Optimal control and Galois theory
Zelikin, M I; Kiselev, D D; Lokutsievskiy, L V
2013-11-30
An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree 2(n−1) with integer coefficients. The linear independence of a family of k roots of this polynomial over the field Q implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a k-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for n≤15 one can take an arbitrary positive integer not exceeding [n/2] for k. The apparatus developed in the paper is applied to the systems of Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree 2m every subsystem of [(m+1)/2] roots with pairwise distinct squares is linearly independent over the field Q. Bibliography: 11 titles.
Aerodynamic shape optimization using control theory
NASA Technical Reports Server (NTRS)
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Helicopter trajectory planning using optimal control theory
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Cheng, V. H. L.; Kim, E.
1988-01-01
A methodology for optimal trajectory planning, useful in the nap-of-the-earth guidance of helicopters, is presented. This approach uses an adjoint-control transformation along with a one-dimensional search scheme for generating the optimal trajectories. In addition to being useful for helicopter nap-of-the-earth guidance, the trajectory planning solution is of interest in several other contexts, such as robotic vehicle guidance and terrain-following guidance for cruise missiles and aircraft. A distinguishing feature of the present research is that the terrain constraint and the threat envelopes are incorporated in the equations of motion. Second-order necessary conditions are examined.
Robust control systems design by H-infinity optimization theory
NASA Technical Reports Server (NTRS)
Chang, B. C.; Li, X. P.; Banda, S. S.; Yeh, H. H.
1991-01-01
In this paper, step-by-step procedures of applying the H-infinity theory to robust control systems design are given. The objective of the paper is to eliminate the possible difficulties a control engineer may encounter in applying H-infinity control theory and to clear up some misconceptions about H-infinity theory like high-gain controller and numerical obstacles, etc. An efficient algorithm is used to compute the optimal H-infinity norm. The Glover and Doyle (1988) controller formulas are slightly modified and used to construct an optimal controller without any numerical difficulties.
OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT
Sustainable management of the human and natural systems, taking into account their interactions, has become paramount. To achieve this complex multidisciplinary objective, systems theory based techniques prove useful. The proposed work is a step in that direction. Taking a food w...
Improving Vortex Models via Optimal Control Theory
NASA Astrophysics Data System (ADS)
Hemati, Maziar; Eldredge, Jeff; Speyer, Jason
2012-11-01
Flapping wing kinematics, common in biological flight, can allow for agile flight maneuvers. On the other hand, we currently lack sufficiently accurate low-order models that enable such agility in man-made micro air vehicles. Low-order point vortex models have had reasonable success in predicting the qualitative behavior of the aerodynamic forces resulting from such maneuvers. However, these models tend to over-predict the force response when compared to experiments and high-fidelity simulations, in part because they neglect small excursions of separation from the wing's edges. In the present study, we formulate a constrained minimization problem which allows us to relax the usual edge regularity conditions in favor of empirical determination of vortex strengths. The optimal vortex strengths are determined by minimizing the error with respect to empirical force data, while the vortex positions are constrained to evolve according to the impulse matching model developed in previous work. We consider a flat plate undergoing various canonical maneuvers. The optimized model leads to force predictions remarkably close to the empirical data. Additionally, we compare the optimized and original models in an effort to distill appropriate edge conditions for unsteady maneuvers.
Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629
Theory of Optimal Phase-Unlocked Pump-Dump Control
NASA Astrophysics Data System (ADS)
Yan, Yijing
1997-04-01
A novel theory of optimal control via a pair of phase-unlocked pump-dump fields is developed. We first derive a pair of coupled nonlinear control equations for mixed or dissipative quantum systems in the strong response regime. These equations should be solved iteratively, resulting in a locally optimal pair of fields that are however usually too complicated to be realizable. To facilitate this problem, we further develop a hierarchy of reduction and arrive at a variety of simplified control equation pairs. In the weak response regime, we obtain a pair of coupled semi-linear control equations in which the globally optimal pump field at any given pump field, or vice verse, can be evaluated in a non-iterative manor. However, it still requires an iterative solution to the semi-globally optimal pair of pump-dump fields. Further reduction is then devised to consider the pure state control system in the weak response regime. In this case, we derive a generalized eigenequation for the non-iterative solution to the complete set of optimal control field pairs, and further identify the globally optimal one unambiguously. The existence of certain symmetry relation between the pump and dump fields in any optimal pair is also analyzed in the stimulate Raman pumping control configuration and demonstrated numerically.
Optimization of microstructure during deformation processing using control theory principles
Venugopal, S.; Medina, E.A.; Malas, J.C. III; Medeiros, S.; Frazier, W.G.; Mullins, W.M.; Srinivasan, R.
1997-02-01
The development of optimal design and control methods for manufacturing processes is needed for effectively reducing part cost, improving part delivery schedules and producing specified part quality on a repeatable basis. A new strategy for systematically calculating near optimal control parameters for hot deformation processes for microstructural control is presented in this communication. This approach is based on modern control theory and involves developing state-space models from available material behavior and hot deformation process models. The control system design consists of two basic stages and analysis and optimization are critical in both stages. In the first stage, the kinetics of certain dynamic microstructural behavior and the intrinsic hot workability of the material are used, along with an appropriately chosen optimality criterion, to calculate optimum strain, strain-rate, and temperature trajectories for processing. A suitable process simulation model is then used in the second stage to calculate process control parameters, such as ram velocity, die profiles and billet temperature, which approximately achieve the strain, strain-rate, and temperate trajectories calculated in the first stage at selected areas of the workpiece. The validity of this approach has been demonstrated with an example on hot extrusion of steel.
NASA Technical Reports Server (NTRS)
Newson, J. R.
1979-01-01
The results of optimal control theory are used to synthesize a feedback filter. The feedback filter is used to force the output of the filtered frequency response to match that of a desired optimal frequency response over a finite frequency range. This matching is accomplished by employing a nonlinear programing algorithm to search for the coefficients of the feedback filter that minimize the error between the optimal frequency response and the filtered frequency response. The method is applied to the synthesis of an active flutter-suppression control law for an aeroelastic wind-tunnel model. It is shown that the resulting control law suppresses flutter over a wide range of subsonic Mach numbers. This is a promising method for synthesizing practical control laws using the results of optimal control theory.
Optimal control of ICU patient discharge: from theory to implementation.
Mallor, Fermín; Azcárate, Cristina; Barado, Julio
2015-09-01
This paper deals with the management of scarce health care resources. We consider a control problem in which the objective is to minimize the rate of patient rejection due to service saturation. The scope of decisions is limited, in terms both of the amount of resources to be used, which are supposed to be fixed, and of the patient arrival pattern, which is assumed to be uncontrollable. This means that the only potential areas of control are speed or completeness of service. By means of queuing theory and optimization techniques, we provide a theoretical solution expressed in terms of service rates. In order to make this theoretical analysis useful for the effective control of the healthcare system, however, further steps in the analysis of the solution are required: physicians need flexible and medically-meaningful operative rules for shortening patient length of service to the degree needed to give the service rates dictated by the theoretical analysis. The main contribution of this paper is to discuss how the theoretical solutions can be transformed into effective management rules to guide doctors' decisions. The study examines three types of rules based on intuitive interpretations of the theoretical solution. Rules are evaluated through implementation in a simulation model. We compare the service rates provided by the different policies with those dictated by the theoretical solution. Probabilistic analysis is also included to support rule validity. An Intensive Care Unit is used to illustrate this control problem. The study focuses on the Markovian case before moving on to consider more realistic LoS distributions (Weibull, Lognormal and Phase-type distribution). PMID:25763761
Optimization of a photovoltaic pumping system based on the optimal control theory
Betka, A.; Attali, A.
2010-07-15
This paper suggests how an optimal operation of a photovoltaic pumping system based on an induction motor driving a centrifugal pump can be realized. The optimization problem consists in maximizing the daily pumped water quantity via the optimization of the motor efficiency for every operation point. The proposed structure allows at the same time the minimization the machine losses, the field oriented control and the maximum power tracking of the photovoltaic array. This will be attained based on multi-input and multi-output optimal regulator theory. The effectiveness of the proposed algorithm is described by simulation and the obtained results are compared to those of a system working with a constant air gap flux. (author)
NASA Technical Reports Server (NTRS)
Armand, J. P.
1972-01-01
An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.
Application of a locally optimized control theory to pump dump laser-driven chemical reactions
NASA Astrophysics Data System (ADS)
Ohtsuki, Y.; Yahata, Y.; Kono, H.; Fujimura, Y.
1998-05-01
A locally optimized control theory is developed. This theory is applied to pump-dump laser-driven chemical reactions via an electronically excited state. The results show that the theory can design the pulse shapes for chemical reactions with high quantum yields in strong laser intensity regimes in which perturbative treatments break down.
Reduced state feedback gain computation. [optimization and control theory for aircraft control
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
Aerodynamic shape optimization of wing and wing-body configurations using control theory
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
A comparison of design variables for control theory based airfoil optimization
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Optimal planning of LEO active debris removal based on hybrid optimal control theory
NASA Astrophysics Data System (ADS)
Yu, Jing; Chen, Xiao-qian; Chen, Li-hu
2015-06-01
The mission planning of Low Earth Orbit (LEO) active debris removal problem is studied in this paper. Specifically, the Servicing Spacecraft (SSc) and several debris exist on near-circular near-coplanar LEOs. The SSc should repeatedly rendezvous with the debris, and de-orbit them until all debris are removed. Considering the long-duration effect of J2 perturbation, a linear dynamics model is used for each rendezvous. The purpose of this paper is to find the optimal service sequence and rendezvous path with minimum total rendezvous cost (Δv) for the whole mission, and some complex constraints (communication time window constraint, terminal state constraint, and time distribution constraint) should be satisfied meanwhile. Considering this mission as a hybrid optimal control problem, a mathematical model is proposed, as well as the solution method. The proposed approach is demonstrated by a typical active debris removal problem. Numerical experiments show that (1) the model and solution method proposed in this paper can effectively address the planning problem of LEO debris removal; (2) the communication time window constraint and the J2 perturbation have considerable influences on the optimization results; and (3) under the same configuration, some suboptimal sequences are equivalent to the optimal one since their difference in Δv cost is very small.
Goodwin, D. L.; Kuprov, Ilya
2015-08-28
Auxiliary matrix exponential method is used to derive simple and numerically efficient general expressions for the following, historically rather cumbersome, and hard to compute, theoretical methods: (1) average Hamiltonian theory following interaction representation transformations; (2) Bloch-Redfield-Wangsness theory of nuclear and electron relaxation; (3) gradient ascent pulse engineering version of quantum optimal control theory. In the context of spin dynamics, the auxiliary matrix exponential method is more efficient than methods based on matrix factorizations and also exhibits more favourable complexity scaling with the dimension of the Hamiltonian matrix.
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1975-01-01
A digital computer program (ORACLS) for implementing the optimal regulator theory approach to the design of controllers for linear time-invariant systems is described. The user-oriented program employs the latest numerical techniques and is applicable to both the digital and continuous control problems.
Credibility theory based dynamic control bound optimization for reservoir flood limited water level
NASA Astrophysics Data System (ADS)
Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong
2015-10-01
The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Management of redundancy in flight control systems using optimal decision theory
NASA Technical Reports Server (NTRS)
1981-01-01
The problem of using redundancy that exists between dissimilar systems in aircraft flight control is addressed. That is, using the redundancy that exists between a rate gyro and an accelerometer--devices that have dissimilar outputs which are related only through the dynamics of the aircraft motion. Management of this type of redundancy requires advanced logic so that the system can monitor failure status and can reconfigure itself in the event of one or more failures. An optimal decision theory was tutorially developed for the management of sensor redundancy and the theory is applied to two aircraft examples. The first example is the space shuttle and the second is a highly maneuvering high performance aircraft--the F8-C. The examples illustrate the redundancy management design process and the performance of the algorithms presented in failure detection and control law reconfiguration.
Application of optimal control theory to the design of the NASA/JPL 70-meter antenna servos
NASA Technical Reports Server (NTRS)
Alvarez, L. S.; Nickerson, J.
1989-01-01
The application of Linear Quadratic Gaussian (LQG) techniques to the design of the 70-m axis servos is described. Linear quadratic optimal control and Kalman filter theory are reviewed, and model development and verification are discussed. Families of optimal controller and Kalman filter gain vectors were generated by varying weight parameters. Performance specifications were used to select final gain vectors.
NASA Astrophysics Data System (ADS)
Gobinddass, Marie-Line; Omrane, Abdennebi
Among scientific challenges in space science we find the understanding and the managing of relativity and acceleration's effects on space satellites. Due to the high number of satellite launch every year, the question of recycling addressed by several countries in the world. Some projects focus on the rejection of satellites out of the gravity field of the earth for avoiding a sudden fall in a populated area, but other environmentally friendly projects involve trying to get these satellites for recycling purposes. We will focus on the second recycling point. The good knowledge of these effects can allow the control of all satellites orbit during their lifetime and also after. A mathematical analysis together with the optimal control point of view are here used. We will develop an existence method based on a variational formulation. Then we will use the optimal control theory for the trajectory optimal control under pollution (recycling satellites). Finally, we will focus on the possible generalization of the method with different fixed parameters.
Sustainable ecosystem management using optimal control theory: part 1 (deterministic systems).
Shastri, Y; Diwekar, U
2006-08-01
The concept of sustainability, an abstract one by its nature, has been given a mathematical representation through the use of Fisher information as a measure. It is used to propose the sustainability hypotheses for dynamical systems, which has paved the way to achieve sustainable development through externally enforced control schemes. For natural systems, this refers to the task of ecosystem management, which is complicated due the lack of clear objectives. This work attempts to incorporate the idea of sustainability in ecosystem management. The natural regulation of ecosystems suggests two possible control options, top-down control and bottom-up control. A comparison of these two control philosophies is made on generic food chain models using the objectives derived from the sustainability hypotheses. Optimal control theory is used to derive the control profiles to handle the complex nature of the models and the objectives. The results indicate a strong relationship between the hypotheses and the dynamic behavior of the models, supporting the use of Fisher information as a measure. As regards to ecosystem management, it has been observed that top-down control is more aggressive but can result in instability, while bottom-up control is guaranteed to give a stable and improved dynamic response. The results also indicate that bottom-up control is a better option to affect shifts in the dynamic regimes of a system, which may be required to recover the system from a natural disaster like the hurricane Katrina. PMID:16438988
Optimal control theory investigation of proprotor/wing response to vertical gust
NASA Technical Reports Server (NTRS)
Frick, J. K. D.; Johnson, W.
1974-01-01
Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.
Optimal control theory (OWEM) applied to a helicopter in the hover and approach phase
NASA Technical Reports Server (NTRS)
Born, G. J.; Kai, T.
1975-01-01
A major difficulty in the practical application of linear-quadratic regulator theory is how to choose the weighting matrices in quadratic cost functions. The control system design with optimal weighting matrices was applied to a helicopter in the hover and approach phase. The weighting matrices were calculated to extremize the closed loop total system damping subject to constraints on the determinants. The extremization is really a minimization of the effects of disturbances, and interpreted as a compromise between the generalized system accuracy and the generalized system response speed. The trade-off between the accuracy and the response speed is adjusted by a single parameter, the ratio of determinants. By this approach an objective measure can be obtained for the design of a control system. The measure is to be determined by the system requirements.
APPLICATION OF GAME THEORY IN THE DESIGN OF OPTIMAL AIR POLLUTION CONTROL MEASURES
Methods of game theory are used to develop a technique for finding optimal solutions to air quality problems that involve multiple objectives. The technique is demonstrated using a hypothetical problem in which sites for two new power plants are sought that optimally satisfy five...
ERIC Educational Resources Information Center
Toso, Robert B.
2000-01-01
Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)
NASA Astrophysics Data System (ADS)
Dutton, Kevin E.
1994-07-01
The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.
NASA Technical Reports Server (NTRS)
Dutton, Kevin E.
