Sample records for optimal dynamic discrimination

  1. Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.

    PubMed

    Flassig, R J; Sundmacher, K

    2012-12-01

    Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.

  2. Disturbance by optimal discrimination

    NASA Astrophysics Data System (ADS)

    Kawakubo, Ryûitirô; Koike, Tatsuhiko

    2018-03-01

    We discuss the disturbance by measurements which unambiguously discriminate between given candidate states. We prove that such an optimal measurement necessarily changes distinguishable states indistinguishable when the inconclusive outcome is obtained. The result was previously shown by Chefles [Phys. Lett. A 239, 339 (1998), 10.1016/S0375-9601(98)00064-4] under restrictions on the class of quantum measurements and on the definition of optimality. Our theorems remove these restrictions and are also applicable to infinitely many candidate states. Combining with our previous results, one can obtain concrete mathematical conditions for the resulting states. The method may have a wide variety of applications in contexts other than state discrimination.

  3. Optimal sequential measurements for bipartite state discrimination

    NASA Astrophysics Data System (ADS)

    Croke, Sarah; Barnett, Stephen M.; Weir, Graeme

    2017-05-01

    State discrimination is a useful test problem with which to clarify the power and limitations of different classes of measurement. We consider the problem of discriminating between given states of a bipartite quantum system via sequential measurement of the subsystems, with classical feed-forward of measurement results. Our aim is to understand when sequential measurements, which are relatively easy to implement experimentally, perform as well, or almost as well, as optimal joint measurements, which are in general more technologically challenging. We construct conditions that the optimal sequential measurement must satisfy, analogous to the well-known Helstrom conditions for minimum error discrimination in the unrestricted case. We give several examples and compare the optimal probability of correctly identifying the state via global versus sequential measurement strategies.

  4. The co-development of looking dynamics and discrimination performance

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2015-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the first year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent simulations of a dynamic neural field (DNF) model of infant looking and memory suggest that looking and discrimination do change together over development and arise from a single neurodevelopmental mechanism. We probe this claim by measuring looking dynamics and discrimination along continuous, metrically organized dimensions in 5-, 7, and 10-month-old infants (N = 119). The results showed that looking dynamics and discrimination changed together over development and are linked within individuals. Quantitative simulations of a DNF model provide insights into the processes that underlie developmental change in looking dynamics and discrimination. Simulation results support the view that these changes might arise from a single neurodevelopmental mechanism. PMID:23957821

  5. Optimal single-shot strategies for discrimination of quantum measurements

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Ziman, Mário

    2014-11-01

    We study discrimination of m quantum measurements in the scenario when the unknown measurement with n outcomes can be used only once. We show that ancilla-assisted discrimination procedures provide a nontrivial advantage over simple (ancilla-free) schemes for perfect distinguishability and we prove that inevitably m ≤n . We derive necessary and sufficient conditions of perfect distinguishability of general binary measurements. We show that the optimization of the discrimination of projective qubit measurements and their mixtures with white noise is equivalent to the discrimination of specific quantum states. In particular, the optimal protocol for discrimination of projective qubit measurements with fixed failure rate (exploiting maximally entangled test state) is described. While minimum-error discrimination of two projective qubit measurements can be realized without any need of entanglement, we show that discrimination of three projective qubit measurements requires a bipartite probe state. Moreover, when the measurements are not projective, the non-maximally entangled test states can outperform the maximally entangled ones. Finally, we rephrase the unambiguous discrimination of measurements as quantum key distribution protocol.

  6. Discriminative motif optimization based on perceptron training

    PubMed Central

    Patel, Ronak Y.; Stormo, Gary D.

    2014-01-01

    Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152

  7. The Co-Development of Looking Dynamics and Discrimination Performance

    ERIC Educational Resources Information Center

    Perone, Sammy; Spencer, John P.

    2014-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the 1st year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent…

  8. Dynamic Optimization

    NASA Technical Reports Server (NTRS)

    Laird, Philip

    1992-01-01

    We distinguish static and dynamic optimization of programs: whereas static optimization modifies a program before runtime and is based only on its syntactical structure, dynamic optimization is based on the statistical properties of the input source and examples of program execution. Explanation-based generalization is a commonly used dynamic optimization method, but its effectiveness as a speedup-learning method is limited, in part because it fails to separate the learning process from the program transformation process. This paper describes a dynamic optimization technique called a learn-optimize cycle that first uses a learning element to uncover predictable patterns in the program execution and then uses an optimization algorithm to map these patterns into beneficial transformations. The technique has been used successfully for dynamic optimization of pure Prolog.

  9. Aging and curvature discrimination from static and dynamic touch.

    PubMed

    Norman, J Farley; Kappers, Astrid M L; Cheeseman, Jacob R; Ronning, Cecilia; Thomason, Kelsey E; Baxter, Michael W; Calloway, Autum B; Lamirande, Davora N

    2013-01-01

    Two experiments evaluated the ability of 30 older and younger adults to discriminate the curvature of simple object surfaces from static and dynamic touch. The ages of the older adults ranged from 66 to 85 years, while those of the younger adults ranged from 20 to 29 years. For each participant in both experiments, the minimum curvature magnitude needed to reliably discriminate between convex and concave surfaces was determined. In Experiment 1, participants used static touch to make their judgments of curvature, while dynamic touch was used in Experiment 2. When static touch was used to discriminate curvature, a large effect of age occurred (the thresholds were 0.67 & 1.11/m for the younger and older participants, respectively). However, when participants used dynamic touch, there was no significant difference between the ability of younger and older participants to discriminate curvature (the thresholds were 0.58 & 0.59/m for the younger and older participants, respectively). The results of the current study demonstrate that while older adults can accurately discriminate surface curvature from dynamic touch, they possess significant impairments for static touch.

  10. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  11. Aging and Curvature Discrimination from Static and Dynamic Touch

    PubMed Central

    Norman, J. Farley; Kappers, Astrid M. L.; Cheeseman, Jacob R.; Ronning, Cecilia; Thomason, Kelsey E.; Baxter, Michael W.; Calloway, Autum B.; Lamirande, Davora N.

    2013-01-01

    Two experiments evaluated the ability of 30 older and younger adults to discriminate the curvature of simple object surfaces from static and dynamic touch. The ages of the older adults ranged from 66 to 85 years, while those of the younger adults ranged from 20 to 29 years. For each participant in both experiments, the minimum curvature magnitude needed to reliably discriminate between convex and concave surfaces was determined. In Experiment 1, participants used static touch to make their judgments of curvature, while dynamic touch was used in Experiment 2. When static touch was used to discriminate curvature, a large effect of age occurred (the thresholds were 0.67 & 1.11/m for the younger and older participants, respectively). However, when participants used dynamic touch, there was no significant difference between the ability of younger and older participants to discriminate curvature (the thresholds were 0.58 & 0.59/m for the younger and older participants, respectively). The results of the current study demonstrate that while older adults can accurately discriminate surface curvature from dynamic touch, they possess significant impairments for static touch. PMID:23844224

  12. Optimal Experimental Design for Model Discrimination

    PubMed Central

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983

  13. The association of optimism and perceived discrimination with health care utilization in adults with sickle cell disease.

    PubMed

    Stanton, Michael V; Jonassaint, Charles R; Bartholomew, Frederick B; Edwards, Christopher; Richman, Laura; DeCastro, Laura; Williams, Redford

    2010-11-01

    We evaluated the effect of perceived discrimination, optimism, and their interaction on health care utilization among African American adults with sickle cell disease (SCD). Measures of optimism and perceived discrimination were obtained in 49 African American SCD patients. Multiple regression analyses controlling for sex and age tested effects of optimism and perceived discrimination on the number of emergency department visits (ED) and number and duration of hospitalizations over the past year. A perceived discrimination-optimism interaction was associated with number of emergency departments visits (b = .29, p = .052), number of hospitalizations (b = .36, p = .019), and duration of hospitalizations (b = .30, p = .045) such that those with high perceived discrimination/high optimism had the greatest health care utilization. African American SCD patients with high perceived discrimination/high optimism had greater health care utilization than patients who reported either low perceived discrimination or low optimism. This study suggests that patient personality and coping styles should be considered when evaluating the effects of stress on SCD-related outcomes.

  14. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

    PubMed

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  15. Reduction theorems for optimal unambiguous state discrimination of density matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Philippe; Luetkenhaus, Norbert; Enk, Steven J. van

    2003-08-01

    We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (N{>=}2)

  16. Optimal Fisher Discriminant Ratio for an Arbitrary Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1999-01-01

    Optimizing the Fisher ratio is well established in statistical pattern recognition as a means of discriminating between classes. I show how to optimize that ratio for optical correlation intensity by choice of filter on an arbitrary spatial light modulator (SLM). I include the case of additive noise of known power spectral density.

  17. Discriminating Among Probability Weighting Functions Using Adaptive Design Optimization

    PubMed Central

    Cavagnaro, Daniel R.; Pitt, Mark A.; Gonzalez, Richard; Myung, Jay I.

    2014-01-01

    Probability weighting functions relate objective probabilities and their subjective weights, and play a central role in modeling choices under risk within cumulative prospect theory. While several different parametric forms have been proposed, their qualitative similarities make it challenging to discriminate among them empirically. In this paper, we use both simulation and choice experiments to investigate the extent to which different parametric forms of the probability weighting function can be discriminated using adaptive design optimization, a computer-based methodology that identifies and exploits model differences for the purpose of model discrimination. The simulation experiments show that the correct (data-generating) form can be conclusively discriminated from its competitors. The results of an empirical experiment reveal heterogeneity between participants in terms of the functional form, with two models (Prelec-2, Linear in Log Odds) emerging as the most common best-fitting models. The findings shed light on assumptions underlying these models. PMID:24453406

  18. Optimal discrimination of M coherent states with a small quantum computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary

    2014-12-04

    The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.

  19. Calculation and application of activity discriminants in lead optimization.

    PubMed

    Luo, Xincai; Krumrine, Jennifer R; Shenvi, Ashok B; Pierson, M Edward; Bernstein, Peter R

    2010-11-01

    We present a technique for computing activity discriminants of in vitro (pharmacological, DMPK, and safety) assays and the application to the prediction of in vitro activities of proposed synthetic targets during the lead optimization phase of drug discovery projects. This technique emulates how medicinal chemists perform SAR analysis and activity prediction. The activity discriminants that are functions of 6 commonly used medicinal chemistry descriptors can be interpreted easily by medicinal chemists. Further, visualization with Spotfire allows medicinal chemists to analyze how the query molecule is related to compounds tested previously, and to evaluate easily the relevance of the activity discriminants to the activities of the query molecule. Validation with all compounds synthesized and tested in AstraZeneca Wilmington since 2006 demonstrates that this approach is useful for prioritizing new synthetic targets for synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Fully optimized discrimination of physiological responses to auditory stimuli

    PubMed Central

    Kruglikov, Stepan Y; Chari, Sharmila; Rapp, Paul E; Weinstein, Steven L; Given, Barbara K; Schiff, Steven J

    2008-01-01

    The use of multivariate measurements to characterize brain activity (electrical, magnetic, optical) is widespread. The most common approaches to reduce the complexity of such observations include principal and independent component analyses (PCA and ICA), which are not well suited for discrimination tasks. We addressed two questions: first, how do the neurophysiological responses to elongated phonemes relate to tone and phoneme responses in normal children, and, second, how discriminable are these responses. We employed fully optimized linear discrimination analysis to maximally separate the multi-electrode responses to tones and phonemes, and classified the response to elongated phonemes. We find that discrimination between tones and phonemes is dependent upon responses from associative regions of the brain apparently distinct from the primary sensory cortices typically emphasized by PCA or ICA, and that the neuronal correlates corresponding to elongated phonemes are highly variable in normal children (about half respond with neural correlates of tones and half as phonemes). Our approach is made feasible by the increase in computational power of ordinary personal computers and has significant advantages for a wide range of neuronal imaging modalities. PMID:18430975

  1. SVM-Based Synthetic Fingerprint Discrimination Algorithm and Quantitative Optimization Strategy

    PubMed Central

    Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui

    2014-01-01

    Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors—the ridge distance features, global gray features, frequency feature and Harris Corner feature—are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%. PMID:25347063

  2. Optimal visuotactile integration for velocity discrimination of self-hand movements

    PubMed Central

    Chancel, M.; Blanchard, C.; Guerraz, M.; Montagnini, A.

    2016-01-01

    Illusory hand movements can be elicited by a textured disk or a visual pattern rotating under one's hand, while proprioceptive inputs convey immobility information (Blanchard C, Roll R, Roll JP, Kavounoudias A. PLoS One 8: e62475, 2013). Here, we investigated whether visuotactile integration can optimize velocity discrimination of illusory hand movements in line with Bayesian predictions. We induced illusory movements in 15 volunteers by visual and/or tactile stimulation delivered at six angular velocities. Participants had to compare hand illusion velocities with a 5°/s hand reference movement in an alternative forced choice paradigm. Results showed that the discrimination threshold decreased in the visuotactile condition compared with unimodal (visual or tactile) conditions, reflecting better bimodal discrimination. The perceptual strength (gain) of the illusions also increased: the stimulation required to give rise to a 5°/s illusory movement was slower in the visuotactile condition compared with each of the two unimodal conditions. The maximum likelihood estimation model satisfactorily predicted the improved discrimination threshold but not the increase in gain. When we added a zero-centered prior, reflecting immobility information, the Bayesian model did actually predict the gain increase but systematically overestimated it. Interestingly, the predicted gains better fit the visuotactile performances when a proprioceptive noise was generated by covibrating antagonist wrist muscles. These findings show that kinesthetic information of visual and tactile origins is optimally integrated to improve velocity discrimination of self-hand movements. However, a Bayesian model alone could not fully describe the illusory phenomenon pointing to the crucial importance of the omnipresent muscle proprioceptive cues with respect to other sensory cues for kinesthesia. PMID:27385802

  3. L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction.

    PubMed

    Zheng, Wenming; Lin, Zhouchen; Wang, Haixian

    2014-04-01

    A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.

  4. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NASA Technical Reports Server (NTRS)

    Urakawa, Hidetoshi; El Fantroussi, Said; Smidt, Hauke; Smoot, James C.; Tribou, Erik H.; Kelly, John J.; Noble, Peter A.; Stahl, David A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.

  5. Random search optimization based on genetic algorithm and discriminant function

    NASA Technical Reports Server (NTRS)

    Kiciman, M. O.; Akgul, M.; Erarslanoglu, G.

    1990-01-01

    The general problem of optimization with arbitrary merit and constraint functions, which could be convex, concave, monotonic, or non-monotonic, is treated using stochastic methods. To improve the efficiency of the random search methods, a genetic algorithm for the search phase and a discriminant function for the constraint-control phase were utilized. The validity of the technique is demonstrated by comparing the results to published test problem results. Numerical experimentation indicated that for cases where a quick near optimum solution is desired, a general, user-friendly optimization code can be developed without serious penalties in both total computer time and accuracy.

  6. Near optimal discrimination of binary coherent signals via atom–light interaction

    NASA Astrophysics Data System (ADS)

    Han, Rui; Bergou, János A.; Leuchs, Gerd

    2018-04-01

    We study the discrimination of weak coherent states of light with significant overlaps by nondestructive measurements on the light states through measuring atomic states that are entangled to the coherent states via dipole coupling. In this way, the problem of measuring and discriminating coherent light states is shifted to finding the appropriate atom–light interaction and atomic measurements. We show that this scheme allows us to attain a probability of error extremely close to the Helstrom bound, the ultimate quantum limit for discriminating binary quantum states, through the simple Jaynes–Cummings interaction between the field and ancilla with optimized light–atom coupling and projective measurements on the atomic states. Moreover, since the measurement is nondestructive on the light state, information that is not detected by one measurement can be extracted from the post-measurement light states through subsequent measurements.

  7. Experimental optimal maximum-confidence discrimination and optimal unambiguous discrimination of two mixed single-photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike

    2011-05-15

    We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.

  8. Optimization of time-course experiments for kinetic model discrimination.

    PubMed

    Lages, Nuno F; Cordeiro, Carlos; Sousa Silva, Marta; Ponces Freire, Ana; Ferreira, António E N

    2012-01-01

    Systems biology relies heavily on the construction of quantitative models of biochemical networks. These models must have predictive power to help unveiling the underlying molecular mechanisms of cellular physiology, but it is also paramount that they are consistent with the data resulting from key experiments. Often, it is possible to find several models that describe the data equally well, but provide significantly different quantitative predictions regarding particular variables of the network. In those cases, one is faced with a problem of model discrimination, the procedure of rejecting inappropriate models from a set of candidates in order to elect one as the best model to use for prediction.In this work, a method is proposed to optimize the design of enzyme kinetic assays with the goal of selecting a model among a set of candidates. We focus on models with systems of ordinary differential equations as the underlying mathematical description. The method provides a design where an extension of the Kullback-Leibler distance, computed over the time courses predicted by the models, is maximized. Given the asymmetric nature this measure, a generalized differential evolution algorithm for multi-objective optimization problems was used.The kinetics of yeast glyoxalase I (EC 4.4.1.5) was chosen as a difficult test case to evaluate the method. Although a single-substrate kinetic model is usually considered, a two-substrate mechanism has also been proposed for this enzyme. We designed an experiment capable of discriminating between the two models by optimizing the initial substrate concentrations of glyoxalase I, in the presence of the subsequent pathway enzyme, glyoxalase II (EC 3.1.2.6). This discriminatory experiment was conducted in the laboratory and the results indicate a two-substrate mechanism for the kinetics of yeast glyoxalase I.

  9. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    PubMed

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  10. A Discriminative Sentence Compression Method as Combinatorial Optimization Problem

    NASA Astrophysics Data System (ADS)

    Hirao, Tsutomu; Suzuki, Jun; Isozaki, Hideki

    In the study of automatic summarization, the main research topic was `important sentence extraction' but nowadays `sentence compression' is a hot research topic. Conventional sentence compression methods usually transform a given sentence into a parse tree or a dependency tree, and modify them to get a shorter sentence. However, this method is sometimes too rigid. In this paper, we regard sentence compression as an combinatorial optimization problem that extracts an optimal subsequence of words. Hori et al. also proposed a similar method, but they used only a small number of features and their weights were tuned by hand. We introduce a large number of features such as part-of-speech bigrams and word position in the sentence. Furthermore, we train the system by discriminative learning. According to our experiments, our method obtained better score than other methods with statistical significance.

  11. Stochastic dynamics and combinatorial optimization

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Wang, Kang L.

    2017-11-01

    Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.

  12. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Robust Dynamic Multi-objective Vehicle Routing Optimization Method.

    PubMed

    Guo, Yi-Nan; Cheng, Jian; Luo, Sha; Gong, Dun-Wei

    2017-03-21

    For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, the total distance of routes were normally considered as the optimization objectives. Except for above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, robust dynamic multi-objective vehicle routing method with two-phase is proposed. Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii)The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii)A metric measuring the algorithms' robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.

  14. Effect of musical training on static and dynamic measures of spectral-pattern discrimination.

    PubMed

    Sheft, Stanley; Smayda, Kirsten; Shafiro, Valeriy; Maddox, W Todd; Chandrasekaran, Bharath

    2013-06-01

    Both behavioral and physiological studies have demonstrated enhanced processing of speech in challenging listening environments attributable to musical training. The relationship, however, of this benefit to auditory abilities as assessed by psychoacoustic measures remains unclear. Using tasks previously shown to relate to speech-in-noise perception, the present study evaluated discrimination ability for static and dynamic spectral patterns by 49 listeners grouped as either musicians or nonmusicians. The two static conditions measured the ability to detect a change in the phase of a logarithmic sinusoidal spectral ripple of wideband noise with ripple densities of 1.5 and 3.0 cycles per octave chosen to emphasize either timbre or pitch distinctions, respectively. The dynamic conditions assessed temporal-pattern discrimination of 1-kHz pure tones frequency modulated by different lowpass noise samples with thresholds estimated in terms of either stimulus duration or signal-to-noise ratio. Musicians performed significantly better than nonmusicians on all four tasks. Discriminant analysis showed that group membership was correctly predicted for 88% of the listeners with the structure coefficient of each measure greater than 0.51. Results suggest that enhanced processing of static and dynamic spectral patterns defined by low-rate modulation may contribute to the relationship between musical training and speech-in-noise perception. [Supported by NIH.].

  15. Dynamic optimization case studies in DYNOPT tool

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    Dynamic programming is typically applied to optimization problems. As the analytical solutions are generally very difficult, chosen software tools are used widely. These software packages are often third-party products bound for standard simulation software tools on the market. As typical examples of such tools, TOMLAB and DYNOPT could be effectively applied for solution of problems of dynamic programming. DYNOPT will be presented in this paper due to its licensing policy (free product under GPL) and simplicity of use. DYNOPT is a set of MATLAB functions for determination of optimal control trajectory by given description of the process, the cost to be minimized, subject to equality and inequality constraints, using orthogonal collocation on finite elements method. The actual optimal control problem is solved by complete parameterization both the control and the state profile vector. It is assumed, that the optimized dynamic model may be described by a set of ordinary differential equations (ODEs) or differential-algebraic equations (DAEs). This collection of functions extends the capability of the MATLAB Optimization Tool-box. The paper will introduce use of DYNOPT in the field of dynamic optimization problems by means of case studies regarding chosen laboratory physical educational models.

