Science.gov

Sample records for optically realizable localized

  1. Local heating realization by reverse thermal cloak

    PubMed Central

    Hu, Run; Wei, Xuli; Hu, Jinyan; Luo, Xiaobing

    2014-01-01

    Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as “thermal cloak”, can realize isothermal region and hide objects from heat. In this paper, we presented the concept of “reverse thermal cloak” to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure. PMID:24398592

  2. Local heating realization by reverse thermal cloak.

    PubMed

    Hu, Run; Wei, Xuli; Hu, Jinyan; Luo, Xiaobing

    2014-01-01

    Transformation thermodynamics, as one of the important branches among the extensions of transformation optics, has attracted plentiful attentions and interests recently. The result of transformation thermodynamics, or called as "thermal cloak", can realize isothermal region and hide objects from heat. In this paper, we presented the concept of "reverse thermal cloak" to correspond to the thermal cloak and made a simple engineering definition to identify them. By full-wave simulations, we verified that the reverse thermal cloak can concentrate heat and realize local heating. The performance of local heating depends on the anisotropic dispersion of the cloaking layer's thermal conductivity. Three-dimensional finite element simulations demonstrated that the reverse thermal cloak can be used to heat up objects. Besides pre-engineered metamaterials, such reverse thermal cloak can even be realized with homogenous materials by alternating spoke-like structure or Hashin coated-sphere structure. PMID:24398592

  3. Physically realizable entanglement by local continuous measurements

    SciTech Connect

    Mascarenhas, Eduardo; Santos, Marcelo Franca; Cavalcanti, Daniel; Vedral, Vlatko

    2011-02-15

    Quantum systems prepared in pure states evolve into mixtures under environmental action. Continuously realizable ensembles (or physically realizable) are the pure state decompositions of those mixtures that can be generated in time through continuous measurements of the environment. Here, we define continuously realizable entanglement as the average entanglement over realizable ensembles. We search for the measurement strategy to maximize and minimize this quantity through observations on the independent environments that cause two qubits to disentangle in time. We then compare it with the entanglement bounds (entanglement of formation and entanglement of assistance) for the unmonitored system. For some relevant noise sources the maximum realizable entanglement coincides with the upper bound, establishing the scheme as an alternative to protect entanglement. However, for local strategies, the lower bound of the unmonitored system is not reached.

  4. Experimental Realization of a Reflective Optical Limiter

    NASA Astrophysics Data System (ADS)

    Vella, Jarrett H.; Goldsmith, John H.; Browning, Andrew T.; Limberopoulos, Nicholaos I.; Vitebskiy, Ilya; Makri, Eleana; Kottos, Tsampikos

    2016-06-01

    Optical limiters transmit low-intensity light, while blocking laser radiation with excessively high irradiance or fluence. A typical optical limiter involves a nonlinear material which is transparent at low light intensity and becomes opaque when the light intensity exceeds a certain level. Most of the high-level radiation is absorbed by the nonlinear material causing irreversible damage. This fundamental problem could be solved if the state of the nonlinear material changed from transparent to highly reflective (not absorptive) when the intensity becomes too high. None of the known nonlinear optical materials display such a property. A solution can be provided by a nonlinear photonic structure. In this communication, we report the experimental realization of a reflective optical limiter. The design is based on a planar microcavity composed of alternating SiO2 and Si3N4 layers with a single GaAs defect layer in the middle. At low intensity, the planar microcavity displays a strong resonant transmission via a cavity mode. As the intensity increases, two-photon absorption in GaAs kicks in, initially resulting in the microcavity-enhanced light absorption. A further increase in light intensity, though, suppresses the cavity mode along with the resonant transmission; the entire planar microcavity turns highly reflective within a broad frequency range covering the entire photonic band gap. This seemingly counterintuitive behavior is a general feature of resonant transmission via a cavity mode with purely nonlinear absorption.

  5. Localization of Free Field Realizations of Affine Lie Algebras

    NASA Astrophysics Data System (ADS)

    Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.

    2015-04-01

    We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.

  6. Fiber optic gyros: the vision realized

    NASA Astrophysics Data System (ADS)

    Pavlath, George A.

    2006-08-01

    Over thirty five years have elapsed since the fiber optic gyro was proposed by Vali and Shorthill. In those decades, fiber gyros have matured. They are competing head to head with existing technologies such as mechanical gyros and RLGs in tactical, navigation and strategic applications and are winning. Northrop Grumman has produced the majority of fiber optic gyros and fiber optic gyro based inertial products in the world. This paper will cover the various Northrop fiber gyro products, the platforms they are used on, as well as production and top level system data.

  7. Realizing optical magnetism from dielectric metamaterials.

    PubMed

    Ginn, James C; Brener, Igal; Peters, David W; Wendt, Joel R; Stevens, Jeffrey O; Hines, Paul F; Basilio, Lorena I; Warne, Larry K; Ihlefeld, Jon F; Clem, Paul G; Sinclair, Michael B

    2012-03-01

    We demonstrate, for the first time, an all-dielectric metamaterial composite in the midinfrared based on micron-sized, high-index tellurium dielectric resonators. Dielectric resonators are desirable compared to conventional metallodielectric metamaterials at optical frequencies as they are largely angular invariant, free of Ohmic loss, and easily integrated into three-dimensional volumes. Measurements and simulation provide evidence of optical magnetism, which could be used for infrared magnetic mirrors, hard or soft surfaces, and subwavelength cavities. PMID:22463666

  8. Green photonics realized by optical complex systems

    NASA Astrophysics Data System (ADS)

    Nanri, Hiroto; Sasaki, Wakao

    2013-12-01

    We have experimentally demonstrated a new smart grid model which can control DC electric power flow autonomously among individual homes, by using an optical self-organized node with optical non-linear characteristics, and these homes are assumed to be installed by distributed power supplies, and electric power storage devices, and also supposed to be supplied partly by the commercial electric power grid utilities. An electric power network is composed of nodes and devises called Power Gate Unit (PGU). The nodes have optical nonlinearity for self-organizing informations about surplus or shortage of electric power as to individual homes. The PGU is a distributing unit of actual electric power based on above informations of power surplus or shortage at each home. The PGU at each home is electrically connected to both the onsite power supplies and household load such as a solar panel, a DC motor, and a storage battery as well as the commercial electric power grid utilities. In this work, we composed our experimental self-organized DC power grid with above components and supposed the supplied maximum power from the commercial electric power grid utilities to be limited to 5V-0.5A. In this network, information about surplus or shortage of electric power will propagate through the nodes. In the experiments, surplus electric current 0.4A at a particular node was distributed toward a PGU of another node suffering from shortage of electric current. We also confirmed in the experiments and simulations that even when signal propagation path was disconnected accidentally the network could recover an optimized path. The present smart grid system we have attained may be applied by optical fiber link in the near future because our essential components controlling PGU, i.e. the nodes are electro-optical hybrid which are easily applicable to fiber optical link so as to control electric power transmission line.

  9. Realization of an all optical exciton-polariton router

    SciTech Connect

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto

    2015-11-16

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  10. Realization of an all optical exciton-polariton router

    NASA Astrophysics Data System (ADS)

    Marsault, Félix; Nguyen, Hai Son; Tanese, Dimitrii; Lemaître, Aristide; Galopin, Elisabeth; Sagnes, Isabelle; Amo, Alberto; Bloch, Jacqueline

    2015-11-01

    We report on the experimental realization of an all optical router for exciton-polaritons. This device is based on the design proposed by Flayac and Savenko [Appl. Phys. Lett. 103, 201105 (2013)], in which a zero-dimensional island is connected through tunnel barriers to two periodically modulated wires of different periods. Selective transmission of polaritons injected in the island, into either of the two wires, is achieved by tuning the energy of the island state across the band structure of the modulated wires. We demonstrate routing of ps polariton pulses using an optical control beam which controls the energy of the island quantum states, thanks to polariton-exciton interactions.

  11. Experimental realization of an optical second with strontium lattice clocks.

    PubMed

    Le Targat, R; Lorini, L; Le Coq, Y; Zawada, M; Guéna, J; Abgrall, M; Gurov, M; Rosenbusch, P; Rovera, D G; Nagórny, B; Gartman, R; Westergaard, P G; Tobar, M E; Lours, M; Santarelli, G; Clairon, A; Bize, S; Laurent, P; Lemonde, P; Lodewyck, J

    2013-01-01

    Progress in realizing the SI second had multiple technological impacts and enabled further constraint of theoretical models in fundamental physics. Caesium microwave fountains, realizing best the second according to its current definition with a relative uncertainty of 2-4 × 10(-16), have already been overtaken by atomic clocks referenced to an optical transition, which are both more stable and more accurate. Here we present an important step in the direction of a possible new definition of the second. Our system of five clocks connects with an unprecedented consistency the optical and the microwave worlds. For the first time, two state-of-the-art strontium optical lattice clocks are proven to agree within their accuracy budget, with a total uncertainty of 1.5 × 10(-16). Their comparison with three independent caesium fountains shows a degree of accuracy now only limited by the best realizations of the microwave-defined second, at the level of 3.1 × 10(-16). PMID:23839206

  12. Perturbative analysis of spectral singularities and their optical realizations

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali; Rostamzadeh, Saber

    2012-08-01

    We develop a perturbative method of computing spectral singularities of a Schrödinger operator defined by a general complex potential that vanishes outside a closed interval. These can be realized as zero-width resonances in optical gain media and correspond to a lasing effect that occurs at the threshold gain. Their time-reversed copies yield coherent perfect absorption of light that is also known as antilasing. We use our general results to establish the exactness of the nth-order perturbation theory for an arbitrary complex potential consisting of n delta functions, obtain an exact expression for the transfer matrix of these potentials, and examine spectral singularities of complex barrier potentials of arbitrary shape. In the context of optical spectral singularities, these correspond to inhomogeneous gain media.

  13. Recursive linear optical networks for realizing quantum algorithms

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    Linear optics has played a leading role in the development of practical quantum technologies. In recent years, advances in integrated quantum photonics have significantly improved the functionality and scalability of linear optical devices. In this talk, I present recursive schemes for implementing quantum Fourier transforms and inversion about the mean in Grover's algorithm with photonic integrated circuits. By recursive, I mean that two copies of a d-dimensional unitary operation is used to build the corresponding unitary operation on 2 d modes. The linear optical networks operate on path-encoded qudits and realize d-dimensional unitary operations using O (d2) elements. To demonstrate that the recursive circuits are viable in practice, I conducted simulations of proof-of-principle experiments using a fabrication model of realistic errors in silicon-based photonic integrated devices. The results indicate high-fidelity performance in the circuits for 2-qubit and 3-qubit quantum Fourier transforms, and for quantum search on 4-item and 8-item databases. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.

  14. Indoor Free Space Optic: a new prototype, realization and evaluation

    NASA Astrophysics Data System (ADS)

    Bouchet, Olivier; Besnard, Pascal; Mihaescu, Adrian

    2008-08-01

    The Free Space Optic (FSO) communication is a daily reality used by an increasing number of companies. For indoor environment, optical wireless communication becomes a good alternative with respect to radio proposals. For both technologies, the architecture is similar: emission/reception base station (Gateway or Bridge) are installed to cover zones, which are defined to ensure a quality of service. The customers may be connected to the Wireless Local Area Network (WLAN) with an adapter or module that emits and receives on this network. But due to its specific characteristics, wireless optical technology could present important advantages such as: Transmitted data security, medical immunity, high data rate, etc... Nevertheless, the optical system may have a limit on the network management aspect and link budget. The scope of this paper is to present a proposal at crossroads between optical fibre telecom system and data processing. In this document, we will present a prototype developed in Brittany during a regional collaborative project (Techim@ges). In order to answer to the management aspect and the link budget, this prototype uses an optical multiplexing technique in 1550 nm band: the Wavelength Division Multiple Access (WDMA). Moreover it also proposes a new class 1 high power emission solution. This full duplex system transmits these various wavelengths in free space, by using optical Multiplexer/Demultiplexer and optical modules. Each module has a defined and personal wavelength associated to the terminal identification (addresses MAC or IP). This approach permits a data rate at a minimum of a ten's Mbit/s per customer and potentially hundred Mbps for a line of sight system. The application field for the achieved and proposed prototype is potentially investigated from WLAN to WPAN.

  15. Experimental realization of a nondeterministic optical noiseless amplifier

    SciTech Connect

    Ferreyrol, Franck; Blandino, Remi; Barbieri, Marco; Tualle-Brouri, Rosa; Grangier, Philippe

    2011-06-15

    Linear amplifiers are necessarily affected by a minimal amount of noise, which is needed in order to preserve the linearity and the unitarity prescribed by quantum mechanics. Such a limitation might be partially overcome if the process is realized by conditioning its operation on a trigger event, for instance, the result of a measurement. Here we present a detailed analysis of a noiseless amplifier, implemented using linear optics, a down-conversion-based single-photon source, and single-photon detection. Our results demonstrate an amplification adding a level of noise lower than the minimum allowed by quantum mechanics for deterministic amplifiers. This is made possible by the nondeterministic character of our device, whose success rate is sufficiently low not to violate any fundamental limit. We compare our experimental data to a model taking into account the main imperfections of the setup and find a good agreement.

  16. Quantum homogenization for continuous variables: Realization with linear optical elements

    NASA Astrophysics Data System (ADS)

    Nagaj, Daniel; Štelmachovič, Peter; Bužek, Vladimír; Kim, Myungshik

    2002-12-01

    Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state ρ and a set of N reservoir qubits initially prepared in the state ξ. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state ξ irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.

  17. Design principles and realization of electro-optical circuit boards

    NASA Astrophysics Data System (ADS)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  18. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.

    PubMed

    Aidelsburger, M; Atala, M; Lohse, M; Barreiro, J T; Paredes, B; Bloch, I

    2013-11-01

    We demonstrate the experimental implementation of an optical lattice that allows for the generation of large homogeneous and tunable artificial magnetic fields with ultracold atoms. Using laser-assisted tunneling in a tilted optical potential, we engineer spatially dependent complex tunneling amplitudes. Thereby, atoms hopping in the lattice accumulate a phase shift equivalent to the Aharonov-Bohm phase of charged particles in a magnetic field. We determine the local distribution of fluxes through the observation of cyclotron orbits of the atoms on lattice plaquettes, showing that the system is described by the Hofstadter model. Furthermore, we show that for two atomic spin states with opposite magnetic moments, our system naturally realizes the time-reversal-symmetric Hamiltonian underlying the quantum spin Hall effect; i.e., two different spin components experience opposite directions of the magnetic field. PMID:24237530

  19. Spin-wave based realization of optical computing primitives

    SciTech Connect

    Csaba, G. Papp, A.; Porod, W.

    2014-05-07

    We use micromagnetic simulations to demonstrate that spin waves can perform optically inspired, non-Boolean computing algorithms. We propose and design coherent spin-wave sources and phase shifters, which act akin to the key components of an optical signal processing system. We show that the functionality of the proposed on-chip spin-wave based signal processing system is similar to known optical computing devices. We argue that such computing system can serve as a practical, energy efficient, and integrated component of nanoscale image processing systems.

  20. Experimental realization of spectral shaping using nonlinear optical holograms.

    PubMed

    Leshem, Anat; Shiloh, Roy; Arie, Ady

    2014-09-15

    We experimentally demonstrate the spectral shaping of a signal generated by a three-wave mixing process using a nonlinear spectral hologram. These holograms are based on binary spatial modulation of the second-order nonlinear coefficient. Here we present the first experimental realization, to the best of our knowledge, of this concept, encoding a nonlinear hologram in a KTiOPO(4) crystal by electric field poling. Two different spectra in the form of the second-order Hermite-Gauss function and the Airy function are shown using the sum-frequency generation process. PMID:26466274

  1. From Cartesian to polar: a new POLICRYPS geometry for realizing circular optical diffraction gratings.

    PubMed

    Alj, Domenico; Caputo, Roberto; Umeton, Cesare

    2014-11-01

    We report on the realization of a liquid crystal (LC)-based optical diffraction grating showing a polar symmetry of the director alignment. This has been obtained as a natural evolution of the POLICRYPS technique, which enables the realization of highly efficient, switchable, planar diffraction gratings. Performances exhibited in the Cartesian geometry are extended to the polar one by exploiting the spherical aberration produced by simple optical elements. This enables producing the required highly stable polar pattern that allows fabricating a circular optical diffraction grating. Results are promising for their possible application in fields in which a rotational structure of the optical beam is needed. PMID:25361314

  2. Two novel schemes for probabilistic remote state preparation and the physical realization via the linear optics

    NASA Astrophysics Data System (ADS)

    Wei, Jiahua; Dai, Hong-Yi; Zhang, Ming; Yang, Le; Kuang, Jingsong

    2016-05-01

    In this paper, we put forward two novel schemes for probabilistic remote preparation of an arbitrary quantum state with the aid of appropriate local unitary operations when the sender and the receiver only have partial information of non-maximally entangled state, respectively. The concrete implementation procedures of the novel proposals are given in detail. Additionally, the physical realizations of our proposals are discussed based on the linear optics. Because of that neither the sender nor the receiver need to know fully the information of the partially entangled state, our schemes are useful to not only expand the application range of quantum entanglement, but also enlarge the research field of probabilistic remote state preparation (RSP).

  3. Localization in optics - Quasiperiodic media

    NASA Astrophysics Data System (ADS)

    Kohmoto, Mahito; Sutherland, Bill; Iguchi, K.

    1987-06-01

    An experiment to probe the (quasi)localization of the photon is proposed, in which optical layers are constructed following the Fibonacci sequence. The transmission coefficient has a rich structure as a function of the wavelength of light and, in fact, is multifractal. For particular wavelengths for which the resonance conditions is satisfied, the light propagation has scaling with respect to the number of layers, as well as an interesting fluctuation.

  4. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations.

    PubMed

    Pan, Deng; Wei, Hong; Xu, Hongxing

    2013-04-22

    Optical interferometric logic gates in metal slot waveguide network are designed and investigated by electromagnetic simulations. The designed logic gates can realize all fundamental logic operations. A single Y-shaped junction can work as logic gate for four logic functions: AND, NOT, OR and XOR. By cascading two Y-shaped junctions, NAND, NOR and XNOR can be realized. The working principle is analyzed in detail. In the simulations, these gates show large intensity contrast for the Boolean logic states of the output. These results can be useful for future integrated optical computing. PMID:23609666

  5. Realization of binary radial diffractive optical elements by two-photon polymerization technique.

    PubMed

    Osipov, Vladimir; Pavelyev, Vladimir; Kachalov, Denis; Zukauskas, Albertas; Chichkov, Boris

    2010-12-01

    Application of the two-photon polymerization (2PP) technique for the fabrication of submicron-size relief of radial binary diffractive optical elements (DOE's) is studied. Binary DOE's for the formation of special longitudinal intensity distribution (axial light segment) are realized. Interferometric investigations of the diffractive relief produced by the 2PP-technique and investigations of optical properties of the formed elements are presented. Results of computer simulations are in good agreement with the experimental observations. PMID:21164925

  6. Realization of preconditioned Lanczos and conjugate gradient algorithms on optical linear algebra processors.

    PubMed

    Ghosh, A

    1988-08-01

    Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described. PMID:20531907

  7. Large third-order optical nonlinearity realized in symmetric nonpolar carotenoids

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masazumi; Yamauchi, Kensei; Sugisaki, Mitsuru; Yanagi, Kazuhiro; Gall, Andrew; Robert, Bruno; Cogdell, Richard J.; Hashimoto, Hideki

    2008-10-01

    We show that a very large enhancement of third-order optical nonlinearity (γ) of π -conjugated molecules can be realized without a major redshift of the absorption spectrum that disturbs optical transparency in the visible region. By changing the number (n) of C=C bonds of β carotene (n=11) from 7 to 15, a remarkable 3.4-fold increase in the γ value was observed when n=15 relative to that of β carotene. This enhancement of γ mainly originates from three-photon resonance of a lowest optically allowed excited state. The controversial higher-lying essential state is not important for generating the large value of γ .

  8. Realization of an all-dielectric zero-index optical metamaterial

    NASA Astrophysics Data System (ADS)

    Moitra, Parikshit; Yang, Yuanmu; Anderson, Zachary; Kravchenko, Ivan I.; Briggs, Dayrl P.; Valentine, Jason

    2013-10-01

    Metamaterials offer unprecedented flexibility for manipulating the optical properties of matter, including the ability to access negative index, ultrahigh index and chiral optical properties. Recently, metamaterials with near-zero refractive index have attracted much attention. Light inside such materials experiences no spatial phase change and extremely large phase velocity, properties that can be applied for realizing directional emission, tunnelling waveguides, large-area single-mode devices and electromagnetic cloaks. However, at optical frequencies, the previously demonstrated zero- or negative-refractive-index metamaterials have required the use of metallic inclusions, leading to large ohmic loss, a serious impediment to device applications. Here, we experimentally demonstrate an impedance-matched zero-index metamaterial at optical frequencies based on purely dielectric constituents. Formed from stacked silicon-rod unit cells, the metamaterial has a nearly isotropic low-index response for transverse-magnetic polarized light, leading to angular selectivity of transmission and directive emission from quantum dots placed within the material.

  9. Realization of all-optical AND-OR logic gates using the Z-scan method

    NASA Astrophysics Data System (ADS)

    Dhinaa, A. N.; Palanisamy, P. K.; Murali, K.

    2013-10-01

    The NLO properties of organic materials have been studied with the single-beam Z-scan technique using a CW laser beam. A He-Ne laser operated at 632.8 nm with a power output of 12 mW is used for this study. A closed-aperture setup is used to measure the nonlinear refractive index of Patent blue V dye dissolved in distilled water. The material exhibits negative nonlinearity. Optical limiting behavior has been observed for this dye. Further, we have modified the Z-scan setup suitably to realize all-optical AND and OR logic gates.