1994-01-01
The personnel launch system (PLS) being studied by NASA is a system to complement the space shuttle and provide alternative access to space. The PLS consists of a manned spacecraft launched by an expendable launch vehicle (ELV). A candidate for the manned spacecraft is the HL-20 lifting body. In the event of an ELV malfunction during the initial portion of the ascent trajectory, the HL-20 will separate from the rocket and perform an unpowered return to launch site (RTLS) abort. This work details an investigation, using optimal control theory, of the RTLS abort scenario. The objective of the optimization was to maximize final altitude. With final altitude as the cost function, the feasibility of an RTLS abort at different times during the ascent was determined. The method of differential inclusions was used to determine the optimal state trajectories, and the optimal controls were then calculated from the optimal states and state rates.
ERIC Educational Resources Information Center
Heppler, Brad
2008-01-01
This is a book about quality and how to control quality through deliberate actions on the part of the professionals developing and implementing the instances of instruction available at an organization. Quality control theory favors no particular learning philosophy and is only directed towards aspects of how, what, where and when measurements are…
UAV path planning using artificial potential field method updated by optimal control theory
NASA Astrophysics Data System (ADS)
Chen, Yong-bo; Luo, Guan-chen; Mei, Yue-song; Yu, Jian-qiao; Su, Xiao-long
2016-04-01
The unmanned aerial vehicle (UAV) path planning problem is an important assignment in the UAV mission planning. Based on the artificial potential field (APF) UAV path planning method, it is reconstructed into the constrained optimisation problem by introducing an additional control force. The constrained optimisation problem is translated into the unconstrained optimisation problem with the help of slack variables in this paper. The functional optimisation method is applied to reform this problem into an optimal control problem. The whole transformation process is deduced in detail, based on a discrete UAV dynamic model. Then, the path planning problem is solved with the help of the optimal control method. The path following process based on the six degrees of freedom simulation model of the quadrotor helicopters is introduced to verify the practicability of this method. Finally, the simulation results show that the improved method is more effective in planning path. In the planning space, the length of the calculated path is shorter and smoother than that using traditional APF method. In addition, the improved method can solve the dead point problem effectively.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2012-12-01
Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors 'choose' an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor 'chooses' its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients. PMID:23197192
NASA Astrophysics Data System (ADS)
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2012-12-01
Chemotherapy for metastatic cancer commonly fails due to evolution of drug resistance in tumor cells. Here, we view cancer treatment as a game in which the oncologists choose a therapy and tumors ‘choose’ an adaptive strategy. We propose the oncologist can gain an upper hand in the game by choosing treatment strategies that anticipate the adaptations of the tumor. In particular, we examine the potential benefit of exploiting evolutionary tradeoffs in tumor adaptations to therapy. We analyze a math model where cancer cells face tradeoffs in allocation of resistance to two drugs. The tumor ‘chooses’ its strategy by natural selection and the oncologist chooses her strategy by solving a control problem. We find that when tumor cells perform best by investing resources to maximize response to one drug the optimal therapy is a time-invariant delivery of both drugs simultaneously. However, if cancer cells perform better using a generalist strategy allowing resistance to both drugs simultaneously, then the optimal protocol is a time varying solution in which the two drug concentrations negatively covary. However, drug interactions can significantly alter these results. We conclude that knowledge of both evolutionary tradeoffs and drug interactions is crucial in planning optimal chemotherapy schedules for individual patients.
Application of Optimal Production Control theory for Home Energy Management in a Micro Grid
Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja
2016-01-01
We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to those studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.
Neighboring optimal guidance theory and computer program
NASA Technical Reports Server (NTRS)
Powers, W. F.
1974-01-01
Developments of the linear quadratic optimal control problem are discussed. The theory is applicable to the development of neighboring optimal feedback guidance gains, and is useful as a tool for synthesizing feedback control laws. A computer program which requires only the pertinent matrices of the linear quadratic problem is described.
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
2001-01-01
Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.
NASA Technical Reports Server (NTRS)
Chukwu, Ethelbert Nwakuche
1992-01-01
The author derives an equation determining the dynamics of the deterministic model of a flying vehicle. He next examines a simplified mechanical problem whose optimal feedback control strategy is investigated. From there robotics are incorporated into the mathematical model to develop an equation describing optimal control of the dynamics.
Economic policy optimization based on both one stochastic model and the parametric control theory
NASA Astrophysics Data System (ADS)
Ashimov, Abdykappar; Borovskiy, Yuriy; Onalbekov, Mukhit
2016-06-01
A nonlinear dynamic stochastic general equilibrium model with financial frictions is developed to describe two interacting national economies in the environment of the rest of the world. Parameters of nonlinear model are estimated based on its log-linearization by the Bayesian approach. The nonlinear model is verified by retroprognosis, estimation of stability indicators of mappings specified by the model, and estimation the degree of coincidence for results of internal and external shocks' effects on macroeconomic indicators on the basis of the estimated nonlinear model and its log-linearization. On the base of the nonlinear model, the parametric control problems of economic growth and volatility of macroeconomic indicators of Kazakhstan are formulated and solved for two exchange rate regimes (free floating and managed floating exchange rates)
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Semiclassical guided optimal control of molecular dynamics
Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.
2005-10-15
An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.
Optimal control computer programs
NASA Technical Reports Server (NTRS)
Kuo, F.
1992-01-01
The solution of the optimal control problem, even with low order dynamical systems, can usually strain the analytical ability of most engineers. The understanding of this subject matter, therefore, would be greatly enhanced if a software package existed that could simulate simple generic problems. Surprisingly, despite a great abundance of commercially available control software, few, if any, address the part of optimal control in its most generic form. The purpose of this paper is, therefore, to present a simple computer program that will perform simulations of optimal control problems that arise from the first necessary condition and the Pontryagin's maximum principle.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Optimal control of sun tracking solar concentrators
NASA Technical Reports Server (NTRS)
Hughes, R. O.
1979-01-01
Application of the modern control theory to derive an optimal sun tracking control for a point focusing solar concentrator is presented. A standard tracking problem converted to regulator problem using a sun rate input achieves an almost zero steady state tracking error with the optimal control formulation. However, these control techniques are costly because optimal type algorithms require large computing systems, thus they will be used mainly as comparison standards for other types of control algorithms and help in their development.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
NASA Technical Reports Server (NTRS)
Zhang, Zhimin; Tomlinson, John; Martin, Clyde
1994-01-01
In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. PMID:26715209
Johnson, E.A.; Leung, C.; Schira, J.J.
1983-03-01
A closed loop timing optimization control for an internal combustion engine closed about the instantaneous rotational velocity of the engine's crankshaft is disclosed herein. The optimization control computes from the instantaneous rotational velocity of the engine's crankshaft, a signal indicative of the angle at which the crankshaft has a maximum rotational velocity for the torque impulses imparted to the engine's crankshaft by the burning of an air/fuel mixture in each of the engine's combustion chambers and generates a timing correction signal for each of the engine's combustion chambers. The timing correction signals, applied to the engine timing control, modifies the time at which the ignition signal, injection signals or both are generated such that the rotational velocity of the engine's crankshaft has a maximum value at a predetermined angle for each torque impulse generated optimizing the conversion of the combustion energy to rotational torque.
Optimal control of native predators
Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.
2010-01-01
We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.
Optimal Control of Evolution Mixed Variational Inclusions
Alduncin, Gonzalo
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
Optimization Theory in Behavioural Ecology.
ERIC Educational Resources Information Center
Reiss, Michael J.
1987-01-01
Discusses variables which determine the strategies animals use to organize their lives. Describes advances in understanding animal behaviors. Shows how game theory has helped to explain the existence of alternative behavioral strategies and the constraints under which organizers exist. (Author/CW)
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
An analysis of the non-modal growth of perturbations in a boundary layer in the presence of a streamwise pressure gradient is presented. The analysis is based on PSE equations for an incompressible fluid. Examples with Falkner-Skan profiles indicate that a favorable pressure gradient decreases the non-modal growth while an unfavorable pressure gradient leads to an increase of the amplification. It is suggested that the transient growth mechanism be utilized to choose optimal parameters of tripping elements on a low-pressure turbine (LPT) airfoil. As an example, a boundary layer flow with a streamwise pressure gradient corresponding to the pressure distribution over a LPT airfoil is considered. It is shown that there is an optimal spacing of the tripping elements and that the transient growth effect depends on the starting point. At very low Reynolds numbers, there is a possibility to enhance the transient energy growth by means of wall cooling.
Optimal control of HIV/AIDS dynamic: Education and treatment
NASA Astrophysics Data System (ADS)
Sule, Amiru; Abdullah, Farah Aini
2014-07-01
A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.
NASA Technical Reports Server (NTRS)
Allan, Brian; Owens, Lewis
2010-01-01
In support of the Blended-Wing-Body aircraft concept, a new flow control hybrid vane/jet design has been developed for use in a boundary-layer-ingesting (BLI) offset inlet in transonic flows. This inlet flow control is designed to minimize the engine fan-face distortion levels and the first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. This concept represents a potentially enabling technology for quieter and more environmentally friendly transport aircraft. An optimum vane design was found by minimizing the engine fan-face distortion, DC60, and the first five Fourier harmonic half amplitudes, while maximizing the total pressure recovery. The optimal vane design was then used in a BLI inlet wind tunnel experiment at NASA Langley's 0.3-meter transonic cryogenic tunnel. The experimental results demonstrated an 80-percent decrease in DPCPavg, the reduction in the circumferential distortion levels, at an inlet mass flow rate corresponding to the middle of the operational range at the cruise condition. Even though the vanes were designed at a single inlet mass flow rate, they performed very well over the entire inlet mass flow range tested in the wind tunnel experiment with the addition of a small amount of jet flow control. While the circumferential distortion was decreased, the radial distortion on the outer rings at the aerodynamic interface plane (AIP) increased. This was a result of the large boundary layer being distributed from the bottom of the AIP in the baseline case to the outer edges of the AIP when using the vortex generator (VG) vane flow control. Experimental results, as already mentioned, showed an 80-percent reduction of DPCPavg, the circumferential distortion level at the engine fan-face. The hybrid approach leverages strengths of vane and jet flow control devices, increasing inlet performance over a broader operational range with significant reduction in mass flow requirements. Minimal distortion level requirements
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Optimal control techniques for active noise suppression
NASA Technical Reports Server (NTRS)
Banks, H. T.; Keeling, S. L.; Silcox, R. J.
1988-01-01
Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.
Metacognitive Control and Optimal Learning
ERIC Educational Resources Information Center
Son, Lisa K.; Sethi, Rajiv
2006-01-01
The notion of optimality is often invoked informally in the literature on metacognitive control. We provide a precise formulation of the optimization problem and show that optimal time allocation strategies depend critically on certain characteristics of the learning environment, such as the extent of time pressure, and the nature of the uptake…
Optimal search behavior and classic foraging theory
NASA Astrophysics Data System (ADS)
Bartumeus, F.; Catalan, J.
2009-10-01
Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Investigating Optimal Foraging Theory in the Laboratory
ERIC Educational Resources Information Center
Harden, Siegfried; Grilliot, Matthew E.
2014-01-01
Optimal foraging theory is a principle that is often presented in the community ecology section of biology textbooks, but also can be demonstrated in the laboratory. We introduce a lab activity that uses an interactive strategy to teach high school and/or college students about this ecological concept. The activity is ideal because it engages…
Optimal management strategies in variable environments: Stochastic optimal control methods
Williams, B.K.
1985-01-01
Dynamic optimization was used to investigate the optimal defoliation of salt desert shrubs in north-western Utah. Management was formulated in the context of optimal stochastic control theory, with objective functions composed of discounted or time-averaged biomass yields. Climatic variability and community patterns of salt desert shrublands make the application of stochastic optimal control both feasible and necessary. A primary production model was used to simulate shrub responses and harvest yields under a variety of climatic regimes and defoliation patterns. The simulation results then were used in an optimization model to determine optimal defoliation strategies. The latter model encodes an algorithm for finite state, finite action, infinite discrete time horizon Markov decision processes. Three questions were addressed: (i) What effect do changes in weather patterns have on optimal management strategies? (ii) What effect does the discounting of future returns have? (iii) How do the optimal strategies perform relative to certain fixed defoliation strategies? An analysis was performed for the three shrub species, winterfat (Ceratoides lanata), shadscale (Atriplex confertifolia) and big sagebrush (Artemisia tridentata). In general, the results indicate substantial differences among species in optimal control strategies, which are associated with differences in physiological and morphological characteristics. Optimal policies for big sagebrush varied less with variation in climate, reserve levels and discount rates than did either shadscale or winterfat. This was attributed primarily to the overwintering of photosynthetically active tissue and to metabolic activity early in the growing season. Optimal defoliation of shadscale and winterfat generally was more responsive to differences in plant vigor and climate, reflecting the sensitivity of these species to utilization and replenishment of carbohydrate reserves. Similarities could be seen in the influence of both
Fuel consumption in optimal control
NASA Technical Reports Server (NTRS)
Redmond, Jim; Silverberg, Larry
1992-01-01
A method has been developed for comparing three optimal control strategies based on fuel consumption. A general cost function minimization procedure was developed by applying two theorems associated with convex sets. Three cost functions associated with control saturation, pseudofuel, and absolute fuel are introduced and minimized. The first two cost functions led to the bang-bang and continuous control strategies, and the minimization of absolute fuel led to an impulsive strategy. The three control strategies were implemented on two elementary systems and a comparison of fuel consumption was made. The impulse control strategy consumes significantly less fuel than the continuous and bang-bang control strategies. This comparison suggests a potential for fuel savings in higher-order systems using impulsive control strategies. However, since exact solutions to fuel-optimal control for large-order systems are difficult if not impossible to achieve, the alternative is to develop near-optimal control strategies.
Optimal control of the spine system.
Xu, Yunfei; Choi, Jongeun; Reeves, N Peter; Cholewicki, Jacek
2010-05-01
The goal of this work is to present methodology to first evaluate the performance of an in vivo spine system and then to synthesize optimal neuromuscular control for rehabilitation interventions. This is achieved (1) by determining control system parameters such as static feedback gains and delays from experimental data, (2) by synthesizing the optimal feedback gains to attenuate the effect of disturbances to the system using modern control theory, and (3) by evaluating the robustness of the optimized closed-loop system. We also apply these methods to a postural control task, with two different control strategies, and evaluate the robustness of the spine system with respect to longer latencies found in the low back pain population. This framework could be used for rehabilitation design. To this end, we discuss several future research needs necessary to implement our framework in practice. PMID:20459205
Optimal and multivariable control of a turbogenerator
NASA Astrophysics Data System (ADS)
Lahoud, M. A.; Harley, R. G.; Secker, A.
The use of modern control methods to design multivariable controllers which improve the performance of a turbogenerator was investigated. The turbogenerator nonlinear mathematical model from which a linearized model is deduced is presented. The inverse Nyquist Array method and the theory of optimal control are both applied to the linearized model to generate two alternative control schemes. The schemes are implemented on the nonlinear simulation model to assess their dynamic performance. Results from modern multivariable control schemes are compared with the classical automatic voltage regulator and speed governor system.
Control Theory and Statistical Generalizations.
ERIC Educational Resources Information Center
Powers, William T.
1990-01-01
Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…
Optimized Perturbation Theory:. Finite Temperature Applications
NASA Astrophysics Data System (ADS)
Pinto, Marcus Benghi
2001-09-01
We review the optimized perturbation theory (or linear δ-expansion) illustrating with an application to the anharmonic oscillator. We then apply the method to multi-field O(N1) × O(N2) scalar theories at high temperatures to investigate the possibility of inverse symmetry breaking (or symmetry non restoration). Our results support inverse symmetry breaking and reveal the possibility of other high temperature symmetry breaking patterns for which the last term in the breaking sequence is O(N1 - 1) × O(N2 - 1).
Optimal control for electron shuttling
NASA Astrophysics Data System (ADS)
Zhang, Jun; Greenman, Loren; Deng, Xiaotian; Hayes, Ian M.; Whaley, K. Birgitta
2013-06-01
In this paper we apply an optimal control technique to derive control fields that transfer an electron between ends of a chain of donors or quantum dots. We formulate the transfer as an optimal steering problem, and then derive the dynamics of the optimal control. A numerical algorithm is developed to effectively generate control pulses. We apply this technique to transfer an electron between sites of a triple quantum dot and an ionized chain of phosphorus dopants in silicon. Using the optimal pulses for the spatial shuttling of phosphorus dopants, we then add hyperfine interactions to the Hamiltonian and show that a 500 G magnetic field will transfer the electron spatially as well as transferring the spin components of two of the four hyperfine states of the electron-nuclear spin pair.