  16. Relation between minimum-error discrimination and optimum unambiguous discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Daowen; SQIG-Instituto de Telecomunicacoes, Departamento de Matematica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais PT-1049-001, Lisbon; Li Lvjun

    2010-09-15

    In this paper, we investigate the relationship between the minimum-error probability Q{sub E} of ambiguous discrimination and the optimal inconclusive probability Q{sub U} of unambiguous discrimination. It is known that for discriminating two states, the inequality Q{sub U{>=}}2Q{sub E} has been proved in the literature. The main technical results are as follows: (1) We show that, for discriminating more than two states, Q{sub U{>=}}2Q{sub E} may not hold again, but the infimum of Q{sub U}/Q{sub E} is 1, and there is no supremum of Q{sub U}/Q{sub E}, which implies that the failure probabilities of the two schemes for discriminating somemore » states may be narrowly or widely gapped. (2) We derive two concrete formulas of the minimum-error probability Q{sub E} and the optimal inconclusive probability Q{sub U}, respectively, for ambiguous discrimination and unambiguous discrimination among arbitrary m simultaneously diagonalizable mixed quantum states with given prior probabilities. In addition, we show that Q{sub E} and Q{sub U} satisfy the relationship that Q{sub U{>=}}(m/m-1)Q{sub E}.« less

  17. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  18. The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers

    PubMed Central

    Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.

    2015-01-01

    The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669

  19. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y.; Borland, Michael

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  20. Discrimination of dynamical system models for biological and chemical processes.

    PubMed

    Lorenz, Sönke; Diederichs, Elmar; Telgmann, Regina; Schütte, Christof

    2007-06-01

    In technical chemistry, systems biology and biotechnology, the construction of predictive models has become an essential step in process design and product optimization. Accurate modelling of the reactions requires detailed knowledge about the processes involved. However, when concerned with the development of new products and production techniques for example, this knowledge often is not available due to the lack of experimental data. Thus, when one has to work with a selection of proposed models, the main tasks of early development is to discriminate these models. In this article, a new statistical approach to model discrimination is described that ranks models wrt. the probability with which they reproduce the given data. The article introduces the new approach, discusses its statistical background, presents numerical techniques for its implementation and illustrates the application to examples from biokinetics.

  1. Online optimization of storage ring nonlinear beam dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  2. Discrimination of static and dynamic spectral patterns by children and young adults in relationship to speech perception in noise.

    PubMed

    Rayes, Hanin; Sheft, Stanley; Shafiro, Valeriy

    2014-01-01

    Past work has shown relationship between the ability to discriminate spectral patterns and measures of speech intelligibility. The purpose of this study was to investigate the ability of both children and young adults to discriminate static and dynamic spectral patterns, comparing performance between the two groups and evaluating within-group results in terms of relationship to speech-in-noise perception. Data were collected from normal-hearing children (age range: 5.4 - 12.8 yrs) and young adults (mean age: 22.8 yrs) on two spectral discrimination tasks and speech-in-noise perception. The first discrimination task, involving static spectral profiles, measured the ability to detect a change in the phase of a low-density sinusoidal spectral ripple of wideband noise. Using dynamic spectral patterns, the second task determined the signal-to-noise ratio needed to discriminate the temporal pattern of frequency fluctuation imposed by stochastic low-rate frequency modulation (FM). Children performed significantly poorer than young adults on both discrimination tasks. For children, a significant correlation between speech-in-noise perception and spectral-pattern discrimination was obtained only with the dynamic patterns of the FM condition, with partial correlation suggesting that factors related to the children's age mediated the relationship.

  3. A comparison of statistical criteria for setting optimally discriminating MCAT and GPA thresholds in medical school admissions.

    PubMed

    Albanese, Mark A; Farrell, Philip; Dottl, Susan L

    2005-01-01

    Using Medical College Admission Test-grade point average (MCAT-GPA) scores as a threshold has the potential to address issues raised in recent Supreme Court cases, but it introduces complicated methodological issues for medical school admissions. To assess various statistical indexes to determine optimally discriminating thresholds for MCAT-GPA scores. Entering classes from 1992 through 1998 (N = 752) are used to develop guidelines for cut scores that optimize discrimination between students who pass and do not pass the United States Medical Licensing Examination (USMLE) Step 1 on the first attempt. Risk differences, odds ratios, sensitivity, and specificity discriminated best for setting thresholds. Compensatory versus noncompensatory procedures both accounted for 54% of Step 1 failures, but demanded different performance requirements (noncompensatory MCAT-biological sciences = 8, physical sciences = 7, verbal reasoning = 7--sum of scores = 22; compensatory MCAT total = 24). Rational and defensible intellectual achievement thresholds that are likely to comply with recent Supreme Court decisions can be set from MCAT scores and GPAs.

  4. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  5. Discrimination of time-dependent inflow properties with a cooperative dynamical system.

    PubMed

    Ueno, Hiroshi; Tsuruyama, Tatsuaki; Nowakowski, Bogdan; Górecki, Jerzy; Yoshikawa, Kenichi

    2015-10-01

    Many physical, chemical, and biological systems exhibit a cooperative or sigmoidal response with respect to the input. In biochemistry, such behavior is called an allosteric effect. Here, we demonstrate that a system with such properties can be used to discriminate the amplitude or frequency of an external periodic perturbation. Numerical simulations performed for a model sigmoidal kinetics illustrate that there exists a narrow range of frequencies and amplitudes within which the system evolves toward significantly different states. Therefore, observation of system evolution should provide information about the characteristics of the perturbation. The discrimination properties for periodic perturbation are generic. They can be observed in various dynamical systems and for different types of periodic perturbation.

  6. Perceptual Discrimination in Static and Dynamic Noise: The Temporal Relation between Perceptual Encoding and Decision Making

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Smith, Philip L.

    2010-01-01

    The authors report 9 new experiments and reanalyze 3 published experiments that investigate factors affecting the time course of perceptual processing and its effects on subsequent decision making. Stimuli in letter-discrimination and brightness-discrimination tasks were degraded with static and dynamic noise. The onset and the time course of…

  7. The mean-square error optimal linear discriminant function and its application to incomplete data vectors

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1979-01-01

    In many pattern recognition problems, data vectors are classified although one or more of the data vector elements are missing. This problem occurs in remote sensing when the ground is obscured by clouds. Optimal linear discrimination procedures for classifying imcomplete data vectors are discussed.

  8. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    PubMed

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  9. Discriminative illumination: per-pixel classification of raw materials based on optimal projections of spectral BRDF.

    PubMed

    Liu, Chao; Gu, Jinwei

    2014-01-01

    Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.

  10. Dynamic Displays Enhance the Ability to Discriminate Genuine and Posed Facial Expressions of Emotion

    PubMed Central

    Namba, Shushi; Kabir, Russell S.; Miyatani, Makoto; Nakao, Takashi

    2018-01-01

    Accurately gauging the emotional experience of another person is important for navigating interpersonal interactions. This study investigated whether perceivers are capable of distinguishing between unintentionally expressed (genuine) and intentionally manipulated (posed) facial expressions attributed to four major emotions: amusement, disgust, sadness, and surprise. Sensitivity to this discrimination was explored by comparing unstaged dynamic and static facial stimuli and analyzing the results with signal detection theory. Participants indicated whether facial stimuli presented on a screen depicted a person showing a given emotion and whether that person was feeling a given emotion. The results showed that genuine displays were evaluated more as felt expressions than posed displays for all target emotions presented. In addition, sensitivity to the perception of emotional experience, or discriminability, was enhanced in dynamic facial displays, but was less pronounced in the case of static displays. This finding indicates that dynamic information in facial displays contributes to the ability to accurately infer the emotional experiences of another person. PMID:29896135

  11. Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization

    NASA Astrophysics Data System (ADS)

    Subramani, Deepak N.; Lermusiaux, Pierre F. J.

    2016-04-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.

  12. Integrated aerodynamic/dynamic optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.; Riley, Michael F.

    1989-01-01

    An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor.

  13. Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.

    1992-01-01

    This paper describes a fully integrated aerodynamic/dynamic optimization procedure for helicopter rotor blades. The procedure combines performance and dynamics analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuver; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case the objective function involves power required (in hover, forward flight, and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.

  14. Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.

    1992-01-01

    A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.

  15. Dynamic optimization of metabolic networks coupled with gene expression.

    PubMed

    Waldherr, Steffen; Oyarzún, Diego A; Bockmayr, Alexander

    2015-01-21

    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition. An approximation by a timescale separation leads to a coupled model of quasi-steady state constraints on the metabolic reactions, and differential equations for the substrate concentrations and biomass composition. We propose a dynamic optimization approach to determine reaction fluxes for this model, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. Discretization of the optimization problems leads to a linear program that can be efficiently solved. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle. Copyright

  16. Efficient dynamic optimization of logic programs

    NASA Technical Reports Server (NTRS)

    Laird, Phil

    1992-01-01

    A summary is given of the dynamic optimization approach to speed up learning for logic programs. The problem is to restructure a recursive program into an equivalent program whose expected performance is optimal for an unknown but fixed population of problem instances. We define the term 'optimal' relative to the source of input instances and sketch an algorithm that can come within a logarithmic factor of optimal with high probability. Finally, we show that finding high-utility unfolding operations (such as EBG) can be reduced to clause reordering.

  17. [Optimal cut-point of salivary cotinine concentration to discriminate smoking status in the adult population in Barcelona].

    PubMed

    Martínez-Sánchez, Jose M; Fu, Marcela; Ariza, Carles; López, María J; Saltó, Esteve; Pascual, José A; Schiaffino, Anna; Borràs, Josep M; Peris, Mercè; Agudo, Antonio; Nebot, Manel; Fernández, Esteve

    2009-01-01

    To assess the optimal cut-point for salivary cotinine concentration to identify smoking status in the adult population of Barcelona. We performed a cross-sectional study of a representative sample (n=1,117) of the adult population (>16 years) in Barcelona (2004-2005). This study gathered information on active and passive smoking by means of a questionnaire and a saliva sample for cotinine determination. We analyzed sensitivity and specificity according to sex, age, smoking status (daily and occasional), and exposure to second-hand smoke at home. ROC curves and the area under the curve were calculated. The prevalence of smokers (daily and occasional) was 27.8% (95% CI: 25.2-30.4%). The optimal cut-point to discriminate smoking status was 9.2 ng/ml (sensitivity=88.7% and specificity=89.0%). The area under the ROC curve was 0.952. The optimal cut-point was 12.2 ng/ml in men and 7.6 ng/ml in women. The optimal cut-point was higher at ages with a greater prevalence of smoking. Daily smokers had a higher cut-point than occasional smokers. The optimal cut-point to discriminate smoking status in the adult population is 9.2 ng/ml, with sensitivities and specificities around 90%. The cut-point was higher in men and in younger people. The cut-point increases with higher prevalence of daily smokers.

  18. VMAT optimization with dynamic collimator rotation.

    PubMed

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  19. Dynamic positioning configuration and its first-order optimization

    NASA Astrophysics Data System (ADS)

    Xue, Shuqiang; Yang, Yuanxi; Dang, Yamin; Chen, Wu

    2014-02-01

    Traditional geodetic network optimization deals with static and discrete control points. The modern space geodetic network is, on the other hand, composed of moving control points in space (satellites) and on the Earth (ground stations). The network configuration composed of these facilities is essentially dynamic and continuous. Moreover, besides the position parameter which needs to be estimated, other geophysical information or signals can also be extracted from the continuous observations. The dynamic (continuous) configuration of the space network determines whether a particular frequency of signals can be identified by this system. In this paper, we employ the functional analysis and graph theory to study the dynamic configuration of space geodetic networks, and mainly focus on the optimal estimation of the position and clock-offset parameters. The principle of the D-optimization is introduced in the Hilbert space after the concept of the traditional discrete configuration is generalized from the finite space to the infinite space. It shows that the D-optimization developed in the discrete optimization is still valid in the dynamic configuration optimization, and this is attributed to the natural generalization of least squares from the Euclidean space to the Hilbert space. Then, we introduce the principle of D-optimality invariance under the combination operation and rotation operation, and propose some D-optimal simplex dynamic configurations: (1) (Semi) circular configuration in 2-dimensional space; (2) the D-optimal cone configuration and D-optimal helical configuration which is close to the GPS constellation in 3-dimensional space. The initial design of GPS constellation can be approximately treated as a combination of 24 D-optimal helixes by properly adjusting the ascending node of different satellites to realize a so-called Walker constellation. In the case of estimating the receiver clock-offset parameter, we show that the circular configuration, the

  20. Cortical and thalamic contributions to response dynamics across layers of the primary somatosensory cortex during tactile discrimination

    PubMed Central

    Pais-Vieira, Miguel; Kunicki, Carolina; Tseng, Po-He; Martin, Joel; Lebedev, Mikhail

    2015-01-01

    Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1. PMID:26180115

  1. An Optimization Framework for Dynamic Hybrid Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo Du; Humberto E Garcia; Christiaan J.J. Paredis

    A computational framework for the efficient analysis and optimization of dynamic hybrid energy systems (HES) is developed. A microgrid system with multiple inputs and multiple outputs (MIMO) is modeled using the Modelica language in the Dymola environment. The optimization loop is implemented in MATLAB, with the FMI Toolbox serving as the interface between the computational platforms. Two characteristic optimization problems are selected to demonstrate the methodology and gain insight into the system performance. The first is an unconstrained optimization problem that optimizes the dynamic properties of the battery, reactor and generator to minimize variability in the HES. The second problemmore » takes operating and capital costs into consideration by imposing linear and nonlinear constraints on the design variables. The preliminary optimization results obtained in this study provide an essential step towards the development of a comprehensive framework for designing HES.« less

  2. Can Structural Optimization Explain Slow Dynamics of Rocks?

    NASA Astrophysics Data System (ADS)

    Kim, H.; Vistisen, O.; Tencate, J. A.

    2009-12-01

    Slow dynamics is a recovery process that describes the return to an equilibrium state after some external energy input is applied and then removed. Experimental studies on many rocks have shown that a modest acoustic energy input results in slow dynamics. The recovery process of the stiffness has consistently been found to be linear to log(time) for a wide range of geomaterials and the time constants appear to be unique to the material [TenCate JA, Shankland TJ (1996), Geophys Res Lett 23, 3019-3022]. Measurements of this nonequilibrium effect in rocks (e.g. sandstones and limestones) have been linked directly to the cement holding the individual grains together [Darling TW, TenCate JA, Brown DW, Clausen B, Vogel SC (2004), Geophys Res Lett 31, L16604], also suggesting a potential link to porosity and permeability. Noting that slow dynamics consistently returns the overall stiffness of rocks to its maximum (original) state, it is hypothesized that the original state represents the global minimum strain energy state. Consequently the slow dynamics process represents the global minimization or optimization process. Structural optimization, which has been developed for engineering design, minimises the total strain energy by rearranging the material distribution [Kim H, Querin OM, Steven GP, Xie YM (2002), Struct Multidiscip Optim 24, 441-448]. The optimization process effectively rearranges the way the material is cemented. One of the established global optimization methods is simulated annealing (SA). Derived from cooling of metal to a thermal equilibrium, SA finds an optimum solution by iteratively moving the system towards the minimum energy state with a probability of 'uphill' moves. It has been established that the global optimum can be guaranteed by applying a log(time) linear cooling schedule [Hajek B (1988, Math Ops Res, 15, 311-329]. This work presents the original study of applying SA to the maximum stiffness optimization problem. Preliminary results

  3. Particle swarm optimization with recombination and dynamic linkage discovery.

    PubMed

    Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung

    2007-12-01

    In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.

  4. Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yu, Long-Bao; Zhang, Wen-Hai; Cao, Zhuo-Liang

    2014-12-01

    In unambiguous state discrimination, the measurement results consist of the error-free results and an inconclusive result, and an inconclusive result is conventionally regarded as a useless remainder from which no information about initial states is extracted. In this paper, we investigate the problem of extracting remaining information from an inconclusive result, provided that the optimal total success probability is determined. We present three simple examples. An inconclusive answer in the first two examples can be extracted partial information, while an inconclusive answer in the third one cannot be. The initial states in the third example are defined as the highly symmetric states.

  5. Individual differences in attention strategies during detection, fine discrimination, and coarse discrimination

    PubMed Central

    Hecker, Elizabeth A.; Serences, John T.; Srinivasan, Ramesh

    2013-01-01

    Interacting with the environment requires the ability to flexibly direct attention to relevant features. We examined the degree to which individuals attend to visual features within and across Detection, Fine Discrimination, and Coarse Discrimination tasks. Electroencephalographic (EEG) responses were measured to an unattended peripheral flickering (4 or 6 Hz) grating while individuals (n = 33) attended to orientations that were offset by 0°, 10°, 20°, 30°, 40°, and 90° from the orientation of the unattended flicker. These unattended responses may be sensitive to attentional gain at the attended spatial location, since attention to features enhances early visual responses throughout the visual field. We found no significant differences in tuning curves across the three tasks in part due to individual differences in strategies. We sought to characterize individual attention strategies using hierarchical Bayesian modeling, which grouped individuals into families of curves that reflect attention to the physical target orientation (“on-channel”) or away from the target orientation (“off-channel”) or a uniform distribution of attention. The different curves were related to behavioral performance; individuals with “on-channel” curves had lower thresholds than individuals with uniform curves. Individuals with “off-channel” curves during Fine Discrimination additionally had lower thresholds than those assigned to uniform curves, highlighting the perceptual benefits of attending away from the physical target orientation during fine discriminations. Finally, we showed that a subset of individuals with optimal curves (“on-channel”) during Detection also demonstrated optimal curves (“off-channel”) during Fine Discrimination, indicating that a subset of individuals can modulate tuning optimally for detection and discrimination. PMID:23678013

  6. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  7. Neural dynamic optimization for control systems. I. Background.

    PubMed

    Seong, C Y; Widrow, B

    2001-01-01

    The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper mainly describes the background and motivations for the development of NDO, while the two other subsequent papers of this topic present the theory of NDO and demonstrate the method with several applications including control of autonomous vehicles and of a robot arm, respectively.

  8. Neural dynamic optimization for control systems.III. Applications.

    PubMed

    Seong, C Y; Widrow, B

    2001-01-01

    For pt.II. see ibid., p. 490-501. The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper demonstrates NDO with several applications including control of autonomous vehicles and of a robot-arm, while the two other companion papers of this topic describes the background for the development of NDO and present the theory of the method, respectively.

  9. Neural dynamic optimization for control systems.II. Theory.

    PubMed

    Seong, C Y; Widrow, B

    2001-01-01

    The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper mainly describes the theory of NDO, while the two other companion papers of this topic explain the background for the development of NDO and demonstrate the method with several applications including control of autonomous vehicles and of a robot arm, respectively.

  10. Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion

    PubMed Central

    Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric

    2018-01-01

    The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355

  11. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE PAGES

    Nicholson, Bethany; Siirola, John

    2017-11-11

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  12. A framework for modeling and optimizing dynamic systems under uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Bethany; Siirola, John

    Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less

  13. The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model

    NASA Astrophysics Data System (ADS)

    Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan

    2016-05-01

    Dynamic immunizations, under which the state of the propagation network of electronic viruses can be changed by adjusting the control measures, are regarded as an alternative to static immunizations. This paper addresses the optimal dynamical immunization under the widely accepted SIRS assumption. First, based on a controlled heterogeneous node-based SIRS model, an optimal control problem capturing the optimal dynamical immunization is formulated. Second, the existence of an optimal dynamical immunization scheme is shown, and the corresponding optimality system is derived. Next, some numerical examples are given to show that an optimal immunization strategy can be worked out by numerically solving the optimality system, from which it is found that the network topology has a complex impact on the optimal immunization strategy. Finally, the difference between a payoff and the minimum payoff is estimated in terms of the deviation of the corresponding immunization strategy from the optimal immunization strategy. The proposed optimal immunization scheme is justified, because it can achieve a low level of infections at a low cost.

  14. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  15. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes

  16. Preserving electron spin coherence in solids by optimal dynamical decoupling.

    PubMed

    Du, Jiangfeng; Rong, Xing; Zhao, Nan; Wang, Ya; Yang, Jiahui; Liu, R B

    2009-10-29

    To exploit the quantum coherence of electron spins in solids in future technologies such as quantum computing, it is first vital to overcome the problem of spin decoherence due to their coupling to the noisy environment. Dynamical decoupling, which uses stroboscopic spin flips to give an average coupling to the environment that is effectively zero, is a particularly promising strategy for combating decoherence because it can be naturally integrated with other desired functionalities, such as quantum gates. Errors are inevitably introduced in each spin flip, so it is desirable to minimize the number of control pulses used to realize dynamical decoupling having a given level of precision. Such optimal dynamical decoupling sequences have recently been explored. The experimental realization of optimal dynamical decoupling in solid-state systems, however, remains elusive. Here we use pulsed electron paramagnetic resonance to demonstrate experimentally optimal dynamical decoupling for preserving electron spin coherence in irradiated malonic acid crystals at temperatures from 50 K to room temperature. Using a seven-pulse optimal dynamical decoupling sequence, we prolonged the spin coherence time to about 30 mus; it would otherwise be about 0.04 mus without control or 6.2 mus under one-pulse control. By comparing experiments with microscopic theories, we have identified the relevant electron spin decoherence mechanisms in the solid. Optimal dynamical decoupling may be applied to other solid-state systems, such as diamonds with nitrogen-vacancy centres, and so lay the foundation for quantum coherence control of spins in solids at room temperature.