  10. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces

    NASA Astrophysics Data System (ADS)

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-01

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

  11. Optical Realization of Double-Continuum Fano Interference and Coherent Control in Plasmonic Metasurfaces.

    PubMed

    Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady

    2015-06-12

    Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted. PMID:26196826

  12. Experimental realization of the quantum duel game using linear optical circuits

    NASA Astrophysics Data System (ADS)

    Balthazar, W. F.; Passos, M. H. M.; Schmidt, A. G. M.; Caetano, D. P.; Huguenin, J. A. O.

    2015-08-01

    We report on the experimental realization of the quantum duel game for two players, Alice and Bob. Using an all optical approach, we have encoded Alice and Bob states in transverse modes and polarization degrees of freedom of a laser beam, respectively. By setting Alice and Bob input states and considering the possibility of Alice performing two shots, we demonstrated the quantum features of the game as well as we recovered the classical version of the game.

  13. Optical communication with two-photon coherent states. III - Quantum measurements realizable with photoemissive detectors

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1980-01-01

    Homodyne detection is shown to achieve the same signal-to-noise ratio as the quantum field quadrature measurement, thus providing a receiver which realizes linear modulation TCS performance gain. The full equivalence of homodyne detection and single-quadrature field measurement is established. A heterodyne configuration which uses a TCS image-band oscillator in addition to the usual coherent state local oscillator is studied. Results are obtained by means of a representation theorem which shows that photoemissive detection realizes the photon flux density measurement.

  14. Realizing non-Abelian gauge potentials in optical square lattices: an application to atomic Chern insulators

    NASA Astrophysics Data System (ADS)

    Goldman, N.; Gerbier, F.; Lewenstein, M.

    2013-07-01

    We describe a scheme to engineer non-Abelian gauge potentials on a square optical lattice using laser-induced transitions. We emphasize the case of two-electron atoms, where the electronic ground state g is laser-coupled to a metastable state e within a state-dependent optical lattice. In this scheme, the alternating pattern of lattice sites hosting g and e states depicts a chequerboard structure, allowing for laser-assisted tunnelling along both spatial directions. In this configuration, the nuclear spin of the atoms can be viewed as a ‘flavour’ quantum number undergoing non-Abelian tunnelling along nearest-neighbour links. We show that this technique can be useful to simulate the equivalent of the Haldane quantum Hall model using cold atoms trapped in square optical lattices, offering an interesting route to realize Chern insulators. The emblematic Haldane model is particularly suited to investigate the physics of topological insulators, but requires, in its original form, complex hopping terms beyond nearest-neighbouring sites. In general, this drawback inhibits a direct realization with cold atoms, using standard laser-induced tunnelling techniques. We demonstrate that a simple mapping allows us to express this model in terms of matrix hopping operators that are defined on a standard square lattice. This mapping is investigated for two models that lead to anomalous quantum Hall phases. We discuss the practical implementation of such models, exploiting laser-induced tunnelling methods applied to the chequerboard optical lattice.

  15. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    NASA Astrophysics Data System (ADS)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  16. Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Shi, Lei; Zi, Jian; Yu, Zongfu

    2015-07-01

    Using an optical nanoresonator to realize extreme concentration of light at subwavelength nanoscale dimensions is of both fundamental and practical significance. Unfortunately, the optical cross section of an isotropic nanoresonator is determined by the resonant wavelength, which unfavorably limits the highest concentration ratio. Here we show that the cross section of a localized subwavelength resonator can be drastically enhanced by orders of magnitude. A single microscopic nanoresonator could exhibit a macroscopic optical cross section. We further show that the enhancement can be implemented in simple dielectric structures that are readily compatible with optoelectronic integration. The giant optical cross section of a nano-object provides a versatile platform to create extremely strong light-matter interactions at the nanoscale.

  17. Real-time realizations of the Bayesian Infrasonic Source Localization Method

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Arrowsmith, S.; Hofstetter, A.; Nippress, A.

    2015-12-01

    The Bayesian Infrasonic Source Localization method (BISL), introduced by Mordak et al. (2010) and upgraded by Marcillo et al. (2014) is destined for the accurate estimation of the atmospheric event origin at local, regional and global scales by the seismic and infrasonic networks and arrays. The BISL is based on probabilistic models of the source-station infrasonic signal propagation time, picking time and azimuth estimate merged with a prior knowledge about celerity distribution. It requires at each hypothetical source location, integration of the product of the corresponding source-station likelihood functions multiplied by a prior probability density function of celerity over the multivariate parameter space. The present BISL realization is generally time-consuming procedure based on numerical integration. The computational scheme proposed simplifies the target function so that integrals are taken exactly and are represented via standard functions. This makes the procedure much faster and realizable in real-time without practical loss of accuracy. The procedure executed as PYTHON-FORTRAN code demonstrates high performance on a set of the model and real data.

  18. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  19. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  20. Practical Realization of Massively Parallel Fiber -Free-Space Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gruber, Matthias; Jahns, Jürgen; El Joudi, El Mehdi; Sinzinger, Stefan

    2001-06-01

    We propose a novel approach to realizing massively parallel optical interconnects based on commercially available multifiber ribbons with MT-type connectors and custom-designed planar-integrated free-space components. It combines the advantages of fiber optics, that is, a long range and convenient and flexible installation, with those of (planar-integrated) free-space optics, that is, a wide range of implementable functions and a high potential for integration and parallelization. For the interface between fibers and free-space optical systems a low-cost practical solution is presented. It consists of using a metal connector plate that was manufactured on a computer-controlled milling machine. Channel densities are of the order of 100 /mm2 between optoelectronic VLSI chips and the free-space optical systems and 1 /mm2 between the free-space optical systems and MT-type fiber connectors. Experiments in combination with specially designed planar-integrated test systems prove that multiple one-to-one and one-to-many interconnects can be established with not more than 10% uniformity error.

  1. Trapped Fermi Gases in Rotating Optical Lattices: Realization and Detection of the Topological Hofstadter Insulator

    SciTech Connect

    Umucalilar, R. O.; Oktel, M. Oe.; Zhai Hui

    2008-02-22

    We consider a gas of noninteracting spinless fermions in a rotating optical lattice and calculate the density profile of the gas in an external confinement potential. The density profile exhibits distinct plateaus, which correspond to gaps in the single particle spectrum known as the Hofstadter butterfly. The plateaus result from insulating behavior whenever the Fermi energy lies within a gap. We discuss the necessary conditions to realize the Hofstadter insulator in a cold atom setup and show how the quantized Hall conductance can be measured from density profiles using the Streda formula.

  2. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.

    PubMed

    Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang

    2013-11-01

    We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states. PMID:24237531

  3. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration.

    PubMed

    Yang, Rui; Terabe, Kazuya; Liu, Guangqiang; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2012-11-27

    A potential route to extend Moore's law beyond the physical limits of existing materials and device architectures is to achieve nanotechnology breakthroughs in materials and device concepts. Here, we discuss an on-demand WO(3-x)-based nanoionic device where electrical and neuromorphic multifunctions are realized through externally induced local migration of oxygen ions. The device is found to possess a wide range of time scales of memorization, resistance switching, and rectification varying from volatile to permanent in a single device, and these can furthermore be realizable in both two- or three-terminal systems. The gradually changing volatile and nonvolatile resistance states are experimentally demonstrated to mimic the human brain's forgetting process for short-term memory and long-term memory.We propose this nanoionic device with its on-demand electrical and neuromorphic multifunction has a unique paradigm shifting potential for the fabrication of configurable circuits, analog memories, digital-neural fused networks, and more in one device architecture. PMID:23102535

  4. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.

    PubMed

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-28

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields. PMID:27067248

  5. Precise realization of the thermal radiation environment for an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Sherman, Jeff; Phillips, Nathaniel; Hinkley, Nathan; Oates, Chris; Ludlow, Andrew

    2013-05-01

    The Stark shift due to thermal radiation contributes one of the largest known perturbations to the clock transition frequency of optical lattice clocks. Consequently, the uncertainty stemming from this shift has played a dominant role in the total uncertainty of these standards. Following recent works focused on atomic response factors (e.g., the differential polarizability), uncertainty in this perturbation is now limited by imprecise knowledge of the environment itself. Here we present progress towards precise realization of the thermal radiation environment in a Yb optical lattice clock by trapping the atoms in a highly uniform radiation shield at a well-known temperature. We characterize the non-ideal aspects of this approach, including less than unit emissivity, contamination of the blackbody environment from the ambient environment, and thermal non-uniformities.

  6. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre

    NASA Astrophysics Data System (ADS)

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-06-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell-cell contacts. The cell-cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell-cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell-cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell-cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides.

  7. Optofluidic realization and retaining of cell–cell contact using an abrupt tapered optical fibre

    PubMed Central

    Xin, Hongbao; Zhang, Yao; Lei, Hongxiang; Li, Yayi; Zhang, Huixian; Li, Baojun

    2013-01-01

    Studies reveal that there exists much interaction and communication between bacterial cells, with parts of these social behaviors depending on cell–cell contacts. The cell–cell contact has proved to be crucial for determining various biochemical processes. However, for cell culture with relatively low cell concentration, it is difficult to precisely control and retain the contact of a small group of cells. Particularly, the retaining of cell–cell contact is difficult when flows occur in the medium. Here, we report an optofluidic method for realization and retaining of Escherichia coli cell–cell contact in a microfluidic channel using an abrupt tapered optical fibre. The contact process is based on launching a 980-nm wavelength laser into the fibre, E. coli cells were trapped onto the fibre tip one after another, retaining cell–cell contact and forming a highly organized cell chain. The formed chains further show the ability as bio-optical waveguides. PMID:23771190

  8. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    SciTech Connect

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-05-15

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm{sup 2}, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

  9. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    NASA Astrophysics Data System (ADS)

    Kuramochi, Eiichi; Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Takeda, Koji; Sato, Tomonari; Matsuo, Shinji; Notomi, Masaya

    2015-11-01

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm3) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm3). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  10. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    SciTech Connect

    Kuramochi, Eiichi Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya; Takeda, Koji; Matsuo, Shinji; Sato, Tomonari

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  11. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating

    NASA Astrophysics Data System (ADS)

    Yan, Jiahao; Liu, Pu; Ma, Churong; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to 2000 nm covering the solar irradiation spectrum completely. The absorptivity of the fabricated array is greater than 90% in the whole spectral range. And the broadband and strong absorption is due to the plasmon hybridization and hot spot generation from near-touching TiO1.67 nanoparticles with different sizes. What is more, the local heating of a TiO1.67 nanoparticle layer is fast and effective. The temperature increases quickly from 30 °C to 80 °C within 200 seconds. This local heating can realize rapid solar-enabled evaporation which can find applications in large-scale distillation and seawater desalination. These findings actually open a pathway for applications of these newly developed plasmonic materials in the energy and environment fields.Through the excitation of plasmon resonance, the energy of plasmonic nanoparticles either reradiates through light scattering or decays into energetic electrons (absorption). The plasmon-induced absorption can greatly enhance the efficiency of solar energy harvesting, local heating, photodetection and photocatalysis. Here, we demonstrate that heavily self-doped titanium oxide nanoparticles (TiO1.67 analogue arising from oxygen vacancies in rutile TiO2) with the plasmon resonance dominated by an interband transition shows strong absorption to build a broadband perfect absorber in the wavelength range from 300 to

  12. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang

    2015-10-01

    Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;

  13. Realizing mode conversion and optical diode effect by coupling photonic crystal waveguides with cavity

    NASA Astrophysics Data System (ADS)

    Ye, Han; Zhang, Jin-Qian-Nan; Yu, Zhong-Yuan; Wang, Dong-Lin; Chen, Zhi-Hui

    2015-09-01

    We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even (odd) mode to the odd (even) mode in the W2 waveguide during the forward (backward) transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 dB unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372037 and 61307069), Beijing Excellent Ph. D. Thesis Guidance Foundation, China (Grant No. 20131001301), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2013021017-3).

  14. Demon-like algorithmic quantum cooling and its realization with quantum optics

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Boixo, Sergio; Zhou, Zheng-Wei; Li, Chuan-Feng; Aspuru-Guzik, Alán; Guo, Guang-Can

    2014-02-01

    Simulation of the low-temperature properties of many-body systems remains one of the major challenges in theoretical and experimental quantum information science. We present, and demonstrate experimentally, a universal (pseudo) cooling method that is applicable to any physical system that can be simulated by a quantum computer. This method allows us to distil and eliminate hot components of quantum states like a quantum Maxwell's demon. The experimental implementation is realized with a quantum optical network, and the results are in full agreement with theoretical predictions (with fidelity higher than 0.978). Applications of the proposed pseudo-cooling method include simulations of the low-temperature properties of physical and chemical systems that are intractable with classical methods.

  15. Finite violations of a Bell inequality for high spin: An optical realization

    SciTech Connect

    Gerry, Christopher C.; Albert, Jaroslav

    2005-10-15

    Some years ago Peres [Phys. Rev. A 46, 4413 (1992)] described a gedanken experiment for a pair of spatially spin j particles in a singlet state and showed using with a dichotomic observable (essentially a parity operator) that Bell's theorem in the form of the Clauser-Home-Shimony-Holt (CHSH) inequality is violated by a constant amount (24%) in the limit j{yields}{infinity}. In this paper we present a scheme for an optical realization of a state that is very close to the spin-j singlet state using two traveling-wave modes of the quantized field using a 50:50 beam splitter with an input number state. A near-singlet states comes about because the binomial output state of the beam splitter can be written as a sum in terms of states in the form vertical bar j,m>{sub 1}x vertical bar j,-m>{sub 2}, each state being associated with a Holstein-Primakoff realization of the su(2) spin algebra in terms of the Bose operators of each of the field modes, where j=N/2, N being the number of photons passing through the beam splitter. The binomial state can violate the CHSH inequality to a greater degree than does the singlet state.

  16. Realization of a fiber-optic force-torque sensor with six degrees of freedom

    NASA Astrophysics Data System (ADS)

    Müller, M. S.; Hoffmann, L.; Buck, T. S.; Koch, A. W.

    2008-11-01

    Multi-axial force and torque sensing is of importance for robot control and many force-feedback applications. Minimal invasive robotic surgery (MIRS) is a possible field of application of force and torque sensors with up to six degrees of freedom. Although these sensors are not yet employed in current commercial MIRS systems, extensive work has been carried out on the development of these sensors. Some of their issues are related to their electric working principle: they are limited in performance by thermal noise, need electric power inside the patient and are not usable under influence of strong magnet fields (e. g. in MRI machines). One possible alternative is seen in fiber optic force torque sensors, since the signal demodulation may be located in some distance to the actual sensor and they also do not have to include any magnetic material. This article presents a fiber optic force and torque sensor with six degrees of freedom. The general setup resembles a Stewart Platform, whereas its connecting beams are formed by the fiber itself, and the element creating stiffness may be of arbitrary form. Only a single fiber is needed to extract all six parameters since they are measured on six multiplexed fiber Bragg grating sensors. We demonstrate how the sensor is realized and show results of torque measurements with variable load.

  17. Fiber optic configurations for local area networks

    NASA Technical Reports Server (NTRS)

    Nassehi, M. M.; Tobagi, F. A.; Marhic, M. E.

    1985-01-01

    A number of fiber optic configurations for a new class of demand assignment multiple-access local area networks requiring a physical ordering among stations are proposed. In such networks, the data transmission and linear-ordering functions may be distinguished and be provided by separate data and control subnetworks. The configurations proposed for the data subnetwork are based on the linear, star, and tree topologies. To provide the linear-ordering function, the control subnetwork must always have a linear unidirectional bus structure. Due to the reciprocity and excess loss of optical couplers, the number of stations that can be accommodated on a linear fiber optic bus is severely limited. Two techniques are proposed to overcome this limitation. For each of the data and control subnetwork configurations, the maximum number of stations as a function of the power margin, for both reciprocal and nonreciprocal couplers, is computed.

  18. Seeing the unseen with localized optical contrast

    NASA Astrophysics Data System (ADS)

    Suran, Swathi; Bharadwaj, Krishna; Raghavan, Srinivasan; Varma, Manoj M.

    2016-03-01

    Optical wide-field imaging of sub-diffraction limit nanostructures is of interest in a wide array of applications. In applications where the nanostructures to be visualized are well isolated, a high enough optical contrast is sufficient to detect these. Here we demonstrate a technique to visualize nanoscale features, such as grain boundaries in Chemical Vapor Deposited (CVD) single layer graphene, which are just a few atom length defects, using regular bright field optical microscopy. This remarkably low lateral length scale was imaged using of a special thin film structure consisting of a water-soluble thin film layer deposited on a metal substrate, which produces a strong color change as a function of the film thickness. Small local water transport differences in the graphene layer result in thickness variation of the underlying thin film due to its solubility in water and produces color contrast readily observable under a normal brightfield optical microscope with the naked eye. We demonstrate the use of this technique for direct optical visualization of grain boundaries in graphene as wide as 2-5 nm and sub-100 nm photoresist lines. By using super-resolution image processing algorithms, we may be able to detect structure even smaller in size than currently achieved. We believe that this technique can be extended to single molecule detection.

  19. Intrinsic Localized Modes in Optical Photonic Lattices and Arrays

    NASA Astrophysics Data System (ADS)

    Christodoulides, Demetrios

    Discretizing light behavior requires optical elements that can confine optical energy at distinct sites. One possible scenario in implementing such arrangements is to store energy within low loss high Q-microcavities and then allow photon exchange between such components in time. This scheme requires high-contrast dielectric elements that became available with the advent of photonic crystal technologies. Another possible avenue where such light discretization can be directly observed and studied is that based on evanescently coupled waveguide arrays. As indicated in several studies, discrete systems open up whole new directions in terms of modifying light transport properties. One such example is that of discrete solitons. By nature, discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one- and two-dimensional nonlinear waveguide arrays. In recent years such photonic lattices have been implemented or induced in a variety of material systems, including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness can lead to new families of optical solitons that have no counterpart whatsoever in continuous systems. Interestingly, these results paved the way for observations in other physical systems obeying similar evolution equations like Bose-Einstein condensates. New developments in laser writing ultrashort femtosecond laser pulses, now allow the realization of all-optical switching networks in fully 3D environments using nonlinear discrete optics. Using this approach all-optical routing can be achieved using blocking operations. The spatio-temporal evolution of optical pulses in both normally and anomalously dispersive arrays can lead to novel schemes for mode

  20. Realization of optical XOR and OR gates using asymmetric Y-structure in a two dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Rath, Smruti; Dash, Sonali P.; Hota, Mihir; Tripathy, Sukanta K.

    2012-07-01

    We propose an asymmetric Y-structure in a 2D photonic crystal consisting of TiO2 rods in air. The structure is then optimized by taking out the rods so as to create defects at different points, to realize optical XOR and OR operations. To verify our proposition, we use FDTD method to simulate the wave propagation inside the proposed asymmetric waveguide. Simulation results showed that, the said optimized design can really act as optical OR and XOR gate.

  1. Safety analysis and realization of safe information transmission optical LAN on high-speed railway

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Wu, Chongqing; Li, Zuoyi

    2001-10-01

    High-speed railway that has been progressing very quickly is one of the greatest techniques in present time because of its high speed, economy, comfort, environment benefits and other advantages. And among all of these, safe is the backbone and lifeline, so the chief task in developing high-speed railway is to establish safety guarantee system. Also in this safety guarantee system, train control is one of the key techniques to guarantee safe train operation and to advance ability of transportation, so operation safe is located in the hardcore position. That is to say, it is imperative to set up a safe, real-time and reliable automatic train control system. And we can easily find out that this kind of system is now developed and applied in many countries. Important information related to train control, such as the received and transmitted information of track-sided equipment, is called safe information, because it deals with train operation's safe, reliability, and even directly with people's life and wealth. It is so important that if there were some kind of fault with its making, transmission, or processing, fatal accident would occur. So to some degree, it is impossible to transmit and process this information through present railway communication network because of the former's extreme importance and the latter's no safe capability. Therefore, a specific communication network that mainly considers about safe transmission and management should be established in order to realize the specific function for this specific information. High-speed railway safe information transmission optical LAN, which adopts optical fiber as transmission media and transmits safe information, is a kind of LAN designed for the request for safe, real-time and highly reliable automatic train control system in the process of our country's high-speed railway construction and commonly train speed. In this paper, after analyzing the characteristics of automatic train control system and the

  2. Experimental realization of strong effective magnetic fields in an optical lattice.

    PubMed

    Aidelsburger, M; Atala, M; Nascimbène, S; Trotzky, S; Chen, Y-A; Bloch, I

    2011-12-16

    We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed. PMID:22243087

  3. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

    PubMed Central

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-01-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  4. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.

    PubMed

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-11-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  5. Optically controlled local nanosoldering of metal nanowires

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Guoping; Yang, Hangbo; Wang, Wei; Luo, Si; Dai, Shuowei; Qiu, Min

    2016-05-01

    Nanojoining (including nanowelding, nanosoldering, etc.) of metal nanomaterials offers the opportunity of constructing complex structures and advanced functional devices at the nanoscale. In comparison with nanowelding, nanosoldering does not involve the melting of base metal and shows considerable mechanical strength and good thermal and electrical conductivity. Here, an optically controlled local nanosoldering technique, which ensures the nanostructures to be bonded while their original structural integrity is retained, is proposed and demonstrated. Typical elemental devices (V-shaped, T-shaped, and X-shaped nanostructures) are formed with this nanosoldering technique. The conductivity of one V-shaped junction is enhanced by 500 times after nanosoldering. This facile nanosoldering technique provides an avenue to locally manipulate light, charge, heat, and mass transport at the nanoscale and is thereby expected to benefit the development of nanophotonics and nanoelectronics.