Optimally designed fields for controlling molecular dynamics
NASA Astrophysics Data System (ADS)
Rabitz, Herschel
1991-10-01
This research concerns the development of molecular control theory techniques for designing optical fields capable of manipulating molecular dynamic phenomena. Although is has been long recognized that lasers should be capable of manipulating dynamic events, many frustrating years of intuitively driven laboratory studies only serve to illustrate the point that the task is complex and defies intuition. The principal new component in the present research is the recognition that this problem falls into the category of control theory and its inherent complexities require the use of modern control theory tools largely developed in the engineering disciplines. Thus, the research has initiated a transfer of the control theory concepts to the molecular scale. Although much contained effort will be needed to fully develop these concepts, the research in this grant set forth the basic components of the theory and carried out illustrative studies involving the design of optical fields capable of controlling rotational, vibrational and electronic degrees of freedom. Optimal control within the quantum mechanical molecular realm represents a frontier area with many possible ultimate applications. At this stage, the theoretical tools need to be joined with merging laboratory optical pulse shaping capabilities to illustrate the power of the concepts.
Cancer Behavior: An Optimal Control Approach
Gutiérrez, Pedro J.; Russo, Irma H.; Russo, J.
2009-01-01
With special attention to cancer, this essay explains how Optimal Control Theory, mainly used in Economics, can be applied to the analysis of biological behaviors, and illustrates the ability of this mathematical branch to describe biological phenomena and biological interrelationships. Two examples are provided to show the capability and versatility of this powerful mathematical approach in the study of biological questions. The first describes a process of organogenesis, and the second the development of tumors. PMID:22247736
Optimality principles in sensorimotor control (review)
Todorov, Emanuel
2006-01-01
The sensorimotor system is a product of evolution, development, learning, adaptation – processes that work on different time scales to improve behavioral performance. Consequenly, many theories of motor function are based on the notion of optimal performance: they quantify the task goals, and apply the sophisticated tools of optimal control theory to obtain detailed behavioral predictions. The resulting models, although not without limitations, has explained a wider range of empirical phenomena than any other class of models. Traditional emphasis has been on optimizing average trajectories while ignoring sensory feedback. Recent work has redefined optimality on the level of feedback control laws, and focused on the mechanisms that generate behavior online. This has made it possible to fit a number of previously unrelated concepts and observations into what may become a unified theoretical framework for interpreting motor function. At the heart of the framework is the relationship between high-level goals, and the realtime sensorimotor control strategies most suitable for accomplishing those goals. PMID:15332089
Optimal control of motorsport differentials
NASA Astrophysics Data System (ADS)
Tremlett, A. J.; Massaro, M.; Purdy, D. J.; Velenis, E.; Assadian, F.; Moore, A. P.; Halley, M.
2015-12-01
Modern motorsport limited slip differentials (LSD) have evolved to become highly adjustable, allowing the torque bias that they generate to be tuned in the corner entry, apex and corner exit phases of typical on-track manoeuvres. The task of finding the optimal torque bias profile under such varied vehicle conditions is complex. This paper presents a nonlinear optimal control method which is used to find the minimum time optimal torque bias profile through a lane change manoeuvre. The results are compared to traditional open and fully locked differential strategies, in addition to considering related vehicle stability and agility metrics. An investigation into how the optimal torque bias profile changes with reduced track-tyre friction is also included in the analysis. The optimal LSD profile was shown to give a performance gain over its locked differential counterpart in key areas of the manoeuvre where a quick direction change is required. The methodology proposed can be used to find both optimal passive LSD characteristics and as the basis of a semi-active LSD control algorithm.
Optimal and robust control of transition
NASA Technical Reports Server (NTRS)
Bewley, T. R.; Agarwal, R.
1996-01-01
Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.
Optimal control with multiple human papillomavirus vaccines.
Malik, Tufail; Imran, Mudassar; Jayaraman, Raja
2016-03-21
A two-sex, deterministic ordinary differential equations model for human papillomavirus (HPV) is constructed and analyzed for optimal control strategies in a vaccination program administering three types of vaccines in the female population: a bivalent vaccine that targets two HPV types and provides longer duration of protection and cross-protection against some non-target types, a quadrivalent vaccine which targets an additional two HPV types, and a nonavalent vaccine which targets nine HPV types (including those covered by the quadrivalent vaccine), but with lesser type-specific efficacy. Considering constant vaccination controls, the disease-free equilibrium and the effective reproduction number Rv for the autonomous model are computed in terms of the model parameters. Local-asymptotic stability of the disease-free equilibrium is established in terms of Rv. Uncertainty and Sensitivity analyses are carried out to study the influence of various important model parameters on the HPV infection prevalence. Assuming the HPV infection prevalence in the population under the constant control, optimal control theory is used to devise optimal vaccination strategies for the associated non-autonomous model when the vaccination rates are functions of time. The impact of these strategies on the number of infected individuals and the accumulated cost is assessed and compared with the constant control case. Switch times from one vaccine combination to a different combination including the nonavalent vaccine are assessed during an optimally designed HPV immunization program. PMID:26796222
Optimal dynamic control of resources in a distributed system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
H2-optimal control with generalized state-space models for use in control-structure optimization
NASA Technical Reports Server (NTRS)
Wette, Matt
1991-01-01
Several advances are provided solving combined control-structure optimization problems. The author has extended solutions from H2 optimal control theory to the use of generalized state space models. The generalized state space models preserve the sparsity inherent in finite element models and hence provide some promise for handling very large problems. Also, expressions for the gradient of the optimal control cost are derived which use the generalized state space models.
Optimal Feedback Control of Thermal Networks
NASA Technical Reports Server (NTRS)
Papalexandris, Miltiadis
2003-01-01
An improved approach to the mathematical modeling of feedback control of thermal networks has been devised. Heretofore software for feedback control of thermal networks has been developed by time-consuming trial-and-error methods that depend on engineers expertise. In contrast, the present approach is a systematic means of developing algorithms for feedback control that is optimal in the sense that it combines performance with low cost of implementation. An additional advantage of the present approach is that a thermal engineer need not be expert in control theory. Thermal networks are lumped-parameter approximations used to represent complex thermal systems. Thermal networks are closely related to electrical networks commonly represented by lumped-parameter circuit diagrams. Like such electrical circuits, thermal networks are mathematically modeled by systems of differential-algebraic equations (DAEs) that is, ordinary differential equations subject to a set of algebraic constraints. In the present approach, emphasis is placed on applications in which thermal networks are subject to constant disturbances and, therefore, integral control action is necessary to obtain steady-state responses. The mathematical development of the present approach begins with the derivation of optimal integral-control laws via minimization of an appropriate cost functional that involves augmented state vectors. Subsequently, classical variational arguments provide optimality conditions in the form of the Hamiltonian equations for the standard linear-quadratic-regulator (LQR) problem. These equations are reduced to an algebraic Riccati equation (ARE) with respect to the augmented state vector. The solution of the ARE leads to the direct computation of the optimal proportional- and integral-feedback control gains. In cases of very complex networks, large numbers of state variables make it difficult to implement optimal controllers in the manner described in the preceding paragraph.
Optimization of constrained density functional theory
NASA Astrophysics Data System (ADS)
O'Regan, David D.; Teobaldi, Gilberto
2016-07-01
Constrained density functional theory (cDFT) is a versatile electronic structure method that enables ground-state calculations to be performed subject to physical constraints. It thereby broadens their applicability and utility. Automated Lagrange multiplier optimization is necessary for multiple constraints to be applied efficiently in cDFT, for it to be used in tandem with geometry optimization, or with molecular dynamics. In order to facilitate this, we comprehensively develop the connection between cDFT energy derivatives and response functions, providing a rigorous assessment of the uniqueness and character of cDFT stationary points while accounting for electronic interactions and screening. In particular, we provide a nonperturbative proof that stable stationary points of linear density constraints occur only at energy maxima with respect to their Lagrange multipliers. We show that multiple solutions, hysteresis, and energy discontinuities may occur in cDFT. Expressions are derived, in terms of convenient by-products of cDFT optimization, for quantities such as the dielectric function and a condition number quantifying ill definition in multiple constraint cDFT.
Optimal control strategies for coupled quantum dots
NASA Astrophysics Data System (ADS)
Räsänen, Esa; Putaja, Antti; Mardoukhi, Yousof
2013-09-01
Semiconductor quantum dots are ideal candidates for quantum information applications in solid-state technology. However, advanced theoretical and experimental tools are required to coherently control, for example, the electronic charge in these systems. Here we demonstrate how quantum optimal control theory provides a powerful way to manipulate the electronic structure of coupled quantum dots with an extremely high fidelity. As alternative control fields we apply both laser pulses as well as electric gates, respectively. We focus on double and triple quantum dots containing a single electron or two electrons interacting via Coulomb repulsion. In the two-electron situation we also briefly demonstrate the challenges of timedependent density-functional theory within the adiabatic local-density approximation to produce comparable results with the numerically exact approach.
Unifying process control and optimization
Makansi, J.
2005-09-01
About 40% of US generation is now subject to wholesale competition. To intelligently bid into these new markets, real-time prices must be aligned with real-time costs. It is time to integrate the many advanced applications, sensors, and analyzers used for control, automation, and optimization into a system that reflects process and financial objectives. The paper reports several demonstration projects in the USA revealing what is being done in the area of advanced process optimization (by Alliant Energy, American Electric Power, PacifiCorp, Detroit Edison and Tennessee Valley Authority). In addition to these projects US DOE's NETL has funded the plant environment and cost optimization system, PECOS which combines physical models, neural networks and fuzzy logic control to provide operators with least cost setpoints for controllable variables. At Dynegy Inc's Baldwin station in Illinois the DOE is subsidizing a project where real time, closed-loop IT systems will optimize combustion, soot-blowing and SCR performance as well as unit thermal performance and plant economic performance. Commercial products such as Babcock and Wilcox's Flame Doctor, continuous emissions monitoring systems and various real-time predictive monitoring systems are also available. 4 figs.
Mean-field sparse optimal control
Fornasier, Massimo; Piccoli, Benedetto; Rossi, Francesco
2014-01-01
We introduce the rigorous limit process connecting finite dimensional sparse optimal control problems with ODE constraints, modelling parsimonious interventions on the dynamics of a moving population divided into leaders and followers, to an infinite dimensional optimal control problem with a constraint given by a system of ODE for the leaders coupled with a PDE of Vlasov-type, governing the dynamics of the probability distribution of the followers. In the classical mean-field theory, one studies the behaviour of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect. In this paper, we address instead the situation where the leaders are actually influenced also by an external policy maker, and we propagate its effect for the number N of followers going to infinity. The technical derivation of the sparse mean-field optimal control is realized by the simultaneous development of the mean-field limit of the equations governing the followers dynamics together with the Γ-limit of the finite dimensional sparse optimal control problems. PMID:25288818
Optimal woofer tweeter control demonstration
NASA Astrophysics Data System (ADS)
Le Roux, B.; El Hadi, K.; NDiaye, M.; Gray, M.
2011-09-01
Large aperture telescope adaptive optics incorporates several deformable and active mirrors. Several options have been proposed for several DM adaptive optics systems. We study an optimal control approach for these woofer tweeter systems based on a Kalman filtering method. This approach allows to share out the spatial energy of correction between the mirrors and to deal with different temporal response time. The approach is presented and a validation of the control method is carried out in a numerical simulation. We finally present the experimental validation of such control solutions for woofer-tweeter systems. The validation bench and the optical components are presented and the first experimental results are shown.
Optimal control of hydroelectric facilities
NASA Astrophysics Data System (ADS)
Zhao, Guangzhi
This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the
Practical synchronization on complex dynamical networks via optimal pinning control.
Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu
2015-07-01
We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications. PMID:26274112
Combined control-structure optimization
NASA Technical Reports Server (NTRS)
Salama, M.; Milman, M.; Bruno, R.; Scheid, R.; Gibson, S.
1989-01-01
An approach for combined control-structure optimization keyed to enhancing early design trade-offs is outlined and illustrated by numerical examples. The approach employs a homotopic strategy and appears to be effective for generating families of designs that can be used in these early trade studies. Analytical results were obtained for classes of structure/control objectives with linear quadratic Gaussian (LQG) and linear quadratic regulator (LQR) costs. For these, researchers demonstrated that global optima can be computed for small values of the homotopy parameter. Conditions for local optima along the homotopy path were also given. Details of two numerical examples employing the LQR control cost were given showing variations of the optimal design variables along the homotopy path. The results of the second example suggest that introducing a second homotopy parameter relating the two parts of the control index in the LQG/LQR formulation might serve to enlarge the family of Pareto optima, but its effect on modifying the optimal structural shapes may be analogous to the original parameter lambda.
Pilot-optimal multivariable control synthesis by output feedback
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Innocenti, M.
1981-01-01
A control system design approach for optimal stability augmentation, systems, using limited state feedback theory with the specific inclusion of the human pilot in the loop is presented. The methodology is especially suitable for application to flight vehicles exhibiting nonconventional dynamic characteristics and for which quantitative handling qualities specifications are not available. The design is based on a correlation between pilot ratings and objective function of the optimal control model of the human pilot. Simultaneous optimization for augmentation and pilot gains are required.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
Optimal control in a macroeconomic problem
NASA Astrophysics Data System (ADS)
Bulgakov, V. K.; Shatov, G. L.
2007-08-01
The Pontryagin maximum principle is used to develop an original algorithm for finding an optimal control in a macroeconomic problem. Numerical results are presented for the optimal control and optimal trajectory of the development of a regional economic system. For an optimal control satisfying a certain constraint, an invariant of a macroeconomic system is derived.
Aerodynamic design via control theory
NASA Technical Reports Server (NTRS)
Jameson, Antony
1988-01-01
The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.
Quasivelocities and Optimal Control for underactuated Mechanical Systems
Colombo, L.; Martin de Diego, D.
2010-07-28
This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.
Quasivelocities and Optimal Control for underactuated Mechanical Systems
NASA Astrophysics Data System (ADS)
Colombo, L.; de Diego, D. Martín
2010-07-01
This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.
Optimal coordination and control of posture and movements.
Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns
2009-01-01
This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided. PMID:19671443
Orbital-optimized density cumulant functional theory
Sokolov, Alexander Yu. Schaefer, Henry F.
2013-11-28
In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.
An Affect Control Theory of Technology
ERIC Educational Resources Information Center
Shank, Daniel B.
2010-01-01
Affect control theory is a theory of interaction that takes into account cultural meanings. Affect control research has previously considered interaction with technology, but there remains a lack of theorizing about inclusion of technology within the theory. This paper lays a foundation for an affect control theory of technology by addressing key…
Optimal control of overdamped systems.
Zulkowski, Patrick R; DeWeese, Michael R
2015-09-01
Nonequilibrium physics encompasses a broad range of natural and synthetic small-scale systems. Optimizing transitions of such systems will be crucial for the development of nanoscale technologies and may reveal the physical principles underlying biological processes at the molecular level. Recent work has demonstrated that when a thermodynamic system is driven away from equilibrium then the space of controllable parameters has a Riemannian geometry induced by a generalized inverse diffusion tensor. We derive a simple, compact expression for the inverse diffusion tensor that depends solely on equilibrium information for a broad class of potentials. We use this formula to compute the minimal dissipation for two model systems relevant to small-scale information processing and biological molecular motors. In the first model, we optimally erase a single classical bit of information modeled by an overdamped particle in a smooth double-well potential. In the second model, we find the minimal dissipation of a simple molecular motor model coupled to an optical trap. In both models, we find that the minimal dissipation for the optimal protocol of duration τ is proportional to 1/τ, as expected, though the dissipation for the erasure model takes a different form than what we found previously for a similar system. PMID:26465436
HCCI Engine Optimization and Control
Rolf D. Reitz
2005-09-30
The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.