  17. Direct discriminant locality preserving projection with Hammerstein polynomial expansion.

    PubMed

    Chen, Xi; Zhang, Jiashu; Li, Defang

    2012-12-01

    Discriminant locality preserving projection (DLPP) is a linear approach that encodes discriminant information into the objective of locality preserving projection and improves its classification ability. To enhance the nonlinear description ability of DLPP, we can optimize the objective function of DLPP in reproducing kernel Hilbert space to form a kernel-based discriminant locality preserving projection (KDLPP). However, KDLPP suffers the following problems: 1) larger computational burden; 2) no explicit mapping functions in KDLPP, which results in more computational burden when projecting a new sample into the low-dimensional subspace; and 3) KDLPP cannot obtain optimal discriminant vectors, which exceedingly optimize the objective of DLPP. To overcome the weaknesses of KDLPP, in this paper, a direct discriminant locality preserving projection with Hammerstein polynomial expansion (HPDDLPP) is proposed. The proposed HPDDLPP directly implements the objective of DLPP in high-dimensional second-order Hammerstein polynomial space without matrix inverse, which extracts the optimal discriminant vectors for DLPP without larger computational burden. Compared with some other related classical methods, experimental results for face and palmprint recognition problems indicate the effectiveness of the proposed HPDDLPP.

  18. Gloss discrimination and eye movements

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Ferwerda, James A.; Nunziata, Ann

    2010-02-01

    Human observers are able to make fine discriminations of surface gloss. What cues are they using to perform this task? In previous studies, we identified two reflection-related cues-the contrast of the reflected image (c, contrast gloss) and the sharpness of reflected image (d, distinctness-of-image gloss)--but these were for objects rendered in standard dynamic range (SDR) images with compressed highlights. In ongoing work, we are studying the effects of image dynamic range on perceived gloss, comparing high dynamic range (HDR) images with accurate reflections and SDR images with compressed reflections. In this paper, we first present the basic findings of this gloss discrimination study then present an analysis of eye movement recordings that show where observers were looking during the gloss discrimination task. The results indicate that: 1) image dynamic range has significant influence on perceived gloss, with surfaces presented in HDR images being seen as glossier and more discriminable than their SDR counterparts; 2) observers look at both light source highlights and environmental interreflections when judging gloss; and 3) both of these results are modulated by surface geometry and scene illumination.

  19. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  20. Recursive multibody dynamics and discrete-time optimal control

    NASA Technical Reports Server (NTRS)

    Deleuterio, G. M. T.; Damaren, C. J.

    1989-01-01

    A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.

  1. Measurement configuration optimization for dynamic metrology using Stokes polarimetry

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Zhang, Chuanwei; Zhong, Zhicheng; Gu, Honggang; Chen, Xiuguo; Jiang, Hao; Liu, Shiyuan

    2018-05-01

    As dynamic loading experiments such as a shock compression test are usually characterized by short duration, unrepeatability and high costs, high temporal resolution and precise accuracy of the measurements is required. Due to high temporal resolution up to a ten-nanosecond-scale, a Stokes polarimeter with six parallel channels has been developed to capture such instantaneous changes in optical properties in this paper. Since the measurement accuracy heavily depends on the configuration of the probing beam incident angle and the polarizer azimuth angle, it is important to select an optimal combination from the numerous options. In this paper, a systematic error propagation-based measurement configuration optimization method corresponding to the Stokes polarimeter was proposed. The maximal Frobenius norm of the combinatorial matrix of the configuration error propagating matrix and the intrinsic error propagating matrix is introduced to assess the measurement accuracy. The optimal configuration for thickness measurement of a SiO2 thin film deposited on a Si substrate has been achieved by minimizing the merit function. Simulation and experimental results show a good agreement between the optimal measurement configuration achieved experimentally using the polarimeter and the theoretical prediction. In particular, the experimental result shows that the relative error in the thickness measurement can be reduced from 6% to 1% by using the optimal polarizer azimuth angle when the incident angle is 45°. Furthermore, the optimal configuration for the dynamic metrology of a nickel foil under quasi-dynamic loading is investigated using the proposed optimization method.

  2. An Optimization Framework for Dynamic, Distributed Real-Time Systems

    NASA Technical Reports Server (NTRS)

    Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara

    2003-01-01

    Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.

  3. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel® Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  4. Coherent optimal control of photosynthetic molecules

    NASA Astrophysics Data System (ADS)

    Caruso, F.; Montangero, S.; Calarco, T.; Huelga, S. F.; Plenio, M. B.

    2012-04-01

    We demonstrate theoretically that open-loop quantum optimal control techniques can provide efficient tools for the verification of various quantum coherent transport mechanisms in natural and artificial light-harvesting complexes under realistic experimental conditions. To assess the feasibility of possible biocontrol experiments, we introduce the main settings and derive optimally shaped and robust laser pulses that allow for the faithful preparation of specified initial states (such as localized excitation or coherent superposition, i.e., propagating and nonpropagating states) of the photosystem and probe efficiently the subsequent dynamics. With these tools, different transport pathways can be discriminated, which should facilitate the elucidation of genuine quantum dynamical features of photosystems and therefore enhance our understanding of the role that coherent processes may play in actual biological complexes.

  5. Optimal Experimental Design for Model Discrimination

    ERIC Educational Resources Information Center

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…

  6. Practical synchronization on complex dynamical networks via optimal pinning control

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Sun, Weigang; Small, Michael; Fu, Xinchu

    2015-07-01

    We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin's minimum principle, and based on a general complex dynamical network, we obtain an optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks, and Barabási-Albert networks. Moreover, by combining optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network's topological structure. Obtained results show that optimal pinning control is very effective for synchronization control in real applications.

  7. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  8. Minimum error discrimination between similarity-transformed quantum states

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Sufiani, R.; Mazhari Khiavi, Y.

    2011-07-01

    Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreducible representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.

  9. Optimal control of HIV/AIDS dynamic: Education and treatment

    NASA Astrophysics Data System (ADS)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  10. Global dynamic optimization approach to predict activation in metabolic pathways.

    PubMed

    de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R

    2014-01-06

    During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary

  11. Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittmann, Christoffer; Sych, Denis; Leuchs, Gerd

    2010-06-15

    We investigate quantum measurement strategies capable of discriminating two coherent states probabilistically with significantly smaller error probabilities than can be obtained using nonprobabilistic state discrimination. We apply a postselection strategy to the measurement data of a homodyne detector as well as a photon number resolving detector in order to lower the error probability. We compare the two different receivers with an optimal intermediate measurement scheme where the error rate is minimized for a fixed rate of inconclusive results. The photon number resolving (PNR) receiver is experimentally demonstrated and compared to an experimental realization of a homodyne receiver with postselection. Inmore » the comparison, it becomes clear that the performance of the PNR receiver surpasses the performance of the homodyne receiver, which we prove to be optimal within any Gaussian operations and conditional dynamics.« less

  12. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGES

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; ...

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  13. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    PubMed

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  14. Optimization of fuel-cell tram operation based on two dimension dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu

    2018-02-01

    This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.

  15. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  16. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  17. Dynamic ADMM for Real-Time Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearization of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of noncontrollable resources. Optimality and convergence of the proposed algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less

  18. Optimal dynamic pricing for deteriorating items with reference-price effects

    NASA Astrophysics Data System (ADS)

    Xue, Musen; Tang, Wansheng; Zhang, Jianxiong

    2016-07-01

    In this paper, a dynamic pricing problem for deteriorating items with the consumers' reference-price effect is studied. An optimal control model is established to maximise the total profit, where the demand not only depends on the current price, but also is sensitive to the historical price. The continuous-time dynamic optimal pricing strategy with reference-price effect is obtained through solving the optimal control model on the basis of Pontryagin's maximum principle. In addition, numerical simulations and sensitivity analysis are carried out. Finally, some managerial suggestions that firm may adopt to formulate its pricing policy are proposed.

  19. C-learning: A new classification framework to estimate optimal dynamic treatment regimes.

    PubMed

    Zhang, Baqun; Zhang, Min

    2017-12-11

    A dynamic treatment regime is a sequence of decision rules, each corresponding to a decision point, that determine that next treatment based on each individual's own available characteristics and treatment history up to that point. We show that identifying the optimal dynamic treatment regime can be recast as a sequential optimization problem and propose a direct sequential optimization method to estimate the optimal treatment regimes. In particular, at each decision point, the optimization is equivalent to sequentially minimizing a weighted expected misclassification error. Based on this classification perspective, we propose a powerful and flexible C-learning algorithm to learn the optimal dynamic treatment regimes backward sequentially from the last stage until the first stage. C-learning is a direct optimization method that directly targets optimizing decision rules by exploiting powerful optimization/classification techniques and it allows incorporation of patient's characteristics and treatment history to improve performance, hence enjoying advantages of both the traditional outcome regression-based methods (Q- and A-learning) and the more recent direct optimization methods. The superior performance and flexibility of the proposed methods are illustrated through extensive simulation studies. © 2017, The International Biometric Society.

  20. Direct Optimal Control of Duffing Dynamics

    NASA Technical Reports Server (NTRS)

    Oz, Hayrani; Ramsey, John K.

    2002-01-01

    The "direct control method" is a novel concept that is an attractive alternative and competitor to the differential-equation-based methods. The direct method is equally well applicable to nonlinear, linear, time-varying, and time-invariant systems. For all such systems, the method yields explicit closed-form control laws based on minimization of a quadratic control performance measure. We present an application of the direct method to the dynamics and optimal control of the Duffing system where the control performance measure is not restricted to a quadratic form and hence may include a quartic energy term. The results we present in this report also constitute further generalizations of our earlier work in "direct optimal control methodology." The approach is demonstrated for the optimal control of the Duffing equation with a softening nonlinear stiffness.

  1. Minimum error discrimination between similarity-transformed quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarizadeh, M. A.; Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795; Research Institute for Fundamental Sciences, Tabriz 51664

    2011-07-15

    Using the well-known necessary and sufficient conditions for minimum error discrimination (MED), we extract an equivalent form for the MED conditions. In fact, by replacing the inequalities corresponding to the MED conditions with an equivalent but more suitable and convenient identity, the problem of mixed state discrimination with optimal success probability is solved. Moreover, we show that the mentioned optimality conditions can be viewed as a Helstrom family of ensembles under some circumstances. Using the given identity, MED between N similarity transformed equiprobable quantum states is investigated. In the case that the unitary operators are generating a set of irreduciblemore » representation, the optimal set of measurements and corresponding maximum success probability of discrimination can be determined precisely. In particular, it is shown that for equiprobable pure states, the optimal measurement strategy is the square-root measurement (SRM), whereas for the mixed states, SRM is not optimal. In the case that the unitary operators are reducible, there is no closed-form formula in the general case, but the procedure can be applied in each case in accordance to that case. Finally, we give the maximum success probability of optimal discrimination for some important examples of mixed quantum states, such as generalized Bloch sphere m-qubit states, spin-j states, particular nonsymmetric qudit states, etc.« less

  2. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  3. Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination

    NASA Astrophysics Data System (ADS)

    Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.

    2005-05-01

    A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.

  4. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Solikhin

    2016-06-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well.

  6. Decision-Related Activity in Macaque V2 for Fine Disparity Discrimination Is Not Compatible with Optimal Linear Readout.

    PubMed

    Clery, Stephane; Cumming, Bruce G; Nienborg, Hendrikje

    2017-01-18

    Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal "noise" correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work developed simple

  7. Decision-Related Activity in Macaque V2 for Fine Disparity Discrimination Is Not Compatible with Optimal Linear Readout

    PubMed Central

    Clery, Stephane; Cumming, Bruce G.

    2017-01-01

    Fine judgments of stereoscopic depth rely mainly on relative judgments of depth (relative binocular disparity) between objects, rather than judgments of the distance to where the eyes are fixating (absolute disparity). In macaques, visual area V2 is the earliest site in the visual processing hierarchy for which neurons selective for relative disparity have been observed (Thomas et al., 2002). Here, we found that, in macaques trained to perform a fine disparity discrimination task, disparity-selective neurons in V2 were highly selective for the task, and their activity correlated with the animals' perceptual decisions (unexplained by the stimulus). This may partially explain similar correlations reported in downstream areas. Although compatible with a perceptual role of these neurons for the task, the interpretation of such decision-related activity is complicated by the effects of interneuronal “noise” correlations between sensory neurons. Recent work has developed simple predictions to differentiate decoding schemes (Pitkow et al., 2015) without needing measures of noise correlations, and found that data from early sensory areas were compatible with optimal linear readout of populations with information-limiting correlations. In contrast, our data here deviated significantly from these predictions. We additionally tested this prediction for previously reported results of decision-related activity in V2 for a related task, coarse disparity discrimination (Nienborg and Cumming, 2006), thought to rely on absolute disparity. Although these data followed the predicted pattern, they violated the prediction quantitatively. This suggests that optimal linear decoding of sensory signals is not generally a good predictor of behavior in simple perceptual tasks. SIGNIFICANCE STATEMENT Activity in sensory neurons that correlates with an animal's decision is widely believed to provide insights into how the brain uses information from sensory neurons. Recent theoretical work

  8. Sub-optimal control of fuzzy linear dynamical systems under granular differentiability concept.

    PubMed

    Mazandarani, Mehran; Pariz, Naser

    2018-05-01

    This paper deals with sub-optimal control of a fuzzy linear dynamical system. The aim is to keep the state variables of the fuzzy linear dynamical system close to zero in an optimal manner. In the fuzzy dynamical system, the fuzzy derivative is considered as the granular derivative; and all the coefficients and initial conditions can be uncertain. The criterion for assessing the optimality is regarded as a granular integral whose integrand is a quadratic function of the state variables and control inputs. Using the relative-distance-measure (RDM) fuzzy interval arithmetic and calculus of variations, the optimal control law is presented as the fuzzy state variables feedback. Since the optimal feedback gains are obtained as fuzzy functions, they need to be defuzzified. This will result in the sub-optimal control law. This paper also sheds light on the restrictions imposed by the approaches which are based on fuzzy standard interval arithmetic (FSIA), and use strongly generalized Hukuhara and generalized Hukuhara differentiability concepts for obtaining the optimal control law. The granular eigenvalues notion is also defined. Using an RLC circuit mathematical model, it is shown that, due to their unnatural behavior in the modeling phenomenon, the FSIA-based approaches may obtain some eigenvalues sets that might be different from the inherent eigenvalues set of the fuzzy dynamical system. This is, however, not the case with the approach proposed in this study. The notions of granular controllability and granular stabilizability of the fuzzy linear dynamical system are also presented in this paper. Moreover, a sub-optimal control for regulating a Boeing 747 in longitudinal direction with uncertain initial conditions and parameters is gained. In addition, an uncertain suspension system of one of the four wheels of a bus is regulated using the sub-optimal control introduced in this paper. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Weihong; Sun, Kai; Qi, Junjian

    2015-01-01

    Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less

  10. Design optimization of aircraft landing gear assembly under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan Y. B.

    As development cycles and prototyping iterations begin to decrease in the aerospace industry, it is important to develop and improve practical methodologies to meet all design metrics. This research presents an efficient methodology that applies high-fidelity multi-disciplinary design optimization techniques to commercial landing gear assemblies, for weight reduction, cost savings, and structural performance dynamic loading. Specifically, a slave link subassembly was selected as the candidate to explore the feasibility of this methodology. The design optimization process utilized in this research was sectioned into three main stages: setup, optimization, and redesign. The first stage involved the creation and characterization of the models used throughout this research. The slave link assembly was modelled with a simplified landing gear test, replicating the behavior of the physical system. Through extensive review of the literature and collaboration with Safran Landing Systems, dynamic and structural behavior for the system were characterized and defined mathematically. Once defined, the characterized behaviors for the slave link assembly were then used to conduct a Multi-Body Dynamic (MBD) analysis to determine the dynamic and structural response of the system. These responses were then utilized in a topology optimization through the use of the Equivalent Static Load Method (ESLM). The results of the optimization were interpreted and later used to generate improved designs in terms of weight, cost, and structural performance under dynamic loading in stage three. The optimized designs were then validated using the model created for the MBD analysis of the baseline design. The design generation process employed two different approaches for post-processing the topology results produced. The first approach implemented a close replication of the topology results, resulting in a design with an overall peak stress increase of 74%, weight savings of 67%, and no apparent

  11. One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature.

    PubMed

    Zou, Weiwen; He, Zuyuan; Hotate, Kazuo

    2011-01-31

    This paper presents a novel scheme to generate and detect Brillouin dynamic grating in a polarization-maintaining optical fiber based on one laser source. Precise measurement of Brillouin dynamic grating spectrum is achieved benefiting from that the pump, probe and readout waves are coherently originated from the same laser source. Distributed discrimination of strain and temperature is also achieved with high accuracy.

  12. Optimizing Motion Planning for Hyper Dynamic Manipulator

    NASA Astrophysics Data System (ADS)

    Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache

    2012-01-01

    This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.

  13. Numerical integration and optimization of motions for multibody dynamic systems

    NASA Astrophysics Data System (ADS)

    Aguilar Mayans, Joan

    This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.

  14. Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV

    NASA Astrophysics Data System (ADS)

    Mir, Imran; Maqsood, Adnan; Akhtar, Suhail

    2017-06-01

    Dynamic soaring is a process of acquiring energy available in atmospheric wind shears and is commonly exhibited by soaring birds to perform long distance flights. This paper aims to demonstrate a viable algorithm which can be implemented in near real time environment to formulate optimal trajectories for dynamic soaring maneuvers for a small scale Unmanned Aerial Vehicle (UAV). The objective is to harness maximum energy from atmosphere wind shear to improve loiter time for Intelligence, Surveillance and Reconnaissance (ISR) missions. Three-dimensional point-mass UAV equations of motion and linear wind gradient profile are used to model flight dynamics. Utilizing UAV states, controls, operational constraints, initial and terminal conditions that enforce a periodic flight, dynamic soaring problem is formulated as an optimal control problem. Optimized trajectories of the maneuver are subsequently generated employing pseudo spectral techniques against distant UAV performance parameters. The discussion also encompasses the requirement for generation of optimal trajectories for dynamic soaring in real time environment and the ability of the proposed algorithm for speedy solution generation. Coupled with the fact that dynamic soaring is all about immediately utilizing the available energy from the wind shear encountered, the proposed algorithm promises its viability for practical on board implementations requiring computation of trajectories in near real time.

  15. Demonstration of coherent-state discrimination using a displacement-controlled photon-number-resolving detector.

    PubMed

    Wittmann, Christoffer; Andersen, Ulrik L; Takeoka, Masahiro; Sych, Denis; Leuchs, Gerd

    2010-03-12

    We experimentally demonstrate a new measurement scheme for the discrimination of two coherent states. The measurement scheme is based on a displacement operation followed by a photon-number-resolving detector, and we show that it outperforms the standard homodyne detector which we, in addition, prove to be optimal within all Gaussian operations including conditional dynamics. We also show that the non-Gaussian detector is superior to the homodyne detector in a continuous variable quantum key distribution scheme.

  16. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  17. An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques

    PubMed Central

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey D.; Calhoun, Vince D.

    2013-01-01

    Extraction of relevant features from multitask functional MRI (fMRI) data in order to identify potential biomarkers for disease, is an attractive goal. In this paper, we introduce a novel feature-based framework, which is sensitive and accurate in detecting group differences (e.g. controls vs. patients) by proposing three key ideas. First, we integrate two goal-directed techniques: coefficient-constrained independent component analysis (CC-ICA) and principal component analysis with reference (PCA-R), both of which improve sensitivity to group differences. Secondly, an automated artifact-removal method is developed for selecting components of interest derived from CC-ICA, with an average accuracy of 91%. Finally, we propose a strategy for optimal feature/component selection, aiming to identify optimal group-discriminative brain networks as well as the tasks within which these circuits are engaged. The group-discriminating performance is evaluated on 15 fMRI feature combinations (5 single features and 10 joint features) collected from 28 healthy control subjects and 25 schizophrenia patients. Results show that a feature from a sensorimotor task and a joint feature from a Sternberg working memory (probe) task and an auditory oddball (target) task are the top two feature combinations distinguishing groups. We identified three optimal features that best separate patients from controls, including brain networks consisting of temporal lobe, default mode and occipital lobe circuits, which when grouped together provide improved capability in classifying group membership. The proposed framework provides a general approach for selecting optimal brain networks which may serve as potential biomarkers of several brain diseases and thus has wide applicability in the neuroimaging research community. PMID:19457398

  18. Evaluation of a digital data acquisition system and optimization of n-γ discrimination for a compact neutron spectrometer.

