structural defects and multi-domain regions. The three dimensional structural quality of the structures was assessed by in situ optical diffraction and confocal fluorescence. A correlation between the lasing spectrum and the three-dimensional structural quality was established. Lasing threshold of a sulforhodamine dye in a silica opal was controlled via Förster mechanism by addition of a donor rhodamine 6G dye. The lasing spectrum had a well-ordered modal structure which was spectrally stable at different excitation powers. The sharp lasing threshold characterized by a spontaneous emission coupling ratio β ' 10-2 was obtained.

  3. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    NASA Astrophysics Data System (ADS)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  4. Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G.; Ko, Tony; Schuman, Joel S.; Kowalczyk, Andrzej; Duker, Jay S.

    2007-01-01

    Purpose To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Methods Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of ~2 μm compared with standard 10-μm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Results Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Conclusion Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable

  5. Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography

    PubMed Central

    Gargesha, Madhusudhana; Shalev, Ronny; Prabhu, David; Tanaka, Kentaro; Rollins, Andrew M.; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2015-01-01

    Abstract. We developed robust, three-dimensional methods, as opposed to traditional A-line analysis, for estimating the optical properties of calcified, fibrotic, and lipid atherosclerotic plaques from in vivo coronary artery intravascular optical coherence tomography clinical pullbacks. We estimated attenuation μt and backscattered intensity I0 from small volumes of interest annotated by experts in 35 pullbacks. Some results were as follows: noise reduction filtering was desirable, parallel line (PL) methods outperformed individual line methods, root mean square error was the best goodness-of-fit, and α-trimmed PL (α-T-PL) was the best overall method. Estimates of μt were calcified (3.84±0.95  mm−1), fibrotic (2.15±1.08  mm−1), and lipid (9.99±2.37  mm−1), similar to those in the literature, and tissue classification from optical properties alone was promising. PMID:26158087

  6. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-Gang; Li, Yannian; Bisoyi, Hari Krishna; Wang, Ling; Bunning, Timothy J.; Li, Quan

    2016-03-01

    Chiral nematic liquid crystals—otherwise referred to as cholesteric liquid crystals (CLCs)—are self-organized helical superstructures that find practical application in, for example, thermography, reflective displays, tuneable colour filters and mirrorless lasing. Dynamic, remote and three-dimensional control over the helical axis of CLCs is desirable, but challenging. For example, the orientation of the helical axis relative to the substrate can be changed from perpendicular to parallel by applying an alternating-current electric field, by changing the anchoring conditions of the substrate, or by altering the topography of the substrate’s surface; separately, in-plane rotation of the helical axis parallel to the substrate can be driven by a direct-current field. Here we report three-dimensional manipulation of the helical axis of a CLC, together with inversion of its handedness, achieved solely with a light stimulus. We use this technique to carry out light-activated, wide-area, reversible two-dimensional beam steering—previously accomplished using complex integrated systems and optical phased arrays. During the three-dimensional manipulation by light, the helical axis undergoes, in sequence, a reversible transition from perpendicular to parallel, followed by in-plane rotation on the substrate surface. Such reversible manipulation depends on experimental parameters such as cell thickness, surface anchoring condition, and pitch length. Because there is no thermal relaxation, the system can be driven either forwards or backwards from any light-activated intermediate state. We also describe reversible photocontrol between a two-dimensional diffraction state, a one-dimensional diffraction state and a diffraction ‘off’ state in a bilayer cell.

  7. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light.

    PubMed

    Zheng, Zhi-gang; Li, Yannian; Bisoyi, Hari Krishna; Wang, Ling; Bunning, Timothy J; Li, Quan

    2016-03-17

    Chiral nematic liquid crystals--otherwise referred to as cholesteric liquid crystals (CLCs)--are self-organized helical superstructures that find practical application in, for example, thermography, reflective displays, tuneable colour filters and mirrorless lasing. Dynamic, remote and three-dimensional control over the helical axis of CLCs is desirable, but challenging. For example, the orientation of the helical axis relative to the substrate can be changed from perpendicular to parallel by applying an alternating-current electric field, by changing the anchoring conditions of the substrate, or by altering the topography of the substrate's surface; separately, in-plane rotation of the helical axis parallel to the substrate can be driven by a direct-current field. Here we report three-dimensional manipulation of the helical axis of a CLC, together with inversion of its handedness, achieved solely with a light stimulus. We use this technique to carry out light-activated, wide-area, reversible two-dimensional beam steering--previously accomplished using complex integrated systems and optical phased arrays. During the three-dimensional manipulation by light, the helical axis undergoes, in sequence, a reversible transition from perpendicular to parallel, followed by in-plane rotation on the substrate surface. Such reversible manipulation depends on experimental parameters such as cell thickness, surface anchoring condition, and pitch length. Because there is no thermal relaxation, the system can be driven either forwards or backwards from any light-activated intermediate state. We also describe reversible photocontrol between a two-dimensional diffraction state, a one-dimensional diffraction state and a diffraction 'off' state in a bilayer cell. PMID:26950601

  8. Three dimensional visualization to support command and control

    SciTech Connect

    Van Slambrook, G.A.

    1997-04-01

    Virtual reality concepts are changing the way one thinks about and with computers. The concepts have already proven their potential usefulness in a broad range of applications. This research was concerned with exploring and demonstrating the utility of virtual reality in robotics and satellite command and control applications. The robotics work addressed the need to quickly build accurate graphical models of physical environments by allowing a user to interactively build a model of a remote environment by superimposing stereo graphics onto live stereo video. The satellite work addressed the fusion of multiple data sets or models into one synergistic display for more effective training, design, and command and control of satellite systems.

  9. Three-dimensional representation of late-arriving photons for detecting inhomogeneities in diffuse optical tomography

    SciTech Connect

    Potlov, A Yu; Proskurin, S G; Frolov, S V

    2014-02-28

    A method for rapid detection of absorbing inhomogeneity in a strongly scattering medium having the properties of a biological tissue before the image reconstruction is described based on the principles of diffuse optical tomography. The method is based on preliminary processing of a three-dimensional surface obtained from the set of time-resolved data in the Cartesian coordinate system, followed by its conformal transformation into two surfaces in the cylindrical coordinate system. A specific feature of the method is the use of late-arriving photons, scattered and diffusely transmitted through an optically turbid object. (optical tomography)

  10. Optical asymmetric cryptography using a three-dimensional space-based model

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Chen, Xudong

    2011-07-01

    In this paper, we present optical asymmetric cryptography combined with a three-dimensional (3D) space-based model. An optical multiple-random-phase-mask encoding system is developed in the Fresnel domain, and one random phase-only mask and the plaintext are combined as a series of particles. Subsequently, the series of particles is translated along an axial direction, and is distributed in a 3D space. During image decryption, the robustness and security of the proposed method are further analyzed. Numerical simulation results are presented to show the feasibility and effectiveness of the proposed optical image encryption method.

  11. On three-dimensional reconstruction of optically thin solar emission sources

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Thomas, R. J.; Wade, C.

    1977-01-01

    Calculations are given for constructing the three dimensional distribution of optically thin EUV emission sources associated with solar active regions, from two dimensional observations (projections) recorded by the spectroheliograph on the OSO 7 satellite. The relation of the method to other image reconstruction methods is briefly discussed as well as the special requirements imposed in the solar case such as a knowledge of the true solar rotation function. A useful correlation criterion for establishing the physical validity of solutions is given.

  12. Three-dimensional magnetic trap lattice on an atom chip with an optically induced fictitious magnetic field

    SciTech Connect

    Yan Hui

    2010-05-15

    A robust type of three-dimensional magnetic trap lattice on an atom chip combining optically induced fictitious magnetic field with microcurrent-carrying wires is proposed. Compared to the regular optical lattice, the individual trap in this three-dimensional magnetic trap lattice can be easily addressed and manipulated.

  13. Controlling tokamak geometry with three-dimensional magnetic perturbations

    SciTech Connect

    Bird, T. M.; Hegna, C. C.

    2014-10-15

    It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

  14. Design of virtual three-dimensional instruments for sound control

    NASA Astrophysics Data System (ADS)

    Mulder, Axel Gezienus Elith

    An environment for designing virtual instruments with 3D geometry has been prototyped and applied to real-time sound control and design. It enables a sound artist, musical performer or composer to design an instrument according to preferred or required gestural and musical constraints instead of constraints based only on physical laws as they apply to an instrument with a particular geometry. Sounds can be created, edited or performed in real-time by changing parameters like position, orientation and shape of a virtual 3D input device. The virtual instrument can only be perceived through a visualization and acoustic representation, or sonification, of the control surface. No haptic representation is available. This environment was implemented using CyberGloves, Polhemus sensors, an SGI Onyx and by extending a real- time, visual programming language called Max/FTS, which was originally designed for sound synthesis. The extension involves software objects that interface the sensors and software objects that compute human movement and virtual object features. Two pilot studies have been performed, involving virtual input devices with the behaviours of a rubber balloon and a rubber sheet for the control of sound spatialization and timbre parameters. Both manipulation and sonification methods affect the naturalness of the interaction. Informal evaluation showed that a sonification inspired by the physical world appears natural and effective. More research is required for a natural sonification of virtual input device features such as shape, taking into account possible co- articulation of these features. While both hands can be used for manipulation, left-hand-only interaction with a virtual instrument may be a useful replacement for and extension of the standard keyboard modulation wheel. More research is needed to identify and apply manipulation pragmatics and movement features, and to investigate how they are co-articulated, in the mapping of virtual object

  15. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  16. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    PubMed Central

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations. PMID:27386838

  17. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures.

    PubMed

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-01-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations. PMID:27386838

  18. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-07-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations.

  19. Magnification of three-dimensional optical image without distortion in dynamic holographic projection

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Wang, Yongtian; Liu, Juan; Li, Xin; Xie, Jinghui

    2011-11-01

    We propose a simple technique to enlarge the reconstructed three-dimensional (3D) optical image and shorten the reconstructed distance simultaneously in real time holographic projection using a conventional lens or concave reflecting mirror based on the optical reversibility theorem. The main factors causing the longitudinal and transversal distortions of a 3D enlarged optical image are analyzed, and the 3D optical images are enlarged where severe distortions are precompensated by constructing objects with distortions directly instead of computing the precompensated phase iteratively so that it does not increase the computing time. Numerical simulations and optical experiments are performed for magnifying a simple cubic model. The results show that a 3D enlarged optical image is achieved successfully without any distortion and the reconstructed distance is shortened simultaneously. It is believed that this proposed technique is useful for 3D real time holographic projection in the future.

  20. Security authentication with a three-dimensional optical phase code using random forest classifier.

    PubMed

    Markman, Adam; Carnicer, Artur; Javidi, Bahram

    2016-06-01

    An object with a unique three-dimensional (3D) optical phase mask attached is analyzed for security and authentication. These 3D optical phase masks are more difficult to duplicate or to have a mathematical formulation compared with 2D masks and thus have improved security capabilities. A quick response code was modulated using a random 3D optical phase mask generating a 3D optical phase code (OPC). Due to the scattering of light through the 3D OPC, a unique speckle pattern based on the materials and structure in the 3D optical phase mask is generated and recorded on a CCD device. Feature extraction is performed by calculating the mean, variance, skewness, kurtosis, and entropy for each recorded speckle pattern. The random forest classifier is used for authentication. Optical experiments demonstrate the feasibility of the authentication scheme. PMID:27409445

  1. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units.

    PubMed

    Uzel, Sebastien G M; Platt, Randall J; Subramanian, Vidya; Pearl, Taylor M; Rowlands, Christopher J; Chan, Vincent; Boyer, Laurie A; So, Peter T C; Kamm, Roger D

    2016-08-01

    Motor units are the fundamental elements responsible for muscle movement. They are formed by lower motor neurons and their muscle targets, synapsed via neuromuscular junctions (NMJs). The loss of NMJs in neurodegenerative disorders (such as amyotrophic lateral sclerosis or spinal muscle atrophy) or as a result of traumatic injuries affects millions of lives each year. Developing in vitro assays that closely recapitulate the physiology of neuromuscular tissues is crucial to understand the formation and maturation of NMJs, as well as to help unravel the mechanisms leading to their degeneration and repair. We present a microfluidic platform designed to coculture myoblast-derived muscle strips and motor neurons differentiated from mouse embryonic stem cells (ESCs) within a three-dimensional (3D) hydrogel. The device geometry mimics the spinal cord-limb physical separation by compartmentalizing the two cell types, which also facilitates the observation of 3D neurite outgrowth and remote muscle innervation. Moreover, the use of compliant pillars as anchors for muscle strips provides a quantitative functional readout of force generation. Finally, photosensitizing the ESC provides a pool of source cells that can be differentiated into optically excitable motor neurons, allowing for spatiodynamic, versatile, and noninvasive in vitro control of the motor units. PMID:27493991

  2. Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units

    PubMed Central

    Uzel, Sebastien G. M.; Platt, Randall J.; Subramanian, Vidya; Pearl, Taylor M.; Rowlands, Christopher J.; Chan, Vincent; Boyer, Laurie A.; So, Peter T. C.; Kamm, Roger D.

    2016-01-01

    Motor units are the fundamental elements responsible for muscle movement. They are formed by lower motor neurons and their muscle targets, synapsed via neuromuscular junctions (NMJs). The loss of NMJs in neurodegenerative disorders (such as amyotrophic lateral sclerosis or spinal muscle atrophy) or as a result of traumatic injuries affects millions of lives each year. Developing in vitro assays that closely recapitulate the physiology of neuromuscular tissues is crucial to understand the formation and maturation of NMJs, as well as to help unravel the mechanisms leading to their degeneration and repair. We present a microfluidic platform designed to coculture myoblast-derived muscle strips and motor neurons differentiated from mouse embryonic stem cells (ESCs) within a three-dimensional (3D) hydrogel. The device geometry mimics the spinal cord–limb physical separation by compartmentalizing the two cell types, which also facilitates the observation of 3D neurite outgrowth and remote muscle innervation. Moreover, the use of compliant pillars as anchors for muscle strips provides a quantitative functional readout of force generation. Finally, photosensitizing the ESC provides a pool of source cells that can be differentiated into optically excitable motor neurons, allowing for spatiodynamic, versatile, and noninvasive in vitro control of the motor units. PMID:27493991

  3. Three-Dimensional Control of DNA Hybridization by Orthogonal Two-Color Two-Photon Uncaging.

    PubMed

    Fichte, Manuela A H; Weyel, Xenia M M; Junek, Stephan; Schäfer, Florian; Herbivo, Cyril; Goeldner, Maurice; Specht, Alexandre; Wachtveitl, Josef; Heckel, Alexander

    2016-07-25

    We successfully introduced two-photon-sensitive photolabile groups ([7-(diethylamino)coumarin-4-yl]methyl and p-dialkylaminonitrobiphenyl) into DNA strands and demonstrated their suitability for three-dimensional photorelease. To visualize the uncaging, we used a fluorescence readout based on double-strand displacement in a hydrogel and in neurons. Orthogonal two-photon uncaging of the two cages is possible, thus enabling complex scenarios of three-dimensional control of hybridization with light. PMID:27294300

  4. High-beamforming power-code-multiplexed optical scanner for three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Riza, Nabeel A.

    2003-11-01

    Three dimensional (3-D) displays play an important role in the field of entertainment. Today, research is being conducted to produce 3-D displays to meet the complex needs of high-functionality full motion 3D displays at reasonable cost, but without glasses, complicated viewing arrangements or restricted fields of view. Other applications for 3-D displays include but are not limited to CAD/Design simulation, advanced data representation, displaying complex 3-D information for automotive design, medical imaging, advanced navigation displays, scientific visualization, and advertising. The key element in all these applications is an optical beam scanner that can display 3-D images for large viewing angles. Our proposed Code Multiplexed Optical Scanner (C-MOS) can fulfill all these requirements with its high beamforming power capabilities. Our proposed experiment demonstrates three dimensional (3-D) beam scanning with large angles (e.g., > 160°), large centimeter size aperture, and scanning speed of <300 μsec. The robust construction and simple operation of the C-MOS makes it very useful and attractive for deployment in the field of entertainment, defense and medical imaging. Here we report the application of the C-MOS for three dimensional (3-D) displays.

  5. Experimental Study of the Temporal Nature of an Actively Controlled Three Dimensional Turret Wake

    NASA Astrophysics Data System (ADS)

    Shea, Patrick; Glauser, Mark

    2011-11-01

    Experimental measurements have been performed to characterize the actively controlled wake of a three-dimensional, non- conformal turret which is a bluff body commonly used for housing optical systems on airborne platforms. As a bluff body, turrets can generate strong turbulent flow fields that degrade the performance of the optical systems and the aircraft. Experiments were performed in a low-speed wind tunnel at Syracuse University using particle image velocimetry and dynamic pressure measurements with the objective of developing a better understanding of the spatial and temporal nature of the wake flow field. Active control was achieved using dynamic suction in the vicinity of the turret aperture and was found to have a significant impact on the structure of the wake as well as the temporal characteristics of the flow field. With a better understanding of the wake characteristics, closed-loop, active flow control systems will be developed to help reduce fluctuating loading and aero- optical distortions associated with the turbulent flow field.

  6. Review on recent progress of three-dimensional optical photonic crystal

    SciTech Connect

    Hsieh, Mei-Li; Kuang, Ping; Bur, James A.; Lin, Shawn-Yu; John, Sajeev

    2014-03-31

    Over the past two decades, the field of photonic-crystals has become one of the most influential realms of contemporary optics. In this paper, we will review two recent experimental progresses in three-dimensional photonic-crystal operating in optical wavelengths. The first is the observation of anomalous light-refraction, an acutely negative refraction, in a 3D photonic-crystal for light trapping, guiding and near-unity absorption. The second is the observation of quasi-coherent thermal emission from an all-metallic 3D photonic-crystal at elevated temperatures.

  7. DNA origami-directed, discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality.

    PubMed

    Dai, Gaole; Lu, Xuxing; Chen, Zhong; Meng, Chun; Ni, Weihai; Wang, Qiangbin

    2014-04-23

    Discrete, three-dimensional (3D) gold nanoparticle (AuNP) tetrahedron nanoarchitectures are successfully self-assembled with DNA origami as template with high purity (>85%). A distinct plasmonic chiral response is experimentally observed from the AuNP tetrahedron nanoarchitectures and appears in a configuration-dependent manner. The chiral optical properties are then rationally engineered by modifying the structural parameters including the AuNP size and interparticle distance. Theoretical study of the AuNP tetrahedron nanoarchitectures shows the dependence of the chiral optical property on the AuNP size and interparticle distance, consistent with the ensemble averaged measurements. PMID:24716524

  8. Optical beam deflection noncontact atomic force microscope optimized with three-dimensional beam adjustment mechanism

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kousuke; Ochi, Taketoshi; Uchihashi, Takayuki; Ashino, Makoto; Sugawara, Yasuhiro; Suehira, Nobuhito; Morita, Seizo

    2000-01-01

    We present a design and performance of an optical beam deflection noncontact atomic force microscope (nc-AFM). The optical deflection detection system can be optimized by the three-dimensional beam position adjustment mechanism (the slider which mounts laser diode module, the spherical rotors with mirror and the cylinder which mounts quadrant photodiode) using inertial stepping motors in an ultrahigh vacuum (UHV). The samples and cantilevers are easily exchanged in UHV. The performance of the instrument is demonstrated with the atomically resolved nc-AFM images for various surfaces such as Si(111)7×7, Cu(111), TiO2(110), and thymine/highly oriented pyrolytic graphite.

  9. Three-dimensional arrays of submicron particles generated by a four-beam optical lattice.

    PubMed

    Slama-Eliau, B N; Raithel, G

    2011-05-01

    Using an optical lattice formed by four laser beams, we obtain three-dimensional light-induced crystals of 490-nm-diameter polystyrene spheres in solution. The setup yields face-centered orthorhombic optical crystals of a packing density of about 40%. An alignment procedure is developed in which the crystals are first prepared near a sample wall, and then in the bulk of the sample. A series of tests is performed that demonstrate particle trapping in all three dimensions. For one case, the trapping force is measured, and good agreement with a simple theoretical model is found. Possible applications are discussed. PMID:21728533

  10. Multi-particle three-dimensional coordinate estimation in real-time optical manipulation

    NASA Astrophysics Data System (ADS)

    Dam, J. S.; Perch-Nielsen, I.; Palima, D.; Gluckstad, J.

    2009-11-01

    We have previously shown how stereoscopic images can be obtained in our three-dimensional optical micromanipulation system [J. S. Dam et al, Opt. Express 16, 7244 (2008)]. Here, we present an extension and application of this principle to automatically gather the three-dimensional coordinates for all trapped particles with high tracking range and high reliability without requiring user calibration. Through deconvolving of the red, green, and blue colour planes to correct for bleeding between colour planes, we show that we can extend the system to also utilize green illumination, in addition to the blue and red. Applying the green colour as on-axis illumination yields redundant information for enhanced error correction, which is used to verify the gathered data, resulting in reliable coordinates as well as producing visually attractive images.

  11. Three-dimensional analysis of optical forces generated by an active tractor beam using radial polarization.

    PubMed

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2014-02-10

    We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam. Trajectories, in both the transverse plane and the longitudinal direction, are analyzed showing that the behavior of the optical conveyor can be optimized by conveniently choosing the configuration of the mask of the two annular pupils (inner and outer radius of the two rings) in order to trap and transport all particles at the focal plane. PMID:24663619

  12. Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging.

    PubMed

    Chen, Wen; Chen, Xudong

    2011-05-01

    In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. PMID:21643154

  13. Dynamic control of polarization-inverted modes in three-dimensionally trapped multiple nanogaps

    SciTech Connect

    Tamura, Mamoru; Iida, Takuya

    2015-12-28

    We propose a guiding principle for the dynamic control of polarization-inverted modes in multiple nanogaps for unconventional optical transitions of molecules at arbitrary three-dimensional spatial positions. Based on our developed self-consistent theory for the optical assembly of nanoparticles (NPs), we clarified that spherical silver NPs can be optically trapped and aligned in the light-propagating direction via longitudinally polarized light; they form a rod-like nano-composite with multiple nanogaps. During trapping, there is a possibility that an additional irradiation of linearly polarized far-field light may excite the bonding and anti-bonding dark plasmon modes with low radiative decay rate of several meV via cancellation of inverted polarization. Our finding reveals that not only the steep change in the enhanced intensity of light field but also the phase inversion of light field between the dynamically formed nanogaps will pave the way to the highly sensitive sensors for molecules, the unconventional chemical reactions, and so on.

  14. Adaptive optics enables three-dimensional single particle tracking at the sub-millisecond scale

    NASA Astrophysics Data System (ADS)

    Juette, Manuel F.; Rivera-Molina, Felix E.; Toomre, Derek K.; Bewersdorf, Joerg

    2013-04-01

    We present the integration of an adaptive optics element into a feedback-driven single particle tracking microscope. Our instrument captures three-dimensional (3D) trajectories with down to 130 μs temporal resolution for dynamic studies on the nanoscale. Our 3D beam steering approach tracks particles over an axial range of >6 μm with ˜2 ms mechanical response times and isolates the sample from any tracking motion. Tracking of transport vesicles containing Alexa488-labeled transferrin glycoprotein in living cells demonstrates the speed and sensitivity of our instrument.

  15. Three-dimensional shape measurement with sinusoidal phase-modulating fiber-optic interferometer fringe

    NASA Astrophysics Data System (ADS)

    Lv, Changrong; Duan, Fajie; Fu, Xiao; Huang, Tingting

    2016-05-01

    A three-dimensional (3-D) shape measurement system using a fiber-optic interferometer fringe projector is presented and demonstrated. The system utilizes sinusoidal phase shifting interferometry to detect the desired phase which is improved by introducing constant scaling factors from linear phase shift interferometry algorithm, and the relationship between the modulation voltage and the phase modulation coefficient is analyzed; the system also utilizes the reflection signal to realize measurement of the disturbance and feed back to the modulated signal. Practical experiments validate the feasibility of this method. The phase accuracy is nearly 37.6 mrad and the measurement error is about 10 nm.

  16. Unconventional optical Tamm states in metal-terminated three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Korovin, Alexander V.; Romanov, Sergei G.

    2016-03-01

    Unconventional optical Tamm surface states have been demonstrated in transmission and reflectance spectra of three-dimensional opal photonic crystals coated by thin metal films. These states appear in registry with diffraction resonances and localize the electromagnetic energy in asymmetric resonators formed by stacks of lattice planes and metal semishells. Tamm defect states provide the bypass for light at the edges of the Bragg diffraction resonances and thus reduce the diffraction efficiency. Despite the hidden nature of this effect, its magnitude is comparable to the extraordinary transmission associated with the surface-plasmon polaritons that are simultaneously excited at the surfaces of the corrugated metal films.

  17. Sirolimus-eluting stent fracture detection by three-dimensional optical coherence tomography.

    PubMed

    Okamura, Takayuki; Matsuzaki, Masunori

    2012-03-01

    Stent fracture has emerged as a complication of drug-eluting stent and is now recognized as contributing to in-stent restenosis and possibly stent thrombosis. Although optical coherence tomography (OCT) can detect stent fractures in the absence of circumference struts, it is challenging to visualize stent fractures with only cross-sectional OCT images. We describe two cases of restenosis with stent fracture detected by a novel three-dimensional OCT image reconstruction technique. This technique allows identification of a single stent fracture even in the absence of angiographic signs. PMID:21805594

  18. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  19. Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5

    SciTech Connect

    Chen, R. Y.; Gu, G. D.; Zhang, S. J.; Schneeloch, J. A.; Zhang, C.; Li, Q.; Wang, N. L.

    2015-08-05

    Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak shows up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.

  20. Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5

    DOE PAGESBeta

    Chen, R. Y.; Gu, G. D.; Zhang, S. J.; Schneeloch, J. A.; Zhang, C.; Li, Q.; Wang, N. L.

    2015-08-05

    Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. Additionally, an extremely sharp peak shows upmore » in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.« less

  1. Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5

    NASA Astrophysics Data System (ADS)

    Chen, R. Y.; Zhang, S. J.; Schneeloch, J. A.; Zhang, C.; Li, Q.; Gu, G. D.; Wang, N. L.

    2015-08-01

    Three-dimensional (3D) topological Dirac materials have been under intensive study recently. The layered compound ZrTe5 has been suggested to be one such material as a result of transport and angle-resolved photoemission spectroscopy experiments. Here, we perform infrared reflectivity measurements to investigate the underlying physics of this material. The derived optical conductivity increases linearly with frequency below normal interband transitions, which provides optical spectroscopic proof of a 3D Dirac semimetal. In addition, the plasma edge shifts dramatically to lower energy upon temperature cooling, which might be due to the shrinking of the lattice parameters. In addition, an extremely sharp peak shows up in the frequency-dependent optical conductivity, indicating the presence of a Van Hove singularity in the joint density of state.

  2. Physical origin of the high energy optical response of three dimensional photonic crystals.

    PubMed

    Dorado, Luis A; Depine, Ricardo A; Lozano, Gabriel; Míguez, Hernán

    2007-12-24

    The physical origin of the optical response observed in three-dimensional photonic crystals when the photon wavelength is equal or lower than the lattice parameter still remains unsatisfactorily explained and is the subject of an intense and interesting debate. Herein we demonstrate for the first time that all optical spectra features in this high energy region of photonic crystals arise from electromagnetic resonances within the ordered array, modified by the interplay between these resonances with the opening of diffraction channels, the presence of imperfections and finite size effects. All these four phenomena are taken into account in our theoretical approach to the problem, which allows us to provide a full description of the observed optical response based on fundamental phenomena as well as to attain fair fittings of experimental results. PMID:19551072

  3. Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing

    NASA Astrophysics Data System (ADS)

    McPhail, Dennis; Straub, Martin; Gu, Min

    2005-08-01

    In this letter, we report on an optically tunable three-dimensional photonic crystal that exhibits main gaps in the 3-4μm range. The photonic crystal is manufactured via a femtosecond direct writing technique. Optical tuning is achieved by a luminary polling technique with a low-power polarized laser beam. The refractive index variation resulting from liquid-crystal rotation causes a shift in the photonic band gap of up to 65 nm with an extinction of transmission of up to 70% in the stacking direction. Unlike other liquid-crystal tuning techniques where a pregenerated structure is infiltrated, this optical tuning method is a one-step process that allows arbitrary structures to be written into a solid liquid-crystal-polymer composite and leads to a high dielectric contrast.

  4. In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm

    PubMed Central

    Girard, Michaël J. A.; Strouthidis, Nicholas G.; Desjardins, Adrien; Mari, Jean Martial; Ethier, C. Ross

    2013-01-01

    Measurement of optic nerve head (ONH) deformations could be useful in the clinical management of glaucoma. Here, we propose a novel three-dimensional tissue-tracking algorithm designed to be used in vivo. We carry out preliminary verification of the algorithm by testing its accuracy and its robustness. An algorithm based on digital volume correlation was developed to extract ONH tissue displacements from two optical coherence tomography (OCT) volumes of the ONH (undeformed and deformed). The algorithm was tested by applying artificial deformations to a baseline OCT scan while manipulating speckle noise, illumination and contrast enhancement. Tissue deformations determined by our algorithm were compared with the known (imposed) values. Errors in displacement magnitude, orientation and strain decreased with signal averaging and were 0.15 µm, 0.15° and 0.0019, respectively (for optimized algorithm parameters). Previous computational work suggests that these errors are acceptable to provide in vivo characterization of ONH biomechanics. Our algorithm is robust to OCT speckle noise as well as to changes in illumination conditions, and increasing signal averaging can produce better results. This algorithm has potential be used to quantify ONH three-dimensional strains in vivo, of benefit in the diagnosis and identification of risk factors in glaucoma. PMID:23883953

  5. Three-dimensional printed optical phantoms with customized absorption and scattering properties.

    PubMed

    Diep, Phuong; Pannem, Sanjana; Sweer, Jordan; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren

    2015-11-01

    Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process. A wide range of physiologically relevant optical properties was demonstrated with an average repeatability within 11.5% for µa and 7.71% for µs`. Additionally, a mouse-simulating phantom, which mimicked both the geometry and optical properties of a hairless mouse with an implanted xenograft tumor, was printed using dual extrusion methods. 3D printed tumor optical properties matched the live tumor with less than 3% error at a wavelength of 659 nm. 3D printing with user defined optical properties may provide a viable method for durable optically diffusive phantoms for instrument characterization and calibration. PMID:26600987

  6. Three-dimensional printed optical phantoms with customized absorption and scattering properties

    PubMed Central

    Diep, Phuong; Pannem, Sanjana; Sweer, Jordan; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren

    2015-01-01

    Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process. A wide range of physiologically relevant optical properties was demonstrated with an average repeatability within 11.5% for µa and 7.71% for µs`. Additionally, a mouse-simulating phantom, which mimicked both the geometry and optical properties of a hairless mouse with an implanted xenograft tumor, was printed using dual extrusion methods. 3D printed tumor optical properties matched the live tumor with less than 3% error at a wavelength of 659 nm. 3D printing with user defined optical properties may provide a viable method for durable optically diffusive phantoms for instrument characterization and calibration. PMID:26600987

  7. Three-dimensional time-resolved optical mammography of the uncompressed breast

    SciTech Connect

    Enfield, Louise C.; Gibson, Adam P.; Everdell, Nicholas L.; Delpy, David T.; Schweiger, Martin; Arridge, Simon R.; Richardson, Caroline; Keshtgar, Mohammad; Douek, Michael; Hebden, Jeremy C

    2007-06-10

    Optical tomography is being developed as a means of detecting and specifying disease in the adult female breast. We present a series of clinical three-dimensional optical images obtained with a 32-channel time-resolvedsystem and a liquid-coupled interface. Patients place their breasts in a hemispherical cup to whichsources and detectors are coupled, and the remaining space is filled with a highly scattering fluid. Acohort of 38 patients has been scanned, with a variety of benign and malignant lesions. Images show that hypervascularization associated with tumors provides very high contrast due to increased absorption by hemoglobin. Only half of the fibroadenomas scanned could be observed, but of those that could bedetected, all but one revealed an apparent increase in blood volume and a decrease in scatter and oxygen saturation.

  8. Atoms in the Lowest Motional Band of a Three-Dimensional Optical Lattice

    SciTech Connect

    Mueller-Seydlitz, T.; Hartl, M.; Brezger, B.; Haensel, H.; Keller, C.; Schnetz, A.; Spreeuw, R.; Pfau, T.; Mlynek, J.

    1997-02-01

    We investigate the storage of atoms in an optical lattice, using light detuned up to 2nm to the blue of an atomic transition. Argon atoms were laser cooled in the metastable state 1s{sub 5}(J=2) and optically pumped to the state 1s{sub 3}(J=0). Subsequently these atoms were confined to the nodes of a three-dimensional interference pattern and stored for up to 1s. We resolved the bands of motion in the lattice using a time-of-flight technique, and observed band-dependent losses leading to the preparation of atoms in the motional ground band. {copyright} {ital 1997} {ital The American Physical Society}

  9. Three-dimensional optical disk data storage via the localized alteration of a format hologram.

    PubMed

    McLeod, R R; Daiber, A J; Honda, T; McDonald, M E; Robertson, T L; Slagle, T; Sochava, S L; Hesselink, L

    2008-05-10

    Three-dimensional optical data storage is demonstrated in an initially homogenous volume by first recording a reflection grating in a holographic photopolymer. This causes the entire volume to be weakly reflecting to a confocal read/write head. Superposition of two or three such gratings with slightly different k-vectors creates a track and layer structure that specialized servo detection optics can use to lock the focus to these deeply-buried tracks. Writing is accomplished by locally modifying the reflectivity of the preexisting hologram. This modification can take the form of ablation, inelastic deformation via heating at the focus, or erasure via linear or two-photon continued polymerization in the previously unexposed fringes of the hologram. Storage by each method is demonstrated with up to eight data layers separated by as little as 12 microns. PMID:18470266

  10. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space

    NASA Astrophysics Data System (ADS)

    Buljan, Hrvoje; Dubcek, Tena; Kennedy, Colin; Lu, Ling; Ketterle, Wolfgang; Soljacic, Marin

    2015-05-01

    We show that Hamiltonians with Weyl points can be realized for ultracold atoms using laser-assisted tunneling in three-dimensional (3D) optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a robust, 3D linear dispersion (e.g., see). They are associated with many interesting topological states of matter, such as Weyl semimetals and chiral Weyl fermions. However, Weyl points have yet to be experimentally observed in any system. We show that this elusive goal is well-within experimental reach with an extension of the techniques recently used to obtain the Harper Hamiltonian. We propose using laser assisted tunneling to create a 3D optical lattice, with specifically designed hopping between lattice sites that breaks inversion symmetry. The design leads to creation of four Weyl points in the Brillouin zone of the lattice, which are verified to be monopoles of the synthetic magnetic field. Supported by the Unity through Knowledge Fund (Grant 5/13).

  11. Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Zhao, Zuhua; Wang, Minjie; Xie, Yanjun; Li, Shidi; Shao, Pengfei; Cheng, Liuquan; Xu, Ronald X.

    2015-12-01

    Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.

  12. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.

    PubMed

    Guo, Rui; Kinzel, Edward C; Li, Yan; Uppuluri, Sreemanth M; Raman, Arvind; Xu, Xianfan

    2010-03-01

    Ridge nanoscale aperture antennas have been shown to be a high transmission nanoscale light source. They provide a small, polarization-dependent near-field optical spot with much higher transmission efficiency than circularly-shaped apertures with similar field confinement. This provides significant motivations to understand the electromagnetic fields in the immediate proximity to the apertures. This paper describes an experimental three-dimensional optical near-field mapping of a bowtie nano-aperture. The measurements are performed using a home-built near-field scanning optical microscopy (NSOM) system. An aluminum coated Si(3)N(4) probe with a 150 nm hole at the tip is used to collect optical signals. Both contact and constant-height scan (CHS) modes are used to measure the optical intensity at different longitudinal distances. A force-displacement curve is used to determine the tip-sample separation distance allowing the optical intensities to be mapped at distances as small as 50 nm and up to micrometer level. The experimental results also demonstrate the polarization dependence of the transmission through the bowtie aperture. Numerical simulations are also performed to compute the aperture's electromagnetic near-field distribution and are shown to agree with the experimental results. PMID:20389507

  13. Optical computed tomography of radiochromic gels for accurate three-dimensional dosimetry

    NASA Astrophysics Data System (ADS)

    Babic, Steven

    In this thesis, three-dimensional (3-D) radiochromic Ferrous Xylenol-orange (FX) and Leuco Crystal Violet (LCV) micelles gels were imaged by laser and cone-beam (Vista(TM)) optical computed tomography (CT) scanners. The objective was to develop optical CT of radiochromic gels for accurate 3-D dosimetry of intensity-modulated radiation therapy (IMRT) and small field techniques used in modern radiotherapy. First, the cause of a threshold dose response in FX gel dosimeters when scanned with a yellow light source was determined. This effect stems from a spectral sensitivity to multiple chemical complexes that are at different dose levels between ferric ions and xylenol-orange. To negate the threshold dose, an initial concentration of ferric ions is needed in order to shift the chemical equilibrium so that additional dose results in a linear production of a coloured complex that preferentially absorbs at longer wavelengths. Second, a low diffusion leuco-based radiochromic gel consisting of Triton X-100 micelles was developed. The diffusion coefficient of the LCV micelle gel was found to be minimal (0.036 + 0.001 mm2 hr-1 ). Although a dosimetric characterization revealed a reduced sensitivity to radiation, this was offset by a lower auto-oxidation rate and base optical density, higher melting point and no spectral sensitivity. Third, the Radiological Physics Centre (RPC) head-and-neck IMRT protocol was extended to 3-D dose verification using laser and cone-beam (Vista(TM)) optical CT scans of FX gels. Both optical systems yielded comparable measured dose distributions in high-dose regions and low gradients. The FX gel dosimetry results were crossed checked against independent thermoluminescent dosimeter and GAFChromicRTM EBT film measurements made by the RPC. It was shown that optical CT scanned FX gels can be used for accurate IMRT dose verification in 3-D. Finally, corrections for FX gel diffusion and scattered stray light in the Vista(TM) scanner were developed to

  14. Extracting Surface Activation Time from the Optically Recorded Action Potential in Three-Dimensional Myocardium

    PubMed Central

    Walton, Richard D.; Smith, Rebecca M.; Mitrea, Bogdan G.; White, Edward; Bernus, Olivier; Pertsov, Arkady M.

    2012-01-01

    Optical mapping has become an indispensible tool for studying cardiac electrical activity. However, due to the three-dimensional nature of the optical signal, the optical upstroke is significantly longer than the electrical upstroke. This raises the issue of how to accurately determine the activation time on the epicardial surface. The purpose of this study was to establish a link between the optical upstroke and exact surface activation time using computer simulations, with subsequent validation by a combination of microelectrode recordings and optical mapping experiments. To simulate wave propagation and associated optical signals, we used a hybrid electro-optical model. We found that the time of the surface electrical activation (tE) within the accuracy of our simulations coincided with the maximal slope of the optical upstroke (tF∗) for a broad range of optical attenuation lengths. This was not the case when the activation time was determined at 50% amplitude (tF50) of the optical upstroke. The validation experiments were conducted in isolated Langendorff-perfused rat hearts and coronary-perfused pig left ventricles stained with either di-4-ANEPPS or the near-infrared dye di-4-ANBDQBS. We found that tF∗ was a more accurate measure of tE than was tF50 in all experimental settings tested (P = 0.0002). Using tF∗ instead of tF50 produced the most significant improvement in measurements of the conduction anisotropy and the transmural conduction time in pig ventricles. PMID:22225795

  15. Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam

  16. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Narayanan

    2004-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  17. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Naryanan

    2005-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  18. Simulation of radiation effects on three-dimensional computer optical memories

    NASA Technical Reports Server (NTRS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  19. Three-dimensional spectral domain optical coherence tomography in chronic exposure to welding arc

    PubMed Central

    Saxena, Sandeep; Mishra, Nibha; Meyer, Carsten H

    2014-01-01

    Three-dimensional spectral domain optical coherence tomography was performed in a 26-year-old man with chronic exposure to welding arc. Advanced macular visualisation provided significant findings of inner segment-ellipsoid zone disruption with the presence of cystoid changes and hyper-reflective material in the area of disruption. The external limiting membrane was intact in both the eyes. C-scan retinal pigment epithelium fit map of the left eye revealed a well-delineated defect whereas the right eye showed a poorly delineated smaller defect. The hyper-reflective material can be hypothesised to originate from the disrupted photoreceptor layer. The hyper-reflective material was more evident in the left eye which could be correlated with more marked diminution of vision and a prominent yellow lesion at the fovea. PMID:24832707

  20. Three-dimensional optical memory using photoluminescence change in Sm-doped sodium borate glass

    SciTech Connect

    Lim, Jinhyong; Lee, Myeongkyu; Kim, Eunkyoung

    2005-05-09

    The feasibility of three-dimensional (3D) optical memory has been demonstrated by utilizing the photoluminescence (PL) spectrum change in a Sm-doped fluoride glass [K. Miura, J. Qiu, S. Fujiwara, S. Sakasuchi, and K. Hirao, Appl. Phys. Lett. 80 2263 (2002)]. We here report on a femtosecond laser-induced PL change in a Sm-doped sodium borate glass that is easier to synthesize and its potential application to 3D memory. Irradiation with a femtosecond pulsed laser (800 nm, 1 kHz, 100 fs) induced a PL peak near 682 nm, resulting from the photoreduction of the Sm ions. A multilayer pattern (bit size=1 {mu}m,layer separation=8 {mu}m) formed by femtosecond laser irradiation was read out by a reflection-type fluorescent confocal microscope, which detected the emission at 682 nm as a signal. High-contrast pattern images were obtained without crosstalk.