Aerospace plane guidance using geometric control theory
NASA Technical Reports Server (NTRS)
Van Buren, Mark A.; Mease, Kenneth D.
1990-01-01
A reduced-order method employing decomposition, based on time-scale separation, of the 4-D state space in a 2-D slow manifold and a family of 2-D fast manifolds is shown to provide an excellent approximation to the full-order minimum-fuel ascent trajectory. Near-optimal guidance is obtained by tracking the reduced-order trajectory. The tracking problem is solved as regulation problems on the family of fast manifolds, using the exact linearization methodology from nonlinear geometric control theory. The validity of the overall guidance approach is indicated by simulation.
Testing Optimal Foraging Theory Using Bird Predation on Goldenrod Galls
ERIC Educational Resources Information Center
Yahnke, Christopher J.
2006-01-01
All animals must make choices regarding what foods to eat, where to eat, and how much time to spend feeding. Optimal foraging theory explains these behaviors in terms of costs and benefits. This laboratory exercise focuses on optimal foraging theory by investigating the winter feeding behavior of birds on the goldenrod gall fly by comparing…
Adaptive, predictive controller for optimal process control
Brown, S.K.; Baum, C.C.; Bowling, P.S.; Buescher, K.L.; Hanagandi, V.M.; Hinde, R.F. Jr.; Jones, R.D.; Parkinson, W.J.
1995-12-01
One can derive a model for use in a Model Predictive Controller (MPC) from first principles or from experimental data. Until recently, both methods failed for all but the simplest processes. First principles are almost always incomplete and fitting to experimental data fails for dimensions greater than one as well as for non-linear cases. Several authors have suggested the use of a neural network to fit the experimental data to a multi-dimensional and/or non-linear model. Most networks, however, use simple sigmoid functions and backpropagation for fitting. Training of these networks generally requires large amounts of data and, consequently, very long training times. In 1993 we reported on the tuning and optimization of a negative ion source using a special neural network[2]. One of the properties of this network (CNLSnet), a modified radial basis function network, is that it is able to fit data with few basis functions. Another is that its training is linear resulting in guaranteed convergence and rapid training. We found the training to be rapid enough to support real-time control. This work has been extended to incorporate this network into an MPC using the model built by the network for predictive control. This controller has shown some remarkable capabilities in such non-linear applications as continuous stirred exothermic tank reactors and high-purity fractional distillation columns[3]. The controller is able not only to build an appropriate model from operating data but also to thin the network continuously so that the model adapts to changing plant conditions. The controller is discussed as well as its possible use in various of the difficult control problems that face this community.
New Applications of Variational Analysis to Optimization and Control
NASA Astrophysics Data System (ADS)
Mordukhovich, Boris S.
We discuss new applications of advanced tools of variational analysis and generalized differentiation to a number of important problems in optimization theory, equilibria, optimal control, and feedback control design. The presented results are largely based on the recent work by the author and his collaborators. Among the main topics considered and briefly surveyed in this paper are new calculus rules for generalized differentiation of nonsmooth and set-valued mappings; necessary and sufficient conditions for new notions of linear subextremality and suboptimality in constrained problems; optimality conditions for mathematical problems with equilibrium constraints; necessary optimality conditions for optimistic bilevel programming with smooth and nonsmooth data; existence theorems and optimality conditions for various notions of Pareto-type optimality in problems of multiobjective optimization with vector-valued and set-valued cost mappings; Lipschitzian stability and metric regularity aspects for constrained and variational systems.
Fuzzy logic control and optimization system
Lou, Xinsheng
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Applying new optimization algorithms to more predictive control
Wright, S.J.
1996-03-01
The connections between optimization and control theory have been explored by many researchers and optimization algorithms have been applied with success to optimal control. The rapid pace of developments in model predictive control has given rise to a host of new problems to which optimization has yet to be applied. Concurrently, developments in optimization, and especially in interior-point methods, have produced a new set of algorithms that may be especially helpful in this context. In this paper, we reexamine the relatively simple problem of control of linear processes subject to quadratic objectives and general linear constraints. We show how new algorithms for quadratic programming can be applied efficiently to this problem. The approach extends to several more general problems in straightforward ways.
The neural optimal control hierarchy for motor control
NASA Astrophysics Data System (ADS)
DeWolf, T.; Eliasmith, C.
2011-10-01
Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.
Control optimization of the cryoplant warm compressor station for EAST
Zhuang, M.; Hu, L. B.; Zhou, Z. W.; Xia, G. H.
2014-01-29
The cryogenic control system for EAST (Experimental Advanced Superconducting Tokamak) was designed based on DeltaV DCS of Emerson Corporation. The automatic control of the cryoplant warm compressors has been implemented. However, with ever-degrading performance of critical equipment, the cryoplant operation in the partial design conditions makes the control system fluctuate and unstable. In this paper, the warm compressor control system was optimized to eliminate the pressure oscillation based on the expert PID theory.
Optimal control of orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Vinh, N. X.
1983-01-01
During the past two decades, considerable research effort has been spent to convincingly prove that the use of aerodynamic forces to assist in the orbital transfer can significantly reduce the fuel consumption as compared to the pure propulsive mode. Since in this aeroassisted mode, preliminary maneuvers in the vacuum effect the resulting performance in the atmospheric phase, and vice versa, the two, space and atmospheric maneuvers, are, to a great extent, coupled. This paper summarizes, via optimal control theory, the fundamental results in the problem of orbital transfer using combined propulsive and aerodynamic forces. For the atmospheric phase, the use of Chapman's variables reduced the number of the physical characteristics of the vehicle and the atmosphere to a minimum and hence allows a better generalization of the results. The paper concludes with some illustrative examples.
On Applications of Extreme Value Theory in Optimization
NASA Astrophysics Data System (ADS)
Hüsler, Jürg
We present a statistical study of the distribution of the objective value of solutions (outcomes) obtained by stochastic optimizers, applied for continuous objective functions. We discuss the application of extreme value theory for the optimization procedures. A short review of the extreme value theory is presented to understand the investigations. In this chapter three optimization procedures are compared in this context: the random search and two evolution strategies. The outcomes of these optimizers applied to three objective functions are discussed in the context of extreme value theory and the performances of the procedures investigated, analytically and by simulations. In particular, we find that the estimated extreme value distributions and the fit to the outcomes characterize the performance of the optimizer in one single instance.
Backward bifurcation and optimal control of Plasmodium Knowlesi malaria
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2014-07-01
A deterministic model for the transmission dynamics of Plasmodium Knowlesi malaria with direct transmission is developed. The model is analyzed using dynamical system techniques and it shows that the backward bifurcation occurs for some range of parameters. The model is extended to assess the impact of time dependent preventive (biological and chemical control) against the mosquitoes and vaccination for susceptible humans, while treatment for infected humans. The existence of optimal control is established analytically by the use of optimal control theory. Numerical simulations of the problem, suggest that applying the four control measure can effectively reduce if not eliminate the spread of Plasmodium Knowlesi in a community.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Optimal singular control with applications to trajectory optimization
NASA Technical Reports Server (NTRS)
Vinh, N. X.
1977-01-01
A comprehensive discussion of the problem of singular control is presented. Singular control enters an optimal trajectory when the so called switching function vanishes identically over a finite time interval. Using the concept of domain of maneuverability, the problem of optical switching is analyzed. Criteria for the optimal direction of switching are presented. The switching, or junction, between nonsingular and singular subarcs is examined in detail. Several theorems concerning the necessary, and also sufficient conditions for smooth junction are presented. The concepts of quasi-linear control and linearized control are introduced. They are designed for the purpose of obtaining approximate solution for the difficult Euler-Lagrange type of optimal control in the case where the control is nonlinear.
Optimizing Dynamical Network Structure for Pinning Control
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control.
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-01-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights. PMID:27067020
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Mixed-Strategy Chance Constrained Optimal Control
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J.
2013-01-01
This paper presents a novel chance constrained optimal control (CCOC) algorithm that chooses a control action probabilistically. A CCOC problem is to find a control input that minimizes the expected cost while guaranteeing that the probability of violating a set of constraints is below a user-specified threshold. We show that a probabilistic control approach, which we refer to as a mixed control strategy, enables us to obtain a cost that is better than what deterministic control strategies can achieve when the CCOC problem is nonconvex. The resulting mixed-strategy CCOC problem turns out to be a convexification of the original nonconvex CCOC problem. Furthermore, we also show that a mixed control strategy only needs to "mix" up to two deterministic control actions in order to achieve optimality. Building upon an iterative dual optimization, the proposed algorithm quickly converges to the optimal mixed control strategy with a user-specified tolerance.
Optimal control of vaccine distribution in a rabies metapopulation model.
Asano, Erika; Gross, Louis J; Lenhart, Suzanne; Real, Leslie A
2008-04-01
We consider an SIR metapopulation model for the spread of rabies in raccoons. This system of ordinary differential equations considers subpopulations connected by movement. Vaccine for raccoons is distributed through food baits. We apply optimal control theory to find the best timing for distribution of vaccine in each of the linked subpopulations across the landscape. This strategy is chosen to limit the disease optimally by making the number of infections as small as possible while accounting for the cost of vaccination. PMID:18613731
The Clinical Significance of Optimality Theory for Phonological Disorders
ERIC Educational Resources Information Center
Gierut, Judith A.; Morrisette, Michele L.
2005-01-01
Linguistic theory has made important contributions to the clinical assessment and treatment of children with functional phonological disorders. In this article, Optimality Theory (OT) is introduced as a new linguistic model of grammar. Basic assumptions of the model are described and extended to clinical assessment and treatment. The aim is (1) to…
Optimal protein-folding codes from spin-glass theory.
Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G
1992-01-01
Protein-folding codes embodied in sequence-dependent energy functions can be optimized using spin-glass theory. Optimal folding codes for associative-memory Hamiltonians based on aligned sequences are deduced. A screening method based on these codes correctly recognizes protein structures in the "twilight zone" of sequence identity in the overwhelming majority of cases. Simulated annealing for the optimally encoded Hamiltonian generally leads to qualitatively correct structures. Images PMID:1594594
Integrated control/structure optimization by multilevel decomposition
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Gilbert, Michael G.
1990-01-01
A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.
Integrated control/structure optimization by multilevel decomposition
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Gilbert, Michael G.
1990-01-01
A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.
Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Litt, Jonathan (Technical Monitor); Ray, Asok
2004-01-01
This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.
Approximation in control of flexible structures, theory and application
NASA Technical Reports Server (NTRS)
Gibson, J. S.
1983-01-01
The sense in which the feedback control law based on an approximate finite dimensional model of a continuous structure approximates a control law which is optimal for the distributed, or infinite dimensional, model of the structure is studied. From the analysis of the various control and stability issues associated with this basis question, useful information for designing finite dimensional compensators which produce near-optimal performance in infinite dimensional systems is gained. Some of the important predictions that can be made about large-order finite dimensional control laws, using the theory of infinite dimensional Riccati equations are indicated.
Optimal selection theory for superconcurrency. Technical document
Freund, R.F.
1989-10-01
This paper describes a mathematical programming approach to finding an optimal, heterogeneous suite of processors to solve supercomputing problems. This technique, called superconcurrency, works best when the computational requirements are diverse and significant portions of the code are not tightly-coupled. It is also dependent on new methods of benchmarking and code profiling, as well as eventual use of AI techniques for intelligent management of the selected superconcurrent suite.
Discover for Yourself: An Optimal Control Model in Insect Colonies
ERIC Educational Resources Information Center
Winkel, Brian
2013-01-01
We describe the enlightening path of self-discovery afforded to the teacher of undergraduate mathematics. This is demonstrated as we find and develop background material on an application of optimal control theory to model the evolutionary strategy of an insect colony to produce the maximum number of queen or reproducer insects in the colony at…
Lie theory and control systems defined on spheres
NASA Technical Reports Server (NTRS)
Brockett, R. W.
1972-01-01
It is shown that in constructing a theory for the most elementary class of control problems defined on spheres, some results from the Lie theory play a natural role. To understand controllability, optimal control, and certain properties of stochastic equations, Lie theoretic ideas are needed. The framework considered here is the most natural departure from the usual linear system/vector space problems which have dominated control systems literature. For this reason results are compared with those previously available for the finite dimensional vector space case.
Control optimization, stabilization and computer algorithms for aircraft applications
NASA Technical Reports Server (NTRS)
Athans, M. (Editor); Willsky, A. S. (Editor)
1982-01-01
The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory.
Linear optimal control of tokamak fusion devices
Kessel, C.E.; Firestone, M.A.; Conn, R.W.
1989-05-01
The control of plasma position, shape and current in a tokamak fusion reactor is examined using linear optimal control. These advanced tokamaks are characterized by non up-down symmetric coils and structure, thick structure surrounding the plasma, eddy currents, shaped plasmas, superconducting coils, vertically unstable plasmas, and hybrid function coils providing ohmic heating, vertical field, radial field, and shaping field. Models of the electromagnetic environment in a tokamak are derived and used to construct control gains that are tested in nonlinear simulations with initial perturbations. The issues of applying linear optimal control to advanced tokamaks are addressed, including complex equilibrium control, choice of cost functional weights, the coil voltage limit, discrete control, and order reduction. Results indicate that the linear optimal control is a feasible technique for controlling advanced tokamaks where the more common classical control will be severely strained or will not work. 28 refs., 13 figs.
Control theory based airfoil design using the Euler equations
NASA Technical Reports Server (NTRS)
Jameson, Antony; Reuther, James
1994-01-01
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.
Stochastic Optimally Tuned Range-Separated Hybrid Density Functional Theory.
Neuhauser, Daniel; Rabani, Eran; Cytter, Yael; Baer, Roi
2016-05-19
We develop a stochastic formulation of the optimally tuned range-separated hybrid density functional theory that enables significant reduction of the computational effort and scaling of the nonlocal exchange operator at the price of introducing a controllable statistical error. Our method is based on stochastic representations of the Coulomb convolution integral and of the generalized Kohn-Sham density matrix. The computational cost of the approach is similar to that of usual Kohn-Sham density functional theory, yet it provides a much more accurate description of the quasiparticle energies for the frontier orbitals. This is illustrated for a series of silicon nanocrystals up to sizes exceeding 3000 electrons. Comparison with the stochastic GW many-body perturbation technique indicates excellent agreement for the fundamental band gap energies, good agreement for the band edge quasiparticle excitations, and very low statistical errors in the total energy for large systems. The present approach has a major advantage over one-shot GW by providing a self-consistent Hamiltonian that is central for additional postprocessing, for example, in the stochastic Bethe-Salpeter approach. PMID:26651840
Dynamic optimization and adaptive controller design
NASA Astrophysics Data System (ADS)
Inamdar, S. R.
2010-10-01
In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.
Role of controllability in optimizing quantum dynamics
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-06-15
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Network anomaly detection system with optimized DS evidence theory.
Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu
2014-01-01
Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network-complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each sensor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly. PMID:25254258
Network Anomaly Detection System with Optimized DS Evidence Theory
Liu, Yuan; Wang, Xiaofeng; Liu, Kaiyu
2014-01-01
Network anomaly detection has been focused on by more people with the fast development of computer network. Some researchers utilized fusion method and DS evidence theory to do network anomaly detection but with low performance, and they did not consider features of network—complicated and varied. To achieve high detection rate, we present a novel network anomaly detection system with optimized Dempster-Shafer evidence theory (ODS) and regression basic probability assignment (RBPA) function. In this model, we add weights for each senor to optimize DS evidence theory according to its previous predict accuracy. And RBPA employs sensor's regression ability to address complex network. By four kinds of experiments, we find that our novel network anomaly detection model has a better detection rate, and RBPA as well as ODS optimization methods can improve system performance significantly. PMID:25254258
Optimized perturbation theory: the pion form factor
Gupta, R.