    PubMed

    Giacomelli, L; Zimbal, A; Reginatto, M; Tittelmeier, K

    2011-01-01

    A compact NE213 liquid scintillation neutron spectrometer with a new digital data acquisition (DAQ) system is now in operation at the Physikalisch-Technische Bundesanstalt (PTB). With the DAQ system, developed by ENEA Frascati, neutron spectrometry with high count rates in the order of 5×10(5) s(-1) is possible, roughly an order of magnitude higher than with an analog acquisition system. To validate the DAQ system, a new data analysis code was developed and tests were done using measurements with 14-MeV neutrons made at the PTB accelerator. Additional analysis was carried out to optimize the two-gate method used for neutron and gamma (n-γ) discrimination. The best results were obtained with gates of 35 ns and 80 ns. This indicates that the fast and medium decay time components of the NE213 light emission are the ones that are relevant for n-γ discrimination with the digital acquisition system. This differs from what is normally implemented in the analog pulse shape discrimination modules, namely, the fast and long decay emissions of the scintillating light.

  19. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  20. Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1992-01-01

    Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.

  1. Multi-objective dynamic aperture optimization for storage rings

    DOE PAGES

    Li, Yongjun; Yang, Lingyun

    2016-11-30

    We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.

  2. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-01-01

    Dynamic treatment regimes are set rules for sequential decision making based on patient covariate history. Observational studies are well suited for the investigation of the effects of dynamic treatment regimes because of the variability in treatment decisions found in them. This variability exists because different physicians make different decisions in the face of similar patient histories. In this article we describe an approach to estimate the optimal dynamic treatment regime among a set of enforceable regimes. This set is comprised by regimes defined by simple rules based on a subset of past information. The regimes in the set are indexed by a Euclidean vector. The optimal regime is the one that maximizes the expected counterfactual utility over all regimes in the set. We discuss assumptions under which it is possible to identify the optimal regime from observational longitudinal data. Murphy et al. (2001) developed efficient augmented inverse probability weighted estimators of the expected utility of one fixed regime. Our methods are based on an extension of the marginal structural mean model of Robins (1998, 1999) which incorporate the estimation ideas of Murphy et al. (2001). Our models, which we call dynamic regime marginal structural mean models, are specially suitable for estimating the optimal treatment regime in a moderately small class of enforceable regimes of interest. We consider both parametric and semiparametric dynamic regime marginal structural models. We discuss locally efficient, double-robust estimation of the model parameters and of the index of the optimal treatment regime in the set. In a companion paper in this issue of the journal we provide proofs of the main results.

  3. Dynamic ADMM for Real-Time Optimal Power Flow: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers distribution networks featuring distributed energy resources (DERs), and develops a dynamic optimization method to maximize given operational objectives in real time while adhering to relevant network constraints. The design of the dynamic algorithm is based on suitable linearizations of the AC power flow equations, and it leverages the so-called alternating direction method of multipliers (ADMM). The steps of the ADMM, however, are suitably modified to accommodate appropriate measurements from the distribution network and the DERs. With the aid of these measurements, the resultant algorithm can enforce given operational constraints in spite of inaccuracies in the representation ofmore » the AC power flows, and it avoids ubiquitous metering to gather the state of non-controllable resources. Optimality and convergence of the propose algorithm are established in terms of tracking of the solution of a convex surrogate of the AC optimal power flow problem.« less

  4. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obaid, Rana; Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine; Kinzel, Daniel

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  5. Optimal design of waveform digitisers for both energy resolution and pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Cang, Jirong; Xue, Tao; Zeng, Ming; Zeng, Zhi; Ma, Hao; Cheng, Jianping; Liu, Yinong

    2018-04-01

    Fast digitisers and digital pulse processing have been widely used for spectral application and pulse shape discrimination (PSD) owing to their advantages in terms of compactness, higher trigger rates, offline analysis, etc. Meanwhile, the noise of readout electronics is usually trivial for organic, plastic, or liquid scintillator with PSD ability because of their poor intrinsic energy resolution. However, LaBr3(Ce) has been widely used for its excellent energy resolution and has been proven to have PSD ability for alpha/gamma particles. Therefore, designing a digital acquisition system for such scintillators as LaBr3(Ce) with both optimal energy resolution and promising PSD ability is worthwhile. Several experimental research studies about the choice of digitiser properties for liquid scintillators have already been conducted in terms of the sampling rate and vertical resolution. Quantitative analysis on the influence of waveform digitisers, that is, fast amplifier (optional), sampling rates, and vertical resolution, on both applications is still lacking. The present paper provides quantitative analysis of these factors and, hence, general rules about the optimal design of digitisers for both energy resolution and PSD application according to the noise analysis of time-variant gated charge integration.

  6. Focusing light through strongly scattering media using genetic algorithm with SBR discriminant

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhang, Zhenfeng; Feng, Qi; Liu, Zhipeng; Lin, Chengyou; Ding, Yingchun

    2018-02-01

    In this paper, we have experimentally demonstrated light focusing through strongly scattering media by performing binary amplitude optimization with a genetic algorithm. In the experiments, we control 160 000 mirrors of digital micromirror device to modulate and optimize the light transmission paths in the strongly scattering media. We replace the universal target-position-intensity (TPI) discriminant with signal-to-background ratio (SBR) discriminant in genetic algorithm. With 400 incident segments, a relative enhancement value of 17.5% with a ground glass diffuser is achieved, which is higher than the theoretical value of 1/(2π )≈ 15.9 % for binary amplitude optimization. According to our repetitive experiments, we conclude that, with the same segment number, the enhancement for the SBR discriminant is always higher than that for the TPI discriminant, which results from the background-weakening effect of SBR discriminant. In addition, with the SBR discriminant, the diameters of the focus can be changed ranging from 7 to 70 μm at arbitrary positions. Besides, multiple foci with high enhancement are obtained. Our work provides a meaningful reference for the study of binary amplitude optimization in the wavefront shaping field.

  7. Optimal blood glucose level control using dynamic programming based on minimal Bergman model

    NASA Astrophysics Data System (ADS)

    Rettian Anggita Sari, Maria; Hartono

    2018-03-01

    The purpose of this article is to simulate the glucose dynamic and the insulin kinetic of diabetic patient. The model used in this research is a non-linear Minimal Bergman model. Optimal control theory is then applied to formulate the problem in order to determine the optimal dose of insulin in the treatment of diabetes mellitus such that the glucose level is in the normal range for some specific time range. The optimization problem is solved using dynamic programming. The result shows that dynamic programming is quite reliable to represent the interaction between glucose and insulin levels in diabetes mellitus patient.

  8. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    NASA Astrophysics Data System (ADS)

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  9. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences

    PubMed Central

    Bibee, Jacqueline M.; Stecker, G. Christopher

    2016-01-01

    Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092–3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency. PMID:27794286

  10. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences.

    PubMed

    Bibee, Jacqueline M; Stecker, G Christopher

    2016-10-01

    Spatial judgments are often dominated by low-frequency binaural cues and onset cues when binaural cues vary across the spectrum and duration, respectively, of a brief sound. This study combined these dimensions to assess the spectrotemporal weighting of binaural information. Listeners discriminated target interaural time difference (ITD) and interaural level difference (ILD) carried by the onset, offset, or full duration of a 4-kHz Gabor click train with a 2-ms period in the presence or absence of a diotic 500-Hz interferer tone. ITD and ILD thresholds were significantly elevated by the interferer in all conditions and by a similar amount to previous reports for static cues. Binaural interference was dramatically greater for ITD targets lacking onset cues compared to onset and full-duration conditions. Binaural interference for ILD targets was similar across dynamic-cue conditions. These effects mirror the baseline discriminability of dynamic ITD and ILD cues [Stecker and Brown. (2010). J. Acoust. Soc. Am. 127, 3092-3103], consistent with stronger interference for less-robust/higher-variance cues. The results support the view that binaural cue integration occurs simultaneously across multiple variance-weighted dimensions, including time and frequency.

  11. Time-frequency optimization for discrimination between imagination of right and left hand movements based on two bipolar electroencephalography channels

    NASA Astrophysics Data System (ADS)

    Yang, Yuan; Chevallier, Sylvain; Wiart, Joe; Bloch, Isabelle

    2014-12-01

    To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness should be increased and the number of electrodes should be reduced. These two key issues are addressed in this contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor ( TFDF) and F score, are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g., Fisher criterion, r 2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher's discriminant and purely data driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e., only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs.

  12. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    PubMed

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  13. Physical activity classification with dynamic discriminative methods.

    PubMed

    Ray, Evan L; Sasaki, Jeffer E; Freedson, Patty S; Staudenmayer, John

    2018-06-19

    A person's physical activity has important health implications, so it is important to be able to measure aspects of physical activity objectively. One approach to doing that is to use data from an accelerometer to classify physical activity according to activity type (e.g., lying down, sitting, standing, or walking) or intensity (e.g., sedentary, light, moderate, or vigorous). This can be formulated as a labeled classification problem, where the model relates a feature vector summarizing the accelerometer signal in a window of time to the activity type or intensity in that window. These data exhibit two key characteristics: (1) the activity classes in different time windows are not independent, and (2) the accelerometer features have moderately high dimension and follow complex distributions. Through a simulation study and applications to three datasets, we demonstrate that a model's classification performance is related to how it addresses these aspects of the data. Dynamic methods that account for temporal dependence achieve better performance than static methods that do not. Generative methods that explicitly model the distribution of the accelerometer signal features do not perform as well as methods that take a discriminative approach to establishing the relationship between the accelerometer signal and the activity class. Specifically, Conditional Random Fields consistently have better performance than commonly employed methods that ignore temporal dependence or attempt to model the accelerometer features. © 2018, The International Biometric Society.

  14. Computer aided analysis and optimization of mechanical system dynamics

    NASA Technical Reports Server (NTRS)

    Haug, E. J.

    1984-01-01

    The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.

  15. Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.

    PubMed

    Namkung, Min; Kwon, Younghun

    2018-04-25

    Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.

  16. Confronting dynamics and uncertainty in optimal decision making for conservation

    USGS Publications Warehouse

    Williams, Byron K.; Johnson, Fred A.

    2013-01-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a

  17. Confronting dynamics and uncertainty in optimal decision making for conservation

    NASA Astrophysics Data System (ADS)

    Williams, Byron K.; Johnson, Fred A.

    2013-06-01

    The effectiveness of conservation efforts ultimately depends on the recognition that decision making, and the systems that it is designed to affect, are inherently dynamic and characterized by multiple sources of uncertainty. To cope with these challenges, conservation planners are increasingly turning to the tools of decision analysis, especially dynamic optimization methods. Here we provide a general framework for optimal, dynamic conservation and then explore its capacity for coping with various sources and degrees of uncertainty. In broadest terms, the dynamic optimization problem in conservation is choosing among a set of decision options at periodic intervals so as to maximize some conservation objective over the planning horizon. Planners must account for immediate objective returns, as well as the effect of current decisions on future resource conditions and, thus, on future decisions. Undermining the effectiveness of such a planning process are uncertainties concerning extant resource conditions (partial observability), the immediate consequences of decision choices (partial controllability), the outcomes of uncontrolled, environmental drivers (environmental variation), and the processes structuring resource dynamics (structural uncertainty). Where outcomes from these sources of uncertainty can be described in terms of probability distributions, a focus on maximizing the expected objective return, while taking state-specific actions, is an effective mechanism for coping with uncertainty. When such probability distributions are unavailable or deemed unreliable, a focus on maximizing robustness is likely to be the preferred approach. Here the idea is to choose an action (or state-dependent policy) that achieves at least some minimum level of performance regardless of the (uncertain) outcomes. We provide some examples of how the dynamic optimization problem can be framed for problems involving management of habitat for an imperiled species, conservation of a

  18. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  19. Optimal interdependence enhances the dynamical robustness of complex systems.

    PubMed

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  20. Optimal interdependence enhances the dynamical robustness of complex systems

    NASA Astrophysics Data System (ADS)

    Singh, Rishu Kumar; Sinha, Sitabhra

    2017-08-01

    Although interdependent systems have usually been associated with increased fragility, we show that strengthening the interdependence between dynamical processes on different networks can make them more likely to survive over long times. By coupling the dynamics of networks that in isolation exhibit catastrophic collapse with extinction of nodal activity, we demonstrate system-wide persistence of activity for an optimal range of interdependence between the networks. This is related to the appearance of attractors of the global dynamics comprising disjoint sets ("islands") of stable activity.

  1. Review of dynamic optimization methods in renewable natural resource management

    USGS Publications Warehouse

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  2. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  3. A COMPARISON OF STATIC AND DYNAMIC OPTIMIZATION MUSCLE FORCE PREDICTIONS DURING WHEELCHAIR PROPULSION

    PubMed Central

    Morrow, Melissa M.; Rankin, Jeffery W.; Neptune, Richard R.; Kaufman, Kenton R.

    2014-01-01

    The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4 % Fmax error in the middle deltoid) to good (6.4 % Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction. PMID:25282075

  4. Optimization design of spectral discriminator for high-spectral-resolution lidar based on error analysis.

    PubMed

    Di, Huige; Zhang, Zhanfei; Hua, Hangbo; Zhang, Jiaqi; Hua, Dengxin; Wang, Yufeng; He, Tingyao

    2017-03-06

    Accurate aerosol optical properties could be obtained via the high spectral resolution lidar (HSRL) technique, which employs a narrow spectral filter to suppress the Rayleigh or Mie scattering in lidar return signals. The ability of the filter to suppress Rayleigh or Mie scattering is critical for HSRL. Meanwhile, it is impossible to increase the rejection of the filter without limitation. How to optimize the spectral discriminator and select the appropriate suppression rate of the signal is important to us. The HSRL technology was thoroughly studied based on error propagation. Error analyses and sensitivity studies were carried out on the transmittance characteristics of the spectral discriminator. Moreover, ratwo different spectroscopic methods for HSRL were described and compared: one is to suppress the Mie scattering; the other is to suppress the Rayleigh scattering. The corresponding HSRLs were simulated and analyzed. The results show that excessive suppression of Rayleigh scattering or Mie scattering in a high-spectral channel is not necessary if the transmittance of the spectral filter for molecular and aerosol scattering signals can be well characterized. When the ratio of transmittance of the spectral filter for aerosol scattering and molecular scattering is less than 0.1 or greater than 10, the detection error does not change much with its value. This conclusion implies that we have more choices for the high-spectral discriminator in HSRL. Moreover, the detection errors of HSRL regarding the two spectroscopic methods vary greatly with the atmospheric backscattering ratio. To reduce the detection error, it is necessary to choose a reasonable spectroscopic method. The detection method of suppressing the Rayleigh signal and extracting the Mie signal can achieve less error in a clear atmosphere, while the method of suppressing the Mie signal and extracting the Rayleigh signal can achieve less error in a polluted atmosphere.

  5. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  6. Optimal Dynamics of Intermittent Water Supply

    NASA Astrophysics Data System (ADS)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  7. Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas

    2013-01-01

    Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168

  8. Focusing light through dynamical samples using fast continuous wavefront optimization.

    PubMed

    Blochet, B; Bourdieu, L; Gigan, S

    2017-12-01

    We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO 2 particles in glycerol with tunable temporal stability.

  9. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis.

    PubMed

    Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping

    2018-05-16

    As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    NASA Technical Reports Server (NTRS)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  11. Dynamic optimization of distributed biological systems using robust and efficient numerical techniques.

    PubMed

    Vilas, Carlos; Balsa-Canto, Eva; García, Maria-Sonia G; Banga, Julio R; Alonso, Antonio A

    2012-07-02

    Systems biology allows the analysis of biological systems behavior under different conditions through in silico experimentation. The possibility of perturbing biological systems in different manners calls for the design of perturbations to achieve particular goals. Examples would include, the design of a chemical stimulation to maximize the amplitude of a given cellular signal or to achieve a desired pattern in pattern formation systems, etc. Such design problems can be mathematically formulated as dynamic optimization problems which are particularly challenging when the system is described by partial differential equations.This work addresses the numerical solution of such dynamic optimization problems for spatially distributed biological systems. The usual nonlinear and large scale nature of the mathematical models related to this class of systems and the presence of constraints on the optimization problems, impose a number of difficulties, such as the presence of suboptimal solutions, which call for robust and efficient numerical techniques. Here, the use of a control vector parameterization approach combined with efficient and robust hybrid global optimization methods and a reduced order model methodology is proposed. The capabilities of this strategy are illustrated considering the solution of a two challenging problems: bacterial chemotaxis and the FitzHugh-Nagumo model. In the process of chemotaxis the objective was to efficiently compute the time-varying optimal concentration of chemotractant in one of the spatial boundaries in order to achieve predefined cell distribution profiles. Results are in agreement with those previously published in the literature. The FitzHugh-Nagumo problem is also efficiently solved and it illustrates very well how dynamic optimization may be used to force a system to evolve from an undesired to a desired pattern with a reduced number of actuators. The presented methodology can be used for the efficient dynamic optimization of

  12. Symmetries in vakonomic dynamics: applications to optimal control

    NASA Astrophysics Data System (ADS)

    Martínez, Sonia; Cortés, Jorge; de León, Manuel

    2001-06-01

    Symmetries in vakonomic dynamics are discussed. Appropriate notions are introduced and their relationship with previous work on symmetries of singular Lagrangian systems is shown. Some Noether-type theorems are obtained. The results are applied to a class of general optimal control problems and to kinematic locomotion systems.

  13. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part II: proofs of results.

    PubMed

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M

    2010-03-03

    In this companion article to "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content" [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption.

  14. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  15. On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Parkes, David C.

    In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.

  16. Third degree waiting time discrimination: optimal allocation of a public sector healthcare treatment under rationing by waiting.

    PubMed

    Gravelle, Hugh; Siciliani, Luigi

    2009-08-01

    In many public healthcare systems treatments are rationed by waiting time. We examine the optimal allocation of a fixed supply of a given treatment between different groups of patients. Even in the absence of any distributional aims, welfare is increased by third degree waiting time discrimination: setting different waiting times for different groups waiting for the same treatment. Because waiting time imposes dead weight losses on patients, lower waiting times should be offered to groups with higher marginal waiting time costs and with less elastic demand for the treatment.

  17. Optimization of Dynamic Aperture of PEP-X Baseline Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Min-Huey; /SLAC; Cai, Yunhai

    2010-08-23

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. Storage ring design is one of the possibilities that would be housed in the 2.2-km PEP-II tunnel. The design goal of PEPX storage ring is to approach an optimal light source design with horizontal emittance less than 100 pm and vertical emittance of 8 pm to reach the diffraction limit of 1-{angstrom} x-ray. The low emittance design requires a lattice with strong focusing leading to high natural chromaticity and therefore to strong sextupoles. Themore » latter caused reduction of dynamic aperture. The dynamic aperture requirement for horizontal injection at injection point is about 10 mm. In order to achieve the desired dynamic aperture the transverse non-linearity of PEP-X is studied. The program LEGO is used to simulate the particle motion. The technique of frequency map is used to analyze the nonlinear behavior. The effect of the non-linearity is tried to minimize at the given constrains of limited space. The details and results of dynamic aperture optimization are discussed in this paper.« less

  18. Optimized "detectors" for dynamics analysis in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Ernst, Matthias; Meier, Beat H.

    2018-01-01

    Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

  19. Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results*

    PubMed Central

    Orellana, Liliana; Rotnitzky, Andrea; Robins, James M.

    2010-01-01

    In this companion article to “Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content” [Orellana, Rotnitzky and Robins (2010), IJB, Vol. 6, Iss. 2, Art. 7] we present (i) proofs of the claims in that paper, (ii) a proposal for the computation of a confidence set for the optimal index when this lies in a finite set, and (iii) an example to aid the interpretation of the positivity assumption. PMID:20405047

  20. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    NASA Astrophysics Data System (ADS)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  1. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics.

    PubMed

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L

    2018-02-07

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  2. Dynamic optimization of chemical processes using ant colony framework.

    PubMed

    Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D

    2001-11-01

    Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.

  3. Kernel optimization for short-range molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He

    2017-02-01

    To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.

  4. An Improved Co-evolutionary Particle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment

    PubMed Central

    Wang, Xue; Wang, Sheng; Ma, Jun-Jie

    2007-01-01

    The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.

  5. Neural dynamics of motion processing and speed discrimination.

    PubMed

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  6. Optomechanical study and optimization of cantilever plate dynamics

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    Optimum dynamic characteristics of an aluminum cantilever plate containing holes of different sizes and located at arbitrary positions on the plate are studied computationally and experimentally. The objective function of this optimization is the minimization/maximization of the natural frequencies of the plate in terms of such design variable s as the sizes and locations of the holes. The optimization process is performed using the finite element method and mathematical programming techniques in order to obtain the natural frequencies and the optimum conditions of the plate, respectively. The modal behavior of the resultant optimal plate layout is studied experimentally through the use of holographic interferometry techniques. Comparisons of the computational and experimental results show that good agreement between theory and test is obtained. The comparisons also show that the combined, or hybrid use of experimental and computational techniques complement each other and prove to be a very efficient tool for performing optimization studies of mechanical components.

  7. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  8. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    PubMed

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  9. Optimization of multi-stage dynamic treatment regimes utilizing accumulated data.