  1. Simulation of radiation effects on three-dimensional computer optical memories

    SciTech Connect

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle{close_quote}s track axis may be lost. The magnitude of the effect is dependent on the particle{close_quote}s track structure. {copyright} {ital 1997 American Institute of Physics.}

  2. Three-dimensional optical lattice clock with bosonic {sup 88}Sr atoms

    SciTech Connect

    Akatsuka, Tomoya; Takamoto, Masao; Katori, Hidetoshi

    2010-02-15

    We present detailed analyses of our recent experiment on the three-dimensional (3D) optical lattice clock with bosonic {sup 88}Sr atoms in which the collisional frequency shift was suppressed by applying a single-occupancy lattice. Frequency shifts in magnetically induced spectroscopy on the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition ({lambda}=698 nm) of {sup 88}Sr were experimentally investigated by referencing a one-dimensional (1D) lattice clock based on spin-polarized {sup 87}Sr atoms. We discuss that the clock stability is limited by the current laser stability as well as the experimental sequence of the clock operation, which may be improved to {sigma}{sub y}({tau})=2x10{sup -16}/{radical}({tau}) by optimizing the cycle time of the clock operation.

  3. Three dimensional time lapse imaging of live cell mitochondria with photothermal optical lock-in optical coherence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jerome; Nahas, Amir; Pache, Christophe; Weil, Tanja; Lasser, Theo

    2016-03-01

    The photothermal optical lock-in optical coherence microscope (poli-OCM) introduced molecular specificity to OCM imaging, which is conventionally, a label-free technique. Here we achieve three-dimensional live cell and mitochondria specific imaging using ~4nm protein-functionalized gold nanoparticles (AuNPs). These nanoparticles do not photobleach and we demonstrate they're suitability for long-term time lapse imaging. We compare the accuracy of labelling with these AuNPs using classical fluorescence confocal imaging with a standard mitochondria specific marker. Furthermore, time lapse poli-OCM imaging every 5 minutes over 1.5 hours period was achieved, revealing the ability for three-dimensional monitoring of mitochondria dynamics.

  4. Mapping retinal thickness and macular edema by high-speed three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Qienyuan; Trost, Peter K.; Lo, Pak-Wai; Hitzenberger, Christoph K.

    2004-07-01

    Conventional OCT generates one or few cross-sections of the retina and requires predetermination of measurement location and geometry. Because retinal pathologies are usually irregular and 3-dimensional in nature, a retinal imaging device with both high depth resolution and high lateral resolution is desired. The lateral resolution of the conventional OCT system is limited by sampling density, which in turn is limited by the speed of the system. In this paper, we present a three-dimensional optical coherence retinal tomograph (3D-OCT) which combines the rapid transversal imaging mode of a confocal scanning laser ophthalmoscope (cSLO) with the depth resolution of optical coherence tomography (OCT) to achieve high speed 3-D imaging. In contrary to the conventional OCT which performs adjacent A-scans to form a cross-section image (B-scan) perpendicular to the retinal surface, 3D-OCT acquires section images (C-scan) parallel to the retinal surface at defined depths across the thickness of the retina. Three-dimensional distribution of light-remitting sites within the retina is recorded at a depth resolution of ~12 μm (in eye) and lateral resolution of 10μm x 20μm within 1.2 seconds. In this paper, we present the results of in vivo retinal imaging of healthy volunteers and diabetic patients, retinal thickness mapping, and macular edema detection with the 3D-OCT device. Reproducibility of retinal thickness mapping ranges from 16 μm ~ 35 μm for different study subjects. Detailed retinal thickness map allows ready identification of location and area of macular thickening. C-scan images and continuous longitudinal cross section images provide visualization of pathological changes in the retina, such as presence of cyst formation and hard exudates. The need to predetermine measurement location and geometry is eliminated in 3D-OCT, in contrast to conventional OCT.

  5. Spatial correlations and optical properties in three-dimensional deterministic aperiodic structures

    PubMed Central

    Renner, Michael; Freymann, Georg von

    2015-01-01

    Photonic systems have strongly varying optical properties depending on the spatial correlations present in a given realization. In photonic crystals the correlations are spatially periodic forming Bravais lattices whereas the building blocks of an amorphous medium are randomly distributed without any long-range order. In this manuscript we study the optical properties of so-called deterministic aperiodic structures which fill the gap between the aforementioned two limiting cases. Within this group we vary the spectrum of the spatial correlations from being pure-point over singularly-continuous to absolutely-continuous. The desired correlations are created in direct-laser written three-dimensional polymer structures using one construction principle which allows us to attribute the optical behaviour solely to the encoded spectrum. Infrared reflection measurements reveal the characteristic response of each spectral type verifying the successful fabrication of large deterministic aperiodic structures. To prove the presence of the correlations in all directions we perform transmission experiments parallel to the substrate by means of micro-optical mirrors placed next to the structures. Transport measurements reveal a strong dependence of the effective beam width at the output facet on the encoded lattice type. Finally, we reproduce the lattice type dependent transport behavior in numerical calculations ruling out extrinsic experimental reasons for these findings. PMID:26268153

  6. Three dimensional fabrication of optical waveguiding elements for on-chip integration

    NASA Astrophysics Data System (ADS)

    Parsi Sreenivas, V. V.; Bülters, M.; Schröder, M.; Bergmann, R. B.

    2014-05-01

    We present micro polymer optical waveguide elements fabricated using femtosecond laser and two-photon absorption (TPA) process. The POWs are constructed by tightly focusing a laser beam in SU-8 based resists transparent to the laser wavelength for single-photon absorption. The TPA process enables the patterning of the resist in three dimensions at a resolution of 100-200 nm, which provides a high degree of freedom for POW designs. Using this technology, we provide a novel approach to fabricate Three dimensional Polymer Optical Waveguides (3D-POW) and coupling with single mode fibers in the visible wavelength regions. Our research is also focused on fabricating passive micro optical elements such as splitters, combiners and simple logical gates. For this reason we are aiming to achieve optimum coupling efficiency between the 3D-POW and fibers. The technology also facilitates 3D-POW fabrication independent of the substrate material. We present these fabrication techniques and designs, along with supporting numerical simulations and its transmission properties. With a length of 270 μm and polymer core diameter of 9 μm with air cladding, the waveguides possess a total loss of 12 dB. This value also includes the external in and out mode coupling and in continuously being improved upon by design optimization and simulations. We verify the overall feasibility of the design and coupling mechanisms that can be exploited to execute waveguide based optical functions such as filtering and logical operations.

  7. Three-dimensional two-photon laser fabrication for metals, polymers, and magneto-optical materials

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuo; Ishikawa, Atsushi; Amemiya, Tomohiro

    2015-03-01

    The three-dimensional (3D) two-photon laser fabrication techniques for metal, polymer, and magneto-optical structures are presented. Two-photon-induced reduction of metal complex ions was developed to create 3D metal micro/nano structures. Owing to the inhibition of unwanted growth of metal nano crystals using surfactant molecules, we have successfully improved the spatial resolution of fabricated metal structures down to 100 nm in linewidth. Arbitrary shaped 3D silver structures with high electric conductivity were fabricated. Two-photon-induced photopolymerization technique has been applied for the photonic wire bonding. We have demonstrated the optical interconnection of III-V based DFB lasers and photo detectors by polymer wires with optical coupling loss less than 0.3dB. We also applied two-photon laser irradiation technique for the modification of the magnetic properties of cerium-substituted yttrium iron garnet crystal (CexY3-xFe5O12: Ce:YIG). A Ce:YIG layer was epitaxially-grown on a monomagnetic garnet (<111>-SGGG) substrate. 3D fs laser scanning in the Ce:YIG layer creates the micrometer patterns of both refractive index and magnetic properties change of the crystal. We demonstrated the micro/nanometer scale patterning of both optical and magnetic properties in the Ce:YIG crystal.

  8. All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap

    NASA Astrophysics Data System (ADS)

    Hagenmüller, David

    2016-06-01

    We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.

  9. Three-dimensional diffuse optical tomography with full multi-view time-domain data

    NASA Astrophysics Data System (ADS)

    Bouza Domınguez, Jorge; Bérubé-Lauzière, Yves

    2013-03-01

    In this work, synthetic time-domain data are generated as if it were collected with a state-of-the-art multi-view experimental optical scanner developed in our group for small animal imaging, and used in a tomographic image reconstruction algorithm. The collected data comprises full time-dependent optical signals leaving the biological medium and acquired all around the medium. The diffuse optical tomography (DOT) algorithm relies on the time dependent parabolic simplified spherical harmonics (TD-pSPN) equations as the forward model to recover the 3D absorption and diffusion coefficient maps of the medium. The inverse problem is casted and solved as an iterative constrained optimization problem where an objective function determines the accuracy of the forward model predictions at each iteration. Time-dependent adjoint variables are introduced to accelerate the calculation of the gradient of the objective function. A three-dimensional case involving an absorption heterogeneity in a homogeneous medium is presented, reproducing practical situations encountered in our lab. The results support our hypothesis that accurate quantitative 3D maps of optical properties of biological tissues can be retrieved using intrinsic measurements obtained with our experimental scanner along with our DOT algorithm.

  10. Potential-based methodology for active sound control in three dimensional settings.

    PubMed

    Lim, H; Utyuzhnikov, S V; Lam, Y W; Kelly, L

    2014-09-01

    This paper extends a potential-based approach to active noise shielding with preservation of wanted sound in three-dimensional settings. The approach, which was described in a previous publication [Lim et al., J. Acoust. Soc. Am. 129(2), 717-725 (2011)], provides several significant advantages over conventional noise control methods. Most significantly, the methodology does not require any information including the characterization of sources, impedance boundary conditions and surrounding medium, and that the methodology automatically differentiates between the wanted and unwanted sound components. The previous publication proved the concept in one-dimensional conditions. In this paper, the approach for more realistic conditions is studied by numerical simulation and experimental validation in three-dimensional cases. The results provide a guideline to the implementation of the active shielding method with practical three-dimensional conditions. Through numerical simulation it is demonstrated that while leaving the wanted sound unchanged, the developed approach offers selective volumetric noise cancellation within a targeted domain. In addition, the method is implemented in a three-dimensional experiment with a white noise source in a semi-anechoic chamber. The experimental study identifies practical difficulties and limitations in the use of the approach for real applications. PMID:25190385

  11. Responses of Ventral Posterior Thalamus Neurons to Three-Dimensional Vestibular and Optic Flow Stimulation

    PubMed Central

    Meng, Hui

    2010-01-01

    Multisensory neurons tuned to both vestibular and visual motion (optic flow) signals are found in several cortical areas in the dorsal visual stream. Here we examine whether such convergence occurs subcortically in the macaque thalamus. We searched the ventral posterior nuclei, including the anterior pulvinar, as well as the ventro-lateral and ventral posterior lateral nuclei, areas that receive vestibular signals from brain stem and deep cerebellar nuclei. Approximately a quarter of cells responded to three-dimensional (3D) translational and/or rotational motion. More than half of the responsive cells were convergent, thus responded during both rotation and translation. The preferred axes of translation/rotation were distributed throughout 3D space. The majority of the neurons were excited, but some were inhibited, during rotation/translation in darkness. Only a couple of neurons were multisensory being tuned to both vestibular and optic flow stimuli. We conclude that multisensory vestibular/optic flow neurons, which are commonly found in cortical visual and visuomotor areas, are rare in the ventral posterior thalamus. PMID:19955294

  12. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.

    PubMed

    Kay, Matthew W; Amison, Philip M; Rogers, Jack M

    2004-07-01

    Optical mapping of electrical activity from the surface of the heart is a powerful tool for studying complex arrhythmias. However, a limitation of traditional optical mapping is that the mapped region is restricted to the field of view of the sensor, which makes it difficult to track electrical waves as they drift in and out of view. To address this, we developed an optical system that panoramically maps epicardial electrical activity in three dimensions. The system was engineered to accomodate hearts comparable in size to human hearts. It is comprised of a surface scanner that measures epicardial geometry and a panoramic fluorescence imaging system that records electrical activity. Custom software texture maps the electrical data onto a reconstructed epicardial surface. The result is a high resolution, spatially contiguous, mapping dataset. In addition, the three-dimensional positions of the recording sites are known, making it possible to accurately measure parameters that require geometric information, such as propagation velocity. In this paper, we describe the system and demonstrate it by mapping a swine heart. PMID:15248538

  13. Hadron Optics in Three-Dimensional Invariant Coordinate Space from Deeply VirtualCompton Scattering

    SciTech Connect

    Brodsky, S.J.; Chakrabarti, D.; Harindranath, A.; Mukherjee, A.; Vary, J.P.

    2006-11-30

    The Fourier transform of the deeply virtual Compton scattering amplitude (DVCS) with respect to the skewness parameter {zeta} = Q{sup 2}/2p {center_dot} q can be used to provide an image of the target hadron in the boost-invariant variable {sigma}, the coordinate conjugate to light-front time {tau} = t + z/c. As an illustration, we construct a consistent covariant model of the DVCS amplitude and its associated generalized parton distributions using the quantum fluctuations of a fermion state at one loop in QED, thus providing a representation of the light-front wave functions of a lepton in {sigma} space. A consistent model for hadronic amplitudes can then be obtained by differentiating the light-front wave functions with respect to the bound-state mass. The resulting DVCS helicity amplitudes are evaluated as a function of {sigma} and the impact parameter {rvec b}{sub {perpendicular}}, thus providing a light-front image of the target hadron in a frame-independent three-dimensional light-front coordinate space. Models for the LFWFs of hadrons in (3 + 1) dimensions displaying confinement at large distances and conformal symmetry at short distances have been obtained using the AdS/CFT method. We also compute the LFWFs in this model in invariant three dimensional coordinate space. We find that in the models studied, the Fourier transform of the DVCS amplitudes exhibit diffraction patterns. The results are analogous to the diffractive scattering of a wave in optics where the distribution in ? measures the physical size of the scattering center in a one-dimensional system.

  14. Three-dimensional patterning of multiple cell populations through orthogonal genetic control of cell motility

    PubMed Central

    MacKay, Joanna L.; Sood, Anshum

    2013-01-01

    The ability to independently assemble multiple cell types within a three-dimensional matrix would be a powerful enabling tool for modeling and engineering complex tissues. Here we introduce a strategy to dynamically pattern distinct subpopulations of cells through genetic regulation of cell motility. We first describe glioma cell lines that were genetically engineered to stably express constitutively active or dominant negative Rac1 GTPase mutants under the control of either a doxycycline-inducible or cumate-inducible promoter. We culture each population as multicellular spheroids and show that by adding or withdrawing the appropriate inducer at specific times, we can control the timing and extent of Rac1-dependent cell migration into three-dimensional collagen matrices. We then report results with mixed spheroids in which one subpopulation of cells expresses dominant negative Rac1 under a doxycycline-inducible promoter and the other expresses dominant negative Rac1 under a cumate-inducible promoter. Using this system, we demonstrate that doxycycline and cumate addition suppress Rac1-dependent motility in a subpopulation-specific and temporally-controlled manner. This allows us to orthogonally control the motility of each subpopulation and spatially assemble the cells into radially symmetric three-dimensional patterns through the synchronized addition and removal of doxycycline and cumate. This synthetic biology-inspired strategy offers a novel means of spatially organizing multiple cell populations in conventional matrix scaffolds and complements the emerging suite of technologies that seek to pattern cells by engineering extracellular matrix properties. PMID:24622945

  15. Optical clearing of unsectioned specimens for three-dimensional imaging via optical transmission and emission tomography

    PubMed Central

    Oldham, Mark; Sakhalkar, Harshad; Oliver, Tim; Johnson, G. Allan; Dewhirst, Mark

    2009-01-01

    Optical computed tomography (optical-CT) and optical emission computed tomography (optical-ECT) are new techniques that enable unprecedented high-resolution 3-D multimodal imaging of tissue structure and function. Applications include imaging macroscopic gene expression and microvasculature structure in unsectioned biological specimens up to 8 cm3. A key requisite for these imaging techniques is effective sample preparation including optical clearing, which enables light transport through the sample while preserving the signal (either light absorbing stain or fluorescent proteins) in representative form. We review recent developments in optical-CT and optical-ECT, and compatible “fluorescence-friendly” optical clearing protocols. PMID:18465962

  16. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    SciTech Connect

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-02-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress.

  17. Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy

    PubMed Central

    Lurie, Kristen L.; Smith, Gennifer T.; Khan, Saara A.; Liao, Joseph C.; Ellerbee, Audrey K.

    2014-01-01

    Abstract. We describe a combination of fabrication techniques and a general process to construct a three-dimensional (3-D) phantom that mimics the size, macroscale structure, microscale surface topology, subsurface microstructure, optical properties, and functional characteristics of a cancerous bladder. The phantom also includes features that are recognizable in white light (i.e., the visual appearance of blood vessels), making it suitable to emulate the bladder for emerging white light+optical coherence tomography (OCT) cystoscopies and other endoscopic procedures of large, irregularly shaped organs. The fabrication process has broad applicability and can be generalized to OCT phantoms for other tissue types or phantoms for other imaging modalities. To this end, we also enumerate the nuances of applying known fabrication techniques (e.g., spin coating) to contexts (e.g., nonplanar, 3-D shapes) that are essential to establish their generalizability and limitations. We anticipate that this phantom will be immediately useful to evaluate innovative OCT systems and software being developed for longitudinal bladder surveillance and early cancer detection. PMID:24623158

  18. High-resolution three-dimensional in vivo imaging of mouse oviduct using optical coherence tomography

    PubMed Central

    Burton, Jason C.; Wang, Shang; Stewart, C. Allison; Behringer, Richard R.; Larina, Irina V.

    2015-01-01

    The understanding of the reproductive events and the molecular mechanisms regulating fertility and infertility in humans relies heavily on the analysis of the corresponding phenotypes in mouse models. While molecular genetic approaches provide significant insight into the molecular regulation of these processes, the lack of live imaging methods that allow for detailed visualization of the mouse reproductive organs limits our investigations of dynamic events taking place during the ovulation, the fertilization and the pre-implantation stages of embryonic development. Here we introduce an in vivo three-dimensional imaging approach for visualizing the mouse oviduct and reproductive events with micro-scale spatial resolution using optical coherence tomography (OCT). This method relies on the natural tissue optical contrast and does not require the application of any contrast agents. For the first time, we present live high-resolution images of the internal structural features of the oviduct, as well as other reproductive organs and the oocytes surrounded by cumulus cells. These results provide the basis for a wide range of live dynamic studies focused on understanding fertility and infertility. PMID:26203393

  19. Three-dimensional imaging of artificial fingerprint by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Cheng, Yezeng

    2008-03-01

    Fingerprint recognition is one of the popular used methods of biometrics. However, due to the surface topography limitation, fingerprint recognition scanners are easily been spoofed, e.g. using artificial fingerprint dummies. Thus, biometric fingerprint identification devices need to be more accurate and secure to deal with different fraudulent methods including dummy fingerprints. Previously, we demonstrated that Optical Coherence Tomography (OCT) images revealed the presence of the artificial fingerprints (made from different household materials, such as cement and liquid silicone rubber) at all times, while the artificial fingerprints easily spoofed the commercial fingerprint reader. Also we demonstrated that an analysis of the autocorrelation of the OCT images could be used in automatic recognition systems. Here, we exploited the three-dimensional (3D) imaging of the artificial fingerprint by OCT to generate vivid 3D image for both the artificial fingerprint layer and the real fingerprint layer beneath. With the reconstructed 3D image, it could not only point out whether there exists an artificial material, which is intended to spoof the scanner, above the real finger, but also could provide the hacker's fingerprint. The results of these studies suggested that Optical Coherence Tomography could be a powerful real-time noninvasive method for accurate identification of artificial fingerprints real fingerprints as well.

  20. FFLO order in ultra-cold atoms in three-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Chiesa, Simone; Zhang, Shiwei

    2015-06-01

    We investigate different ground-state phases of attractive spin-imbalanced populations of fermions in three-dimensional optical lattices. Detailed numerical calculations are performed using Hartree-Fock-Bogoliubov theory to determine the ground-state properties systematically for different values of density, spin polarization and interaction strength. We first consider the high density and low polarization regime, in which the effect of the optical lattice is most evident. We then proceed to the low density and high polarization regime where the effects of the underlying lattice are less significant and the system begins to resemble a continuum Fermi gas. We explore the effects of density, polarization and interaction on the character of the phases in each regime and highlight the qualitative differences between the two regimes. In the high-density regime, the order is found to be of Larkin-Ovchinnikov type, linearly oriented with one characteristic wave vector but varying in its direction with the parameters. At lower densities the order parameter develops more structures involving multiple wave vectors.

  1. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed M.; Yang, Shuqiang; Miller, Mike; Xu, Frank; Banerjee, Sanjay; Sreenivasan, S. V.

    2012-10-01

    In this paper, we have explored manufacturable approaches to sub-wavelength controlled three-dimensional (3D) nano-patterns with the goal of significantly enhancing the photocurrent in amorphous silicon solar cells. Here we demonstrate efficiency enhancement of about 50% over typical flat a-Si thin-film solar cells, and report an enhancement of 20% in optical absorption over Asahi textured glass by fabricating sub-wavelength nano-patterned a-Si on glass substrates. External quantum efficiency showed superior results for the 3D nano-patterned thin-film solar cells due to enhancement of broadband optical absorption. The results further indicate that this enhanced light trapping is achieved with minimal parasitic absorption losses in the deposited transparent conductive oxide for the nano-patterned substrate thin-film amorphous silicon solar cell configuration. Optical simulations are in good agreement with experimental results, and also show a significant enhancement in optical absorption, quantum efficiency and photocurrent.

  2. Scalable two- and three-dimensional optical labels generated by 128-port encoder/decoder for optical packet switching.

    PubMed

    Matsumoto, Ryosuke; Kodama, Takahiro; Morita, Koji; Wada, Naoya; Kitayama, Ken-ichi

    2015-10-01

    This paper deals with massive number of optical code (OC) label generation and recognition for scalable optical packet switching (OPS) networks. In order to expand the system scalability of code label processing, we develop a record port count 128 x 128 optical encoder/decoder (E/D) and propose a novel three-dimensional (3-D) optical label combining code label with wavelength and polarization. In the experiment, we conduct a proof-of-concept demonstration of 4-code x 2-wavelength x 2-polarization and validate that the 3-D labeling scheme can consequently increase the available number of code label up to more than 1,000 labels. Real-time labeling performance using a field programmable gate array (FPGA)-based processor and crosstalk influence at an optical switch are also experimentally evaluated. PMID:26480089

  3. Structural- and optical-property characterization of three-dimensional branched ZnO nanospikes

    SciTech Connect

    Chia, M.Y.; Chiu, W.S.; Daud, S.N.H.; Khiew, P.S.; Radiman, S.; Abd-Shukor, R.; Hamid, M.A.A.

    2015-08-15

    Current study reports the synthesis of three-dimensional (3-D) ZnO nanospikes with anomalous optical property, where zinc stearate is adopted as a safe, common and low-cost precursor that undergoes thermal pyrolysis under non-hydrolytic approach. High resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) result show that the as-synthesized 3-D ZnO nanospikes are constructed by bundle of nanorods that sprout radially outwards in random orientation. The possible growth mechanism is discussed by referring to the microscopy results. X-ray diffraction (XRD) pattern confirms that the nanospikes are highly crystalline, which existed in hexagonal wurtzite crystal structure. Optical absorption characterization shows that the onset absorption for the nanospikes is slightly red-shifted if compared to commercial ZnO and the corresponding bandgap energy is estimated to be 3.1 eV. The photoluminescene (PL) result of ZnO nanospikes indicate that its optical emission exhibits weak UV emission but very intense visible-light emission that ranged from green- up to red-region. The factors that contributed to the intriguing PL characteristic are discussed. Current finding would offer a versatile synthesis scheme in engineering advanced nanostructures with new design that exhibit congruent optical property. - Graphical abstract: Display Omitted - Highlights: • Pyrolysis of zinc stearate in synthesizing 3-D ZnO nanospikes • ZnO nanospikes possess bundle of nanorods that sprout out from the hexagonal stump • Growth mechanism is deduced to elucidate the morphological evolution from nanobullet to nanospike with branching topology • PL spectrum indicate that the nanospike exhibit prominent visible-light emission that ranged from green- to red-region.

  4. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds

    PubMed Central

    Mouriño, Viviana; Boccaccini, Aldo R.

    2010-01-01

    This paper provides an extensive overview of published studies on the development and applications of three-dimensional bone tissue engineering (TE) scaffolds with potential capability for the controlled delivery of therapeutic drugs. Typical drugs considered include gentamicin and other antibiotics generally used to combat osteomyelitis, as well as anti-inflammatory drugs and bisphosphonates, but delivery of growth factors is not covered in this review. In each case reviewed, special attention has been given to the technology used for controlling the release of the loaded drugs. The possibility of designing multifunctional three-dimensional bone TE scaffolds for the emerging field of bone TE therapeutics is discussed. A detailed summary of drugs included in three-dimensional scaffolds and the several approaches developed to combine bioceramics with various polymeric biomaterials in composites for drug-delivery systems is included. The main results presented in the literature are discussed and the remaining challenges in the field are summarized with suggestions for future research directions. PMID:19864265

  5. Three-dimensional Segmentation of Retinal Cysts from Spectral-domain Optical Coherence Tomography Images by the Use of Three-dimensional Curvelet Based K-SVD.

    PubMed

    Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra

    2016-01-01

    This paper presents a new three-dimensional curvelet transform based dictionary learning for automatic segmentation of intraretinal cysts, most relevant prognostic biomarker in neovascular age-related macular degeneration, from 3D spectral-domain optical coherence tomography (SD-OCT) images. In particular, we focus on the Spectralis SD-OCT (Heidelberg Engineering, Heidelberg, Germany) system, and show the applicability of our algorithm in the segmentation of these features. For this purpose, we use recursive Gaussian filter and approximate the corrupted pixels from its surrounding, then in order to enhance the cystoid dark space regions and future noise suppression we introduce a new scheme in dictionary learning and take curvelet transform of filtered image then denoise and modify each noisy coefficients matrix in each scale with predefined initial 3D sparse dictionary. Dark pixels between retinal pigment epithelium and nerve fiber layer that were extracted with graph theory are considered as cystoid spaces. The average dice coefficient for the segmentation of cystoid regions in whole 3D volume and with-in central 3 mm diameter on the MICCAI 2015 OPTIMA Cyst Segmentation Challenge dataset were found to be 0.65 and 0.77, respectively. PMID:27563573

  6. Three-dimensional Segmentation of Retinal Cysts from Spectral-domain Optical Coherence Tomography Images by the Use of Three-dimensional Curvelet Based K-SVD

    PubMed Central

    Esmaeili, Mahdad; Dehnavi, Alireza Mehri; Rabbani, Hossein; Hajizadeh, Fedra

    2016-01-01

    This paper presents a new three-dimensional curvelet transform based dictionary learning for automatic segmentation of intraretinal cysts, most relevant prognostic biomarker in neovascular age-related macular degeneration, from 3D spectral-domain optical coherence tomography (SD-OCT) images. In particular, we focus on the Spectralis SD-OCT (Heidelberg Engineering, Heidelberg, Germany) system, and show the applicability of our algorithm in the segmentation of these features. For this purpose, we use recursive Gaussian filter and approximate the corrupted pixels from its surrounding, then in order to enhance the cystoid dark space regions and future noise suppression we introduce a new scheme in dictionary learning and take curvelet transform of filtered image then denoise and modify each noisy coefficients matrix in each scale with predefined initial 3D sparse dictionary. Dark pixels between retinal pigment epithelium and nerve fiber layer that were extracted with graph theory are considered as cystoid spaces. The average dice coefficient for the segmentation of cystoid regions in whole 3D volume and with-in central 3 mm diameter on the MICCAI 2015 OPTIMA Cyst Segmentation Challenge dataset were found to be 0.65 and 0.77, respectively. PMID:27563573

  7. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  8. Three-dimensional motion tracking for high-resolution optical microscopy, in vivo.

    PubMed

    Bakalar, M; Schroeder, J L; Pursley, R; Pohida, T J; Glancy, B; Taylor, J; Chess, D; Kellman, P; Xue, H; Balaban, R S

    2012-06-01

    When conducting optical imaging experiments, in vivo, the signal to noise ratio and effective spatial and temporal resolution is fundamentally limited by physiological motion of the tissue. A three-dimensional (3D) motion tracking scheme, using a multiphoton excitation microscope with a resonant galvanometer, (512 × 512 pixels at 33 frames s(-1)) is described to overcome physiological motion, in vivo. The use of commercially available graphical processing units permitted the rapid 3D cross-correlation of sequential volumes to detect displacements and adjust tissue position to track motions in near real-time. Motion phantom tests maintained micron resolution with displacement velocities of up to 200 μm min(-1), well within the drift observed in many biological tissues under physiologically relevant conditions. In vivo experiments on mouse skeletal muscle using the capillary vasculature with luminal dye as a displacement reference revealed an effective and robust method of tracking tissue motion to enable (1) signal averaging over time without compromising resolution, and (2) tracking of cellular regions during a physiological perturbation. PMID:22582797

  9. Three-dimensional reconstructions from optical sections of thick mouse inner ears using confocal microscopy.

    PubMed

    Kopecky, B J; Duncan, J S; Elliott, K L; Fritzsch, B

    2012-12-01

    Three-dimensional (3D) reconstructions of the vertebrate inner ear have provided novel insights into the development of this complex organ. 3D reconstructions enable superior analysis of phenotypic differences between wild type and mutant ears but can result in laborious work when reconstructed from physically sectioned material. Although nondestructive optical sectioning light sheet microscopy may ultimately prove the ideal solution, these technologies are not yet commercially available, or in many instances are not monetarily feasible. Here we introduce a simple technique to image a fluorescently labelled ear at different stages throughout development at high resolution enabling 3D reconstruction of any component of the inner ear using confocal microscopy. We provide a step-by-step manual from tissue preparation to imaging to 3D reconstruction and analysis including a rationale and troubleshooting guide at each step for researchers with different equipment, protocols, and access to resources to successfully incorporate the principles of this method and customize them to their laboratory settings. PMID:23140378

  10. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  11. Dirac and Weyl Rings in Three Dimensional Cold Atom Optical Lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, Chuanwei

    Recently three dimensional topological quantum materials with gapless energy spectra have attracted considerable interests in many branches of physics. Besides the celebrated example, Dirac and Weyl points which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless spectrum can also occur along a ring, named Dirac and Weyl nodal rings. Ultra-cold atomic gases provide an ideal platform for exploring new topological materials with designed symmetries. However, whether Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold atom optical lattice. Our scheme is based on previously experimentally already implemented Raman coupling setup for realizing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.

  12. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging.

    PubMed

    Geissbuehler, Stefan; Sharipov, Azat; Godinat, Aurélien; Bocchio, Noelia L; Sandoz, Patrick A; Huss, Anja; Jensen, Nickels A; Jakobs, Stefan; Enderlein, Jörg; Gisou van der Goot, F; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2014-01-01

    Super-resolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a classical widefield microscope. Previously, three-dimensional (3D) SOFI has been demonstrated by sequential imaging of multiple depth positions. Here we introduce a multiplexed imaging scheme for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. The simultaneous acquisition of multiple focal planes significantly reduces the acquisition time and thus the photobleaching. We demonstrate multiplane 3D SOFI by imaging fluorescently labelled cells over an imaged volume of up to 65 × 65 × 3.5 μm(3) without depth scanning. In particular, we image the 3D network of mitochondria in fixed C2C12 cells immunostained with Alexa 647 fluorophores and the 3D vimentin structure in living Hela cells expressing the fluorescent protein Dreiklang. PMID:25518894

  13. The characteristics of three-dimensional skin imaging system by full-colored optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Chan, Li-Ming; Wang, Kai-Cheng

    2009-05-01

    In the present cosmetic market, the skin image obtained from a hand-held camera is two-dimensional (2-D). Due to insufficient penetration, only the skin surface can be detected, and thus phenomena in the dermis cannot be observed. To take the place of the conventional 2D camera, a new hand-held imaging system is proposed for three-dimensional (3-D) skin imaging. Featuring non-invasiveness, optical coherence tomography (OCT) has become one of the popular medical imaging techniques. The dermal images shown in OCT-related reports were mainly single-colored because of the use of a monotonic light source. With three original-colored beams applied in OCT, a full-colored image can be derived for dermatology. The penetration depth of the system ranges from 0.43 to 0.78 mm, sufficient for imaging of main tissues in the dermis. Colorful and non-invasive perspectives of deep dermal structure help to advance skin science, dermatology and cosmetology.

  14. Loading and detecting a three-dimensional Fermi gas in a one-dimensional optical superlattice

    NASA Astrophysics Data System (ADS)

    Sheikhan, Ameneh; Kollath, Corinna

    2015-04-01

    We investigate the procedures of loading and detecting three-dimensional fermionic quantum gases in a one-dimensional optical superlattice potential subjected to a trapping potential. Additionally, we consider the relaxation dynamics after a sudden change of the superlattice potential. We numerically simulate the time-dependent evolution of the continuous system using exact diagonalization of noninteracting fermions. During the loading procedure we analyze the occupation of the instantaneous energy levels and compare the situation in a homogeneous system with the trapped one. Strong differences are found in particular in the evolution of excitations which we trace back to the distinct global density distribution. Starting from an imbalanced state in the superlattice potential, we consider the relaxation dynamics of fermions after a slow change of the superlattice potential and find a bimodal distribution of excitations. To be able to compare with the experimental results we also simulate the measurement sequence of the even and odd local density and find a strong dependence of the outcome on the actual ramp procedure. We suggest how the loading and detecting procedure can be optimized.

  15. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography

    PubMed Central

    Wang, Ling; Xu, Mingen; Zhang, LieLie; Zhou, QingQing; Luo, Li

    2016-01-01

    Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of–interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome. PMID:27231597

  16. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-11-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ~ 92+/-38 μm), low-scattering chorion and trophoblast (CT, dCT ~ 150+/-67 μm), high-scattering subepithelial amnion (A, dA ~ 95+/-36 μm), and low-scattering epithelium (E, dE ~ 29+/-8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth.

  17. The assessment of orthodontic bonding defects: optical coherence tomography followed by three-dimensional reconstruction

    NASA Astrophysics Data System (ADS)

    Rominu, R.; Sinescu, C.; Rominu, M.; Negrutiu, M.; Petrescu, E.; Pop, D.; Podoleanu, A. Gh.

    2011-10-01

    Orthodontic bonding is a simple yet important procedure that can influence the outcome of treatment in case it is performed incorrectly. An orthodontic treatment shadowed by repeated bonding failures can become unduly long and will decrease patient trust and compliance. Optical coherence tomography has been widely used in ophtalmology but is relatively new to dentistry. Using OCT one can detect aerial inclusions within the orthodontic adhesive or even identify incongruence between the bracket base and the tooth surface. The aim of our study was to identify bonding defects and reconstruct them three-dimensionally in order to be able to characterize them more accurately. We bonded 30 sound human permanent teeth with ceramic orthodontic brackets using a no-mix self-curing orthodontic adhesive. Prior to bonding all teeth were stored in tap water at 4°C and then professionally cleaned with rotary brushes and pumice. The samples were processed by the same person and the rotary brushes were changed after every fifth tooth. All interfaces were investigated by means of OCT and 4 defects were found. Subsequently, the defects were reconstructed threedimensionally using an open-source program. By identifying and reconstructing bonding defects we could assess the quality of the bonding procedure. Since bonding tends to be more accurate in vitro where the environmental conditions are close to ideal, it is probable that defects found in vivo be even greater in number, which leads to the conclusion that this type of investigation is potentially valuable.

  18. Hadron Optics in Three-Dimensional Invariant Coordinate Space from Deeply Virtual Compton Scattering

    SciTech Connect

    Brodsky, S J; Chakrabarti, D; Harindranath, A; Mukherjee, A; Vary, J P

    2006-11-10

    The Fourier transform of the deeply virtual Compton scattering amplitude (DVCS) with respect to the skewness parameter {zeta} = Q{sup 2}/2p {center_dot} q can be used to provide an image of the target hadron in the boost-invariant variable {sigma}, the coordinate conjugate to light-front time {tau} = t + z/c. As an illustration, we construct a consistent covariant model of the DVCS amplitude and its associated generalized parton distributions using the quantum fluctuations of a fermion state at one loop in QED, thus providing a representation of the light-front wavefunctions of a lepton in {sigma} space. A consistent model for hadronic amplitudes can then be obtained by differentiating the light-front wavefunctions with respect to the bound-state mass. The resulting DVCS helicity amplitudes are evaluated as a function of {sigma} and the impact parameter {rvec b}{sub {perpendicular}}, thus providing a light-front ''photograph'' of the target hadron in a frame-independent three-dimensional light-front coordinate space. We find that in the models studied, the Fourier transform of the DVCS amplitudes exhibit diffraction patterns. The results are analogous to the diffractive scattering of a wave in optics where the distribution in {sigma} measures the physical size of the scattering center in a one-dimensional system.

  19. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography

    PubMed Central

    Ren, Hugang; Avila, Cecilia; Kaplan, Cynthia; Pan, Yingtian

    2011-01-01

    Microscopic chorionic pseudocyst (MCP) arising in the chorion leave of the human fetal membrane (FM) is a clinical precursor for preeclampsia which may progress to fatal medical conditions (e.g., abortion) if left untreated. To examine the utility of three-dimensional (3D) optical coherence tomography (OCT) for noninvasive delineation of the morphology of human fetal membranes and early clinical detection of MCP, 60 human FM specimens were acquired from 10 different subjects undergoing term cesarean delivery for an ex vivo feasibility study. Our results showed that OCT was able to identify the four-layer architectures of human FMs consisting of high-scattering decidua vera (DV, average thickness dDV ≈ 92±38 μm), low-scattering chorion and trophoblast (CT, dCT ≈ 150±67 μm), high-scattering subepithelial amnion (A, dA ≈ 95±36 μm), and low-scattering epithelium (E, dE ≈ 29±8 μm). Importantly, 3D OCT was able to instantaneously detect MCPs (low scattering due to edema, fluid buildup, vasodilatation) and track (staging) their thicknesses dMCP ranging from 24 to 615 μm. It was also shown that high-frequency ultrasound was able to compliment OCT for detecting more advanced thicker MCPs (e.g., dMCP>615 μm) because of its increased imaging depth. PMID:22112111

  20. Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography.

    PubMed

    Wang, Ling; Xu, Mingen; Zhang, LieLie; Zhou, QingQing; Luo, Li

    2016-03-01

    Reconstructing and quantitatively assessing the internal architecture of opaque three-dimensional (3D) bioprinted hydrogel scaffolds is difficult but vital to the improvement of 3D bioprinting techniques and to the fabrication of functional engineered tissues. In this study, swept-source optical coherence tomography was applied to acquire high-resolution images of hydrogel scaffolds. Novel 3D gelatin/alginate hydrogel scaffolds with six different representative architectures were fabricated using our 3D bioprinting system. Both the scaffold material networks and the interconnected flow channel networks were reconstructed through volume rendering and binarisation processing to provide a 3D volumetric view. An image analysis algorithm was developed based on the automatic selection of the spatially-isolated region-of-interest. Via this algorithm, the spatially-resolved morphological parameters including pore size, pore shape, strut size, surface area, porosity, and interconnectivity were quantified precisely. Fabrication defects and differences between the designed and as-produced scaffolds were clearly identified in both 2D and 3D; the locations and dimensions of each of the fabrication defects were also defined. It concludes that this method will be a key tool for non-destructive and quantitative characterization, design optimisation and fabrication refinement of 3D bioprinted hydrogel scaffolds. Furthermore, this method enables investigation into the quantitative relationship between scaffold structure and biological outcome. PMID:27231597

  1. Dirac and Weyl rings in three-dimensional cold-atom optical lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, Chuanwei

    2016-06-01

    Recently three-dimensional topological quantum materials with gapless energy spectra have attracted considerable interest in many branches of physics. Besides the celebrated example, Dirac and Weyl points which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless spectrum, can also occur along a ring, named Dirac and Weyl nodal rings. Ultracold atomic gases provide an ideal platform for exploring new topological materials with designed symmetries and dispersion. However, whether Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold-atom optical lattice. Our scheme is based on a previously experimentally implemented Raman coupling setup for realizing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.

  2. Three-dimensional simultaneous optical coherence tomography and confocal fluorescence microscopy for investigation of lung tissue

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Meissner, Sven; Kuebler, Wolfgang M.; Koch, Edmund

    2012-07-01

    Although several strategies exist for a minimal-invasive treatment of patients with lung failure, the mortality rate of acute respiratory distress syndrome still reaches 30% at minimum. This striking number indicates the necessity of understanding lung dynamics on an alveolar level. To investigate the dynamical behavior on a microscale, we used three-dimensional geometrical and functional imaging to observe tissue parameters including alveolar size and length of embedded elastic fibers during ventilation. We established a combined optical coherence tomography (OCT) and confocal fluorescence microscopy system that is able to monitor the distension of alveolar tissue and elastin fibers simultaneously within three dimensions. The OCT system can laterally resolve a 4.9 μm line pair feature and has an approximately 11 μm full-width-half-maximum axial resolution in air. confocal fluorescence microscopy visualizes molecular properties of the tissue with a resolution of 0.75 μm (laterally), and 5.9 μm (axially) via fluorescence detection of the dye sulforhodamine B specifically binding to elastin. For system evaluation, we used a mouse model in situ to perform lung distension by application of different constant pressure values within the physiological regime. Our method enables the investigation of alveolar dynamics by helping to reveal basic processes emerging during artificial ventilation and breathing.