  6. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Park, Kwan Seob; Lee, Byeong Ha

    2014-09-01

    In breast-conserving surgery, an optical wire is a useful surgical guiding tool to optically locate small lesions within the breast tissue. However, the use of a long silica glass fiber as the optical wire can be burdensome to patients because of its stiffness and nonbiocompatibility. We investigate the use of a biocompatible fiber for light localization in tissue. A surgical suture with a diameter of 400 μm and a few centimeters long is employed as the biocompatible optical waveguide to transport the visible laser light to the inner tissue site. Optical location is confirmed with glow ball-like red laser illumination at the tip of the suture embedded within a fresh chicken breast tissue. Effective optical power coupling to the suture is made by using a double-cladding fiber coupler. From this preliminary result, we realize practical light localization with biopolymer waveguides.

  7. Light-guided localization within tissue using biocompatible surgical suture fiber as an optical waveguide.

    PubMed

    Choi, Woo June; Park, Kwan Seob; Lee, Byeong Ha

    2014-09-01

    In breast-conserving surgery, an optical wire is a useful surgical guiding tool to optically locate small lesions within the breast tissue. However, the use of a long silica glass fiber as the optical wire can be burdensome to patients because of its stiffness and nonbiocompatibility. We investigate the use of a biocompatible fiber for light localization in tissue. A surgical suture with a diameter of 400 μm and a few centimeters long is employed as the biocompatible optical waveguide to transport the visible laser light to the inner tissue site. Optical location is confirmed with glow ball-like red laser illumination at the tip of the suture embedded within a fresh chicken breast tissue. Effective optical power coupling to the suture is made by using a double-cladding fiber coupler. From this preliminary result, we realize practical light localization with biopolymer waveguides. PMID:25202898

  8. Non-local classical optical correlation and implementing analogy of quantum teleportation

    PubMed Central

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-01-01

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977

  9. Non-local classical optical correlation and implementing analogy of quantum teleportation.

    PubMed

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-01-01

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein-Podolsky-Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977

  10. Transformative Hispanic-Serving Institutions: Realizing Equity Praxis through Community Connections and Local Solutions

    ERIC Educational Resources Information Center

    Ruiz, Marisol; Valverde, Michelle

    2012-01-01

    Schools serve as antidemocratic spaces where teacher, parent, community member, and student voices are typically disregarded. Instead, philanthropists and businesses are allowed to drive school and district agendas. An exploration of 3 local efforts that connect a Hispanic-Serving Institution (HSI) with prekindergarten to Grade 12 students and…

  11. Broadband optical gain via interference in the free electron laser: principles and proposed realizations.

    PubMed

    Rostovtsev, Y V; Kurizki, G; Scully, M O

    2001-08-01

    We propose experimentally simplified schemes of an optically dispersive interface region between two coupled free electron lasers (FELs), aimed at achieving a much broader gain bandwidth than in a conventional FEL or a conventional optical klystron composed of two separated FELs. The proposed schemes can universally enhance the gain of FELs, regardless of their design, when operated in the short pulsed regime. PMID:11497719

  12. Realization of optical bistability and multistability in Landau-quantized graphene

    SciTech Connect

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-14

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  13. Realization of optical bistability and multistability in Landau-quantized graphene

    NASA Astrophysics Data System (ADS)

    Hamedi, H. R.; Asadpour, S. H.

    2015-05-01

    The solution of input-output curves in an optical ring cavity containing Landau-quantized graphene is theoretically investigated taking the advantage of density-matrix method. It is found that under the action of strong magnetic and infrared laser fields, one can efficiently reduce the threshold of the onset of optical bistability (OB) at resonance condition. At non-resonance condition, we observed that graphene metamaterial can support the possibility to obtain optical multistability (OM), which is more practical in all-optical switching or coding elements. We present an analytical approach to elucidate our simulations. Due to very high infrared optical nonlinearity of graphene stemming from very unique and unusual properties of quantized Landau levels near the Dirac point, such controllability on OB and OM may provide new technological possibilities in solid state quantum information science.

  14. Realization of an all-optical zero to pi cross-phase modulation jump.

    PubMed

    Camacho, Ryan M; Dixon, P Ben; Glasser, Ryan T; Jordan, Andrew N; Howell, John C

    2009-01-01

    We report on the experimental demonstration of an all-optical pi cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or pi phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor. PMID:19257193

  15. Asymmetrical optical lenslet array realized by spatial light modulator for measuring toroidal surfaces.

    PubMed

    Zhao, L P; Bai, N; Li, X

    2008-12-20

    The Shack-Hartmann wavefront sensor (SHWS) recently has been extensively researched for optical surface metrology due to its extendable dynamic range compared with interferometry technique. In this paper, we proposed to use a digital SHWS to measure toroidal surfaces, which are widely used in many optical systems due to their different symmetries and curvatures in the X and Y directions. For what is believed to be the first time, an asymmetrical optical lenslet array implemented by a spatial light modulator was presented to tackle the measurement challenge. This unconventional design approach has a great advantage to provide different optical powers in the X and Y directions so that focusing spots can be formed and captured on the detector plane for accurate centroid finding and precise wavefront evaluation for 3D shape reconstruction of the toroidal surface. A digital SHWS system with this extraordinary microlens array was built to verify the design concept, and the experimental results were presented and analyzed. PMID:19104529

  16. Realization of all-optical switch and diode via Raman gain process using a Kerr field

    NASA Astrophysics Data System (ADS)

    Abbas, Muqaddar; Qamar, Sajid; Qamar, Shahid

    2016-08-01

    The idea of optical photonic crystal, which is generated using two counter-propagating fields, is revisited to study gain-assisted all-optical switch and diode using Kerr field. Two counter-propagating fields with relative detuning Δ ν generate standing-wave field pattern which interacts with a four-level atomic system. The standing-wave field pattern acts like a static photonic crystal for Δ ν =0 , however, it behaves as a moving photonic crystal for Δ ν \

  17. Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force.

    PubMed

    Cao, Tun; Mao, Libang; Gao, Dongliang; Ding, Weiqiang; Qiu, Cheng-Wei

    2016-03-14

    Sophisticated optical micromanipulation of small biomolecules usually relies on complex light, e.g., structured light, highly non-paraxial light, or chiral light. One emerging technique is to employ chiral light to drive the chiral nanoparticle along the direction perpendicular to the propagation of the light, i.e., the lateral optical force. Here, we theoretically study the lateral optical force exerted by a entirely Gaussian beam. For the very first time we demonstrate that the Fano resonances (FRs) of the Ge2Sb2Te5 (GST) phase-change nanoparticles encapsulated with Au shells could enable a conventional Gaussian laser to exert a lateral force on such a dielectric GST nanoparticle, attributed to the strongly asymmetric energy flow around the sphere in the dipole-quadrupole FRs. More interestingly, the direction of this lateral force could be reversible during the state transition (i.e., from amorphous to crystalline). By bonding small biomolecules to the outer surface of the phase-change nanoparticle, the particle behaves as a direction-selective vehicle to transport biomolecules along opposite directions, at pre-assessed states of the Ge2Sb2Te5 core correspondingly. Importantly, the origin of the reversal of the lateral optical force is further unveiled by the optical singularity of the Poynting vector. Our mechanism of tailoring the FRs of phase-change nanoparticles, not just limited to GST, may bring a new twist to optical micromanipulation and biomedical applications. PMID:26898233

  18. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators.

    PubMed

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-01-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface. PMID:27405356

  19. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    NASA Astrophysics Data System (ADS)

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-07-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface.

  20. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators

    PubMed Central

    Qin, Feifei; Zhang, Qiang; Xiao, Jun-Jun

    2016-01-01

    The use of resonant structures to control scattering strength and directionality is of importance in various electromagnetic systems. Here we propose and demonstrate sub-wavelength unidirectional scattering by two nearby spoof localized surface plasmon resonators for microwave. The principle is that metal surfaces corrugated by grooves can support magnetic dipolar modes, as well as electric dipolar modes. The resonance is essentially dictated by the geometric parameter of the structure, enabling extremely high degrees of freedom for tuning the scattering properties of the resonator. Particularly, by adjusting the thickness of the resonators, we can make the magnetic dipole mode of one resonator have nearly the same resonant frequency with that of the electric dipole mode of the other resonator. We show that nearly zero backscattering happens when the distance between the two resonators is subwavelenght but larger than a certain value, otherwise strong vertical coupling and mode splitting occur. The results can be extended to other frequency bands and might find application in unique resonant devices as a radio frequency (RF) antenna, filter and metasurface. PMID:27405356

  1. Realizing the Harper Hamiltonian and Spin-Orbit Coupling with Laser-Assisted Tunneling in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Miyake, Hiro; Burton, Cody; Chung, Woo Chang; Siviloglou, Georgios; Ketterle, Wolfgang

    2014-05-01

    The study of charged particles in a magnetic field has led to paradigm shifts in condensed matter physics including the discovery of topologically ordered states like the quantum Hall and fractional quantum Hall states. Quantum simulation of such systems using neutral atoms has drawn much interest recently in the atomic physics community due to the versatility and defect-free nature of such systems. We discuss our recent experimental realization of the Harper Hamiltonian and strong, uniform effective magnetic fields for neutral particles in an optical lattice. Additionally, our scheme represents a promising system to realize spin-orbit coupling and the quantum spin Hall states without flipping atomic spin states and thus without the intrinsic heating that comes with near-resonant Raman lasers. We point out that our scheme can be implemented all optically through the use of a period-tripling superlattice, offering faster switching times and more precise control than with magnetic field gradients. Finally, we show that this method is very general for engineering novel single particle spectra in an optical lattice and can be used to map out Hofstadter's butterfly.

  2. Fano resonant Ge2Sb2Te5 nanoparticles realize switchable lateral optical force

    NASA Astrophysics Data System (ADS)

    Cao, Tun; Mao, Libang; Gao, Dongliang; Ding, Weiqiang; Qiu, Cheng-Wei

    2016-03-01

    Sophisticated optical micromanipulation of small biomolecules usually relies on complex light, e.g., structured light, highly non-paraxial light, or chiral light. One emerging technique is to employ chiral light to drive the chiral nanoparticle along the direction perpendicular to the propagation of the light, i.e., the lateral optical force. Here, we theoretically study the lateral optical force exerted by a entirely Gaussian beam. For the very first time we demonstrate that the Fano resonances (FRs) of the Ge2Sb2Te5 (GST) phase-change nanoparticles encapsulated with Au shells could enable a conventional Gaussian laser to exert a lateral force on such a dielectric GST nanoparticle, attributed to the strongly asymmetric energy flow around the sphere in the dipole-quadrupole FRs. More interestingly, the direction of this lateral force could be reversible during the state transition (i.e., from amorphous to crystalline). By bonding small biomolecules to the outer surface of the phase-change nanoparticle, the particle behaves as a direction-selective vehicle to transport biomolecules along opposite directions, at pre-assessed states of the Ge2Sb2Te5 core correspondingly. Importantly, the origin of the reversal of the lateral optical force is further unveiled by the optical singularity of the Poynting vector. Our mechanism of tailoring the FRs of phase-change nanoparticles, not just limited to GST, may bring a new twist to optical micromanipulation and biomedical applications.Sophisticated optical micromanipulation of small biomolecules usually relies on complex light, e.g., structured light, highly non-paraxial light, or chiral light. One emerging technique is to employ chiral light to drive the chiral nanoparticle along the direction perpendicular to the propagation of the light, i.e., the lateral optical force. Here, we theoretically study the lateral optical force exerted by a entirely Gaussian beam. For the very first time we demonstrate that the Fano resonances

  3. Design and realization of highly stable porous silicon optical biosensor based on proteins from extremophiles

    NASA Astrophysics Data System (ADS)

    De Stefano, Luca; Rotiroti, Lucia; Rea, Ilaria; De Tommasi, Edoardo; Vitale, Annalisa; Rossi, Mosè; Rendina, Ivo; D'Auria, Sabato

    2007-05-01

    The interaction between an analyte and a biological recognition system is normally detected in biosensors by the transducer element which converts the molecular event into a measurable effect, such as an electrical or optical signal. Porous silicon microstructures have unique optical and morphological properties that can be exploited in biosensing. The large specific surface area (even greater than 500 m2/cm 3) and the resonant optical response allow detecting the effect of a change in refractive index of liquid solutions, which interact with the porous matrix, with very high sensitivity. Moreover, the porous silicon surface can be chemically modified to link the bioprobe which recognize the target analytes, in order to enhance the selectivity and specificity of the sensor device. The molecular probe we used was purified by an extremophile organism, Thermococcus litoralis: the protein is very stable in a wide range of temperatures even if with different behavior respect to the interaction with the ligand.

  4. Improved high order grating method to realize wide angle beam steering on liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Wang, Xiangru; Xiong, Caidong; Huang, Ziqiang; Du, Jing; Tan, Qinggui; Li, Man; Wu, Shuanghong; Qiu, Qi

    2015-11-01

    To achieve a wider scanning range of liquid crystal optical phased array (LC-OPA), in this paper, a novel method of improved high order grating (i-HOG) is proposed in one device without introducing any other devices. The method of i-HOG breaks through the traditional ideas of modulo 𝟐𝛑 phase and takes the fringe effect into account to have a multi order extension. Subsequently, the method is verified by numerical simulation showing that it realizes a scanning range of wider than 20 degrees and even wider.

  5. The research and realization of digital management platform for ultra-precision optical elements within life-cycle

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jian; Li, Lijuan; Zhou, Kun

    2014-08-01

    In order to solve the information fusion, process integration, collaborative design and manufacturing for ultra-precision optical elements within life-cycle management, this paper presents a digital management platform which is based on product data and business processes by adopting the modern manufacturing technique, information technique and modern management technique. The architecture and system integration of the digital management platform are discussed in this paper. The digital management platform can realize information sharing and interaction for information-flow, control-flow and value-stream from user's needs to offline in life-cycle, and it can also enhance process control, collaborative research and service ability of ultra-precision optical elements.

  6. Realization of all-optical logic gates through three core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Vasantha Jayakantha Raja, R.; Porsezian, K.

    2013-06-01

    We present the practical design of novel three core photonic crystal fiber (TPCF) for optical switching and logic operations by employing all optical control. To accomplish the proposed aim, we put forth two types of symmetrical TPCF designs, one with cores of planar geometry and the other with equilateral triangular geometry. The dynamics of the individual pulse parameters through the proposed geometries are analyzed numerically using split step Fourier method (SSFM). The steering characteristics of the coupler are demonstrated by the transmission curve. The truth tables expressing Boolean algebra for different logic operations are constructed from the transmission curves of the individual coupler configurations. Out of all configurations, we observe that the chloroform filled triangular core demonstrates all the logic operations namely OR, NOR, AND, NAND, X-OR, X-NOR and NOT with low input power. A figure of merit of logic gates (FOMEL) is also made to compare the performance of all the logic gates.

  7. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.

    PubMed

    Akamatsu, Daisuke; Nakajima, Yoshiaki; Inaba, Hajime; Hosaka, Kazumoto; Yasuda, Masami; Onae, Atsushi; Hong, Feng-Lei

    2012-07-01

    A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system. PMID:22772290

  8. Fiber Optic Tactical Local Network (FOTLAN)

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Hartmayer, R.; Wu, W. H.; Cassell, P.; Edgar, G.; Lambert, J.; Mancini, R.; Jeng, J.; Pardo, C.

    1991-01-01

    A 100 Mbit/s FDDI (fiber distributed data interface) network interface unit is described that supports real-time data, voice and video. Its high-speed interrupt-driven hardware architecture efficiently manages stream and packet data transfer to the FDDI network. Other enhancements include modular single-mode laser-diode fiber optic links to maximize node spacing, optic bypass switches for increased fault tolerance, and a hardware performance monitor to gather real-time network diagnostics.

  9. Protein phosphorylation: Localization in regenerating optic axons

    SciTech Connect

    Larrivee, D. )

    1990-09-01

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of (3H)proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the (3H)proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced (3H)proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins (3H)proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons.

  10. Experimental Realization of Plaquette Resonating Valence-Bond States with Ultracold Atoms in Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Nascimbène, S.; Chen, Y.-A.; Atala, M.; Aidelsburger, M.; Trotzky, S.; Paredes, B.; Bloch, I.

    2012-05-01

    The concept of valence-bond resonance plays a fundamental role in the theory of the chemical bond and is believed to lie at the heart of many-body quantum physical phenomena. Here we show direct experimental evidence of a time-resolved valence-bond quantum resonance with ultracold bosonic atoms in an optical lattice. By means of a superlattice structure we create a three-dimensional array of independent four-site plaquettes, which we can fully control and manipulate in parallel. Moreover, we show how small-scale plaquette resonating valence-bond (RVB) states with s- and d-wave symmetry can be created and characterized. We anticipate our findings to open the path towards the creation and analysis of many-body RVB states in ultracold atomic gases.

  11. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  12. Throughput compensation through optical proximity correction for realization of an extreme-ultraviolet pellicle

    NASA Astrophysics Data System (ADS)

    Ko, Ki-Ho; Mo, Soo-Yeon; Kim, In-Seon; Oh, Hye-Keun

    2016-03-01

    The absorption of extreme-ultraviolet (EUV) pellicle could be the most critical problem because the EUV source power is still not good enough for achieving mass production. We found that the transmission loss due to the EUV pellicle could be compensated through proper optical proximity correction (OPC) of a pellicled mask. Patterning results of OPCed masks with different transmission pellicles are shown for various 1D and 2D patterns. From the results, it is clearly shown that we do not need to increase the dose to avoid the throughput loss even if a pellicle which has 80 % one-pass transmission is used. Therefore, the EUV pellicle manufacturing would be much easier because we can use much thicker film with higher absorption.

  13. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2016-08-01

    This Letter demonstrates a single-step optical realization method for hexagonal and square lattice-based dual periodic motheye and gradient-index-array photonic structures over large areas. Computed phase mask of gradient interference patterns are used as inputs to a phase-only spatial light modulator (SLM), and the first-order diffracting beams are coherently superposed with the help of a 2f-2f Fourier filtering setup to avoid complex optical geometry for generation and control of individual beams. The simulated interference patterns are verified experimentally through a CMOS camera. The fabricated micro-structures on a positive photoresist are shown to have a major periodicity of 638 μm and minor periodicity of 25.2 μm, with the air hole diameter varying from 22.7 to 6.9 μm along the X and Y axes. The depth of the fabricated structure gradually varies from 4.203 μm at the center to 1.818 μm at the corner. These structures may be scaled down to submicron features that can show improved anti-reflection properties for solar energy harvesting and GRIN lens for optical wavelength region. PMID:27472623

  14. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    PubMed Central

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  15. Acousto-optical confirmation of the localized wave phenomena

    SciTech Connect

    Lewis, D.K.

    1992-09-09

    An acousto-optical measurement method is described which was used to conduct proof of principle experiments for a novel acoustic pulse system. The pulse theory, the Localized Wave pulse, is discussed and the system explained and described. The results of the experiments confirm the Localized Wave theory.

  16. In-vivo local determination of tissue optical properties

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Frederic; Piguet, D.; Marquet, Pierre; Gross, Jeffrey D.; Tromberg, Bruce J.; Depeursinge, Christian D.

    1997-12-01

    Local and superficial optical characterization of biological tissues can be achieved by measuring the spatially resolved diffuse reflectance at small source-detector separations. The sensitivity of the signal to the phase function, absorption and scattering coefficients were studied using Monte Carlo simulations. Measurements of spatially resolved reflectance were performed in vivo on human brain with source-detector separations from 0.3 to 1.5 mm. Distinct optical properties were found between normal cortex, astrocytoma of optic nerve and normal optic nerve.

  17. In-vivo local determination of tissue optical properties

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Frederic P.; Piguet, Dominique; Marquet, Pierre; Gross, Jeffrey D.; Tromberg, Bruce J.; Depeursinge, Christian D.

    1998-01-01

    Local and superficial optical characterization of biological tissues can be achieved by measuring the spatially resolved diffuse reflectance at small source-detector separations. The sensitivity of the signal to the phase function, absorption and scattering coefficients were studied using Monte Carlo simulations. Measurements of spatially resolved reflectance were performed in vivo on human brain with source-detector separations from 0.3 to 1.5 mm. Distinct optical properties were found between normal cortex, astrocytoma of optic nerve and normal optic nerve.

  18. Localized structures in dissipative media: from optics to plant ecology

    PubMed Central

    Tlidi, M.; Staliunas, K.; Panajotov, K.; Vladimirov, A. G.; Clerc, M. G.

    2014-01-01

    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. PMID:25246688

  19. Robust multi-scale superpixel classification for optic cup localization.

    PubMed

    Tan, Ngan-Meng; Xu, Yanwu; Goh, Wooi Boon; Liu, Jiang

    2015-03-01

    This paper presents an optimal model integration framework to robustly localize the optic cup in fundus images for glaucoma detection. This work is based on the existing superpixel classification approach and makes two major contributions. First, it addresses the issues of classification performance variations due to repeated random selection of training samples, and offers a better localization solution. Second, multiple superpixel resolutions are integrated and unified for better cup boundary adherence. Compared to the state-of-the-art intra-image learning approach, we demonstrate improvements in optic cup localization accuracy with full cup-to-disc ratio range, while incurring only minor increase in computing cost. PMID:25453464

  20. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  1. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  2. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  3. Optical cable fault locating using Brillouin optical time domain reflectometer and cable localized heating method

    NASA Astrophysics Data System (ADS)

    Lu, Y. G.; Zhang, X. P.; Dong, Y. M.; Wang, F.; Liu, Y. H.

    2007-07-01

    A novel optical cable fault location method, which is based on Brillouin optical time domain reflectometer (BOTDR) and cable localized heating, is proposed and demonstrated. In the method, a BOTDR apparatus is used to measure the optical loss and strain distribution along the fiber in an optical cable, and a heating device is used to heat the cable at its certain local site. Actual experimental results make it clear that the proposed method works effectively without complicated calculation. By means of the new method, we have successfully located the optical cable fault in the 60 km optical fiber composite power cable from Shanghai to Shengshi, Zhejiang. A fault location accuracy of 1 meter was achieved. The fault location uncertainty of the new optical cable fault location method is at least one order of magnitude smaller than that of the traditional OTDR method.