1981-10-01
The order ..cap alpha../sup 2//sub s/(Q/sup 2/) corrections to the pion form-factor F/sub ..pi../(Q/sup 2/) are calculated using perturbative QCD and dimensional regularization. The result is compared in the MS and MOM subtraction schemes and plotted as a function of Q/sup 2//Q/sup 2/ where Q is the subtraction point. There is a large dependence on the scheme, the definition of the running coupling constant ..cap alpha../sub s/(Q/sup 2/) and the subtraction point Q. We find it best to invert the ..beta..-function equation for the definition of ..cap alpha../sub s/ rather than make an expansion in powers of log(Q/sup 2//..lambda../sup 2/). We study two methods to optimize the result with respect to Q: Stevenson's prescription and putting the 0(..cap alpha../sup 2//sub s/) term to zero. Both methods give almost the same value for Q/sup 2/F/sub ..pi../ and this value is scheme independent.
Theory and practice of parallel direct optimization.
Janies, Daniel A; Wheeler, Ward C
2002-01-01
Our ability to collect and distribute genomic and other biological data is growing at a staggering rate (Pagel, 1999). However, the synthesis of these data into knowledge of evolution is incomplete. Phylogenetic systematics provides a unifying intellectual approach to understanding evolution but presents formidable computational challenges. A fundamental goal of systematics, the generation of evolutionary trees, is typically approached as two distinct NP-complete problems: multiple sequence alignment and phylogenetic tree search. The number of cells in a multiple alignment matrix are exponentially related to sequence length. In addition, the number of evolutionary trees expands combinatorially with respect to the number of organisms or sequences to be examined. Biologically interesting datasets are currently comprised of hundreds of taxa and thousands of nucleotides and morphological characters. This standard will continue to grow with the advent of highly automated sequencing and development of character databases. Three areas of innovation are changing how evolutionary computation can be addressed: (1) novel concepts for determination of sequence homology, (2) heuristics and shortcuts in tree-search algorithms, and (3) parallel computing. In this paper and the online software documentation we describe the basic usage of parallel direct optimization as implemented in the software POY (ftp://ftp.amnh.org/pub/molecular/poy). PMID:11924490
Optimizing protein representations with information theory.
Mintseris, Julian; Weng, Zhiping
2004-01-01
The problem of describing a protein representation by breaking up the amino acids atoms into functionally similar atom groups has been addressed by many researchers in the past 25 years. They have used a variety of physical, chemical and biological criteria of varying degrees of rigor to essentially impose our understanding of protein structures onto various atom-typing schemes used in studies of protein folding, protein-protein and protein-ligand interactions, and others. Here, instead, we have chosen to rely primarily on the data and use information-theoretic techniques to dissect it. We show that we can obtain an optimized protein representation for a given alphabet size from protein monomers or protein interface datasets that are in agreement with general concepts of protein energetics. Closer inspection of the atom partitions led to interesting observations pointing to the greater importance of the hydrophobic interactions in protein monomers compared to interfaces and, conversely, greater importance of polar/charged interaction in protein interfaces. Comparing the atom partitions from the two datasets we show that the two are strikingly similar at alphabet size of five, proving that despite some differences, the general energetic concepts are very similar for folding and binding. Implications for further structural studies are discussed. PMID:15712119
Direct Optimal Control of Duffing Dynamics
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Ramsey, John K.
2002-01-01
The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.
Technology Transfer Automated Retrieval System (TEKTRAN)
Ant Colony Optimization (ACO) refers to the family of algorithms inspired by the behavior of real ants and used to solve combinatorial problems such as the Traveling Salesman Problem (TSP).Optimal Foraging Theory (OFT) is an evolutionary principle wherein foraging organisms or insect parasites seek ...
An intellignet controller for optimized sootblowing
Baldridge, D.; Bangham, M.; Gratcheva, K.
1996-05-01
Efficiency losses of over 200 Btu/KWH have been attributed to sub-optimal control of sootblowers in coal-fired boilers, frequently accounting for over 80% of the controllable losses. For a 500 MW power plant, this translates into yearly costs of over $1 M. The primary impediment to sootblowing optimization to date has been the difficulty associated with modeling the relationship between sootblowing, and boiler efficiency. New advances in neural network technology now provide an attractive approach to address this issue. This paper presents results to date of a project currently under way at DHR Technologies, Inc. (DHR), George Washington University (GWU), and Baltimore Gas and Electric Company (BGE), with funding provided by the Department of Energy (DOE), to develop an Intelligent Controller for Optimized Sootblowing (ICOS). The ICOS system combines a neural network-based process model with an optimization algorithm to provide automated, optimized control of steam or compressed air sootblowers for fossil utility boilers. In Phase I of the project, the proposed optimization approach was tested and validated using data from BGE`s Brandon Shores Station. Phase I quantified the expected savings of the controller and verified the effectiveness of the proposed technical approach. In Phase II, the control algorithm will be incorporated into DHR`s TOPAZ{trademark} optimization system and interfaced with Brandon Shore`s Diamond Power sootblowing controller, and will be demonstrated and tested for closed-loop, optimal sootblowing control. The savings achieved through use of the ICOS controller during testing will also be quantified.
Parameter optimization in AQM controller design to support TCP traffic
NASA Astrophysics Data System (ADS)
Yang, Wei; Yang, Oliver W.
2004-09-01
TCP congestion control mechanism has been widely investigated and deployed on Internet in preventing congestion collapse. We would like to employ modern control theory to specify quantitatively the control performance of the TCP communication system. In this paper, we make use of a commonly used performance index called the Integral of the Square of the Error (ISE), which is a quantitative measure to gauge the performance of a control system. By applying the ISE performance index into the Proportional-plus-Integral controller based on Pole Placement (PI_PP controller) for active queue management (AQM) in IP routers, we can further tune the parameters for the controller to achieve an optimum control minimizing control errors. We have analyzed the dynamic model of the TCP congestion control under this ISE, and used OPNET simulation tool to verify the derived optimized parameters of the controllers.
Optimal torque control for SCOLE slewing maneuvers
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Li, Feiyue
1987-01-01
The Spacecraft Control Laboratory Experiment (SCOLE) was slewed from one attitude to the required attitude and an integral performance index which involves the control torques was minimized. Kinematic and dynamical equations, optimal control, two-point boundary-value problems, and estimation of unknown boundary conditions are presented.
Applications of robust control theory - Educational implications
NASA Technical Reports Server (NTRS)
Dorato, P.; Yedavalli, R. K.
1992-01-01
A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.
Unification Theory of Optimal Life Histories and Linear Demographic Models in Internal Stochasticity
Oizumi, Ryo
2014-01-01
Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order to analyze the optimal control under internal stochasticity, we need to make use of “Stochastic Control Theory” in the optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal stochasticity into linear demographic models. First, we show the relationship between the general age-states linear demographic models and the stochastic control theory via several mathematical formulations, such as path–integral, integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear demographic models. PMID:24945258
Optimal controller design for structural damage detection
NASA Astrophysics Data System (ADS)
Lew, Jiann-Shiun
2005-03-01
The virtual passive control technique has recently been applied to structural damage detection, where the virtual passive controller only uses the existing control devices, and no additional physical elements are attached to the tested structure. One important task is to design passive controllers that can enhance the sensitivity of the identified parameters, such as natural frequencies, to structural damage. This paper presents a novel study of an optimal controller design for structural damage detection. We apply not only passive controllers but also low-order and fixed-structure controllers, such as PID controllers. In the optimal control design, the performance of structural damage detection is based on the application of a neural network technique, which uses the pattern of the correlation between the natural frequency changes of the tested system and the damaged system.
Linear quadratic optimal controller for cable-driven parallel robots
NASA Astrophysics Data System (ADS)
Abdolshah, Saeed; Shojaei Barjuei, Erfan
2015-12-01
In recent years, various cable-driven parallel robots have been investigated for their advantages, such as low structural weight, high acceleration, and large work-space, over serial and conventional parallel systems. However, the use of cables lowers the stiffness of these robots, which in turn may decrease motion accuracy. A linear quadratic (LQ) optimal controller can provide all the states of a system for the feedback, such as position and velocity. Thus, the application of such an optimal controller in cable-driven parallel robots can result in more efficient and accurate motion compared to the performance of classical controllers such as the proportional- integral-derivative controller. This paper presents an approach to apply the LQ optimal controller on cable-driven parallel robots. To employ the optimal control theory, the static and dynamic modeling of a 3-DOF planar cable-driven parallel robot (Feriba-3) is developed. The synthesis of the LQ optimal control is described, and the significant experimental results are presented and discussed.
Discrete Mechanics and Optimal Control for Space Trajectory Design
NASA Astrophysics Data System (ADS)
Moore, Ashley
Space trajectory design is often achieved through a combination of dynamical systems theory and optimal control. The union of trajectory design techniques utilizing invariant manifolds of the planar circular restricted three-body problem and the optimal control scheme Discrete Mechanics and Optimal Control (DMOC) facilitates the design of low-energy trajectories in the N-body problem. In particular, DMOC is used to optimize a trajectory from the Earth to the Moon in the 4-body problem, removing the mid-course change in velocity, Delta V, usually necessary for such a trajectory while still exploiting the structure from the invariant manifolds. This thesis also focuses on how to adapt DMOC, a method devised with a constant step size, for the highly nonlinear dynamics involved in trajectory design. Mesh refinement techniques that aim to reduce discretization errors in the solution and energy evolution and their effect on DMOC optimization are explored and compared with trajectories created using time adaptive variational integrators. Furthermore, a time adaptive form of DMOC is developed that allows for a variable step size that is updated throughout the optimization process. Time adapted DMOC is based on a discretization of Hamilton's principle applied to the time adapted Lagrangian of the optimal control problem. Variations of the discrete action of the optimal control Lagrangian lead to discrete Euler-Lagrange equations that can be enforced as constraints for a boundary value problem. This new form of DMOC leads to the accurate and efficient solution of optimal control problems with highly nonlinear dynamics. Time adapted DMOC is tested on several space trajectory problems including the elliptical orbit transfer in the 2-body problem and the reconfiguration of a cubesat.
Optimal control of systems with capacity: Related noises
NASA Technical Reports Server (NTRS)
Ruan, Milfang; Choudhury, Ajit K.
1991-01-01
In the ordinary theory of optimal control (LQR and Kalman filter), the variances of the actuators and the sensors are assumed to be known (not related to the capacities of the devices). This assumption is not true in practice. Generally, a device with greater capacity to exert actuating forces and a sensor capable of sensing greater sensing range will generate noise of greater power spectral density. When the ordinary theory of optimal control is used to estimate the errors of the outputs in such cases it will lead to faulty results, because the capacities of such devices are unknown before the system is designed. The performance of the system designed by the ordinary theory will not be optimal as the variances of the sensors and the actuators are neither known nor constant. The interaction between the control system and structure could be serious because the ordinary method will lead to greater feedback (Kalman gain) matrices. Methods which can optimize the performance of systems when noises of the actuators and the sensors are related to their capacities are developed. These methods will result in smaller feedback (Kalman gain) matrix.
Modal insensitivity with optimality. [in feedback control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Raman, K. V.
1984-01-01
This paper deals with the design of a constant gain, feedback controller which results in selected modal insensitivity, and at the same time optimizes a quadratic performance index representative of desired system performance for nominal plant parameter values. Both full state and output feedback control are considered. A constraint is established for the feedback gain matrix that results in modal insensitivity, and necessary conditions for optimality subject to this constraint are given. This forms the basis for a numerical algorithm to compute the optimal feedback gain. To illustrate the procedure, a design is carried out using the lateral dynamics of an L-1011 aircraft.
Evaluating Student Assessments: The Use of Optimal Foraging Theory
ERIC Educational Resources Information Center
Whalley, W. Brian
2016-01-01
The concepts of optimal foraging theory and the marginal value theorem are used to investigate possible student behaviour in accruing marks in various forms of assessment. The ideas of predator energy consumption, handling and search times can be evaluated in terms of student behaviour and gaining marks or "attainment". These ideas can…
"Cruel Optimism" and Contemporary Australian Critical Theory in Educational Research
ERIC Educational Resources Information Center
Rasmussen, Mary Lou
2015-01-01
"Cruel optimism" is a term coined by Lauren Berlant. In conceptualizing this term, Berlant draws on the resources of critical theory to interrogate people's desires for things they think may improve their lot, but actually act as obstacles to flourishing. This notion may be useful for analysing the current state of education in…
Application of the general problem of moments to some optimization problems in elasticity theory
NASA Astrophysics Data System (ADS)
Grigoliuk, E. I.; Fil'Shtinskii, V. A.; Fil'Shtinskii, L. A.
1992-04-01
Several optimization problems in elasticity theory are formulated which are relevant to geomechanics. Methods are then presented for reducing these problems to general moment problems in continuous-function space. By using polynomial approximations of nonstandard moment functions, the general moment problems are reduced to the classical power-law moment problem. This allows an a priori evaluation of the optimal control structure. Theoretical and computational examples are presented.
Stochastic Optimal Control via Bellman's Principle
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Sun, Jian Q.
2003-01-01
This paper presents a method for finding optimal controls of nonlinear systems subject to random excitations. The method is capable to generate global control solutions when state and control constraints are present. The solution is global in the sense that controls for all initial conditions in a region of the state space are obtained. The approach is based on Bellman's Principle of optimality, the Gaussian closure and the Short-time Gaussian approximation. Examples include a system with a state-dependent diffusion term, a system in which the infinite hierarchy of moment equations cannot be analytically closed, and an impact system with a elastic boundary. The uncontrolled and controlled dynamics are studied by creating a Markov chain with a control dependent transition probability matrix via the Generalized Cell Mapping method. In this fashion, both the transient and stationary controlled responses are evaluated. The results show excellent control performances.
Lagrange duality theory for convex control problems
NASA Technical Reports Server (NTRS)
Hager, W. W.; Mitter, S. K.
1976-01-01
The Lagrange dual to a control problem is studied. The principal result based on the Hahn-Banach theorem proves that the dual problem has an optimal solution if there exists an interior point for the constraint set. A complementary slackness condition holds, if the primal problem has an optimal solution. A necessary and sufficient condition for the optimality of solutions to the primal and the dual problem is also presented.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1986-01-01
The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Gary, Sanjay; Schmidt, David K.
1987-01-01
A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.
Optimal cooperative control synthesis of active displays
NASA Technical Reports Server (NTRS)
Garg, S.; Schmidt, D. K.
1985-01-01
The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.
Role of control constraints in quantum optimal control
NASA Astrophysics Data System (ADS)
Zhdanov, Dmitry V.; Seideman, Tamar
2015-11-01
The problems of optimizing the value of an arbitrary observable of a two-level system at both a fixed time and the shortest possible time is theoretically explored. Complete identification and classification along with comprehensive analysis of globally optimal control policies and traps (i.e., policies which are locally but not globally optimal) are presented. The central question addressed is whether the control landscape remains trap-free if control constraints of the inequality type are imposed. The answer is astonishingly controversial: Although the traps are proven always to exist in this case, in practice they become trivially escapable once the control time is fixed and chosen long enough.
Kalman meets neuron - the intersection of control theory and neuroscience
NASA Astrophysics Data System (ADS)
Schiff, Steven
2009-03-01
Since the 1950s, we have developed mature theories of modern control theory and computational neuroscience with almost no interaction between these disciplines. With the advent of computationally efficient nonlinear Kalman filtering techniques, along with improved neuroscience models which provide increasingly accurate reconstruction of dynamics in a variety of important normal and disease states in the brain, the prospects for a synergistic interaction between these fields are now strong. I will show recent examples of the use of nonlinear control theory for the assimilation and control of single neuron dynamics, a novel framework for dynamic clamp, the modulation of oscillatory wave dynamics in brain cortex, a control framework for Parkinsonian dynamics and seizures, and the use of optimized parameter model networks to assimilate complex network data.
A Danger-Theory-Based Immune Network Optimization Algorithm
Li, Tao; Xiao, Xin; Shi, Yuanquan
2013-01-01
Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853
A reliable algorithm for optimal control synthesis
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1992-01-01
In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.