  3. Real-time three-dimensional Fourier-domain optical coherence tomography video image guided microsurgeries

    PubMed Central

    Huang, Yong; Zhang, Kang; Ibrahim, Zuhaib; Cha, Jaepyeong; Lee, W. P. Andrew; Brandacher, Gerald; Gehlbach, Peter L.

    2012-01-01

    Abstract. The authors describe the development of an ultrafast three-dimensional (3D) optical coherence tomography (OCT) imaging system that provides real-time intraoperative video images of the surgical site to assist surgeons during microsurgical procedures. This system is based on a full-range complex conjugate free Fourier-domain OCT (FD-OCT). The system was built in a CPU-GPU heterogeneous computing architecture capable of video OCT image processing. The system displays at a maximum speed of 10  volume/s for an image volume size of 160×80×1024 (X×Y×Z) pixels. We have used this system to visualize and guide two prototypical microsurgical maneuvers: microvascular anastomosis of the rat femoral artery and ultramicrovascular isolation of the retinal arterioles of the bovine retina. Our preliminary experiments using 3D-OCT-guided microvascular anastomosis showed optimal visualization of the rat femoral artery (diameter<0.8  mm), instruments, and suture material. Real-time intraoperative guidance helped facilitate precise suture placement due to optimized views of the vessel wall during anastomosis. Using the bovine retina as a model system, we have performed “ultra microvascular” feasibility studies by guiding handheld surgical micro-instruments to isolate retinal arterioles (diameter∼0.1  mm). Isolation of the microvessels was confirmed by successfully passing a suture beneath the vessel in the 3D imaging environment. PMID:23224164

  4. Innovative optical scanning technique and device for three-dimensional full-scale measurement of wind-turbine blades

    NASA Astrophysics Data System (ADS)

    Fu, Ho-Ling; Fan, Kuang-Chao; Huang, Yu-Jan; Hu, Ming-Kai

    2014-12-01

    A full-scale three-dimensional profile measurement system with an innovative optical setup for measuring the geometric shape of large wind-turbine blades in high accuracy is developed. A normal full-scale wind blade geometry measurement system can be very expensive. The presented system is low cost, but it can yield a high accuracy for geometric dimensions by error compensation from its measured data. It consists of a low cost long linear stage driven by a direct current motor with linear scale feedback for position and velocity control, and two line-scan optical heads mounted on opposite sides. The line image of the sectional shape profile can be captured by two charge-coupled devices. By scanning the optical head throughout the full length of the blade, the image of the whole profile can be collected. The shape parameters of the wind-turbine blades can thus be determined. A special effort has been employed to improve the straightness and positioning accuracy of the linear stage by error compensation. With system calibration of the stage and the cameras, experimental results show high accuracy of the developed system. This low-cost optical system is expected to measure any full-scale wind blade profile up to several meters in length.

  5. Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadezhda; Gangnus, Sergei V.; Matcher, Stephen J.

    2006-08-01

    Polarization optical coherence tomography (PSOCT) is a powerful technique to nondestructively map the retardance and fast-axis orientation of birefringent biological tissues. Previous studies have concentrated on the case where the optic axis lies on the plane of the surface. We describe a method to determine the polar angle of the optic axis of a uniaxial birefringent tissue by making PSOCT measurements with a number of incident illumination directions. The method is validated on equine flexor tendon, yielding a variability of 4% for the true birefringence and 3% for the polar angle. We use the method to map the polar angle of fibers in the transitional region of equine cartilage.

  6. Bottle beam based optical trapping system for three-dimensional trapping of high and low index microparticles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet Singh; Yuan, Xiaocong; Tao, Shaohua

    2005-08-01

    The quest for applying optical tweezers system for novel applications has aggrandized its trapping capabilities since its inception. Researchers have proposed and applied light based micro-manipulation technique in the field of colloidal sciences, bioscience, MEMS and the count is limitless. In this paper we report the self-imaged optical bottle beam based optical tweezers system. A self-imaged bottle beam possesses three-dimensional intensity-null points along the propagation axis. The transverse intensity profile of the self-imaged bottle beam oscillates along the propagation axis, hence providing three-dimensional trapping potential for high and low indices microparticles at constructive and destructive interference points, respectively. Bottle beam based optical tweezer system adds the beneficial property of Gaussian and Bessel beam based trapping systems by providing three-dimensional trapping potential and self-reconstruction ability, respectively. As self-imaged bottle beam belong to the family of propagation-invariant beams, it can be used to trap chain of high and low indices microparticles three-dimensionally along the propagation directions, which can be used to periodically stack microparticles (of different refractive index) longitudinally.

  7. Inverse dynamical photon scattering (IDPS): an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy.

    PubMed

    Jiang, Xiaoming; Van den Broek, Wouter; Koch, Christoph T

    2016-04-01

    Inverse dynamical photon scattering (IDPS), an artificial neural network based algorithm for three-dimensional quantitative imaging in optical microscopy, is introduced. Because the inverse problem entails numerical minimization of an explicit error metric, it becomes possible to freely choose a more robust metric, to introduce regularization of the solution, and to retrieve unknown experimental settings or microscope values, while the starting guess is simply set to zero. The regularization is accomplished through an alternate directions augmented Lagrangian approach, implemented on a graphics processing unit. These improvements are demonstrated on open source experimental data, retrieving three-dimensional amplitude and phase for a thick specimen. PMID:27136994

  8. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  9. Development of a compression molding process for three-dimensional tailored free-form glass optics

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Huang, Chunning; Klocke, Fritz; Brecher, Christian; Pongs, Guido; Winterschladen, Markus; Demmer, Axel; Lange, Sven; Bergs, Thomas; Merz, Michael; Niehaus, Frank

    2006-09-01

    Because of the limitation of manufacturing capability, free-form glass optics cannot be produced in a large volume using traditional processes such as grinding, lapping, and polishing. Very recently compression molding of glass optics became a viable manufacturing process for the high-volume production of precision glass optical components. An ultraprecision diamond-turning machine retrofitted with a fast tool servo was used to fabricate a free-form optical mold on a nickel-plated surface. A nonuniform rational B-spline trajectory generator was developed to calculate the computer numerical control machine tool path. A specially formulated glass with low transition temperature (Tg) was used, since the nickel alloy mold cannot withstand the high temperatures required for regular optical glasses. We describe the details of this process, from optical surface geometry, mold making, molding experiment, to lens measurement.

  10. Development of a compression molding process for three-dimensional tailored free-form glass optics.

    PubMed

    Yi, Allen Y; Huang, Chunning; Klocke, Fritz; Brecher, Christian; Pongs, Guido; Winterschladen, Markus; Demmer, Axel; Lange, Sven; Bergs, Thomas; Merz, Michael; Niehaus, Frank

    2006-09-01

    Because of the limitation of manufacturing capability, free-form glass optics cannot be produced in a large volume using traditional processes such as grinding, lapping, and polishing. Very recently compression molding of glass optics became a viable manufacturing process for the high-volume production of precision glass optical components. An ultraprecision diamond-turning machine retrofitted with a fast tool servo was used to fabricate a free-form optical mold on a nickel-plated surface. A nonuniform rational B-spline trajectory generator was developed to calculate the computer numerical control machine tool path. A specially formulated glass with low transition temperature (Tg) was used, since the nickel alloy mold cannot withstand the high temperatures required for regular optical glasses. We describe the details of this process, from optical surface geometry, mold making, molding experiment, to lens measurement. PMID:16912790

  11. Automatic three-dimensional registration of intravascular optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter R.; Coosemans, Mark; Desmet, Walter; D'hooge, Jan

    2012-02-01

    Intravascular optical coherence tomography (IV-OCT) is a catheter-based high-resolution imaging technique able to visualize the inner wall of the coronary arteries and implanted devices in vivo with an axial resolution below 20 μm. IV-OCT is being used in several clinical trials aiming to quantify the vessel response to stent implantation over time. However, stent analysis is currently performed manually and corresponding images taken at different time points are matched through a very labor-intensive and subjective procedure. We present an automated method for the spatial registration of IV-OCT datasets. Stent struts are segmented through consecutive images and three-dimensional models of the stents are created for both datasets to be registered. The two models are initially roughly registered through an automatic initialization procedure and an iterative closest point algorithm is subsequently applied for a more precise registration. To correct for nonuniform rotational distortions (NURDs) and other potential acquisition artifacts, the registration is consecutively refined on a local level. The algorithm was first validated by using an in vitro experimental setup based on a polyvinyl-alcohol gel tubular phantom. Subsequently, an in vivo validation was obtained by exploiting stable vessel landmarks. The mean registration error in vitro was quantified to be 0.14 mm in the longitudinal axis and 7.3-deg mean rotation error. In vivo validation resulted in 0.23 mm in the longitudinal axis and 10.1-deg rotation error. These results indicate that the proposed methodology can be used for automatic registration of in vivo IV-OCT datasets. Such a tool will be indispensable for larger studies on vessel healing pathophysiology and reaction to stent implantation. As such, it will be valuable in testing the performance of new generations of intracoronary devices and new therapeutic drugs.

  12. Automated volumetric stent analysis of in-vivo intracoronary optical coherence tomography three-dimensional datasets

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Onsea, Kevin; Dubois, Christophe; Coosemans, Mark; Sinnaeve, Peter; Desmet, Walter; D'hooge, Jan

    2011-06-01

    Intra-vascular Optical Coherence Tomography (IV-OCT) is an appropriate imaging modality for the evaluation of stent struts apposition and coverage in the coronary arteries. Most often, image analysis is performed by a time-consuming manual contour tracing process. Recently, we proposed an algorithm for fully automated lumen morphology and individual stent struts apposition/coverage quantification. In this manuscript further developments allowing for automatic segmentation of the stent contour are presented. As such, quantification of in-stent area, malapposition cross-sectional area (i.e. the area representing the space from the stent surface to the vessel wall) and coverage cross-sectional area (i.e. the area of the tissue covering the stent surface) are automatically obtained. Volumetric measurements of malapposition and coverage are then achieved through the analysis of equally-spaced consecutive IV-OCT cross-sectional images. In addition, uncovered and malapposed struts are automatically clustered through consecutive slices according to their three-dimensional spatial position. Finally, properties of each cluster (e.g. malapposition/coverage volumes and struts spatial location and distribution) are quantified allowing for a volumetric analysis of the implanted device. Validation of the algorithm was obtained taking as a reference manual measurements performed by an expert cardiologist. 102 in-vivo images, taken at random from 8 different patients, were both automatically and manually analyzed quantifying lumen and stent area. High Pearson's correlation coefficients (Rarea = 0.99) and Bland-Altman statistics, showing no significant bias and good limits of agreement, proved that the presented algorithm provides a robust and fast tool to automatically estimate apposition and coverage of stent through an entire in-vivo IV-OCT pullback. Such a tool will be important for the integration of this technology in clinical routine and large clinical trials.

  13. Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection

    PubMed Central

    Wollstein, Gadi; Bilonick, Richard A.; Folio, Lindsey S.; Nadler, Zach; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    Purpose To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. PMID:23408988

  14. IBSIMU: a three-dimensional simulation software for charged particle optics.

    PubMed

    Kalvas, T; Tarvainen, O; Ropponen, T; Steczkiewicz, O; Arje, J; Clark, H

    2010-02-01

    A general-purpose three-dimensional (3D) simulation code IBSIMU for charged particle optics with space charge is under development at JYFL. The code was originally developed for designing a slit-beam plasma extraction and nanosecond scale chopping for pulsed neutron generator, but has been developed further and has been used for many applications. The code features a nonlinear FDM Poisson's equation solver based on fast stabilized biconjugate gradient method with ILU0 preconditioner for solving electrostatic fields. A generally accepted nonlinear plasma model is used for plasma extraction. Magnetic fields can be imported to the simulations from other programs. The particle trajectories are solved using adaptive Runge-Kutta method. Steady-state and time-dependent problems can be modeled in cylindrical coordinates, two-dimensional (slit) geometry, or full 3D. The code is used via C++ programming language for versatility but it features an interactive easy-to-use postprocessing tool for diagnosing fields and particle trajectories. The open source distribution and public documentation make the code well suited for scientific use. IBSIMU has been used for modeling the 14 GHz ECR ion source extraction and for designing a four-electrode extraction for a 2.45 GHz microwave ion source at Jyväskylä. A grid extraction has also been designed for producing large uniform beam for creating conditions similar to solar wind. The code has also been used to design a H(-) extraction with electron dumping for the Cyclotron Institute of Texas A&M University. PMID:20192443

  15. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA-) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA- to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach.

  16. Coordination control of quadrotor VTOL aircraft in three-dimensional space

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2015-03-01

    This paper presents a constructive design of distributed coordination controllers for a group of N quadrotor vertical take-off and landing (VTOL) aircraft in three-dimensional space. A combination of Euler angles and unit-quaternion for the attitude representation of the aircraft is used to result in an effective control design, and to reduce singularities in the aircraft's dynamics. The coordination control design is based on a new bounded control design technique for second-order systems and new pairwise collision avoidance functions. The pairwise collision functions are functions of both relative positions and relative velocities between the aircraft instead of only their relative positions as in the literature. To overcome the inherent underactuation of the aircraft, the roll and pitch angles of the aircraft are considered as immediate controls. Simulations illustrate the results.

  17. Adaptive femtosecond control using feedback from three-dimensional momentum images

    NASA Astrophysics Data System (ADS)

    Wells, E.

    2011-05-01

    Shaping ultrafast laser pulses using adaptive feedback is a proven technique for manipulating dynamics in molecular systems with no readily apparent control mechanism. Commonly employed feedback signals include fluorescence or ion yield, which may not uniquely identify the final state. Raw velocity map images, which contain a two-dimensional representation of the full three-dimensional photofragment momentum vector, are a more specific feedback source. The raw images, however, are limited by an azimuthal ambiguity which is usually removed in offline processing. By implementing a rapid inversion procedure based upon the onion-peeling technique, we are able to incorporate three-dimensional momentum information directly into the adaptive control loop. This method enables more targeted control experiments. Two examples are used to demonstrate the utility of this feedback. First, double ionization of CO produces C+ and O+ fragments ejected both perpendicular and parallel to the laser polarization with kinetic energy release of ~6 eV. Both suppression and enhancement of the perpendicular transitions relative to the parallel transitions are demonstrated. Second, double ionization of acetylene can lead to both HCCH2+ and HHCC2+ isomers. We select between these outcomes using the angular information contained in the CH+ and CH2+images. Supported by National Science Foundation award PHY-0969687 and the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Science, Office of Science, US Department of Energy.

  18. Optical phase cloaking of 700 nm light waves in the far field by a three-dimensional carpet cloak.

    PubMed

    Ergin, Tolga; Fischer, Joachim; Wegener, Martin

    2011-10-21

    Transformation optics is a design tool that connects the geometry of space and propagation of light. Invisibility cloaking is a corresponding benchmark example. Recent experiments at optical frequencies have demonstrated cloaking for the light amplitude only. In this Letter, we demonstrate far-field cloaking of the light phase by interferometric microscope-imaging experiments on the previously introduced three-dimensional carpet cloak at 700 nm wavelength and for arbitrary polarization of light. PMID:22107517

  19. Three-dimensional patterning and morphological control of porous nanomaterials by gray-scale direct imprinting.

    PubMed

    Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2013-01-01

    We present a method for direct three-dimensional (3D) patterning of porous nanomaterials through the application of a premastered and reusable gray-scale stamp. Four classes of 3D nanostructures are demonstrated for the first time in porous media: gradient profiles, digital patterns, curves and lens shapes, and sharp features including v-grooves, nano-pits, and 'cookie-cutter' particles. Further, we demonstrate this technique enables morphological tuning and direct tailoring of nanomaterial properties, including porosity, average pore size, dielectric constant, and plasmonic response. This work opens a rapid and low-cost route for fabricating novel nanostructures and devices utilizing porous nanomaterials, with promising applications spanning diffractive and plasmonic sensing, holography, micro- and transformation optics, and drug delivery and imaging. PMID:23518798

  20. Three-dimensional patterning and morphological control of porous nanomaterials by gray-scale direct imprinting

    PubMed Central

    Ryckman, Judson D.; Jiao, Yang; Weiss, Sharon M.

    2013-01-01

    We present a method for direct three-dimensional (3D) patterning of porous nanomaterials through the application of a premastered and reusable gray-scale stamp. Four classes of 3D nanostructures are demonstrated for the first time in porous media: gradient profiles, digital patterns, curves and lens shapes, and sharp features including v-grooves, nano-pits, and ‘cookie-cutter’ particles. Further, we demonstrate this technique enables morphological tuning and direct tailoring of nanomaterial properties, including porosity, average pore size, dielectric constant, and plasmonic response. This work opens a rapid and low-cost route for fabricating novel nanostructures and devices utilizing porous nanomaterials, with promising applications spanning diffractive and plasmonic sensing, holography, micro- and transformation optics, and drug delivery and imaging. PMID:23518798

  1. Three-dimensional positioning control based on stereo microscopic visual servoing system

    NASA Astrophysics Data System (ADS)

    Sha, Xiaopeng; Li, Huiguang; Li, Wenchao; Wang, Shuai

    2015-01-01

    A stereo microscopic system as a high-precision visual feedback is widely used in the fields of micro-three-dimensional (3-D) measurement and micromanipulation tasks. A new stereo binocular visual servoing model based on a Greenough-type stereoscopic light microscope to solve the 3-D micropositioning problem is proposed. The new model contains no depth information, but the information at the left and right images is used to obtain the image Jacobian matrix. Visual information can be directly obtained from the 3-D space without measuring or estimating the depth information of the unknown points of the object via this new model. The new model can not only accurately and rapidly realize automatic control for a micromanipulation system, but also improve the system control performance. We design an image-based controller with consideration of the kinematics characteristics of a microrobot. Experimental results verify the validity of the model.

  2. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Bian, Hao; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-01-01

    In this paper, we demonstrate an effective approach for the three-dimensional (3D) pattern-structured superhydrophobic PDMS surfaces with controllable adhesion by using femtosecond laser etching method. By combining different laser power with a multi-layered etching way, various 3D patterns can be fabricated (for example, convex triangle array, round pit array, cylindrical array, convex rhombus array and concave triangle-cone array). The as-prepared surfaces with 3D patterns show superhydrophobic character and water controllable adhesion that range from ultralow to ultrahigh by designing different 3D patterns, on which the sliding angle can be controlled from 1° to 90° (the water droplet is firmly pinned on the superhydrophobic surface without any movement at any tilted angles). The 3D pattern-dependent adhesive property is attributed to the different contact modes. This work will provide a facile and promising strategy for the adhesion adjustment on superhydrophobic surfaces.

  3. Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures

    SciTech Connect

    Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

    2005-07-27

    Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

  4. Numerical study of three-dimensional separation and flow control at a wing/body junction

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Lakshmanan, Balakrishnan

    1989-01-01

    The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.

  5. Three-dimensional flow structures and vorticity control in fish-like swimming

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Wolfgang, M. J.; Yue, D. K. P.; Triantafyllou, M. S.

    2002-10-01

    We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction with experimental data from live fish and from a fish-like robotic mechanism, to establish the three-dimensional features of the flow around a fish-like body swimming in a straight line, and to identify the principal mechanisms of vorticity control employed in fish-like swimming. The computations contain no structural model for the fish and hence no recoil correction. First, we show the near-body flow structure produced by the travelling-wave undulations of the bodies of a tuna and a giant danio. As revealed in cross-sectional planes, for tuna the flow contains dominant features resembling the flow around a two-dimensional oscillating plate over most of the length of the fish body. For the giant danio, on the other hand, a mixed longitudinal transverse structure appears along the hind part of the body. We also investigate the interaction of the body-generated vortices with the oscillating caudal fin and with tail-generated vorticity. Two distinct vorticity interaction modes are identified: the first mode results in high thrust and is generated by constructive pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting in the formation of a strong thrust wake; the second corresponds to high propulsive efficiency and is generated by destructive pairing of body-generated vorticity with opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust wake.

  6. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  7. Three-dimensional structure and multistable optical switching of triple-twisted particle-like excitations in anisotropic fluids

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan I.; Lansac, Yves; Clark, Noel A.; Trivedi, Rahul P.

    2010-02-01

    Control of structures in soft materials with long-range order forms the basis for applications such as displays, liquid-crystal biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators and beam-steering devices. Bistable, tristable and multistable switching of well-defined structures of molecular alignment is of special interest for all of these applications. Here we describe the facile optical creation and multistable switching of localized configurations in the molecular orientation field of a chiral nematic anisotropic fluid. These localized chiro-elastic particle-like excitations-dubbed `triple-twist torons'-are generated by vortex laser beams and embed the localized three-dimensional (3D) twist into a uniform background. Confocal polarizing microscopy and computer simulations reveal their equilibrium internal structures, manifesting both skyrmion-like and Hopf fibration features. Robust generation of torons at predetermined locations combined with both optical and electrical reversible switching can lead to new ways of multistable structuring of complex photonic architectures in soft materials.

  8. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect

    Jae-Hwang Lee

    2006-08-09

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and

  9. Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging.

    PubMed

    Ortiz, Sergio; Siedlecki, Damian; Grulkowski, Ireneusz; Remon, Laura; Pascual, Daniel; Wojtkowski, Maciej; Marcos, Susana

    2010-02-01

    A method for three-dimensional 3-D optical distortion (refraction) correction on anterior segment Optical Coherence Tomography (OCT) images has been developed. The method consists of 3-D ray tracing through the different surfaces, following denoising, segmentation of the surfaces, Delaunay representation of the surfaces, and application of fan distortion correction. The correction has been applied theoretically to realistic computer eye models, and experimentally to OCT images of: an artificial eye with a Polymethyl Methacrylate (PMMA) cornea and an intraocular lens (IOL), an enucleated porcine eye, and a human eye in vivo obtained from two OCT laboratory set-ups (time domain and spectral). Data are analyzed in terms of surface radii of curvature and asphericity. Comparisons are established between the reference values for the surfaces (nominal values in the computer model; non-contact profilometric measurements for the artificial eye; Scheimpflug imaging for the real eyes in vivo and vitro). The results from the OCT data were analyzed following the conventional approach of dividing the optical path by the refractive index, after application of 2-D optical correction, and 3-D optical correction (in all cases after fan distortion correction). The application of 3-D optical distortion correction increased significantly both the accuracy of the radius of curvature estimates and particularly asphericity of the surfaces, with respect to conventional methods of OCT image analysis. We found that the discrepancies of the radii of curvature estimates from 3-D optical distortion corrected OCT images are less than 1% with respect to nominal values. Optical distortion correction in 3-D is critical for quantitative analysis of OCT anterior segment imaging, and allows accurate topography of the internal surfaces of the eye. PMID:20174107

  10. Using patterned H-resist for controlled three-dimensional growth of nanostructures

    NASA Astrophysics Data System (ADS)

    Goh, K. E. J.; Chen, S.; Xu, H.; Ballard, J.; Randall, J. N.; Von Ehr, J. R.

    2011-04-01

    We present a study addressing the effectiveness of a monolayer of hydrogen as the lithographic resist for controlled three-dimensional (3D) growth of nanostructures on the Si(100) surface. Nanoscale regions on the H-terminated Si(100) were defined by H-desorption lithography via the biased tip of a scanning tunneling microscope (STM) to create well-defined regions of surface "dangling bonds," and the growth of 3D nanostructures within these regions was achieved using a simultaneous disilane deposition and STM H-desorption technique. We demonstrate that 3D growth is strongly confined within STM depassivated regions while unpatterned H:Si(100) regions are robust against adsorption of the precursor molecules.

  11. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels

    NASA Astrophysics Data System (ADS)

    Wylie, Ryan G.; Ahsan, Shoeb; Aizawa, Yukie; Maxwell, Karen L.; Morshead, Cindi M.; Shoichet, Molly S.

    2011-10-01

    Three-dimensional (3D) protein-patterned scaffolds provide a more biomimetic environment for cell culture than traditional two-dimensional surfaces, but simultaneous 3D protein patterning has proved difficult. We developed a method to spatially control the immobilization of different growth factors in distinct volumes in 3D hydrogels, and to specifically guide differentiation of stem/progenitor cells therein. Stem-cell differentiation factors sonic hedgehog (SHH) and ciliary neurotrophic factor (CNTF) were simultaneously immobilized using orthogonal physical binding pairs, barnase-barstar and streptavidin-biotin, respectively. Barnase and streptavidin were sequentially immobilized using two-photon chemistry for subsequent concurrent complexation with fusion proteins barstar-SHH and biotin-CNTF, resulting in bioactive 3D patterned hydrogels. The technique should be broadly applicable to the patterning of a wide range of proteins.

  12. Three-dimensional speckle size in generalized optical systems with limiting apertures.

    PubMed

    Ward, Jennifer E; Kelly, Damien P; Sheridan, John T

    2009-08-01

    Correlation properties of speckle fields at the output of quadratic phase systems with hard square and circular apertures are examined. Using the linear canonical transform and ABCD ray matrix techniques to describe these general optical systems, we first derive analytical formulas for determining axial and lateral speckle sizes. Then using a numerical technique, we extend the analysis so that the correlation properties of nonaxial speckles can also be considered. Using some simple optical systems as examples, we demonstrate how this approach may be conveniently applied. The results of this analysis apply broadly both to the design of metrology systems and to speckle control schemes. PMID:19649124

  13. Statistics Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensional Radiative Effects

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2000-01-01

    This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.

  14. Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces.

    PubMed

    Tamjid, Elnaz; Simchi, Arash; Dunlop, John W C; Fratzl, Peter; Bagheri, Reza; Vossoughi, Manouchehr

    2013-10-01

    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were also used to reveal the effect of particle size on the cell behavior. Observation of tissue growth and enzyme activity on two-dimensional (2D) films and three-dimensional (3D) scaffolds showed effects of nanoparticle inclusion and of surface curvature on the cellular adhesion, proliferation, and kinetics of preosteoblastic cells (MC3T3-E1) tissue growth into the pore channels. It was found that the presence of nanoparticles in the substrate impaired cellular adhesion and proliferation in 3D structures. Evaluation of alkaline phosphate activity showed that the presence of the hard particles affects differentiation of the cells on 2D films. Notwithstanding, the effect of particles on cell differentiation was not as strong as that seen by the curvature of the substrate. We observed different effects of nanofeatures on 2D structures with those of 3D scaffolds, which influence the cell proliferation and differentiation for non-load-bearing applications in bone regenerative medicine. PMID:23463703

  15. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift.

    PubMed

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  16. Longitudinal spin separation of light and its performance in three-dimensionally controllable spin-dependent focal shift

    PubMed Central

    Liu, Sheng; Li, Peng; Zhang, Yi; Gan, Xuetao; Wang, Meirong; Zhao, Jianlin

    2016-01-01

    Spin Hall effect of light, which is normally explored as a transverse spin-dependent separation of a light beam, has attracted enormous research interests. However, it seems there is no indication for the existence of the longitudinal spin separation of light. In this paper, we propose and experimentally realize the spin separation along the propagation direction by modulating the Pancharatnam-Berry (PB) phase. Due to the spin-dependent divergence and convergence determined by the PB phase, a focused Gaussian beam could split into two opposite spin states, and focuses at different distances, representing the longitudinal spin separation. By combining this longitudinal spin separation with the transverse one, we experimentally achieve the controllable spin-dependent focal shift in three dimensional space. This work provides new insight on steering the spin photons, and is expected to explore novel applications of optical trapping, manipulating, and micromachining with higher degree of freedom. PMID:26882995

  17. SHG microscopy excited by polarization controlled beam for three-dimensional molecular orientation measurement

    NASA Astrophysics Data System (ADS)

    Yoshiki, K.; Hashimoto, M.; Araki, T.

    2006-08-01

    We have developed a second-harmonic-generation (SGH) microscope to observe the three-dimensional molecular orientation with three-dimensional high spatial resolution using a polarization mode converter. The mode converter consists of a parallel-aligned nematic-liquid-crystal spatial-light-modulator (PAL-SLM) and quarter-waveplates, and converts a incident linearly polarized beam to orthogonal linearly polarized beams or radially polarized beam. We combined the mode converter with SHG microscope to obtain the local information of the three-dimensional molecular orientation. We demonstrated the detection of three-dimensional molecular orientation of collagen fiber in human Achilles' tendon. For high precision three-dimensional molecular orientation measurement, we propose a technique to calibrate the dependence of SHG detection efficiencies on molecular orientation using a liposome.

  18. Processing to determine optical parameters of atherosclerotic disease from phantom and clinical intravascular optical coherence tomography three-dimensional pullbacks.

    PubMed

    Shalev, Ronny; Gargesha, Madhusudhana; Prabhu, David; Tanaka, Kentaro; Rollins, Andrew M; Lamouche, Guy; Bisaillon, Charles-Etienne; Bezerra, Hiram G; Ray, Soumya; Wilson, David L

    2016-04-01

    Analysis of intravascular optical coherence tomography (IVOCT) data has potential for real-time in vivo plaque classification. We developed a processing pipeline on a three-dimensional local region of support for estimation of optical properties of atherosclerotic plaques from coronary artery, IVOCT pullbacks. Using realistic coronary artery disease phantoms, we determined insignificant differences in mean and standard deviation estimates between our pullback analyses and more conventional processing of stationary acquisitions with frame averaging. There was no effect of tissue depth or oblique imaging on pullback parameter estimates. The method's performance was assessed in comparison with observer-defined standards using clinical pullback data. Values (calcium [Formula: see text], lipid [Formula: see text], and fibrous [Formula: see text]) were consistent with previous measurements obtained by other means. Using optical parameters ([Formula: see text], [Formula: see text], [Formula: see text]), we achieved feature space separation of plaque types and classification accuracy of [Formula: see text]. Despite the rapid [Formula: see text] motion and varying incidence angle in pullbacks, the proposed computational pipeline appears to work as well as a more standard "stationary" approach. PMID:27213167

  19. Three-dimensional closed-loop control of self-propelled microjets

    NASA Astrophysics Data System (ADS)

    Khalil, Islam S. M.; Magdanz, Veronika; Sanchez, Samuel; Schmidt, Oliver G.; Misra, Sarthak

    2013-10-01

    We demonstrate precise closed-loop control of microjets under the influence of the magnetic fields in three-dimensional (3D) space. For this purpose, we design a magnetic-based control system that directs the field lines towards reference positions. Microjets align along the controlled field lines using the magnetic torque exerted on their magnetic dipole, and move towards the reference positions using their self-propulsion force. We demonstrate the controlled motion of microjets in 3D space, and show that their propulsion force allows them to overcome vertical forces, such as buoyancy forces, interaction forces with oxygen bubbles, and vertical flow. The closed-loop control localizes the microjets within a spherical region of convergence with an average diameter of 406±220 μm, whereas the self-propulsion force allows them to swim at an average speed of 222±74 μm/s within the horizontal plane. Furthermore, we observe that the controlled microjets dive downward and swim upward towards reference positions at average speeds of 232±40 μm/s and 316±81 μm/s, respectively.

  20. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    PubMed Central

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA−) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA− to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom–up scalable approach. PMID:26743184

  1. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.

    PubMed

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M; Piper, James A; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA(-)) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA(-) to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach. PMID:26743184

  2. Differentiation of Benign and Malignant Breast Tumors by In-Vivo Three-Dimensional Parallel-Plate Diffuse Optical Tomography

    PubMed Central

    Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; DeMichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.

    2009-01-01

    We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT. PMID:19405750

  3. Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; Demichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.

    2009-03-01

    We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, and total hemoglobin concentration as well as blood oxygen saturation and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and magnetic resonance imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a twofold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than 1 week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT.

  4. Fractal frequency spectrum in laser resonators and three-dimensional geometric topology of optical coherent waves

    NASA Astrophysics Data System (ADS)

    Tung, J. C.; Tuan, P. H.; Liang, H. C.; Huang, K. F.; Chen, Y. F.

    2016-08-01

    We theoretically verify that the symmetry breaking in spherical resonators can result in a fractal frequency spectrum that is full of numerous new accidental degeneracies to cluster around the unperturbed degenerate cavity. We further experimentally discover that the fractal frequency spectrum excellently reflects the intimate connection between the emission power and the degenerate mode numbers. It is observed that the wave distributions of lasing modes at the accidental degeneracies are strongly concentrated on three-dimensional (3D) geometric topology. Considering the overlapping effect, the wave representation of the coherent states is analytically derived to manifest the observed 3D geometric surfaces.

  5. Optical modeling of a line-scan optical coherence tomography system for high-speed three-dimensional endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Kamal, Mohammad; Sivakumar, Narayanswamy; Packirisamy, Muthukumaran

    2009-06-01

    The optical and analytical modeling of a line-scan optical coherence tomography (LS-OCT) system for high-speed three-dimensional (3D) endoscopic imaging is reported. To avoid complex lens system and image distortion error, an off-axis cylindrical mirror is used for focusing the line illumination on the sample surface and a micro mirror scanner is integrated with the proposed configuration for transverse scanning. The beams are swept on the cylindrical mirror by the micro mirror rotation and finally focused on the sample surface for transverse scanning. A 2mm by 3.2mm en-face scanning is configured with a 2mm focused line and +/-3° scanning mirror rotation. The proposed configuration also has the capability of dynamic focusing by the movement of the cylindrical mirror without changing the transverse resolution. The cylindrical mirror enhances the image quality by reducing the aberration. The system is capable of real-time 3D imaging with 5μm and 10 μm axial and transverse resolutions, respectively.

  6. Stability and Control of Constrained Three-Dimensional Robotic Systems with Application to Bipedal Postural Movements

    NASA Astrophysics Data System (ADS)

    Kallel, Hichem

    Three classes of postural adjustments are investigated with the view of a better understanding of the control mechanisms involved in human movement. The control mechanisms and responses of human or computer models to deliberately induced disturbances in postural adjustments are the focus of this dissertation. The classes of postural adjustments are automatic adjustments, (i.e. adjustments not involving voluntary deliberate movement), adjustments involving imposition of constraints for the purpose of maintaining support forces, and adjustments involving violation and imposition of constraints for the purpose of maintaining balance, (i.e. taking one or more steps). For each class, based on the physiological attributes of the control mechanisms in human movements, control strategies are developed to synthesize the desired postural response. The control strategies involve position and velocity feedback control, on line relegation control, and pre-stored trajectory control. Stability analysis for constrained and unconstrained maneuvers is carried out based on Lyapunov stability theorems. The analysis is based on multi-segment biped robots. Depending on the class of postural adjustments, different biped models are developed. An eight-segment three dimensional biped model is formulated for the study of automatic adjustments and adjustments for balance. For the study of adjustments for support, a four segment lateral biped model is considered. Muscle synergies in automatic adjustments are analyzed based on a three link six muscle system. The muscle synergies considered involve minimal muscle number and muscle co-activation. The role of active and passive feedback in these automatic adjustments is investigated based on the specified stiffness and damping of the segments. The effectiveness of the control strategies and the role of muscle synergies in automatic adjustments are demonstrated by a number of digital computer simulations.

  7. Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs

    NASA Astrophysics Data System (ADS)

    Meissner, Sven; Knels, Lilla; Krueger, Alexander; Koch, Thea; Koch, Edmund

    2009-09-01

    There is a growing interest in analyzing lung mechanics at the level of the alveoli in order to understand stress-related pathogenesis and possibly avoid ventilator associated lung injury. Emerging quantitative models to simulate fluid mechanics and the associated stresses and strains on delicate alveolar walls require realistic quantitative input on alveolar geometry and its dynamics during ventilation. Here, three-dimensional optical coherence tomography (OCT) and conventional intravital microscopy are joined in one setup to investigate the geometric changes of subpleural alveoli during stepwise pressure increase and release in an isolated and perfused rabbit lung model. We describe good qualitative agreement and quantitative correlation between the OCT data and video micrographs. Our main finding is the inflation and deflation of individual alveoli with noticeable hysteresis. Importantly, this three-dimensional geometry data can be extracted and converted into input data for numerical simulations.

  8. Three-dimensional graphics simulator for testing mine machine computer-controlled algorithms -- phase 1 development

    SciTech Connect

    Ambrose, D.H. )

    1993-01-01

    Using three-dimensional (3-D) graphics computing to evaluate new technologies for computer-assisted mining systems illustrates how these visual techniques can redefine the way researchers look at raw scientific data. The US Bureau of Mines is using 3-D graphics computing to obtain cheaply, easily, and quickly information about the operation and design of current and proposed mechanical coal and metal-nonmetal mining systems. Bureau engineers developed a graphics simulator for a continuous miner that enables a realistic test for experimental software that controls the functions of a machine. Some of the specific simulated functions of the continuous miner are machine motion, appendage motion, machine position, and machine sensors. The simulator uses data files generated in the laboratory or mine using a computer-assisted mining machine. The data file contains information from a laser-based guidance system and a data acquisition system that records all control commands given to a computer-assisted mining machine. This report documents the first phase in developing the simulator and discusses simulator requirements, features of the initial simulator, and several examples of its application. During this endeavor, Bureau engineers discovered and appreciated the simulator's potential to assist their investigations of machine controls and navigation systems.

  9. Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing

    PubMed Central

    2015-01-01

    Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF–Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research. PMID:25268035

  10. Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model.

    PubMed

    Wong, Sau Fung; No, Da Yoon; Choi, Yoon Young; Kim, Dong Sik; Chung, Bong Geun; Lee, Sang-Hoon

    2011-11-01

    We have developed a size-controllable spheroidal hepatosphere and heterosphere model by mono-culturing of primary hepatocytes and by co-culturing primary hepatocytes and hepatic stellate cells (HSCs). We demonstrated that uniform-sized heterospheres, which self-aggregated from primary hepatocytes and HSCs, formed within concave microwell arrays in a rapid and homogeneous manner. The effect of HSCs was quantitatively and qualitatively investigated during spheroid formation, and HSC played an important role in controlling the organization of the spheroidal aggregates and formation of tight cell-cell contacts. An analysis of the metabolic function showed that heterospheres secreted 30% more albumin than hepatospheres on day 8. In contrast, the urea secretion from heterospheres was similar to that of hepatospheres. A quantitative cytochrome P450 assay showed that the enzymatic activity of heterospheres cultured for 9 days was higher as compared with primary hepatospheres. These size-controllable heterospheres could be mass-produced using concave plate and be useful for creating artificial three-dimensional hepatic tissue constructs and regeneration of failed liver. PMID:21813175

  11. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides.

    PubMed

    Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert

    2010-11-26

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency. PMID:21231386

  12. Three-Dimensional Negative Index of Refraction at Optical Frequencies by Coupling Plasmonic Waveguides

    NASA Astrophysics Data System (ADS)

    Verhagen, Ewold; de Waele, René; Kuipers, L.; Polman, Albert

    2010-11-01

    We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.

  13. Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Li, Junchang; Lin, Yu-Chih; Tu, Han-Yen; Gui, Jinbin; Li, Chongguang; Lou, Yuli; Cheng, Chau-Jern

    2015-10-01

    This work describes the image formation and properties of holographic three-dimensional (3-D) display based on spatial light modulators (SLMs) combined with optical imaging systems. Existing pixelated SLMs with periodic mesh structures affect the holographic reconstruction and display properties. According to a holographic 3-D display architecture based on SLM in paraxial optical systems, this study applied the ray matrix optics and scalar diffraction theory to regard the light wave emitting from the holographic plane to the image plane as an optical system composed of four matrix elements. The image quality and depth of field (DOF) of the holographic 3-D display system are investigated, and the relationship between the impulse response and the matrix elements of the holographic imaging system is derived. In addition, the imaging properties and DOF are explored and verified through optical experimentation.

  14. 360-degree three-dimensional flat panel display using holographic optical elements

    NASA Astrophysics Data System (ADS)

    Yabu, Hirofumi; Takeuchi, Yusuke; Yoshimoto, Kayo; Takahashi, Hideya; Yamada, Kenji

    2015-03-01

    We proposed the 360-degree 3D display system which is composed of a flat panel display, a light control film, and holographic optical element (HOE). The HOE is a diffraction grating which is made by holography technique. HOE lens can be produced on the thin polygonal glass plate. The light control film and HOE lenses are used to control the direction of light from the flat panel display in our system. The size of proposed system depends on the size of the flat panel display is because other parts of proposed system are thin and placed on the screen of the flat panel display. HOE lenses and a light control film are used to control lights from multiple pixels of a flat panel display to multiple viewpoints. To display large 3D images and to increase viewpoints, we divided parallax images into striped images and distributed them on the display for multiple viewpoints. Therefore, observers can see the large 3D image around the system. To verify the effectiveness of the proposed system, we made the experimental system. To verify the effectiveness of the proposed system, we constructed the part of the proposed system. The experimental system is composed of the liquid crystal display (LCD), prototype HOE lenses, and light control films. We confirmed that experimental system can display two images to different viewpoints. This paper describes the configuration of the proposed system, and also describes the experimental result.

  15. Cell volume control at a surface for three-dimensional grid generation packages

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Weilmuenster, Kenneth J.

    1992-01-01

    An alternate method of calculating the cell size for orthogonality control in the solution of Poisson's 3D space equations is presented. The method provides the capability to enforce a better initial guess for the grid distribution required for boundary layer resolution. This grid point distribution is accomplished by enforcing grid spacing from a grid block boundary where orthogonality is required. The actual grid spacing or cell size for that boundary is determined by the two or four adjacent boundaries in the grid block definition, which are two dimensional grids. These two dimensional grids are in turn defined by the user using insight into the flow field and boundary layer characteristics. The adjoining boundaries are extended using a multifunctional blending scheme, with user control of the blending and interpolating functions to be used. This grid generation procedure results in an enhanced computational fluid dynamics calculation by allowing a quicker resolution of the configuration's boundary layer and flow field and by limiting the number of grid re-adaptations. The cell size specification calculation was applied to a variety of configurations ranging from axisymmetric to complex three-dimensional configurations. Representative grids are shown for the Space Shuttle and the Langley Lifting Body (HL-20).