  4. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    NASA Astrophysics Data System (ADS)

    Tong, Quang Cong; Nguyen, Dam Thuy Trang; Do, Minh Thanh; Luong, Mai Hoang; Journet, Bernard; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-05-01

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  5. Optical probe, local fields, and Lorentz factor in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Blinov, L. M.; Lazarev, V. V.; Palto, S. P.; Yudin, S. G.

    2014-06-01

    An optical probe is suggested that allows measurements of the local field and Lorentz factor ( L) in ferroelectric medium. The copolymer poly (vinylidene fluoride/trifluoroethylene) is mixed with Pd-tetraphenylporphyrin (TPP-Pd) that has a very narrow absorption band. Thus, TPP-Pd serves as a molecular optical probe of the local field. During the switching of the electric field lower than the coercive one the factor L of an unpolarized ferroelectric mixture is found to be of about 1/3 that corresponds to the random distribution of molecular dipoles in the ferroelectric. With increasing field, the dipole orientation acquires a lower symmetry and L tends to zero as predicted by lattice sum calculations for vinylidene fluoride. The knowledge of the field dependence of L and the usage of the optical probe makes it possible to measure directly the local and macroscopic fields in the individual elements of various ferroelectric-dielectric heterostructures.

  6. Cooling and long-lived single-site localization of an ion in an optical lattice

    NASA Astrophysics Data System (ADS)

    Bylinskii, Alexei; Karpa, Leon; Gangloff, Dorian; Cetina, Marko; Vuletic, Vladan

    2013-05-01

    We report on localization of a continuously cooled single ion by a one-dimensional optical lattice. The ion is confined in a hybrid trap formed by an optical dipole potential produced by the standing-wave field of an optical cavity and a two-dimensional radio-frequency Paul trap transverse to the cavity axis. A lattice-assisted resolved Raman sideband process cools the ion to energies 20 times lower than the depth of the lattice potential, close to the vibrational ground state. We observe ion localization by measuring its displacement in the presence of a periodically driven electric field parallel to the lattice. We demonstrate full suppression of the driven ion motion due to optical localization to a single lattice site on a time-scale of 100 μs, which is 100 times longer than the vibrational period of the ion in the lattice site. At a longer time scale of 1 ms, driven motion is suppressed to 50%. The presented system paves the way to the realization of novel experiments studying classical and quantum friction models, and many-body physics with long-range interactions in periodic potentials. Army Research Office, National Science Foundation, National Science and Engineering Research Council of Canada, Alexander von Humboldt Foundation.

  7. Spread spectrum fiber-optic local area network using optical processing

    NASA Technical Reports Server (NTRS)

    Prucnal, P. R.; Santoro, M. A.; Fan, T. R.

    1986-01-01

    Spread spectrum code division multiple access (CDMA) allows asynchronous multiple access to a local area network (LAN) with no waiting. The additional bandwidth required by spread spectrum can be accommodated by using a fiber-optic channel and incoherent optical signal processing. New CDMA sequences are designed specifically for optical processing. It is shown that increasing the number of chips per bit, by using optical processing, allows an increase in capacity of a CDMA LAN. An experiment is performed demonstrating the performance of an optical CDMA LAN, operating at 100 Mbd with three users.

  8. An easy way to realize SPR aptasensor: A multimode plastic optical fiber platform for cancer biomarkers detection.

    PubMed

    Cennamo, Nunzio; Pesavento, Maria; Lunelli, Lorenzo; Vanzetti, Lia; Pederzolli, Cecilia; Zeni, Luigi; Pasquardini, Laura

    2015-08-01

    The introduction of new compact systems for sensitive, fast and simplified analysis is currently playing a substantial role in the development of point-of-care solutions aimed to assist both prognosis and diagnosis. Here we report a simple and low cost biosensor based on Surface Plasmon Resonance (SPR) taking advantage of a plastic optical fiber (POF) for the detection of Vascular endothelial growth factor (VEGF), selected as a circulating protein potentially associated with cancer. Our system is based onto two crucial aspects. By one hand, the functional layer which allows the transduction signal is based on DNA aptamers, short oligonucleotide sequences that bind to non-nucleic acid targets with high affinity and specificity. By the other hand, the light guiding structure is based on a POF with a planar gold layer as the sensing region, which is particularly suitable for bioreceptors implementation. The sensor revealed to be really useful in the interface characterization. The developed system is relatively easy to realize and could well address the development of a rapid, portable and low cost diagnostic platform, with a sensitivity in the nanomolar range. PMID:26048828

  9. Gateway design specification for fiber optic local area networks

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is a Design Specification for a gateway to interconnect fiber optic local area networks (LAN's). The internetworking protocols for a gateway device that will interconnect multiple local area networks are defined. This specification serves as input for preparation of detailed design specifications for the hardware and software of a gateway device. General characteristics to be incorporated in the gateway such as node address mapping, packet fragmentation, and gateway routing features are described.

  10. Optical superheterodyne receiver uses laser for local oscillator

    NASA Technical Reports Server (NTRS)

    Lucy, R. F.

    1966-01-01

    Optical superheterodyne receiver uses a laser coupled to a frequency translator to supply both the incident signal and local oscillator signal and thus permit reception of amplitude modulated video bandwidth signals through the atmosphere. This receiver is useful in scientific propagation experiments, tracking experiments, and communication experiments.

  11. Fibre Optics In A Multi-Star Wideband Local Network

    NASA Astrophysics Data System (ADS)

    Fox, J. R.

    1983-08-01

    Early experience has been gained with the switched-star type of network in the Fibrevision cable TV trial at Milton Keynes, and British Telecom are progressing towards a full-scale multi-star wideband local network. This paper discusses both the present and future use of fibre optics in this type of network.

  12. Localized biosensing with Topas microstructured polymer optical fiber.

    PubMed

    Emiliyanov, Grigoriy; Jensen, Jesper B; Bang, Ole; Hoiby, Poul E; Pedersen, Lars H; Kjaer, Erik M; Lindvold, Lars

    2007-03-01

    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may be activated on the inner side of the air holes in a predetermined section of the mPOF. The concept is demonstrated using a fluorescence-based method for selective detection of fluorophore-labeled antibodies. PMID:17392887

  13. Deploying Monitoring Trails for Fault Localization in All- Optical Networks and Radio-over-Fiber Passive Optical Networks

    NASA Astrophysics Data System (ADS)

    Maamoun, Khaled Mohamed

    Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman's Problem (CPP) solution and an adapted version of the Traveling Salesman's Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of

  14. Terabit Optical Local Area Networks for Multiprocessing Systems

    NASA Astrophysics Data System (ADS)

    Szymanski, Ted H.; Au, Albert; Lafrenière-Roula, Myriam; Tyan, Victor; Supmonchai, Boonchuay; Wong, James; Zerrouk, Belkacem; Obenaus, Stefan Thomas

    1998-01-01

    The design of a scalable optical local area network for multiprocessing systems is described. Each workstation has a parallel-fiber-ribbon optical link to a centralized complementary metal-oxide silicon (CMOS) switch core, implemented on a single compact printed circuit board (PCB). When the Motorola Optobus fiber technology is used, each workstation has a data bandwidth of 6.4 Gbits /s to the core. A centralized switch core interconnecting 32 workstations supports a 204-Gbit /s aggregate data bandwidth. The switch core is based on a conventional broadcast-and-select architecture, implemented with parallel CMOS integrated circuits (IC s). The switch core scales well; by incorporation of the CMOS optoelectronic IC s with optical input -output, the electrical core can be reduced to a single-chip optoelectronic IC with terabit capacities. A prototype of an optoelectronic switch core has been fabricated and is described. The appeal of the architecture includes its reliance on commercially available parallel-fiber technology, its reliance on the well-developed markets of local area networks and networks of workstations, and its smooth scalability from the electrical to optical domains as technology matures.

  15. Terabit optical local area networks for multiprocessing systems.

    PubMed

    Szymanski, T H; Au, A; Lafrenière-Roula, M; Tyan, V; Supmonchai, B; Wong, J; Zerrouk, B; Obenaus, S T

    1998-01-10

    The design of a scalable optical local area network formultiprocessing systems is described. Each workstation has aparallel-fiber-ribbon optical link to a centralized complementarymetal-oxide silicon (CMOS) switch core, implemented on a singlecompact printed circuit board (PCB). When the Motorola Optobusfiber technology is used, each workstation has a data bandwidth of 6.4Gbits/s to the core. A centralized switch core interconnecting 32workstations supports a 204-Gbit/s aggregate data bandwidth. Theswitch core is based on a conventional broadcast-and-selectarchitecture, implemented with parallel CMOS integrated circuits(IC's). The switch core scales well; by incorporation of theCMOS optoelectronic IC's with optical input-output, the electricalcore can be reduced to a single-chip optoelectronic IC with terabitcapacities. A prototype of an optoelectronic switch core has been fabricated and is described. The appeal of the architectureincludes its reliance on commercially available parallel-fibertechnology, its reliance on the well-developed markets of local areanetworks and networks of workstations, and its smooth scalability from the electrical to optical domains as technology matures. PMID:18268582

  16. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits.

    PubMed

    Yu, Longhai; Zheng, Jiajiu; Xu, Yang; Dai, Daoxin; He, Sailing

    2014-11-25

    Graphene is well-known as a two-dimensional sheet of carbon atoms arrayed in a honeycomb structure. It has some unique and fascinating properties, which are useful for realizing many optoelectronic devices and applications, including transistors, photodetectors, solar cells, and modulators. To enhance light-graphene interactions and take advantage of its properties, a promising approach is to combine a graphene sheet with optical waveguides, such as silicon nanophotonic wires considered in this paper. Here we report local and nonlocal optically induced transparency (OIT) effects in graphene-silicon hybrid nanophotonic integrated circuits. A low-power, continuous-wave laser is used as the pump light, and the power required for producing the OIT effect is as low as ∼0.1 mW. The corresponding power density is several orders lower than that needed for the previously reported saturated absorption effect in graphene, which implies a mechanism involving light absorption by the silicon and photocarrier transport through the silicon-graphene junction. The present OIT effect enables low power, all-optical, broadband control and sensing, modulation and switching locally and nonlocally. PMID:25372937

  17. Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Adhikari, S. K.

    2011-02-01

    By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a Bose-Einstein condensate [Roati , Nature (London)NATUAS0028-083610.1038/nature07071 453, 895 (2008)]. The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis. Where possible, the numerical results are shown to be in good agreement with the variational results.

  18. Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers

    DOEpatents

    Taylor, John S.; Folta, James A.; Montcalm, Claude

    2005-01-18

    Figure errors are corrected on optical or other precision surfaces by changing the local density of material in a zone at or near the surface. Optical surface height is correlated with the localized density of the material within the same region. A change in the height of the optical surface can then be caused by a change in the localized density of the material at or near the surface.

  19. Optic disk localization by a robust fusion method

    NASA Astrophysics Data System (ADS)

    Zhang, Jielin; Yin, Fengshou; Wong, Damon W. K.; Liu, Jiang; Baskaran, Mani; Cheng, Ching-Yu; Wong, Tien Yin

    2013-02-01

    The optic disk localization plays an important role in developing computer-aided diagnosis (CAD) systems for ocular diseases such as glaucoma, diabetic retinopathy and age-related macula degeneration. In this paper, we propose an intelligent fusion of methods for the localization of the optic disk in retinal fundus images. Three different approaches are developed to detect the location of the optic disk separately. The first method is the maximum vessel crossing method, which finds the region with the most number of blood vessel crossing points. The second one is the multichannel thresholding method, targeting the area with the highest intensity. The final method searches the vertical and horizontal region-of-interest separately on the basis of blood vessel structure and neighborhood entropy profile. Finally, these three methods are combined using an intelligent fusion method to improve the overall accuracy. The proposed algorithm was tested on the STARE database and the ORIGAlight database, each consisting of images with various pathologies. The preliminary result on the STARE database can achieve 81.5%, while a higher result of 99% can be obtained for the ORIGAlight database. The proposed method outperforms each individual approach and state-of-the-art method which utilizes an intensity-based approach. The result demonstrates a high potential for this method to be used in retinal CAD systems.

  20. Design and realization of test system for testing parallelism and jumpiness of optical axis of photoelectric equipment

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Qin, Shao-gang; Song, Chun-yan; Jiang, Yun-hong

    2014-09-01

    With the development of science and technology, photoelectric equipment comprises visible system, infrared system, laser system and so on, integration, information and complication are higher than past. Parallelism and jumpiness of optical axis are important performance of photoelectric equipment,directly affect aim, ranging, orientation and so on. Jumpiness of optical axis directly affect hit precision of accurate point damage weapon, but we lack the facility which is used for testing this performance. In this paper, test system which is used fo testing parallelism and jumpiness of optical axis is devised, accurate aim isn't necessary and data processing are digital in the course of testing parallelism, it can finish directly testing parallelism of multi-axes, aim axis and laser emission axis, parallelism of laser emission axis and laser receiving axis and first acuualizes jumpiness of optical axis of optical sighting device, it's a universal test system.

  1. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations.

    PubMed

    Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin

    2016-01-01

    In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies. PMID:27251026

  2. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin

    2016-06-01

    In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies.

  3. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations

    PubMed Central

    Li, Zhuo; Xu, Bingzheng; Liu, Liangliang; Xu, Jia; Chen, Chen; Gu, Changqing; Zhou, Yongjin

    2016-01-01

    In this work, we report the existence of spoof localized surface plasmons (spoof-LSPs) arising with closed high contrast gratings (HCGs) at deep subwavelength scales, another platform for field localization at microwave frequencies. The HCGs are in the form of a periodic array of radial dielectric blocks with high permittivity around a metal core supporting spoof-LSPs of transverse magnetic (TM) form. Simulation results validate the phenomenon and a metamaterial approach is also given to capture all the resonant features of this kind of spoof-LSPs. In addition, experimental verification of the existence of spoof-LSPs supported by a three dimensional (3D) HCGs resonance structure in the microwave regime is presented. This work expands the original spoof-LSPs theory and opens up a new avenue for obtaining resonance devices in the microwave frequencies. PMID:27251026

  4. Controlling the localization and migration of optical excitation

    NASA Astrophysics Data System (ADS)

    Andrews, David L.; Bradshaw, David S.

    2012-09-01

    possibilities for technical application is emerging. For example, applications can be envisaged for new forms of all-optical switching and transistor action. There is also interest in engaging with the interplay of optical excitation and local nanoscale force, exploiting local responses to changes in dispersion forces, accompanying molecular energy transfer.

  5. Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Wen, Jihong; Huang, Lingzhi; Wen, Xisen

    2014-01-01

    We present theoretical examination and experimental demonstration of locally resonant (LR) phononic plates consisting of a periodic array of beam-like resonators attached to a thin homogeneous plate. Such phononic plates feature unique wave physics due to the coexistence of localized resonance and structural periodicity. We demonstrate that a low-frequency complete band gap for flexural plate waves can be created in the proposed structure owing to the interaction between the localized resonant modes of the beam-like resonators and the flexural wave modes of the host plate. We show that the location and width of the complete band gap can be dramatically tuned by changing the properties of the beam-like resonators. To understand the opening mechanism and evolution behaviour of the complete band gap, some approximate but explicit models are provided and discussed. We further perform experimental measurements of a specimen fabricated by an array of double-stacked aluminum beam-like resonators attached to a thin aluminum plate with 5 cm structure periodicity. The experimental results evidence a complete band gap extending from 465 to 860 Hz, matching well with our theoretical prediction. The LR phononic plates proposed in this work can find potential applications in attenuation of low-frequency mechanical vibrations and insulation of low-frequency audible sound.

  6. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  7. Local measurement of optically induced photocurrent in semiconductor structures

    NASA Astrophysics Data System (ADS)

    Benesova, Marketa; Dobis, Pavel; Tomanek, Pavel; Uhdeova, Nadezda

    2003-07-01

    Photocurrent (PC) spectroscopic techniques have demonstrated to be helpful experimental method to investigate the local properties of bulk semiconductors, microstructures, surfaces and interfaces. We have measured locally induced PC of semiconductor quantum structures using a technique of reflection Scanning Near-field Optical Microscope (r-SNOM) in combination with Ti:Sapphire laser and tuning dye laser and with He-Ne laser. The r-SNOM employs an uncoated and/or Au-metalized single-mode fiber tip both in illumination and collection mode. Taking opportunity of the high lateral resolution of the microscope and combining it with fast micro-PL, it is possible to locate e.g. defects in a multiple quantum well grown by molecular beam epitaxy. Near-field characteristics of measured quantities are also discussed.

  8. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  9. Localization of cortical tissue optical changes during seizure activity in vivo with optical coherence tomography

    PubMed Central

    Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle

    2015-01-01

    Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382

  10. A heuristic approach to the realization of the wide-band optical diode effect in photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Khavasi, Amin; Rezaei, Mohsen; Fard, Ali P.; Mehrany, Khashayar

    2013-07-01

    In this paper a highly efficient optical diode is demonstrated in photonic crystal waveguides with broken spatial symmetry. The structure is made of isotropic linear materials and does not need high power optical beams or strong magnetic fields. While the proposed structure shows almost complete light transmission (>99%) in one direction, it blocks light transmission in the opposite direction. This unidirectional transmission is retained within a wide range of frequencies (>4% of central frequency). In order to achieve an optical diode effect, the optical mode of the waveguide is manipulated by designing an ultra-compact mode converter and an efficient mode filter. The dimensions of the proposed mode converter are less than two wavelengths long.

  11. Analysis of localized fringes in the holographic optical Schlieren system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1980-01-01

    The relation between localization of interference fringes in classical and holographic interferometry is reviewed and an application of holographic interferometry is considered for which the object is a transparent medium with nonhomogeneous refractive index. The technique is based on the analysis of the optical path length change of the object wave as it propagates through a transparent medium. Phase shifts due to variations of the speed of light within the medium give rise to an interference pattern. The resulting interferogram can be used to determine the physical properties of the medium or transparent object. Such properties include the mass density of fluids, electron densities of plasmas, the temperature of fluids, the chemical species concentration of fluids, and the state of stress in solids. The optical wave used can be either a simple plane or spherical wave, or it may be a complicated spatial wave scattered by a diffusing screen. The mathematical theory on the formation and analysis of localized fringes, the general theoretical concepts used, and a computer code for analysis are included along with the inversion of fringe order data.

  12. Design of a waveguide with optics axes tilted by 45° and realized by ion-exchange on glass

    NASA Astrophysics Data System (ADS)

    Jordan, Elodie; Ghibaudo, Elise; Bouchard, Aude; Blanc-Mignon, Marie-Françoise; Jamon, Damien; Royer, François; Broquin, Jean-Emmanuel

    2016-02-01

    The fabrication of on-chip optical isolators to protect integrated optical sources is one of the major challenges of research in integrated optics. Their operation principle is based on the control of the guided-wave polarization and the most common structures are composed of a polarization splitter, a non-reciprocal rotator based on the Faraday effect, and a reciprocal rotator. The reciprocal rotator is a device that rotates the wave polarization by 45°. This can be achieved by creating a relative phase shift between the waveguide's two polarization eigen states or by twisting its optics axis thanks to an appropriate shaping of its core. In this work, we propose the design and simulation of a waveguide with optics axes tilted by 45° fabricated by two cascaded field-assisted ion exchanges on a glass substrate and an encapsulation. The dependences of the proposed design on process time, temperature, applied voltage and photolithography over-etching are investigated. The final device exhibits a 45.1° rotation of its optical axes and less than 5% variation on the C+L telecommunication band.

  13. Local optical and electric characteristics of solar cells

    NASA Astrophysics Data System (ADS)

    Tománek, Pavel; Škarvada, Pavel; Grmela, Lubomír

    2009-10-01

    Today photovoltaic cells are divided into two principal types: higher-efficiency but quite expensive crystalline silicon solar cells (either monocrystalline or multicrystalline), and lower-cost thin-film solar cells, usually composed of amorphous silicon, polycrystalline silicon, cadmium telluride, or copper indium gallium diselenide. In both cases their operation is based on a large-area pn junction. Their efficiency is generally limited by defects and impurities, which include grain boundaries, dislocations, and transition metals. A wide variety of defects can be formed in a silicon crystals during and after their growth. Some of defects arise on cell surface during its life-time such as scratches. These surface damages are origin of lower light-trapping efficiency. Many of defects do not cause cell malfunction, but generate local microplasmas, which are conductive and hence reduce overall cell efficiency. A number of defects of various kinds, some of them being of local character only, can not be observed with classical methods in such large-area junctions. Therefore a use of more precise scanning probe microscopes represents a novel approach to surface investigations with superresolving features. The paper presents results of experimental study of high resolution map of induced photocurrent and local electroluminescence in monocrystalline silicon solar cells. Photovoltaic solar cells are evaluated by I-V electric measurement, Far-field and Near-field Optical Beam Induced photocurrent (NOBIC), as well as by Scanning Near-field Optical Microscope (SNOM) topography and reflection. The correlation between reflection and transport characteristics indicates power of this diagnostic tool.

  14. Shared Access Optical Networks For The Local Loop

    NASA Astrophysics Data System (ADS)

    Payne, D. B.; Stern, J. R.

    1988-09-01

    The application of single mode fibre to the local network environment opens up major opportunities for service provision via shared access networks. Previous technologies (copper pair, coaxial cable and multimode fibre) had bandwidth limitation problems that placed a severe restriction on both the level of resource sharing and the service package that could be delivered. The enormous bandwidth capability of single mode fibre can be used to provide significant resource sharing without incurring fundamental restrictions on the capacity of the services carried. The paper briefly outlines some of the activities within British Telecom on shared access systems. Early systems concepts were either based on fibre feeders to remote multiplexers for the delivery of telephony and data services to large customers or the use of advanced wavelength multiplexing techniques over passive optical networks for the transmission of wideband services to business and residential customers. Recently activity has concentrated on a passive optical network that shows good potential for the economic provision of telephony services. The structure of the network allows the later addition of broadband services via additional wavelengths without disturbing existing telephony/data customers. The basic network has a fibre feeder from the exchange to passive optical splitters housed at the Cabinet and Distribution Points (DP). Each customer receives a fibre from DP and via this a TDM multiplex broadcast from the exchange which carries the customer's traffic. The customer equipment accesses the time slots destined for the customer and delivers the data via a suitable interface to provide the services required. Customers transmit back to the exchange in a time multiplex synchronised by a ranging protocol that sets an appropriate delay in the customer equipment to avoid collisions at the optical combiners in the DPs and Cabinet. Present studies are considering a total optical split of 128 ways with a

  15. Miniature Schwarzschild objective as a micro-optical component free of main aberrations: concept, design, and first realization with silicon-glass micromachining.