    PubMed

    Huang, Xuelin; Choi, Sangbum; Wang, Lu; Thall, Peter F

    2015-11-20

    In medical therapies involving multiple stages, a physician's choice of a subject's treatment at each stage depends on the subject's history of previous treatments and outcomes. The sequence of decisions is known as a dynamic treatment regime or treatment policy. We consider dynamic treatment regimes in settings where each subject's final outcome can be defined as the sum of longitudinally observed values, each corresponding to a stage of the regime. Q-learning, which is a backward induction method, is used to first optimize the last stage treatment then sequentially optimize each previous stage treatment until the first stage treatment is optimized. During this process, model-based expectations of outcomes of late stages are used in the optimization of earlier stages. When the outcome models are misspecified, bias can accumulate from stage to stage and become severe, especially when the number of treatment stages is large. We demonstrate that a modification of standard Q-learning can help reduce the accumulated bias. We provide a computational algorithm, estimators, and closed-form variance formulas. Simulation studies show that the modified Q-learning method has a higher probability of identifying the optimal treatment regime even in settings with misspecified models for outcomes. It is applied to identify optimal treatment regimes in a study for advanced prostate cancer and to estimate and compare the final mean rewards of all the possible discrete two-stage treatment sequences. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Optimizing spread dynamics on graphs by message passing

    NASA Astrophysics Data System (ADS)

    Altarelli, F.; Braunstein, A.; Dall'Asta, L.; Zecchina, R.

    2013-09-01

    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the past decades, much effort has been devoted to understanding the typical behavior of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception being models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).

  11. Do homologous thermophilic-mesophilic proteins exhibit similar structures and dynamics at optimal growth temperatures? A molecular dynamics simulation study.

    PubMed

    Basu, Sohini; Sen, Srikanta

    2013-02-25

    Structure and dynamics both are known to be important for the activity of a protein. A fundamental question is whether a thermophilic protein and its mesophilic homologue exhibit similar dynamics at their respective optimal growth temperatures. We have addressed this question by performing molecular dynamics (MD) simulations of a natural mesophilic-thermophilic homologue pair at their respective optimal growth temperatures to compare their structural, dynamical, and solvent properties. The MD simulations were done in explicit aqueous solvent under periodic boundary and constant pressure and temperature (CPT) conditions and continued for 10.0 ns using the same protocol for the two proteins, excepting the temperatures. The trajectories were analyzed to compare the properties of the two proteins. Results indicated that the dynamical behaviors of the two proteins at the respective optimal growth temperatures were remarkably similar. For the common residues in the thermophilic protein, the rms fluctuations have a general trend to be slightly higher compared to that in the mesophilic counterpart. Lindemann parameter values indicated that only a few residues exhibited solid-like dynamics while the protein as a whole appeared as a molten globule in each case. Interestingly, the water-water interaction was found to be strikingly similar in spite of the difference in temperatures while, the protein-water interaction was significantly different in the two simulations.

  12. Neural mechanisms of coarse-to-fine discrimination in the visual cortex.

    PubMed

    Purushothaman, Gopathy; Chen, Xin; Yampolsky, Dmitry; Casagrande, Vivien A

    2014-12-01

    Vision is a dynamic process that refines the spatial scale of analysis over time, as evidenced by a progressive improvement in the ability to detect and discriminate finer details. To understand coarse-to-fine discrimination, we studied the dynamics of spatial frequency (SF) response using reverse correlation in the primary visual cortex (V1) of the primate. In a majority of V1 cells studied, preferred SF either increased monotonically with time (group 1) or changed nonmonotonically, with an initial increase followed by a decrease (group 2). Monotonic shift in preferred SF occurred with or without an early suppression at low SFs. Late suppression at high SFs always accompanied nonmonotonic SF dynamics. Bayesian analysis showed that SF discrimination performance and best discriminable SF frequencies changed with time in different ways in the two groups of neurons. In group 1 neurons, SF discrimination performance peaked on both left and right flanks of the SF tuning curve at about the same time. In group 2 neurons, peak discrimination occurred on the right flank (high SFs) later than on the left flank (low SFs). Group 2 neurons were also better discriminators of high SFs. We examined the relationship between the time at which SF discrimination performance peaked on either flank of the SF tuning curve and the corresponding best discriminable SFs in both neuronal groups. This analysis showed that the population best discriminable SF increased with time in V1. These results suggest neural mechanisms for coarse-to-fine discrimination behavior and that this process originates in V1 or earlier. Copyright © 2014 the American Physiological Society.

  13. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  14. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    NASA Astrophysics Data System (ADS)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  15. Base norms and discrimination of generalized quantum channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenčová, A.

    2014-02-15

    We introduce and study norms in the space of hermitian matrices, obtained from base norms in positively generated subspaces. These norms are closely related to discrimination of so-called generalized quantum channels, including quantum states, channels, and networks. We further introduce generalized quantum decision problems and show that the maximal average payoffs of decision procedures are again given by these norms. We also study optimality of decision procedures, in particular, we obtain a necessary and sufficient condition under which an optimal 1-tester for discrimination of quantum channels exists, such that the input state is maximally entangled.

  16. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots.

    PubMed

    Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A; Parker, John D; Zimmerman, Jess K; McShea, William J; Lopez, Ida C; Sun, I-Fang; Davies, Stuart J; Ma, Keping; Kress, W John

    2015-10-12

    To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities.

  17. Normalized distance aggregation of discriminative features for person reidentification

    NASA Astrophysics Data System (ADS)

    Hou, Li; Han, Kang; Wan, Wanggen; Hwang, Jenq-Neng; Yao, Haiyan

    2018-03-01

    We propose an effective person reidentification method based on normalized distance aggregation of discriminative features. Our framework is built on the integration of three high-performance discriminative feature extraction models, including local maximal occurrence (LOMO), feature fusion net (FFN), and a concatenation of LOMO and FFN called LOMO-FFN, through two fast and discriminant metric learning models, i.e., cross-view quadratic discriminant analysis (XQDA) and large-scale similarity learning (LSSL). More specifically, we first represent all the cross-view person images using LOMO, FFN, and LOMO-FFN, respectively, and then apply each extracted feature representation to train XQDA and LSSL, respectively, to obtain the optimized individual cross-view distance metric. Finally, the cross-view person matching is computed as the sum of the optimized individual cross-view distance metric through the min-max normalization. Experimental results have shown the effectiveness of the proposed algorithm on three challenging datasets (VIPeR, PRID450s, and CUHK01).

  18. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    NASA Astrophysics Data System (ADS)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  19. Optimized maritime emergency resource allocation under dynamic demand.

    PubMed

    Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  20. Optimized maritime emergency resource allocation under dynamic demand

    PubMed Central

    Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792

  1. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  2. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  3. Optimal Placement of Dynamic Var Sources by Using Empirical Controllability Covariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Junjian; Huang, Weihong; Sun, Kai

    In this paper, the empirical controllability covariance (ECC), which is calculated around the considered operating condition of a power system, is applied to quantify the degree of controllability of system voltages under specific dynamic var source locations. An optimal dynamic var source placement method addressing fault-induced delayed voltage recovery (FIDVR) issues is further formulated as an optimization problem that maximizes the determinant of ECC. The optimization problem is effectively solved by the NOMAD solver, which implements the mesh adaptive direct search algorithm. The proposed method is tested on an NPCC 140-bus system and the results show that the proposed methodmore » with fault specified ECC can solve the FIDVR issue caused by the most severe contingency with fewer dynamic var sources than the voltage sensitivity index (VSI)-based method. The proposed method with fault unspecified ECC does not depend on the settings of the contingency and can address more FIDVR issues than the VSI method when placing the same number of SVCs under different fault durations. It is also shown that the proposed method can help mitigate voltage collapse.« less

  4. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  5. Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.

    2009-01-01

    An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.

  6. Volatile decision dynamics: experiments, stochastic description, intermittency control and traffic optimization

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Schönhof, Martin; Kern, Daniel

    2002-06-01

    The coordinated and efficient distribution of limited resources by individual decisions is a fundamental, unsolved problem. When individuals compete for road capacities, time, space, money, goods, etc, they normally make decisions based on aggregate rather than complete information, such as TV news or stock market indices. In related experiments, we have observed a volatile decision dynamics and far-from-optimal payoff distributions. We have also identified methods of information presentation that can considerably improve the overall performance of the system. In order to determine optimal strategies of decision guidance by means of user-specific recommendations, a stochastic behavioural description is developed. These strategies manage to increase the adaptibility to changing conditions and to reduce the deviation from the time-dependent user equilibrium, thereby enhancing the average and individual payoffs. Hence, our guidance strategies can increase the performance of all users by reducing overreaction and stabilizing the decision dynamics. These results are highly significant for predicting decision behaviour, for reaching optimal behavioural distributions by decision support systems and for information service providers. One of the promising fields of application is traffic optimization.

  7. An inverse dynamics approach to trajectory optimization for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    An inverse dynamics approach for trajectory optimization is proposed. This technique can be useful in many difficult trajectory optimization and control problems. The application of the approach is exemplified by ascent trajectory optimization for an aerospace plane. Both minimum-fuel and minimax types of performance indices are considered. When rocket augmentation is available for ascent, it is shown that accurate orbital insertion can be achieved through the inverse control of the rocket in the presence of disturbances.

  8. Revising two-point discrimination assessment in normal aging and in patients with polyneuropathies.

    PubMed

    van Nes, S I; Faber, C G; Hamers, R M T P; Harschnitz, O; Bakkers, M; Hermans, M C E; Meijer, R J; van Doorn, P A; Merkies, I S J

    2008-07-01

    To revise the static and dynamic normative values for the two-point discrimination test and to examine its applicability and validity in patients with a polyneuropathy. Two-point discrimination threshold values were assessed in 427 healthy controls and 99 patients mildly affected by a polyneuropathy. The controls were divided into seven age groups ranging from 20-29, 30-39,..., up to 80 years and older; each group consisted of at least 30 men and 30 women. Two-point discrimination examination took place under standardised conditions on the index finger. Correlation studies were performed between the scores obtained and the values derived from the Weinstein Enhanced Sensory Test (WEST) and the arm grade of the Overall Disability SumScore (ODSS) in the patients' group (validity studies). Finally, the sensitivity to detect patients mildly affected by a polyneuropathy was evaluated for static and dynamic assessments. There was a significant age-dependent increase in the two-point discrimination values. No significant gender difference was found. The dynamic threshold values were lower than the static scores. The two-point discrimination values obtained correlated significantly with the arm grade of the ODSS (static values: r = 0.33, p = 0.04; dynamic values: r = 0.37, p = 0.02) and the scores of the WEST in patients (static values: r = 0.58, p = 0.0001; dynamic values: r = 0.55, p = 0.0002). The sensitivity for the static and dynamic threshold values was 28% and 33%, respectively. This study provides age-related normative two-point discrimination threshold values using a two-point discriminator (an aesthesiometer). This easily applicable instrument could be used as part of a more extensive neurological sensory evaluation.

  9. Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses

    NASA Astrophysics Data System (ADS)

    Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.

    We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.

  10. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  11. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Astrophysics Data System (ADS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2018-06-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth's J 2 perturbation and lunar gravity included for a 500 revolution transfer.

  12. TH-EF-BRB-02: Feasibility of Optimization for Dynamic Trajectory Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, MK; Frei, D; Volken, W

    2016-06-15

    Purpose: Over the last years, volumetric modulated arc therapy (VMAT) has been widely introduced into clinical routine using a coplanar delivery technique. However, VMAT might be improved by including dynamic couch and collimator rotations, leading to dynamic trajectory radiotherapy (DTRT). In this work the feasibility and the potential benefit of DTRT was investigated. Methods: A general framework for the optimization was developed using the Eclipse Scripting Research Application Programming Interface (ESRAPI). Based on contoured target and organs at risk (OARs), the structures are extracted using the ESRAPI. Sampling potential beam directions, regularly distributed on a sphere using a Fibanocci-lattice, themore » fractional volume-overlap of each OAR and the target is determined and used to establish dynamic gantry-couch movements. Then, for each gantry-couch track the most suitable collimator angle is determined for each control point by optimizing the area between the MLC leaves and the target contour. The resulting dynamic trajectories are used as input to perform the optimization using a research version of the VMAT optimization algorithm and the ESRAPI. The feasibility of this procedure was tested for a clinically motivated head and neck case. Resulting dose distributions for the VMAT plan and for the dynamic trajectory treatment plan were compared based on DVH-parameters. Results: While the DVH for the target is virtually preserved, improvements in maximum dose for the DTRT plan were achieved for all OARs except for the inner-ear, where maximum dose remains the same. The major improvements in maximum dose were 6.5% of the prescribed dose (66 Gy) for the parotid and 5.5% for the myelon and the eye. Conclusion: The result of this work suggests that DTRT has a great potential to reduce dose to OARs with similar target coverage when compared to conventional VMAT treatment plans. This work was supported by Varian Medical Systems. This work was supported by

  13. Discriminating different Z{sup '}'s via asymmetries at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Zhongqiu; Xiao Bo; Wang Youkai

    2011-05-01

    In practice the asymmetry, which is defined based on the angular distribution of the final states in scattering or decay processes, can be utilized to scrutinize underlying dynamics in and/or beyond the standard model (BSM). As one of the possible BSM physics which might be discovered early at the LHC, extra neutral gauge bosons Z{sup '}'s are theoretically well motivated. Once Z{sup '}'s are discovered at the LHC, it is crucial to discriminate different Z{sup '}'s in various BSM. In principle such a task can be accomplished by measuring the angular distribution of the final states which are produced viamore » Z{sup '}-mediated processes. In the real data analysis, asymmetry is always adopted. In the literature several asymmetries have been proposed at the LHC. Based on these works, we stepped further on to study how to optimize the asymmetries in the left-right model and the sequential standard model, as the examples of BSM. In this paper, we examined four kinds of asymmetries, namely, rapidity-dependent forward-backward asymmetry, oneside forward-backward asymmetry, central charge asymmetry, and edge charge asymmetry (see text for details), with l{sup +}l{sup -} (l=e, {mu}), bb, and tt as the final states. In the calculations with bb and tt final states, the QCD-induced higher-order contributions to the asymmetric cross section were also included. For each kind of final state, we estimated the four kinds of asymmetries and especially the optimal cut usually associated with the definition of the asymmetry. Our numerical results indicated that the capacity to discriminate Z{sup '} models can be improved by imposing the optimal cuts.« less

  14. Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features

    PubMed Central

    Song, Le; Epps, Julien

    2007-01-01

    Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning optimal filters automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal filters optimized using the proposed learning approach. PMID:18364986

  15. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous

  16. Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Li, Zhi; Starke, Michael R.

    This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintainingmore » the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.« less

  17. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    NASA Astrophysics Data System (ADS)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower

  18. A dynamic multi-level optimal design method with embedded finite-element modeling for power transformers

    NASA Astrophysics Data System (ADS)

    Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong

    2018-05-01

    This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.

  19. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  1. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Infant discrimination of faces in naturalistic events: actions are more salient than faces.

    PubMed

    Bahrick, Lorraine E; Newell, Lisa C

    2008-07-01

    Despite the fact that faces are typically seen in the context of dynamic events, there is little research on infants' perception of moving faces. L. E. Bahrick, L. J. Gogate, and I. Ruiz (2002) demonstrated that 5-month-old infants discriminate and remember repetitive actions but not the faces of the women performing the actions. The present research tested an attentional salience explanation for these findings: that dynamic faces are discriminable to infants, but more salient actions compete for attention. Results demonstrated that 5-month-old infants discriminated faces in the context of actions when they had longer familiarization time (Experiment 1) and following habituation to a single person performing 3 different activities (Experiment 2). Further, 7-month-old infants who have had more experience with social events also discriminated faces in the context of actions. Overall, however, discrimination of actions was more robust and occurred earlier in processing time than discrimination of dynamic faces. These findings support an attentional salience hypothesis and indicate that faces are not special in the context of actions in early infancy.

  3. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.

    PubMed

    Lin, Yi-Chung; Pandy, Marcus G

    2017-07-05

    The aim of this study was to perform full-body three-dimensional (3D) dynamic optimization simulations of human locomotion by driving a neuromusculoskeletal model toward in vivo measurements of body-segmental kinematics and ground reaction forces. Gait data were recorded from 5 healthy participants who walked at their preferred speeds and ran at 2m/s. Participant-specific data-tracking dynamic optimization solutions were generated for one stride cycle using direct collocation in tandem with an OpenSim-MATLAB interface. The body was represented as a 12-segment, 21-degree-of-freedom skeleton actuated by 66 muscle-tendon units. Foot-ground interaction was simulated using six contact spheres under each foot. The dynamic optimization problem was to find the set of muscle excitations needed to reproduce 3D measurements of body-segmental motions and ground reaction forces while minimizing the time integral of muscle activations squared. Direct collocation took on average 2.7±1.0h and 2.2±1.6h of CPU time, respectively, to solve the optimization problems for walking and running. Model-computed kinematics and foot-ground forces were in good agreement with corresponding experimental data while the calculated muscle excitation patterns were consistent with measured EMG activity. The results demonstrate the feasibility of implementing direct collocation on a detailed neuromusculoskeletal model with foot-ground contact to accurately and efficiently generate 3D data-tracking dynamic optimization simulations of human locomotion. The proposed method offers a viable tool for creating feasible initial guesses needed to perform predictive simulations of movement using dynamic optimization theory. The source code for implementing the model and computational algorithm may be downloaded at http://simtk.org/home/datatracking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  5. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  6. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  7. Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics

    NASA Astrophysics Data System (ADS)

    Lv, Yongfeng; Na, Jing; Yang, Qinmin; Wu, Xing; Guo, Yu

    2016-01-01

    An online adaptive optimal control is proposed for continuous-time nonlinear systems with completely unknown dynamics, which is achieved by developing a novel identifier-critic-based approximate dynamic programming algorithm with a dual neural network (NN) approximation structure. First, an adaptive NN identifier is designed to obviate the requirement of complete knowledge of system dynamics, and a critic NN is employed to approximate the optimal value function. Then, the optimal control law is computed based on the information from the identifier NN and the critic NN, so that the actor NN is not needed. In particular, a novel adaptive law design method with the parameter estimation error is proposed to online update the weights of both identifier NN and critic NN simultaneously, which converge to small neighbourhoods around their ideal values. The closed-loop system stability and the convergence to small vicinity around the optimal solution are all proved by means of the Lyapunov theory. The proposed adaptation algorithm is also improved to achieve finite-time convergence of the NN weights. Finally, simulation results are provided to exemplify the efficacy of the proposed methods.

  8. Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand

    NASA Astrophysics Data System (ADS)

    Lu, Lihao; Zhang, Jianxiong; Tang, Wansheng

    2016-04-01

    An inventory system for perishable items with limited replenishment capacity is introduced in this paper. The demand rate depends on the stock quantity displayed in the store as well as the sales price. With the goal to realise profit maximisation, an optimisation problem is addressed to seek for the optimal joint dynamic pricing and replenishment policy which is obtained by solving the optimisation problem with Pontryagin's maximum principle. A joint mixed policy, in which the sales price is a static decision variable and the replenishment rate remains to be a dynamic decision variable, is presented to compare with the joint dynamic policy. Numerical results demonstrate the advantages of the joint dynamic one, and further show the effects of different system parameters on the optimal joint dynamic policy and the maximal total profit.

  9. Nonlinear dynamics optimization with particle swarm and genetic algorithms for SPEAR3 emittance upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2014-09-01

    Nonlinear dynamics optimization is carried out for a low emittance upgrade lattice of SPEAR3 in order to improve its dynamic aperture and Touschek lifetime. Two multi-objective optimization algorithms, a genetic algorithm and a particle swarm algorithm, are used for this study. The performance of the two algorithms are compared. The result shows that the particle swarm algorithm converges significantly faster to similar or better solutions than the genetic algorithm and it does not require seeding of good solutions in the initial population. These advantages of the particle swarm algorithm may make it more suitable for many accelerator optimization applications.

  10. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  11. Optimally combining dynamical decoupling and quantum error correction.

    PubMed

    Paz-Silva, Gerardo A; Lidar, D A

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization.

  12. Optimally combining dynamical decoupling and quantum error correction

    PubMed Central

    Paz-Silva, Gerardo A.; Lidar, D. A.