  16. Three Dimensional Solution of Pneumatic Active Control of Forebody Vortex Asymmetry

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; SharafEl-Din, Hazem H.; Liu, C. H.

    1995-01-01

    Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle range of 67.5 approaches minus 67.5 degrees is used for both normal and tangential ports of injection. The effective axial length of injection is varied from 0.03 to 0.05. The computational solver uses the implicit, upwind, flux difference splitting finite volume scheme, and the grid consists of 161 x 55 x 65 points in the wrap around, normal and axial directions, respectively. The results show that tangential injection is more effective than normal injection.

  17. Controlling collagen fiber microstructure in three-dimensional hydrogels using ultrasound

    PubMed Central

    Garvin, Kelley A.; VanderBurgh, Jacob; Hocking, Denise C.; Dalecki, Diane

    2013-01-01

    Type I collagen is the primary fibrillar component of the extracellular matrix, and functional properties of collagen arise from variations in fiber structure. This study investigated the ability of ultrasound to control collagen microstructure during hydrogel fabrication. Under appropriate conditions, ultrasound exposure of type I collagen during polymerization altered fiber microstructure. Scanning electron microscopy and second-harmonic generation microscopy revealed decreased collagen fiber diameters in response to ultrasound compared to sham-exposed samples. Results of mechanistic investigations were consistent with a thermal mechanism for the effects of ultrasound on collagen fiber structure. To control collagen microstructure site-specifically, a high frequency, 8.3-MHz, ultrasound beam was directed within the center of a large collagen sample producing dense networks of short, thin collagen fibrils within the central core of the gel and longer, thicker fibers outside the beam area. Fibroblasts seeded onto these gels migrated rapidly into small, circularly arranged aggregates only within the beam area, and clustered fibroblasts remodeled the central, ultrasound-exposed collagen fibrils into dense sheets. These investigations demonstrate the capability of ultrasound to spatially pattern various collagen microstructures within an engineered tissue noninvasively, thus enhancing the level of complexity of extracellular matrix microenvironments and cellular functions achievable within three-dimensional engineered tissues. PMID:23927189

  18. UAV formation control design with obstacle avoidance in dynamic three-dimensional environment.

    PubMed

    Chang, Kai; Xia, Yuanqing; Huang, Kaoli

    2016-01-01

    This paper considers the artificial potential field method combined with rotational vectors for a general problem of multi-unmanned aerial vehicle (UAV) systems tracking a moving target in dynamic three-dimensional environment. An attractive potential field is generated between the leader and the target. It drives the leader to track the target based on the relative position of them. The other UAVs in the formation are controlled to follow the leader by the attractive control force. The repulsive force affects among the UAVs to avoid collisions and distribute the UAVs evenly on the spherical surface whose center is the leader-UAV. Specific orders or positions of the UAVs are not required. The trajectories of avoidance obstacle can be obtained through two kinds of potential field with rotation vectors. Every UAV can choose the optimal trajectory to avoid the obstacle and reconfigure the formation after passing the obstacle. Simulations study on UAV are presented to demonstrate the effectiveness of proposed method. PMID:27478741

  19. Three-dimensional optical digitizer system: working with white light for the manufacturing industry

    NASA Astrophysics Data System (ADS)

    Rodriguez-Larena, Jorge; Canal Bienzobas, Fernando; Campos, Fernando

    1999-11-01

    In this work, an optical system for digitizing 3D objects by using structured light is described. It is fast, contactless, highly accurate and it can work in strongly illuminated environments. An application for an industrial quality control set-up is presented, in which sand cores to be used in the car industry are automatically handled by a robot and analyzed by the 3D digitizer. After the analysis of each core presented by the robot, the digitizer sends an OK or KO instruction for the faultless or faulty piece to be placed by the robot in a different area. In order to perform all the calculations required for the analysis and for the hardware control, a specific software has been developed. A series of examples and result are shown with comments on the advantages of the method here described.

  20. Modeling, Control and Simulation of Three-Dimensional Robotic Systems with Applications to Biped Locomotion.

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan-Fang

    A three-dimensional, five link biped system is established. Newton-Euler state space formulation is employed to derive the equations of the system. The constraint forces involved in the equations can be eliminated by projection onto a smaller state space system for deriving advanced control laws. A model-referenced adaptive control scheme is developed to control the system. Digital computer simulations of point to point movement are carried out to show that the model-referenced adaptive control increases the dynamic range and speeds up the response of the system in comparison with linear and nonlinear feedback control. Further, the implementation of the controller is simpler. Impact effects of biped contact with the environment are modeled and studied. The instant velocity change at the moment of impact is derived as a function of the biped state and contact speed. The effects of impact on the state, as well as constraints are studied in biped landing on heels and toes simultaneously or on toes first. Rate and nonlinear position feedback are employed for stability of the biped after the impact. The complex structure of the foot is properly modeled. A spring and dashpot pair is suggested to represent the action of plantar fascia during the impact. This action prevents the arch of the foot from collapsing. A mathematical model of the skeletal muscle is discussed. A direct relationship between the stimulus rate and the active state is established. A piecewise linear relation between the length of the contractile element and the isometric force is considered. Hill's characteristic equation is maintained for determining the actual output force during different shortening velocities. A physical threshold model is proposed for recruitment which encompasses the size principle, its manifestations and exceptions to the size principle. Finally the role of spindle feedback in stability of the model is demonstrated by study of a pair of muscles.

  1. Three-dimensional cavity cooling and trapping in an optical lattice

    SciTech Connect

    Murr, K.; Nussmann, S.; Puppe, T.; Hijlkema, M.; Weber, B.; Webster, S. C.; Kuhn, A.; Rempe, G.

    2006-06-15

    A robust scheme for trapping and cooling atoms is described. It combines a deep dipole-trap which localizes the atom in the center of a cavity with a laser directly exciting the atom. In that way one obtains three-dimensional cooling while the atom is dipole-trapped. In particular, we identify a cooling force along the large spatial modulations of the trap. A feature of this setup, with respect to a dipole trap alone, is that all cooling forces keep a constant amplitude if the trap depth is increased simultaneously with the intensity of the probe laser. No strong coupling is required, which makes such a technique experimentally attractive. Several analytical expressions for the cooling forces and heating rates are derived and interpreted by analogy to ordinary laser cooling.

  2. Incomplete optical shielding in cold atom traps: three-dimensional Landau-Zener theory

    SciTech Connect

    Yurovsky, V.A.; Ben-Reuven, A.

    1997-05-01

    Ultracold atom collisions in the presence of a linearly polarized blueshifted laser field are studied theoretically. An analytical solution is presented within the framework of the Landau-Zener approximation. The effect of incomplete shielding is mostly accounted for by incorporating the three-dimensional character of the collisions, using a partial-wave analysis with space degeneracy. A model of two electronic states, including effects of indistinguishability of the colliding atoms, is used. The model associates the incomplete shielding with a process involving two crossing points. The theory is applied to the case of metastable xenon traps, obtaining a fair agreement with the experimental data. {copyright} {ital 1997} {ital The American Physical Society}

  3. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    SciTech Connect

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-09-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10{sup -9} s{>=} pulse width {tau}{>=}1 fs=10{sup -15} s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for {tau} and numerical aperture of the focusing lens (0.1{<=}X{sub NA}{<=}1.2). At X{sub NA}=0.8, rapid deterioration of the focused intensity distribution is observed at {tau}=1.2 fs. This happens because a 750-nm optical pulse with {tau}=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source.

  4. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior

    PubMed Central

    Fischer, Robert S; Myers, Kenneth A; Gardel, Margaret L; Waterman, Clare M

    2013-01-01

    Regulation of cell functions by the physical properties of the extracellular matrix (ECM) has emerged as a crucial contributor to development and disease. Two specific physical properties of the ECM, stiffness and dimensionality, each influence cell signaling and function. As these ECM physical properties are linked to other properties that also regulate cell behavior, e.g., integrin ligand density, parsing the specific contributions of ECM stiffness and dimensionality has proven difficult. Here we detail a simple protocol, which can be completed in 1–2 d, for combining three-dimensional (3D) ECM engagement with controlled underlying ECM stiffness. In these ‘sandwich gels’, cells are sandwiched between a 3D fibrillar ECM and an ECM-coupled polyacrylamide gel of defined compliance, allowing the study of the specific effects of ECM compliance on cell function in physiologically relevant 3D ECMs. This type of system enables high-resolution time-lapse imaging and is suitable for a wide range of cell types and molecular perturbations. PMID:23099487

  5. Formation of Spatially and Geometrically Controlled Three-Dimensional Tissues in Soft Gels by Sacrificial Micromolding

    PubMed Central

    Cerchiari, Alec; Garbe, James C.; Todhunter, Michael E.; Jee, Noel Y.; Pinney, James R.; LaBarge, Mark A.

    2015-01-01

    Patterned three-dimensional (3D) cell culture models aim to more accurately represent the in vivo architecture of a tissue for the purposes of testing drugs, studying multicellular biology, or engineering functional tissues. However, patterning 3D multicellular structures within very soft hydrogels (<500 Pa) that mimic the physicochemical environment of many tissues remains a challenge for existing methods. To overcome this challenge, we use a Sacrificial Micromolding technique to temporarily form spatially and geometrically defined 3D cell aggregates in degradable scaffolds before transferring and culturing them in a reconstituted extracellular matrix. Herein, we demonstrate that Sacrificial Micromolding (1) promotes cyst formation and proper polarization of established epithelial cell lines, (2) allows reconstitution of heterotypic cell–cell interactions in multicomponent epithelia, and (3) can be used to control the lumenization-state of epithelial cysts as a function of tissue size. In addition, we discuss the potential of Sacrificial Micromolding as a cell-patterning tool for future studies. PMID:25351430

  6. Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth.

    PubMed

    Yu, Minrui; Huang, Yu; Ballweg, Jason; Shin, Hyuncheol; Huang, Minghuang; Savage, Donald E; Lagally, Max G; Dent, Erik W; Blick, Robert H; Williams, Justin C

    2011-04-26

    In many neural culture studies, neurite migration on a flat, open surface does not reflect the three-dimensional (3D) microenvironment in vivo. With that in mind, we fabricated arrays of semiconductor tubes using strained silicon (Si) and germanium (Ge) nanomembranes and employed them as a cell culture substrate for primary cortical neurons. Our experiments show that the SiGe substrate and the tube fabrication process are biologically viable for neuron cells. We also observe that neurons are attracted by the tube topography, even in the absence of adhesion factors, and can be guided to pass through the tubes during outgrowth. Coupled with selective seeding of individual neurons close to the tube opening, growth within a tube can be limited to a single axon. Furthermore, the tube feature resembles the natural myelin, both physically and electrically, and it is possible to control the tube diameter to be close to that of an axon, providing a confined 3D contact with the axon membrane and potentially insulating it from the extracellular solution. PMID:21366271

  7. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Newman, Gregory A.

    2009-09-01

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3-D) modelling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data reweighting schemes are proposed. Further, a hybrid model parametrization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  8. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    NASA Astrophysics Data System (ADS)

    Commer, M.; Newman, G. A.

    2009-12-01

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3D) modeling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data re-weighting schemes are proposed. Further, a hybrid model parametrization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  9. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    SciTech Connect

    Commer, M.; Newman, G.A.

    2009-02-15

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3-D) modeling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data reweighting schemes are proposed. Further, a hybrid model parameterization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  10. Large-range Control of the Microstructures and Properties of Three-dimensional Porous Graphene

    PubMed Central

    Xie, Xiao; Zhou, Yilong; Bi, Hengchang; Yin, Kuibo; Wan, Shu; Sun, Litao

    2013-01-01

    Graphene-based three-dimensional porous macrostructures are believed of great importance in various applications, e.g. supercapacitors, photovoltaic cells, sensors and high-efficiency sorbents. However, to precisely control the microstructures and properties of this material to meet different application requirements in industrial practice remains challenging. We herein propose a facile and highly effective strategy for large-range tailoring the porous architecture and its properties by a modified freeze casting process. The pore sizes and wall thicknesses of the porous graphene can be gradually tuned by 80 times (from 10 to 800 μm) and 4000 times (from 20 nm to 80 μm), respectively. The property experiences the changing from hydrophilic to hydrophobic, with the Young's Modulus varying by 15 times. The fundamental principle of the porous microstructure evolution is discussed in detail. Our results demonstrate a very convenient and general protocol to finely tailor the structure and further benefit the various applications of porous graphene. PMID:23817081

  11. Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior.

    PubMed

    Fischer, Robert S; Myers, Kenneth A; Gardel, Margaret L; Waterman, Clare M

    2012-11-01

    Regulation of cell functions by the physical properties of the extracellular matrix (ECM) has emerged as a crucial contributor to development and disease. Two specific physical properties of the ECM, stiffness and dimensionality, each influence cell signaling and function. As these ECM physical properties are linked to other properties that also regulate cell behavior, e.g., integrin ligand density, parsing the specific contributions of ECM stiffness and dimensionality has proven difficult. Here we detail a simple protocol, which can be completed in 1-2 d, for combining three-dimensional (3D) ECM engagement with controlled underlying ECM stiffness. In these 'sandwich gels', cells are sandwiched between a 3D fibrillar ECM and an ECM-coupled polyacrylamide gel of defined compliance, allowing the study of the specific effects of ECM compliance on cell function in physiologically relevant 3D ECMs. This type of system enables high-resolution time-lapse imaging and is suitable for a wide range of cell types and molecular perturbations. PMID:23099487

  12. Three-dimensional reconstruction of paramecium primaurelia oral apparatus through confocal laser scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Beltrame, Francesco; Ramoino, Paola; Fato, Marco; Delmonte Corrado, Maria U.; Marcenaro, Giampiero; Crippa Franceschi, Tina

    1992-06-01

    Studies on the complementary mating types of Paramecium primaurelia (Protozoa, Ciliates) have shown that cell lines which differ from each other in mating type expression are characterized by different cell contents, organization, and physiology. Referring to these differences and to the differential rates of food vacuole formation, oral apparatuses of the two mating type cells are assumed to possibly differ from each other in some traits, such as, for instance, in their lengths. In our work, the highly organized oral structures are analyzed by means of a laser scanning confocal optical microscope (CLSM), which provides their 3-D visualization and measurement. The extraction of the 3-D intrinsic information related to the biological objects under investigation can be in turn related to their functional state, according to the classical paradigm of structure to function relationships identification. In our experiments, we acquired different data sets. These are optical slices of the biological sample under investigation, acquired in a confocal situation, through epi-illumination, in reflection, and, for comparison with conventional microscopy, 2-D images acquired via a standard TV camera coupled to the microscope itself. Our CLSM system is equipped with a laser beam at 488 and 514 nm and the data have been acquired with various steps of optical slicing, ranging from .04 to .25 micrometers. The volumes obtained by piling-up the slices are rendered through different techniques, some of them directly implemented on the workstation controlling the CLSM system, some of them on a SUN SPARC station 1, where the original data were transferred via an Ethernet link. In this last instance, original software has been developed for the visualization and animation of the 3-D structures, running under UNIX and X-Window, according to a ray-tracing algorithm.

  13. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices.

    PubMed

    Sacharidou, Anastasia; Stratman, Amber N; Davis, George E

    2012-01-01

    Considerable progress has been made toward a molecular understanding of how cells form lumen and tube structures in three-dimensional (3D) extracellular matrices (ECM). This progress has occurred through work performed with endothelial and epithelial cell models using both in vitro and in vivo approaches. Despite the apparent similarities between endothelial and epithelial cell lumen and tube formation mechanisms, there are clear distinctions that directly relate to their functional differences. This review will focus on endothelial cell (EC) lumen formation mechanisms which control blood vessel formation during development and postnatal life. Of great interest is that an EC lumen signaling complex has been identified which controls human EC lumen and tube formation in 3D matrices and which coordinates integrin-ECM contacts, cell surface proteolysis, cytoskeletal rearrangements, and cell polarity. This complex consists of the collagen-binding integrin α2β1, the collagen-degrading membrane-type 1 matrix metalloproteinase (MT1-MMP), junction adhesion molecule (Jam)C, JamB, polarity proteins Par3 and Par6b, and the Rho GTPase Cdc42-GTP. These interacting proteins are necessary to stimulate 3D matrix-specific signaling events (including activation of protein kinase cascades that regulate the actin and microtubule cytoskeletons) to control the formation of EC lumens and tube networks. Also, EC lumen formation is directly coupled to the generation of vascular guidance tunnels, enzymatically generated ECM conduits that facilitate EC tube remodeling and maturation. Mural cells such as pericytes are recruited along EC tubes within these tunnel spaces to control ECM remodeling events resulting in vascular basement membrane matrix assembly, a key step in tube maturation and stabilization. PMID:21997121

  14. SPIRALING OUT OF CONTROL: THREE-DIMENSIONAL HYDRODYNAMICAL MODELING OF THE COLLIDING WINDS IN {eta} CARINAE

    SciTech Connect

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-10

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star {eta} Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  15. A fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics

    PubMed Central

    Yang, Jianjun; Zhang, Tao; Yang, Hao; Jiang, Huabei

    2013-01-01

    We describe a multispectral continuous-wave diffuse optical tomography (DOT) system that can be used for in vivo three-dimensional (3-D) imaging of seizure dynamics. Fast 3-D data acquisition is realized through a time multiplexing approach based on a parallel lighting configuration - our system can achieve 0.12ms per source per wavelength and up to 14Hz sampling rate for a full set of data for 3-D DOT image reconstruction. The system is validated using both static and dynamic tissue-like phantoms. An initial in vivo experiment using a rat model of seizure is also demonstrated. PMID:22695584

  16. Reconstruction of mechanically recorded sound from an edison cylinder using three dimensional non-contact optical surface metrology

    SciTech Connect

    Fadeyev, V.; Haber, C.; Maul, C.; McBride, J.W.; Golden, M.

    2004-04-20

    Audio information stored in the undulations of grooves in a medium such as a phonograph disc record or cylinder may be reconstructed, without contact, by measuring the groove shape using precision optical metrology methods and digital image processing. The viability of this approach was recently demonstrated on a 78 rpm shellac disc using two dimensional image acquisition and analysis methods. The present work reports the first three dimensional reconstruction of mechanically recorded sound. The source material, a celluloid cylinder, was scanned using color coded confocal microscopy techniques and resulted in a faithful playback of the recorded information.

  17. Three-dimensional functional imaging of lung parenchyma using optical coherence tomography combined with confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Gaertner, Maria; Cimalla, Peter; Knels, Lilla; Meissner, Sven; Koch, Edmund

    2011-03-01

    Optical coherence tomography (OCT), as a non-invasive technique for studying tissue morphology, is widely used in in vivo studies, requiring high resolution and fast three-dimensional imaging. Based on light scattering it reveals micrometer sized substructures of the samples due to changes in their optical properties and therefore allows quantification of the specimen's geometry. Utilizing fluorescence microscopy further information can be obtained from molecular compositions embedded in the investigated object. Fluorescent markers, specifically binding to the substance of interest, reveal the sample's chemical structure and give rise to functional studies. This research presents the application of a combined OCT and laser scanning confocal microscopy (LSCM) system to investigate structural details in lung tissue. OCT reveals the three-dimensional morphology of the alveoli whereas fluorescence detection, arising from the fluorophore Sulforhodamin B (SRB) which is binding to elastin, shows the elastic meshwork of the organs extracellular matrix. Different plains of fluorescence can be obtained by using a piezo driven objective and exploiting the confocal functionality of the setup. Both techniques combined in one optical system not only ease the experimental procedure but also contribute to a thorough description of tissue's morphology and chemical composition.

  18. Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons.

    PubMed

    Hentschel, Mario; Wu, Lin; Schäferling, Martin; Bai, Ping; Li, Er Ping; Giessen, Harald

    2012-11-27

    We demonstrate strong chiral optical response in three-dimensional chiral nanoparticle oligomers in the wavelength regime between 700 and 3500 nm. We show in experiment and simulation that this broad-band response occurs at the onset of charge transfer between the individual nanoparticles. The ohmic contact causes a strong red shift of the fundamental mode, while the geometrical shape of the resulting fused particles still allows for an efficient excitation of higher order modes. Calculated spectra and field distributions confirm our interpretation and show a number of interacting plasmonic modes. Our results deepen the understanding of the chiral optical response in complex chiral plasmonic nanostructures and pave the road toward broad-band chiral optical devices with strong responses, for example, for chiral plasmon rulers or sensing applications. PMID:23078518

  19. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.

    2011-07-01

    Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.

  20. Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography

    PubMed Central

    Shemonski, Nathan D.; Ahn, Shawn S.; Liu, Yuan-Zhi; South, Fredrick A.; Carney, P. Scott; Boppart, Stephen A.

    2014-01-01

    Over the years, many computed optical interferometric techniques have been developed to perform high-resolution volumetric tomography. By utilizing the phase and amplitude information provided with interferometric detection, post-acquisition corrections for defocus and optical aberrations can be performed. The introduction of the phase, though, can dramatically increase the sensitivity to motion (most prominently along the optical axis). In this paper, we present two algorithms which, together, can correct for motion in all three dimensions with enough accuracy for defocus and aberration correction in computed optical interferometric tomography. The first algorithm utilizes phase differences within the acquired data to correct for motion along the optical axis. The second algorithm utilizes the addition of a speckle tracking system using temporally- and spatially-coherent illumination to measure motion orthogonal to the optical axis. The use of coherent illumination allows for high-contrast speckle patterns even when imaging apparently uniform samples or when highly aberrated beams cannot be avoided. PMID:25574426

  1. An optical profilometer for spatial characterization of three-dimensional surfaces

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Burcher, E. E.; Skolaut, M. W., Jr.

    1977-01-01

    The design concept and system operation of an optical profilometer are discussed, and a preliminary evaluation of a breadboard system is presented to demonstrate the feasibility of the optical profilometer technique. Measurement results are presented for several test surfaces; and to illustrate a typical application, results are shown for a cleft palate cast used by dental surgeons. Finally, recommendations are made for future development of the optical profilometer technique for specific engineering or scientific applications.

  2. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics.

    PubMed

    Patton, Brian R; Burke, Daniel; Owald, David; Gould, Travis J; Bewersdorf, Joerg; Booth, Martin J

    2016-04-18

    When imaging through tissue, the optical inhomogeneities of the sample generate aberrations that can prevent effective Stimulated Emission Depletion (STED) imaging. This is particularly problematic for 3D-enhanced STED. We present here an adaptive optics implementation that incorporates two adaptive optic elements to enable correction in all beam paths, allowing performance improvement in thick tissue samples. We use this to demonstrate 3D STED imaging of complex structures in Drosophila melanogaster brains. PMID:27137319

  3. Simulated Three-Dimensional Computer Graphics Training Display for Air Weapons Controllers. Final Report.

    ERIC Educational Resources Information Center

    Finegold, Lawrence S.; And Others

    The research and development project demonstrated the viability of a simulated training system to address training issues related to three-dimensional air intercept tactics and geometry, and resulted in the production of two videotapes for use in the United States Air Force Interceptor Weapons School. An introduction discusses the overall…

  4. Optical propagation within a three-dimensional shadowed atmosphere-ocean field: application to large deployment structures.

    PubMed

    Doyle, John P; Zibordi, Giuseppe

    2002-07-20

    Estimation of optical shadowing effects that occur on in situ submerged radiance and irradiance measurements conducted in the proximity of a large and complex three-dimensional deployment structure is addressed by use of Monte Carlo simulations. We have applied backward Monte Carlo techniques and variance reduction schemes in three-dimensional radiative transfer computations of in-water light field perturbations by taking into account relevant geometric, environmental, and optical parameters that describe a realistic atmosphere-ocean system. Significant parameters, determined by a sensitivity analysis study, have then been systematically varied for the computation of an extensive set of correction factors, included in look-up tables designed for operational removal of tower-shading uncertainties, which typically induce an approximately 1-10% decrease in absolute radiometric data values near a specific oceanographic tower located in the northern Adriatic Sea. In principle, the proposed correction methodology can be transferred to other deployment systems, instrument casings, and measurement sites if a comprehensive description is provided for the system parameters and their variability. PMID:12148756

  5. Theoretical, experimental and numerical methods for investigating the characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities

    SciTech Connect

    Egorov, Alexander A

    2011-07-31

    We consider theoretical, experimental and numerical methods which make it possible to analyse the key characteristics of laser radiation scattered in the integrated-optical waveguide with three-dimensional irregularities. The main aspects of the three-dimensional vector electrodynamic problem of waveguide scattering are studied. The waveguide light scattering method is presented and its main advantages over the methods of single scattering of laser radiation are discussed. The experimental setup and results of measurements are described. Theoretical and experimental results confirming the validity of the vector theory of three-dimensional waveguide scattering of laser radiation developed by the author are compared for the first time. (fiber and integrated optics)

  6. Generation of three-dimensional optical structures by dynamic holograms displayed on a twisted nematic liquid crystal display

    NASA Astrophysics Data System (ADS)

    Ma, Baiheng; Yao, Baoli; Li, Ze; Lei, Ming; Yan, Shaohui; Gao, Peng; Dan, Dan; Ye, Tong

    2013-03-01

    Reconstruction of computer generated holograms (CGHs) addressed on a spatial light modulator (SLM) is an effective way to dynamically generate designed light field distributions. Based on the classic Gerchberg-Saxton (GS) algorithm, we proposed a technique, which can greatly reduce the computation cost to about 60 % in calculating CGHs for three-dimensional (3D) structures but with little degradation of reconstructed light field compared with the classic GS algorithm. The CGHs calculated by our method were displayed on a twisted nematic liquid crystal display, working as a phase-only-modulation SLM, and 3D structures of optical fields, e.g., 3D array of optical traps and vortices, were reconstructed with high efficiency and high quality. Besides, the possibility for 3D holographic display or projection was also demonstrated with this algorithm by reconstruction several images simultaneously in distinct axial planes.

  7. Two- and three-dimensional optical tomography of finger joints for diagnostics of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Hielscher, Andreas H.; Hanson, Kenneth M.; Beuthan, Juergen

    1998-12-01

    Rheumatoid arthritis (RA) is one of the most common diseases of human joints. This progressive disease is characterized by an inflammation process that originates in the inner membrane (synovalis) of the capsule and spreads to other parts of the joint. In early stages the synovalis thickness and the permeability of this membrane changes. This leads to changes in the optical parameters of the synovalis and the synovial fluid (synovia), which occupies the space between the bones. The synovia changes from a clear yellowish fluid to a turbid grayish substance. In this work we present 2 and 3-dimensional reconstruction schemes for optical tomography of the finger joints. Our reconstruction algorithm is based on the diffusion approximation and employs adjoint differentiation techniques for the gradient calculation of the objective function with respect to the spatial distribution of optical properties. In this way, the spatial distribution of optical properties within the joints is reconstructed with high efficiency and precision. Volume information concerning the synovial space and the capsula are provided. Furthermore, it is shown that small changes of the scattering coefficients can be monitored. Therefore, optical tomography has the potential of becoming a useful tool for the early diagnosis and monitoring of disease progression in RA.

  8. Three-dimensional quasi-conformal transformation optics through numerical optimization.

    PubMed

    Junqueira, Mateus A F C; Gabrielli, Lucas H; Beltrán-Mejía, Felipe; Spadoti, Danilo H

    2016-07-25

    In this paper we demonstrate the possibility to achieve 3-dimensional quasi-conformal transformation optics through parametrization and numerical optimization without using sliding boundary conditions. The proposed technique, which uses a quasi-Newton method, is validated in two cylindrical waveguide bends as design examples. Our results indicate an arbitrarily small average anisotropy can be achieved in 3D transformation optics as the number of degrees of freedom provided by the parametrization was increased. The waveguide simulations confirm modal preservation when the residual anisotropy is neglected. PMID:27464099

  9. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    SciTech Connect

    Dietrich, K. Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.; Hübner, U.

    2014-05-12

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  10. Modeling three-dimensional velocity-to-position transformation in oculomotor control.

    PubMed

    Schnabolk, C; Raphan, T

    1994-02-01

    1. A considerable amount of attention has been devoted to understanding the velocity-position transformation that takes place in the control of eye movements in three dimensions. Much of the work has focused on the idea that rotations in three dimensions do not commute and that a "multiplicative quaternion model" of velocity-position integration is necessary to explain eye movements in three dimensions. Our study has indicated that this approach is not consistent with the physiology of the types of signals necessary to rotate the eyes. 2. We developed a three-dimensional dynamical system model for movement of the eye within its surrounding orbital tissue. The main point of the model is that the eye muscles generate torque to rotate the eye. When the eye reaches an orientation such that the restoring torque of the orbital tissue counterbalances the torque applied by the muscles, a unique equilibrium point is reached. The trajectory of the eye to reach equilibrium may follow any path, depending on the starting eye orientation and eye velocity. However, according to Euler's theorem, the equilibrium reached is equivalent to a rotation about a fixed axis through some angle from a primary orientation. This represents the shortest path that the eye could take from the primary orientation in reaching equilibrium. Consequently, it is also the shortest path for returning the eye to the primary orientation. Thus the restoring torque developed by the tissue surrounding the eye was approximated as proportional to the product of this angle and a unit vector along this axis. The relationship between orientation and restoring torque gives a unique torque-orientation relationship. 3. Once the appropriate torque-orientation relationship for eye rotation is established the velocity-position integrator can be modeled as a dynamical system that is a direct extension of the one-dimensional velocity-position integrator. The linear combination of the integrator state and a direct pathway

  11. Atmospheric controls on soil moisture-boundary layer interactions: Three-dimensional wind effects

    NASA Astrophysics Data System (ADS)

    Findell, Kirsten L.; Eltahir, Elfatih A. B.

    2003-04-01

    This paper expands the one-dimensionally based CTP-HIlow framework for describing atmospheric controls on soil moisture-boundary layer interactions [, 2003] to three dimensions by including low-level wind effects in the analysis. The framework is based on two measures of atmospheric thermodynamic properties: the convective triggering potential (CTP), a measure of the temperature lapse rate between approximately 1 and 3 km above the ground surface, and a low-level humidity index, HIlow. These two measures are used to distinguish between three types of early morning soundings: those favoring rainfall over dry soils, those favoring rainfall over wet soils, and those whose convective potential is unaffected by the partitioning of fluxes at the surface. The focus of this paper is the additional information gained by incorporating information about low-level winds into the CTP-HIlow framework. Three-dimensional simulations using MM5 and an analysis of observations from the FIFE experiment within this framework highlight the importance of the winds in determining the sensitivity of convection to fluxes from the land surface. A very important impact of the 3D winds is the potential for low-level backing or unidirectional winds with great shear to suppress convective potential. Because of this suppression of convection in certain wind conditions, far fewer simulations produced rain than would be anticipated based solely on the 1D framework of understanding. However, when the winds allowed, convection occurred in a manner consistent with the 1D-based expectations. Generally speaking, in the regime where dry soils were expected to have an advantage, convection was triggered over dry soils more often than over wet; in the regime where wet soils were expected to have an advantage, convection was more frequently triggered over wet soils than over dry. Additionally, when rainfall occurred in both simulations with wet soils and simulations with dry soils for a given day, rainfall

  12. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  13. Peptidic ligands to control the three-dimensional self-assembly of quantum rods in aqueous media.

    PubMed

    Bizien, Thomas; Even-Hernandez, Pascale; Postic, Marie; Mazari, Elsa; Chevance, Soizic; Bondon, Arnaud; Hamon, Cyrille; Troadec, David; Largeau, Ludovic; Dupuis, Christophe; Gosse, Charlie; Artzner, Franck; Marchi, Valérie

    2014-09-24

    The use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands. Infrared and nuclear magnetic resonance spectroscopy data prove that the exchange is complete; fluorescence spectroscopy demonstrates that the emitter optical properties are not significantly altered; electrophoresis and dynamic light scattering experiments assess the good colloidal stability of the resulting aqueous suspension. In a second step, water evaporation in a microstructured environment yields superstructures with a chosen geometry and in which nanorods obey a smectic B arrangement, as shown by electron microscopy. Incidentally, bulk drying in a capillary tube generates a similar local order, as evidenced by small angle X-ray scattering. PMID:24864008

  14. High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments

    SciTech Connect

    Yuan Zhen; Zhang Qizhi; Sobel, Eric S.; Jiang Huabei

    2010-08-15

    Purpose: The aim of this study was to investigate the potential use of multimodality functional imaging techniques to identify the quantitative optical findings that can be used to distinguish between osteoarthritic and normal finger joints. Methods: Between 2006 and 2009, the distal interphalangeal finger joints from 40 female subjects including 22 patients and 18 healthy controls were examined clinically and scanned by a hybrid imaging system. This system integrated x-ray tomosynthetic setup with a diffuse optical imaging system. Optical absorption and scattering images were recovered based on a regularization-based hybrid reconstruction algorithm. A receiver operating characteristic curve was used to calculate the statistical significance of specific optical features obtained from osteoarthritic and healthy joints groups. Results: The three-dimensional optical and x-ray images captured made it possible to quantify optical properties and joint space width of finger joints. Based on the recovered optical absorption and scattering parameters, the authors observed statistically significant differences between healthy and osteoarthritis finger joints. Conclusions: The statistical results revealed that sensitivity and specificity values up to 92% and 100%, respectively, can be achieved when optical properties of joint tissues were used as classifiers. This suggests that these optical imaging parameters are possible indicators for diagnosing osteoarthritis and monitoring its progression.

  15. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.

    PubMed

    Yasuno, Yoshiaki; Endo, Takashi; Makita, Shuichi; Aoki, Gouki; Itoh, Masahide; Yatagai, Toyohiko

    2006-01-01

    We demonstrate 3-D optical coherence tomography using only 1-D mechanical scanning. This system uses the principle of Fourier domain optical coherence tomography for depth resolution, 1-D imaging for lateral vertical resolution, and mechanical scanning by a galvanometer for lateral horizontal resolution. An in vivo human fingerpad is investigated in three dimensions with an image size of 480 points (vertical) x 300 points (horizontal) x 1024 points (depth), which corresponds to 2.1 x 1.4 x 1.3 mm. The acquisition time for a single cross section is 1 ms and that for a single volume is 10 s. The system sensitivity is 75.6 dB at a probe beam power of 1.1 mW. PMID:16526891

  16. Three dimensional measurement of micro-optical components using digital holography and pattern recognition

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyung; Jeon, Sungbin; Cho, Janghyun; Lim, Geon; Park, No-Cheol; Park, Young-Pil

    2015-09-01

    This paper proposes a method for inspecting transparent micro-optical components that combines digital holography and pattern recognition. As many micro-optical components have array structures with numerous elements, the uniformity of each element is important. Consequently, an effective inspection requires simultaneous measurement of these elements. Pattern recognition is used to solve this issue and can be adopted effectively using the unique characteristics of digital holography to obtain both amplitude and phase information on the object. To verify this approach, an experimental demonstration was performed with a micro-lens array using a circle-detection algorithm based on the Hough Transform. As an experimental results 30 micro-lenses are detected and measured simultaneously by using proposed inspection method.

  17. Mechanically flexible and optically transparent three-dimensional nanofibrous amorphous aerocellulose.

    PubMed

    Ayadi, Farouk; Martín-García, Beatriz; Colombo, Massimo; Polovitsyn, Anatolii; Scarpellini, Alice; Ceseracciu, Luca; Moreels, Iwan; Athanassiou, Athanassia

    2016-09-20

    Aerocelluloses are considered as "third generation" aerogels after the silica and synthetic polymer-based ones. However, their brittleness and low optical translucency keep quite narrow their fields of applications. Here, both issues are addressed successfully through the fabrication of flexible and mechanically robust amorphous aerocellulose with high optical transparency, using trifluoroacetic acid as a solvent and ethanol as a non-solvent. The developed aerocellulose displays a meso-macroporous interconnected nanofibrous cellulose skeleton with low density and high specific surface area. We demonstrate its high efficiency as supporting matrix for nanoscale systems by incorporating a variety of colloidal quatum dots, that provide bright and stable photoluminescence to the flexible aerocellulose host. PMID:27261745

  18. Three-Dimensional Quantitative Optical Measurement of Asymmetrically Focused Ultrasound Pressure Field

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yuta; Harigane, Soichiro; Yoshizawa, Shin; Umemura, Shin-ichiro

    2012-07-01

    High-intensity focused ultrasound (HIFU) is used for the treatment of tumors such as prostate cancer. In the development of this technique, an accurate and fast measurement of the HIFU pressure field is important. A hydrophone is generally used for the measurement, but it might disturb the pressure field and scanning it in the field takes a long time. On the other hand, optical ultrasonic field mapping has the advantages of speed and its nature of not by interfering with the acoustic field. In this study, we reconstructed an asymmetric ultrasound field by optical measurement using a computed tomography (CT) algorithm. The asymmetric field was generated by a focused transducer with four elements. Also, the absolute measurement of ultrasonic pressure was checked by measuring the center of the field of the charge-coupled device (CCD) camera. The results showed overall agreement with those of hydrophone measurement.

  19. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  20. Three-dimensional imaging of intracochlear tissue by scanning laser optical tomography (SLOT)

    NASA Astrophysics Data System (ADS)

    Tinne, N.; Nolte, L.; Antonopoulos, G. C.; Schulze, J.; Andrade, J.; Heisterkamp, A.; Meyer, H.; Warnecke, A.; Majdani, O.; Ripken, T.

    2016-02-01

    The presented study focuses on the application of scanning laser optical tomography (SLOT) for non-destructive visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique, which allows for tomographic imaging of the internal structure of transparent large-scale specimens (up to 1 cm3). Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises mechanically assisted decalcification, dehydration as well as optical clearing of the cochlea samples. Here, we demonstrate results of SLOT visualizing hard and soft tissue structures of the human cochlea with an optical resolution in the micrometer range using absorption and autofluorescence as contrast mechanisms. Furthermore, we compare our results with the method of X-ray micro tomography (micro-CT, μCT) as clinical gold standard which is based only on absorption. In general, SLOT can provide the advantage of covering all contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. For this reason, a protocol for antibody staining has been developed, which additionally enables selective mapping of cellular structures within the cochlea. Thus, we present results of SLOT imaging rodent cochleae showing specific anatomical structures such as hair cells and neurofilament via fluorescence. In conclusion, the presented study has shown that SLOT is an ideally suited tool in the field of otology for in toto visualization of the inner ear microstructure.

  1. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  2. Demonstration of a Controllable Three-Dimensional Brownian Motor in Symmetric Potentials

    SciTech Connect

    Sjoelund, P.; Petra, S.J.H.; Dion, C.M.; Jonsell, S.; Nylen, M.; Kastberg, A.; Sanchez-Palencia, L.

    2006-05-19

    We demonstrate a Brownian motor, based on cold atoms in optical lattices, where isotropic random fluctuations are rectified in order to induce controlled atomic motion in arbitrary directions. In contrast to earlier demonstrations of ratchet effects, our Brownian motor operates in potentials that are spatially and temporally symmetric, but where spatiotemporal symmetry is broken by a phase shift between the potentials and asymmetric transfer rates between them. The Brownian motor is demonstrated in three dimensions and the noise-induced drift is controllable in our system.

  3. Three-dimensional diffuse optical mammography with ultrasound localization in a human subject

    NASA Astrophysics Data System (ADS)

    Holboke, Monica J.; Tromberg, Bruce J.; Li, Xingde; Shah, Natasha; Fishkin, Joshua B.; Kidney, D.; Butler, J.; Chance, Britton; Yodh, Arjun G.

    2000-04-01

    We describe an approach that combines clinical ultrasound and photon migration techniques to enhance the sensitivity and information content of diffuse optical tomography. Measurements were performed on a postmenopausal woman with a single 1.8 X 0.9 cm malignant ductal carcinoma in situ approximately 7.4 mm beneath the skin surface (UCI IRB protocol 95-563). The ultrasound-derived information about tumor geometry enabled us to segment the breast tissue into tumor and background regions. Optical data was obtained with a multifrequency, multiwavelength hand-held frequency-domain photon migration backscattering probe. The optical properties of the tumor and background were then computed using the ultrasound-derived geometrical constraints. An iterative perturbative approach, using parallel processing, provided quantitative information about scattering and absorption simultaneously with the ability to incorporate and resolve complex boundary conditions and geometries. A three to four fold increase in the tumor absorption coefficient and nearly 50% reduction in scattering coefficient relative to background was observed ((lambda) equals 674, 782, 803, and 849 nm). Calculations of the mean physiological parameters reveal fourfold greater tumor total hemoglobin concentration [Hbtot] than normal breast (67 (mu) M vs 16 (mu) M) and tumor hemoglobin oxygen saturation (SOx) values of 63% (vs 73% and 68% in the region surrounding the tumor and the opposite normal tissue, respectively). Comparison of semi-infinite to heterogeneous models shows superior tumor/background contrast for the latter in both absorption and scattering. Sensitivity studies assessing the impact of tumor size and refractive index assumptions, as well as scan direction, demonstrate modest effects on recovered properties.

  4. Optical and transport properties in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Tabert, C. J.; Carbotte, J. P.; Nicol, E. J.

    2016-02-01

    Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behavior as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.

  5. Three-dimensional choroidal segmentation in spectral OCT volumes using optic disc prior information

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Girkin, Christopher A.; Hariri, Amirhossein; Sadda, SriniVas R.