    PubMed

    Baranski, Maciej; Passilly, Nicolas; Bargiel, Sylwester; Froehly, Luc; Gorecki, Christophe

    2016-04-01

    This paper presents the conception of a new micro-optical component fabricated within the wafer-level approach: a micromachined reflective objective, the so-called micro-Schwarzschild objective, characterized by superior optical performances than widespread microlenses. The system, made of two vertically integrated mirrors, works in transmission similarly as microlenses. While the specific geometric configuration of the two-mirrors allows elimination of most common optical aberrations, the reflective architecture provides inherent achromaticity. This paper presents in detail the optical design and analyzes fabrication tolerances. It also describes a fabrication flow chart based on silicon micromachining done at the wafer level that could allow production of thousands of such micro-optical devices within a single fabrication run. The realized prototype employs the two-step KOH etching process to generate the micromirror pairs followed by glass reflow for the secondary mirror generation and selective metallic deposition. Despite an insufficient mirror quality attributed to this specific silicon etching technique and highlighted by the reflective configuration, the objective fabrication in terms of alignment, bonding, and coating is shown as feasible. PMID:27139684

  16. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  17. Local Optical Probe of Motion and Stress in a NEMS

    NASA Astrophysics Data System (ADS)

    Reserbat-Plantey, Antoine; Marty, Laëtitia; Arcizet, Olivier; Bendiab, Nedjma; Bouchiat, Vincent

    2012-02-01

    Nanoelectromechanical systems (NEMSs) are emerging nanoscale elements at the crossroads between mechanics, optics and electronics, with significant potential for actuation and sensing applications. The reduction of dimensions compared to their micronic counterparts brings new effects including sensitivity to very low mass, resonant frequencies in the radiofrequency range, mechanical non-linearities and observation of quantum mechanical effects. An important issue of NEMS is the understanding of fundamental physical properties conditioning dissipation mechanisms, known to limit mechanical quality factors and to induce aging due to material degradation. There is a need for detection methods tailored for these systems which allow probing motion and stress at the nanometer scale. Here, we show a non-invasive local optical probe for the quantitative measurement of motion and stress within a multilayer graphene NEMS provided by a combination of Fizeau interferences, Raman spectroscopy and electrostatically actuated mirror. Interferometry provides a calibrated measurement of the motion, resulting from an actuation ranging from a quasi-static load up to the mechanical resonance while Raman spectroscopy allows a purely spectral detection of mechanical resonance at the nanoscale. Such spectroscopic detection reveals the coupling between a strained nano-resonator and the energy of an inelastically scattered photon, and thus offers a new approach for optomechanics.

  18. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  19. Optical Sensing and Trapping Based on Localized Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  20. Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    PubMed Central

    2011-01-01

    Background The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging. Method and Materials We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion. Results According to optical measurements, the size of intra-fraction motion was (median ± quartile) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly. Conclusion Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques. PMID:21496255

  1. Magnetizm Localization and Hole Localization in Fermionic Atoms Loaded on Optical Lattice

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Yamada, Susumu; Taniguchi, Nobuhiko; Machida, Masahiko

    2009-03-01

    In order to study an interplay of disorder, correlation, and spin imbalance on antiferromagnetism, we systematically explore the ground state of one-dimensional spin-imbalanced Fermionic atoms loaded on an optical lattice by using the density-matrix renormalization group method [1]. We find that disorders localize the antiferromagnetic spin density wave induced by imbalanced fermions and the increase of the disorder magnitude shrinks the areas of the localized antiferromagnetized regions. Moreover, the antiferromagnetism finally disappears above a large disorder. We also study hole doped cases [2]. Concentrating on the doped-hole density profile, we find in a large U/t regime that the clean system exhibits a simple fluid-like behavior whereas finite disorders create locally Mott regions which expand their area with increasing the disorder strength contrary to the conventional sense. References [1] M. Okumura, S. Yamada, N. Taniguchi, and M. Machida, arXiv:0810:3953. [2] M. Okumura, S. Yamada, N. Taniguchi, and M. Machida, Phys. Rev. Lett. 101 016407 (2008).

  2. Locally Controlled Deeply Saturated Fiber Optic Parametric Amplifiers

    NASA Astrophysics Data System (ADS)

    Nissim, Ron Reuven

    A new class of highly efficient Optical Parametric Amplifiers (OPA) is explored in this dissertation, which have the potential to reduce the power requirement on the pump and enable new functionalities. This originates from the simple notion that figure of merit (FoM) of an OPA is proportional to the product of the pump power and amplifier's length and nonlinearity. Silica fibers have been developed for over five decades and offer unparalleled transparency. By merely extending the fiber, i.e. the amplifier's length, a high FoM amplifier can be formed while keeping the pump at a moderate, sub-Watt power level. Unfortunately, optical fibers are inherently non-uniform. Their core size fluctuates along the fiber on a nanometer scale which is on the order of the fiber's molecular constituents. It is currently established that the performance of a fiber-based OPA (FOPA) is dictated by its stochastic nature. In fact, given a moderate pump power level, the highly efficient OPA will be required to maintain a strict phase matching condition across hundreds of meters. Facing this challenge, this dissertation focuses on a locally-controlled, high FoM FOPA. A high FoM FOPA operates in the deeply saturated regime in which a weak signal saturates the amplifier and depletes the pump power, effectively generating an inverse response of the pump output power to the signal input power. Given FOPAs' inhomogeneous nature, the performance limit of deeply saturated FOPAs is studied. So far, FOPAs have been commonly treated as a uniform entity; however, this study discovers unique features of the system which originate from and are strongly influenced by the fiber's inhomogeneous nature. One major example is the non-reciprocal response of deeply saturated FOPAs. It was found that deeply saturated FOPAs perform very highly, as the pump can respond to a rapidly varying (sub-THz) weak (sub-muW) signal. This is a novel method which obtained orders of magnitude improvement over current

  3. Nonlinear optical methods for cellular imaging and localization.

    PubMed

    McVey, A; Crain, J

    2014-07-01

    Of all the ways in which complex materials (including many biological systems) can be explored, imaging is perhaps the most powerful because delivering high information content directly. This is particular relevant in aspects of cellular localization where the physical proximity of molecules is crucial in biochemical processes. A great deal of effort in imaging has been spent on enabling chemically selective imaging so that only specific features are revealed. This is almost always achieved by adding fluorescent chemical labels to specific molecules. Under appropriate illumination conditions only the molecules (via their labels) will be visible. The technique is simple and elegant but does suffer from fundamental limitations: (1) the fluorescent labels may fade when illuminated (a phenomenon called photobleaching) thereby constantly decreasing signal contrast over the course of image acquisition. To combat photobleaching one must reduce observation times or apply unfavourably low excitation levels all of which reduce the information content of images; (2) the fluorescent species may be deactivated by various environmental factors (the general term is fluorescence quenching); (3) the presence of fluorescent labels may introduce unexpected complications or may interfere with processes of interest (4) Some molecules of interest cannot be labelled. In these circumstances we require a fundamentally different strategy. One of the most promising alternative is based on a technique called Coherent Anti-Stokes Raman scattering (CARS). CARS is a fundamentally more complex process than is fluorescence and the experimental procedures and optical systems required to deliver high quality CARS images are intricate. However, the rewards are correspondingly very high: CARS probes the chemically distinct vibrations of the constituent molecules in a complex system and is therefore also chemically selective as are fluorescence-based methods. Moreover,the potentially severe problems of

  4. Optical tracking of local surface wave for skin viscoelasticity.

    PubMed

    Guan, Yubo; Lu, Mingzhu; Shen, Zhilong; Wan, Mingxi

    2014-06-01

    Rapid and effective determination of biomechanical properties is important in examining and diagnosing skin thermal injury. Among the methods used, viscoelasticity quantification is one of the most effective methods in determining such properties. This study aims to rapidly determine skin viscoelasticity by optically tracking the local surface wave. New elastic and viscous coefficients were proposed to indicate skin viscoelasticity based on a single impulse response of the skin. Experiments were performed using fresh porcine skin samples. Surface wave was generated in a single impulse using a vibrator with a ball-tipped device and was detected using a laser Doppler vibrometer. The motions along the depth direction were monitored using an ultrasound system. The ultrasound monitoring results indicated the multi-layered viscoelasticity of the epidermis and dermis. The viscoelastic coefficients from four healthy samples show a potential viscoelasticity variation of porcine skin. In one sample, the two coefficients were evidently higher than those in a healthy area if the skin was slightly burned. These results indicate that the proposed method is sensitive, effective, and quick in determining skin viscoelasticity. PMID:24674744

  5. Localized immunoassay in flow-through optical microbubble resonator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berneschi, Simone; Baldini, Francesco; Cosci, Alessandro; Cosi, Franco; Farnesi, Daniele; Nunzi Conti, Gualtiero; Tombelli, Sara; Trono, Cosimo; Pelli, Stefano; Giannetti, Ambra

    2016-05-01

    The integration of the Whispering Gallery Modes (WGMs) resonators in a microfluidics platform represents an important feature towards the realization of a compact high performance label-free biosensor. These hollow resonant microstructures present the advantage to combine the WGM resonator properties with the intrinsic capability of integrated microfluidics. In this sense, optical microbubble resonators (OMBRs), intended as a hollow core spherical bulge realized in a glass microcapillary by a suitable fabrication process, with their high Q factors (< 107 in air) well satisfy this requirement. Their operation is based on the fact that, given a small enough wall thickness of the bubble, the WGM optical field extends on both sides of the wall, so that it is possible to couple light into the resonator from an outer waveguide, and at the same time to have interaction of the WGM field with the inner fluid and analyte. The biosensing mechanism of these devices is based on the WGMs morphological dependence: any change on the OMBR inner surface, due to some chemical and/or biochemical binding, causes a shift of the resonance position and reduces the Q factor of the OMBR. By measuring these changes, important information about the sensing capability of the device can be obtained. In order to develop an OMBR based biosensor and optimize its performance, a crucial step is represented by its chemical/biochemical functionalization. Here we present a novel technique able to guarantee that the chemical interaction occurs in the OMBR inner wall, leaving the other microfluidic parts completely inert from a biochemical point of view. The method is based on UV photoactivation, which allows to localize the biolayers only in correspondence of the OMBR inner wall. As a proof of concept, an immunoassay based on rabbit IgG/anti rabbit-IgG interaction was performed and. The anti rabbit-IgG antibody was labelled with Alexa Fluor 488 to verify, by a fluorescence characterization, the goodness

  6. Analysis of the Localization of Michelson Interferometer Fringes Using Fourier Optics and Temporal Coherence

    ERIC Educational Resources Information Center

    Narayanamurthy, C. S.

    2009-01-01

    Fringes formed in a Michelson interferometer never localize in any plane, in the detector plane and in the localization plane. Instead, the fringes are assumed to localize at infinity. Except for some explanation in "Principles of Optics" by Born and Wolf (1964 (New York: Macmillan)), the fringe localization phenomena of Michelson's interferometer…

  7. Topology, localization, and quantum information in atomic, molecular and optical systems

    NASA Astrophysics Data System (ADS)

    Yao, Norman Ying

    The scientific interface between atomic, molecular and optical (AMO) physics, condensed matter, and quantum information science has recently led to the development of new insights and tools that bridge the gap between macroscopic quantum behavior and detailed microscopic intuition. While the dialogue between these fields has sharpened our understanding of quantum theory, it has also raised a bevy of new questions regarding the out-of-equilibrium dynamics and control of many-body systems. This thesis is motivated by experimental advances that make it possible to produce and probe isolated, strongly interacting ensembles of disordered particles, as found in systems ranging from trapped ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state. The presence of strong interactions in these systems underlies their potential for exploring correlated many-body physics and this thesis presents recent results on realizing fractionalization and localization. From a complementary perspective, the controlled manipulation of individual quanta can also enable the bottom-up construction of quantum devices. To this end, this thesis also describes blueprints for a room-temperature quantum computer, quantum credit cards and nanoscale quantum thermometry.

  8. Realization of single-phase BaSi2 films by vacuum evaporation with suitable optical properties and carrier lifetime for solar cell applications

    NASA Astrophysics Data System (ADS)

    Hara, Kosuke O.; Nakagawa, Yoshihiko; Suemasu, Takashi; Usami, Noritaka

    2015-07-01

    We have realized BaSi2 films by a simple vacuum evaporation technique for solar cell applications. X-ray diffraction analysis shows that single-phase BaSi2 films are formed on alkali-free glass substrates at 500 and 600 °C while impurity phases coexist on quartz or soda-lime glass substrates or at a substrate temperature of 400 °C. The mechanism of film growth is discussed by analyzing the residue on the evaporation boat. An issue on the fabricated films is cracking due to thermal mismatch, as observed by secondary electron microscopy. Optical characterizations by transmittance and reflectance spectroscopy show that the evaporated films have high absorption coefficients, reaching 2 × 104 cm-1 for a photon energy of 1.5 eV, and have indirect absorption edges of 1.14-1.21 eV, which are suitable for solar cells. The microwave-detected photoconductivity decay measurement reveals that the carrier lifetime is approximately 0.027 µs, corresponding to the diffusion length of 0.84 µm, which suggests the potential effective usage of photoexcited carriers.

  9. Bose-Hubbard model with ferromagnetic-like occupation-parity couplings and its realization in imbalanced fermionic superfluids in tubular optical lattices

    NASA Astrophysics Data System (ADS)

    Sun, Kuei; Bolech, Carlos J.

    2014-03-01

    We study a Bose-Hubbard model with a nearest-neighbor occupation-parity coupling that can be considered as energy cost for a domain-wall link between two adjacent sites if their occupation parity is different (one even and the other odd). Our analysis shows that the parity coupling has non-trivial interplay with the tunneling and onsite repulsion, resulting in several exotic quantum phases. For example, a uniform system with zero tunneling can exhibit a pair-liquid phase or phase separation of two Mott insulators, while a trapped system with finite tunneling shows a wedding-cake structure of only even-filling Mott insulators or a structure of central regular superfluid and outer pair superfluid. In addition, we find similar physics in a recent experimental system of imbalanced Fermi gases in optical lattices producing a 2D array of 1D tubes, with the presence of an oscillatory superfluid order parameter (the Fulde-Ferrell-Larkin-Ovchinnikov or FFLO state). We show that the unpaired majority fermions on each tube have a bosonic behavior with cross-tube tunneling, on-tube repulsion, and interplay with the spatial parity of the FFLO order that contributes to the occupation-parity coupling. Therefore, such system provides a realization of our model in two dimensions. Supported by the DARPA-ARO Award No. W911NF-07-1-0464 and by the University of Cincinnati.

  10. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    SciTech Connect

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  11. Optical Detection of Local Electric Field Dynamics in Solutions by Waveguide-integrated Graphene Device

    NASA Astrophysics Data System (ADS)

    Horng, Jason; Balch, Halleh; Feng Wang Team

    The spatio-temporal dynamics of local electric fields in ionic solutions plays a central role in various chemical and biological processes ranging from batteries technologies to neuron signaling. A non-invasive, precise detection scheme for measuring local electric fields dynamics has long been sought for. Here, we report a sensitive, high-speed, high spatial resolution optical imaging method for local electric fields based on the unique optoelectronic properties of graphene. With enhancement from a waveguide involving critical coupling concept, we show that our graphene optical sensor provides an ideal platform for studying dynamics of local electric field fluctuations in different nonequilibrium solutions.

  12. Realization of Hardy’s thought experiment using classical light

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong; Sun, Yifan; Song, Xinbing; Zhang, Xiangdong

    2016-09-01

    We report the realization of Hardy’s thought experiment in classical optical systems. Two different classical optical experiments are implemented. One is based on orbital angular momentum and polarization correlation in a classical optical beam, and the other is based on non-local classical correlation from two separated classical optical beams. All experimental results show that they are analogous to Hardy’s paradox experiments. This means that Hardy’s non-locality proof without inequalities, which is usually used in a quantum system, can also be achieved in classical optical systems.

  13. Fundus optic disc localization and segmentation method based on phase congruency.

    PubMed

    Geng, Lei; Shao, Yi-Ting; Xiao, Zhi-Tao; Zhang, Fang; Wu, Jun; Li, Min; Shan, Chun-Yan

    2014-01-01

    It has been demonstrated that shape, area and depth of the optic disc are relevant indices of diabetic retinopathy. In this paper, we present a new fundus optic disc localization and segmentation method based on phase congruency (PC). Firstly, in order to highlight the optic disc, channel images with the highest contrast between optic disc and background are selected in LAB, YUV, YIQ and HSV spaces respectively. Secondly, with the use of PC, features of four selected channel images can be extracted. Multiplication operation is then used to enhance PC detection results. Thirdly, window scanning and gray accumulating are utilized to locate the optic disc. Finally, iterative OTSU automatic threshold segmentation and Hough transform are performed on location images, before the final optic disc segmentation result can be obtained. The experimental results showed that the proposed method can effectively and accurately perform optic disc location and segmentation. PMID:25227031

  14. Research in high speed fiber optics local area networks

    NASA Astrophysics Data System (ADS)

    Tobagi, F. A.

    1986-02-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  16. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  17. Spatiotemporal localized modes in PT-symmetric optical media

    SciTech Connect

    Wang, Yue-Yue; Dai, Chao-Qing Wang, Xiao-Gang

    2014-09-15

    We firstly obtain spatiotemporal localized mode solutions of a (3+1)-dimensional nonlinear Schrödinger equation in PT-symmetric potentials, and then discuss the linear stability of LMs, which are also tested by means of direct simulations. Moreover, phase switches and transverse power-flow density associated with these localized modes have also been examined. At last, we investigate the dynamical behaviors of spatiotemporal LMs in three kinds of inhomogeneous media. - Highlights: • Spatiotemporal LMs of a (3+1)-dimensional NLSE in PT-symmetric potentials are obtained. • Phase switches and transverse power-flow density of LM are examined. • Dynamical behaviors of LMs in three kinds of inhomogeneous media are studied.

  18. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  19. Delivery of video-on-demand services using local storages within passive optical networks.

    PubMed

    Abeywickrama, Sandu; Wong, Elaine

    2013-01-28

    At present, distributed storage systems have been widely studied to alleviate Internet traffic build-up caused by high-bandwidth, on-demand applications. Distributed storage arrays located locally within the passive optical network were previously proposed to deliver Video-on-Demand services. As an added feature, a popularity-aware caching algorithm was also proposed to dynamically maintain the most popular videos in the storage arrays of such local storages. In this paper, we present a new dynamic bandwidth allocation algorithm to improve Video-on-Demand services over passive optical networks using local storages. The algorithm exploits the use of standard control packets to reduce the time taken for the initial request communication between the customer and the central office, and to maintain the set of popular movies in the local storage. We conduct packet level simulations to perform a comparative analysis of the Quality-of-Service attributes between two passive optical networks, namely the conventional passive optical network and one that is equipped with a local storage. Results from our analysis highlight that strategic placement of a local storage inside the network enables the services to be delivered with improved Quality-of-Service to the customer. We further formulate power consumption models of both architectures to examine the trade-off between enhanced Quality-of-Service performance versus the increased power requirement from implementing a local storage within the network. PMID:23389189

  20. High speed fiber optics local area networks: Design and implementation

    NASA Astrophysics Data System (ADS)

    Tobagi, Fouad A.

    1988-09-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  1. Free-space optical technology and distribution architecture for broadband metro and local services

    NASA Astrophysics Data System (ADS)

    Dodley, J. P.; Britz, David M.; Bowen, D. J.; Lundgren, Carl W.

    2001-02-01

    12 This paper addresses the hardware and operational requirements for broadband metro and local services using line of sight wireless Free Space Optical Communication (FSOC) optical links. The primary considerations for successful optical wireless service provisions include link availability, type of service and integration into existing fiber optic networks. A comprehensive link analysis for broadband access services is presented. This paper addresses FSOC critical atmospheric transmission impairments and describes one possible FSOC/network fiber optic interface and routing scenario. This paper will also detail methods to restor FSOC service links that have failed due to atmospheric impairments. This paper will detail the use of secondary radio (mm wave or ISM band radio) link architectures to provide critical transmission back-up for data, emergency and voice call services. An FSOC back-up link for existing millimeter-wave radio local services is also discussed. A co-operative network of FSOC links is discussed for achieving availability requirements for metro and local distribution services. This paper also describes one possible rooftop routing scenario using optical cross- connect architectures located at each node of the local FSOC access network. Rooftop routing will utilize the technology flexibility and system redundancy described above to provide high `five nines' metro service availability. This paper will also describe a proposed FSOC test installation to study link architectures, performance of such links, and vendor product interface and evaluation.