Optimal-transport formulation of electronic density-functional theory
NASA Astrophysics Data System (ADS)
Buttazzo, Giuseppe; De Pascale, Luigi; Gori-Giorgi, Paola
2012-06-01
The most challenging scenario for Kohn-Sham density-functional theory, that is, when the electrons move relatively slowly trying to avoid each other as much as possible because of their repulsion (strong-interaction limit), is reformulated here as an optimal transport (or mass transportation theory) problem, a well-established field of mathematics and economics. In practice, we show that to solve the problem of finding the minimum possible internal repulsion energy for N electrons in a given density ρ(r) is equivalent to find the optimal way of transporting N-1 times the density ρ into itself, with the cost function given by the Coulomb repulsion. We use this link to set the strong-interaction limit of density-functional theory on firm ground and to discuss the potential practical aspects of this reformulation.
OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT
With growing world population, diminishing resources, and realization of the harmful effects of various pollutants, research focus in environmental management has shifted towards sustainability. The goal of a sustainable management strategy is to promote the structure and operati...
Control theory for random systems
NASA Technical Reports Server (NTRS)
Bryson, A. E., Jr.
1972-01-01
A survey is presented of the current knowledge available for designing and predicting the effectiveness of controllers for dynamic systems which can be modeled by ordinary differential equations. A short discussion of feedback control is followed by a description of deterministic controller design and the concept of system state. The need for more realistic disturbance models led to the use of stochastic process concepts, in particular the Gauss-Markov process. A compensator controlled system, with random forcing functions, random errors in the measurements, and random initial conditions, is treated as constituting a Gauss-Markov random process; hence the mean-square behavior of the controlled system is readily predicted. As an example, a compensator is designed for a helicopter to maintain it in hover in a gusty wind over a point on the ground.
Genetic optimization of fuzzy fractional PD+I controllers.
Jesus, Isabel S; Barbosa, Ramiro S
2015-07-01
Fractional order calculus is a powerful emerging mathematical tool in science and engineering. There is currently an increasing interest in generalizing classical control theories and developing novel control strategies. The genetic algorithms (GA) are a stochastic search and optimization methods based on the reproduction processes found in biological systems, used for solving engineering problems. In the context of process control, the fuzzy logic usually means variables that are described by imprecise terms, and represented by quantities that are qualitative and vague. In this article we consider the development of an optimal fuzzy fractional PD+I controller in which the parameters are tuned by a GA. The performance of the proposed fuzzy fractional control is illustrated through some application examples. PMID:25661162
Time optimal feedback control of discrete systems with bounded inputs
NASA Technical Reports Server (NTRS)
Chen, Xin; Longman, Richard W.; Klein, George
1990-01-01
Deadbeat control theory gives a feedback solution to the time optimal control of discrete time systems. Experience has shown the results to be impractical because they ignore bounds on the actuator strength. This paper develops two algorithms for generating time optimal control in feedback form for discrete systems with bounded controls. The results are also applicable for generating recovery regions and the set of reachable states. For multiple control problems a method of generating sublayers is developed which decreases off-line and on-line computational effort. Two algorithms are presented with somewhat different computational and storage requirements. The algorithms are practical within certain dimension constraints, and are natural for implementation with parallel processing.
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
Control theory meets synthetic biology.
Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili
2016-07-01
The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256
Control theory meets synthetic biology
2016-01-01
The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256
OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS
The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...
Centralized Stochastic Optimal Control of Complex Systems
Malikopoulos, Andreas
2015-01-01
In this paper we address the problem of online optimization of the supervisory power management control in parallel hybrid electric vehicles (HEVs). We model HEV operation as a controlled Markov chain using the long-run expected average cost per unit time criterion, and we show that the control policy yielding the Pareto optimal solution minimizes the average cost criterion online. The effectiveness of the proposed solution is validated through simulation and compared to the solution derived with dynamic programming using the average cost criterion.
Algorithm For Optimal Control Of Large Structures
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Garba, John A..; Utku, Senol
1989-01-01
Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.
Geometrically constrained observability. [control theory
NASA Technical Reports Server (NTRS)
Brammer, R. F.
1974-01-01
This paper deals with observed processes in situations in which observations are available only when the state vector lies in certain regions. For linear autonomous observed processes, necessary and sufficient conditions are obtained for half-space observation regions. These results are shown to contain a theorem dual to a controllability result proved by the author for a linear autonomous control system whose control restraint set does not contain the origin as an interior point. Observability results relating to continuous observation systems and sampled data systems are presented, and an example of observing the state of an electrical network is given.
Optimization through quantum annealing: theory and some applications
NASA Astrophysics Data System (ADS)
Battaglia, D. A.; Stella, L.
2006-08-01
Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional (classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing highlighting the crucial differences between these two methods by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems (namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.
Monotonically convergent optimization in quantum control using Krotov's method
Reich, Daniel M.; Koch, Christiane P.; Ndong, Mamadou
2012-03-14
The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schroedinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically convergent algorithms are obtained for a large class of quantum control problems. It includes, in addition to nonlinear equations of motion, control problems that are characterized by non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets, and optimization functionals that depend to higher than second order on the time-evolving states. We furthermore show that the nonlinear (second order) contribution can be estimated either analytically or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic convergence for an optimization functional that is an eighth-degree polynomial in the states. For the ''standard'' quantum control problem of a convex final-time functional, linear equations of motion and linear dependency of the Hamiltonian on the field, the second-order contribution is not required for monotonic convergence but can be used to speed up convergence. We demonstrate this by comparing the performance of first- and second-order algorithms for two examples.
Applications of fuzzy theories to multi-objective system optimization
NASA Technical Reports Server (NTRS)
Rao, S. S.; Dhingra, A. K.
1991-01-01
Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.
Optimal integral controller with sensor failure accommodation
NASA Technical Reports Server (NTRS)
Alberts, T.; Houlihan, T.
1989-01-01
An Optimal Integral Controller that readily accommodates Sensor Failure - without resorting to (Kalman) filter or observer generation - has been designed. The system is based on Navy-sponsored research for the control of high performance aircraft. In conjunction with a NASA developed Numerical Optimization Code, the Integral Feedback Controller will provide optimal system response even in the case of incomplete state feedback. Hence, the need for costly replication of plant sensors is avoided since failure accommodation is effected by system software reconfiguration. The control design has been applied to a particularly ill-behaved, third-order system. Dominant-root design in the classical sense produced an almost 100 percent overshoot for the third-order system response. An application of the newly-developed Optimal Integral Controller - assuming all state information available - produces a response with no overshoot. A further application of the controller design - assuming a one-third sensor failure scenario - produced a slight overshoot response that still preserved the steady state time-point of the full-state feedback response. The control design should have wide application in space systems.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
Solving inverse problems of identification type by optimal control methods
Lenhart, S.; Protopopescu, V.; Yong, J.
1997-05-01
Inverse problems of identification type for nonlinear equations are considered within the framework of optimal control theory. The rigorous solution of any particular problem depends on the functional setting, type of equation, and unknown quantity (or quantities) to be determined. Here we present only the general articulations of the formalism. Compared to classical regularization methods (e.g. Tikhonov coupled with optimization schemes), our approach presents several advantages, namely: (i) a systematic procedure to solve inverse problems of identification type; (ii) an explicit expression for the approximations of the solution; and (iii) a convenient numerical solution of these approximations. {copyright} {ital 1997 American Institute of Physics.}
Solving inverse problems of identification type by optimal control methods
Lenhart, S.; Protopopescu, V.; Jiongmin Yong
1997-06-01
Inverse problems of identification type for nonlinear equations are considered within the framework of optimal control theory. The rigorous solution of any particular problem depends on the functional setting, type of equation, and unknown quantity (or quantities) to be determined. Here the authors present only the general articulations of the formalism. Compared to classical regularization methods (e.g. Tikhonov coupled with optimization schemes), their approach presents several advantages, namely: (i) a systematic procedure to solve inverse problems of identification type; (ii) an explicit expression for the approximations of the solution; and (iii) a convenient numerical solution of these approximations.
Optimal control for Rydberg quantum technology building blocks
NASA Astrophysics Data System (ADS)
Müller, Matthias M.; Pichler, Thomas; Montangero, Simone; Calarco, Tommaso
2016-04-01
We consider a platform for quantum technology based on Rydberg atoms in optical lattices where each atom encodes one qubit of information and external lasers can manipulate their state. We demonstrate how optimal control theory enables the functioning of two specific building blocks on this platform: We engineer an optimal protocol to perform a two-qubit phase gate and to transfer the information within the lattice among specific sites. These two elementary operations allow to design very general operations like storage of atoms and entanglement purification as, for example, needed for quantum repeaters.
Stochastic time-optimal control problems
NASA Technical Reports Server (NTRS)
Zhang, W.; Elliot, D.
1988-01-01
Two types of stochastic time-optimal controls in a one-dimensional setting are considered. Multidimensional problems, in the case of complete state information available and the system modeled by stochastic differential equations, are studied under the formulation of minimizing the expected transient-response time. The necessary condition of optimality is the satisfaction for the value function of a parabolic partial differential equation with boundary conditions. The sufficient condition of optimality is also provided, based on Dynkin's formula. Finally, three examples are given.
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
Development of a digital adaptive optimal linear regulator flight controller
NASA Technical Reports Server (NTRS)
Berry, P.; Kaufman, H.
1975-01-01
Digital adaptive controllers have been proposed as a means for retaining uniform handling qualities over the flight envelope of a high-performance aircraft. Towards such an implementation, an explicit adaptive controller, which makes direct use of online parameter identification, has been developed and applied to the linearized lateral equations of motion for a typical fighter aircraft. The system is composed of an online weighted least-squares parameter identifier, a Kalman state filter, and a model following control law designed using optimal linear regulator theory. Simulation experiments with realistic measurement noise indicate that the proposed adaptive system has the potential for onboard implementation.
Optimal active control for Burgers equations
NASA Technical Reports Server (NTRS)
Ikeda, Yutaka
1994-01-01
A method for active fluid flow control based on control theory is discussed. Dynamic programming and fixed point successive approximations are used to accommodate the nonlinear control problem. The long-term goal of this project is to establish an effective method applicable to complex flows such as turbulence and jets. However, in this report, the method is applied to stochastic Burgers equation as an intermediate step towards this goal. Numerical results are compared with those obtained by gradient search methods.
Multimodel methods for optimal control of aeroacoustics.
Chen, Guoquan; Collis, Samuel Scott
2005-01-01
A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully applied to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.
Quantum optimal control of photoelectron spectra and angular distributions
NASA Astrophysics Data System (ADS)
Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.
2016-01-01
Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.
New optimal polynomial theory for NN-scattering
Rijken, T A; Signell, P
1980-01-01
A new optimal polynomial theory for nucleon-nucleon scattering is presented. For the first time in nucleon-nucleon scattering, the derivative amplitudes originally introduced by Fubini, Furlan, and Rosetti are applied. Based on the properties of these amplitudes we introduce K-matrix functions which have suitable analyticity properties as functions of cos theta, where theta is the center of mass scattering angle. The K-matrix functions enable introduction of a new set of functions for which the optimal mapping techniques of Cutkosky, Deo and Ciulli can be applied. Results are shown for proton-proton phase shift analyses at 210 and 330 MeV.
Optimal control strategy for abnormal innate immune response.
Tan, Jinying; Zou, Xiufen
2015-01-01
Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t)) or enhancing interferon activity (u2(t)), has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t)) and (u2(t)) simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases. PMID:25949271
Quadratic optimal cooperative control synthesis with flight control application
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Innocenti, M.
1984-01-01
An optimal control-law synthesis approach is presented that involves simultaneous solution for two cooperating controllers operating in parallel. One controller's structure includes stochastic state estimation and linear feedback of the state estimates, while the other controller involves direct linear feedback of selected system output measurements. This structure is shown to be optimal under the constraint of linear feedback of system outputs in one controller. Furthermore, it is appropriate for flight control synthesis where the full-state optimal stochastic controller can be adjusted to be representative of an optimal control model of the human pilot in a stochastic regulation task. The method is experimentally verified in the case of the selection of pitch-damper gain for optimum pitch tracking, where optimum implies the best subjective pilot rating in the task. Finally, results from application of the method to synthesize a controller for a multivariable fighter aircraft are presented, and implications of the results of this method regarding the optimal plant dynamics for tracking are discussed.
An information theory account of cognitive control
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875
Range optimized theory of electron liquids with application to jellium
NASA Astrophysics Data System (ADS)
Donley, James; Pryor, Craig
2015-03-01
A simple optimization scheme is used to compute the density-density response function of the 3-D homogeneous electron gas at zero temperature. Higher order terms in the perturbation expansion beyond the random phase approximation are summed approximately by enforcing the constraint that the spin density radial distribution functions be positive. Quantitative comparison is made with previous theory and data from quantum Monte Carlo simulation. Agreement with the available simulation data is good for the entire paramagnetic region. Generalization of the theory to inhomogeneous electron liquids such as in semiconductors will be discussed.
Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management
NASA Astrophysics Data System (ADS)
Tsao, J.; Li, J.; Chou, C.; Tung, C.
2009-12-01
Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.
Integrated control-system design via generalized LQG (GLQG) theory
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Hyland, David C.; Richter, Stephen; Haddad, Wassim M.
1989-01-01
Thirty years of control systems research has produced an enormous body of theoretical results in feedback synthesis. Yet such results see relatively little practical application, and there remains an unsettling gap between classical single-loop techniques (Nyquist, Bode, root locus, pole placement) and modern multivariable approaches (LQG and H infinity theory). Large scale, complex systems, such as high performance aircraft and flexible space structures, now demand efficient, reliable design of multivariable feedback controllers which optimally tradeoff performance against modeling accuracy, bandwidth, sensor noise, actuator power, and control law complexity. A methodology is described which encompasses numerous practical design constraints within a single unified formulation. The approach, which is based upon coupled systems or modified Riccati and Lyapunov equations, encompasses time-domain linear-quadratic-Gaussian theory and frequency-domain H theory, as well as classical objectives such as gain and phase margin via the Nyquist circle criterion. In addition, this approach encompasses the optimal projection approach to reduced-order controller design. The current status of the overall theory will be reviewed including both continuous-time and discrete-time (sampled-data) formulations.
Mathematical theory of a relaxed design problem in structural optimization
NASA Technical Reports Server (NTRS)
Kikuchi, Noboru; Suzuki, Katsuyuki
1990-01-01
Various attempts have been made to construct a rigorous mathematical theory of optimization for size, shape, and topology (i.e. layout) of an elastic structure. If these are represented by a finite number of parametric functions, as Armand described, it is possible to construct an existence theory of the optimum design using compactness argument in a finite dimensional design space or a closed admissible set of a finite dimensional design space. However, if the admissible design set is a subset of non-reflexive Banach space such as L(sup infinity)(Omega), construction of the existence theory of the optimum design becomes suddenly difficult and requires to extend (i.e. generalize) the design problem to much more wider class of design that is compatible to mechanics of structures in the sense of variational principle. Starting from the study by Cheng and Olhoff, Lurie, Cherkaev, and Fedorov introduced a new concept of convergence of design variables in a generalized sense and construct the 'G-Closure' theory of an extended (relaxed) optimum design problem. A similar attempt, but independent in large extent, can also be found in Kohn and Strang in which the shape and topology optimization problem is relaxed to allow to use of perforated composites rather than restricting it to usual solid structures. An identical idea is also stated in Murat and Tartar using the notion of the homogenization theory. That is, introducing possibility of micro-scale perforation together with the theory of homogenization, the optimum design problem is relaxed to construct its mathematical theory. It is also noted that this type of relaxed design problem is perfectly matched to the variational principle in structural mechanics.
Sensitivity of optimal control systems with bang-bang control.
NASA Technical Reports Server (NTRS)
Rootenberg, J.; Courtin, P.
1973-01-01
The effects of small parameter variations on the performance index of optimal control systems with initial and final target manifolds, free end time, and bang-bang control are analyzed in this paper. A new approach to the sensitivity equation is presented. This approach takes into account the pulse-shaped variation produced by the parameter change on the bang-bang control. An expression, that relates the variations of the performance index, the trajectory, the final time, and the parameter, is derived. This expression extends to the class of optimal systems with bang-bang control, a result previously obtained by Courtin and Rootenberg (1971).
Optimal control of anthracnose using mixed strategies.