    2016-03-01

    Recently, much attention has been focused on determining the role of the peripapillary choroid - the layer between the outer retinal pigment epithelium (RPE)/Bruchs membrane (BM) and choroid-sclera (C-S) junction, whether primary or secondary in the pathogenesis of glaucoma. However, the automated choroidal segmentation in spectral-domain optical coherence tomography (SD-OCT) images of optic nerve head (ONH) has not been reported probably due to the fact that the presence of the BM opening (BMO, corresponding to the optic disc) can deflect the choroidal segmentation from its correct position. The purpose of this study is to develop a 3D graph-based approach to identify the 3D choroidal layer in ONH-centered SD-OCT images using the BMO prior information. More specifically, an initial 3D choroidal segmentation was first performed using the 3D graph search algorithm. Note that varying surface interaction constraints based on the choroidal morphological model were applied. To assist the choroidal segmentation, two other surfaces of internal limiting membrane and innerouter segment junction were also segmented. Based on the segmented layer between the RPE/BM and C-S junction, a 2D projection map was created. The BMO in the projection map was detected by a 2D graph search. The pre-defined BMO information was then incorporated into the surface interaction constraints of the 3D graph search to obtain more accurate choroidal segmentation. Twenty SD-OCT images from 20 healthy subjects were used. The mean differences of the choroidal borders between the algorithm and manual segmentation were at a sub-voxel level, indicating a high level segmentation accuracy.

  6. Three-dimensional cellular-level imaging using full-field optical coherence tomography.

    PubMed

    Dubois, A; Moneron, G; Grieve, K; Boccara, A C

    2004-04-01

    An ultrahigh-resolution full-field optical coherence tomography (OCT) system has been developed for cellular-level imaging of biological media. The system is based on a Linnik interference microscope illuminated with a tungsten halogen lamp, associated with a high-resolution CCD camera. En face tomographic images are produced in real time, with the best spatial resolution ever achieved in OCT (0.7 microm x 0.9 microm, axial x transverse). A shot-noise limited detection sensitivity of 80 dB can be reached with an acquisition time per image of 1 s. Images of animal ophthalmic biopsies and vegetal tissues are shown. PMID:15128200

  7. Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo.

    PubMed

    Liew, Yih Miin; McLaughlin, Robert A; Wood, Fiona M; Sampson, David D

    2011-11-01

    This paper presents results of in vivo studies on the effect of refractive index-matching media on image artifacts in optical coherence tomography (OCT) images of human skin. These artifacts present as streaks of artificially low backscatter and displacement or distortion of features. They are primarily caused by refraction and scattering of the OCT light beam at the skin surface. The impact of the application of glycerol and ultrasound gel is assessed on both novel skin-mimicking phantoms and in vivo human skin, including assessment of the epidermal thickening caused by the media. Based on our findings, recommendations are given for optimal OCT imaging of skin in vivo. PMID:22112123

  8. A three dimensional radiative transfer method for optical remote sensing of vegetated land surfaces

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem; Myneni, Ranga B.; Choudhury, Bhaskar J.

    1991-01-01

    In the application of remote sensing at optical wavelengths to vegetated surfaces from satellite borne high resolution instruments, an understanding of the various physical mechanisms that contribute to the measured signal is important. A numerical method of solving the radiative transfer equation in three dimensions is reported. The reliability of coding and accuracy of the algorithm are evaluated by benchmarching. Parametrization of the methods and results of a simulation are presented. The method is tested with experimental data of canopy bidirectional reflectance factors. The effect of spatial heterogeneity on the relationship between the simple ratio and normalized vrs absorbed Photosynthetically Active Radiation (PAR) is discussed.

  9. Visualizing biofilm formation in endotracheal tubes using endoscopic three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Heidari, Andrew E.; Moghaddam, Samer; Troung, Kimberly K.; Chou, Lidek; Genberg, Carl; Brenner, Matthew; Chen, Zhongping

    2015-12-01

    Biofilm formation has been linked to ventilator-associated pneumonia, which is a prevalent infection in hospital intensive care units. Currently, there is no rapid diagnostic tool to assess the degree of biofilm formation or cellular biofilm composition. Optical coherence tomography (OCT) is a minimally invasive, nonionizing imaging modality that can be used to provide high-resolution cross-sectional images. Biofilm deposited in critical care patients' endotracheal tubes was analyzed in vitro. This study demonstrates that OCT could potentially be used as a diagnostic tool to analyze and assess the degree of biofilm formation and extent of airway obstruction caused by biofilm in endotracheal tubes.

  10. Three-Dimensional Optical Memory Systems Based on 2-PHOTON Excitation: System Studies and Component Design.

    NASA Astrophysics Data System (ADS)

    Hunter, Susan

    The computational power of current high-performance computers is increasingly limited by data storage and retrieval rates. No existing memory technology has the combination of fast access and large data capacity that is needed for high-performance computing application. There are several new approaches to data storage that use additional degrees of freedom to increase the memory capacity, reduce the access time and provide parallel access to large arrays of information. These new technologies are typically called 3D memories and take advantage of the fact that optics can store data throughout a volume or by multiplexing information with wavelength, electric field or time. The majority of the dissertation focuses on the phenomenon of two-photon absorption in photochromic materials. Memory systems based on these materials are shown to have many advantages over other 3D memory approaches because they (1) operate at room temperature, (2) have a potential data density of 10^{12} bits/cm ^3 and (3) are relatively inexpensive to fabricate. Several architecture issues are included and the trade-offs between access time, capacity and bandwidth are discussed. In addition, two critical components for the volume memory system designs have been built and tested: the Holographic Dynamic Focusing Lens and the Optical Pulse Delay.

  11. Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues.

    PubMed

    Sindhwani, Shrey; Syed, Abdullah Muhammad; Wilhelm, Stefan; Glancy, Dylan R; Chen, Yih Yang; Dobosz, Michael; Chan, Warren C W

    2016-05-24

    The role of tissue architecture in mediating nanoparticle transport, targeting, and biological effects is unknown due to the lack of tools for imaging nanomaterials in whole organs. Here, we developed a rapid optical mapping technique to image nanomaterials in intact organs ex vivo and in three-dimensions (3D). We engineered a high-throughput electrophoretic flow device to simultaneously transform up to 48 tissues into optically transparent structures, allowing subcellular imaging of nanomaterials more than 1 mm deep into tissues which is 25-fold greater than current techniques. A key finding is that nanomaterials can be retained in the processed tissue by chemical cross-linking of surface adsorbed serum proteins to the tissue matrix, which enables nanomaterials to be imaged with respect to cells, blood vessels, and other structures. We developed a computational algorithm to analyze and quantitatively map nanomaterial distribution. This method can be universally applied to visualize the distribution and interactions of materials in whole tissues and animals including such applications as the imaging of nanomaterials, tissue engineered constructs, and biosensors within their intact biological environment. PMID:27101355

  12. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  13. Ground-state properties of spin-imbalanced Fermions in three-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Chiesa, Simone; Zhang, Shiwei

    2015-03-01

    The past two decades have seen remarkable progress in cold atom physics. Novel experimental techniques have made it possible to simulate many condensed matter models. One system that has received considerable focus is ultra-cold atoms in an optical lattice with unequal populations of two hyperfine states. This system is an ideal candidate for the experimental realization of the elusive Fulde-Ferrell-Larkin-Ovchinnikov phase. We investigate the phase diagram of this system using Hartree-Fock-Bogoliubov theory. Detailed numerical calculations are performed to determine the ground-state properties systematically for different values of density, spin polarization and interaction strength. We first consider the high density and low polarization regime, in which the effect of the optical lattice is most evident. We then proceed to the low density and high polarization regime where the effects of the underlying lattice are less significant and the system begins to resemble a continuum Fermi gas. We explore the effects of density, polarization and interaction on the character of the phases in each regime and highlight the qualitative differences between the two regimes.

  14. Gold coated optical fibers as three-dimensional electrodes for microfluidic enzymatic biofuel cells: Toward geometrically enhanced performance

    PubMed Central

    Desmaële, Denis; Renaud, Louis; Tingry, Sophie

    2015-01-01

    For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization. PMID:26339305

  15. Three-dimensional segmentation and reconstruction of the retinal vasculature from spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Guimarães, Pedro; Rodrigues, Pedro; Celorico, Dirce; Serranho, Pedro; Bernardes, Rui

    2015-01-01

    We reconstruct the three-dimensional shape and location of the retinal vascular network from commercial spectral-domain (SD) optical coherence tomography (OCT) data. The two-dimensional location of retinal vascular network on the eye fundus is obtained through support vector machines classification of properly defined fundus images from OCT data, taking advantage of the fact that on standard SD-OCT, the incident light beam is absorbed by hemoglobin, creating a shadow on the OCT signal below each perfused vessel. The depth-wise location of the vessel is obtained as the beginning of the shadow. The classification of crossovers and bifurcations within the vascular network is also addressed. We illustrate the feasibility of the method in terms of vessel caliber estimation and the accuracy of bifurcations and crossovers classification.

  16. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging

    PubMed Central

    Vakoc, Benjamin J; Lanning, Ryan M; Tyrrell, James A; Padera, Timothy P; Bartlett, Lisa A; Stylianopoulos, Triantafyllos; Munn, Lance L; Tearney, Guillermo J; Fukumura, Dai; Jain, Rakesh K; Bouma, Brett E

    2009-01-01

    Intravital multiphoton microscopy has provided powerful mechanistic insights into health and disease, and has become a common instrument in the modern biological laboratory. The requisite high numerical aperture and exogenous contrast agents that enable multiphoton microscopy, however, limit ability to investigate substantial tissue volumes or to probe dynamic changes repeatedly over prolonged periods. Here, we introduce optical frequency domain imaging (OFDI) as an intravital microscopy that circumvents the technical limitations of multiphoton microscopy and, as a result, provides unprecedented access to previously unexplored, critically important aspects of tissue biology. Using novel OFDI-based approaches and entirely intrinsic mechanisms of contrast, we present rapid and repeated measurements of tumor angiogenesis, lymphangiogenesis, tissue viability and both vascular and cellular responses to therapy, thereby demonstrating the potential of OFDI to facilitate the exploration of physiological and pathological processes and the evaluation of treatment strategies. PMID:19749772

  17. Quadcopter control in three-dimensional space using a noninvasive motor imagery based brain-computer interface

    PubMed Central

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-01-01

    Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712

  18. High-Speed GPU-Based Fully Three-Dimensional Diffuse Optical Tomographic System

    PubMed Central

    Saikia, Manob Jyoti; Kanhirodan, Rajan; Mohan Vasu, Ram

    2014-01-01

    We have developed a graphics processor unit (GPU-) based high-speed fully 3D system for diffuse optical tomography (DOT). The reduction in execution time of 3D DOT algorithm, a severely ill-posed problem, is made possible through the use of (1) an algorithmic improvement that uses Broyden approach for updating the Jacobian matrix and thereby updating the parameter matrix and (2) the multinode multithreaded GPU and CUDA (Compute Unified Device Architecture) software architecture. Two different GPU implementations of DOT programs are developed in this study: (1) conventional C language program augmented by GPU CUDA and CULA routines (C GPU), (2) MATLAB program supported by MATLAB parallel computing toolkit for GPU (MATLAB GPU). The computation time of the algorithm on host CPU and the GPU system is presented for C and Matlab implementations. The forward computation uses finite element method (FEM) and the problem domain is discretized into 14610, 30823, and 66514 tetrahedral elements. The reconstruction time, so achieved for one iteration of the DOT reconstruction for 14610 elements, is 0.52 seconds for a C based GPU program for 2-plane measurements. The corresponding MATLAB based GPU program took 0.86 seconds. The maximum number of reconstructed frames so achieved is 2 frames per second. PMID:24891848

  19. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes : synthesis and optical and electrical properties.

    SciTech Connect

    Yang, Z.; Gao, S.; Li, W.; Vlasko-Vlasov, V.; Welp, U.; Kwok, W.-K.; Xu, T.

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO{sub 2} layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO{sub 2}-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  20. Three-dimensional diffractive micro- and nano-optical elements fabricated by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Divliansky, Ivan B.; Johnson, Eric G.

    2007-02-01

    The broad development of the micro- and nano-technologies in the past few years increased the need of techniques capable of fabricating sub-micron structures with arbitrary surface profiles. Out of the several fabrication approaches (HEBS lithography, laser writing, etc.) the electron beam writing stands out as the one capable of the highest resolution, superior alignment accuracy and very small surface roughness. These characteristics make the technique greatly applicable in the fields of photonics and micro-opto-electro-mechanical-systems (MOEMS). Here we describe the specificity of fabricating 3D diffractive micro- and nano-optical elements using Leica EBPG 5000+ electron beam system. Parameters like speed of writing, dose accumulation, pattern writing specifics, etc. affect greatly the electronbeam resist properties and the desired 3D profile. We present data that can be used to better understand the different dependencies and therefore achieve better profile and surface roughness management. The results can be useful in future developments in the areas of integrated photonic circuits and MOEMS.

  1. Three-dimensional mapping of corneal elasticity using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Li, Jiasong; Wang, Shang; Vantipalli, Srilatha; Twa, Michael; Larin, Kirill V.

    2015-03-01

    We demonstrate a novel method for noninvasive quantification of tissue biomechanical properties in 3D using phase-stabilized swept source optical coherence elastography (PhS-SSOCE). A focused air-pulse delivery system induces an elastic wave, which is then recorded by the PhS-SSOCE system. By calculating the velocity in all radial directions and imaging depths from the origin of the stimulation, a volumetric elasticity map was generated. Utilizing the high spatial sensitivity of PhS-SSOCE, the force applied on the surface of the cornea and subsequent induced deformation amplitude was minimal, thus preserving the structure and function of delicate ocular tissues such as the cornea and sclera. The results show that this noninvasive method for elasticity assessment can provide a volumetric mapping of elasticity and can differentiate untreated and UV-induced collagen cross-linked (CXL) corneas. As expected, the elastic wave velocity and subsequent Young's modulus was significantly higher in the CXL cornea as compared to the untreated cornea, indicating a substantial increase in corneal stiffness after the CXL treatment.

  2. Reliability and validity of measurements of facial swelling with a stereophotogrammetry optical three-dimensional scanner.

    PubMed

    van der Meer, Wicher J; Dijkstra, Pieter U; Visser, Anita; Vissink, Arjan; Ren, Yijin

    2014-12-01

    Volume changes in facial morphology can be assessed using the 3dMD DSP400 stereo-optical 3-dimensional scanner, which uses visible light and has a short scanning time. Its reliability and validity have not to our knowledge been investigated for the assessment of facial swelling. Our aim therefore was to assess them for measuring changes in facial contour, in vivo and in vitro. Twenty-four healthy volunteers with and without an artificial swelling of the cheek were scanned, twice in the morning and twice in the afternoon (in vivo measurements). A mannequin head was scanned 4 times with and without various externally applied artificial swellings (in vitro measurements). The changes in facial contour caused by the artificial swelling were measured as the change in volume of the cheek (with and without artificial swelling in place) using 3dMD Vultus software. In vivo and in vitro reliability expressed in intraclass correlations were 0.89 and 0.99, respectively. In vivo and in vitro repeatability coefficients were 5.9 and 1.3 ml, respectively. The scanner underestimated the volume by 1.2 ml (95% CI -0.9 to 3.4) in vivo and 0.2 ml (95% CI 0.02 to 0.4) in vitro. The 3dMD stereophotogrammetry scanner is a valid and reliable tool to measure volumetric changes in facial contour of more than 5.9 ml and for the assessment of facial swelling. PMID:25219776

  3. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.

    2013-08-01

    Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.

  4. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography

    PubMed Central

    Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.

    2013-01-01

    Abstract. Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform. PMID:23942632

  5. Synchronous triple-optical-path digital speckle pattern interferometry with fast discrete curvelet transform for measuring three-dimensional displacements

    NASA Astrophysics Data System (ADS)

    Gu, Guoqing; Wang, Kaifu; Wang, Yanfang; She, Bin

    2016-06-01

    Digital speckle pattern interferometry (DSPI) is a well-established and widely used optical measurement technique for obtaining qualitative as well as quantitative measurements of objects deformation. The simultaneous measurement of an object's surface displacements in three dimensions using DSPI is of great interest. This paper presents a triple-optical-path DSPI based method for the simultaneous and independent measurement of three-dimensional (3D) displacement fields. In the proposed method, in-plane speckle interferometers with dual-observation geometry and an out-of-plane interferometer are optimally combined to construct an integrated triple-optical-path DSPI system employing the phase shift technique, which uses only a single laser source and three cameras. These cameras are placed along a single line to synchronously capture real-time visible speckle fringe patterns in three dimensions. In addition, a pre-filtering method based on the fast discrete curvelet transform (FDCT) is utilized for denoising the obtained wrapped phase patterns to improve measurement accuracy. Finally, the simultaneous measurement of the 3D displacement fields of a simple beam and a composite laminated plate respectively subjected to three-point and single-point bend loading are investigated to validate the feasibility and effectiveness of the proposed method.

  6. Gaining control through frustration: two-fold approach for Liquid Crystal three-dimensional command layers.

    PubMed

    Cattaneo, Laura; Zhang, Jing; Zuiddam, Marc; Savoini, Matteo; Rasing, Theo

    2014-07-01

    The alignment of Liquid Crystal (LC) molecules, essential for their applications in optical devices such as displays, is usually controlled by functionalizing their confining surfaces by either patterning or by specific surfactants that induce either parallel or perpendicular molecular arrangement. Inducing a bistable alignment, such as in the new zenithal bistable displays, offers new opportunities in terms of new functionalities and lower energy consumption but a full understanding of such bistable alignment appears still complicated. Here we present a simple phenomenological model that includes surface topography and chemistry. The predicted orientational transitions and bistable states are in excellent agreement with experiments, thus making this a proper tool to design multistable 3D command layers. PMID:24936774

  7. Continuous Three-Dimensional Control of a Virtual Helicopter Using a Motor Imagery Based Brain-Computer Interface

    PubMed Central

    Doud, Alexander J.; Lucas, John P.; Pisansky, Marc T.; He, Bin

    2011-01-01

    Brain-computer interfaces (BCIs) allow a user to interact with a computer system using thought. However, only recently have devices capable of providing sophisticated multi-dimensional control been achieved non-invasively. A major goal for non-invasive BCI systems has been to provide continuous, intuitive, and accurate control, while retaining a high level of user autonomy. By employing electroencephalography (EEG) to record and decode sensorimotor rhythms (SMRs) induced from motor imaginations, a consistent, user-specific control signal may be characterized. Utilizing a novel method of interactive and continuous control, we trained three normal subjects to modulate their SMRs to achieve three-dimensional movement of a virtual helicopter that is fast, accurate, and continuous. In this system, the virtual helicopter's forward-backward translation and elevation controls were actuated through the modulation of sensorimotor rhythms that were converted to forces applied to the virtual helicopter at every simulation time step, and the helicopter's angle of left or right rotation was linearly mapped, with higher resolution, from sensorimotor rhythms associated with other motor imaginations. These different resolutions of control allow for interplay between general intent actuation and fine control as is seen in the gross and fine movements of the arm and hand. Subjects controlled the helicopter with the goal of flying through rings (targets) randomly positioned and oriented in a three-dimensional space. The subjects flew through rings continuously, acquiring as many as 11 consecutive rings within a five-minute period. In total, the study group successfully acquired over 85% of presented targets. These results affirm the effective, three-dimensional control of our motor imagery based BCI system, and suggest its potential applications in biological navigation, neuroprosthetics, and other applications. PMID:22046274

  8. Performance investigation of SP3 and diffusion approximation for three-dimensional whole-body optical imaging of small animals.

    PubMed

    Yang, Defu; Chen, Xueli; Cao, Xu; Wang, Jing; Liang, Jimin; Tian, Jie

    2015-09-01

    The third-order simplified harmonic spherical approximation (SP3) and diffusion approximation (DA) equations have been widely used in the three-dimensional (3D) whole-body optical imaging of small animals. With different types of tissues, which were classified by the ratio of µ s'/µ ɑ, the two equations have their own application scopes. However, the classification criterion was blurring and unreasonable, and the scope has not been systematically investigated until now. In this study, a new criterion for classifying tissues was established based on the absolute value of absorption and reduced scattering coefficients. Using the newly defined classification criterion, the performance and applicability of the SP3 and DA equations were evaluated with a series of investigation experiments. Extensive investigation results showed that the SP3 equation exhibited a better performance and wider applicability than the DA one in most of the observed cases, especially in tissues of low-scattering-low-absorption and low-scattering-high-absorption range. For the case of tissues with the high-scattering-low-absorption properties, a similar performance was observed for both the SP3 and the DA equations, in which case the DA was the preferred option for 3D whole-body optical imaging. Results of this study would provide significant reference for the study of hybrid light transport models. PMID:25850985

  9. A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design.

    PubMed

    Li, Changqing; Mitchell, Gregory S; Dutta, Joyita; Ahn, Sangtae; Leahy, Richard M; Cherry, Simon R

    2009-04-27

    We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse. PMID:19399136

  10. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques

    NASA Astrophysics Data System (ADS)

    Moinul Hossain, Md; Lu, Gang; Sun, Duo; Yan, Yong

    2013-07-01

    This paper presents an experimental investigation, visualization and validation in the three-dimensional (3D) reconstruction of flame temperature and emissivity distributions by using optical tomographic and two-colour pyrometric techniques. A multi-camera digital imaging system comprising eight optical imaging fibres and two RGB charged-couple device (CCD) cameras are used to acquire two-dimensional (2D) images of the flame simultaneously from eight equiangular directions. A combined logical filtered back-projection (LFBP) and simultaneous iterative reconstruction and algebraic reconstruction technique (SART) algorithm is utilized to reconstruct the grey-level intensity of the flame for the two primary colour (red and green) images. The temperature distribution of the flame is then determined from the ratio of the reconstructed grey-level intensities and the emissivity is estimated from the ratio of the grey level of a primary colour image to that of a blackbody source at the same temperature. The temperature measurement of the system was calibrated using a blackbody furnace as a standard temperature source. Experimental work was undertaken to validate the flame temperature obtained by the imaging system against that obtained using high-precision thermocouples. The difference between the two measurements is found no greater than ±9%. Experimental results obtained on a laboratory-scale propane fired combustion test rig demonstrate that the imaging system and applied technical approach perform well in the reconstruction of the 3D temperature and emissivity distributions of the sooty flame.

  11. Optical topography guided semi-three-dimensional diffuse optical tomography for a multi-layer model of occipital cortex: a pilot methodological study

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2016-03-01

    In this paper, an optical topography (OT) guided diffuse optical tomography (DOT) scheme is developed for functional imaging of the occipital cortex. The method extends the previously proposed semi-three-dimensional DOT methodology to reconstruction of two-dimensional extracerebral and cerebral images using a visual cortex oriented five-layered slab geometry, and incorporate the OT localization regularization in the cerebral reconstruction to achieve enhanced quantitative accuracy and spatial resolution. We validate the methodology using simulated data and demonstrate its merits in comparison to the standalone OT and DOT.

  12. Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures

    NASA Astrophysics Data System (ADS)

    Lee, Po-Yi; Liu, Wei-Wen; Chen, Shu-Ching; Li, Pai-Chi

    2016-03-01

    Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x-y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

  13. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system

    PubMed Central

    Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D.; Chaney, Eric J.; Spillman, Darold R.; Boppart, Stephen A.

    2012-01-01

    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures. PMID:22741064

  14. High-resolution three-dimensional scanning optical image system for intrinsic and extrinsic contrast agents in tissue

    NASA Astrophysics Data System (ADS)

    Gu, Yueqing; Qian, Zhiyu; Chen, Jinxian; Blessington, Dana; Ramanujam, Nimmi; Chance, Britton

    2002-01-01

    This article presents the theory and development of a three-dimensional (3D) imaging instrument capable of determining the biochemical properties of tissue by measuring the absorption or fluorescence of different intrinsic and extrinsic agents simultaneously. A bifurcated optical fiber bundle, serving to deliver the excitation light and collect the emission or reflection light, scans over the flat tissue surface retrieving optical signals in each pixel. Two-dimensional (2D) images of a series of subsequent sections are obtained after signal conversion and processing to yield a 3D image. Manipulation of the scanning step and diameter size of the fibers within the bundle, the spatial resolution of the instrument attains a maximum of 40 × 40 × 10 μm3. The wavelength range is extended from ultraviolet to the near infrared (NIR) through specialized optical design, typically employed for the NIR extrinsic contrast agents study. The instrument is most applicable in situations involving the measurement of fluorescence or absorption at any specific wavelength within the spectrum range. Flavoprotein and nicotinamide adeine dinucleotide are the two typical intrinsic agents indicating the oxidization and reduction status of the tissue sample, with their fluorescence detected at wavelengths of 540 and 440 nm, respectively. Oxy and deoxy hemoglobin are two other significant intrinsic agents for evaluating the blood oxygenation saturation by recording their absorptions at two different wavelengths of 577 and 546 nm. These intrinsic agents were measured in this study for comparison of biochemical properties of rat liver in different gas inhalation treatments. Indocyanine green, a NIR extrinsic contrast agent measured at wavelengths of 780 nm/830 nm as excitation/emission can indicate blood pooling by displaying the distribution of blood vessels within a 9 L tumor. The advantage of high sensitivity, spatial resolution, and broad applied potentiality were demonstrated by the

  15. Three-dimensional control of light in a two-dimensional photonic crystal slab

    SciTech Connect

    CHOW,KAI-CHEUNG; LIN,SHAWN-YU; JOHNSON,S.G.; VILLENEUVE,P.R.; JOANNOPOULOS,J.D.; WENDT,JOEL R.; VAWTER,GREGORY A.; ZUBRZYCKI,WALTER J.; HOU,HONG Q.; ALLERMAN,ANDREW A.

    2000-02-15

    A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.

  16. Three-dimensionally modulated anisotropic structure for diffractive optical elements created by one-step three-beam polarization holographic photoalignment

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Sakamoto, Moritsugu; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-01

    A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams. These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.

  17. Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth.

    PubMed

    Lampe, Kyle J; Antaris, Alexander L; Heilshorn, Sarah C

    2013-03-01

    The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within three-dimensional (3-D) materials. To promote neurite out-growth and better understand the effects of common biomaterial design parameters on neuronal cultures we here focused on the cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins these 3-D ELP hydrogels enabled decoupled investigations into the effects of biomechanics and biochemistry on neurite out-growth from dorsal root ganglia. Increasing the cell-adhesive RGD ligand density from 0 to 1.9×10(7)ligands μm(-3) led to a significant increase in the rate, length, and density of neurite out-growth, as quantified by a high throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite out-growth was observed in materials with the higher ligand density at all time points up to 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest out-growth, with some neurites extending over 1800μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite out-growth within defined and tunable 3-D microenvironments these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions. PMID:23128159

  18. Two-dimensional and three-dimensional viability measurements of adult stem cells with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam

    2011-08-01

    Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.

  19. Three-dimensional force microscope: A nanometric optical tracking and magnetic manipulation system for the biomedical sciences

    NASA Astrophysics Data System (ADS)

    Fisher, J. K.; Cummings, J. R.; Desai, K. V.; Vicci, L.; Wilde, B.; Keller, K.; Weigle, C.; Bishop, G.; Taylor, R. M.; Davis, C. W.; Boucher, R. C.; O'Brien, E. Timothy; Superfine, R.

    2005-05-01

    We report here the development of a three-dimensional (3D) magnetic force microscope for applying forces to and measuring responses of biological systems and materials. This instrument combines a conventional optical microscope with a free-floating or specifically bound magnetic bead used as a mechanical probe. Forces can be applied by the bead to microscopic structures of interest (specimens), while the reaction displacement of the bead is measured. This enables 3D mechanical manipulations and measurements to be performed on specimens in fluids. Force is generated by the magnetically permeable bead in reaction to fields produced by external electromagnets. The displacement is measured by interferometry using forward light scattered by the bead from a focused laser beam. The far-field interference pattern is imaged on a quadrant photodetector from which the 3D displacement can be computed over a limited range about the focal point. The bead and specimen are mounted on a 3D translation stage and feedback techniques are used to keep the bead within this limited range. We demonstrate the system with application to beads attached to cilia in human lung cell cultures.

  20. Mathieu Function Solutions for the Photoacoustic Effect in Two- and Three-Dimensional Structures and Optical Traps

    NASA Astrophysics Data System (ADS)

    Wu, Binbin; Diebold, Gerald J.

    2012-11-01

    The wave equation for the photoacoustic effect in a three-dimensional spherically symmetric, or two-dimensional structure where the compressibility or density varies sinusoidally in space reduces to an inhomogeneous Mathieu equation. As such, exact solutions for the photoacoustic pressure can be found in terms of either Mathieu functions, integer order Mathieu functions, or fractional order Mathieu functions, the last of these being of importance for problems pertaining to structures of finite dimensions. Here, frequency domain solutions are given for a spherical structure with material properties varying radially, and a two-dimensional structure with material variations in one direction. Solutions for the acoustic pressure are found that give closed form expressions for the resonance frequencies. It is also shown that Mathieu functions give solutions for the motion of an optically levitated sphere trapped in an intensity modulated, Gaussian laser beam. By determining the frequencies at which the motions of the sphere are largest, that is, where the Mathieu functions become unstable, it is shown that the trap can act to determine the radiation force relative to the gravitational force on the sphere.

  1. Microvascular anastomosis guidance and evaluation using real-time three-dimensional Fourier-domain Doppler optical coherence tomography

    PubMed Central

    Ibrahim, Zuhaib; Tong, Dedi; Zhu, Shan; Mao, Qi; Pang, John; Andrew Lee, Wei Ping; Brandacher, Gerald; Kang, Jin U.

    2013-01-01

    Abstract. Vascular and microvascular anastomoses are critical components of reconstructive microsurgery, vascular surgery, and transplant surgery. Intraoperative surgical guidance using a surgical imaging modality that provides an in-depth view and three-dimensional (3-D) imaging can potentially improve outcome following both conventional and innovative anastomosis techniques. Objective postoperative imaging of the anastomosed vessel can potentially improve the salvage rate when combined with other clinical assessment tools, such as capillary refill, temperature, blanching, and skin turgor. Compared to other contemporary postoperative monitoring modalities—computed tomography angiograms, magnetic resonance (MR) angiograms, and ultrasound Doppler—optical coherence tomography (OCT) is a noninvasive high-resolution (micron-level), high-speed, 3-D imaging modality that has been adopted widely in biomedical and clinical applications. For the first time, to the best of our knowledge, the feasibility of real-time 3-D phase-resolved Doppler OCT (PRDOCT) as an assisted intra- and postoperative imaging modality for microvascular anastomosis of rodent femoral vessels is demonstrated, which will provide new insights and a potential breakthrough to microvascular and supermicrovascular surgery. PMID:23856833

  2. Optical fiber tip with point light source of SPPs driven by three-dimensional nanostructured asymmetric metal-insulator-metal layer cap

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2015-09-01

    Numerical analysis of three dimensional optical electro-magnetic field in a circular-truncated conical optical fiber covered by asymmetric MIM structure has been performed by a commercial finite element method package, COMSOL Multiphysics coupled with Wave Optics Module. The outermost thick metallic layer has twin nano-hole, and the waveguiding twin-hole could draw surface plasmon polaritions (SPPs) excited in the MIM structure to the surface. Finally the guided two SPPs could unite each other and may create a single bright spot. The systematic simulation is continuing, and the results will give us valuable counsel for control of surface plasmon polaritons (SPPs) appearing around the MIM structure and twin nano-hole. (1) Optimal design of the 3D FEM model for 8-core Xeon server and rational approach for the FEM analysis, (2) behavior of SPPs affected by wavelength and polarization of light travel through fiber, (3) change in excitation condition of SPPs caused by shape of the MIM structure and twin-hole, (4) effectiveness of additional nanostructures that are aimed at focusing control of two SPPs come out from the corners of twin-hole, (5) scanning ability of the MIM/twin-hole probe at nanostructured sample surface (i.e. amount of forward and backward scattering of SPPs) will be presented and discussed. Several FIBed prototypes and their characteristic of light emission will also reported.

  3. Size-controlled conformal nanofabrication of biotemplated three-dimensional TiO2 and ZnO nanonetworks

    PubMed Central

    Ceylan, Hakan; Ozgit-Akgun, Cagla; Erkal, Turan S.; Donmez, Inci; Garifullin, Ruslan; Tekinay, Ayse B.; Usta, Hakan; Biyikli, Necmi; Guler, Mustafa O.

    2013-01-01

    A solvent-free fabrication of TiO2 and ZnO nanonetworks is demonstrated by using supramolecular nanotemplates with high coating conformity, uniformity, and atomic scale size control. Deposition of TiO2 and ZnO on three-dimensional nanofibrous network template is accomplished. Ultrafine control over nanotube diameter allows robust and systematic evaluation of the electrochemical properties of TiO2 and ZnO nanonetworks in terms of size-function relationship. We observe hypsochromic shift in UV absorbance maxima correlated with decrease in wall thickness of the nanotubes. Photocatalytic activities of anatase TiO2 and hexagonal wurtzite ZnO nanonetworks are found to be dependent on both the wall thickness and total surface area per unit of mass. Wall thickness has effect on photoexcitation properties of both TiO2 and ZnO due to band gap energies and total surface area per unit of mass. The present work is a successful example that concentrates on nanofabrication of intact three-dimensional semiconductor nanonetworks with controlled band gap energies. PMID:23892593

  4. Effect of laser suture lysis on filtration openings: a prospective three-dimensional anterior segment optical coherence tomography study

    PubMed Central

    Cho, H-k; Kojima, S; Inoue, T; Fukushima, A; Kee, C; Tanihara, H

    2015-01-01

    Purpose To investigate the effects of laser suture lysis (LSL) on filtration openings after trabeculectomy. Methods Prospective study analyzing the changes in the location and width of filtration openings, fluid cavity height, total bleb height, bleb wall thickness, and bleb wall intensity before and after LSL using three-dimensional anterior segment optical coherence tomography (3D AS-OCT). Results Fourteen patients had clear scleral flap image analysis. As five patients underwent LSL twice and two patients underwent LSL thrice, 23 comparison studies were possible. After LSL the intraocular pressure (IOP) decreased (P=0.0015) from 20.5±5.3 to 14.9±6.4 mm Hg, and the fluid cavity height increased significantly from 0.2±0.2 mm to 0.3±0.1 mm (P=0.0094). Other bleb parameters were not significantly different when comparing before and after LSL. When the IOP reduction ratio was >25% following LSL, the width of the filtration openings on the LSL side, the total bleb height, and the fluid cavity height increased (P=0.0273, 0.0342, and 0.0024, respectively). In multiple regression analysis the changes in fluid cavity height, the wall thickness, the wall intensity, and the width of the filtration opening were positively associated with the IOP reduction rate (P=0.0428, 0.0226, 0.0420, and 0.0356, respectively). Conclusions 3D AS-OCT allowed a detailed examination of the internal morphology of filtration blebs and openings before and after LSL. The changes in the internal morphology were closely associated with the success of LSL to decrease IOP. PMID:26206528

  5. Fabrication of size-controlled three-dimensional structures consisting of electrohydrodynamically produced polycaprolactone micro/nanofibers

    NASA Astrophysics Data System (ADS)

    Hong, Soongee; Kim, Geunhyung

    2011-06-01

    In this paper, we report a facile method of fabricating size-controlled three-dimensional (3D) polycaprolactone (PCL) micro/nanofiber structure using a modified electrospinning supplemented with a specially designed solvent bath in which the flow rate of the solvent (EtOH) was controlled. By varying the flow rate of the EtOH into the grounded bath and the electrospinning parameters including a distance between the nozzle and target, the height, diameter, porosity, and micro/nanofiber size of the 3D structures were controlled. To show stable micro/nanofibrous structures under the fabricating conditions, we characterized a process diagram for various flow rates of EtOH and weight percents of PCL. We believe that this modified electrospinning process may be a new means of fabricating micro/nanofibrous 3D structures.

  6. Development of three-dimensional printing system for magnetic elastomer with control of magnetic anisotropy in the structure

    NASA Astrophysics Data System (ADS)

    Tsumori, Fujio; Kawanishi, Hidenori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi

    2016-06-01

    In this paper, we report on a new system of three-dimensional (3D) printing for a magnetic elastomer that contains magnetic particles. Not only can we fabricate a three-dimensional structure, but we can also control the magnetically anisotropic property of each position in the structure using the present technique. Our new system employed photocurable poly(dimethylsiloxane) (PDMS) as the base material so that a method similar to a conventional 3D printing process with photolithography can be used. A magnetic powder was mixed with photocurable PDMS, and particle chain clusters were obtained by applying a magnetic field during the curing process. These chain clusters provide an anisotropic property in each part of the printed structure. We show some results of preliminary experiments and 3D printed samples in this paper. If the fabricated structure was placed under an applied magnetic field, each chain cluster will cause the rotational moment to be along the magnetic flux line, which can deform a soft matrix body. This deformation can be used as a magnetic actuator for the structure. Variable deformable structures could be developed using the present method.

  7. Vital effects in coral skeletal composition display strict three-dimensional control

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Yurimoto, Hiyayoshi; Cuif, Jean-Pierre; Domart-Coulon, Isabelle; Houlbreque, Fanny; Constantz, Brent; Dauphin, Yannicke; Tambutté, E.; Tambutté, Sylvie; Allemand, Denis; Wooden, Joseph; Dunbar, Robert

    2006-06-01

    Biological control over coral skeletal composition is poorly understood but critically important to paleo-environmental reconstructions. We present micro-analytical measurements of trace-element abundances as well as oxygen and carbon isotopic compositions of individual skeletal components in the zooxanthellate coral Colpophyllia sp. Our data show that centers of calcification (COC) have higher trace element concentrations and distinctly lighter isotopic compositions than the fibrous components of the skeleton. These observations necessitate that COC and the fibrous skeleton are precipitated by different mechanisms, which are controlled by specialized domains of the calicoblastic cell-layer. Biological processes control the composition of the skeleton even at the ultra-structure level.

  8. Three-dimensional tracking with misalignment between display and control axes

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Tyler, Mitchell; Kim, Won S.; Stark, Lawrence

    1991-01-01

    Consideration is given to experiments for examining 3D pursuit tracking when operators of teleoperation simulations are faced with misalignment between the display and control frames of reference. It is concluded that manual 3D pursuit tracking errors produced by display-control rotational misalignments have two linearly separable components: a purely visual component and a visual-motor component. Both components may independently influence the tracking performance. Human subjects can simultaneously adapt to a variety of display-control misalignments if position control during pursuit tracking is used with a simulation update rate of at least 30 Hz. This capability will enable trained operators to quickly adapt to changes in the position and orientation of viewing cameras during teleoperation and telemanipulation.

  9. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yueli; Burnes, Daina L.; de Bruin, Martijn; Mujat, Mircea; de Boer, Johannes F.

    2009-03-01

    To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.

  10. A Three-Dimensional Object Orientation Detector Assisting People with Developmental Disabilities to Control Their Environmental Stimulation through Simple Occupational Activities with a Nintendo Wii Remote Controller

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Mohua, Zhang

    2012-01-01

    This study evaluated whether two people with developmental disabilities would be able to actively perform simple occupational activities to control their preferred environmental stimulation using a Nintendo Wii Remote Controller with a newly developed three-dimensional object orientation detection program (TDOODP, i.e. a new software program,…

  11. Feedback Control of the Wake of a Three-Dimensional Blunt Bluff Body

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault; Morgans, Aimee

    2013-11-01

    When cars or trucks drive on motorways, more than two thirds of their fuel consumption is due to aerodynamic drag, a significant part of which is caused by the large scale separation that takes place near their trailing edge. We tackle this problem using Large Eddy Simulations and use feedback control of synthetic jets to reduce the losses associated with large-scale structures in the wake. The geometry is a long surface mounted block, whose leading edge is not modelled for computational efficiency and the structure of the unforced flow field around this body is similar to the flow over a surface mounted block or hump. Considering this flow field as a control system, the base pressure force was used as the system output and the input is a slot jet actuator located near the trailing edge. Using open-loop forcing, a form drag reduction of about 7.5% was obtained. Open-loop system identification also allowed a transfer function that models the system's response to actuation to be found. Finally, a set of feedback controllers were applied to the plant and their performance was analysed. These controllers successfully reduce the fluctuations in the near wake, with only a small control effort. However, more significant mean drag reductions are expected at higher Reynolds numbers. PhD Student, Imperial College London.

  12. Factors controlling the fault occurrences in Tangzhuang three-dimensional exploration area in Dongpu depression

    SciTech Connect

    Jia, Z. )

    1992-01-01

    This paper reports that there are NNE and NNE-NE fault systems in the Dongpu depression. The NNE-NE fault system exists in Tangzhuang hydrocarbon exploration area. In this area, fault occurrence changes frequently, so that in 20 km extent there occur 6 fault zones whose dip directions are opposite each other. The NNE fault system is mainly controlled by tension-torsional stress, and the NNE-NE fault system by these factors: boundary condition, sedimentary facies zone and regional tensional stress. The factors controlling Tangzhuang fault zones whose dip directions are opposite each other are evolution environment of regional geology, structure background, boundary condition, lithology and rock facies variations, as well as the tilting-turning and differential uplifting of faulted blocks, etc. In other words, these opposite fault zones were caused by the above factors.

  13. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow.