    2013-01-01

    Quantum control and fault-tolerant quantum computing (FTQC) are two of the cornerstones on which the hope of realizing a large-scale quantum computer is pinned, yet only preliminary steps have been taken towards formalizing the interplay between them. Here we explore this interplay using the powerful strategy of dynamical decoupling (DD), and show how it can be seamlessly and optimally integrated with FTQC. To this end we show how to find the optimal decoupling generator set (DGS) for various subspaces relevant to FTQC, and how to simultaneously decouple them. We focus on stabilizer codes, which represent the largest contribution to the size of the DGS, showing that the intuitive choice comprising the stabilizers and logical operators of the code is in fact optimal, i.e., minimizes a natural cost function associated with the length of DD sequences. Our work brings hybrid DD-FTQC schemes, and their potentially considerable advantages, closer to realization. PMID:23559088

  13. Dynamic detection-rate-based bit allocation with genuine interval concealment for binary biometric representation.

    PubMed

    Lim, Meng-Hui; Teoh, Andrew Beng Jin; Toh, Kar-Ann

    2013-06-01

    Biometric discretization is a key component in biometric cryptographic key generation. It converts an extracted biometric feature vector into a binary string via typical steps such as segmentation of each feature element into a number of labeled intervals, mapping of each interval-captured feature element onto a binary space, and concatenation of the resulted binary output of all feature elements into a binary string. Currently, the detection rate optimized bit allocation (DROBA) scheme is one of the most effective biometric discretization schemes in terms of its capability to assign binary bits dynamically to user-specific features with respect to their discriminability. However, we learn that DROBA suffers from potential discriminative feature misdetection and underdiscretization in its bit allocation process. This paper highlights such drawbacks and improves upon DROBA based on a novel two-stage algorithm: 1) a dynamic search method to efficiently recapture such misdetected features and to optimize the bit allocation of underdiscretized features and 2) a genuine interval concealment technique to alleviate crucial information leakage resulted from the dynamic search. Improvements in classification accuracy on two popular face data sets vindicate the feasibility of our approach compared with DROBA.

  14. Multicopy programmable discrimination of general qubit states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sentis, G.; Bagan, E.; Calsamiglia, J.

    2010-10-15

    Quantum state discrimination is a fundamental primitive in quantum statistics where one has to correctly identify the state of a system that is in one of two possible known states. A programmable discrimination machine performs this task when the pair of possible states is not a priori known but instead the two possible states are provided through two respective program ports. We study optimal programmable discrimination machines for general qubit states when several copies of states are available in the data or program ports. Two scenarios are considered: One in which the purity of the possible states is a priorimore » known, and the fully universal one where the machine operates over generic mixed states of unknown purity. We find analytical results for both the unambiguous and minimum error discrimination strategies. This allows us to calculate the asymptotic performance of programmable discrimination machines when a large number of copies are provided and to recover the standard state discrimination and state comparison values as different limiting cases.« less

  15. REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Taylor, S R; Matzel, E

    2006-07-07

    We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near

  16. EXTRACTING PRINCIPLE COMPONENTS FOR DISCRIMINANT ANALYSIS OF FMRI IMAGES.

    PubMed

    Liu, Jingyu; Xu, Lai; Caprihan, Arvind; Calhoun, Vince D

    2008-05-12

    This paper presents an approach for selecting optimal components for discriminant analysis. Such an approach is useful when further detailed analyses for discrimination or characterization requires dimensionality reduction. Our approach can accommodate a categorical variable such as diagnosis (e.g. schizophrenic patient or healthy control), or a continuous variable like severity of the disorder. This information is utilized as a reference for measuring a component's discriminant power after principle component decomposition. After sorting each component according to its discriminant power, we extract the best components for discriminant analysis. An application of our reference selection approach is shown using a functional magnetic resonance imaging data set in which the sample size is much less than the dimensionality. The results show that the reference selection approach provides an improved discriminant component set as compared to other approaches. Our approach is general and provides a solid foundation for further discrimination and classification studies.

  17. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  18. Fluid-dynamic design optimization of hydraulic proportional directional valves

    NASA Astrophysics Data System (ADS)

    Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo

    2014-10-01

    This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.

  19. Improved pulse shape discriminator for fast neutron-gamma ray detection system

    NASA Technical Reports Server (NTRS)

    Lockwood, J. A.; St. Onge, R.

    1969-01-01

    Discriminator in nuclear particle detection system distinguishes nuclear particle type and energy among many different nuclear particles. Discriminator incorporates passive, linear circuit elements so that it will operate over a wide dynamic range.

  20. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  1. Dynamic Grover search: applications in recommendation systems and optimization problems

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Indranil; Khan, Shahzor; Singh, Vanshdeep

    2017-06-01

    In the recent years, we have seen that Grover search algorithm (Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996) by using quantum parallelism has revolutionized the field of solving huge class of NP problems in comparisons to classical systems. In this work, we explore the idea of extending Grover search algorithm to approximate algorithms. Here we try to analyze the applicability of Grover search to process an unstructured database with a dynamic selection function in contrast to the static selection function used in the original work (Grover in Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996). We show that this alteration facilitates us to extend the application of Grover search to the field of randomized search algorithms. Further, we use the dynamic Grover search algorithm to define the goals for a recommendation system based on which we propose a recommendation algorithm which uses binomial similarity distribution space giving us a quadratic speedup over traditional classical unstructured recommendation systems. Finally, we see how dynamic Grover search can be used to tackle a wide range of optimization problems where we improve complexity over existing optimization algorithms.

  2. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  3. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    NASA Astrophysics Data System (ADS)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  4. Exposure Time Optimization for Highly Dynamic Star Trackers

    PubMed Central

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-01-01

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers. PMID:24618776

  5. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    NASA Astrophysics Data System (ADS)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  6. Multiple-copy state discrimination: Thinking globally, acting locally

    NASA Astrophysics Data System (ADS)

    Higgins, B. L.; Doherty, A. C.; Bartlett, S. D.; Pryde, G. J.; Wiseman, H. M.

    2011-05-01

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N→∞. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements, and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.

  7. Multiple-copy state discrimination: Thinking globally, acting locally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, B. L.; Pryde, G. J.; Wiseman, H. M.

    2011-05-15

    We theoretically investigate schemes to discriminate between two nonorthogonal quantum states given multiple copies. We consider a number of state discrimination schemes as applied to nonorthogonal, mixed states of a qubit. In particular, we examine the difference that local and global optimization of local measurements makes to the probability of obtaining an erroneous result, in the regime of finite numbers of copies N, and in the asymptotic limit as N{yields}{infinity}. Five schemes are considered: optimal collective measurements over all copies, locally optimal local measurements in a fixed single-qubit measurement basis, globally optimal fixed local measurements, locally optimal adaptive local measurements,more » and globally optimal adaptive local measurements. Here an adaptive measurement is one in which the measurement basis can depend on prior measurement results. For each of these measurement schemes we determine the probability of error (for finite N) and the scaling of this error in the asymptotic limit. In the asymptotic limit, it is known analytically (and we verify numerically) that adaptive schemes have no advantage over the optimal fixed local scheme. Here we show moreover that, in this limit, the most naive scheme (locally optimal fixed local measurements) is as good as any noncollective scheme except for states with less than 2% mixture. For finite N, however, the most sophisticated local scheme (globally optimal adaptive local measurements) is better than any other noncollective scheme for any degree of mixture.« less

  8. Dynamic programming for optimization of timber production and grazing in ponderosa pine

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie; David W. Hann

    1982-01-01

    Dynamic programming procedures are presented for optimizing thinning and rotation of even-aged ponderosa pine by using the four descriptors: age, basal area, number of trees, and time since thinning. Because both timber yield and grazing yield are functions of stand density, the two outputs-forage and timber-can both be optimized. The soil expectation values for single...

  9. Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty.

    PubMed

    Mdluli, Thembi; Buzzard, Gregery T; Rundell, Ann E

    2015-09-01

    This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm's scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements.

  10. Efficient Optimization of Stimuli for Model-Based Design of Experiments to Resolve Dynamical Uncertainty

    PubMed Central

    Mdluli, Thembi; Buzzard, Gregery T.; Rundell, Ann E.

    2015-01-01

    This model-based design of experiments (MBDOE) method determines the input magnitudes of an experimental stimuli to apply and the associated measurements that should be taken to optimally constrain the uncertain dynamics of a biological system under study. The ideal global solution for this experiment design problem is generally computationally intractable because of parametric uncertainties in the mathematical model of the biological system. Others have addressed this issue by limiting the solution to a local estimate of the model parameters. Here we present an approach that is independent of the local parameter constraint. This approach is made computationally efficient and tractable by the use of: (1) sparse grid interpolation that approximates the biological system dynamics, (2) representative parameters that uniformly represent the data-consistent dynamical space, and (3) probability weights of the represented experimentally distinguishable dynamics. Our approach identifies data-consistent representative parameters using sparse grid interpolants, constructs the optimal input sequence from a greedy search, and defines the associated optimal measurements using a scenario tree. We explore the optimality of this MBDOE algorithm using a 3-dimensional Hes1 model and a 19-dimensional T-cell receptor model. The 19-dimensional T-cell model also demonstrates the MBDOE algorithm’s scalability to higher dimensions. In both cases, the dynamical uncertainty region that bounds the trajectories of the target system states were reduced by as much as 86% and 99% respectively after completing the designed experiments in silico. Our results suggest that for resolving dynamical uncertainty, the ability to design an input sequence paired with its associated measurements is particularly important when limited by the number of measurements. PMID:26379275

  11. EXTRACTING PRINCIPLE COMPONENTS FOR DISCRIMINANT ANALYSIS OF FMRI IMAGES

    PubMed Central

    Liu, Jingyu; Xu, Lai; Caprihan, Arvind; Calhoun, Vince D.

    2009-01-01

    This paper presents an approach for selecting optimal components for discriminant analysis. Such an approach is useful when further detailed analyses for discrimination or characterization requires dimensionality reduction. Our approach can accommodate a categorical variable such as diagnosis (e.g. schizophrenic patient or healthy control), or a continuous variable like severity of the disorder. This information is utilized as a reference for measuring a component’s discriminant power after principle component decomposition. After sorting each component according to its discriminant power, we extract the best components for discriminant analysis. An application of our reference selection approach is shown using a functional magnetic resonance imaging data set in which the sample size is much less than the dimensionality. The results show that the reference selection approach provides an improved discriminant component set as compared to other approaches. Our approach is general and provides a solid foundation for further discrimination and classification studies. PMID:20582334

  12. Global optimization for quantum dynamics of few-fermion systems

    NASA Astrophysics Data System (ADS)

    Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.

    2018-03-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.

  13. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  14. Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.

    PubMed

    Wang, Haizhou; Song, Mingzhou

    2011-12-01

    The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.

  15. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Shuang, Feng; Rabitz, Herschel

    2004-11-01

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  16. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.

    PubMed

    Shuang, Feng; Rabitz, Herschel

    2004-11-15

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  17. Discrimination of correlated and entangling quantum channels with selective process tomography

    DOE PAGES

    Dumitrescu, Eugene; Humble, Travis S.

    2016-10-10

    The accurate and reliable characterization of quantum dynamical processes underlies efforts to validate quantum technologies, where discrimination between competing models of observed behaviors inform efforts to fabricate and operate qubit devices. We present a protocol for quantum channel discrimination that leverages advances in direct characterization of quantum dynamics (DCQD) codes. We demonstrate that DCQD codes enable selective process tomography to improve discrimination between entangling and correlated quantum dynamics. Numerical simulations show selective process tomography requires only a few measurement configurations to achieve a low false alarm rate and that the DCQD encoding improves the resilience of the protocol to hiddenmore » sources of noise. Lastly, our results show that selective process tomography with DCQD codes is useful for efficiently distinguishing sources of correlated crosstalk from uncorrelated noise in current and future experimental platforms.« less

  18. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments

    PubMed Central

    De Paris, Renata; Quevedo, Christian V.; Ruiz, Duncan D.; Norberto de Souza, Osmar; Barros, Rodrigo C.

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand. PMID:25873944

  19. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  20. Optimal resource states for local state discrimination

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael

    2018-02-01

    We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.

  1. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  2. Dynamic analysis and optimal control for a model of hepatitis C with treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Suxia; Xu, Xiaxia

    2017-05-01

    A model for hepatitis C is formulated to study the effects of treatment and public concern on HCV transmission dynamics. The stability of equilibria and persistence of the model are analyzed, and an optimal control measure is performed to prevent the spread of HCV with minimal infected individuals and cost. The dynamical analysis reveals that the disease-free equilibrium of the model is asymptotically stable if the basic reproductive number R0 is less than unity. On the other hand, if R0 > 1 , the disease is uniformly persistent. Numerical simulations are conducted to investigate the influence of different vital parameters on R0. For the corresponding optimality system, the optimal solution is discussed by Pontryagin Maximum Principle, and the comparisons of model-predicted consequences with control or not are presented.

  3. Review: Optimization methods for groundwater modeling and management

    NASA Astrophysics Data System (ADS)

    Yeh, William W.-G.

    2015-09-01

    Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.

  4. The Effects of General Social Support and Social Support for Racial Discrimination on African American Women’s Well-Being

    PubMed Central

    Seawell, Asani H.; Cutrona, Carolyn E.; Russell, Daniel W.

    2012-01-01

    The present longitudinal study examined the role of general and tailored social support in mitigating the deleterious impact of racial discrimination on depressive symptoms and optimism in a large sample of African American women. Participants were 590 African American women who completed measures assessing racial discrimination, general social support, tailored social support for racial discrimination, depressive symptoms, and optimism at two time points (2001–2002 and 2003–2004). Our results indicated that higher levels of general and tailored social support predicted optimism one year later; changes in both types of support also predicted changes in optimism over time. Although initial levels of neither measure of social support predicted depressive symptoms over time, changes in tailored support predicted changes in depressive symptoms. We also sought to determine whether general and tailored social support “buffer” or diminish the negative effects of racial discrimination on depressive symptoms and optimism. Our results revealed a classic buffering effect of tailored social support, but not general support on depressive symptoms for women experiencing high levels of discrimination. PMID:24443614

  5. Multistate and multihypothesis discrimination with open quantum systems

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2018-05-01

    We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.

  6. Influence of musical and psychoacoustical training on pitch discrimination.

    PubMed

    Micheyl, Christophe; Delhommeau, Karine; Perrot, Xavier; Oxenham, Andrew J

    2006-09-01

    This study compared the influence of musical and psychoacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance.

  7. Optimal digital dynamical decoupling for general decoherence via Walsh modulation

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Dowling, Jonathan P.; Viola, Lorenza

    2017-11-01

    We provide a general framework for constructing digital dynamical decoupling sequences based on Walsh modulation—applicable to arbitrary qubit decoherence scenarios. By establishing equivalence between decoupling design based on Walsh functions and on concatenated projections, we identify a family of optimal Walsh sequences, which can be exponentially more efficient, in terms of the required total pulse number, for fixed cancellation order, than known digital sequences based on concatenated design. Optimal sequences for a given cancellation order are highly non-unique—their performance depending sensitively on the control path. We provide an analytic upper bound to the achievable decoupling error and show how sequences within the optimal Walsh family can substantially outperform concatenated decoupling in principle, while respecting realistic timing constraints.

  8. Robust linear discriminant analysis with distance based estimators

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  9. New numerical methods for open-loop and feedback solutions to dynamic optimization problems

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradipto

    The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development

  10. Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1991-01-01

    Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.

  11. Feature extraction with deep neural networks by a generalized discriminant analysis.

    PubMed

    Stuhlsatz, André; Lippel, Jens; Zielke, Thomas

    2012-04-01

    We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.

  12. Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Eleshaky, Mohamed E.

    1991-01-01

    A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown that the method is more efficient than the traditional methods.

  13. Synthesis of plastic scintillation microspheres: alpha/beta discrimination.

    PubMed

    Santiago, L M; Bagán, H; Tarancón, A; Garcia, J F

    2014-11-01

    Plastic scintillation microspheres (PSm) have been developed as an alternative for liquid scintillation cocktails due to their ability to avoid the mixed waste, besides other strengths in which the possibility for alpha/beta discrimination is included. The aim of this work was to evaluate the capability of PSm containing two combinations of fluorescence solutes (PPO/POPOP and pT/Bis-MSB) and variable amounts of a second organic solvent (naphthalene) to enhance the alpha/beta discrimination. Two commercial detectors with different Pulse Shape Discrimination performances (Quantulus and Triathler) were used to evaluate the alpha/beta discrimination. An optimal discrimination of alpha/beta particles was reached, with very low misclassification values (2% for beta particles and 0.5% for alpha particles), when PSm containing PPO/POPOP and between 0.6 and 2.0 g of naphthalene were evaluated using Triathler and the appropriate programme for data processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach

    PubMed Central

    Xu, Haitao; Guo, Chao; Zhang, Long

    2017-01-01

    In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945

  15. A discrimination index for selecting markers of tumor growth dynamic across multiple cancer studies with a cure fraction.

    PubMed

    Rouam, Sigrid; Broët, Philippe

    2013-08-01

    To identify genomic markers with consistent effect on tumor dynamics across multiple cancer series, discrimination indices based on proportional hazards models can be used since they do not depend heavily on the sample size. However, the underlying assumption of proportionality of the hazards does not always hold, especially when the studied population is a mixture of cured and uncured patients, like in early-stage cancers. We propose a novel index that quantifies the capability of a genomic marker to separate uncured patients, according to their time-to-event outcomes. It allows to identify genomic markers characterizing tumor growth dynamic across multiple studies. Simulation results show that our index performs better than classical indices based on the Cox model. It is neither affected by the sample size nor the cure rate fraction. In a cross-study of early-stage breast cancers, the index allows to select genomic markers with a potential consistent effect on tumor growth dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Turkington, Bruce

    2013-08-01

    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.

  17. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  18. Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making

    PubMed Central

    Niyogi, Ritwik K.; Wong-Lin, KongFatt

    2013-01-01

    Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted

  19. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

  20. Optimal forwarding ratio on dynamical networks with heterogeneous mobility

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Tang, Ming; Yang, Hanxin

    2013-05-01

    Since the discovery of non-Poisson statistics of human mobility trajectories, more attention has been paid to understand the role of these patterns in different dynamics. In this study, we first introduce the heterogeneous mobility of mobile agents into dynamical networks, and then investigate packet forwarding strategy on the heterogeneous dynamical networks. We find that the faster speed and the higher proportion of high-speed agents can enhance the network throughput and reduce the mean traveling time in random forwarding. A hierarchical structure in the dependence of high-speed is observed: the network throughput remains unchanged at small and large high-speed value. It is also interesting to find that a slightly preferential forwarding to high-speed agents can maximize the network capacity. Through theoretical analysis and numerical simulations, we show that the optimal forwarding ratio stems from the local structural heterogeneity of low-speed agents.

  1. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  2. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  3. Optimal diabatic dynamics of Majorana-based quantum gates

    NASA Astrophysics Data System (ADS)

    Rahmani, Armin; Seradjeh, Babak; Franz, Marcel

    2017-08-01

    In topological quantum computing, unitary operations on qubits are performed by adiabatic braiding of non-Abelian quasiparticles, such as Majorana zero modes, and are protected from local environmental perturbations. In the adiabatic regime, with timescales set by the inverse gap of the system, the errors can be made arbitrarily small by performing the process more slowly. To enhance the performance of quantum information processing with Majorana zero modes, we apply the theory of optimal control to the diabatic dynamics of Majorana-based qubits. While we sacrifice complete topological protection, we impose constraints on the optimal protocol to take advantage of the nonlocal nature of topological information and increase the robustness of our gates. By using the Pontryagin's maximum principle, we show that robust equivalent gates to perfect adiabatic braiding can be implemented in finite times through optimal pulses. In our implementation, modifications to the device Hamiltonian are avoided. Focusing on thermally isolated systems, we study the effects of calibration errors and external white and 1 /f (pink) noise on Majorana-based gates. While a noise-induced antiadiabatic behavior, where a slower process creates more diabatic excitations, prohibits indefinite enhancement of the robustness of the adiabatic scheme, our fast optimal protocols exhibit remarkable stability to noise and have the potential to significantly enhance the practical performance of Majorana-based information processing.

  4. Distributed Optimal Consensus Over Resource Allocation Network and Its Application to Dynamical Economic Dispatch.

    PubMed

    Li, Chaojie; Yu, Xinghuo; Huang, Tingwen; He, Xing; Chaojie Li; Xinghuo Yu; Tingwen Huang; Xing He; Li, Chaojie; Huang, Tingwen; He, Xing; Yu, Xinghuo

    2018-06-01

    The resource allocation problem is studied and reformulated by a distributed interior point method via a -logarithmic barrier. By the facilitation of the graph Laplacian, a fully distributed continuous-time multiagent system is developed for solving the problem. Specifically, to avoid high singularity of the -logarithmic barrier at boundary, an adaptive parameter switching strategy is introduced into this dynamical multiagent system. The convergence rate of the distributed algorithm is obtained. Moreover, a novel distributed primal-dual dynamical multiagent system is designed in a smart grid scenario to seek the saddle point of dynamical economic dispatch, which coincides with the optimal solution. The dual decomposition technique is applied to transform the optimization problem into easily solvable resource allocation subproblems with local inequality constraints. The good performance of the new dynamical systems is, respectively, verified by a numerical example and the IEEE six-bus test system-based simulations.

  5. Entanglement in channel discrimination with restricted measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, William; Piani, Marco; Watrous, John

    2010-09-15

    We study the power of measurements implementable with local quantum operations and classical communication (LOCC) measurements in the setting of quantum channel discrimination. More precisely, we consider discrimination procedures that attempt to identify an unknown channel, chosen uniformly from two known alternatives, that take the following form: (i) the input to the unknown channel is prepared in a possibly entangled state with an ancillary system, (ii) the unknown channel is applied to the input system, and (iii) an LOCC measurement is performed on the output and ancillary systems, resulting in a guess for which of the two channels was given.more » The restriction of the measurement in such a procedure to be an LOCC measurement is of interest because it isolates the entanglement in the initial input-ancillary systems as a resource in the setting of channel discrimination. We prove that there exist channel discrimination problems for which restricted procedures of this sort can be at either of the two extremes: they may be optimal within the set of all discrimination procedures (and simultaneously outperform all strategies that make no use of entanglement), or they may be no better than unentangled strategies (and simultaneously suboptimal within the set of all discrimination procedures).« less

  6. Reduced-order model for dynamic optimization of pressure swing adsorption processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, A.; Biegler, L.; Zitney, S.