  2. The local density of optical states of a metasurface

    PubMed Central

    Lunnemann, Per; Koenderink, A. Femius

    2016-01-01

    While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice. PMID:26868601

  3. The local density of optical states of a metasurface.

    PubMed

    Lunnemann, Per; Koenderink, A Femius

    2016-01-01

    While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice. PMID:26868601

  4. The local density of optical states of a metasurface

    NASA Astrophysics Data System (ADS)

    Lunnemann, Per; Koenderink, A. Femius

    2016-02-01

    While metamaterials are often desirable for near-field functions, such as perfect lensing, or cloaking, they are often quantified by their response to plane waves from the far field. Here, we present a theoretical analysis of the local density of states near lattices of discrete magnetic scatterers, i.e., the response to near field excitation by a point source. Based on a pointdipole theory using Ewald summation and an array scanning method, we can swiftly and semi-analytically evaluate the local density of states (LDOS) for magnetoelectric point sources in front of an infinite two-dimensional (2D) lattice composed of arbitrary magnetoelectric dipole scatterers. The method takes into account radiation damping as well as all retarded electrodynamic interactions in a self-consistent manner. We show that a lattice of magnetic scatterers evidences characteristic Drexhage oscillations. However, the oscillations are phase shifted relative to the electrically scattering lattice consistent with the difference expected for reflection off homogeneous magnetic respectively electric mirrors. Furthermore, we identify in which source-surface separation regimes the metasurface may be treated as a homogeneous interface, and in which homogenization fails. A strong frequency and in-plane position dependence of the LDOS close to the lattice reveals coupling to guided modes supported by the lattice.

  5. Fast localization of optic disc and fovea in retinal images for eye disease screening

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  6. Developing interface localized liquid dielectrophoresis for optical applications

    NASA Astrophysics Data System (ADS)

    McHale, Glen; Brown, Carl V.; Newton, Michael I.; Wells, Gary G.; Sampara, Naresh

    2012-11-01

    Electrowetting charges the solid-liquid interface to change the contact area of a droplet of a conducting liquid. It is a powerful technique used to create variable focus liquid lenses, electronic paper and other devices, but it depends upon ions within the liquid. Liquid dielectrophoresis (L-DEP) is a bulk force acting on the dipoles throughout a dielectric liquid and is not normally considered to be a localized effect acting at the interface between the liquid and a solid or other fluid. In this work, we show theoretically how non-uniform electric fields generated by interdigitated electrodes can effectively convert L-DEP into an interface localized form. We show that for droplets of sufficient thickness, the change in the cosine of the contact angle is proportional to the square of the applied voltage and so obeys a similar equation to that for electrowetting - this we call dielectrowetting. However, a major difference to electrowetting is that the strength of the effect is controlled by the electrode spacing and the liquid permittivity rather than the properties of an insulator in a sandwich structure. Experimentally, we show that that this dielectrowetting equation accurately describes the contact angle of a droplet of oil viewed across parallel interdigitated electrodes. Importantly, the induced spreading can be complete, such that contact angle saturation does not occur. We then show that for thin films, L-DEP can shape the liquid-air interface creating a spatially periodic wrinkle and that such a wrinkle can be used to create a voltage programmable phase diffraction grating.

  7. Theoretical modeling of a Localized Surface Plasmon Resonance (LSPR) based fiber optic temperature sensor

    NASA Astrophysics Data System (ADS)

    Algorri, J. F.; García-Cámara, B.; García-García, A.; Urruchi, V.; Sánchez-Pena, J. M.

    2014-05-01

    A localized surface plasmon resonance based fiber optic sensor for temperature sensing has been analyzed theoretically. The effects of the size of the spherical metal nanoparticle on the performance of the sensor have been studied in detail. The high sensitivity of localized surface plasmon resonances to refraction index changes, in collaboration with the high thermo-optic coefficients of Liquid Crystal materials, has result in a fiber optical sensor with high temperature sensitivity. This sensitivity has been demonstrated to be dependent on nanoparticle size. Maximum sensitivities of 4nm/°C can be obtained for some specific temperature ranges. The proposed sensor will be low cost, and will have all the typical advantages of fiber optic sensors.

  8. Phase shifts in precision atom interferometry due to the localization of atoms and optical fields

    SciTech Connect

    Wicht, A.; Sarajlic, E.; Hensley, J.M.; Chu, S.

    2005-08-15

    We discuss details of momentum transfer in the interaction between localized atoms and localized optical fields which are relevant to precision atom interferometry. Specifically, we consider a {lambda}-type atom coherently driven between its ground states by a bichromatic optical field. We assume that the excited state can be eliminated adiabatically from the time evolution. It is shown that the average recoil momentum is given by the phase gradient of the two-photon field at the 'position' of the atom, provided that the optical field can be described by a function which is separable in position and time and that the atomic wave function is symmetric and well localized within the optical field envelope. The result does not require the optical fields to have a Gaussian spatial dependence. Our discussion provides the basis for the analysis of systematic errors in precision atom interferometry arising from optical wave-front curvature, wave-front distortion, and the Gouy phase shift of Gaussian beams. We apply our result to the atom interferometer experiment of Chu and co-workers which measures the fine-structure constant.

  9. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  10. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    NASA Astrophysics Data System (ADS)

    Ishii, Satoshi; Narimanov, Evgenii

    2015-12-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites.

  11. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    PubMed Central

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  12. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  13. Observations of regional and local variability in the optical properties of maritime clouds

    SciTech Connect

    White, A.B.

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  14. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials.

    PubMed

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  15. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes.

    PubMed

    Mor, Flavio M; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-28

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λ(em) = 532 nm) at half the excitation wavelength (λ(ex) = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET). PMID:26956197

  16. Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob; Wardlaw, Michael

    2008-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.

  17. Photonic nanojets as a versatile optical tool for wave super-localization

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.; Panina, E. K.

    2016-08-01

    The dimensional parameters and intensity of localized light structures (area "photonic nanojet"—PNJ) formed in the near field scattering of the optical wave by dielectric micron particles are studied. The difference between the PNJ characteristics of homogeneous quartz microparticles of different spatial shape and orientation are shown.

  18. Effects of optical attenuation and consumption of a photobleaching initiator on local initiation rates in photopolymerizations.

    SciTech Connect

    Terrones, Guillermo ); Pearlstein, Arne J.

    2000-11-01

    Optical attenuation is important in many photopolymerization applications. For a photobleaching initiator, we develop an unsteady one-dimensional model accounting for initiator consumption and light intensity variation, and derive relationships for the spatial and temporal variation of the local initiator concentration and initiation rate.

  19. Suppression of ion transport due to long-lived subwavelength localization by an optical lattice.

    PubMed

    Karpa, Leon; Bylinskii, Alexei; Gangloff, Dorian; Cetina, Marko; Vuletić, Vladan

    2013-10-18

    We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number =(0.1±0.1) along the optical lattice. We measure the average position of a periodically driven ion with a resolution down to λ/40, and demonstrate localization to a single lattice site for up to 10 ms. This opens new possibilities for studying many-body systems with long-range interactions in periodic potentials, as well as fundamental models of friction. PMID:24182262

  20. Suppression of Ion Transport due to Long-Lived Subwavelength Localization by an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Karpa, Leon; Bylinskii, Alexei; Gangloff, Dorian; Cetina, Marko; Vuletić, Vladan

    2013-10-01

    We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number ⟨n⟩=(0.1±0.1) along the optical lattice. We measure the average position of a periodically driven ion with a resolution down to λ/40, and demonstrate localization to a single lattice site for up to 10 ms. This opens new possibilities for studying many-body systems with long-range interactions in periodic potentials, as well as fundamental models of friction.

  1. Optical memory using localized photoinduced anisotropy in a synthetic dye-polymer

    NASA Astrophysics Data System (ADS)

    Kuo, Chai-Pei

    1991-07-01

    We present a read/write/erase all-optical memory that fully utilizes local photoinduced birefringence in a synthetic dye-polymer. Memory reading is based on an optical vector-matrix inner product. The intrinsic chromatic characteristics of the proposed memory storage medium is the key to a novel form of nonmechanical parallel memory storage. Green light at 514.5 nm writes a spatial pattern and read light at 632 nm reads it. The dynamic memory material is an improved polyvinyl-alcohol (PVA) polymer film doped with Azo dye. Unique to this material is low optical power, no significant memory degradation after the recording process, and local information erasure or rewrite at any time. The material operates at room temperature with no sealing requirements.

  2. Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices

    NASA Astrophysics Data System (ADS)

    Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.

    2005-10-01

    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.

  3. Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices

    SciTech Connect

    Schulte, T.; Drenkelforth, S.; Kruse, J.; Ertmer, W.; Arlt, J.; Sacha, K.; Zakrzewski, J.; Lewenstein, M.

    2005-10-21

    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.

  4. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.

    PubMed

    Vasconcelos, Thiago L; Archanjo, Bráulio S; Fragneaud, Benjamin; Oliveira, Bruno S; Riikonen, Juha; Li, Changfeng; Ribeiro, Douglas S; Rabelo, Cassiano; Rodrigues, Wagner N; Jorio, Ado; Achete, Carlos A; Cançado, Luiz Gustavo

    2015-06-23

    A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes. PMID:26027751

  5. Localization of a Bose-Fermi mixture in a bichromatic optical lattice

    SciTech Connect

    Cheng Yongshan; Adhikari, S. K.

    2011-08-15

    We study the localization of a cigar-shaped superfluid Bose-Fermi mixture in a quasiperiodic bichromatic optical lattice (OL) for interspecies attraction and intraspecies repulsion. The mixture is described by the Gross-Pitaevskii equation for the bosons, coupled to a hydrodynamic mean-field equation for fermions at unitarity. We confirm the existence of the symbiotic localized states in the Bose-Fermi mixture and Anderson localization of the Bose component in the interacting Bose-Fermi mixture on a bichromatic OL. The phase diagram in boson and fermion numbers showing the regions of the symbiotic and Anderson localization of the Bose component is presented. Finally, the stability of symbiotic and Anderson localized states is established under small perturbations.

  6. Localization of a Bose-Fermi mixture in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Adhikari, S. K.

    2011-08-01

    We study the localization of a cigar-shaped superfluid Bose-Fermi mixture in a quasiperiodic bichromatic optical lattice (OL) for interspecies attraction and intraspecies repulsion. The mixture is described by the Gross-Pitaevskii equation for the bosons, coupled to a hydrodynamic mean-field equation for fermions at unitarity. We confirm the existence of the symbiotic localized states in the Bose-Fermi mixture and Anderson localization of the Bose component in the interacting Bose-Fermi mixture on a bichromatic OL. The phase diagram in boson and fermion numbers showing the regions of the symbiotic and Anderson localization of the Bose component is presented. Finally, the stability of symbiotic and Anderson localized states is established under small perturbations.

  7. Single potassium niobate nano/microsized particles as local mechano-optical Brownian probes

    NASA Astrophysics Data System (ADS)

    Mor, Flavio M.; Sienkiewicz, Andrzej; Magrez, Arnaud; Forró, László; Jeney, Sylvia

    2016-03-01

    Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal fluctuations and optical forces of singly-trapped KNbO3 particles within the optical trapping volume of a PFM microscope. We also show that, under near-infrared (NIR) excitation of the highly focused laser beam of the PFM microscope, a single optically-trapped KNbO3 particle reveals a strong SHG signal manifested by a narrow peak (λem = 532 nm) at half the excitation wavelength (λex = 1064 nm). Moreover, we demonstrate that the thus induced SHG emission can be used as a local light source that is capable of optically exciting molecules of an organic dye, Rose Bengal (RB), which adhere to the particle surface, through the mechanism of luminescence energy transfer (LET).Perovskite alkaline niobates, due to their strong nonlinear optical properties, including birefringence and the capability to produce second-harmonic generation (SHG) signals, attract a lot of attention as potential candidates for applications as local nano/microsized mechano-optical probes. Here, we report on an implementation of photonic force microscopy (PFM) to explore the Brownian motion and optical trappability of monocrystalline potassium niobate (KNbO3) nano/microsized particles having sizes within the range of 50 to 750 nm. In particular, we exploit the anisotropic translational diffusive regime of the Brownian motion to quantify thermal

  8. Nonlinear localized modes in PT-symmetric optical media with competing gain and loss

    SciTech Connect

    Midya, Bikashkali; Roychoudhury, Rajkumar

    2014-02-15

    The existence and stability of the nonlinear spatial localized modes are investigated in parity-time symmetric optical media characterized by a generic complex hyperbolic refractive index distribution with competing gain and loss profile. The exact analytical expression of the localized modes are found for all values of the competing parameter and in the presence of both the self-focusing and self-defocusing Kerr nonlinearity. The effects of competing gain/loss profile on the stability structure of these localized modes are discussed with the help of linear stability analysis followed by the direct numerical simulation of the governing equation. The spatial localized modes in two-dimensional geometry as well as the transverse power-flow density associated with these localized modes are also examined. -- Highlights: • Existence of localized modes is investigated in PT-symmetric complex potentials. • Exact analytical expression of the localized modes is obtained. • Effect of gain/loss profile on the stability of these localized modes is discussed. • Localized modes in 2D and associated transverse power-flow density are also examined.

  9. Broadband local service offerings using free-space optical links: a network business perspective

    NASA Astrophysics Data System (ADS)

    Britz, David M.; Dodley, J. P.; Barnickel, D. J.

    2001-02-01

    12 This paper describes a promising optical wireless broadband technology that will provide low cost broadband services to the local access `last mile' market. This paper examines the application, advantages and limitations of utilizing Free Space Optical Communications (FSOC) systems for broadband access markets. The service markets that would fully utilize FSOC technologies include metropolitan areas, BLECs (multi- tenant dwellings/business apartments), campuses, industrial parks and `pole-to-hole' neighborhood deployments. This paper will identify weather dependent link availability as being the primary consideration in defining and selecting suitable locations for FSOC-based systems. Link availability in turn determines link range, type of service, and the need for transmission diversity. This paper will describe the implications of telecom `five nines' last-mile access availability and its effect on the transparent integration of FSOC technologies into the existing fiber optic networks. This paper will also describe propagation losses and link budget requirements for broadband FSOC-based local service. During adverse weather conditions, stand-alone, FSOC-based optical wireless links typically offer path lengths of less than 200 meters while still meeting the `five nines' availability criteria. This paper will also consider `availability limited' services. These services may prove to be attractive to customers who are willing to accept broadband service on an `as available basis'. The use of availability-enhancing transmission diversity and the use of intelligent `roof-top' routing and optical wireless cross connects between buildings will also be discussed.

  10. OPTICALLY THICK H I DOMINANT IN THE LOCAL INTERSTELLAR MEDIUM: AN ALTERNATIVE INTERPRETATION TO ''DARK GAS''

    SciTech Connect

    Fukui, Y.; Torii, K.; Yamamoto, H.; Okamoto, R.; Hayakawa, T.; Tachihara, K.; Sano, H.; Onishi, T.

    2015-01-01

    Dark gas in the interstellar medium (ISM) is believed to not be detectable either in CO or H I radio emission, but it is detectable by other means including γ rays, dust emission, and extinction traced outside the Galactic plane at |b| > 5°. In these analyses, the 21 cm H I emission is usually assumed to be completely optically thin. We have reanalyzed the H I emission from the whole sky at |b| > 15° by considering temperature stratification in the ISM inferred from the Planck/IRAS analysis of the dust properties. The results indicate that the H I emission is saturated with an optical depth ranging from 0.5 to 3 for 85% of the local H I gas. This optically thick H I is characterized by spin temperature in the range 10 K-60 K, significantly lower than previously postulated in the literature, whereas such low temperature is consistent with emission/absorption measurements of the cool H I toward radio continuum sources. The distribution and the column density of the H I are consistent with those of the dark gas suggested by γ rays, and it is possible that the dark gas in the Galaxy is dominated by optically thick cold H I gas. This result implies that the average density of H I is 2-2.5 times higher than that derived on the optically thin assumption in the local ISM.

  11. Robust Non-Local Multi-Atlas Segmentation of the Optic Nerve.

    PubMed

    Asman, Andrew J; Delisi, Michael P; Mawn; Galloway, Robert L; Landman, Bennett A

    2013-03-13

    Labeling or segmentation of structures of interest on medical images plays an essential role in both clinical and scientific understanding of the biological etiology, progression, and recurrence of pathological disorders. Here, we focus on the optic nerve, a structure that plays a critical role in many devastating pathological conditions - including glaucoma, ischemic neuropathy, optic neuritis and multiple-sclerosis. Ideally, existing fully automated procedures would result in accurate and robust segmentation of the optic nerve anatomy. However, current segmentation procedures often require manual intervention due to anatomical and imaging variability. Herein, we propose a framework for robust and fully-automated segmentation of the optic nerve anatomy. First, we provide a robust registration procedure that results in consistent registrations, despite highly varying data in terms of voxel resolution and image field-of-view. Additionally, we demonstrate the efficacy of a recently proposed non-local label fusion algorithm that accounts for small scale errors in registration correspondence. On a dataset consisting of 31 highly varying computed tomography (CT) images of the human brain, we demonstrate that the proposed framework consistently results in accurate segmentations. In particular, we show (1) that the proposed registration procedure results in robust registrations of the optic nerve anatomy, and (2) that the non-local statistical fusion algorithm significantly outperforms several of the state-of-the-art label fusion algorithms. PMID:24478826

  12. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    PubMed Central

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; De Koninck, Paul

    2016-01-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling. PMID:26857748

  13. Gold nanoparticle-assisted all optical localized stimulation and monitoring of Ca2+ signaling in neurons

    NASA Astrophysics Data System (ADS)

    Lavoie-Cardinal, Flavie; Salesse, Charleen; Bergeron, Éric; Meunier, Michel; de Koninck, Paul

    2016-02-01

    Light-assisted manipulation of cells to control membrane activity or intracellular signaling has become a major avenue in life sciences. However, the ability to perform subcellular light stimulation to investigate localized signaling has been limited. Here, we introduce an all optical method for the stimulation and the monitoring of localized Ca2+ signaling in neurons that takes advantage of plasmonic excitation of gold nanoparticles (AuNPs). We show with confocal microscopy that 800 nm laser pulse application onto a neuron decorated with a few AuNPs triggers a transient increase in free Ca2+, measured optically with GCaMP6s. We show that action potentials, measured electrophysiologically, can be induced with this approach. We demonstrate activation of local Ca2+ transients and Ca2+ signaling via CaMKII in dendritic domains, by illuminating a single or few functionalized AuNPs specifically targeting genetically-modified neurons. This NP-Assisted Localized Optical Stimulation (NALOS) provides a new complement to light-dependent methods for controlling neuronal activity and cell signaling.

  14. Local scattering stress distribution on surface of a spherical cell in optical stretcher

    NASA Astrophysics Data System (ADS)

    Bareil, Paul B.; Sheng, Yunlong; Chiou, Arthur

    2006-12-01

    We calculate stress distribution on the surface of a spherical cell trapped by two counter propagating beams in the optical stretcher in the ray optics regime. We demonstrate that the local scattering stress is perpendicular to the spherical refractive surface regardless of incident angle, polarization and the reflectance and transmittance at the surface. We explain the apparition of peaks in the stress distribution, which were not revealed in the existing theory. We consider the divergence of the incident beams from the fibers, and express the stress distribution as a function of fiber-to-cell distance. The new theory can predict the cell’s deformation more precisely.

  15. Localized linear operators: application to image sequence compression using optical signal processing

    NASA Astrophysics Data System (ADS)

    Guha, Dipnarayan

    2003-10-01

    This paper discusses about the extension of Gabor Expansions to the optical domain and the design of an efficient filter bank to provide adaptive equalization in the light of Optical Signal Processing. The isomorphism between this localized linear operator and the filter design fundamentals are examined in the framework of image sequence compression. A new and efficient technique to perform Gabor expansion of Optical signals is introduced. The multi-resolution representation of data is considered in particular. A new approach to filter bank design in optical domain, using matrix formulation is introduced. Using this approach, an efficient optical filter bank with low complexity and good frequency response is designed. It is interesting to note that this design is a mathematical model of the quincunx filter bank. The characteristics of this optical filter bank are compared with that of other commonly used short kernel filter banks, for video compression applications. The approach is based on multi-resolution representation of data, which is generated by the filter bank proposed in this work. The use of multi-resolution data structure in conjunction with other components of the system allows a simple and efficient implementation. Simulations on typical image sequences show that it is possible to perform generic coding with reduced complexity and good efficiency.

  16. Optical Storage Systems for Records and Information Management: Overview, Recommendations and Guidelines for Local Governments. Local Government Records Technical Information Series. Number 45.

    ERIC Educational Resources Information Center

    Schwartz, Stanley F.

    This publication discusses optical storage, a term encompassing technologies that use laser-produced light to record and store information in digital form. The booklet also discusses how optical storage systems relate to records management, in particular to the management of local government records in New York State. It describes components of…

  17. Dynamics of localization phenomena for hard-core bosons in optical lattices

    SciTech Connect

    Horstmann, Birger; Cirac, J. Ignacio; Roscilde, Tommaso

    2007-10-15

    We investigate the behavior of ultracold bosons in optical lattices with a disorder potential generated via a secondary species frozen in random configurations. The statistics of disorder is associated with the physical state in which the secondary species is prepared. The resulting random potential, albeit displaying algebraic correlations, is found to lead to localization of all single-particle states. We then investigate the real-time dynamics of localization for a hardcore gas of mobile bosons which are brought into sudden interaction with the random potential. Regardless of their initial state and for any disorder strength, the mobile particles are found to reach a steady state characterized by exponentially decaying off-diagonal correlations and by the absence of quasicondensation; when the mobile particles are initially confined in a tight trap and then released in the disorder potential, their expansion is stopped and the steady state is exponentially localized in real space, clearly revealing Anderson localization.

  18. Partially Strong Transparency Conditions and a Singular Localization Method In Geometric Optics

    NASA Astrophysics Data System (ADS)

    Lu, Yong; Zhang, Zhifei

    2016-03-01

    This paper focuses on the stability analysis of WKB approximate solutions in geometric optics with the absence of strong transparency conditions under the terminology of Joly, Métivier and Rauch. We introduce a compatible condition and a singular localization method which allows us to prove the stability of WKB solutions over long time intervals. This compatible condition is weaker than the strong transparency condition. The singular localization method allows us to do delicate analysis near resonances. As an application, we show the long time approximation of Klein-Gordon equations by Schrödinger equations in the non-relativistic limit regime.