    PubMed

    Lauricella, Marco; Pisignano, Dario; Succi, Sauro

    2016-07-14

    We study the effects of a controlled gas flow on the dynamics of electrified jets in the electrospinning process. The main idea is to model the air drag effects of the gas flow by using a nonlinear Langevin-like approach. The model is employed to investigate the dynamics of electrified polymer jets at different conditions of air drag force, showing that a controlled gas counterflow can lead to a decrease of the average diameter of electrospun fibers, and potentially to an improvement of the quality of electrospun products. We probe the influence of air drag effects on the bending instabilities of the jet and on its angular fluctuations during the process. The insights provided by this study might prove useful for the design of future electrospinning experiments and polymer nanofiber materials. PMID:26859532

  14. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow

    PubMed Central

    2016-01-01

    We study the effects of a controlled gas flow on the dynamics of electrified jets in the electrospinning process. The main idea is to model the air drag effects of the gas flow by using a nonlinear Langevin-like approach. The model is employed to investigate the dynamics of electrified polymer jets at different conditions of air drag force, showing that a controlled gas counterflow can lead to a decrease of the average diameter of electrospun fibers, and potentially to an improvement of the quality of electrospun products. We probe the influence of air drag effects on the bending instabilities of the jet and on its angular fluctuations during the process. The insights provided by this study might prove useful for the design of future electrospinning experiments and polymer nanofiber materials. PMID:26859532

  15. Preliminary investigations on the determination of three-dimensional dose distributions using scintillator blocks and optical tomography

    SciTech Connect

    Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg

    2013-08-15

    Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined

  16. Three-Dimensional Graphene-Based Microbarriers for Controlling Release and Reactivity in Colloidal Liquid Phases.

    PubMed

    Creighton, Megan A; Zhu, Wenpeng; van Krieken, Finn; Petteruti, Robert A; Gao, Huajian; Hurt, Robert H

    2016-02-23

    Two-dimensional materials are of great interest as high-performance molecular barriers. Graphene in particular is atomically thin, is impermeable to all molecules, and in some forms can be easily deposited over large areas into planar multilayer films that have been shown to suppress molecular transport. Graphene and graphene oxide sheets are also known to spontaneously self-assemble at liquid-liquid interfaces on the surfaces of dispersed droplets, but much less is known about the barrier properties of these ultrathin films in 3D curved microgeometries. This article demonstrates that 3D films self-assembled from graphene oxide or reduced graphene oxide sheets can be exploited to control the release of small molecules from dispersed liquid phase droplets by evaporation. The release rate and containment time can be tuned by addition of multivalent cations that recruit additional sheets from the bulk liquid to the interface, which is shown by molecular dynamics to occur by an electrostatic bridging mechanism. 3D graphene-based films on droplet surfaces can also be used to control the release and transport of soluble molecules from the droplet to surrounding bulk solvent phases. In some cases, the release can be effectively stopped to produce unique kinetically trapped emulsion phases consisting of two fully miscible but segregated liquids. Finally, interfacial graphene-based films are also shown to control interfacial chemical reaction processes by serving as transport barriers between the phases or by intercepting reactive cross-phase molecular collisions. This reaction control is demonstrated by using 3D graphene-based microbarriers to protect oxidation-sensitive oils from attack by aqueous-phase reactive oxygen species, which is an undesirable pathway implicated in many chemical product degradation and spoilage processes. PMID:26775824

  17. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation

    PubMed Central

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-01-01

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering. PMID:27091175

  18. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

    PubMed

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-01-01

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering. PMID:27091175

  19. Three-dimensional nanostructuring of polymer materials by controlled avalanche using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    RekštytÄ--, Sima; Jonušauskas, Linas; Žukauskas, Albertas; Gervinskas, Gediminas; Malinauskas, Mangirdas; Juodkazis, Saulius

    2014-03-01

    We report direct laser fabrication of free-standing 3D structures in a sol-gel photo-polymer SZ2080, poly(ethylene glycol) diacrylate (PEG-DA-700) and thermo-polymer polydimethylsiloxane (PDMS) without use of two-photon absorbing photo-sensitizers. By estimating the multi-photon and avalanche ionization rates in the focal volume it is shown that bulk structuring of pure materials was achieved via a controlled avalanche. It is shown that several non-photosesitized materials can be combined for fabrication of composite material structures evoking a possibility to create non-toxic biocompatible scaffolds for tissue engineering, transparent microoptical elements and higher damage threshold photonic devices.

  20. A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling

    NASA Astrophysics Data System (ADS)

    Puzyrev, Vladimir; Koldan, Jelena; de la Puente, Josep; Houzeaux, Guillaume; Vázquez, Mariano; Cela, José María

    2013-05-01

    We present a nodal finite-element method that can be used to compute in parallel highly accurate solutions for 3-D controlled-source electromagnetic forward-modelling problems in anisotropic media. Secondary coupled-potential formulation of Maxwell's equations allows to avoid the singularities introduced by the sources, while completely unstructured tetrahedral meshes and mesh refinement support an accurate representation of geological and bathymetric complexity and improve the solution accuracy. Different complex iterative solvers and an efficient pre-conditioner based on the sparse approximate inverse are used for solving the resulting large sparse linear system of equations. Results are compared with the ones of other researchers to check the accuracy of the method. We demonstrate the performance of the code in large problems with tens and even hundreds of millions of degrees of freedom. Scalability tests on massively parallel computers show that our code is highly scalable.

  1. Three-Dimensional Branched TiO2 Architectures in Controllable Bloom for Advanced Lithium-Ion Batteries.

    PubMed

    Wang, Shaofu; Qu, Dandan; Jiang, Yun; Xiong, Wan-Sheng; Sang, Hong-Qian; He, Rong-Xiang; Tai, Qidong; Chen, Bolei; Liu, Yumin; Zhao, Xing-Zhong

    2016-08-10

    Three-dimensional branched TiO2 architectures (3D BTA) with controllable morphologies were synthesized via a facile template-free one-pot solvothermal route. The volume ratio of deionized water (DI water) and diethylene glycol in solvothermal process is key to the formation of 3D BTA assembled by nanowire-coated TiO2 dendrites, which combines the advantages of 3D hierarchical structure and 1D nanoscale building blocks. Benefiting from such unique structural features, the BTA in full bloom achieved significantly increased specific surface areas and shortened Li(+) ion/electrons diffusion pathway. The lithium-ion batteries based on BTA in full bloom exhibited remarkably enhanced reversible specific capacity and rate performance, attributing to the high contact area with the electrolyte and the short solid state diffusion pathway for Li(+) ion/electrons promoting lithium insertion and extraction. PMID:27420343

  2. Computational algorithms for increased control of depth-viewing volume for stereo three-dimensional graphic displays

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Parrish, Russell V.

    1992-01-01

    Three-dimensional pictorial displays incorporating depth cues by means of stereopsis offer a potential means of presenting information in a natural way to enhance situational awareness and improve operator performance. Conventional computational techniques rely on asymptotic projection transformations and symmetric clipping to produce the stereo display. Implementation of two new computational techniques, as asymmetric clipping algorithm and piecewise linear projection transformation, provides the display designer with more control and better utilization of the effective depth-viewing volume to allow full exploitation of stereopsis cuing. Asymmetric clipping increases the perceived field of view (FOV) for the stereopsis region. The total horizontal FOV provided by the asymmetric clipping algorithm is greater throughout the scene viewing envelope than that of the symmetric algorithm. The new piecewise linear projection transformation allows the designer to creatively partition the depth-viewing volume, with freedom to place depth cuing at the various scene distances at which emphasis is desired.

  3. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  4. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery.

    PubMed

    Holländer, Jenny; Genina, Natalja; Jukarainen, Harri; Khajeheian, Mohammad; Rosling, Ari; Mäkilä, Ermei; Sandler, Niklas

    2016-09-01

    The goal of the present study was to fabricate drug-containing T-shaped prototypes of intrauterine system (IUS) with the drug incorporated within the entire backbone of the medical device using 3-dimensional (3D) printing technique, based on fused deposition modeling (FDM™). Indomethacin was used as a model drug to prepare drug-loaded poly(ε-caprolactone)-based filaments with 3 different drug contents, namely 5%, 15%, and 30%, by hot-melt extrusion. The filaments were further used to 3D print IUS. The results showed that the morphology and drug solid-state properties of the filaments and 3D prototypes were dependent on the amount of drug loading. The drug release profiles from the printed devices were faster than from the corresponding filaments due to a lower degree of the drug crystallinity in IUS in addition to the differences in the external/internal structure and geometry between the products. Diffusion of the drug from the polymer was the predominant mechanism of drug release, whereas poly(ε-caprolactone) biodegradation had a minor effect. This study shows that 3D printing is an applicable method in the production of drug-containing IUS and can open new ways in the fabrication of controlled release implantable devices. PMID:26906174

  5. 'Generic-view principle' for three-dimensional-motion perception: optics and inverse optics of a moving straight bar.

    PubMed

    Kitazaki, M; Shimojo, S

    1996-01-01

    The generic-view principle (GVP) states that given a 2-D image the visual system interprets it as a generic view of a 3-D scene when possible. The GVP was applied to 3-D-motion perception to show how the visual system decomposes retinal image motion into three components of 3-D motion: stretch/shrinkage, rotation, and translation. First, the optical process of retinal image motion was analyzed, and predictions were made based on the GVP in the inverse-optical process. Then experiments were conducted in which the subject judged perception of stretch/shrinkage, rotation in depth, and translation in depth for a moving bar stimulus. Retinal-image parameters-2-D stretch/shrinkage, 2-D rotation, and 2-D translation-were manipulated categorically and exhaustively. The results were highly consistent with the predictions. The GVP seems to offer a broad and general framework for understanding the ambiguity-solving process in motion perception. Its relationship to other constraints such as that of rigidity is discussed. PMID:8923550

  6. Three-dimensional optical metrology and models for non-contact diffuse optical tomography of small animals

    NASA Astrophysics Data System (ADS)

    Comtois, Maxime; Bérubé-Lauzière, Yves

    2007-07-01

    We introduce a novel approach for calibrating an axis of rotation in a 3D optical metrology system. The system uses a stereo camera pair, along with rotation and translation stages for obtaining a 3D model of the surface of small animals. The metrology system will be part of a fully non-contact diffuse optical tomography (DOT) scanner for small animal imaging. The rotation axis calibration technique is based on measuring, with the stereo pair, the 3D position of a small ball as it is moved by the rotation stage (turntable). Our system has the advantage of using the tomograph's laser beam to measure the outer shape of the subject, thereby reducing overall system complexity, and allowing simultaneous surface and DOT measurements. Additionnaly, the exact position where laser light penetrates the animal is measured, while traditionally, this information is indirectly inferred with less accuracy. This information plays an important role in a tomographic reconstruction algorithm. Our new approach for the calibration of the rotation axis is compared to another technique we previously developed, where a checkerboard pattern is tracked instead of a ball. We present measurements of a reference shape and a small animal taken by our system.

  7. Modeling and Control of Three-Dimensional Grasping by a Pair of Robot Fingers

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Yoshida, Morio

    This paper extends a stability theory of 2-D object grasp to cope with 3-dimensional(3-D) object grasp by a pair of multi-joint robot fingers with hemi-spheric ends. It shows that secure grasp of a 3-D object with parallel surfaces in a dynamic sense can be realized in a blind manner like human grasp an object by a pair of thumb and index finger while their eyes closed. Rolling contacts are modeled as Pfaffian constraints that can not be integrated into holonomic constraints but exert tangential constraint forces on the object surfaces. A noteworthy difference of modeling of 3-D object grasping from the 2-D case is that the instantaneous axis of rotation of the object dynamics of the overall fingers-object system are subject to non-holonomic constraints regarding a 3-D orthogonal matrix consisting of three mutually orthogonal unit-vectors fixed at the object. Lagrange's equation of motion of the overall system can be derived from the variational principle without violating the causality that governs the nonholonomic constraints. Then, a simple control signal constructed on the basis of fingers-thumb opposable forces together with an object-mass estimator is shown to accomplish stable grasp in a dynamic sense without using object information or external sensing. The closed-loop dynamics can be regarded as Lagrange's equation of motion with an artificial potential function that attains its minimum at some equilibrium state of force/torque balance. A mathematical proof of stability and asymptotic stability on a constraint manifold of the closed-loop dynamics under the nonholonomic constraints is presented.

  8. Numerical modeling of separated flows in three-dimensional diffusers and application of synthetic jets for separation control

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. Yu.; Pudovikov, D. E.; Torohov, S. A.

    2012-01-01

    Solving the problem of creating an environmentally friendly "green plane" implies development and implementation of several actions aimed at increasing airplane performance and reducing environmental contamination. One possible way to solve this problem is to reduce the powerplant weight, in particular, by decreasing its length. The airplane engine flowpath comprises transition ducts: those between the low- and high-pressure compressors, between the compressor and combustor, and between the high- and low-pressure turbines. In a modern high-bypass turbofan, the flowpath varies in the streamwise direction. Shorter transition ducts have greater curvature. Because of this, intensive separation may occur, which leads to increased losses in the flowpath and to significant growth of nonuniformity of flow parameters. Vast experience of numerical and experimental studies of unsteady separated flows has been accumulated by now. In many cases, however, these investigations are performed in a two-dimensional (2D) formulation, which is primarily caused by the high cost of three-dimensional (3D) unsteady calculations. The numerical and experimental work [1] shows that flows in diffuser ducts can have an essentially unsteady 3D structure. This is valid even for ducts modeling 2D configurations. This paper describes the results of a numerical study of the flow structure and its features in model S-shaped transition ducts, as well as the results of using a synthetic jet generator for flow control and for reduction of total pressure losses. Three-dimensional flows are numerically modeled by the unsteady Reynolds-averaged Navier-Stokes (URANS) / RANS methods. The calculations show that the use of the synthetic jet generator can lead to duct loss reduction by 45%.

  9. Real-time single-shot three-dimensional and contrast-enhanced optical coherence imaging using phase coherent photorefractive quantum wells

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Dongol, A.; Wang, X.; Wagner, H. P.

    2010-12-01

    We demonstrate two real-time optical coherence imaging acquisition modes using all-optical phase coherent photorefractive ZnSe quantum wells as dynamic holographic films. These films use the coherence of excitons for time-gating which provides depth information of an object according to the brightness profile of its holographic image. This quality allows depth-resolved imaging of moving particles with a resolution of a few micrometers in a single-shot three-dimensional mode. In a complementary contrast-enhanced mode moving particles are imaged by the local enhancement of a static reference hologram, enabling optical coherence imaging at a large depth-of-field.

  10. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    PubMed Central

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  11. Three-dimensional silicon micromachining

    NASA Astrophysics Data System (ADS)

    Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.

    2012-11-01

    A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.

  12. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control

    NASA Astrophysics Data System (ADS)

    McMurtrey, Richard J.

    2014-12-01

    Objective. Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. Approach. A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. Main results. Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA

  13. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.

    PubMed

    Butet, Jérémy; Bachelier, Guillaume; Duboisset, Julien; Bertorelle, Franck; Russier-Antoine, Isabelle; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François

    2010-10-11

    We report the three-dimensional mapping of 150 nm gold metallic nanoparticles dispersed in a homogeneous transparent polyacrylamide matrix using second-harmonic generation. We demonstrate that the position of single nanoparticles can be well defined using only one incident fundamental beam and the harmonic photon detection performed at right angle. The fundamental laser beam properties are determined using its spatial autocorrelation function and used to prove that single nanoparticles are observed. Polarization resolved measurements are also performed allowing for a clear separation of the second-harmonic response of the single gold metallic nanoparticles from that of aggregates of such nanoparticles. PMID:20941132

  14. Theoretical assessment of optical resolution enhancement and background fluorescence reduction by three-dimensional nonlinear structured illumination microscopy using stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Dake, Fumihiro

    2016-08-01

    Three-dimensional structured illumination microscopy (SIM) enlarges frequency cutoff laterally and axially by a factor of two, compared with conventional microscopy. However, its optical resolution is still fundamentally limited. It is necessary to introduce nonlinearity to enlarge frequency cutoff further. We propose three-dimensional nonlinear structured illumination microscopy based on stimulated emission depletion (STED) effect, which has a structured excitation pattern and a structured STED pattern, and both three-dimensional illumination patterns have the same lateral pitch and orientation. Theoretical analysis showed that nonlinearity induced by STED effect, which causes harmonics and contributes to enlarging frequency cutoff, depends on the phase difference between two structured illuminations and that the phase difference of π is the most efficient to increase nonlinearity. We also found that undesirable background fluorescence, which degenerates the contrast of structured pattern and limits the ability of SIM, can be reduced by our method. These results revealed that optical resolution improvement and background fluorescence reduction would be compatible. The feasibility study showed that our method will be realized with commercially available laser, having 3.5 times larger frequency cutoff compared with conventional microscopy.

  15. Theoretical assessment of optical resolution enhancement and background fluorescence reduction by three-dimensional nonlinear structured illumination microscopy using stimulated emission depletion

    NASA Astrophysics Data System (ADS)

    Dake, Fumihiro

    2016-07-01

    Three-dimensional structured illumination microscopy (SIM) enlarges frequency cutoff laterally and axially by a factor of two, compared with conventional microscopy. However, its optical resolution is still fundamentally limited. It is necessary to introduce nonlinearity to enlarge frequency cutoff further. We propose three-dimensional nonlinear structured illumination microscopy based on stimulated emission depletion (STED) effect, which has a structured excitation pattern and a structured STED pattern, and both three-dimensional illumination patterns have the same lateral pitch and orientation. Theoretical analysis showed that nonlinearity induced by STED effect, which causes harmonics and contributes to enlarging frequency cutoff, depends on the phase difference between two structured illuminations and that the phase difference of π is the most efficient to increase nonlinearity. We also found that undesirable background fluorescence, which degenerates the contrast of structured pattern and limits the ability of SIM, can be reduced by our method. These results revealed that optical resolution improvement and background fluorescence reduction would be compatible. The feasibility study showed that our method will be realized with commercially available laser, having 3.5 times larger frequency cutoff compared with conventional microscopy.

  16. Ultrahigh-Speed Optical Coherence Tomography for Three-Dimensional and En Face Imaging of the Retina and Optic Nerve Head

    PubMed Central

    Srinivasan, Vivek J.; Adler, Desmond C.; Chen, Yueli; Gorczynska, Iwona; Huber, Robert; Duker, Jay S.; Schuman, Joel S.; Fujimoto, James G.

    2009-01-01

    Purpose To demonstrate ultrahigh-speed optical coherence tomography (OCT) imaging of the retina and optic nerve head at 249,000 axial scans per second and a wavelength of 1060 nm. To investigate methods for visualization of the retina, choroid, and optic nerve using high-density sampling enabled by improved imaging speed. Methods A swept-source OCT retinal imaging system operating at a speed of 249,000 axial scans per second was developed. Imaging of the retina, choroid, and optic nerve were performed. Display methods such as speckle reduction, slicing along arbitrary planes, en face visualization of reflectance from specific retinal layers, and image compounding were investigated. Results High-definition and three-dimensional (3D) imaging of the normal retina and optic nerve head were performed. Increased light penetration at 1060 nm enabled improved visualization of the choroid, lamina cribrosa, and sclera. OCT fundus images and 3D visualizations were generated with higher pixel density and less motion artifacts than standard spectral/Fourier domain OCT. En face images enabled visualization of the porous structure of the lamina cribrosa, nerve fiber layer, choroid, photoreceptors, RPE, and capillaries of the inner retina. Conclusions Ultrahigh-speed OCT imaging of the retina and optic nerve head at 249,000 axial scans per second is possible. The improvement of ∼5 to 10× in imaging speed over commercial spectral/Fourier domain OCT technology enables higher density raster scan protocols and improved performance of en face visualization methods. The combination of the longer wavelength and ultrahigh imaging speed enables excellent visualization of the choroid, sclera, and lamina cribrosa. PMID:18658089

  17. Three-dimensional diffuse optical tomography of simulated hand joints with a 64 × 64-channel photodiodes-based optical system

    NASA Astrophysics Data System (ADS)

    Zhang, Qizhi; Jiang, Huabei

    2005-05-01

    A continuous-wave (CW) diffuse optical tomography (DOT) system that is specifically designed for three-dimensional (3D) imaging of hand joints is described in this paper. This DOT system consists of eight diode lasers coupled with 64 source optic fibre bundles for light excitations and 64 receiving optic fibre bundles in conjunction with 64 silicon photodiodes for light detection. It has a large dynamic range, high stability and low detective noise equivalent power. In this system, the excitation and detection fibre bundles are arranged in four layers each with 16 excitation and 16 detection fibre bundles, forming a cylindrical imaging volume where an inserted finger is supported by a solid coupling medium. A series of tissue-mimicking experiments have been conducted to evaluate the system using a simple joint model consisting of two 'bones' and one layer of 'cartilage'. These experiments also serve to identify optimal experimental and computational configurations for hand joint imaging. Coupled with our 3D finite-element based reconstruction algorithm, the phantom results suggest that the supporting/coupling medium with proper absorption and scattering coefficients is one of the key factors for high quality image reconstruction. In addition, these phantom investigations show that an off-centre positioned object can be significantly better imaged than a centre placed object. Studies have also been performed to determine an optimal mesh size for 3D hand joint imaging.

  18. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin

    2013-08-01

    Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s-1. Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user's ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

  19. Quantitative analysis of three-dimensional fibrillar collagen microstructure within the normal, aged and glaucomatous human optic nerve head

    PubMed Central

    Jones, H. J.; Girard, M. J.; White, N.; Fautsch, M. P.; Morgan, J. E.; Ethier, C. R.; Albon, J.

    2015-01-01

    The aim of this study was to quantify connective tissue fibre orientation and alignment in young, old and glaucomatous human optic nerve heads (ONH) to understand ONH microstructure and predisposition to glaucomatous optic neuropathy. Transverse (seven healthy, three glaucomatous) and longitudinal (14 healthy) human ONH cryosections were imaged by both second harmonic generation microscopy and small angle light scattering (SALS) in order to quantify preferred fibre orientation (PFO) and degree of fibre alignment (DOFA). DOFA was highest within the peripapillary sclera (ppsclera), with relatively low values in the lamina cribrosa (LC). Elderly ppsclera DOFA was higher than that in young ppsclera (p < 0.00007), and generally higher than in glaucoma ppsclera. In all LCs, a majority of fibres had preferential orientation horizontally across the nasal–temporal axis. In all glaucomatous LCs, PFO was significantly different from controls in a minimum of seven out of 12 LC regions (p < 0.05). Additionally, higher fibre alignment was observed in the glaucomatous inferior–temporal LC (p < 0.017). The differences between young and elderly ONH fibre alignment within regions suggest that age-related microstructural changes occur within the structure. The additional differences in fibre alignment observed within the glaucomatous LC may reflect an inherent susceptibility to glaucomatous optic neuropathy, or may be a consequence of ONH remodelling and/or collapse. PMID:25808336

  20. Postoperative Radiotherapy for Lung Cancer: Improvement in Locoregional Control Using Three-Dimensional Compared With Two-Dimensional Technique

    SciTech Connect

    Masson-Cote, Laurence; Couture, Christian; Fortin, Andre; Dagnault, Anne

    2011-07-01

    Purpose: To determine whether lung cancer patients treated with three-dimensional (3D) postoperative radiotherapy (PORT) have more favorable outcomes than those treated with two-dimensional (2D) PORT. Patients and Methods: We retrospectively analyzed the charts of 153 lung cancer patients who underwent PORT with curative intent at our center between 1995 and 2007. The patients were grouped according to the RT technique; 66 patients were in the 2D group and 87 in the 3D group. The outcomes included locoregional control, survival, and secondary effects. All patients were treated using a linear accelerator at a total dose of approximately 50 Gy and 2 Gy/fraction. A few patients (21%) also received chemotherapy. Most tumors were in the advanced stage, either Stage II (30%) or Stage III (65%). The main clinical indications for PORT were positive resection margins (23%) and Stage pN2 (52%) and pN1 (22%). The patient characteristics were comparable in both groups. Results: Kaplan-Meier analysis showed that the 3D technique significantly improved the locoregional control rate at 5 years compared with the 2D technique (81% vs. 56%, p = .007 [Cox]). The 2D technique was associated with a more than twofold increased risk of locoregional recurrence (hazard ratio, 2.7; 95% confidence interval, 1.3-5.5; p = .006). The overall survival rate did not differ at 5 years (38% vs. 20%, p = .3 [Cox]). The toxicities were also similar and acceptable in both groups. Conclusion: The 3D technique for conformal PORT for lung cancer improved the locoregional control rates of patients compared with the 2D technique.

  1. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    SciTech Connect

    Attota, Ravikiran Dixson, Ronald G.

    2014-07-28

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  2. Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

    PubMed Central

    Esteve, Vicent; Monge, Rosa; Celda, Bernardo

    2014-01-01

    A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system has been designed to fit inside commercially available NMR equipment to obtain maximum readout resolution when working with small samples. Moreover, the microfluidic device integrates a fibre-optic-based sensor to monitor parameters such as oxygen, pH, or temperature during NMR monitoring, and it also allows the use of optical microscopy techniques such as confocal fluorescence microscopy. This manuscript reports the initial trials culturing neurospheres inside the microchamber of this device and the preliminary images and spatially localised spectra obtained by NMR. The images show the presence of a necrotic area in the interior of the neurospheres, as is frequently observed in histological preparations; this phenomenon appears whenever the distance between the cells and fresh nutrients impairs the diffusion of oxygen. Moreover, the spectra acquired in a volume of 8 nl inside the neurosphere show an accumulation of lactate and lipids, which are indicative of anoxic conditions. Additionally, a basis for general temperature control and monitoring and a graphical control software have been developed and are also described. The complete platform will allow biomedical assays of therapeutic agents to be performed in the early phases of therapeutic development. Thus, small quantities of drugs or advanced nanodevices may be studied long-term under simulated living conditions that mimic the flow and distribution of nutrients. PMID:25553182

  3. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core–shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core–shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  4. Controlling the secondary flow in a turbine cascade by three-dimensional airfoil design and endwall contouring

    SciTech Connect

    Duden, A.; Fottner, L.; Raab, I.

    1999-04-01

    A highly loaded turbine cascade has been redesigned with the objective to reduce the secondary flow by applying endwall contouring and three-dimensional airfoil design in the endwall regions. The overall loading and the axial area ratio of the cascade have been kept constant. With the tools of a three-dimensional design environment, a systematic study has been carried out regarding several features of the endwall pressure distribution and their influence on the secondary flow. Two optimized configurations have been investigated in a high-speed cascade wind tunnel. The flow field traverses showed improvements concerning the radial extent of the secondary flow and a decrease in secondary loss of 26%. Unfortunately this reduction was counterbalanced by increased profile losses and higher inlet losses due to increased blockage. The striking feature of the cascade with endwall contouring and three-dimensional airfoil design was a significant reduction of the exit flow angle deviations connected with the secondary flow. The predictions obtained by the three-dimensional Navier-Stokes solver TRACE{_}S showed a remarkable agreement with the experimental results.

  5. Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling

    SciTech Connect

    Hsiao, Hui-Hsin; Wu, Yuh-Renn; Chang, Hung-Chun

    2014-08-11

    The optical and electrical properties of a photonic-plasmonic nanostructure on the back contact of thin-film solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain method and the 3D Poisson and drift-diffusion solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. However, the surface topography of certain nanopattern structures is found to reduce the internal electrostatic field of the device, thus limiting charge collection. The optimized conditions for both optics and electronics have been analyzed in this paper.

  6. Design and implementation of three-dimensional ring-scanning equipment for optimized measurements of near-infrared diffuse optical breast imaging

    NASA Astrophysics Data System (ADS)

    Yu, Jhao-Ming; Pan, Min-Cheng; Hsu, Ya-Fen; Chen, Liang-Yu; Pan, Min-Chun

    2015-07-01

    We propose and implement three-dimensional (3-D) ring-scanning equipment for near-infrared (NIR) diffuse optical imaging to screen breast tumors under prostrating examination. This equipment has the function of the radial, circular, and vertical motion without compression of breast tissue, thereby achieving 3-D scanning; furthermore, a flexible combination of illumination and detection can be configured for the required resolution. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel motion. Prior to machining and construction of the system, a synthesized image reconstruction was simulated to show the feasibility of this 3-D NIR ring-scanning equipment; finally, this equipment is verified by performing phantom experiments. Rather than the fixed configuration, this addressed screening/diagnosing equipment has the flexibilities of optical-channel expansion for spatial resolution and the dimensional freedom for scanning in reconstructing optical-property images.

  7. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector

    SciTech Connect

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-15

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than {+-}0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between {+-}0.02% and {+-}0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  8. Solvothermal synthesis and high optical performance of three-dimensional sea-urchin-like TiO{sub 2}

    SciTech Connect

    Zhou, Yi Wang, Yutang; Li, Mengyao; Li, Xuzhi; Yi, Qin; Deng, Pan; Wu, Hongyan

    2015-06-15

    Graphical abstract: I–V characteristics of different TiO{sub 2} microspheres based DSSCs (a) 3D sphere-like, (b) 3D flower-like, (c) 3D sea-urchin-like. - Highlights: • 3D sea-urchin-like TiO{sub 2} was synthesized by solvothermal method. • The effects of preparation parameters on the microstructure of the microspheres were investigated. • The photoelectric properties of 3D sea-urchin-like TiO{sub 2} were studied upon DSSCs. • The PCE of the 3D sea-urchin-like TiO{sub 2} was higher than that of other morphologies. - Abstract: Three-dimensional (3D) sea-urchin-like TiO{sub 2} microspheres were successfully synthesised by solvothermal method. The effects of preparation parameters including reaction temperature, concentration and mass fraction of precursor, and solvent volume on the microstructure of the microspheres were investigated. Results of scanning electron microscopy showed that the preparation parameters played a critical role in the morphology of 3D sea-urchin-like TiO{sub 2}. In addition, when the sea-urchin-like TiO{sub 2} nanostructures were used as the dye-sensitized solar cells (DSSCs) anode, the power-conversion efficiency was higher than that of other morphologies, which was due to the special 3D hierarchical nanostructure, large specific surface area, and enhanced absorption of UV–vis of the TiO{sub 2} nanostructures.

  9. One-mirror and two-mirror three-dimensional optical scanners--position and accuracy of laser beam spot.

    PubMed

    Pokorny, Petr

    2014-04-20

    This article presents several fundamental formulas for ray tracing in optical systems used in 3D optical scanners. A procedure for numerical modeling of one-mirror and two-mirror optical systems is presented, and the calculation of positioning and accuracy of the laser beam spot in a detection plane is carried out. Finally, a point position and accuracy depending on a transit time is evaluated. PMID:24787602

  10. Micro-optical design of a three-dimensional microlens scanner for vertically integrated micro-opto-electro-mechanical systems.

    PubMed

    Baranski, Maciej; Bargiel, Sylwester; Passilly, Nicolas; Gorecki, Christophe; Jia, Chenping; Frömel, Jörg; Wiemer, Maik

    2015-08-01

    This paper presents the optical design of a miniature 3D scanning system, which is fully compatible with the vertical integration technology of micro-opto-electro-mechanical systems (MOEMS). The constraints related to this integration strategy are considered, resulting in a simple three-element micro-optical setup based on an afocal scanning microlens doublet and a focusing microlens, which is tolerant to axial position inaccuracy. The 3D scanning is achieved by axial and lateral displacement of microlenses of the scanning doublet, realized by micro-electro-mechanical systems microactuators (the transmission scanning approach). Optical scanning performance of the system is determined analytically by use of the extended ray transfer matrix method, leading to two different optical configurations, relying either on a ball lens or plano-convex microlenses. The presented system is aimed to be a core component of miniature MOEMS-based optical devices, which require a 3D optical scanning function, e.g., miniature imaging systems (confocal or optical coherence microscopes) or optical tweezers. PMID:26368111

  11. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    NASA Astrophysics Data System (ADS)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  12. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    PubMed

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  13. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    PubMed Central

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  14. Direct Simulation of Evolution and Control of Three-Dimensional Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1995-01-01

    The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.

  15. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam.

    PubMed

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  16. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-06-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm.

  17. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  18. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  19. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  20. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution

    NASA Astrophysics Data System (ADS)

    Fu, Ya-Yuan; Lu, Chih-Hsuan; Lin, Chi-Wen; Juang, Jyuhn-Huarng; Enikolopov, Grigori; Sibley, Eric; Chiang, Ann-Shyn; Tang, Shiue-Cheng

    2010-07-01

    Microscopic visualization of islets of Langerhans under normal and diabetic conditions is essential for understanding the pathophysiology of the disease. The intrinsic opacity of pancreata, however, limits optical accessibility for high-resolution light microscopy of islets in situ. Because the standard microtome-based, 2-D tissue analysis confines visualization of the islet architecture at a specific cut plane, 3-D representation of image data is preferable for islet assessment. We applied optical clearing to minimize the random light scattering in the mouse pancreatic tissue. The optical-cleared pancreas allowed penetrative, 3-D microscopic imaging of the islet microstructure and vasculature. Specifically, the islet vasculature was revealed by vessel painting-lipophilic dye labeling of blood vessels-for confocal microscopy. The voxel-based confocal micrographs were digitally processed with projection algorithms for 3-D visualization. Unlike the microtome-based tissue imaging, this optical method for penetrative imaging of mouse islets yielded clear, continuous optical sections for an integrated visualization of the islet microstructure and vasculature with subcellular-level resolution. We thus provide a useful imaging approach to change our conventional planar view of the islet structure into a 3-D panorama for better understanding of the islet physiology.

  1. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    PubMed Central

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown. PMID:23955044

  2. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element.

    PubMed

    Yeom, Jiwoon; Jeong, Jinsoo; Jang, Changwon; Li, Gang; Hong, Keehoon; Lee, Byoungho

    2015-10-20

    We propose a 3D/2D convertible screen using a holographic optical element and angular multiplexing method of volume hologram. The proposed screen, named a multiplexed holographic optical element screen (MHOES), is composed of passive optical components, and displaying modes between 3D and 2D modes are converted according to projection directions. In a recording process, the angular multiplexing method by using two reference waves with different incidence angles enables the functions of 3D and 2D screens to be recorded in a single holographic material. Also, in order to avoid the bulky experimental setup due to adopting different projectors for the 3D and 2D modes, the projection part is realized based on a prism. The designed projection part enables the single projector to present 3D on 2D mode, where the 3D and 2D contents are simultaneously displayed in one scene, without active components. The optical characteristics of MHOES are experimentally analyzed, and displaying experiments with a full-color MHOES are presented in order to verify the 3D/2D convertibility and see-through properties. PMID:26560370

  3. The development of three-dimensional adjoint method for flow control with blowing in convergent-divergent nozzle flows

    NASA Astrophysics Data System (ADS)

    Sikarwar, Nidhi

    multiple experiments or numerical simulations. Alternatively an inverse design method can be used. An adjoint optimization method can be used to achieve the optimum blowing rate. It is shown that the method works for both geometry optimization and active control of the flow in order to deflect the flow in desirable ways. An adjoint optimization method is described. It is used to determine the blowing distribution in the diverging section of a convergent-divergent nozzle that gives a desired pressure distribution in the nozzle. Both the direct and adjoint problems and their associated boundary conditions are developed. The adjoint method is used to determine the blowing distribution required to minimize the shock strength in the nozzle to achieve a known target pressure and to achieve close to an ideally expanded flow pressure. A multi-block structured solver is developed to calculate the flow solution and associated adjoint variables. Two and three-dimensional calculations are performed for internal and external of the nozzle domains. A two step MacCormack scheme based on predictor- corrector technique is was used for some calculations. The four and five stage Runge-Kutta schemes are also used to artificially march in time. A modified Runge-Kutta scheme is used to accelerate the convergence to a steady state. Second order artificial dissipation has been added to stabilize the calculations. The steepest decent method has been used for the optimization of the blowing velocity after the gradients of the cost function with respect to the blowing velocity are calculated using adjoint method. Several examples are given of the optimization of blowing using the adjoint method.

  4. Binding Energies and Linear and Nonlinear Optical Properties of a Donor Impurity in a Three-Dimensional Quantum Pseudodot

    NASA Astrophysics Data System (ADS)

    Kirak, Muharrem; Yilmaz, Sait

    2013-12-01

    A theoretical study of the electronic properties of the ground state and excited states and the linear and the third-order nonlinear optical properties (i. e., absorption coefficients and refractive indices) in a spherical GaAs pseudodot system is reported. The variational procedure has been employed in determining sublevel energy eigenvalues and their wave functions within the effective mass approximation. Our results indicate that the chemical potential of the electron gas and the minimum value of the pseudoharmonic potential have a great influence on the electrical and optical properties of hydrogenic impurity states. Also, we have found that the magnitudes of the absorption coefficient and the refractive index change of the spherical quantum dot increase for transitions between higher levels.

  5. Three-dimensional sonoembryology.

    PubMed

    Benoit, Bernard; Hafner, Tomislav; Kurjak, Asim; Kupesić, Sanja; Bekavac, Ivanka; Bozek, Tomislav

    2002-01-01

    Three-dimensional (3D) ultrasound plays an important role in obstetrics, predominantly for assessing fetal anatomy. Presenting volume data in a standard anatomic orientation valuably assists both ultrasonographers and pregnant patients to recognize the anatomy more readily. Three-dimensional ultrasound is advantageous in studying normal embryonic and/or fetal development, as well as providing information for families at risk for specific congenital anomalies by confirming normality. This method offers advantages in assessing the embryo in the first trimester due to its ability to obtain multiplanar images through endovaginal volume acquisition. Rotation allows the systematic review of anatomic structures and early detection of fetal anomalies. Three-dimensional ultrasound imaging in vivo compliments pathologic and histologic evaluation of the developing embryo, giving rise to a new term: 3D sonoembryology. Rapid technological development will allow real-time 3D ultrasound to provide improved and expanded patient care on the one side, and increased knowledge of developmental anatomy on the other. PMID:11933658

  6. Dental image replacement on cone beam computed tomography with three-dimensional optical scanning of a dental cast, occlusal bite, or bite tray impression.

    PubMed

    Kang, S-H; Lee, J-W; Lim, S-H; Kim, Y-H; Kim, M-K

    2014-10-01

    The goal of the present study was to compare the accuracy of dental image replacement on a cone beam computed tomography (CBCT) image using digital image data from three-dimensional (3D) optical scanning of a dental cast, occlusal bite, and bite tray impression. A Bracket Typodont dental model was used. CBCT of the dental model was performed and the data were converted to stereolithography (STL) format. Three experimental materials, a dental cast, occlusal bite, and bite tray impression, were optically scanned in 3D. STL files converted from the CBCT of the Typodont model and the 3D optical-scanned STL files of the study materials were image-registered. The error range of each methodology was measured and compared with a 3D optical scan of the Typodont. For the three materials, the smallest error observed was 0.099±0.114mm (mean error±standard deviation) for registering the 3D optical scan image of the dental cast onto the CBCT dental image. Although producing a dental cast can be laborious, the study results indicate that it is the preferred method. In addition, an occlusal bite is recommended when bite impression materials are used. PMID:25015906

  7. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  8. Evidence for Three-Dimensional Radiative Effects in MODIS Cloud Optical Depths Retrieved at Back Scattering View Angles

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander

    2003-01-01

    This study addresses the question whether 1D radiative transfer theory describes well the angular distribution of shortwave cloud reflection. The statistical analysis of a large set of MODIS observations indicates that in oblique backward scattering directions, cloud reflection is stronger than 1D theory would predict. After considering a variety of possible causes, the paper concludes that the most likely reason for the increase lies in 3D radiative interactions. The results' main implication is that cloud optical depths retrieved at back scattering view angles larger than about 50 degrees tend to be overestimated and should be used only with great caution.

  9. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  10. Three-dimensional Fourier-domain optical coherence tomography of alveolar mechanics in stepwise inflated and deflated isolated and perfused rabbit lungs

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund

    2007-07-01

    Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.

  11. Three-dimensional Camera Phone

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2004-12-01

    An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

  12. Asymptotic analysis of: I. Wave propagation in dispersive optical media with quadratic nonlinearity. II. A hypersonic wing with three-dimensional self-similarity

    SciTech Connect

    Kalocsai, A.G.

    1992-12-31

    An asymptotic analysis is presented for two distinct and independent problems: (I) Wave propagation in dispersive optical media with quadratic nonlinearity (II) Hypersonic flows with three dimensional self-similarity. In the optics problem, we at first study single and multiple input propagating waves at frequencies away from dielectric resonances. Here we compare the Slowly Varying Envelope Approximation to the Method of Multiple Scales and show that the Method of Multiple Scales is a superior technique that can be applied self consistently to any perturbation order which in turn predicts new physical effects. For the single slowly modulated input wave problem, under appropriate conditions, we shown that at the O({epsilon}{sup 2}) perturbation, we obtain the cubic nonlinear Schrodinger equation. This means that for the single input wave propagating in a quadratic nonlinear medium, self-modulation effects and soliton behavior may be observed depending on the boundary conditions. For the single input wave near a classical dielectric resonance, we find that the wave number becomes amplitude dependent. The method of multiple scales is replaced by Whitham`s averaged Lagrangian. We derive the associated modulated envelope equations. We investigate an effective medium regime and the full nonlinear problem. The hypersonic flow problem requires the use of asymptotic matching that arises from the geometry from the problem. Here the pressure field and lift to drag C{sup 3/2}{sub L}/C{sub D} is evaluated for a wide delta wing with small power law curvature. Use is made of Hypersonic Small Disturbance Theory and three dimensional power law similarity. It is shown that an improvement for C{sup 3/2}{sub L}/C{sub D} occurs for wings with power law curvatures greater than one, when compared to flat delta wings. This improvement in performance agrees qualitatively with other types of concave wings.

  13. In vivo early retinal structural alterations following laser photocoagulation using three-dimensional spectral domain optical coherence tomography.