    2007-01-01

    Over the past decades, pressure swing adsorption (PSA) processes have been widely used as energy-efficient gas and liquid separation techniques, especially for high purity hydrogen purification from refinery gases. The separation processes are based on solid-gas equilibrium and operate under periodic transient conditions. Models for PSA processes are therefore multiple instances of partial differential equations (PDEs) in time and space with periodic boundary conditions that link the processing steps together. The solution of this coupled stiff PDE system is governed by steep concentrations and temperature fronts moving with time. As a result, the optimization of such systems for either designmore » or operation represents a significant computational challenge to current differential algebraic equation (DAE) optimization techniques and nonlinear programming algorithms. Model reduction is one approach to generate cost-efficient low-order models which can be used as surrogate models in the optimization problems. The study develops a reduced-order model (ROM) based on proper orthogonal decomposition (POD), which is a low-dimensional approximation to a dynamic PDE-based model. Initially, a representative ensemble of solutions of the dynamic PDE system is constructed by solving a higher-order discretization of the model using the method of lines, a two-stage approach that discretizes the PDEs in space and then integrates the resulting DAEs over time. Next, the ROM method applies the Karhunen-Loeve expansion to derive a small set of empirical eigenfunctions (POD modes) which are used as basis functions within a Galerkin's projection framework to derive a low-order DAE system that accurately describes the dominant dynamics of the PDE system. The proposed method leads to a DAE system of significantly lower order, thus replacing the one obtained from spatial discretization before and making optimization problem computationally-efficient. The method has been applied to the

  7. Optimal Control Method of Robot End Position and Orientation Based on Dynamic Tracking Measurement

    NASA Astrophysics Data System (ADS)

    Liu, Dalong; Xu, Lijuan

    2018-01-01

    In order to improve the accuracy of robot pose positioning and control, this paper proposed a dynamic tracking measurement robot pose optimization control method based on the actual measurement of D-H parameters of the robot, the parameters is taken with feedback compensation of the robot, according to the geometrical parameters obtained by robot pose tracking measurement, improved multi sensor information fusion the extended Kalan filter method, with continuous self-optimal regression, using the geometric relationship between joint axes for kinematic parameters in the model, link model parameters obtained can timely feedback to the robot, the implementation of parameter correction and compensation, finally we can get the optimal attitude angle, realize the robot pose optimization control experiments were performed. 6R dynamic tracking control of robot joint robot with independent research and development is taken as experimental subject, the simulation results show that the control method improves robot positioning accuracy, and it has the advantages of versatility, simplicity, ease of operation and so on.

  8. Berkeley UXO Discriminator (BUD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve.more » Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.« less

  9. Perceived Discrimination and Heavy Episodic Drinking among African American Youth: Differences by Age and Reason for Discrimination

    PubMed Central

    Jackson, Kristina; Wang, Heng; Miles, Thomas T.; Mather, Frances; Shankar, Arti

    2015-01-01

    Purpose To examine whether associations between perceived discrimination and heavy episodic drinking (HED) varies by age and by discrimination type (e.g., racial, age, physical appearance) among African American youth. Methods National data from the Panel Study of Income Dynamics Transition to Adulthood Study were analyzed. Youth participated in up to four interviews (2005, 2007, 2009, 2011; n=657) between ages 18–25. Respondents reported past-year engagement in HED (4 or more drinks for females, 5 or more drinks for males), and frequency of discriminatory acts experienced (e.g., receiving poor service, being treated with less courtesy). Categorical latent growth curve models, including perceived discrimination types (racial, age, and physical appearance) as a time-varying predictors of HED, were run in MPlus. Controls for gender, birth cohort, living arrangement in adolescence, familial wealth, parental alcohol use, and college attendance were explored. Results The average HED trajectory was curvilinear (increasing followed by flattening), while perceived discrimination remained flat with age. In models including controls, odds of HED were significantly higher than average around ages 20–21 with greater frequency of perceived racial discrimination; associations were not significant at other ages. Discrimination attributed to age or physical appearance was not associated with HED at any age. Conclusions Perceived racial discrimination may be a particularly salient risk factor for HED around the ages of transition to legal access to alcohol among African American youth. Interventions to reduce discrimination or its impact could be targeted before this transition to ameliorate the negative outcomes associated with HED. PMID:26499858

  10. How discriminating are discriminative instruments?

    PubMed

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  11. Fast optimization of binary clusters using a novel dynamic lattice searching method.

    PubMed

    Wu, Xia; Cheng, Wen

    2014-09-28

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.

  12. Label consistent K-SVD: learning a discriminative dictionary for recognition.

    PubMed

    Jiang, Zhuolin; Lin, Zhe; Davis, Larry S

    2013-11-01

    A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency constraint called "discriminative sparse-code error" and combine it with the reconstruction error and the classification error to form a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single overcomplete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes. Experimental results demonstrate that our algorithm outperforms many recently proposed sparse-coding techniques for face, action, scene, and object category recognition under the same learning conditions.

  13. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators.

    PubMed

    Min, Byung Eun; Hwang, Hyun Gyu; Lim, Hyun Gyu; Jung, Gyoo Yeol

    2017-01-01

    Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.

  14. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    NASA Astrophysics Data System (ADS)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; Rainer, Robert

    2018-05-01

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given "elite" status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitness of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.

  15. Gaussian Discriminant Analysis for Optimal Delineation of Mild Cognitive Impairment in Alzheimer's Disease.

    PubMed

    Fang, Chen; Li, Chunfei; Cabrerizo, Mercedes; Barreto, Armando; Andrian, Jean; Rishe, Naphtali; Loewenstein, David; Duara, Ranjan; Adjouadi, Malek

    2018-04-12

    Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer's disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.

  16. Dynamic regime of coherent population trapping and optimization of frequency modulation parameters in atomic clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Basalaev, M Yu; Kovalenko, D V

    2017-02-06

    We theoretically investigate the dynamic regime of coherent population trapping (CPT) in the presence of frequency modulation (FM). We have formulated the criteria for quasi-stationary (adiabatic) and dynamic (non-adiabatic) responses of atomic system driven by this FM. Using the density matrix formalism for Λ system, the error signal is exactly calculated and optimized. It is shown that the optimal FM parameters correspond to the dynamic regime of atomic-field interaction, which significantly differs from conventional description of CPT resonances in the frame of quasi-stationary approach (under small modulation frequency). Obtained theoretical results are in good qualitative agreement with different experiments. Also we have found CPT-analogue of Pound-Driver-Hall regime of frequency stabilization.

  17. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  18. Dynamics of hepatitis C under optimal therapy and sampling based analysis

    NASA Astrophysics Data System (ADS)

    Pachpute, Gaurav; Chakrabarty, Siddhartha P.

    2013-08-01

    We examine two models for hepatitis C viral (HCV) dynamics, one for monotherapy with interferon (IFN) and the other for combination therapy with IFN and ribavirin. Optimal therapy for both the models is determined using the steepest gradient method, by defining an objective functional which minimizes infected hepatocyte levels, virion population and side-effects of the drug(s). The optimal therapies for both the models show an initial period of high efficacy, followed by a gradual decline. The period of high efficacy coincides with a significant decrease in the viral load, whereas the efficacy drops after hepatocyte levels are restored. We use the Latin hypercube sampling technique to randomly generate a large number of patient scenarios and study the dynamics of each set under the optimal therapy already determined. Results show an increase in the percentage of responders (indicated by drop in viral load below detection levels) in case of combination therapy (72%) as compared to monotherapy (57%). Statistical tests performed to study correlations between sample parameters and time required for the viral load to fall below detection level, show a strong monotonic correlation with the death rate of infected hepatocytes, identifying it to be an important factor in deciding individual drug regimens.

  19. Flow cells for bioanalytical and bioprocess applications with optimized dynamic response and flow characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, V.R.; Modlin, D.N.

    1994-12-31

    In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less

  20. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.

    PubMed

    Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo

    2011-10-11

    We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and

  1. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    PubMed Central

    2011-01-01

    Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These

  2. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  3. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Parker, Jeffrey S.; Scheeres, Daniel J.; Englander, Jacob A.

    2017-01-01

    Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to the eccentric anomaly and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are shown in excess of 1000 revolutions while subject to Earths J2 perturbation and lunar gravity.

  4. Bilevel Model-Based Discriminative Dictionary Learning for Recognition.

    PubMed

    Zhou, Pan; Zhang, Chao; Lin, Zhouchen

    2017-03-01

    Most supervised dictionary learning methods optimize the combinations of reconstruction error, sparsity prior, and discriminative terms. Thus, the learnt dictionaries may not be optimal for recognition tasks. Also, the sparse codes learning models in the training and the testing phases are inconsistent. Besides, without utilizing the intrinsic data structure, many dictionary learning methods only employ the l 0 or l 1 norm to encode each datum independently, limiting the performance of the learnt dictionaries. We present a novel bilevel model-based discriminative dictionary learning method for recognition tasks. The upper level directly minimizes the classification error, while the lower level uses the sparsity term and the Laplacian term to characterize the intrinsic data structure. The lower level is subordinate to the upper level. Therefore, our model achieves an overall optimality for recognition in that the learnt dictionary is directly tailored for recognition. Moreover, the sparse codes learning models in the training and the testing phases can be the same. We further propose a novel method to solve our bilevel optimization problem. It first replaces the lower level with its Karush-Kuhn-Tucker conditions and then applies the alternating direction method of multipliers to solve the equivalent problem. Extensive experiments demonstrate the effectiveness and robustness of our method.

  5. Discriminating two nonorthogonal states against a noise channel by feed-forward control

    NASA Astrophysics Data System (ADS)

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Wang, Chao-Quan; Li, Hai; Li, Jun-Gang; Shao, Bin

    2015-02-01

    We propose a scheme by using the feed-forward control (FFC) to realize a better effect of discrimination of two nonorthogonal states after passing a noise channel based on the minimum-error (ME) discrimination. We show that the application of our scheme can highly improve the effect of discrimination compared with the ME discrimination without the FFC for any pair of nonorthogonal states and any degree of amplitude damping. Especially, the effect of our optimal discrimination can reach that of the two initial nonorthogonal pure states in the presence of the noise channel in a deterministic way for equal a priori probabilities or even be better than that in a probabilistic way for unequal a priori probabilities.

  6. Can market-based policies accomplish the optimal floodplain management? A gap between static and dynamic models.

    PubMed

    Mori, Koichiro

    2009-02-01

    The purpose of this short article is to set static and dynamic models for optimal floodplain management and to compare policy implications from the models. River floodplains are important multiple resources in that they provide various ecosystem services. It is fundamentally significant to consider environmental externalities that accrue from ecosystem services of natural floodplains. There is an interesting gap between static and dynamic models about policy implications for floodplain management, although they are based on the same assumptions. Essentially, we can derive the same optimal conditions, which imply that the marginal benefits must equal the sum of the marginal costs and the social external costs related to ecosystem services. Thus, we have to internalise the external costs by market-based policies. In this respect, market-based policies seem to be effective in a static model. However, they are not sufficient in the context of a dynamic model because the optimal steady state turns out to be unstable. Based on a dynamic model, we need more coercive regulation policies.

  7. Dynamic optimization approach for integrated supplier selection and tracking control of single product inventory system with product discount

    NASA Astrophysics Data System (ADS)

    Sutrisno; Widowati; Heru Tjahjana, R.

    2017-01-01

    In this paper, we propose a mathematical model in the form of dynamic/multi-stage optimization to solve an integrated supplier selection problem and tracking control problem of single product inventory system with product discount. The product discount will be stated as a piece-wise linear function. We use dynamic programming to solve this proposed optimization to determine the optimal supplier and the optimal product volume that will be purchased from the optimal supplier for each time period so that the inventory level tracks a reference trajectory given by decision maker with minimal total cost. We give a numerical experiment to evaluate the proposed model. From the result, the optimal supplier was determined for each time period and the inventory level follows the given reference well.

  8. Perceived Discrimination and Heavy Episodic Drinking Among African-American Youth: Differences by Age and Reason for Discrimination.

    PubMed

    Madkour, Aubrey Spriggs; Jackson, Kristina; Wang, Heng; Miles, Thomas T; Mather, Frances; Shankar, Arti

    2015-11-01

    The purpose of this study was to examine whether associations between perceived discrimination and heavy episodic drinking (HED) vary by age and by discrimination type (e.g., racial, age, physical appearance) among African-American youth. National data from the Panel Study of Income Dynamics Transition to Adulthood Study were analyzed. Youth participated in up to four interviews (2005, 2007, 2009, 2011; n = 657) between ages 18 and 25 years. Respondents reported past-year engagement in HED (four or more drinks for females, five or more drinks for males) and frequency of discriminatory acts experienced (e.g., receiving poor service, being treated with less courtesy). Categorical latent growth curve models, including perceived discrimination types (racial, age, and physical appearance) as a time-varying predictors of HED, were run. Controls for gender, birth cohort, living arrangement in adolescence, familial wealth, parental alcohol use, and college attendance were explored. The average HED trajectory was curvilinear (increasing followed by flattening), whereas perceived discrimination remained flat with age. In models including controls, odds of HED were significantly higher than average around ages 20-21 years with greater frequency of perceived racial discrimination; associations were not significant at other ages. Discrimination attributed to age or physical appearance was not associated with HED at any age. Perceived racial discrimination may be a particularly salient risk factor for HED around the ages of transition to legal access to alcohol among African-American youth. Interventions to reduce discrimination or its impact could be targeted before this transition to ameliorate the negative outcomes associated with HED. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  9. Topology optimization for nonlinear dynamic problems: Considerations for automotive crashworthiness

    NASA Astrophysics Data System (ADS)

    Kaushik, Anshul; Ramani, Anand

    2014-04-01

    Crashworthiness of automotive structures is most often engineered after an optimal topology has been arrived at using other design considerations. This study is an attempt to incorporate crashworthiness requirements upfront in the topology synthesis process using a mathematically consistent framework. It proposes the use of equivalent linear systems from the nonlinear dynamic simulation in conjunction with a discrete-material topology optimizer. Velocity and acceleration constraints are consistently incorporated in the optimization set-up. Issues specific to crash problems due to the explicit solution methodology employed, nature of the boundary conditions imposed on the structure, etc. are discussed and possible resolutions are proposed. A demonstration of the methodology on two-dimensional problems that address some of the structural requirements and the types of loading typical of frontal and side impact is provided in order to show that this methodology has the potential for topology synthesis incorporating crashworthiness requirements.

  10. Optimizing cosmological surveys in a crowded market

    NASA Astrophysics Data System (ADS)

    Bassett, Bruce A.

    2005-04-01

    Optimizing the major next-generation cosmological surveys (such as SNAP, KAOS, etc.) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximizes the discrimination power of a survey without assuming any underlying dark-energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximizes the cross section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as “is dark energy dynamical?”). Integrated parameter-space optimization (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremizes a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimization can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.

  11. Robust L1-norm two-dimensional linear discriminant analysis.

    PubMed

    Li, Chun-Na; Shao, Yuan-Hai; Deng, Nai-Yang

    2015-05-01

    In this paper, we propose an L1-norm two-dimensional linear discriminant analysis (L1-2DLDA) with robust performance. Different from the conventional two-dimensional linear discriminant analysis with L2-norm (L2-2DLDA), where the optimization problem is transferred to a generalized eigenvalue problem, the optimization problem in our L1-2DLDA is solved by a simple justifiable iterative technique, and its convergence is guaranteed. Compared with L2-2DLDA, our L1-2DLDA is more robust to outliers and noises since the L1-norm is used. This is supported by our preliminary experiments on toy example and face datasets, which show the improvement of our L1-2DLDA over L2-2DLDA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. How proteins bind to DNA: target discrimination and dynamic sequence search by the telomeric protein TRF1

    PubMed Central

    2017-01-01

    Abstract Target search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments of chromosomal DNA. In this study, we use extensive (>0.5 ms in total) MD simulations to study the dynamical aspects of sequence-specific binding of TRF1 at both telomeric and non-cognate DNA. For the first time, we describe the spontaneous formation of a sequence-specific native protein–DNA complex in atomistic detail, and study the mechanism by which proteins avoid off-target binding while retaining high affinity for target sites. Our calculated free energy landscapes reproduce the thermodynamics of sequence-specific binding, while statistical approaches allow for a comprehensive description of intermediate stages of complex formation. PMID:28633355

  13. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  14. Large Scale Multi-area Static/Dynamic Economic Dispatch using Nature Inspired Optimization

    NASA Astrophysics Data System (ADS)

    Pandit, Manjaree; Jain, Kalpana; Dubey, Hari Mohan; Singh, Rameshwar

    2017-04-01

    Economic dispatch (ED) ensures that the generation allocation to the power units is carried out such that the total fuel cost is minimized and all the operating equality/inequality constraints are satisfied. Classical ED does not take transmission constraints into consideration, but in the present restructured power systems the tie-line limits play a very important role in deciding operational policies. ED is a dynamic problem which is performed on-line in the central load dispatch centre with changing load scenarios. The dynamic multi-area ED (MAED) problem is more complex due to the additional tie-line, ramp-rate and area-wise power balance constraints. Nature inspired (NI) heuristic optimization methods are gaining popularity over the traditional methods for complex problems. This work presents the modified particle swarm optimization (PSO) based techniques where parameter automation is effectively used for improving the search efficiency by avoiding stagnation to a sub-optimal result. This work validates the performance of the PSO variants with traditional solver GAMS for single as well as multi-area economic dispatch (MAED) on three test cases of a large 140-unit standard test system having complex constraints.

  15. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  16. Genetic algorithm enhanced by machine learning in dynamic aperture optimization

    DOE PAGES

    Li, Yongjun; Cheng, Weixing; Yu, Li Hua; ...

    2018-05-29

    With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm, the population is classified into different clusters in the search space. The clusters with top average fitness are given “elite” status. Intervention on the population is implemented by repopulating some potentially competitive candidates based on the experience learned from the accumulated data. These candidates replace randomly selected candidates among the original data pool. The average fitnessmore » of the population is therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global rather than local. The quality of the population increases and produces more competitive descendants accelerating the evolution process significantly. When identifying the distribution of optimal candidates, they appear to be located in isolated islands within the search space. Some of these optimal candidates have been experimentally confirmed at the NSLS-II storage ring. Furthermore, the machine learning techniques that exploit the genetic algorithm can also be used in other population-based optimization problems such as particle swarm algorithm.« less

  17. Approximate dynamic programming for optimal stationary control with control-dependent noise.

    PubMed

    Jiang, Yu; Jiang, Zhong-Ping

    2011-12-01

    This brief studies the stochastic optimal control problem via reinforcement learning and approximate/adaptive dynamic programming (ADP). A policy iteration algorithm is derived in the presence of both additive and multiplicative noise using Itô calculus. The expectation of the approximated cost matrix is guaranteed to converge to the solution of some algebraic Riccati equation that gives rise to the optimal cost value. Moreover, the covariance of the approximated cost matrix can be reduced by increasing the length of time interval between two consecutive iterations. Finally, a numerical example is given to illustrate the efficiency of the proposed ADP methodology.

  18. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.

    PubMed

    Gilley, Phillip M; Uhler, Kristin; Watson, Kaylee; Yoshinaga-Itano, Christine

    2017-03-22

    Oddball paradigms are frequently used to study auditory discrimination by comparing event-related potential (ERP) responses from a standard, high probability sound and to a deviant, low probability sound. Previous research has established that such paradigms, such as the mismatch response or mismatch negativity, are useful for examining auditory processes in young children and infants across various sleep and attention states. The extent to which oddball ERP responses may reflect subtle discrimination effects, such as speech discrimination, is largely unknown, especially in infants that have not yet acquired speech and language. Mismatch responses for three contrasts (non-speech, vowel, and consonant) were computed as a spectral-temporal probability function in 24 infants, and analyzed at the group level by a modified multidimensional scaling. Immediately following an onset gamma response (30-50 Hz), the emergence of a beta oscillation (12-30 Hz) was temporally coupled with a lower frequency theta oscillation (2-8 Hz). The spectral-temporal probability of this coupling effect relative to a subsequent theta modulation corresponds with discrimination difficulty for non-speech, vowel, and consonant contrast features. The theta modulation effect suggests that unexpected sounds are encoded as a probabilistic measure of surprise. These results support the notion that auditory discrimination is driven by the development of brain networks for predictive processing, and can be measured in infants during sleep. The results presented here have implications for the interpretation of discrimination as a probabilistic process, and may provide a basis for the development of single-subject and single-trial classification in a clinically useful context. An infant's brain is processing information about the environment and performing computations, even during sleep. These computations reflect subtle differences in acoustic feature processing that are necessary for language

  19. A Dynamic Process Model for Optimizing the Hospital Environment Cash-Flow

    NASA Astrophysics Data System (ADS)

    Pater, Flavius; Rosu, Serban

    2011-09-01

    In this article is presented a new approach to some fundamental techniques of solving dynamic programming problems with the use of functional equations. We will analyze the problem of minimizing the cost of treatment in a hospital environment. Mathematical modeling of this process leads to an optimal control problem with a finite horizon.