  19. Local-density approximation for confined bosons in an optical lattice

    SciTech Connect

    Bergkvist, Sara; Henelius, Patrik; Rosengren, Anders

    2004-11-01

    We investigate local and global properties of the one-dimensional Bose-Hubbard model with an external confining potential, describing an atomic condensate in an optical lattice. Using quantum Monte Carlo techniques we demonstrate that a local-density approximation, which relates the unconfined and the confined model, yields quantitatively correct results in most of the interesting parameter range. We also examine claims of universal behavior in the confined system, and demonstrate the origin of a previously calculated fine structure in the experimentally accessible momentum distribution.

  20. Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Choi, Bernard; Chen, Zhongping

    2010-11-01

    We report the use of spectral Doppler optical coherence tomography imaging (SDOCTI) for quantitative evaluation of dynamic blood circulation before and after a localized ischemic stroke in a mouse model. Rose Bengal photodynamic therapy (PDT) is used as a noninvasive means for inducing localized ischemia in cortical microvasculature of the mouse. Fast, repeated Doppler optical coherence tomography scans across vessels of interest are performed to record flow dynamic information with high temporal resolution. Doppler-angle-independent flow indices are used to quantify vascular conditions before and after the induced ischemia by the photocoagulation of PDT. The higher (or lower) flow resistive indices are associated with higher (or lower) resistance states that are confirmed by laser speckle flow index maps (of laser speckle imaging). Our in vivo experiments shows that SDOCTI can provide complementary quantified flow information that is an alternative to blood volume measurement, and can be used as a means for cortical microvasculature imaging well suited for small animal studies.

  1. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields. PMID:26520498

  2. Integral localized approximation description of ordinary Bessel beams and application to optical trapping forces

    PubMed Central

    Ambrosio, Leonardo A.; Hernández-Figueroa, Hugo E.

    2011-01-01

    Ordinary Bessel beams are described in terms of the generalized Lorenz-Mie theory (GLMT) by adopting, for what is to our knowledge the first time in the literature, the integral localized approximation for computing their beam shape coefficients (BSCs) in the expansion of the electromagnetic fields. Numerical results reveal that the beam shape coefficients calculated in this way can adequately describe a zero-order Bessel beam with insignificant difference when compared to other relative time-consuming methods involving numerical integration over the spherical coordinates of the GLMT coordinate system, or quadratures. We show that this fast and efficient new numerical description of zero-order Bessel beams can be used with advantage, for example, in the analysis of optical forces in optical trapping systems for arbitrary optical regimes. PMID:21750767

  3. Dendrimeric nano-glue material for localized surface plasmon resonance-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Satija, Jitendra; Mukherji, Soumyo

    2012-09-01

    In this study, we have investigated dendrimeric architecture as "nano-glue" material for RI-sensitive fiber-optic sensors. Dendrimers are immobilized on fiber-optic probes using a simple method that includes dipping, rinsing and drying of probes at room temperature. Dendrimer binding was confirmed by contact angle measurement and fluorescein isothiocyanate binding studies. These functionalized probes were coated with gold nanoparticles to develop localized surface plasmon resonance-based refractive index sensor. RI sensitivity measurement revealed that the dendrimeric matrix enhanced the RI sensitivity by 1.4-fold compared to two-dimensional amino-silanized sensor matrices. This suggests that dendrimer molecules are better choice as "nano-glue" material for fiber-optic sensors.

  4. Effects of varying local temperature on the optical properties of cells in-vitro.

    PubMed

    Ahmad, Iftikhar; Rehman, Abdul; Khan, Junaid A; Rafi, Muhammad; Khurshid, Ahmat; Nisar, Hasan; Zaidi, S S Z; Ikram, Masroor

    2015-09-01

    Increase in local temperature during light exposure of biological tissues plays an important role in determining the fate of most therapeutic modalities. Variations in the optical properties (absorption coefficient, scattering coefficient, anisotropy factor, optical depth etc.) of two cancer cell lines "Rhobdomyosarcoma and Cervical carcinoma" due to gradual increase in temperature were determine quantitatively with a double integrating sphere system. It was observed that all three coefficients showed decreasing tendency as the temperature increases for both the cell lines except for scattering coefficient of HeLa which remain constant within error limit. Anisotropy factor for both cell lines increased indicating temperature dependent subcellular density variations. Temperature dependent optical properties information may lead to precise dosimetry and could help clinicians for predicting the therapeutic modality outcome. PMID:26073913

  5. Development of Miniaturized Fiber-Optic Laser Doppler Velocimetry Sensor for Measurement of Local Blood Velocity

    NASA Astrophysics Data System (ADS)

    Tajikawa, Tsutomu; Takeshige, Mitsuhiko; Ishihara, Wataru; Kohri, Shimpei; Ohba, Kenkichi

    A new miniaturized fiber-optic laser Doppler velocimetry (LDV) sensor has been developed, which is capable of measuring the local velocity in various semi-opaque and opaque fluid flows, particularly whole blood velocity in vessels. The sensor has a convex lens-like fiber tip as a pickup and an improved optical transmission system with markedly decreased stray light. This paper describes methods for fabricating fiber tips like concave and convex lens and the characteristics of the optical sensor system equipped with the fabricated fiber tip. Conventional fiber-optic LDV sensors developed up to now have not been capable of measuring such opaque fluids because scattered light from scattering particles as erythrocytes has very low intensity, which makes signal-to-noise ratio of Doppler signal received by a sensor pickup significantly decreased. To overcome these problems, convex lens-like fiber tips have been fabricated by chemical etching, in which quartz fibers of multimode graded refractive index have been etched in aqueous solutions of hydrogen fluoride and ammonium fluoride under the appropriately controlled condition of the concentration of the solution, the etching duration time and the etchant temperature to obtain the desired curvature radius of the lens-like surface of the fiber tip. In this fiber-optic sensor, a laser beam emitted from the fiber tip can be focused at any position from about 0.1 to 0.5 mm distant from the fiber tip according to its curvature radius. The convex lens-like etched tip totally reduced the intensity of undesired reflecting light at the fiber end by 1/2 to 1/6 compared with normal cut fiber tip. Consequently, this fiber-optic LDV sensor system is capable of measuring the local flow velocity in semi-opaque and opaque fluids, whose turbidity was about five times higher than by any kinds of previous sensors.

  6. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  7. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGESBeta

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; et al

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  8. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.

    PubMed

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Schuck, P James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  9. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  10. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles.

    PubMed

    Hsieh, Bao-Yu; Chang, Ying-Feng; Ng, Ming-Yaw; Liu, Wei-Chih; Lin, Chao-Hsiung; Wu, Hsieh-Ting; Chou, Chien

    2007-05-01

    A novel fiber-optic biosensor based on a localized surface plasmon coupled fluorescence (LSPCF) system is proposed and developed. This biosensor consists of a biomolecular complex in a sandwich format of . It is immobilized on the surface of an optical fiber where a complex forms the fluorescence probe and is produced by mixing Cy5-labeled antibody and protein A conjugated gold nanoparticles (Au-PA). The LSPCF is excited by localized surface plasmon on the GNP surface where the evanescent field is applied near the core surface of the optical fiber. At the same time, the fluorescence signal is detected by a photomultiplier tube located beside the unclad optical fiber with high collection efficiency. Experimentally, this novel LSPCF biosensor is able to detect mouse immunoglobulin G (IgG) at a minimum concentration of 1 pg/mL (7 fM) during the biomolecular interaction of the IgG with anti-mouse IgG. The analysis is expanded by a discussion of the amplification of the LSPCF intensity by GNP coupling, and overall, this LSPCF biosensor is confirmed experimentally as a biosensor with very high sensitivity. PMID:17378542

  11. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    SciTech Connect

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-11-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity.

  12. 200-Mbps optical integrated circuit design and first iteration realizations in 1.2- and 0.8-micron Bi-CMOS technology

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Chaing, C.-T.; Bogalecki, Alfons; Du Plessis, Monuko; Aharoni, Herzl

    2004-07-01

    A prototype Silicon CMOS Optical Integrated Circuit (Si CMOS OEIC) was designed and simulated using standard 0.8 micron Bi-CMOS silicon integrated circuit technology. The circuit consisted of an integrated silicon light emitting source, an optical wave-guiding structure, two integrated optical detectors and two high-gain CMOS transimpedance analogue amplifiers. Simulations with MicroSim PSpice software predict a utilizable bandwidth capability of up to 220 MHz for the trans-impedance amplifier for detected photo-currents at the input of the amplifier in the range of 1 nA to 100 nA and driving a 10mV to 1 V signal into a 100 kΩ load. First iteration OEIC structures were realised in 1.2 micron CMOS technology for various source-waveguide-detector arrangements. Current signal ranging from 1nA to 1 micro-amp was detected at detectors. The technology seems favorable for first-iteration implementation for digital communications on chip up to 200Mbps.

  13. Nonlinear localized modes in dipolar Bose-Einstein condensates in two-dimensional optical lattices

    NASA Astrophysics Data System (ADS)

    Rojas-Rojas, Santiago; Naether, Uta; Delgado, Aldo; Vicencio, Rodrigo A.

    2016-09-01

    We analyze the existence and properties of discrete localized excitations in a Bose-Einstein condensate loaded into a periodic two-dimensional optical lattice, when a dipolar interaction between atoms is present. The dependence of the Number of Atoms (Norm) on the energy of solutions is studied, along with their stability. Two important features of the system are shown, namely, the absence of the Norm threshold required for localized solutions to exist in finite 2D systems, and the existence of regions in the parameter space where two fundamental solutions are simultaneously unstable. This feature enables mobility of localized solutions, which is an uncommon feature in 2D discrete nonlinear systems. With attractive dipolar interaction, a non-trivial behavior of the Norm dependence is obtained, which is well described by an analytical model.

  14. Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

    NASA Astrophysics Data System (ADS)

    Chen, Zhigang; Li, Xu; Taflove, Allen; Backman, Vadim

    2006-02-01

    We report what we believe to be a novel backscattering phenomenon associated with localized optical intensity peaks (spanning as little as 43 nm) arising at the shadow-side surfaces of plane-wave-illuminated dielectric microcylinders of noncircular cross sections. Namely, for nanometer-scale dielectric particles positioned within the localized intensity peaks, their backscattering of visible light is enhanced by several orders of magnitude relative to the case of isolated nanoparticles (i.e., Rayleigh scattering). The positions of the localized intensity peaks can be quickly scanned along the microcylinder surface by changing either the incident wavelength or angle. This combination of giant backscattering enhancement of nanoparticles and ease and rapidity of scanning may present advantages relative to the use of fragile, mechanically scanned, near-field probes. Potential applications include visible-light detection, characterization, and manipulation of nanoparticles.

  15. Isoform-specific localization of Nogo protein in the optic pathway of mouse embryos.

    PubMed

    Wang, Liqing; Wang, Jun; Ma, Ding; Taylor, Jeremy S H; Chan, Sun-On

    2016-08-01

    Expression of Nogo protein was investigated in the optic pathway of embryonic mice by using isoform-specific antibodies Bianca and 11C7, which recognize Nogo-A/B and Nogo-A, respectively. Our previous reports from using antibody N18 have shown that Nogo is localized on the radial glia in the retina and at the midline of the ventral diencephalon in mouse embryos during the ingrowth of retinal ganglion cells (RGCs) axons. This glial-specific localization is markedly different from findings in other studies. This study showed Nogo-A/B primarily on radial glia in the retina at E13 and then later on retinal ganglion cells and axons at E14 and E15, whereas Nogo-A was expressed preferentially by RGCs and their axons. In the ventral diencephalon, Nogo-A/B was expressed strongly on radial glia, particularly in those located in the midline region of the chiasm but also on RGC axons. In Nogo-A knockout embryos, the isoform Nogo-B (revealed by Bianca) was observed on radial glia in the ventral diencephalon and on RGCs and their axons. We concluded that Nogo-A is localized on the ganglion cells and retinal axons, whereas Nogo-B is expressed by the radial glia in the optic pathway. Nogo-B may play an important role in guiding axon growth in decisive regions of the visual pathway, which include the optic disc and the optic chiasm. J. Comp. Neurol. 524:2322-2334, 2016. © 2016 Wiley Periodicals, Inc. PMID:26718118

  16. Optical properties of surfaces with supercell ab initio calculations: Local-field effects

    NASA Astrophysics Data System (ADS)

    Tancogne-Dejean, Nicolas; Giorgetti, Christine; Véniard, Valérie

    2015-12-01

    Surface optical and electronic properties are crucial for material science and have implications in fields as various as nanotechnology, nonlinear optics, and spectroscopies. In particular, the huge variation of electronic density perpendicular to the surface is expected to play a key role in absorption due to local-field effects. Numerous state-of-the-art theoretical and numerical ab initio formalisms developed for studying these properties are based on supercell approaches, in reciprocal space, due to their efficiency. In this paper, we show that the standard scheme fails for the out-of-plane optical response of the surface. This response is interpreted using the "effective-medium theory" with vacuum and also in terms of interaction between replicas, as the supercell approach implies a periodicity which is absent in the real system. We propose an alternative formulation, also based on the supercell, for computing the macroscopic dielectric function. Application to the clean Si(001) 2 ×1 surface allows us to present the effect of the local fields for both peak positions and line shape on the bulk and surface contributions. It shows how local fields built up for the in-plane and out-of-plane dielectric responses of the surface. In addition to their conceptual impact, our results explain why the standard approach gives reliable predictions for the in-plane components, leading to correct reflectance anisotropy spectra. Our scheme can be further generalized to other low-dimensional geometries, such as clusters or nanowires, and open the way to nonlinear optics for surfaces.

  17. Surgical breast cancer localization via coherent measurement of endogenous optical properties

    NASA Astrophysics Data System (ADS)

    Zysk, Adam Michael

    This dissertation describes investigations of microscopic endogenous optical contrast sources in normal and diseased breast tissues. Emphasis has been placed on investigation of the scattering and refractive index properties that can be detected using coherence-based optical techniques. Studies have been conducted in various biological systems, including isolated cells, animal models, and surgically excised human specimens. These investigations have shown that coherence-based techniques can measure clinically relevant scattering and refractive index changes with high sensitivity, allowing for accurate differentiation between breast tissue types. These findings have been applied to the clinical problems of metastatic cell identification and biopsy needle localization. The latter is important due to the high rate of nondiagnostic tissue removal using current guidance techniques. Up to 10% of the approximately one million breast needle biopsies performed every year in the United States yield incorrect samples and inconclusive diagnoses, often resulting in additional surgical procedures. This poor outcome is due in large part to the inability of clinicians to spatially localize suspicious tissues during biopsy procedures. This problem has been addressed with the development of a clinically compatible fiber optic needle device capable of accurately measuring refractive index and scattering in situ. Preliminary intraoperative investigations with this device have yielded promising results.

  18. Method for non-optical quantification of in situ local soft tissue biomechanics.

    PubMed

    Tarsi, Grant M; Gould, Russell A; Chung, Jaebum A; Xu, Andrew Z; Bozkurt, Alper; Butcher, Jonathan T

    2013-07-26

    Soft tissues exhibit significant biomechanical changes as they grow, adapt, and remodel under a variety of normal and pathogenic stimuli. Biomechanical measurement of intact soft tissues is challenging because of its large strain and nonlinear behavior. Tissue distention through applied vacuum pressure is an attractive method for acquiring local biomechanical information minimally invasive and non-destructive, but the current requirement for optical strain measurement limits its use. In this study, we implemented a novel flexible micro-electrode array placed within a cylindrical probe tip. We hypothesized that upon tissue distention, contact with each electrode would result in a precipitous voltage drop (from the resistive connection formed between input and output electrodes) across the array. Hence, tissue distention (strain) can be derived directly from the electrode array geometry. In pilot studies, we compared the electrode array measurements directly against optical deformation measurements in-situ of agar tissue phantoms and freshly isolated porcine tissue. Our results demonstrate that the probe derived stress-strain profiles and modulus measurements were statistically indistinguishable from optical measurement. We further show that electrode geometry can be scaled down to 50μm in size (length and width) and spaced 50μm apart without impairing measurement accuracy. These results establish a promising new method for minimally invasive local soft tissue biomechanical measurement, which may be useful for applications such as disease diagnosis and health monitoring. PMID:23791186

  19. Graphene-Silver-Induced Self-Polarized PVDF-Based Flexible Plasmonic Nanogenerator Toward the Realization for New Class of Self Powered Optical Sensor.

    PubMed

    Sinha, Tridib Kumar; Ghosh, Sujoy Kumar; Maiti, Rishi; Jana, Santanu; Adhikari, Basudam; Mandal, Dipankar; Ray, Samit K

    2016-06-22

    Plasmonic characteristics of graphene-silver (GAg) nanocomposite coupled with piezoelectric property of Poly(vinylidene fluoride) (PVDF) have been utilized to realize a new class of self-powered flexible plasmonic nanogenerator (PNG). A few layer graphene has been prepared in a facile and cost-effective method and GAg doped PVDF hybrid nanocomposite (PVGAg) is synthesized in a one-pot method. The PNG exhibits superior piezoelectric energy conversion efficiency (∼15%) under the dark condition. The plasmonic behavior of GAg nanocomposite makes the PNG highly responsive to the visible light illumination that leads to ∼50% change in piezo-voltage and ∼70% change in piezo-current, leading to enhanced energy conversion efficiency up to ∼46.6%. The piezoelectric throughput of PNG (e.g., capacitor charging performance) has been monitored during the detection of the different wavelengths of visible light illumination and showed maximum selectivity to the green light. The simultaneous mechanical energy harvesting and visible-light detection capabilities of the PNG are attractive for futuristic self-powered optoelectronic smart sensors and devices. PMID:27266368

  20. Successful product realization strategies

    NASA Astrophysics Data System (ADS)

    Peeples, John; Boulton, William R.

    1995-02-01

    Product realization is the process of defining, designing, developing, and delivering products to the market. While the main thrust of this JTEC panel was to conduct a complete investigation of the state of Japanese low-cost electronic packaging technologies, it is very difficult to totally separate the development of technology and products from the product realization process. Japan's electronics firms adhere to a product realization strategy based on a strong customer focus, a consistent commitment to excellence in design, and a cost-effective approach to technology commercialization. The Japanese product-pull strategy has been a successful driver and influencing factor in every aspect of the product development cycle.

  1. Successful product realization strategies

    NASA Technical Reports Server (NTRS)

    Peeples, John; Boulton, William R.

    1995-01-01

    Product realization is the process of defining, designing, developing, and delivering products to the market. While the main thrust of this JTEC panel was to conduct a complete investigation of the state of Japanese low-cost electronic packaging technologies, it is very difficult to totally separate the development of technology and products from the product realization process. Japan's electronics firms adhere to a product realization strategy based on a strong customer focus, a consistent commitment to excellence in design, and a cost-effective approach to technology commercialization. The Japanese product-pull strategy has been a successful driver and influencing factor in every aspect of the product development cycle.

  2. Local measurement in Freon R123 two-phase vertical upflow using bi-optical probe

    SciTech Connect

    Saito, T.; Matsutani, K.; Iwase, T.; Sunami, T.; Tomomatsu, K.; Ueno, T.; Osaki, T.

    1995-12-31

    In the U-bend region of steam generator of PWR plant, the authors have experienced some tube failures due to flow induced vibration. In this project, the thermal hydraulic and flow induced vibration tests are planned using the model steam generator equipped with the large scale U-bend tube bundle and the Freon two-phase flow loop. The objectives of this project are to verify the reliability of U-bend tubes and to upgrade the technologies to evaluate the thermal hydraulic behaviors in U-bend region and the flow induced vibration of U-bend tubes. The void fraction and interfacial velocity are key parameters for the flow induced vibration phenomena. So, it is important to measure the void fraction and interfacial velocity precisely. In order to confirm the capability of bi-optical probe for the measurement of those key parameters in the Freon two-phase flow, the authors performed the verification test of bi-optical probe. This paper describes the results of the verification test of bi-optical probe. The verification test has been performed using a single pipe. The void fractions and interfacial velocities have been measured at some local positions in the single pipe using bi-optical probe.

  3. Bifunctional electro-optical nanoprobe to real-time detect local biochemical processes in single cells.

    PubMed

    Zheng, Xin Ting; Hu, Weihua; Wang, Houxiao; Yang, Hongbin; Zhou, Wei; Li, Chang Ming

    2011-07-15

    A bifunctional electro-optical nanoprobe with integrated nanoring electrode and optical nanotip was fabricated and investigated to simultaneously detect both electrical and optical signals in real-time with high spatial resolution. Concurrent measurements of the oxidant generation and the intracellular antioxidant levels in single cells correlate the stronger oxidant generation with an altered initial antioxidant response in the breast cancer cells in comparison to the normal ones suggesting that the cell malignancy is associated with the strength of oxidative stress, and the higher antioxidant level may be the cause of the drug resistance. While the optical detection indicates the fluctuation of the intracellular redox homeostasis, the chronoamperometric signals allow quantitative real-time detection of the H₂O₂ release and decay. Furthermore, the nanoscale probe enables localized simultaneous detections thus discovering that activated enzymes responsible for the oxidative stress target at specific membrane regions. This method promises applications in study of the dynamics of important physiological processes, and provides the opportunity to unravel the interplay of various signaling pathways. PMID:21632233

  4. The viscoelastic properties of the vitreous humor measured using an optically trapped local probe

    NASA Astrophysics Data System (ADS)

    Watts, Fiona; Tan, Lay Ean; Tassieri, Manlio; McAlinden, Niall; Wilson, Clive G.; Girkin, John M.; Wright, Amanda J.

    2011-10-01

    We present results demonstrating for the first time that an optically trapped bead can be used as a local probe to measure the variation in the viscoelastic properties of the vitreous humor of a rabbit eye. The Brownian motion of the optically trapped bead was monitored on a fast CCD camera on the millisecond timescale. Analysis of the bead trajectory provides local information about the viscoelastic properties of the medium surrounding the particle. Previous, bulk, methods for measuring the viscoelastic properties of the vitreous destroy the sample and allow only a single averaged measurement to be taken per eye. Whereas, with our approach, we were able to observe local behaviour typical of non-Newtonian and gel-like materials, along with the homogenous and in-homogeneous nature of different regions of the dissected vitreous humor. The motivation behind these measurements is to gain a better understanding of the structure of the vitreous humor in order to design effective drug delivery techniques. In particular, we are interested in methods for delivering drug to the retina of the eye in order to treat sight threatening diseases such as age related macular degeneration.