    PubMed

    Saxena, Sandeep; Mishra, Nibha; Ruia, Surabhi; Akduman, Levent

    2016-01-01

    To study the retinal structural alterations and surface topography of retinal pigment epithelium (RPE) immediately following laser photocoagulation up to day 7. Cross-sectional retinal imaging and RPE segmentation maps on spectral domain optical coherence tomography were obtained immediately at hour 1, day 1, day 4 and day 7 following 532 nm neodymium:YAG laser photocoagulation in a 56-year-old male patient for branch retinal vein occlusion. Immediately postlaser, loss of reflectivity of all the retinal layers was observed. At hour 1, hyper-reflectivity of outer retinal layers was observed with increase in hyporeflective spaces by day 1. Immediately postlaser, pitting of the RPE was observed on surface topography which regressed at day 1. On day 4, smooth RPE surface topography was observed with the occurrence of small elevated areas on day 7. The present report provides an insight into the in vivo changes in the retinal structure and RPE surface topography after laser photocoagulation. PMID:27402655

  14. In vivo three-dimensional optical coherence tomography and multiphoton microscopy in a mouse model of ovarian neoplasia

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.; Marion, Samuel L.; Rice, Photini Faith; Bentley, David L.; Besselsen, David; Utzinger, Urs; Hoyer, Patricia B.; Barton, Jennifer K.

    2013-03-01

    Our goal is to use optical coherence tomography (OCT) and multiphoton microscopy (MPM) to detect early tumor development in a mouse model of ovarian neoplasia. We hope to use information regarding early tumor development to create a diagnostic test for high-risk patients. In this study we collect in vivo images using OCT, second harmonic generation and two-photon excited fluorescence from non-vinylcyclohexene diepoxide (VCD)-dosed and VCD-dosed mice. VCD causes follicular apoptosis (simulating menopause) and leads to tumor development. Using OCT and MPM we visualized the ovarian microstructure and were able to see differences between non-VCD-dosed and VCD-dosed animals. This leads us to believe that OCT and MPM may be useful for detecting changes due to early tumor development.

  15. Three-dimensional metamaterials

    DOEpatents

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  16. Three-dimensional inverse problem of geometrical optics: a mathematical comparison between Fermat's principle and the eikonal equation.

    PubMed

    Borghero, Francesco; Demontis, Francesco

    2016-09-01

    In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions. PMID:27607492

  17. Validation of two-dimensional and three-dimensional measurements of subpleural alveolar size parameters by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Unglert, Carolin I.; Warger, William C.; Hostens, Jeroen; Namati, Eman; Birngruber, Reginald; Bouma, Brett E.; Tearney, Guillermo J.

    2012-12-01

    Optical coherence tomography (OCT) has been increasingly used for imaging pulmonary alveoli. Only a few studies, however, have quantified individual alveolar areas, and the validity of alveolar volumes represented within OCT images has not been shown. To validate quantitative measurements of alveoli from OCT images, we compared the cross-sectional area, perimeter, volume, and surface area of matched subpleural alveoli from microcomputed tomography (micro-CT) and OCT images of fixed air-filled swine samples. The relative change in size between different alveoli was extremely well correlated (r>0.9, P<0.0001), but OCT images underestimated absolute sizes compared to micro-CT by 27% (area), 7% (perimeter), 46% (volume), and 25% (surface area) on average. We hypothesized that the differences resulted from refraction at the tissue-air interfaces and developed a ray-tracing model that approximates the reconstructed alveolar size within OCT images. Using this model and OCT measurements of the refractive index for lung tissue (1.41 for fresh, 1.53 for fixed), we derived equations to obtain absolute size measurements of superellipse and circular alveoli with the use of predictive correction factors. These methods and results should enable the quantification of alveolar sizes from OCT images in vivo.

  18. Three-Dimensional Optical Frequency Domain Imaging Evaluation of Novel Dual-Layered Carotid Stent Implantation for Vulnerable Carotid Plaque.

    PubMed

    Shindo, Seigo; Fujii, Kenichi; Shirakawa, Manabu; Uchida, Kazutaka; Sugiura, Yuri; Saito, Shin; Ando, Yukio; Yoshimura, Shinichi

    2016-03-01

    Plaque prolapse through the cell stent has been suggested as one of the major causes of postprocedural distal embolization after carotid artery stenting. A CASPER stent (Terumo, Tokyo, Japan) is the latest-generation stent having the dual layers and expected to reduce the risk of embolization. A 76-year-old male asymptomatic patient with high-grade stenosis in the left internal carotid artery received carotid artery stenting. Preoperative magnetic resonance imaging demonstrated very high intensity signals on T1-weighted images. After a predilatation, a CASPER stent, which has a dual-layer design construction with an inner nitinol micromesh woven onto an external closed-cell stent, was deployed followed by postdilatation. Postprocedural optical frequency domain imaging revealed good apposition of the outer stent to the vascular wall and no significant prolapse of plaque materials between the struts of the inner micromesh. No ischemic lesions were identified on MRI and no abnormal neurological findings were noted after stenting. PMID:26725127

  19. Motion correction of in vivo three-dimensional optical coherence tomography of human skin using a fiducial marker

    PubMed Central

    Liew, Yih Miin; McLaughlin, Robert A.; Wood, Fiona M.; Sampson, David D.

    2012-01-01

    This paper presents a novel method based on a fiducial marker for correction of motion artifacts in 3D, in vivo, optical coherence tomography (OCT) scans of human skin and skin scars. The efficacy of this method was compared against a standard cross-correlation intensity-based registration method. With a fiducial marker adhered to the skin, OCT scans were acquired using two imaging protocols: direct imaging from air into tissue; and imaging through ultrasound gel into tissue, which minimized the refractive index mismatch at the tissue surface. The registration methods were assessed with data from both imaging protocols and showed reduced distortion of skin features due to motion. The fiducial-based method was found to be more accurate and robust, with an average RMS error below 20 µm and success rate above 90%. In contrast, the intensity-based method had an average RMS error ranging from 36 to 45 µm, and a success rate from 50% to 86%. The intensity-based algorithm was found to be particularly confounded by corrugations in the skin. By contrast, tissue features did not affect the fiducial-based method, as the motion correction was based on delineation of the flat fiducial marker. The average computation time for the fiducial-based algorithm was approximately 21 times less than for the intensity-based algorithm. PMID:22876343

  20. Spectral domain optical coherence tomography for in-vivo three-dimensional retinal imaging of small animals

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Wehbe, Hassan; Jiao, Shuliang; Gregori, Giovanni; Jockovich, Maria E.; Hackam, Abigail; Duan, Yuanli; Puliafito, Carmen A.

    2007-02-01

    The purpose of this study is to demonstrate the application of ultrahigh-resolution Spectral Domain Optical Coherence Tomography (SD-OCT) for non contact in vivo imaging of the retina of small animals and quantitative retinal information extraction using 3D segmentation of the OCT images. An ultrahigh-resolution SD-OCT system was specifically designed for in vivo retinal imaging of small animal. En face fundus image was constructed from the measured OCT data, which enables precise registration of the OCT images on the fundus. 3D segmentation algorithms were developed for the calculation of retinal thickness map. High quality OCT images of the retina of mice (B6/SJLF2 for normal retina, Rho -/- for photoreceptor degeneration and LH BETAT AG for retinoblastoma) and rats (Wistar for normal retina) were acquired, where all the retinal layers can be clearly recognized. The calculated retinal thickness map makes successful quantitative comparison of the retinal thickness distribution between normal and degenerative mouse retina. The capabilities of the OCT system provide a valuable tool for longitudinal studies of small animal models of ocular diseases.

  1. Three-dimensional analysis of flow and segregation control by slow rotation for Bridgman crystal growth in microgravity

    NASA Astrophysics Data System (ADS)

    Lan, C. W.; Tu, C. Y.

    2002-04-01

    Although the buoyancy convection in the melt during crystal growth is greatly reduced in microgravity, the residual gravity, or the so-called g-jitter effect, can lead to three-dimensional (3D) unsteady flow and severe radial dopant segregation. Using a centrifuge to rotate the system about the growth axis could be an effective way to suppress the 3D flow and improve dopant uniformity. Through fully time-dependent 3D simulation of Bridgman growth of gallium-doped germanium crystals, we investigate the feasibility of using a centrifuge at low rotation rate to improve the dopant uniformity in the grown crystal. In this numerical model, in addition to the heat flow and the moving interface, both radial and axial segregations are also computed simultaneously for a growth period. The effect of slightly eccentric rotation is also considered and they can be an issue in practical implementation.

  2. Coupling sky images with three-dimensional radiative transfer models: a new method to estimate cloud optical depth

    NASA Astrophysics Data System (ADS)

    Mejia, F. A.; Kurtz, B.; Murray, K.; Hinkelman, L. M.; Sengupta, M.; Xie, Y.; Kleissl, J.

    2015-10-01

    A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.

  3. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe.

    PubMed

    Gurbani, Saumya S; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I; Chien, Wade; Taylor, Russell H; Niparko, John K; Kang, Jin U

    2014-05-01

    Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn. PMID:24805810

  4. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    SciTech Connect

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-06-30

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  5. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe

    NASA Astrophysics Data System (ADS)

    Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.

    2014-05-01

    Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.

  6. Three Dimensional Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    2014-03-01

    Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.

  7. Improvement of depth resolution and detection efficiency by control of secondary-electrons in single-event three-dimensional time-of-flight Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Abo, Satoshi; Hamada, Yasuhisa; Seidl, Albert; Wakaya, Fujio; Takai, Mikio

    2015-04-01

    An improvement of a depth resolution and a detection efficiency in single-event three-dimensional time-of-flight (TOF) Rutherford backscattering spectrometry (RBS) is discussed on both simulation and experiment by control of secondary electron trajectories using sample bias voltage. The secondary electron, used for a start signal in single-event TOF-RBS, flies more directly to a secondary electron detector with the positive sample bias voltage of several tens of volt than that without sample bias voltage in the simulation. The simulated collection efficiency of the secondary electrons also increases with the positive sample bias voltage of several tens of volt. These simulation results indicate the possibility of a smaller depth resolution and a shorter measurement time in single-event TOF-RBS with positive sample bias voltage. The measurement time for the Pt-stripe sample using single-event three-dimensional TOF-RBS with the sample bias voltage of +100 V is 65% shorter than that without sample bias voltage, resulting in a less sample damage by a probe beam. The depth resolution for the Pt stripes under the 50-nm-thick SiO2 cover-layer with the sample bias voltage of +100 V is 4 nm smaller than that without sample bias voltage. Positive sample bias voltage improves the depth resolution and the detection efficiency in single-event three-dimensional TOF-RBS without an influence on the beam focusing.

  8. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  9. Controlled synthesis of three-dimensional hierarchical Bi{sub 2}WO{sub 6} microspheres with optimum photocatalytic activity

    SciTech Connect

    Wang, Hong; Song, Jimei; Zhang, Hui; Gao, Fei; Zhao, Shaojuan; Hu, Haiqin

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The synthesized method is very simple. It can be widely used in the production. Black-Right-Pointing-Pointer The morphology is novel and the property is fine. Black-Right-Pointing-Pointer The formation of 3D hierarchical microsphere can be induced by changing the concentration of KNO{sub 3}. -- Abstract: Three-dimensional (3D) hierarchical Bi{sub 2}WO{sub 6} microsphere and octahedral Bi{sub 2}WO{sub 6} have been synthesized by a facile hydrothermal method using KNO{sub 3} solution and distilled water as solvent, respectively. The obtained products were characterized by X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption/desorption, and UV-vis diffuse reflectance spectroscopy in detail. The concentration of KNO{sub 3} played a key role in the formation of 3D hierarchical Bi{sub 2}WO{sub 6} microspheres. A possible formation mechanism of Bi{sub 2}WO{sub 6} microsphere was proposed. The photocatalytic activity of the as-synthesized products was evaluated by monitoring the degradation of MB solution under sunlight irradiation. It was found that the photocatalytic activity of the 3D hierarchical Bi{sub 2}WO{sub 6} microsphere was superior to the octahedral Bi{sub 2}WO{sub 6}, which was attributed to the larger surface area and special hierarchical structure of Bi{sub 2}WO{sub 6} microsphere.

  10. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres.

    PubMed

    Tian, Yue; Chen, Baojiu; Yu, Hongquan; Hua, Ruinian; Li, Xiangping; Sun, Jiashi; Cheng, Lihong; Zhong, Haiyang; Zhang, Jinsu; Zheng, Yanfeng; Yu, Tingting; Huang, Libo

    2011-08-15

    Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated. PMID:21621217

  11. Three-dimensional printing models improve understanding of spinal fracture--A randomized controlled study in China.

    PubMed

    Li, Zhenzhu; Li, Zefu; Xu, Ruiyu; Li, Meng; Li, Jianmin; Liu, Yongliang; Sui, Dehua; Zhang, Wensheng; Chen, Zheng

    2015-01-01

    Three-dimensional printing (3 Dp) is being increasingly used in medical education. Although the use of such lifelike models is beneficial, well-powered, randomized studies supporting this statement are scarce. Two spinal fracture simulation models were generated by 3 Dp. Altogether, 120 medical students (54.2% females) were randomized into three teaching module groups [two-dimensional computed tomography images (CT), 3D, or 3 Dp] and asked to answer 10 key anatomical and 4 evaluative questions. Students in the 3 Dp or 3D group performed significantly better than those in the CT group, although males in the 3D group scored higher than females. Students in the 3 Dp group were the first to answer all questions, and there were no sex-related differences. Pleasure, assistance, effect, and confidence were more predominant in students in the 3 Dp group than in those in the 3D and CT groups. This randomized study revealed that the 3 Dp model markedly improved the identification of complex spinal fracture anatomy by medical students and was equally appreciated and comprehended by both sexes. Therefore, the lifelike fracture model made by 3 Dp technology should be used as a means of premedical education. PMID:26099838

  12. Regulation of glottal closure and airflow in a three-dimensional phonation model: Implications for vocal intensity control

    PubMed Central

    Zhang, Zhaoyan

    2015-01-01

    Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022

  13. Sensing and three-dimensional imaging of cochlea and surrounding temporal bone using swept source high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtao; Chien, Wade W.; Taylor, Russ; Iordachita, Iulian; Huang, Yong; Niparko, John; Kang, Jin U.

    2013-03-01

    We describe a novel dual-functional optical coherence tomography (OCT) system with both a fiber probe using a sapphire ball lens for cross-sectional imaging and sensing, and a 3-D bulk scanner for 3-D OCT imaging. A theoretical sensitivity model for Common Path (CP)-OCT was proposed to assess its optimal performance based on an unbalanced photodetector configuration. A probe design with working distances (WD) 415μm and lateral resolution 11 μm was implemented with sensitivity up to 88dB. To achieve high-speed data processing and real-time three-dimensional visualization, we use graphics processing unit (GPU) based real-time signal processing and visualization to boost the computing performance of swept source optical coherence tomography. Both the basal turn and facial nerve bundles inside the cadaveric human cochlea temporal bone can be clearly identified and 3D images can be rendered with the OCT system, which was integrated with a flexible robotic arm for robotically assisted microsurgery.

  14. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  15. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoying; Jian, Jikang; Cai, Gemei; Wu, Rong; Li, Jin

    2016-03-01

    Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 - 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed. [Figure not available: see fulltext.

  16. Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct.

    PubMed

    Cho, Nam Hyun; Lee, Jang Woo; Cho, Jin-ho; Kim, Jeehyun; Jang, Jeong Hun; Jung, Woonggyu

    2015-03-01

    Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti—evidence of Reissner's membrane distention—and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining. PMID:25764313

  17. The Repeatability Assessment of Three-Dimensional Capsule-Intraocular Lens Complex Measurements by Means of High-Speed Swept-Source Optical Coherence Tomography

    PubMed Central

    Chang, Pingjun; Li, Jin; Savini, Giacomo; Huang, Jinhai; Huang, Shenghai; Zhao, Yinying; Liao, Na; Lin, Lei; Yu, Xiaoyu; Zhao, Yun-e

    2015-01-01

    Purpose To rebuild the three-dimensional (3-D) model of the anterior segment by high-speed swept-source optical coherence tomography (SSOCT) and evaluate the repeatability of measurement for the parameters of capsule-intraocular lens (C-IOL) complex. Methods Twenty-two pseudophakic eyes from 22 patients were enrolled. Three continuous SSOCT measurements were performed in all eyes and the tomograms obtained were used for 3-D reconstruction. The output data were used to evaluate the measurement repeatability. The parameters included postoperative aqueous depth (PAD), the area and diameter of the anterior capsule opening (Area and D), IOL tilt (IOL-T), horizontal, vertical, and space decentration of the IOL, anterior capsule opening, and IOL-anterior capsule opening. Results PAD, IOL-T, Area, D, and all decentration measurements showed high repeatability. Repeated measure analysis showed there was no statistically significant difference among the three continuous measurements (all P > .05). Pearson correlation analysis showed high correlation between each pair of them (all r >0.90, P<0.001). ICCs were all more than 0.9 for all parameters. The 95% LoAs of all parameters were narrow for comparison of three measurements, which showed high repeatability for three measurements. Conclusion SSOCT is available to be a new method for the 3-D measurement of C-IOL complex after cataract surgery. This method presented high repeatability in measuring the parameters of the C-IOL complex. PMID:26600254

  18. Hierarchical structure from motion optical flow algorithms to harvest three-dimensional features from two-dimensional neuro-endoscopic images.

    PubMed

    Johnson, Reuben; Szymanski, Lech; Mills, Steven

    2015-02-01

    Technical advances have led to an increase in the use of the endoscope in neurosurgery in recent years, particularly for intraventricular procedures and pituitary and anterior skull base surgery. Recently stereoscopic three-dimensional (3D) endoscopes have become available and may over time replace traditional two-dimensional (2D) imagery. An alternative strategy would be to use computer software algorithms to give monocular 2D endoscopes 3D capabilities. In this study our objective was to recover depth information from 2D endoscopic images using optical flow techniques. Digital images were recorded using a 2D endoscope and a hierarchical structure from motion algorithm was applied to the motion of the endoscope in order to calculate depth information for the generation of 3D anatomical structure. We demonstrate that 3D data can be recovered from 2D endoscopic images taken during endoventricular surgery where there is a mix of rapid camera motion and periods where the camera is nearly stationary. These algorithms may have the potential to give 3D visualization capabilities to 2D endoscopic hardware. PMID:25304436

  19. Understanding three-dimensional spatial relationship between the mouse second polar body and first cleavage plane with full-field optical coherence tomography.

    PubMed

    Zheng, Jing-gao; Huo, Tiancheng; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Tian, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-01-01

    The morphogenetic relationship between early patterning and polarity formation is of fundamental interest and remains a controversial issue in preimplantation embryonic development. We use a label-free three-dimensional (3-D) imaging technique of full-field optical coherence tomography (FF-OCT) successfully for the first time to study the dynamics of developmental processes in mouse preimplantation lives. Label-free 3-D subcellular time-lapse images are demonstrated to investigate 3-D spatial relationship between the second polar body (2PB) and the first cleavage plane. By using FF-OCT together with quantitative study, we show that only 25% of the predicted first cleavage planes, defined by the apposing plane of two pronuclei, pass through the 2PB. Also only 27% of the real cleavage planes pass through the 2PB. These results suggest that the 2PB is not a convincing spatial cue for the event of the first cleavage. Our studies demonstrate the feasibility of FF-OCT in providing new insights and potential breakthroughs to the controversial issues of early patterning and polarity in mammalian developmental biology. PMID:23238420

  20. Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct

    NASA Astrophysics Data System (ADS)

    Cho, Nam Hyun; Lee, Jang Woo; Cho, Jin-ho; Kim, Jeehyun; Jang, Jeong Hun; Jung, Woonggyu

    2015-03-01

    Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining.

  1. Three-dimensional visual stimulator

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki

    1995-02-01

    We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.

  2. Three-dimensional magnetic bubble memory system

    NASA Technical Reports Server (NTRS)

    Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)

    1994-01-01

    A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.

  3. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    PubMed

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S < or = min(W,T), where W and T are prime and S is the number of space channels. The performance of these codes is compared to the earlier reported two-dimensional (2-D)/3-D codes for asynchronous systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation. PMID:20220892

  4. Technique for designing and evaluating probe caps used in optical topography of infants using a real head model based on three dimensional magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Yukiko; Sato, Hiroki; Uchida-Ota, Mariko; Nakai, Akio; Maki, Atsushi

    2008-06-01

    We have developed an effective technique for aiding the design and evaluating the performance of the probe caps used to perform optical topography (OT) on infants. To design and evaluate a probe cap, it is necessary to determine the measurement positions for conducting OT on the brain surface of subjects. One technique for determining these positions on the brain surface is to find their three-dimensional (3D) coordinates using a 3D magnetic space digitizer, which consists of a 3D magnetic source and a 3D magnetic sensor. The problem with this technique is that it takes a long time to determine all the measurement points on the subject's head and it is difficult to use with infants. It is a particular problem with infants who cannot support their own heads. Therefore, we have developed a real model of an infant subject's head based on 3D magnetic resonance (MR) images. The model is made from an optical-curable resin using 3D computer-aided-format coordinate data taken from 3D MR image-format coordinate data. We have determined the measurement positions on the surface of the model corresponding to a scalp using a 3D magnetic space digitizer and displayed the positions on a 3D MR image of the infant's brain. Using this technique, we then determined the actual 72 measurement positions located over the entire brain surface area for use with our new whole-head probe cap for neonates and infants. This method is useful for evaluating the performance of and designing probe caps.

  5. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Tang, Yi-Jun

    2014-06-01

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  6. The properties of the extraordinary mode and surface plasmon modes in the three-dimensional magnetized plasma photonic crystals based on the magneto-optical Voigt effects

    SciTech Connect

    Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun

    2014-06-15

    In this paper, the properties of the extraordinary mode and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic lattices that are composed of the core tellurium (Te) spheres with surrounded by the homogeneous magnetized plasma shells inserted in the air, are theoretically investigated in detail by the plane wave expansion method, as the magneto-optical Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The optical switching or wavelength division multiplexer can be realized by the proposed 3D MPPCs. Our analyses demonstrate that the complete photonic band gaps (PBGs) and two flatbands regions for the extraordinary mode can be observed obviously. PBGs can be tuned by the radius of core Te sphere, the plasma density and the external magnetic field. The flatbands regions are determined by the existence of surface plasmon modes. Numerical simulations also show that if the thickness of magnetized plasma shell is larger than a threshold value, the band structures of the extraordinary mode will be similar to those obtained from the same structure containing the pure magnetized plasma spheres. In this case, the band structures also will not be affected by the inserted core spheres. It is also provided that the upper edges of two flatbands regions will not depend on the topology of lattice. However, the frequencies of lower edges of two flatbands regions will be convergent to the different constants for different lattices, as the thickness of magnetized plasma shell is close to zero.

  7. Novel and quick coronary image analysis by instant stent-accentuated three-dimensional optical coherence tomography system in catheterization laboratory.

    PubMed

    Nakao, Fumiaki; Ueda, Tooru; Nishimura, Shigehiko; Uchinoumi, Hitoshi; Kanemoto, Masashi; Tanaka, Nobuaki; Fujii, Takashi

    2013-07-01

    In order to confirm the relation between stent struts and the jailed side branch (SB), the actual wire re-crossing position and the optimal wire re-crossing position during a bifurcation stenting, we developed the instant stent-accentuated three-dimensional optical coherence tomography (iSA 3D-OCT) system based on a novel algorithm. Stent struts in two-dimensional optical coherence tomography (2D-OCT) are represented as high-intensity line segments or spots in low-intensity background. Stent struts disappear and a vessel image is created by the mean filter followed by the minimum filter. A strut image is created by subtracting a vessel image from an original image, and accentuated. By adding a vessel image to a strut image, iSA 2D-OCT is created. It took only 3 s to accentuate stent struts of 100 frames by ImageJ with its macro program. By the iSA 3D-OCT system which consists of the console of OCT, the USB selector, USB cables, the USB flash drive, the computer, and three freeware programs, it took about 65 s from an export of the image data to an observation of iSA 3D-OCT semi-automatically. During a bifurcation stenting procedure, we could confirm the relation between stent struts and the jailed SB, the actual wire re-crossing position and the optimal wire re-crossing position. Using the iSA 3D-OCT system, a detailed process during a bifurcation PCI can be observed in very short waiting time, about 65 s. It is expected to improve the outcome of a complicated bifurcation PCI by the iSA 3D-OCT system. PMID:23355032

  8. Three-dimensional water quality model based on FVCOM for total load control management in Guan River Estuary, Northern Jiangsu Province

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Lin, Weibo; Li, Keqiang; Sheng, Jianming; Wei, Aihong; Luo, Feng; Wang, Yan; Wang, Xiulin; Zhang, Longjun

    2016-04-01

    Guan River Estuary and adjacent coastal area (GREC) suffer from serious pollution and eutrophicational problems over the recent years. Thus, reducing the land-based load through the national pollutant total load control program and developing hydrodynamic and water quality models that can simulate the complex circulation and water quality kinetics within the system, including longitudinal and lateral variations in nutrient and COD concentrations, is a matter of urgency. In this study, a three-dimensional, hydrodynamic, water quality model was developed in GREC, Northern Jiangsu Province. The complex three-dimensional hydrodynamics of GREC were modeled using the unstructured-grid, finite-volume, free-surface, primitive equation coastal ocean circulation model (FVCOM). The water quality model was adapted from the mesocosm nutrients dynamic model in the south Yellow Sea and considers eight compartments: dissolved inorganic nitrogen, soluble reactive phosphorus (SRP), phytoplankton, zooplankton, detritus, dissolved organic nitrogen (DON), dissolved organic phosphorus (DOP), and chemical oxygen demand. The hydrodynamic and water quality models were calibrated and confirmed for 2012 and 2013. A comparison of the model simulations with extensive dataset shows that the models accurately simulate the longitudinal distribution of the hydrodynamics and water quality. The model can be used for total load control management to improve water quality in this area.

  9. Three dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Zaheer, Saad

    We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent

  10. Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit.

    PubMed

    Lew, Matthew D; von Diezmann, Alexander R S; Moerner, W E

    2013-02-25

    Automated processing of double-helix (DH) microscope images of single molecules (SMs) streamlines the protocol required to obtain super-resolved three-dimensional (3D) reconstructions of ultrastructures in biological samples by single-molecule active control microscopy. Here, we present a suite of MATLAB subroutines, bundled with an easy-to-use graphical user interface (GUI), that facilitates 3D localization of single emitters (e.g. SMs, fluorescent beads, or quantum dots) with precisions of tens of nanometers in multi-frame movies acquired using a wide-field DH epifluorescence microscope. The algorithmic approach is based upon template matching for SM recognition and least-squares fitting for 3D position measurement, both of which are computationally expedient and precise. Overlapping images of SMs are ignored, and the precision of least-squares fitting is not as high as maximum likelihood-based methods. However, once calibrated, the algorithm can fit 15-30 molecules per second on a 3 GHz Intel Core 2 Duo workstation, thereby producing a 3D super-resolution reconstruction of 100,000 molecules over a 20×20×2 μm field of view (processing 128×128 pixels × 20000 frames) in 75 min. PMID:25279136

  11. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  12. Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography

    PubMed Central

    Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.

    2013-01-01

    Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759

  13. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    NASA Astrophysics Data System (ADS)

    Sukop, Michael C.; Cunningham, Kevin J.

    2014-11-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  14. Stability of the human respiratory control system. II. Analysis of a three-dimensional delay state-space model.

    PubMed

    Batzel, J J; Tran, H T

    2000-07-01

    A number of mathematical models of the human respiratory control system have been developed since 1940 to study a wide range of features of this complex system. Among them, periodic breathing (including Cheyne-Stokes respiration and apneustic breathing) is a collection of regular but involuntary breathing patterns that have important medical implications. The hypothesis that periodic breathing is the result of delay in the feedback signals to the respiratory control system has been studied since the work of Grodins et al. in the early 1950's [1]. The purpose of this paper is to study the stability characteristics of a feedback control system of five differential equations with delays in both the state and control variables presented by Khoo et al. [4] in 1991 for modeling human respiration. The paper is divided in two parts. Part I studies a simplified mathematical model of two nonlinear state equations modeling arterial partial pressures of O2 and CO2 and a peripheral controller. Analysis was done on this model to illuminate the effect of delay on the stability. It shows that delay dependent stability is affected by the controller gain, compartmental volumes and the manner in which changes in the ventilation rate is produced (i.e., by deeper breathing or faster breathing). In addition, numerical simulations were performed to validate analytical results. Part II extends the model in Part I to include both peripheral and central controllers. This, however, necessitates the introduction of a third state equation modeling CO2 levels in the brain. In addition to analytical studies on delay dependent stability, it shows that the decreased cardiac output (and hence increased delay) resulting from the congestive heart condition can induce instability at certain control gain levels. These analytical results were also confirmed by numerical simulations. PMID:10958416

  15. Three dimensional adaptive meshing scheme applied to the control of the spatial representation of complex field pattern in electromagnetics

    NASA Astrophysics Data System (ADS)

    Grosges, T.; Borouchaki, H.; Barchiesi, D.

    2010-12-01

    We present an improved adaptive mesh process based on Riemannian transformation to control the accuracy in high field gradient representation for diffraction problems. Such an adaptive meshing is applied in representing the electromagnetic intensity around a metallic submicronic spherical particle, which is known to present high gradients in limited zones of space including the interference pattern of the electromagnetic field. We show that, the precision of the field variation being controlled, this improved scheme permits drastically decreasing the computational time as well as the memory requirements by adapting the number and the position of nodes where the electromagnetic field must be computed and represented.

  16. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena F.; Hao, Xiaojing; Huang, Shujuan; Puthen-Veettil, Binesh; Conibeer, Gavin; Green, Martin A.; Perez-Wurfl, Ivan

    2013-07-01

    All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction.All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to

  17. Automatic meshing of curved three-dimensional domains: Curving finite elements and curvature-based mesh control

    SciTech Connect

    Shephard, M.S.; Dey, S.; Georges, M.K.

    1995-12-31

    Specific issues associated with the automatic generation of finite element meshes for curved geometric domains axe considered. A review of the definition of when a triangulation is a valid mesh, a geometric triangulation, for curved geometric domains is given. Consideration is then given to the additional operations necessary to maintain the validity of a mesh when curved finite elements are employed. A procedure to control the mesh gradations based on the curvature of the geometric model faces is also given.

  18. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  19. Faulting of rocks in three-dimensional strain fields I. Failure of rocks in polyaxial, servo-control experiments

    USGS Publications Warehouse

    Reches, Z.; Dieterich, J.H.

    1983-01-01

    The dependence of the number of sets of faults and their orientation on the intermediate strain axis is investigated through polyaxial tests, reported here, and theoretical analysis, reported in an accompanying paper. In the experiments, cubic samples of Berea sandstone, Sierra-White and Westerly granites, and Candoro and Solnhofen limestones were loaded on their three pairs of faces by three independent, mutually perpendicular presses at room temperature. Two of the presses were servo-controlled and applied constant displacement rates throughout the experiment. Most samples display three or four sets of faults in orthorhombic symmetry. These faults form in several yielding events that follow a stage of elastic deformation. In many experiments, the maximum and the intermediate compressive stresses interchange orientations during the yielding events, where the corresponding strains are constant. The final stage of most experiments is characterized by slip along the faults. ?? 1983.

  20. Taming the degeneration of Bessel beams at an anisotropic-isotropic interface: Toward three-dimensional control of confined vortical waves

    NASA Astrophysics Data System (ADS)

    Riaud, Antoine; Thomas, Jean-Louis; Baudoin, Michael; Bou Matar, Olivier

    2015-12-01

    Despite their self-reconstruction properties in heterogeneous media, Bessel beams are known to degenerate when they are refracted from an isotropic to an anisotropic medium. In this paper, we study the converse situation wherein an anisotropic Bessel beam is refracted into an isotropic medium. It is shown that these anisotropic Bessel beams also degenerate, leading to confined vortical waves that may serve as localized particle trap for acoustical tweezers. The linear nature of this degeneration allows the three-dimensional control of this trap position by wavefront correction. Theory is confronted to experiments performed in the field of acoustics. A swirling surface acoustic wave is synthesized at the surface of a piezoelectric crystal by a microelectromechanical integrated system and radiated inside a miniature liquid vessel. The wavefront correction is operated with inverse filter technique. This work opens perspectives for contactless on-chip manipulation devices.

  1. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    PubMed

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed. PMID:27442602

  2. Control gate length, spacing, channel hole diameter, and stacked layer number design for bit-cost scalable-type three-dimensional stackable NAND flash memory

    NASA Astrophysics Data System (ADS)

    Miyaji, Kousuke; Yanagihara, Yuki; Hirasawa, Reo; Ning, Sheyang; Takeuchi, Ken

    2014-02-01

    A cell design for three-dimensional (3D) stackable NAND (3D NAND) flash memory are investigated with emphases on control gate length (Lg), spacing (Lspace) and channel hole diameter (Φ). The requirements for the Lg and Lspace are derived from the 3D device simulation and the effective cell size that competes with the planar NAND. The simulations reveal that Lg = Lspace = 20 nm (40 nm layer pitch) is achievable for bit-cost scalable (BiCS)-type 3D NAND with the 90 nm diameter hole. If the number of stacked layers is 22 with the layer pitch of 40 nm, the effective cell size of the 3D NAND corresponds to that of 15 nm planar NAND technology. Furthermore, cell characteristics of the macaroni body channel with various Φ are investigated. Although macaroni body channel improves cell characteristics at Φ = 90 nm, a cell with Φ = 60 nm without macaroni body structure shows better characteristics.

  3. Taming the degeneration of Bessel beams at an anisotropic-isotropic interface: Toward three-dimensional control of confined vortical waves.

    PubMed

    Riaud, Antoine; Thomas, Jean-Louis; Baudoin, Michael; Bou Matar, Olivier

    2015-12-01

    Despite their self-reconstruction properties in heterogeneous media, Bessel beams are known to degenerate when they are refracted from an isotropic to an anisotropic medium. In this paper, we study the converse situation wherein an anisotropic Bessel beam is refracted into an isotropic medium. It is shown that these anisotropic Bessel beams also degenerate, leading to confined vortical waves that may serve as localized particle trap for acoustical tweezers. The linear nature of this degeneration allows the three-dimensional control of this trap position by wavefront correction. Theory is confronted to experiments performed in the field of acoustics. A swirling surface acoustic wave is synthesized at the surface of a piezoelectric crystal by a microelectromechanical integrated system and radiated inside a miniature liquid vessel. The wavefront correction is operated with inverse filter technique. This work opens perspectives for contactless on-chip manipulation devices. PMID:26764844

  4. Three-dimensional conducting oxide nanoarchitectures: morphology-controllable synthesis, characterization, and applications in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Fa-Qian; Wu, Huiming; Li, Tao; Grabstanowicz, Lauren R.; Amine, Khalil; Xu, Tao

    2013-06-01

    We report the synthesis, characterization and applications in Li-ion batteries of a set of 3-dimensional (3-D) nanostructured conducting oxides including fluorinated tin oxide (FTO) and aluminum zinc oxide (AZO). The morphology of these 3-D conducting oxide nanoarchitectures can be directed towards either mono-dispersed hollow nanobead matrix or mono-dispersed sponge-like nanoporous matrix by controlling the surface charge of the templating polystyrene (PS) nanobeads, the steric hindrance and hydrolysis rates of the precursors, pH of the solvents etc. during the evaporative co-assembly of the PS beads. These 3-D nanostructured conducting oxide matrices possess high surface area (over 100 m2 g-1) and accessible interconnected pores extending in all three spatial dimensions. By optimizing the temperature profile during calcination, we can obtain large area (of a few cm2) and crack-free nanoarchitectured films with thickness over 60 μm. As such, the sheet resistance of these nanoarchitectured films on FTO glass can reach below 20 Ω per square. The nanoarchitectured FTO electrodes were used as anodes in Li-ion batteries, and they showed an enhanced cycling performance and stability over pure SnO2.We report the synthesis, characterization and applications in Li-ion batteries of a set of 3-dimensional (3-D) nanostructured conducting oxides including fluorinated tin oxide (FTO) and aluminum zinc oxide (AZO). The morphology of these 3-D conducting oxide nanoarchitectures can be directed towards either mono-dispersed hollow nanobead matrix or mono-dispersed sponge-like nanoporous matrix by controlling the surface charge of the templating polystyrene (PS) nanobeads, the steric hindrance and hydrolysis rates of the precursors, pH of the solvents etc. during the evaporative co-assembly of the PS beads. These 3-D nanostructured conducting oxide matrices possess high surface area (over 100 m2 g-1) and accessible interconnected pores extending in all three spatial dimensions

  5. Three-dimensional conducting oxide nanoarchitectures: morphology-controllable synthesis, characterization, and applications in lithium-ion batteries.

    PubMed

    Liu, Fa-Qian; Wu, Huiming; Li, Tao; Grabstanowicz, Lauren R; Amine, Khalil; Xu, Tao

    2013-07-21

    We report the synthesis, characterization and applications in Li-ion batteries of a set of 3-dimensional (3-D) nanostructured conducting oxides including fluorinated tin oxide (FTO) and aluminum zinc oxide (AZO). The morphology of these 3-D conducting oxide nanoarchitectures can be directed towards either mono-dispersed hollow nanobead matrix or mono-dispersed sponge-like nanoporous matrix by controlling the surface charge of the templating polystyrene (PS) nanobeads, the steric hindrance and hydrolysis rates of the precursors, pH of the solvents etc. during the evaporative co-assembly of the PS beads. These 3-D nanostructured conducting oxide matrices possess high surface area (over 100 m(2) g(-1)) and accessible interconnected pores extending in all three spatial dimensions. By optimizing the temperature profile during calcination, we can obtain large area (of a few cm(2)) and crack-free nanoarchitectured films with thickness over 60 μm. As such, the sheet resistance of these nanoarchitectured films on FTO glass can reach below 20 Ω per square. The nanoarchitectured FTO electrodes were used as anodes in Li-ion batteries, and they showed an enhanced cycling performance and stability over pure SnO2. PMID:23740404

  6. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Generation of Arbitrary Pure States for Three-dimensional Motion of a Trapped Ion

    NASA Astrophysics Data System (ADS)

    Li, Da-Chuang; Wang, Xian-Ping; Dong, Ping; Yang, Ming; Cao, Zhuo-Liang

    2010-04-01

    In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.

  7. Compact integral three-dimensional imaging device

    NASA Astrophysics Data System (ADS)

    Arai, J.; Yamashita, T.; Hiura, H.; Miura, M.; Funatsu, R.; Nakamura, T.; Nakasu, E.

    2015-05-01

    A compact integral three-dimensional (3D) imaging device for capturing high resolution 3D images has been developed that positions the lens array and image sensor close together. Unlike the conventional scheme, where a camera lens is used to project the elemental images generated by the lens array onto the image sensor, the developed device combines the lens array and image sensor into one unit and makes no use of a camera lens. In order to capture high resolution 3D images, a high resolution imaging sensor and a lens array composed of many elemental lenses are required, and in an experimental setup, a CMOS image sensor circuit patterned with multiple exposures and a multiple lens array were used. Two types of optics were implemented for controlling the depth of 3D images. The first type was a convex lens that is suitable for compressing a relatively large object space, and the second was an afocal lens array that is suitable for capturing a relatively small object space without depth distortion. The objects captured with the imaging device and depth control optics were reconstructed as 3D images by using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed images were found to have appropriate motion parallax.

  8. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  9. Three-dimensional laser microvision.

    PubMed

    Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y

    2001-04-10

    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177

  10. Crystal and solution studies of the "Plus-C" odorant-binding protein 48 from Anopheles gambiae: control of binding specificity through three-dimensional domain swapping.

    PubMed

    Tsitsanou, Katerina E; Drakou, Christina E; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E

    2013-11-15

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  11. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    SciTech Connect

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  12. Three-dimensional laser velocimeter simultaneity detector

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor)

    1990-01-01

    A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.

  13. Three-dimensional microbubble streaming flows

    NASA Astrophysics Data System (ADS)

    Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha

    2014-11-01

    Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.

  14. Three dimensional responsive structure of tough hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Xuxu; Ma, Chunxin; Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Jin, Yongbin; Zhu, Ziqi; Liu, Junjie; Li, Tiefeng

    2015-04-01

    Three dimensional responsive structures have high value for the application of responsive hydrogels in various fields such as micro fluid control, tissue engineering and micro robot. Whereas various hydrogels with stimuli-responsive behaviors have been developed, designing and fabricating of the three dimensional responsive structures remain challenging. We develop a temperature responsive double network hydrogel with novel fabrication methods to assemble the complex three dimensional responsive structures. The shape changing behavior of the structures can be significantly increased by building blocks with various responsiveness. Mechanical instability is built into the structure with the proper design and enhance the performance of the structure. Finite element simulation are conducted to guide the design and investigate the responsive behavior of the hydrogel structures

  15. Three-dimensional control-volume distributed multi-point flux approximation coupled with a lower-dimensional surface fracture model

    NASA Astrophysics Data System (ADS)

    Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur

    2015-12-01

    A novel cell-centred control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations on unstructured grids in three-dimensions (3D). The grid is aligned with fractures and barriers which are then modelled as lower-dimensional surface interfaces located between the matrix cells in the physical domain. The three-dimensional pressure equation is solved in the matrix domain coupled with a two-dimensional (2D) surface pressure equation solved over fracture networks via a novel surface CVD-MPFA formulation. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures and define the transfer function, which is added to the lower-dimensional flow equation and couples the three-dimensional and surface systems. An additional transmission condition is used between matrix cells adjacent to low permeable fractures to couple the velocity and pressure jump across the fractures. Convergence and accuracy of the lower-dimensional fracture model is assessed for highly anisotropic fractures having a range of apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approximation for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretisation. Lower-dimensional fracture model results are compared with equi-dimensional model results. Fractures and barriers are efficiently modelled by lower-dimensional interfaces which yield comparable results to those of the equi-dimensional model. Pressure continuity is built into the model across highly conductive fractures, leading to reduced local degrees of freedom in the CVD-MPFA approximation. The formulation is applied to geologically complex

  16. Optically detecting the edge-state of a three-dimensional topological insulator under ambient conditions by ultrafast infrared photoluminescence spectroscopy

    PubMed Central

    Maezawa, Shun-ya; Watanabe, Hiroshi; Takeda, Masahiro; Kuroda, Kenta; Someya, Takashi; Matsuda, Iwao; Suemoto, Tohru

    2015-01-01

    Ultrafast infrared photoluminescence spectroscopy was applied to a three-dimensional topological insulator TlBiSe2 under ambient conditions. The dynamics of the luminescence exhibited bulk-insulating and gapless characteristics bounded by the bulk band gap energy. The existence of the topologically protected surface state and the picosecond-order relaxation time of the surface carriers, which was distinguishable from the bulk response, were observed. Our results provide a practical method applicable to topological insulators under ambient conditions for device applications. PMID:26552784

  17. Comparison between three-dimensional and standard miniplates in the management of mandibular angle fractures: a prospective, randomized, double-blind, controlled clinical study.