Fotsa Mbogne, David Jaures; Thron, Christopher
2015-11-01
In this paper we propose and study a spatial diffusion model for the control of anthracnose disease in a bounded domain. The model is a generalization of the one previously developed in [15]. We use the model to simulate two different types of control strategies against anthracnose disease. Strategies that employ chemical fungicides are modeled using a continuous control function; while strategies that rely on cultivational practices (such as pruning and removal of mummified fruits) are modeled with a control function which is discrete in time (though not in space). For comparative purposes, we perform our analyses for a spatially-averaged model as well as the space-dependent diffusion model. Under weak smoothness conditions on parameters we demonstrate the well-posedness of both models by verifying existence and uniqueness of the solution for the growth inhibition rate for given initial conditions. We also show that the set [0, 1] is positively invariant. We first study control by impulsive strategies, then analyze the simultaneous use of mixed continuous and pulse strategies. In each case we specify a cost functional to be minimized, and we demonstrate the existence of optimal control strategies. In the case of pulse-only strategies, we provide explicit algorithms for finding the optimal control strategies for both the spatially-averaged model and the space-dependent model. We verify the algorithms for both models via simulation, and discuss properties of the optimal solutions. PMID:26407644
Linear stochastic optimal control and estimation problem
NASA Technical Reports Server (NTRS)
Geyser, L. C.; Lehtinen, F. K. B.
1980-01-01
Problem involves design of controls for linear time-invariant system disturbed by white noise. Solution is Kalman filter coupled through set of optimal regulator gains to produce desired control signal. Key to solution is solving matrix Riccati differential equation. LSOCE effectively solves problem for wide range of practical applications. Program is written in FORTRAN IV for batch execution and has been implemented on IBM 360.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
Optimally Controlled Flexible Fuel Powertrain System
Hakan Yilmaz; Mark Christie; Anna Stefanopoulou
2010-12-31
The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.
RESOURCES ALLOCATION TO OPTIMIZE MINING POLLUTION CONTROL
A comprehensive model for mine drainage simulation and optimization of resource allocation to control mine acid pollution in a watershed has been developed. The model is capable of: (a) Producing a time trace of acid load and flow from acid drainage sources as a function of clima...
Optimal decentralized control for multimachine power systems--
Quali, A. ); Fantin, J. )
1989-01-01
This paper provides a method for determining an optimal decentralized control for multimachine power systems with quadratic performance measure. An iterative algorithm is developed whereby a local minimum is attained. The constraint of decentralization is tackled with in minimization algorithm by using the method of feasible directions. An example of three synchronous machines is given to illustrate the proposed algorithm.
Research on optimal control, stabilization and computational algorithms for aerospace applications
NASA Technical Reports Server (NTRS)
Athans, M.
1985-01-01
The research carried out in the areas of optimal control and estimation theory and its applications under this grant is reviewed. A listing of the 257 publications that document the research results is presented.
Research on optimal control, stabilization and computational algorithms for aerospace applications
NASA Technical Reports Server (NTRS)
Athans, M.
1984-01-01
The research carried out in the areas of optimal control and estimation theory and its applications under this grant is reviewed. A listing of the 257 publications that document the research results is presented.
Application of modern control theory to the design of optimum aircraft controllers
NASA Technical Reports Server (NTRS)
Power, L. J.
1973-01-01
A procedure is described for synthesis of optimal aircraft control systems by application of the concepts of optimal control theory to time-invariant linear systems with quadratic performance criteria. Essential in this synthesis procedure is the solution of the Riccati matrix equation which results in a constant linear feedback control law for an output regulator which maintains a plant in an equilibrium in the presence of impulse disturbances. An algorithm is derived for designing maneuverable output regulators with selected state variables for feedback.
Optimal singular control for nonlinear semistabilisation
NASA Astrophysics Data System (ADS)
L'Afflitto, Andrea; Haddad, Wassim M.
2016-06-01
The singular optimal control problem for asymptotic stabilisation has been extensively studied in the literature. In this paper, the optimal singular control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which is of paramount importance for consensus control of network dynamical systems. Three approaches are presented to address the nonlinear semistable singular control problem. Namely, a singular perturbation method is presented to construct a state-feedback singular controller that guarantees closed-loop semistability for nonlinear systems. In this approach, we show that for a non-negative cost-to-go function the minimum cost of a nonlinear semistabilising singular controller is lower than the minimum cost of a singular controller that guarantees asymptotic stability of the closed-loop system. In the second approach, we solve the nonlinear semistable singular control problem by using the cost-to-go function to cancel the singularities in the corresponding Hamilton-Jacobi-Bellman equation. For this case, we show that the minimum value of the singular performance measure is zero. Finally, we provide a framework based on the concepts of state-feedback linearisation and feedback equivalence to solve the singular control problem for semistabilisation of nonlinear dynamical systems. For this approach, we also show that the minimum value of the singular performance measure is zero. Three numerical examples are presented to demonstrate the efficacy of the proposed singular semistabilisation frameworks.
Optimization for efficient structure-control systems
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Khot, Narendra S.
1993-01-01
The efficiency of a structure-control system is a nondimensional parameter which indicates the fraction of the total control power expended usefully in controlling a finite-dimensional system. The balance of control power is wasted on the truncated dynamics serving no useful purpose towards the control objectives. Recently, it has been demonstrated that the concept of efficiency can be used to address a number of control issues encountered in the control of dynamic systems such as the spillover effects, selection of a good input configuration and obtaining reduced order control models. Reference (1) introduced the concept and presented analyses of several Linear Quadratic Regulator designs on the basis of their efficiencies. Encouraged by the results of Ref. (1), Ref. (2) introduces an efficiency modal analysis of a structure-control system which gives an internal characterization of the controller design and establishes the link between the control design and the initial disturbances to affect efficient structure-control system designs. The efficiency modal analysis leads to identification of principal controller directions (or controller modes) distinct from the structural natural modes. Thus ultimately, many issues of the structure-control system revolve around the idea of insuring compatibility of the structural modes and the controller modes with each other, the better the match the higher the efficiency. A key feature in controlling a reduced order model of a high dimensional (or infinity-dimensional distributed parameter system) structural dynamic system must be to achieve high efficiency of the control system while satisfying the control objectives and/or constraints. Formally, this can be achieved by designing the control system and structural parameters simultaneously within an optimization framework. The subject of this paper is to present such a design procedure.
Optimal control of a low wing-loading STOL aircraft
NASA Technical Reports Server (NTRS)
Cunningham, T. B.
1976-01-01
Linear optimal quadratic control theory is applied to a low wing-loading STOL aircraft for ride quality and flight path following. Design criteria include minimum rms response to wind turbulence and desired transient response characteristics. Design techniques include proper choosing of design versus evaluation models, choosing appropriate performance index responses, and use of classical evaluation techniques. Results are obtained through a combination of frequency response shaping and gust observation. Effects of control rate and authority saturation are examined with a new rapid calculation of random input describing functions. Parameter sensitivity is also evaluated using a Liapunov type matrix equation.
Active control of combustion for optimal performance
Jackson, M.D.; Agrawal, A.K.
1999-07-01
Combustion-zone stoichiometry and fuel-air premixing were actively controlled to optimize the combustor performance over a range of operating conditions. The objective was to maximize the combustion temperature, while maintaining NO{sub x} within a specified limit. The combustion system consisted of a premixer located coaxially near the inlet of a water-cooled shroud. The equivalence ratio was controlled by a variable-speed suction fan located downstream. The split between the premixing air and diffusion air was governed by the distance between the premixer and shroud. The combustor performance was characterized by a cost function evaluated from time-averaged measurements of NO{sub x} and oxygen concentrations in products. The cost function was minimized by downhill simplex algorithm employing closed-loop feedback. Experiments were conducted at different fuel flow rates to demonstrate that the controller optimized the performance without prior knowledge of the combustor behavior.
Algorithms for optimizing CT fluence control
NASA Astrophysics Data System (ADS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-03-01
The ability to customize the incident x-ray fluence in CT via beam-shaping filters or mA modulation is known to improve image quality and/or reduce radiation dose. Previous work has shown that complete control of x-ray fluence (ray-by-ray fluence modulation) would further improve dose efficiency. While complete control of fluence is not currently possible, emerging concepts such as dynamic attenuators and inverse-geometry CT allow nearly complete control to be realized. Optimally using ray-by-ray fluence modulation requires solving a very high-dimensional optimization problem. Most optimization techniques fail or only provide approximate solutions. We present efficient algorithms for minimizing mean or peak variance given a fixed dose limit. The reductions in variance can easily be translated to reduction in dose, if the original variance met image quality requirements. For mean variance, a closed form solution is derived. The peak variance problem is recast as iterated, weighted mean variance minimization, and at each iteration it is possible to bound the distance to the optimal solution. We apply our algorithms in simulations of scans of the thorax and abdomen. Peak variance reductions of 45% and 65% are demonstrated in the abdomen and thorax, respectively, compared to a bowtie filter alone. Mean variance shows smaller gains (about 15%).
Simultaneous structure and control optimization of tensegrities
NASA Astrophysics Data System (ADS)
Masic, Milenko; Skelton, Robert E.
2005-05-01
This paper concerns optimization of prestress of a tensegrity structure to achieve the optimal mixed dynamic and control performance. A linearized dynamic model of the structure is derived. The force density variables that parameterize prestress of the structure appear linearly in the model. The feasible region of these parameters is defined in terms of the extreme directions of the prestress cone. Several properties of the problem are established inside the feasible region of the parameters. The problem is solved using a gradient method that provides a monotonic decrease of the objective function inside the feasible region. A numerical example of a cantilevered planar tensegrity beam is shown.
NASA Astrophysics Data System (ADS)
Shu, Chuan-Cun; Ho, Tak-San; Rabitz, Herschel
2016-05-01
We present a monotonic convergent quantum optimal control method that can be utilized to optimize the control field while exactly enforcing multiple equality constraints for steering quantum systems from an initial state towards desired quantum states. For illustration, special consideration is given to finding optimal control fields with (i) exact zero area and (ii) exact zero area along with constant pulse fluence. The method combined with these two types of constraints is successfully employed to maximize the state-to-state transition probability in a model vibrating diatomic molecule.
Perturbation analysis of optimal integral controls
NASA Technical Reports Server (NTRS)
Slater, G. L.
1984-01-01
The application of linear optimal control to the design of systems with integral control action on specified outputs is considered. Using integral terms in a quadratic performance index, an asymptotic analysis is used to determine the effect of variable quadratic weights on the eigenvalues and eigenvectors of the closed loop system. It is shown that for small integral terms the placement of integrator poles and gain calculation can be effectively decoupled from placement of the primary system eigenvalues. This technique is applied to the design of integral controls for a STOL aircraft outer loop guidance system.
Search complexity and resource scaling for the quantum optimal control of unitary transformations
Moore, Katharine W.; Riviello, Gregory; Rabitz, Herschel; Chakrabarti, Raj
2011-01-15
The optimal control of unitary transformations is a fundamental problem in quantum control theory and quantum information processing. The feasibility of performing such optimizations is determined by the computational and control resources required, particularly for systems with large Hilbert spaces. Prior work on unitary transformation control indicates that (i) for controllable systems, local extrema in the search landscape for optimal control of quantum gates have null measure, facilitating the convergence of local search algorithms, but (ii) the required time for convergence to optimal controls can scale exponentially with the Hilbert space dimension. Depending on the control-system Hamiltonian, the landscape structure and scaling may vary. This work introduces methods for quantifying Hamiltonian-dependent and kinematic effects on control optimization dynamics in order to classify quantum systems according to the search effort and control resources required to implement arbitrary unitary transformations.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Modal methods in optimal control synthesis
NASA Technical Reports Server (NTRS)
Bryson, A. E., Jr.; Hall, W. E., Jr.
1980-01-01
Efficient algorithms for solving linear smoother-follower problems with quadratic criteria are presented. For time-invariant systems, the algorithm consists of one backward integration of a linear vector equation and one forward integration of another linear vector equation. Furthermore, the backward and forward Riccati matrices can be expressed in terms of the eigenvalues and eigenvectors of the Euler-Lagrange equations. Hence, the gains of the forward and backward Kalman-Bucy filters and of the optimal state-feedback regulator can be determined without integration of matrix Riccati equations. A computer program has been developed, based on this method of determining the gains, to synthesize the optimal time-invariant compensator in the presence of random disturbance inputs and random measurement errors. The program also computes the rms state and control variables of the optimal closed-loop system.
Optimal control of multiplicative control systems arising from cancer therapy
NASA Technical Reports Server (NTRS)
Bahrami, K.; Kim, M.
1975-01-01
This study deals with ways of curtailing the rapid growth of cancer cell populations. The performance functional that measures the size of the population at the terminal time as well as the control effort is devised. With use of the discrete maximum principle, the Hamiltonian for this problem is determined and the condition for optimal solutions are developed. The optimal strategy is shown to be a bang-bang control. It is shown that the optimal control for this problem must be on the vertices of an N-dimensional cube contained in the N-dimensional Euclidean space. An algorithm for obtaining a local minimum of the performance function in an orderly fashion is developed. Application of the algorithm to the design of antitumor drug and X-irradiation schedule is discussed.
Discrete-time neural inverse optimal control for nonlinear systems via passivation.
Ornelas-Tellez, Fernando; Sanchez, Edgar N; Loukianov, Alexander G
2012-08-01
This paper presents a discrete-time inverse optimal neural controller, which is constituted by combination of two techniques: 1) inverse optimal control to avoid solving the Hamilton-Jacobi-Bellman equation associated with nonlinear system optimal control and 2) on-line neural identification, using a recurrent neural network trained with an extended Kalman filter, in order to build a model of the assumed unknown nonlinear system. The inverse optimal controller is based on passivity theory. The applicability of the proposed approach is illustrated via simulations for an unstable nonlinear system and a planar robot. PMID:24807528
Optimal Control via Self-Generated Stochasticity
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.
NASA Astrophysics Data System (ADS)
Bulgakov, V. K.; Strigunov, V. V.
2009-05-01
The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.
Optimization approaches to nonlinear model predictive control
Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)
1991-01-01
With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.
Theory of optical spin control in quantum dot microcavities
NASA Astrophysics Data System (ADS)
Smirnov, D. S.; Glazov, M. M.; Ivchenko, E. L.; Lanco, L.
2015-09-01
We present a microscopic theory of optical initialization, control, and detection for a single electron spin in a quantum dot embedded into a zero-dimensional microcavity. The strong coupling regime of the trion and the cavity mode is addressed. We demonstrate that efficient spin orientation by a single circularly polarized pulse is possible in relatively weak transverse magnetic fields. The possibilities for spin control by additional circularly polarized pulse are analyzed. Under optimal conditions the Kerr and Faraday rotation angles induced by the spin polarized electron may reach tens of degrees.
A model for HIV/AIDS pandemic with optimal control
NASA Astrophysics Data System (ADS)
Sule, Amiru; Abdullah, Farah Aini
2015-05-01
Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.
Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2015-05-01
Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.
Intermittent locomotion as an optimal control strategy
Paoletti, P.; Mahadevan, L.
2014-01-01
Birds, fish and other animals routinely use unsteady effects to save energy by alternating between phases of active propulsion and passive coasting. Here, we construct a minimal model for such behaviour that can be couched as an optimal control problem via an analogy to travelling with a rechargeable battery. An analytical solution of the optimal control problem proves that intermittent locomotion has lower energy requirements relative to steady-state strategies. Additional realistic hypotheses, such as the assumption that metabolic cost at a given power should be minimal (the fixed gear hypothesis), a nonlinear dependence of the energy storage rate on propulsion and/or a preferred average speed, allow us to generalize the model and demonstrate the flexibility of intermittent locomotion with implications for biological and artificial systems. PMID:24711718
Optimal shape control of a beam using piezoelectric actuators with low control voltage
NASA Astrophysics Data System (ADS)
Yu, Y.; Zhang, X. N.; Xie, S. L.