  5. Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Nozaki, Junji; Kobayashi, Yu; Miyata, Yasumitsu; Maniwa, Yutaka; Watanabe, Kenji; Taniguchi, Takashi; Yanagi, Kazuhiro

    2016-06-01

    Van der Waals (vdW) heterostructures, in which different two-dimensional layered materials are stacked, can exhibit unprecedented optical properties. Development of a technique to clarify local optical properties of vdW heterostructures is of great importance for the correct understanding of their backgrounds. Here, we examined local optical absorption spectra of h-BN–MoS2 vdW heterostructures by scanning near-field microscopy measurements with a spatial resolution of 100 nm. In an as-grown sample, there was almost no site dependence of their optical absorption spectra. However, in a degraded sample where defects and deformations were artificially induced, a significant site-dependence of optical absorption spectra was observed.

  6. Localization of a Bose-Einstein-condensate vortex in a bichromatic optical lattice

    SciTech Connect

    Adhikari, S. K.

    2010-04-15

    By numerical simulation of the time-dependent Gross-Pitaevskii equation we show that a weakly interacting or noninteracting Bose-Einstein condensate (BEC) vortex can be localized in a three-dimensional bichromatic quasiperiodic optical-lattice (OL) potential generated by the superposition of two standing-wave polarized laser beams with incommensurate wavelengths. We also study the localization of a (nonrotating) BEC in two and three dimensions by bichromatic OL potentials along orthogonal directions. This is a generalization of the localization of a BEC in a one-dimensional bichromatic OL as studied in a recent experiment [Roati et al., Nature 453, 895 (2008)]. We demonstrate the stability of the localized state by considering its time evolution in the form of a stable breathing oscillation in a slightly altered potential for a large period of time. Finally, we consider the localization of a BEC in a random one-dimensional potential in the form of several identical repulsive spikes arbitrarily distributed in space.

  7. Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice

    NASA Astrophysics Data System (ADS)

    Cheng, Yongshan; Adhikari, S. K.

    2010-02-01

    By direct numerical simulation of the time-dependent Gross-Pitaevskii equation using the split-step Fourier spectral method, we study different aspects of the localization of a cigar-shaped interacting binary (two-component) Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent experiment on the localization of a BEC [Roati , Nature 453, 895 (2008)]. We consider two types of localized states: (i) when both localized components have a maximum of density at the origin x=0, and (ii) when the first component has a maximum of density and the second a minimum of density at x=0. In the noninteracting case, the density profiles are symmetric around x=0. We numerically study the breakdown of this symmetry due to interspecies and intraspecies interactions acting on the two components. Where possible, we have compared the numerical results with a time-dependent variational analysis. We also demonstrate the stability of the localized symmetry-broken BEC states under small perturbation.

  8. Three-dimensional optical disk data storage via the localized alteration of a format hologram.

    PubMed

    McLeod, R R; Daiber, A J; Honda, T; McDonald, M E; Robertson, T L; Slagle, T; Sochava, S L; Hesselink, L

    2008-05-10

    Three-dimensional optical data storage is demonstrated in an initially homogenous volume by first recording a reflection grating in a holographic photopolymer. This causes the entire volume to be weakly reflecting to a confocal read/write head. Superposition of two or three such gratings with slightly different k-vectors creates a track and layer structure that specialized servo detection optics can use to lock the focus to these deeply-buried tracks. Writing is accomplished by locally modifying the reflectivity of the preexisting hologram. This modification can take the form of ablation, inelastic deformation via heating at the focus, or erasure via linear or two-photon continued polymerization in the previously unexposed fringes of the hologram. Storage by each method is demonstrated with up to eight data layers separated by as little as 12 microns. PMID:18470266

  9. AIS wavefront sensor: a robust optical test of exposure tools using localized wavefront curvature

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan; Zhou, Xibin; Goldstein, Michael; Ashworth, Dominic; Cummings, Kevin; Fan, Yu-Jen; Shroff, Yashesh; Denbeaux, Greg; Kandel, Yudhi; Naulleau, Patrick

    2014-04-01

    We present an update of the AIS wavefront sensor, a diagnostic sensor set for insertion in the upgraded 0.5 NA SEMATECH Albany and Berkeley METs. AIS works by using offset monopole illumination to probe localized regions of the test optic pupil. Variations in curvature manifest as focus shifts, which are measured using a photodiode- based grating-on- grating contrast monitor, and the wavefront aberrations are reconstructed using a least-squares approach. We present results from an optical prototype of AIS demonstrating an accuracy of better than λ/30 rms for Zernike polynomials Z4 through Z10. We also discuss integration strategies and requirements as well as specifications on system alignment.

  10. Cavity solitons and localized patterns in a finite-size optical cavity

    SciTech Connect

    Kozyreff, G.; Gelens, L.

    2011-08-15

    In appropriate ranges of parameters, laser-driven nonlinear optical cavities can support a wide variety of optical patterns, which could be used to carry information. The intensity peaks appearing in these patterns are called cavity solitons and are individually addressable. Using the Lugiato-Lefever equation to model a perfectly homogeneous cavity, we show that cavity solitons can only be located at discrete points and at a minimal distance from the edges. Other localized states which are attached to the edges are identified. By interpreting these patterns in an information coding frame, the information capacity of this dynamical system is evaluated. The results are explained analytically in terms of the the tail characteristics of the cavity solitons. Finally, the influence of boundaries and of cavity imperfections on cavity solitons are compared.

  11. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays

    PubMed Central

    Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.

    2010-01-01

    This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633

  12. Quantifying local density of optical states of nanorods by fluorescence lifetime imaging

    PubMed Central

    Liu, Jing; Jiang, Xunpeng; Ishii, Satoshi; Shalaev, Vladimir; Irudayaraj, Joseph

    2014-01-01

    In this letter, we demonstrate a facile far-field approach to quantify the near-field local density of optical states (LDOS) of a nanorod using CdTe quantum dots (QDs) emitters tethered to the surface of nanorods as beacons for optical read-outs. Radiative decay rate was extracted to quantify the LDOS; our analysis indicates that the LDOS of the nanorod enhance both the radiative and nonradiative decay of QD, particularly radiative decay of QDs at the end of nanorod is enhanced by 1.17 times greater than that at the waist, while the nonradiative decay was uniformly enhanced over the nanorod. To the best of our knowledge, our effort constitutes the first to map the LDOS of a nanostructure via far-field method, to provide clarity on the interaction mechanism between emitters and the nanostructure, and to be potentially employed in the LDOS mapping of high-throughput nanostructures. PMID:25408619

  13. Optical bullet-tracking algorithms for weapon localization in urban environments

    SciTech Connect

    Roberts, R S; Breitfeller, E F

    2006-03-31

    Localization of the sources of small-arms fire, mortars, and rocket propelled grenades is an important problem in urban combat. Weapons of this type produce characteristic signatures, such as muzzle flashes, that are visible in the infrared. Indeed, several systems have been developed that exploit the infrared signature of muzzle flash to locate the positions of shooters. However, systems based on muzzle flash alone can have difficulty localizing weapons if the muzzle flash is obscured or suppressed. Moreover, optical clutter can be problematic to systems that rely on muzzle flash alone. Lawrence Livermore National Laboratory (LLNL) has developed a projectile tracking system that detects and localizes sources of small-arms fire, mortars and similar weapons using the thermal signature of the projectile rather than a muzzle flash. The thermal signature of a projectile, caused by friction as the projectile travels along its trajectory, cannot be concealed and is easily discriminated from optical clutter. The LLNL system was recently demonstrated at the MOUT facility of the Aberdeen Test Center [1]. In the live-fire demonstration, shooters armed with a variety of small-arms, including M-16s, AK-47s, handguns, mortars and rockets, were arranged at several positions in around the facility. Experiments ranged from a single-weapon firing a single-shot to simultaneous fire of all weapons on full automatic. The LLNL projectile tracking system was demonstrated to localize multiple shooters at ranges up to 400m, far greater than previous demonstrations. Furthermore, the system was shown to be immune to optical clutter that is typical in urban combat. This paper describes the image processing and localization algorithms designed to exploit the thermal signature of projectiles for shooter localization. The paper begins with a description of the image processing that extracts projectile information from a sequence of infrared images. Key to the processing is an adaptive spatio

  14. Novel approach to realizing quasi-phase-matched gallium arsenide optical parametric oscillators for use in mid-IR laser systems

    NASA Astrophysics Data System (ADS)

    Mason, Paul D.; McBrearty, Euan J.; Orchard, David A.; Harris, Michael R.; Lewis, Keith L.

    2004-06-01

    Most of the applications that require frequency agile solid state laser systems for use in the mid-infrared are centred on the development of optical parametric oscillators. These exploit the non-linear optical characteristics of non-centrosymmetric materials, in particular the chalcopyrite class of materials that includes AgGaSe2 and ZnGeP2. Whilst such materials are generally difficult to produce, major strides have been made in recent years to optimise crystal growth processes which have enabled the generation of moderate laser output powers. Other approaches have been centred on the use of periodically poled lithium niobate and diffusion bonded gallium arsenide. The latter system is particularly attractive because it exploits a readily available crystalline material, but its implementation is difficult because of the need for an ultra-clean processing environment and relatively high bonding temperatures. This paper describes progress in the development of a new, low-temperature approach for achieving quasi-phase matched gallium arsenide by bonding with an index-matched chalcogenide glass. A major advantage of this approach is the tolerance to GaAs wafer thickness variations and to defects at the surface of the GaAs wafers. Several glass compositions in the germanium-arsenic-selenium-tellurium system have the desired refractive indices, but only some provide the characteristics necessary to ensure the formation of stable low-loss bonds. The glass bonding process begins by RF sputtering films of the glass from pre-manufactured targets onto each side of individual GaAs substrates. These coated substrates are then assembled in a vacuum oven and uniaxially pressed under carefully controlled conditions until a single composite assembly is formed. Issues such as glass purity, the integrity of the sputtering process and choice of pressing conditions are important in ensuring that a high quality non-linear crystal is produced.

  15. Characterizing Dust Attenuation in Local Star-forming Galaxies: UV and Optical Reddening

    NASA Astrophysics Data System (ADS)

    Battisti, A. J.; Calzetti, D.; Chary, R.-R.

    2016-02-01

    The dust attenuation for a sample of ∼10,000 local (z ≲ 0.1) star-forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multiwavelength data available from the Galaxy Evolution Explorer and the Sloan Digital Sky Survey to ensure that regions of comparable size in each galaxy are being analyzed. We follow the method of Calzetti et al. and characterize the dust attenuation through the UV power-law index, β, and the dust optical depth, which is quantified using the difference in Balmer emission line optical depth, {τ }Bl={τ }{{H}β }-{τ }{{H}α }. The observed linear relationship between β and {τ }Bl is similar to the local starburst relation, but the large scatter (σint = 0.44) suggests that there is significant variation in the local universe. We derive a selective attenuation curve over the range 1250 Å < λ < 8320 Å and find that a single attenuation curve is effective for characterizing the majority of galaxies in our sample. This curve has a slightly lower selective attenuation in the UV compared to previously determined curves. We do not see evidence to suggest that a 2175 Å feature is significant in the average attenuation curve. Significant positive correlations are seen between the amount of UV and optical reddening and galaxy metallicity, mass, star formation rate (SFR), and SFR surface density. This provides a potential tool for gauging attenuation where the stellar population is unresolved, such as at high z.

  16. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-01

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators. PMID:21164762

  17. X-ray and Optical Properties of an Unbiased Sample of Local AGN

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Mushotzky, R.; Tueller, J.; Lewis, K.; Reynolds, C.

    2007-12-01

    The SWIFT Burst Alert Telescope (BAT), while not focused on a Gamma-ray burst, conducts an all-sky survey in the 14 - 195 keV band. After the first 9 months, the BAT has detected a sample of 153 local (z ˜ 0.03) AGN at a flux limit of a few times 10-11 erg/s/cm-2 (Tueller et al. 2007). Since the AGN were detected at very high X-ray energies, they are an unbiased sample towards column densities below 1025 cm-2. We present the X-ray and optical properties of a sample of the BAT AGN.

  18. Local surface plasmon mediated extraordinary optical transmission of multi-spatial-mode quantum noise reduction

    SciTech Connect

    Lawrie, Benjamin J; Evans, Philip G; Pooser, Raphael C

    2013-01-01

    We demonstrate the coherent transduction of quantum noise reduction, or squeezed light, by Ag localized surface plasmons (LSPs). Squeezed light, generated through four-wave-mixing in Rb vapor, is coupled to a Ag nanohole array designed to exhibit LSP mediated extraordinary-optical transmission (EOT) spectrally coincident with the squeezed light source at 795 nm. We demonstrate that quantum noise reduction as a function of transmission is found to match closely with linear attenuation models, thus demonstrating that the photon-LSP-photon transduction process is coherent near the LSP resonance.

  19. Optical pump-probe measurements of local nuclear spin coherence in semiconductor quantum wells.

    PubMed

    Sanada, H; Kondo, Y; Matsuzaka, S; Morita, K; Hu, C Y; Ohno, Y; Ohno, H

    2006-02-17

    We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction. PMID:16606048

  20. Distributed characterization of localized and stationary dynamic Brillouin gratings in polarization maintaining optical fibers.

    PubMed

    Chiarello, Fabrizio; Sengupta, Dipankar; Palmieri, Luca; Santagiustina, Marco

    2016-03-21

    We experimentally generate localized and stationary dynamic Brillouin gratings in a 5 m long polarization maintaining fiber by phase-modulation of the pumps with a pseudo-random bit sequence. The dynamic Brillouin gratings are characterized in terms of length, bandwidth, group delay and group delay ripple, optical signal-to-noise ratio and peak to sidelobe ratio by measuring the distribution of the complex reflected signal along the fiber through swept-wavelength interferometry. By numerical processing, the performance of an optimal modulation format enabling null off-peak reflections are estimated and compared to the pseudo-random bit sequence case. PMID:27136783

  1. Modal analysis of the impact of the boundaries on transverse Anderson localization in a one-dimensional disordered optical lattice

    NASA Astrophysics Data System (ADS)

    Abaie, Behnam; Hosseini, Seyed Rasoul; Karbasi, Salman; Mafi, Arash

    2016-04-01

    Impact of the boundaries on transversely localized modes of a truncated one-dimensional disordered optical lattice is numerically studied. The results show lower modal number density near the boundaries compared with the bulk, while the average decay rate of the tail of localized modes is the same near the boundaries as in the bulk. It is suggested that the perceived suppressed localization near the boundaries is due to a lower mode density: on average, it is less probable to excite a localized mode near the boundaries; however, once it is excited, its localization is with the same exponential decay rate as any other localized mode.

  2. A fiber optic strain measurement and quench localization for use in superconducting accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Vanoort, Johannes M.; Scanlan, Ronald M.; Tenkate, Herman H. J.

    1994-10-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb3Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  3. A synchronous fiber optic ring local area network for multigigabit/s mixed-traffic communication

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Eng, S. T.

    1985-01-01

    A synchronous-ring fiber optic local area network is reported that facilitates the simultaneous transmission of packet and real-time traffic at gigabit/s rates, minimizes the amount of high-speed logic, and simplifies the user interface to the network. The novelty of the technique is based on (1) suspending in transit around the ring's circumference an integral number of data frames and (2) achieving this condition by skewing the frame clock rate a small amount. Rather than use the whole data frame as one packet destined to a specific user, many individual channels are instead time-multiplexed into the data frame. This technique only becomes feasible for local networks as data rates approach the Gbit/s range. This departure from other synchronous rings results in several advantages both in terms of system performance and hardware simplicity.

  4. Enhanced-locality fiber-optic two-photon-fluorescence live-brain interrogation

    SciTech Connect

    Fedotov, I. V.; Doronina-Amitonova, L. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Anokhin, K. V.; Kilin, S. Ya.; Sakoda, K.; Zheltikov, A. M.

    2014-02-24

    Two-photon excitation is shown to substantially enhance the locality of fiber-based optical interrogation of strongly scattering biotissues. In our experiments, a high-numerical-aperture, large-core-are fiber probe is used to deliver the 200-fs output of a 100-MHz mode-locked ytterbium fiber laser to samples of live mouse brain, induce two-photon fluorescence of nitrogen–vacancy centers in diamond markers in brain sample. Fiber probes with a high numerical aperture and a large core area are shown to enable locality enhancement in fiber-laser–fiber-probe two-photon brain excitation and interrogation without sacrificing the efficiency of fluorescence response collection.

  5. A fiber optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    SciTech Connect

    van Oort, J.M.; Scanlan, R.M.; ten Kate, H.H.J.

    1994-10-17

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot Interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system or as an absolute strain detector. Combined, one can monitor the mechanical behaviour of the magnet system over time during construction, long time storage and operation. The sensing mechanism is described, together with various tests in laboratory environments. The test results of a multichannel test matrix to be incorporated first in the dummy coils and then in the final version of a 13T Nb{sub 3}Sn accelerator dipole magnet are presented. Finally, the possible use of this system as a quench localization system is proposed.

  6. Realization of a minimal disturbance quantum measurement.

    PubMed

    Sciarrino, F; Ricci, M; De Martini, F; Filip, R; Mista, L

    2006-01-20

    We report the first experimental realization of an "optimal" quantum device able to perform a minimal disturbance measurement on polarization encoded qubits saturating the theoretical boundary established between the classical knowledge acquired of any input state, i.e., a "classical guess," and the fidelity of the same state after disturbance due to measurement. The device has been physically realized by means of a linear optical qubit manipulation, postselection measurement, and a classical feed-forward process. PMID:16486551

  7. Realization of high capacity transmission in fiber optic communication systems using Absolute Polar Duty Cycle Division Multiplexing (AP-DCDM) technique

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, Amin; Mahdiraji, Ghafour Amouzad; Abas, Ahmad Fauzi; Abdullah, Mohamad Khazani; Mokhtar, Makhfudzah; Rasid, Mohd Fadlee A.

    2009-08-01

    An electrical multiplexing technique, namely Absolute Polar Duty Cycle Division Multiplexing (AP-DCDM) is reported for high-speed optical fiber communication systems. It is demonstrated that 40 Gb/s (4 × 10 Gb/s) AP-DCDM system shows a clear advantage over conventional 40 Gb/s RZ-OOK with 50% duty cycle in terms of dispersion tolerance and spectral efficiency. At 40 Gb/s its tolerance to chromatic dispersion (CD) is 124 ps/nm and 194 ps/nm for the worst and the best user, respectively. These values are higher than that of 40 Gb/s RZ-OOK, which is around 100 ps/nm. The spectral efficiency, receiver sensitivity and OSNR for different number of channels are discussed. Comparison against other modulation formats namely duobinary, Non-Return-to-Zero (NRZ)-OOK and RZ-Differential Quadrature Phase-Shift Keying (RZ-DQPSK) at 40 Gb/s are made. It is shown that AP-DCDM has the best receiver sensitivity (-32 dBm) and better CD tolerance (±200 ps/nm) than NRZ-OOK and RZ-DQPSK. In reference to duobinary, AP-DCDM has better receiver sensitivity but worse dispersion tolerance.

  8. Quantum quenches of cold-atom gases in optical lattices: the influence of Anderson localization

    NASA Astrophysics Data System (ADS)

    Hooley, Chris; Quintanilla, Jorge; Scarola, Vito

    2014-03-01

    We consider the following kind of non-equilibrium experiment. An ultracold fluid of fermions is prepared in a potential consisting of three parts: an optical lattice; a short-range-correlated disorder potential of finite strength; and a shallow harmonic trapping potential. After the fluid has equilibrated, the minimum of the harmonic potential is suddenly ``jumped'' to the side by a finite distance, d. The observables of interest are the subsequent evolution of the density distribution and phase correlations in the fluid. This kind of experiment is theoretically interesting because it contains two energy-dependent length scales: the localization length of the single-particle orbitals due to the disorder potential, ξ and the ``Bragg localization length'' of the single-particle orbitals due to the combined effect of the harmonic trap and optical lattice, lB. We present numerical results on the evolution of the density distributions and phase correlations in such cases, for a range of strengths of the disorder. In addition, we provide an approximate analytical framework for understanding our results in terms of the relative size of the length scales ξ and lB at the Fermi energy. Possibilities for further work are also discussed.

  9. Design of a base station for MEMS CCR localization in an optical sensor network.

    PubMed

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681

  10. Design of a Base Station for MEMS CCR Localization in an Optical Sensor Network

    PubMed Central

    Park, Chan Gook; Jeon, Hyun Cheol; Kim, Hyoun Jin; Kim, Jae Yoon

    2014-01-01

    This paper introduces a design and implementation of a base station, capable of positioning sensor nodes using an optical scheme. The base station consists of a pulse laser module, optical detectors and beam splitter, which are mounted on a rotation-stage, and a Time to Digital Converter (TDC). The optical pulse signal transmitted to the sensor node with a Corner Cube Retro-reflector (CCR) is reflected to the base station, and the Time of Flight (ToF) data can be obtained from the two detectors. With the angle and flight time data, the position of the sensor node can be calculated. The performance of the system is evaluated by using a commercial CCR. The sensor nodes are placed at different angles from the base station and scanned using the laser. We analyze the node position error caused by the rotation and propose error compensation methods, namely the outlier sample exception and decreasing the confidence factor steadily using the recursive least square (RLS) methods. Based on the commercial CCR results, the MEMS CCR is also tested to demonstrate the compatibility between the base station and the proposed methods. The result shows that the localization performance of the system can be enhanced with the proposed compensation method using the MEMS CCR. PMID:24815681