    PubMed

    Al-Moraissi, E A; Mounair, R M; El-Sharkawy, T M; El-Ghareeb, T I

    2015-03-01

    The aim of this study was to compare the clinical and radiological outcomes of mandibular angle fractures (MAFs) managed with three-dimensional (3D) miniplates and standard miniplates (according to Champy's principles). A prospective, randomized, controlled clinical study was carried out on 20 patients with MAFs, divided into two groups. Group A patients were treated with a single 1-mm 3D titanium miniplate; group B patients were treated with a single 2.0-mm standard titanium miniplate. Patients were followed for 6 months for infection, wound dehiscence, segmental mobility, malocclusion, mouth opening, hardware failure, hardware palpability, paraesthesia, and malunion/non-union. A densitometry analysis was performed using DIGORA software on digital panoramic radiographs to evaluate bone healing. Six complications occurred, representing a total rate of 30%. Three complications occurred in group A and three in group B, with identical complication rates of 30%. No major difference in terms of the radiographic assessment was observed between the two systems. The 3D curved strut plate is an effective treatment modality for the management of MAFs, with a complication rate comparable to that found with the standard miniplate. This trial is registered at ClinicalTrials.gov, number NCT01939015. PMID:25457871

  18. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  19. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study

    PubMed Central

    Ozaki, Hiroya; Tominaga, Jun-ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement. PMID:25610497

  20. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  1. Three dimensional colorimetric assay assemblies

    SciTech Connect

    Charych, D.; Reichart, A.

    2000-06-27

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  2. Creating Three-Dimensional Scenes

    ERIC Educational Resources Information Center

    Krumpe, Norm

    2005-01-01

    Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…

  3. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  4. Three dimensional colorimetric assay assemblies

    DOEpatents

    Charych, Deborah; Reichart, Anke

    2000-01-01

    A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.

  5. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  6. Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton's jelly mesenchymal stem cells into cardiac progenitor cells.

    PubMed

    Lin, Yun-Li; Chen, Chie-Pein; Lo, Chun-Min; Wang, Hwai-Shi

    2016-09-01

    Stem cell-based regenerative therapy has emerged as a promising treatment for myocardial infarction. The aim of this study is to develop stiffness-controlled collagen scaffolds to allow proliferation and differentiation of mesenchymal stem cell (MSCs) into cardiac progenitor cells. In this study transforming growth factor β2 (TGF-β2), was used to induce stem cell differentiation into cardiac lineage cells. Collagen scaffolds were cross-linked with cross-linkers, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), and N-Hydroxysuccinimide (NHS). The results showed that collagen scaffolds cross-linked with 25/50 and 50/50 of EDC mM/NHS mM cross-linkers exhibited little difference in shape and size, the scaffold cross-linked with 50/50 of cross-linkers demonstrated better interconnectivity and higher Young's modulus (31.8 kPa) than the other (15.4 kPa). SEM observation showed that MSCs could grow inside the scaffolds and interact with collagen scaffolds. Furthermore, greater viability and cardiac lineage differentiation were achieved in MSCs cultured on stiffer scaffolds. The results suggest that three-dimensional type I collagen scaffolds with suitable cross-linking to adjust for stiffness can affect MSC fate and direct the differentiation of MSCs into cardiac progenitor cells with/without TGF-β2. These stiffness-controlled collagen scaffolds hold great potential as carriers for delivering MSCs differentiated cardiac progenitor cells into infracted hearts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2234-2242, 2016. PMID:27120780

  7. Transformation equation in three-dimensional photoelasticity.

    PubMed

    Ainola, Leo; Aben, Hillar

    2006-03-01

    Optical phenomena that occur when polarized light passes through an inhomogeneous birefringent medium are complicated, especially when the principal directions of the dielectric tensor rotate on the light ray. This case is typical in three-dimensional photoelasticity, in particular in integrated photoelasticity by stress analysis on the basis of measured polarization transformations. Analysis of polarization transformations in integrated photoelasticity has been based primarily on a system of two first-order differential equations. Using a transformed coordinate in the direction of light propagation, we have derived a single fourth-order differential equation of three-dimensional photoelasticity. For the case of uniform rotation of the principal directions we have obtained an analytical solution. PMID:16539073

  8. Independent component analysis for three-dimensional optical imaging and localization of a fluorescent contrast agent target embedded in a slab of ex vivo human breast tissue

    NASA Astrophysics Data System (ADS)

    Alrubaiee, M.; Xu, M.; Gayen, S. K.; Alfano, R. R.

    2005-08-01

    An innovative approach for three-dimensional localization and characterization of a fluorescent target embedded in a turbid medium is presented. The target was a ~4-mm diameter glass sphere with a solution of indocyanine green placed within a 50-mm thick tissuelike phantom with mean free path of ~1-mm at 784-nm and a ~ 26-mm thick ex vivo breast tissue slab. The experimental approach uses a multi-source illumination, and a multi-detector signal acquisition scheme. An analysis scheme based on the independent component analysis from information theory is used for target localization and characterization. Independent component analysis of the perturbation in the spatial intensity distribution of the fluorescent signal measured on the exit plane of the turbid medium locates the embedded objects. The location and size, of the embedded objects are obtained from a Green's function analysis and back-projection Fourier transform of the retrieved independent components.

  9. An Effective Preoperative Three-Dimensional Radiotherapy Target Volume for Extremity Soft Tissue Sarcoma and the Effect of Margin Width on Local Control

    SciTech Connect

    Kim, Bo Kyong; Chen, Yen-Lin E.; Kirsch, David G.; Goldberg, Saveli I.; Kobayashi, Wendy; Kung, Jong Hyun; Wolfgang, John A.; Doppke, Karen

    2010-07-01

    Purpose: There is little information on the appropriate three-dimensional (3D) preoperative radiotherapy (XRT) volume for extremity soft-tissue sarcomas (STS). We retrospectively analyzed the pattern of local failure (LF) to help elucidate optimal field design. Methods and Materials: We analyzed the 56 patients who underwent computed tomography-planned XRT for Stage I to III extremity STS between June 2000 and December 2006. Clinical target volume (CTV) included the T1 post-gadolinium-defined gross tumor volume with 1- to 1.5-cm radial and 3.5-cm longitudinal margins. Planning target volume expansion was 5 to 7 mm, and {>=}95% of dose was delivered to the planning target volume. Preoperative XRT was 44 to 50.4 Gy (median, 50). Postoperative boost of 10 to 20 Gy was given to 12 patients (6 with positive and 6 with close margins). Results: Follow-up ranged from 15 to 76 months (median, 41 months). The 5-year local control, freedom from distant metastasis, disease-free survival, and overall survival were 88.5%, 80.0%, 77.5% and 82.8%, respectively. Three patients (all with positive margin) experienced local failure (LF) as first relapse (2 isolated, 1 with distant failure), and 2 additional patients (all with margin<1 mm) had late LF after distant metastasis. The LFs were within the CTV in 3 patients and within and also extending beyond the CTV in 2 patients. Conclusions: These target volume definitions appear to be appropriate for most patients. No local recurrences were observed with surgical margins {>=}1 mm, and it appears that these may be adequate for patients with extremity STS treated with preoperative radiotherapy.

  10. High-dose-rate Three-dimensional Conformal Radiotherapy Combined with Active Breathing Control for Stereotactic Body Radiotherapy of Early-stage Non-small-cell Lung Cancer.

    PubMed

    Wang, Ruozheng; Yin, Yong; Qin, Yonghui; Yu, Jinming

    2015-12-01

    The purpose of this study was to evaluate the feasibility and benefits of using high-dose-rate three-dimensional conformal radiotherapy (3D-CRT) combined with active breathing control (ABC) for stereotactic body radiotherapy (SBRT) of patients with early-stage non-small-cell lung cancer (NSCLC). Eight patients with early-stage NSCLC underwent CT scans under standard free-breathing (FB) and moderately deep inspiration breath-hold (mDIBH) with ABC. Two high-dose-rate 3D-CRT plans (1000 Mu/min) were designed based on the CT scans with FB and mDIBH. The maximal dose (D1%), minimal dose (D99%), conformity index (CI), and homogeneity index (HI) of the planning target volume (PTV), and dose-volume indices of the organs at risk between each plan were compared. The mean PTV volume decreased from 158.04 cm(3) with FB to 76.90 cm(3) with mDIBH (p < 0.05). When mDIBH was used, increases in the affected lung volume (by 47%), contralateral lung volume (by 55%), and total lung volume (by 50%) were observed compared to FB (p < 0.05). The V5-V40 of the affected lung (Vx represented the percentage volume of organs receiving at least the x Gy), V5-V40 and the mean dose for the total lung, V5-V40 and mean dose of the chest wall, and the maximum dose of the spinal cord were less for mDIBH than FB (p < 0.05). There were no significant differences in CI, HI, D1%, or D99% for the PTV between the plans. In conclusion, high-dose-rate 3D-CRT combined with ABC reduced the radiation dose to the lungs and chest wall without affecting the dose distribution in SBRT of early-stage NSCLC patients. PMID:24988055

  11. Three-dimensional fault drawing

    SciTech Connect

    Dongan, L. )

    1992-01-01

    In this paper, the author presents a structure interpretation based on three-dimensional fault drawing. It is required that fault closure must be based on geological theory, spacial plotting principle and restrictions in seismic exploration. Geological structure can be well ascertained by analysing the shapes and interrelation of the faults which have been drawn through reasonable fault point closure and fault point correlation. According to this method, the interrelation of fault points is determined by first closing corresponding fault points in intersecting sections, then reasonably correlating the relevant fault points. Fault point correlation is not achieved in base map, so its correctness can be improved greatly. Three-dimensional fault closure is achieved by iteratively revising. The closure grid should be densified gradually. The distribution of major fault system is determined prior to secondary faults. Fault interpretation by workstation also follows this procedure.

  12. Three-dimensional obstetric ultrasound.

    PubMed

    Tache, Veronique; Tarsa, Maryam; Romine, Lorene; Pretorius, Dolores H

    2008-04-01

    Three-dimensional ultrasound has gained a significant popularity in obstetrical practice in recent years. The advantage of this modality in some cases is in question, however. This article provides a basic review of volume acquisition, mechanical positioning, and display modalities. Multiple uses of this technique in obstetrical care including first trimester applications and its utility in clarification of fetal anatomy such as brain, face, heart, and skeleton is discussed. PMID:18450140

  13. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  14. Three-dimensional coronary angiography

    NASA Astrophysics Data System (ADS)

    Suurmond, Rolf; Wink, Onno; Chen, James; Carroll, John

    2005-04-01

    Three-Dimensional Coronary Angiography (3D-CA) is a novel tool that allows clinicians to view and analyze coronary arteries in three-dimensional format. This will help to find accurate length estimates and to find the optimal viewing angles of a lesion based on the three-dimensional vessel orientation. Various advanced algorithms are incorporated in this 3D processing utility including 3D-RA calibration, ECG phase selection, 2D vessel extraction, and 3D vessel modeling into a utility with optimized workflow and ease-of-use features, which is fully integrated in the environment of the x-ray catheterization lab. After the 3D processing, the 3D vessels can be viewed and manipulated interactively inside the operating room. The TrueView map provides a quick overview of gantry angles with optimal visualization of a single or bifurcation lesion. Vessel length measurements can be performed without risk of underestimating a vessel segment due to foreshortening. Vessel cross sectional diameters can also be measured. Unlike traditional, projection-based quantitative coronary analysis, the additional process of catheter calibration is not needed for diameter measurements. Validation studies show a high reproducibility of the measurements, with little user dependency.

  15. Three-dimensional motor schema based navigation

    NASA Technical Reports Server (NTRS)

    Arkin, Ronald C.

    1989-01-01

    Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.

  16. Generating Three-Dimensional Grids About Anything

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1991-01-01

    Three-Dimensional Grids About Anything by Poisson's Equation (3DGRAPE) computer program designed to make computational grids in or about almost any shape. Generated by solution of Poisson's differential equations in three dimensions. Program automatically finds its own values for inhomogeneous terms giving near-orthogonality and controlled grid-cell height at boundaries. Grids generated applied to both viscous and inviscid aerodynamic problems, and to problems in other areas of fluid dynamics. Written in 100 percent FORTRAN 77.

  17. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Three-Dimensional Lattice Boltzmann Model for High-Speed Compressible Flows

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Li, Ying-Jun

    2010-12-01

    A highly efficient three-dimensional (3D) Lattice Boltzmann (LB) model for high-speed compressible flows is proposed. This model is developed from the original one by Kataoka and Tsutahara [Phys. Rev. E 69 (2004) 056702]. The convection term is discretized by the Non-oscillatory, containing No free parameters and Dissipative (NND) scheme, which effectively damps oscillations at discontinuities. To be more consistent with the kinetic theory of viscosity and to further improve the numerical stability, an additional dissipation term is introduced. Model parameters are chosen in such a way that the von Neumann stability criterion is satisfied. The new model is validated by well-known benchmarks, (i) Riemann problems, including the problem with Lax shock tube and a newly designed shock tube problem with high Mach number; (ii) reaction of shock wave on droplet or bubble. Good agreements are obtained between LB results and exact ones or previously reported solutions. The model is capable of simulating flows from subsonic to supersonic and capturing jumps resulted from shock waves.

  18. Respiratory function monitoring using a real-time three-dimensional fiber-optic shaping sensing scheme based upon fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Allsop, Thomas; Bhamber, Ranjeet; Lloyd, Glynn; Miller, Martin R.; Dixon, Andrew; Webb, David; Ania Castañón, Juan Diego; Bennion, Ian

    2012-11-01

    An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p<0.01.

  19. Athermally photoreduced graphene oxides for three-dimensional holographic images

    PubMed Central

    Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min

    2015-01-01

    The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676

  20. Numerical investigations in three-dimensional internal flows

    NASA Technical Reports Server (NTRS)

    Rose, William C.

    1991-01-01

    The present study is a preliminary investigation into the behavior of the flow within a 28 degree total geometric turning angle hypothetical Mach 10 inlet as calculated with the full three-dimensional Navier-Stokes equations. Comparison between the two-dimensional and three-dimensional solutions have been made. The overall compression is not significantly different between the two-dimensional and center plane three dimensional solutions. Approximately one-half to two-thirds of the inlet flow at the exit of the inlet behave nominally two-dimensionally. On the other hand, flow field non-uniformities in the three-dimensional solution indicate the potential significance of the sidewall boundary layer flows ingested into the inlet. The tailoring of the geometry at the inlet shoulder and on the cowl obtained in the two-dimensional parametric design study have also proved to be effective at controlling the boundary layer behavior in the three-dimensional code. The three-dimensional inlet solution remained started indicating that the two-dimensional design had a sufficient margin to allow for three-dimensional flow field effects. Although confidence is being gained in the use of SCRAM3D (three-dimensional full Navier-Stokes code) as applied to similar flow fields, the actual effects of the three-dimensional flow fields associated with sidewalls and wind tunnel installations can require verification with ground-based experiments.

  1. Dynamic three-dimensional echocardiographic imaging of congenital heart defects in infants and children by computer-controlled tomographic parallel slicing using a single integrated ultrasound instrument.

    PubMed

    Fulton, D R; Marx, G R; Pandian, N G; Romero, B A; Mumm, B; Krauss, M; Wollschläger, H; Ludomirsky, A; Cao, Q L

    1994-03-01

    Three-dimensional cardiac reconstruction generated from transesophageal interrogation can be performed using an integrated unit that captures, processes, and postprocesses tomographic parallel slices of the heart. This probe was used for infants and young children in the transthoracic position to evaluate the feasibility of producing three-dimensional cardiac images with capability for real-time dynamic display. Twenty-two infants and children (range 1 day-3.5 years) underwent image acquisition using a 16 mm 5 MHz 64 element probe placed over the precordium. Two infants were also imaged from the subcostal position. Data was obtained and stored over a single cardiac cycle after acceptable cardiac and respiratory gating intervals were met. The transducer was advanced in 0.5-1 mm increments over the cardiac structures using identical acquisition criteria. The images were reconstructed from the stored digital cubic format and could be oriented in any desired plane. In 9 of the 22 infants the images obtained were of optimal quality. The images obtained displayed normal cardiac structures emphasizing depth relationships as well as visualization of planes not generally demonstrated by two-dimensional imaging. Several lesions were also depicted in a unique fashion using this technique. Though the method employed was limited by movement artifact and reconstruction time, the quality of the three-dimensional display was excellent and enhanced by real-time demonstration. The transthoracic approach was successful in capturing sufficient data to create three-dimensional images, which may have further application in more accurate diagnosis of complex cardiac abnormalities and generation of planes of view which could duplicate surgical visualization of a lesion. Further assessment of the technique in infants with congenital heart disease is warranted. PMID:10146717

  2. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  3. Three-Dimensional Images For Robot Vision

    NASA Astrophysics Data System (ADS)

    McFarland, William D.

    1983-12-01

    Robots are attracting increased attention in the industrial productivity crisis. As one significant approach for this nation to maintain technological leadership, the need for robot vision has become critical. The "blind" robot, while occupying an economical niche at present is severely limited and job specific, being only one step up from the numerical controlled machines. To successfully satisfy robot vision requirements a three dimensional representation of a real scene must be provided. Several image acquistion techniques are discussed with more emphasis on the laser radar type instruments. The autonomous vehicle is also discussed as a robot form, and the requirements for these applications are considered. The total computer vision system requirement is reviewed with some discussion of the major techniques in the literature for three dimensional scene analysis.

  4. Three-dimensional X-ray micro-velocimetry

    PubMed Central

    Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa

    2011-01-01

    A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921

  5. Three dimensional living neural networks

    NASA Astrophysics Data System (ADS)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  6. Three-Dimensional Boundary-Layer program (BL3D) for swept subsonic or supersonic wings with application to laminar flow control

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit

    1993-01-01

    The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.

  7. Controlling Planar and Vertical Ordering in Three-Dimensional (In,Ga)As Quantum Dot Lattices by GaAs Surface Orientation

    SciTech Connect

    Schmidbauer, M.; Seydmohamadi, Sh.; Wang, Zh.M.; Mazur, Yu.I.; Salamo, G.J.; Grigoriev, D.; Schaefer, P.; Koehler, R.; Hanke, M.

    2006-02-17

    Anisotropic surface diffusion and strain are used to explain the formation of three-dimensional (In,Ga)As quantum dot lattices. The diffusion characteristics of the surface, coupled with the elastic anisotropy of the matrix, provides an excellent opportunity to influence the dot positions. In particular, quantum dots that are laterally organized into long chains or chessboard two-dimensional arrays vertically organized with strict vertical ordering or vertical ordering that is inclined to the sample surface normal are accurately predicted and observed.

  8. Three-dimensional study of the multi-cavity FEL

    SciTech Connect

    Krishnagopal, S.; Kumar, V.

    1995-12-31

    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  9. Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway.

    PubMed

    Diekmann, Heike; Leibinger, Marco; Fischer, Dietmar

    2013-10-01

    Retinal ganglion cells (RGCs) do not normally regenerate injured axons. However, several strategies to transform RGCs into a potent regenerative state have been developed in recent years. Intravitreal CNTF application combined with conditional PTEN and SOCS3 deletion or zymosan-induced inflammatory stimulation together with cAMP analogue injection and PTEN-deletion in RGCs induce long-distance regeneration into the optic nerve of adult mice. A recent paper by the Benowitz group (de Lima et al.) claimed that the latter treatment enables full-length regeneration, with axons correctly navigating to their central target zones and partial recovery of visual behaviors. To gain a more detailed view of the extent and the trajectories of regenerating axons, Luo et al. applied a tissue clearing method and fluorescent microscopy to allow the tracing of naïve and regenerating RGC axons in whole ON and all the way to their brain targets. Using this approach, the authors found comparable axon regeneration in the optic nerve after both above-mentioned experimental treatments. Regeneration was accompanied by prevalent aberrant axon growth in the optic nerve and significant axonal misguidance at the optic chiasm. Less than 120 axons per animal reached the optic chiasm and only few entered the correct optic tract. Importantly, no axons reached visual targets in the olivary pretectal nucleus, the lateral geniculate nucleus or the superior colliculus, thereby contradicting and challenging previous claims by the Benowitz group. The data provided by Luo et al. rather suggest that potent stimulation of axonal growth per se is insufficient to achieve functional recovery and underscore the need to investigate regeneration-relevant axon guidance mechanisms in the mature visual system. PMID:23816572

  10. Three-dimensional infrared metamaterial with asymmetric transmission

    DOE PAGESBeta

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way puremore » optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.« less

  11. Three-dimensional infrared metamaterial with asymmetric transmission

    SciTech Connect

    Kenanakis, George; Xomalis, Aggelos; Selimis, Alexandros; Vamvakaki, Maria; Farsari, Maria; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.

    2015-01-14

    A novel three-dimensional (3D) metallic metamaterial structure with asymmetric transmission for linear polarization is demonstrated in the infrared spectral region. The structure was fabricated by direct laser writing and selective electroless silver coating, a straightforward, novel technique producing mechanically and chemically stable 3D photonic structures. The structure unit cell is composed of a pair of conductively coupled magnetic resonators, and the asymmetric transmission response results from interplay of electric and magnetic responses; this equips the structure with almost total opaqueness along one propagation direction versus satisfying transparency along the opposite one. It also offers easily adjustable impedance, 90° one-way pure optical activity and backward propagation possibility, resulting thus in unique capabilities in polarization control and isolation applications. We show also that scaling down the structure can make it capable of exhibiting its asymmetric transmission and its polarization capabilities in the optical region.

  12. New optical designs for large-screen two- and three-dimensional video projection with enhanced screen brightness and no visible pixel or line structure

    NASA Astrophysics Data System (ADS)

    Dolgoff, Eugene

    1995-04-01

    Producing a projection system with a single full-color LCD, which requires only one optical train instead of three, greatly reduces system cost, weight, and size but further reduces image brightness while increasing pixel visibility due to the additional appearance of individual red, green, and blue sub-pixels. At Projectavision, we have devised various optical techniques to reduce these drawbacks. This paper reports on several of these techniques and presents a computer analysis to quantify the effectiveness and limitations of some of this optical technology. The paper reports on `Depixelization' utilizing micro-lens arrays, as well as prism wedges and spatial filtering. Quantification analysis demonstrates a 90% reduction in pixel visibility due to depixelization as well as 60% reduction in the brightness difference between dead pixels and neighboring functioning pixels. This results in a greater tolerance for such dead pixels, while retaining resolution with very minimal loss of MTF. This paper also reports on some of the optical designs we devised for `brightness enhancement' to reduce light loss in the projection systems. Additionally, the paper reports on both front- and rear-screen projection prototypes and 3D video projection.

  13. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods

    NASA Astrophysics Data System (ADS)

    Bernus, O.; Wellner, M.; Mironov, S. F.; Pertsov, A. M.

    2005-01-01

    Voltage-sensitive dyes are an important tool in visualizing electrical activity in cardiac tissue. Until today, they have mainly been applied in cardiac electrophysiology to subsurface imaging. In the present study, we assess different imaging methods used in optical tomography with respect to their effectiveness in visualizing 3D cardiac activity. To achieve this goal, we simulate optical signals produced by excitation fronts initiated at different depths inside the myocardial wall and compare their properties for various imaging modes. Specifically, we consider scanning and broad-field illumination, including trans- and epi-illumination. We focus on the lateral optical resolution and signal intensity, as a function of the source depth. Optical diffusion theory is applied to derive a computationally efficient approximation of the point-spread function and to predict voltage-sensitive signals. Computations were performed both for fluorescent and absorptive voltage-sensitive dyes. Among all the above-mentioned methods, fluorescent coaxial scanning yields the best resolution (<2.5 mm) and gives the most information about the intramural cardiac activity.

  14. Three-dimensional joint transform correlator cryptosystem.

    PubMed

    Zea, Alejandro Velez; Barrera Ramirez, John Fredy; Torroba, Roberto

    2016-02-01

    We introduce for the first time, to the best of our knowledge, a three-dimensional experimental joint transform correlator (JTC) cryptosystem allowing the encryption of information for any 3D object, and as an additional novel feature, a second 3D object plays the role of the encoding key. While the JTC architecture is normally used to process 2D data, in this work, we envisage a technique that allows the use of this architecture to protect 3D data. The encrypted object information is contained in the joint power spectrum. We register the key object as a digital off-axis Fourier hologram. The encryption procedure is done optically, while the decryption is carried out by means of a virtual optical system, allowing for flexible implementation of the proposal. We present experimental results to demonstrate the validity and feasibility of the method. PMID:26907433

  15. Three-dimensional coil inductor

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    2002-01-01

    A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.

  16. Diffraction of a Gaussian beam in a three-dimensional smoothly inhomogeneous medium: an eikonal-based complex geometrical-optics approach

    NASA Astrophysics Data System (ADS)

    Berczynski, Pawel; Bliokh, Konstantin Yu.; Kravtsov, Yuri A.; Stateczny, Andrzej

    2006-06-01

    We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law.

  17. Implementation of a parallel-beam optical-CT apparatus for three-dimensional radiation dosimetry using a high-resolution CCD camera

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Tzeng; Chen, Chin-Hsing; Hung, Chao-Nan; Tuan, Chiu-Ching; Chang, Yuan-Jen

    2015-06-01

    In this study, a charge-coupled device (CCD) camera with 2-megapixel (1920×1080-pixel) and 12-bit resolution was developed for optical computed tomography(optical CT). The signal-to-noise ratio (SNR) of our system was 30.12 dB, better than that of commercially available CCD cameras (25.31 dB). The 50% modulation transfer function (MTF50) of our 1920×1080-pixel camera gave a line width per picture height (LW/PH) of 745, which is 73% of the diffraction-limited resolution. Compared with a commercially available 1-megapixel CCD camera (1296×966-pixel) with a LW/PH=358 and 46.6% of the diffraction-limited resolution, our camera system provided higher spatial resolution and better image quality. The NIPAM gel dosimeter was used to evaluate the optical CT with a 2-megapixel CCD. A clinical five-field irradiation treatment plan was generated using the Eclipse planning system (Varian Corp., Palo Alto, CA, USA). The gel phantom was irradiated using a 6-MV Varian Clinac IX linear accelerator (Varian). The measured NIPAM gel dose distributions and the calculated dose distributions, generated by the treatment planning software (TPS), were compared using the 3% dose-difference and 3 mm distance-to-agreement criteria. The gamma pass rate was as high as 98.2% when 2-megapixel CCD camera was used in optical CT. However, the gamma pass rate was only 96.0% when a commercially available 1-megapixel CCD camera was used.

  18. Optical simulation of three-dimensional x-ray diffraction using two-dimensional lattices and a Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Sommer, W.

    2013-03-01

    The basic experimental setup of a Fabry-Perot etalon between a collimating and a focusing lens is modified by introducing 2D rectangular lattices between the etalon and the collimating lens. Consequently, the irradiance of the interference fringes on a screen in the focal plane of the focusing lens changes and is modified by the diffraction pattern of the 2D lattice. The constructive interference directions resulting from both the etalon and the diffraction by the 2D lattice have to correlate in order to obtain maximum irradiance. Considering this experiment in a didactical context and analysing how a 2D rectangular lattice is seen through the etalon, the investigation provides us with the concept of an optical space containing a row of virtual 2D lattices. Due to the partially reflecting plane surfaces of the etalon, different virtual images of the 2D lattice form a 3D lattice with a tetragonal or orthorhombic structure. As an optical interface, the simple setup with a 2D lattice and an etalon models a 3D lattice. Using a laser, the diffraction pattern of a 2D lattice and etalon can be used to optically simulate 3D x-ray diffraction. The experiments can be included wherever undergraduate or graduate students have to follow up Laue's formulation of x-ray diffraction.

  19. Three-dimensional optofluidic device for isolating microbes

    NASA Astrophysics Data System (ADS)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.

    2015-03-01

    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  20. Diffraction of a Gaussian beam in a three-dimensional smoothly inhomogeneous medium: an eikonal-based complex geometrical-optics approach.

    PubMed

    Berczynski, Pawel; Bliokh, Konstantin Yu; Kravtsov, Yuri A; Stateczny, Andrzej

    2006-06-01

    We present an ab initio account of the paraxial complex geometrical optics (CGO) in application to scalar Gaussian beam propagation and diffraction in a 3D smoothly inhomogeneous medium. The paraxial CGO deals with quadratic expansion of the complex eikonal and reduces the wave problem to the solution of ordinary differential equations of the Riccati type. This substantially simplifies the description of Gaussian beam diffraction as compared with full-wave or parabolic (quasi-optics) equations. For a Gaussian beam propagating in a homogeneous medium or along the symmetry axis in a lenslike medium, the CGO equations possess analytical solutions; otherwise, they can be readily solved numerically. As a nontrivial example we consider Gaussian beam propagation and diffraction along a helical ray in an axially symmetric waveguide medium. It is shown that the major axis of the beam's elliptical cross section grows unboundedly; it is oriented predominantly in the azimuthal (binormal) direction and does not obey the parallel-transport law. PMID:16715163

  1. Diffuser-aided diffuse optical imaging for breast tumor: a feasibility study based on time-resolved three-dimensional Monte Carlo modeling.

    PubMed

    Chuang, Ching-Cheng; Lee, Chia-Yen; Chen, Chung-Ming; Hsieh, Yao-Sheng; Liu, Tsan-Chi; Sun, Chia-Wei

    2012-05-01

    This study proposed diffuser-aided diffuse optical imaging (DADOI) as a new approach to improve the performance of the conventional diffuse optical tomography (DOT) approach for breast imaging. The 3-D breast model for Monte Carlo simulation is remodeled from clinical MRI image. The modified Beer-Lambert's law is adopted with the DADOI approach to substitute the complex algorithms of inverse problem for mapping of spatial distribution, and the depth information is obtained based on the time-of-flight estimation. The simulation results demonstrate that the time-resolved Monte Carlo method can be capable of performing source-detector separations analysis. The dynamics of photon migration with various source-detector separations are analyzed for the characterization of breast tissue and estimation of optode arrangement. The source-detector separations should be less than 4 cm for breast imaging in DOT system. Meanwhile, the feasibility of DADOI was manifested in this study. In the results, DADOI approach can provide better imaging contrast and faster imaging than conventional DOT measurement. The DADOI approach possesses great potential to detect the breast tumor in early stage and chemotherapy monitoring that implies a good feasibility for clinical application. PMID:22394571

  2. Enhancement and suppression of the transition temperature of a three-dimensional XY ferromagnet by control of vortex-loop fugacity

    SciTech Connect

    Shenoy, S.R. )

    1990-11-01

    A previous vortex-loop scaling analysis for the three-dimensional {ital XY} model is extended to include an external loop-segment chemical potential {mu}={lambda}{ital k}{sub {ital B}}{ital T}. The loop fugacity {ital y}{sub 0} is suppressed, {ital y}{sub 0}{r arrow}{ital y}{sub 0}{ital e}{sup {minus}2{pi}{lambda}}, for {lambda}{gt}0, enhancing the transition temperature {ital T}{sub {ital c}}({lambda}), in agreement with the Monte Carlo work of Kohring, Shrock, and Wills. One also gets the suppression of transition temperatures {Tc}({ital e}{sup 2}) of lattice superconductors by electromagnetic charge {ital e}{sup 2}, by mapping onto this loop-fugacity model. A possible approach to superconductor high-{Tc} enhancement, by tailored suppression of topological excitations, is briefly conjectured.

  3. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  4. In-lab three-dimensional printing

    PubMed Central

    Partridge, Roland; Conlisk, Noel; Davies, Jamie A.

    2012-01-01

    The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907

  5. Three-dimensional reconstructions of solid surfaces using conventional microscopes.

    PubMed

    Ficker, Tomáš; Martišek, Dalibor

    2016-01-01

    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761

  6. Three-dimensional optoacoustic imaging as a new noninvasive technique to study long-term biodistribution of optical contrast agents in small animal models

    PubMed Central

    Ermilov, Sergey A.; Liopo, Anton V.; Oraevsky, Alexander A.

    2012-01-01

    Abstract. We used a 3-D optoacoustic (OA) tomography system to create maps of optical absorbance of mice tissues contrasted with gold nanorods (GNRs). Nude mice were scanned before and after injection of GNRs at time periods varying from 1 to 192 h. Synthesized GNRs were purified from hexadecyltrimethylammonium bromide and coated with polyethylene glycol (PEG) to obtain GNR-PEG complexes suitable for in vivo applications. Intravenous administration of purified GNR-PEG complexes resulted in enhanced OA contrast of internal organs and blood vessels compared to the same mouse before injection of the contrast agent. Maximum enhancement of the OA images was observed 24 to 48 h postinjection, followed by a slow clearance trend for the remaining part of the studied period (eight days). We demonstrate that OA imaging with two laser wavelengths can be used for noninvasive, long-term studies of biological distribution of contrast agents. PMID:23223982

  7. In vitro and in vivo three-dimensional velocity vector measurement by three-beam spectral-domain Doppler optical coherence tomography.

    PubMed

    Trasischker, Wolfgang; Werkmeister, René M; Zotter, Stefan; Baumann, Bernhard; Torzicky, Teresa; Pircher, Michael; Hitzenberger, Christoph K

    2013-11-01

    We developed a three-beam Doppler optical coherence tomography (OCT) system that enables measurement of the velocity vector of moving particles in three-dimensions (3-D). The spatial orientation as well as the magnitude of motion can be determined without prior knowledge of the geometry of motion. The system combines three spectral-domain OCT interferometers whose sample beams are focused at the sample by a common focusing lens at three different angles. This provides three spatially independent velocity components simultaneously from which the velocity vector can be reconstructed. We demonstrate the system in a simple test object (rotating disc), a flow phantom, and for blood flow measurements in the retina of a healthy human subject. Measurements of blood flow at a venous bifurcation achieve a good agreement between in- and outflow and demonstrate the reliability of the method. PMID:24247747

  8. Three-dimensional plasmonic stereoscopic prints in full colour

    NASA Astrophysics Data System (ADS)

    Goh, Xiao Ming; Zheng, Yihan; Tan, Shawn J.; Zhang, Lei; Kumar, Karthik; Qiu, Cheng-Wei; Yang, Joel K. W.

    2014-11-01

    Metal nanostructures can be designed to scatter different colours depending on the polarization of the incident light. Such spectral control is attractive for applications such as high-density optical storage, but challenges remain in creating microprints with a single-layer architecture that simultaneously enables full-spectral and polarization control of the scattered light. Here we demonstrate independently tunable biaxial colour pixels composed of isolated nanoellipses or nanosquare dimers that can exhibit a full range of colours in reflection mode with linear polarization dependence. Effective polarization-sensitive full-colour prints are realized. With this, we encoded two colour images within the same area and further use this to achieve depth perception by realizing three-dimensional stereoscopic colour microprint. Coupled with the low cost and durability of aluminium as the functional material in our pixel design, such polarization-sensitive encoding can realize a wide spectrum of applications in colour displays, data storage and anti-counterfeiting technologies.

  9. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  10. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2014-08-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  11. Three dimensional magnetic abacus memory

    NASA Astrophysics Data System (ADS)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten

    2015-03-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  12. Three dimensional magnetic abacus memory.

    PubMed

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten

    2014-01-01

    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory. PMID:25146338

  13. Dynamic Three-Dimensional Echocardiography

    NASA Astrophysics Data System (ADS)

    Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-08-01

    Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.

  14. Three-Dimensional Schlieren Measurements

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Cochrane, Andrea

    2004-11-01

    Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.

  15. True three-dimensional camera

    NASA Astrophysics Data System (ADS)

    Kornreich, Philipp; Farell, Bart

    2013-01-01

    An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.

  16. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, T.; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 µm of subpleural lung parenchyma with a 3-D resolution of 16×16×8 µm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI).

  17. Spiral-scanning, side-viewing optical coherence tomography endoscope for three-dimensional fully sampled in vivo imaging of the mouse colon

    NASA Astrophysics Data System (ADS)

    Welge, Weston A.; Barton, Jennifer K.

    2013-03-01

    We have previously developed side-viewing endoscopic OCT systems to detect colorectal cancer in the murine model, which longitudinally scans the mouse colon at 8-16 discrete angular positions. This small number of angles is chosen to keep imaging time and the amount of data to analyze reasonable, but this azimuthal undersampling of the tissue may result in missed or incorrectly characterized adenomas. A need exists for a spiral-scanning OCT endoscope capable of generating 3D, in vivo OCT data sets that satisfy the Nyquist criterion for adequate sampling of the tissue. Our new endoscopic system replaces the sample arm optics of a commercial OCT system with a spiral-scanning, gradient-index lens-based endoscope. The endoscope provides unit magnification at a working distance capable of producing a focal depth of 280 μm in tissue. The working distance accounts for a 41° rod prism that reflects the beam through the endoscopic window into the tissue while minimizing back reflection. A swept-source laser with a central wavelength of 1040 nm and spectral bandwidth of 80 nm provides an axial resolution of 12 μm in air and 9 μm in water. The endoscope has a theoretical diffraction-limited lateral resolution of 5.85 μm. We present fully sampled, 3D, in vivo images of the mouse colon.

  18. Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography.

    PubMed

    Popp, Alexander; Wendel, Martina; Knels, Lilla; Koch, Thea; Koch, Edmund

    2006-01-01

    In this feasibility study, Fourier domain optical coherence tomography (FDOCT) is used for visualizing the 3-D structure of fixated lung parenchyma and to capture real-time cross sectional images of the subpleural alveolar mechanics in a ventilated and perfused isolated rabbit lung. The compact and modular setup of the FDOCT system allows us to image the first 500 microm of subpleural lung parenchyma with a 3-D resolution of 16 x 16 x 8 microm (in air). During mechanical ventilation, real-time cross sectional FDOCT images visualize the inflation and deflation of alveoli and alveolar sacks (acini) in successive images of end-inspiratory and end-expiratory phase. The FDOCT imaging shows the relation of local alveolar mechanics to the setting of tidal volume (VT), peak airway pressure, and positive end-expiratory pressure (PEEP). Application of PEEP leads to persistent recruitment of alveoli and acini in the end-expiratory phase, compared to ventilation without PEEP where alveolar collapse and reinflation are observed. The imaging of alveolar mechanics by FDOCT will help to determine the amount of mechanical stress put on the alveolar walls during tidal ventilation, which is a key factor in understanding the development of ventilator induced lung injury (VILI). PMID:16526892

  19. Three-dimensional nonlinear optical chromophores based on metal-to-ligand charge-transfer from ruthenium(II) or iron(II) centers.

    PubMed

    Coe, Benjamin J; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Garín, Javier; Orduna, Jesús

    2005-09-28

    In this article, we describe a series of new complex salts in which electron-rich transition-metal centers are coordinated to three electron-accepting N-methyl/aryl-2,2':4,4' ':4',4' ''-quaterpyridinium ligands. These complexes contain either Ru(II) or Fe(II) ions and have been characterized by using various techniques, including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer bands. The latter experiments reveal that these putatively octupolar D(3) chromophores exhibit two substantial components of the beta tensor which are associated with transitions to dipolar excited states. Computations involving time-dependent density-functional theory and the finite field method serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts. PMID:16173774

  20. In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Liu, Gangjun; Kreuter, Kelly; Mahon, Sari; Colt, Henri; Mukai, David; Peavy, George M.; Chen, Zhongping; Brenner, Matthew

    2009-11-01

    The purpose of this study was to develop a dynamic tunable focal distance graded-refractive-index lens rod-based high-speed 3-D swept-source (SS) optical coherence tomography (OCT) endoscopic system and demonstrate real-time in vivo, high-resolution (10-μm) imaging of pleural-based malignancies in an animal model. The GRIN lens-based 3-D SS OCT system, which images at 39 fps with 512 A-lines per frame, was able to capture images of and detect abnormalities during thoracoscopy in the thoracic cavity, including the pleura, chest wall, pericardium, and the lungs. The abnormalities were confirmed by histological evaluation and compared to OCT findings. The dynamic tunable focal distance range and rapid speed of the probe and SS prototype OCT system enabled this first-reported application of in vivo 3-D thoracoscopic imaging of pleural-based malignancies. The imaging probe of the system was found to be easily adaptable to various sites within the thoracic cavity and can be readily adapted to other sites, including rigid airway endoscopic examinations.