2009-09-01
This paper deals with the shape control of a cantilever beam structure by using laminated piezoelectric actuators (LPAs) with a low control voltage. The shape control equation of the cantilever beam partially covered with LPAs is derived based on the constitutive relations of the elastic material and piezoelectric material and shear deformation beam theory (Timoshenko theory). The actuating forces produced by the LPAs are formulated as well. It reveals how the actuating forces depend on the number of piezoelectric layers, the thickness of piezoelectric layers and the position of the actuators. The driving voltages of the LPAs are then determined by a genetic optimization algorithm. The shape control of the cantilever beam from applying the optimal voltage to the LPAs is simulated. The simulation results show that an LPA of large layer number is able to diminish effectively the pre-deflection of the beam under a low control voltage. The voltage applied to the LPA of five layers was almost five times smaller than that of one layer. In addition, increasing the number of LPA layers can significantly improve the control performance as the acting forces of the LPA are a quadratic function of the LPA layer number. The L2 norm of the displacement array of all nodes is diminished about 30% after optimization. Also with the same low control voltage, the LPA can obtain a better control performance than the conventional single layer piezoelectric actuator.
Optimal control of plates using incompatible strains
NASA Astrophysics Data System (ADS)
Jones, G. W.; Mahadevan, L.
2015-09-01
A flat plate will bend into a curved shell if it experiences an inhomogeneous growth field or if constrained appropriately at a boundary. While the forward problem associated with this process is well studied, the inverse problem of designing the boundary conditions or growth fields to achieve a particular shape is much less understood. We use ideas from variational optimization theory to formulate a well posed version of this inverse problem to determine the optimal growth field or boundary condition that will give rise to an arbitrary target shape, optimizing for both closeness to the target shape and for smoothness of the growth field. We solve the resulting system of PDE numerically using finite element methods with examples for both the fully non-symmetric case as well as for simplified one-dimensional and axisymmetric geometries. We also show that the system can also be solved semi-analytically by positing an ansatz for the deformation and growth fields in a circular disk with given thickness profile, leading to paraboloidal, cylindrical and saddle-shaped target shapes, and show how a soft mode can arise from a non-axisymmetric deformation of a structure with axisymmetric material properties.
Model Identification for Optimal Diesel Emissions Control
Stevens, Andrew J.; Sun, Yannan; Song, Xiaobo; Parker, Gordon
2013-06-20
In this paper we develop a model based con- troller for diesel emission reduction using system identification methods. Specifically, our method minimizes the downstream readings from a production NOx sensor while injecting a minimal amount of urea upstream. Based on the linear quadratic estimator we derive the closed form solution to a cost function that accounts for the case some of the system inputs are not controllable. Our cost function can also be tuned to trade-off between input usage and output optimization. Our approach performs better than a production controller in simulation. Our NOx conversion efficiency was 92.7% while the production controller achieved 92.4%. For NH3 conversion, our efficiency was 98.7% compared to 88.5% for the production controller.
Adaptive dynamic programming as a theory of sensorimotor control.
Jiang, Yu; Jiang, Zhong-Ping
2014-08-01
Many characteristics of sensorimotor control can be explained by models based on optimization and optimal control theories. However, most of the previous models assume that the central nervous system has access to the precise knowledge of the sensorimotor system and its interacting environment. This viewpoint is difficult to be justified theoretically and has not been convincingly validated by experiments. To address this problem, this paper presents a new computational mechanism for sensorimotor control from a perspective of adaptive dynamic programming (ADP), which shares some features of reinforcement learning. The ADP-based model for sensorimotor control suggests that a command signal for the human movement is derived directly from the real-time sensory data, without the need to identify the system dynamics. An iterative learning scheme based on the proposed ADP theory is developed, along with rigorous convergence analysis. Interestingly, the computational model as advocated here is able to reproduce the motor learning behavior observed in experiments where a divergent force field or velocity-dependent force field was present. In addition, this modeling strategy provides a clear way to perform stability analysis of the overall system. Hence, we conjecture that human sensorimotor systems use an ADP-type mechanism to control movements and to achieve successful adaptation to uncertainties present in the environment. PMID:24962078
Control theory for scanning probe microscopy revisited.
Stirling, Julian
2014-01-01
We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation. PMID:24778957
Control theory for scanning probe microscopy revisited
2014-01-01
Summary We derive a theoretical model for studying SPM feedback in the context of control theory. Previous models presented in the literature that apply standard models for proportional-integral-derivative controllers predict a highly unstable feedback environment. This model uses features specific to the SPM implementation of the proportional-integral controller to give realistic feedback behaviour. As such the stability of SPM feedback for a wide range of feedback gains can be understood. Further consideration of mechanical responses of the SPM system gives insight into the causes of exciting mechanical resonances of the scanner during feedback operation. PMID:24778957
Optimal Control of Quantum Measurement for Superconducting Phase Qubits
NASA Astrophysics Data System (ADS)
Wilhelm, Frank; Egger, Daniel
2015-03-01
Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a phase qubit measurement pulse. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast. Work posted at arXiv:1408.6086, in press at Physical Review A Supported by the EU through SCALEQIT.
Primer Vector Optimization: Survey of Theory, new Analysis and Applications
NASA Astrophysics Data System (ADS)
Guzman
This paper presents a preliminary study in developing a set of optimization tools for orbit rendezvous, transfer and station keeping. This work is part of a large scale effort undergoing at NASA Goddard Space Flight Center and a.i. solutions, Inc. to build generic methods, which will enable missions with tight fuel budgets. Since no single optimization technique can solve efficiently all existing problems, a library of tools where the user could pick the method most suited for the particular mission is envisioned. The first trajectory optimization technique explored is Lawden's primer vector theory [Ref. 1]. Primer vector theory can be considered as a byproduct of applying Calculus of Variations (COV) techniques to the problem of minimizing the fuel usage of impulsive trajectories. For an n-impulse trajectory, it involves the solution of n-1 two-point boundary value problems. In this paper, we look at some of the different formulations of the primer vector (dependent on the frame employed and on the force model). Also, the applicability of primer vector theory is examined in effort to understand when and why the theory can fail. Specifically, since COV is based on "small variations", singularities in the linearized (variational) equations of motion along the arcs must be taken into account. These singularities are a recurring problem in analyzes that employ "small variations" [Refs. 2, 3]. For example, singularities in the (2-body problem) variational equations along elliptic arcs occur when [Ref. 4], 1) the difference between the initial and final times is a multiple of the reference orbit period, 2) the difference between the initial and final true anomalies are given by k, for k= 0, 1, 2, 3,..., note that this cover the 3) the time of flight is a minimum for the given difference in true anomaly. For the N-body problem, the situation is more complex and is still under investigation. Several examples, such as the initialization of an orbit (ascent trajectory) and
Design, optimization, and control of tensegrity structures
NASA Astrophysics Data System (ADS)
Masic, Milenko
The contributions of this dissertation may be divided into four categories. The first category involves developing a systematic form-finding method for general and symmetric tensegrity structures. As an extension of the available results, different shape constraints are incorporated in the problem. Methods for treatment of these constraints are considered and proposed. A systematic formulation of the form-finding problem for symmetric tensegrity structures is introduced, and it uses the symmetry to reduce both the number of equations and the number of variables in the problem. The equilibrium analysis of modular tensegrities exploits their peculiar symmetry. The tensegrity similarity transformation completes the contributions in the area of enabling tools for tensegrity form-finding. The second group of contributions develops the methods for optimal mass-to-stiffness-ratio design of tensegrity structures. This technique represents the state-of-the-art for the static design of tensegrity structures. It is an extension of the results available for the topology optimization of truss structures. Besides guaranteeing that the final design satisfies the tensegrity paradigm, the problem constrains the structure from different modes of failure, which makes it very general. The open-loop control of the shape of modular tensegrities is the third contribution of the dissertation. This analytical result offers a closed form solution for the control of the reconfiguration of modular structures. Applications range from the deployment and stowing of large-scale space structures to the locomotion-inducing control for biologically inspired structures. The control algorithm is applicable regardless of the size of the structures, and it represents a very general result for a large class of tensegrities. Controlled deployments of large-scale tensegrity plates and tensegrity towers are shown as examples that demonstrate the full potential of this reconfiguration strategy. The last
Passive Motion Paradigm: An Alternative to Optimal Control
Mohan, Vishwanathan; Morasso, Pietro
2011-01-01
In the last years, optimal control theory (OCT) has emerged as the leading approach for investigating neural control of movement and motor cognition for two complementary research lines: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the “degrees of freedom (DoFs) problem,” the common core of production, observation, reasoning, and learning of “actions.” OCT, directly derived from engineering design techniques of control systems quantifies task goals as “cost functions” and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative “softer” approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that “animates” the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints “at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of “potential actions.” In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of
Use of modern control theory in military command and control
NASA Astrophysics Data System (ADS)
Busch, Timothy E.
2001-09-01
This paper discusses the use of modern control theoretic approaches in military command and control. The military enterprise is a highly dynamic and nonlinear environment. The desire on the part of military commanders to operate at faster operational tempos while still maintaining a stable and robust system, naturally leads to the consideration of a control theoretic approach to providing decision aids. I will present a brief history of the science of command and control of military forces and discuss how modern control theory might be applied to air operations.
Iterative diagonalization for orbital optimization in natural orbital functional theory.
Piris, M; Ugalde, J M
2009-10-01
A challenging task in natural orbital functional theory is to find an efficient procedure for doing orbital optimization. Procedures based on diagonalization techniques have confirmed its practical value since the resulting orbitals are automatically orthogonal. In this work, a new procedure is introduced, which yields the natural orbitals by iterative diagonalization of a Hermitian matrix F. The off-diagonal elements of the latter are determined explicitly from the hermiticity of the matrix of the Lagrange multipliers. An expression for diagonal elements is absent so a generalized Fockian is undefined in the conventional sense, nevertheless, they may be determined from an aufbau principle. Thus, the diagonal elements are obtained iteratively considering as starting values those coming from a single diagonalization of the matrix of the Lagrange multipliers calculated with the Hartree-Fock orbitals after the occupation numbers have been optimized. The method has been tested on the G2/97 set of molecules for the Piris natural orbital functional. To help the convergence, we have implemented a variable scaling factor which avoids large values of the off-diagonal elements of F. The elapsed times of the computations required by the proposed procedure are compared with a full sequential quadratic programming optimization, so that the efficiency of the method presented here is demonstrated. PMID:19219918
Analytical and experimental performance of optimal controller designs for a supersonic inlet
NASA Technical Reports Server (NTRS)
Zeller, J. R.; Lehtinen, B.; Geyser, L. C.; Batterton, P. G.
1973-01-01
The techniques of modern optimal control theory were applied to the design of a control system for a supersonic inlet. The inlet control problem was approached as a linear stochastic optimal control problem using as the performance index the expected frequency of unstarts. The details of the formulation of the stochastic inlet control problem are presented. The computational procedures required to obtain optimal controller designs are discussed, and the analytically predicted performance of controllers designed for several different inlet conditions is tabulated. The experimental implementation of the optimal control laws is described, and the experimental results obtained in a supersonic wind tunnel are presented. The control laws were implemented with analog and digital computers. Comparisons are made between the experimental and analytically predicted performance results. Comparisons are also made between the results obtained with continuous analog computer controllers and discrete digital computer versions.
Optimal Control of Flows in Moving Domains
NASA Astrophysics Data System (ADS)
Protas, Bartosz; Liao, Wenyuan; Glander, Donn
2006-11-01
This investigation concerns adjoint--based optimization of viscous incompressible flows (the Navier-Stokes problem) coupled with heat conduction involving change of phase (the Stefan problem) and occurring in domains with moving boundaries such as the free and solidification surfaces. This problem is motivated by optimization of advanced welding techniques used in automotive manufacturing. We characterize the sensitivity of a suitable cost functional defined for the system with respect to control (the heat input) using adjoint equations. Given that the shape of the domain is also a dependent variable, characterizing sensitivities necessitates the introduction of ``non-cylindrical'' calculus required to differentiate a cost functional defined on a variable domain. As a result, unlike the forward problem, the adjoint system is defined on a domain with a predetermined evolution in time and also involves ordinary differential equations defined on the domain boundary (``the adjoint transverse system''). We will discuss certain computational issues related to numerical solution of such adjoint problems.
Coherent optimal control of photosynthetic molecules
NASA Astrophysics Data System (ADS)
Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.
2012-04-01
We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.
Optimization and Control of Plasma Doping Processes
Raj, Deven M.; Godet, Ludovic; Chamberlain, Nicholas; Hadidi, Kamal; Singh, Vikram; Papasouliotis, George D.
2011-01-07
Plasma doping (PLAD) is a well characterized alternative to beam-line technology, which has already been adopted in high volume manufacturing in the ultra high dose, low energy regime for advanced DRAM technology nodes. As semiconductor technology evolves, the demand for ever lower energy, higher dose implants will continue to grow, and the requirements for process control will become increasingly stringent. During plasma immersion ion implantation, ionized species present in the plasma are extracted and implanted into the wafer, while other processes, such as deposition, etching and sputtering, are competing in parallel. The dopant profile into the substrate results from contributions of all these mechanisms. Using the hardware and plasma composition control features present in the PLAD system to balance the contributions of the above processes, the dopant profile can be modified and dopant retention can be optimized. In this paper, we detail the process control approach used to optimize process performance for low energy, high dose implants, and validate it with plasma and wafer state data.
Optimal digital control of multirate systems
NASA Technical Reports Server (NTRS)
Amit, N.; Powell, J. D.
1981-01-01
Many digitally controlled aerospace systems have widely separated time constants and thus can benefit from the use of two or more sample rates. In this paper, the analysis and synthesis of multirate systems is accomplished by creating an equivalent single rate system and applying existing techniques. The optimal steady state solution of the single rate system is obtained by eigenvector decomposition and then used to compute the periodic solution to the Riccati equation of the original multirate system. An example shows when multirate analysis is necessary and the penalty of various levels of approximations to the exact multirate solution.
Hybrid intelligent control concepts for optimal data fusion
NASA Astrophysics Data System (ADS)
Llinas, James
1994-02-01
In the post-Cold War era, Naval surface ship operations will be largely conducted in littoral waters to support regional military missions of all types, including humanitarian and evacuation activities, and amphibious mission execution. Under these conditions, surface ships will be much more isolated and vulnerable to a variety of threats, including maneuvering antiship missiles. To deal with these threats, the optimal employment of multiple shipborne sensors for maximum vigilance is paramount. This paper characterizes the sensor management problem as one of intelligent control, identifies some of the key issues in controller design, and presents one approach to controller design which is soon to be implemented and evaluated. It is argued that the complexity and hierarchical nature of problem formulation demands a hybrid combination of knowledge-based methods and scheduling techniques from 'hard' real-time systems theory for its solution.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
Redmond, J.; Parker, G.
1993-07-01
This paper examines the role of the control objective and the control time in determining fuel-optimal actuator placement for structural vibration suppression. A general theory is developed that can be easily extended to include alternative performance metrics such as energy and time-optimal control. The performance metric defines a convex admissible control set which leads to a max-min optimization problem expressing optimal location as a function of initial conditions and control time. A solution procedure based on a nested Genetic Algorithm is presented and applied to an example problem. Results indicate that the optimal locations vary widely as a function of control time and initial conditions.
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
Biomechanical modeling and optimal control of human posture.
Menegaldo, Luciano Luporini; Fleury, Agenor de Toledo; Weber, Hans Ingo
2003-11-01
The present work describes the biomechanical modeling of human postural mechanics in the saggital plane and the use of optimal control to generate open-loop raising-up movements from a squatting position. The biomechanical model comprises 10 equivalent musculotendon actuators, based on a 40 muscles model, and three links (shank, thigh and HAT-Head, Arms and Trunk). Optimal control solutions are achieved through algorithms based on the Consistent Approximations Theory (Schwartz and Polak, 1996), where the continuous non-linear dynamics is represented in a discrete space by means of a Runge-Kutta integration and the control signals in a spline-coefficient functional space. This leads to non-linear programming problems solved by a sequential quadratic programming (SQP) method. Due to the highly non-linear and unstable nature of the posture dynamics, numerical convergence is difficult, and specific strategies must be implemented in order to allow convergence. Results for control (muscular excitations) and angular trajectories are shown using two final simulation times, as well as specific control strategies are discussed. PMID:14522212