  20. Discrimination of Complex Human Behavior by Pigeons (Columba livia) and Humans

    PubMed Central

    Qadri, Muhammad A. J.; Sayde, Justin M.; Cook, Robert G.

    2014-01-01

    The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species. PMID:25379777

  1. Multiantenna Relay Beamforming Design for QoS Discrimination in Two-Way Relay Networks

    PubMed Central

    Xiong, Ke; Zhang, Yu; Li, Dandan; Zhong, Zhangdui

    2013-01-01

    This paper investigates the relay beamforming design for quality of service (QoS) discrimination in two-way relay networks. The purpose is to keep legitimate two-way relay users exchange their information via a helping multiantenna relay with QoS guarantee while avoiding the exchanged information overhearing by unauthorized receiver. To this end, we propose a physical layer method, where the relay beamforming is jointly designed with artificial noise (AN) which is used to interfere in the unauthorized user's reception. We formulate the joint beamforming and AN (BFA) design into an optimization problem such that the received signal-to-interference-ratio (SINR) at the two legitimate users is over a predefined QoS threshold while limiting the received SINR at the unauthorized user which is under a certain secure threshold. The objective of the optimization problem is to seek the optimal AN and beamforming vectors to minimize the total power consumed by the relay node. Since the optimization problem is nonconvex, we solve it by using semidefinite program (SDP) relaxation. For comparison, we also study the optimal relay beamforming without using AN (BFO) under the same QoS discrimination constraints. Simulation results show that both the proposed BFA and BFO can achieve the QoS discrimination of the two-way transmission. However, the proposed BFA yields significant power savings and lower infeasible rates compared with the BFO method. PMID:24391459

  2. Optimal placement of excitations and sensors for verification of large dynamical systems

    NASA Technical Reports Server (NTRS)

    Salama, M.; Rose, T.; Garba, J.

    1987-01-01

    The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.

  3. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  4. Perceived discrimination and health-related quality of life: testing the Reserve Capacity Model in Hispanic Americans.

    PubMed

    Howarter, Alisha D; Bennett, Kymberley K

    2013-01-01

    This study tested aspects of the Reserve Capacity Model (Gallo & Matthews, 2003; Gallo, Penedo Espinosa de los Monteros, & Arguelles, 2009) as a means of understanding disparities in health-related quality of life appraisals among Hispanic Americans. Questionnaire data were collected from 236 Hispanic participants, including measures of perceived discrimination, optimism, social support, symptoms of trait anxiety, and physical and mental health-related quality of life. Path analysis indicated direct, negative associations between perceived discrimination and both forms of health-related quality of life. Results also showed that these relationships were partially mediated by the reserve capacity variable of optimism and by symptoms of anxiety, though evidence for mediation by anxiety was stronger than for optimism. Findings suggest that perceived discrimination depletes intrapersonal reserves in Hispanic Americans, which, in turn, induces negative emotions. Implications for community-level interventions are discussed.

  5. Neighboring extremals of dynamic optimization problems with path equality constraints

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.

    1988-01-01

    Neighboring extremals of dynamic optimization problems with path equality constraints and with an unknown parameter vector are considered in this paper. With some simplifications, the problem is reduced to solving a linear, time-varying two-point boundary-value problem with integral path equality constraints. A modified backward sweep method is used to solve this problem. Two example problems are solved to illustrate the validity and usefulness of the solution technique.

  6. Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Fan, Y.; Peng, Z.; Ding, H.; Gao, H.

    2012-07-01

    A new approach for the nondestructive discrimination between genuine wild ginsengs and the counterfeit ones by near infrared spectroscopy (NIRS) was developed. Both discriminant analysis and back propagation artificial neural network (BP-ANN) were applied to the model establishment for discrimination. Optimal modeling wavelengths were determined based on the anomalous spectral information of counterfeit samples. Through principal component analysis (PCA) of various wild ginseng samples, genuine and counterfeit, the cumulative percentages of variance of the principal components were obtained, serving as a reference for principal component (PC) factor determination. Discriminant analysis achieved an identification ratio of 88.46%. With sample' truth values as its outputs, a three-layer BP-ANN model was built, which yielded a higher discrimination accuracy of 100%. The overall results sufficiently demonstrate that NIRS combined with BP-ANN classification algorithm performs better on ginseng discrimination than discriminant analysis, and can be used as a rapid and nondestructive method for the detection of counterfeit wild ginsengs in food and pharmaceutical industry.

  7. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity

    PubMed Central

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-01-01

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information. PMID:27657075

  8. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    NASA Astrophysics Data System (ADS)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  9. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.

    PubMed

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-09-20

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  10. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  11. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  12. Optimization of Regional Geodynamic Models for Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Knepley, M.; Isaac, T.; Jadamec, M. A.

    2016-12-01

    The SubductionGenerator program is used to construct high resolution, 3D regional thermal structures for mantle convection simulations using a variety of data sources, including sea floor ages and geographically referenced 3D slab locations based on seismic observations. The initial bulk temperature field is constructed using a half-space cooling model or plate cooling model, and related smoothing functions based on a diffusion length-scale analysis. In this work, we seek to improve the 3D thermal model and test different model geometries and dynamically driven flow fields using constraints from observed seismic velocities and plate motions. Through a formal adjoint analysis, we construct the primal-dual version of the multi-objective PDE-constrained optimization problem for the plate motions and seismic misfit. We have efficient, scalable preconditioners for both the forward and adjoint problems based upon a block preconditioning strategy, and a simple gradient update is used to improve the control residual. The full optimal control problem is formulated on a nested hierarchy of grids, allowing a nonlinear multigrid method to accelerate the solution.

  13. Supercomputer optimizations for stochastic optimal control applications

    NASA Technical Reports Server (NTRS)

    Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang

    1991-01-01

    Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.

  14. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  15. Optimizing meridional advection of the Advanced Research WRF (ARW) dynamics for Intel Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.-L.

    2015-05-01

    The most widely used community weather forecast and research model in the world is the Weather Research and Forecast (WRF) model. Two distinct varieties of WRF exist. The one we are interested is the Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we optimize a meridional (north-south direction) advection subroutine for Intel Xeon Phi coprocessor. Advection is of the most time consuming routines in the ARW dynamics core. It advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 7120P by a factor of 1.2x.

  16. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    PubMed

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018

  17. Optimal Least-Squares Unidimensional Scaling: Improved Branch-and-Bound Procedures and Comparison to Dynamic Programming

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Stahl, Stephanie

    2005-01-01

    There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…

  18. Optimal dynamic control of invasions: applying a systematic conservation approach.

    PubMed

    Adams, Vanessa M; Setterfield, Samantha A

    2015-06-01

    The social, economic, and environmental impacts of invasive plants are well recognized. However, these variable impacts are rarely accounted for in the spatial prioritization of funding for weed management. We examine how current spatially explicit prioritization methods can be extended to identify optimal budget allocations to both eradication and control measures of invasive species to minimize the costs and likelihood of invasion. Our framework extends recent approaches to systematic prioritization of weed management to account for multiple values that are threatened by weed invasions with a multi-year dynamic prioritization approach. We apply our method to the northern portion of the Daly catchment in the Northern Territory, which has significant conservation values that are threatened by gamba grass (Andropogon gayanus), a highly invasive species recognized by the Australian government as a Weed of National Significance (WONS). We interface Marxan, a widely applied conservation planning tool, with a dynamic biophysical model of gamba grass to optimally allocate funds to eradication and control programs under two budget scenarios comparing maximizing gain (MaxGain) and minimizing loss (MinLoss) optimization approaches. The prioritizations support previous findings that a MinLoss approach is a better strategy when threats are more spatially variable than conservation values. Over a 10-year simulation period, we find that a MinLoss approach reduces future infestations by ~8% compared to MaxGain in the constrained budget scenarios and ~12% in the unlimited budget scenarios. We find that due to the extensive current invasion and rapid rate of spread, allocating the annual budget to control efforts is more efficient than funding eradication efforts when there is a constrained budget. Under a constrained budget, applying the most efficient optimization scenario (control, minloss) reduces spread by ~27% compared to no control. Conversely, if the budget is unlimited it

  19. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space

    PubMed Central

    Karnik, Rahul; Beer, Michael A.

    2015-01-01

    The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs. PMID:26465884

  20. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space.

    PubMed

    Karnik, Rahul; Beer, Michael A

    2015-01-01

    The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.

  1. Optimal Dynamic Strategies for Index Tracking and Algorithmic Trading

    NASA Astrophysics Data System (ADS)

    Ward, Brian

    In this thesis we study dynamic strategies for index tracking and algorithmic trading. Tracking problems have become ever more important in Financial Engineering as investors seek to precisely control their portfolio risks and exposures over different time horizons. This thesis analyzes various tracking problems and elucidates the tracking errors and strategies one can employ to minimize those errors and maximize profit. In Chapters 2 and 3, we study the empirical tracking properties of exchange traded funds (ETFs), leveraged ETFs (LETFs), and futures products related to spot gold and the Chicago Board Option Exchange (CBOE) Volatility Index (VIX), respectively. These two markets provide interesting and differing examples for understanding index tracking. We find that static strategies work well in the nonleveraged case for gold, but fail to track well in the corresponding leveraged case. For VIX, tracking via neither ETFs, nor futures\\ portfolios succeeds, even in the nonleveraged case. This motivates the need for dynamic strategies, some of which we construct in these two chapters and further expand on in Chapter 4. There, we analyze a framework for index tracking and risk exposure control through financial derivatives. We derive a tracking condition that restricts our exposure choices and also define a slippage process that characterizes the deviations from the index over longer horizons. The framework is applied to a number of models, for example, Black Scholes model and Heston model for equity index tracking, as well as the Square Root (SQR) model and the Concatenated Square Root (CSQR) model for VIX tracking. By specifying how each of these models fall into our framework, we are able to understand the tracking errors in each of these models. Finally, Chapter 5 analyzes a tracking problem of a different kind that arises in algorithmic trading: schedule following for optimal execution. We formulate and solve a stochastic control problem to obtain the optimal

  2. 2015 Summer Design Challenge: Team A&E (2241) Additively Manufactured Discriminator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Sarah E.; Moore, Brandon James

    Current discriminator designs are based on historical designs and traditional manufacturing methods. The goal of this project was to form non-traditional groups to create novel discriminator designs by taking advantage of additive manufacturing. These designs would expand current discriminator designs and provide insight on the applicability of additive manufacturing for future projects. Our design stretched the current abilities of additive manufacturing and noted desired improvements for the future. Through collaboration with NSC, we noted several additional technologies which work well with additive manufacturing such as topology optimization and CT scanning and determined how these technologies could be improved to bettermore » combine with additive manufacturing.« less

  3. Perceptual learning through optimization of attentional weighting: human versus optimal Bayesian learner

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Abbey, Craig K.; Pham, Binh T.; Shimozaki, Steven S.

    2004-01-01

    Human performance in visual detection, discrimination, identification, and search tasks typically improves with practice. Psychophysical studies suggest that perceptual learning is mediated by an enhancement in the coding of the signal, and physiological studies suggest that it might be related to the plasticity in the weighting or selection of sensory units coding task relevant information (learning through attention optimization). We propose an experimental paradigm (optimal perceptual learning paradigm) to systematically study the dynamics of perceptual learning in humans by allowing comparisons to that of an optimal Bayesian algorithm and a number of suboptimal learning models. We measured improvement in human localization (eight-alternative forced-choice with feedback) performance of a target randomly sampled from four elongated Gaussian targets with different orientations and polarities and kept as a target for a block of four trials. The results suggest that the human perceptual learning can occur within a lapse of four trials (<1 min) but that human learning is slower and incomplete with respect to the optimal algorithm (23.3% reduction in human efficiency from the 1st-to-4th learning trials). The greatest improvement in human performance, occurring from the 1st-to-2nd learning trial, was also present in the optimal observer, and, thus reflects a property inherent to the visual task and not a property particular to the human perceptual learning mechanism. One notable source of human inefficiency is that, unlike the ideal observer, human learning relies more heavily on previous decisions than on the provided feedback, resulting in no human learning on trials following a previous incorrect localization decision. Finally, the proposed theory and paradigm provide a flexible framework for future studies to evaluate the optimality of human learning of other visual cues and/or sensory modalities.

  4. Optimal control of Atlantic population Canada geese

    USGS Publications Warehouse

    Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.

    2007-01-01

    Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.

  5. Varietal discrimination of hop pellets by near and mid infrared spectroscopy.

    PubMed

    Machado, Julio C; Faria, Miguel A; Ferreira, Isabel M P L V O; Páscoa, Ricardo N M J; Lopes, João A

    2018-04-01

    Hop is one of the most important ingredients of beer production and several varieties are commercialized. Therefore, it is important to find an eco-real-time-friendly-low-cost technique to distinguish and discriminate hop varieties. This paper describes the development of a method based on vibrational spectroscopy techniques, namely near- and mid-infrared spectroscopy, for the discrimination of 33 commercial hop varieties. A total of 165 samples (five for each hop variety) were analysed by both techniques. Principal component analysis, hierarchical cluster analysis and partial least squares discrimination analysis were the chemometric tools used to discriminate positively the hop varieties. After optimizing the spectral regions and pre-processing methods a total of 94.2% and 96.6% correct hop varieties discrimination were obtained for near- and mid-infrared spectroscopy, respectively. The results obtained demonstrate the suitability of these vibrational spectroscopy techniques to discriminate different hop varieties and consequently their potential to be used as an authenticity tool. Compared with the reference procedures normally used for hops variety discrimination these techniques are quicker, cost-effective, non-destructive and eco-friendly. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication

    NASA Astrophysics Data System (ADS)

    Cooney, Tom; Mosonyi, Milán; Wilde, Mark M.

    2016-06-01

    This paper studies the difficulty of discriminating between an arbitrary quantum channel and a "replacer" channel that discards its input and replaces it with a fixed state. The results obtained here generalize those known in the theory of quantum hypothesis testing for binary state discrimination. We show that, in this particular setting, the most general adaptive discrimination strategies provide no asymptotic advantage over non-adaptive tensor-power strategies. This conclusion follows by proving a quantum Stein's lemma for this channel discrimination setting, showing that a constant bound on the Type I error leads to the Type II error decreasing to zero exponentially quickly at a rate determined by the maximum relative entropy registered between the channels. The strong converse part of the lemma states that any attempt to make the Type II error decay to zero at a rate faster than the channel relative entropy implies that the Type I error necessarily converges to one. We then refine this latter result by identifying the optimal strong converse exponent for this task. As a consequence of these results, we can establish a strong converse theorem for the quantum-feedback-assisted capacity of a channel, sharpening a result due to Bowen. Furthermore, our channel discrimination result demonstrates the asymptotic optimality of a non-adaptive tensor-power strategy in the setting of quantum illumination, as was used in prior work on the topic. The sandwiched Rényi relative entropy is a key tool in our analysis. Finally, by combining our results with recent results of Hayashi and Tomamichel, we find a novel operational interpretation of the mutual information of a quantum channel {mathcal{N}} as the optimal Type II error exponent when discriminating between a large number of independent instances of {mathcal{N}} and an arbitrary "worst-case" replacer channel chosen from the set of all replacer channels.

  7. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  8. A synergic simulation-optimization approach for analyzing biomolecular dynamics in living organisms.

    PubMed

    Sadegh Zadeh, Kouroush

    2011-01-01

    A synergic duo simulation-optimization approach was developed and implemented to study protein-substrate dynamics and binding kinetics in living organisms. The forward problem is a system of several coupled nonlinear partial differential equations which, with a given set of kinetics and diffusion parameters, can provide not only the commonly used bleached area-averaged time series in fluorescence microscopy experiments but more informative full biomolecular/drug space-time series and can be successfully used to study dynamics of both Dirac and Gaussian fluorescence-labeled biomacromolecules in vivo. The incomplete Cholesky preconditioner was coupled with the finite difference discretization scheme and an adaptive time-stepping strategy to solve the forward problem. The proposed approach was validated with analytical as well as reference solutions and used to simulate dynamics of GFP-tagged glucocorticoid receptor (GFP-GR) in mouse cancer cell during a fluorescence recovery after photobleaching experiment. Model analysis indicates that the commonly practiced bleach spot-averaged time series is not an efficient approach to extract physiological information from the fluorescence microscopy protocols. It was recommended that experimental biophysicists should use full space-time series, resulting from experimental protocols, to study dynamics of biomacromolecules and drugs in living organisms. It was also concluded that in parameterization of biological mass transfer processes, setting the norm of the gradient of the penalty function at the solution to zero is not an efficient stopping rule to end the inverse algorithm. Theoreticians should use multi-criteria stopping rules to quantify model parameters by optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A Method of Dynamic Extended Reactive Power Optimization in Distribution Network Containing Photovoltaic-Storage System

    NASA Astrophysics Data System (ADS)

    Wang, Wu; Huang, Wei; Zhang, Yongjun

    2018-03-01

    The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.

  10. Characterization and Performance Optimization of a Cementitious Composite for Quasi-Static and Dynamic Loads

    DTIC Science & Technology

    2011-01-01

    blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and

  11. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  12. A Formal Approach to Empirical Dynamic Model Optimization and Validation

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G; Morelli, Eugene A.; Kenny, Sean P.; Giesy, Daniel P.

    2014-01-01

    A framework was developed for the optimization and validation of empirical dynamic models subject to an arbitrary set of validation criteria. The validation requirements imposed upon the model, which may involve several sets of input-output data and arbitrary specifications in time and frequency domains, are used to determine if model predictions are within admissible error limits. The parameters of the empirical model are estimated by finding the parameter realization for which the smallest of the margins of requirement compliance is as large as possible. The uncertainty in the value of this estimate is characterized by studying the set of model parameters yielding predictions that comply with all the requirements. Strategies are presented for bounding this set, studying its dependence on admissible prediction error set by the analyst, and evaluating the sensitivity of the model predictions to parameter variations. This information is instrumental in characterizing uncertainty models used for evaluating the dynamic model at operating conditions differing from those used for its identification and validation. A practical example based on the short period dynamics of the F-16 is used for illustration.

  13. Increasingly diverse brain dynamics in the developmental arc: using Pareto-optimization to infer a mechanism

    NASA Astrophysics Data System (ADS)

    Tang, Evelyn; Giusti, Chad; Baum, Graham; Gu, Shi; Pollock, Eli; Kahn, Ari; Roalf, David; Moore, Tyler; Ruparel, Kosha; Gur, Ruben; Gur, Raquel; Satterthwaite, Theodore; Bassett, Danielle

    Motivated by a recent demonstration that the network architecture of white matter supports emerging control of diverse neural dynamics as children mature into adults, we seek to investigate structural mechanisms that support these changes. Beginning from a network representation of diffusion imaging data, we simulate network evolution with a set of simple growth rules built on principles of network control. Notably, the optimal evolutionary trajectory displays a striking correspondence to the progression of child to adult brain, suggesting that network control is a driver of development. More generally, and in comparison to the complete set of available models, we demonstrate that all brain networks from child to adult are structured in a manner highly optimized for the control of diverse neural dynamics. Within this near-optimality, we observe differences in the predicted control mechanisms of the child and adult brains, suggesting that the white matter architecture in children has a greater potential to increasingly support brain state transitions, potentially underlying cognitive switching.

  14. On the optimal production capacity for influenza vaccine.

    PubMed

    Forslid, Rikard; Herzing, Mathias

    2015-06-01

    This paper analyzes the profit maximizing capacity choice of a monopolistic vaccine producer facing the uncertain event of a pandemic in a homogenous population of forward-looking individuals. For any capacity level, the monopolist solves the intertemporal price discrimination problem within the dynamic setting generated by the standard mathematical epidemiological model of infectious diseases. Even though consumers are assumed to be identical, the monopolist will be able to exploit the ex post heterogeneity between infected and susceptible individuals by raising the price of vaccine in response to the increasing hazard rate. The monopolist thus bases its investment decision on the expected profits from the optimal price path given the infection dynamics. It is shown that the monopolist will always choose to invest in a lower production capacity than the social planner. Through numerical simulation, it is demonstrated how the loss to society of having a monopoly producer decreases with the speed of infection transmission. Moreover, it is illustrated how the monopolist's optimal vaccination rate increases as its discount rate rises for cost parameters based on Swedish data. However, the effect of the firm discount rate on its investment decision is sensitive to assumptions regarding the cost of production capacity. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Improving Efficiency of Passive RFID Tag Anti-Collision Protocol Using Dynamic Frame Adjustment and Optimal Splitting.

    PubMed

    Memon, Muhammad Qasim; He, Jingsha; Yasir, Mirza Ammar; Memon, Aasma

    2018-04-12

    Radio frequency identification is a wireless communication technology, which enables data gathering and identifies recognition from any tagged object. The number of collisions produced during wireless communication would lead to a variety of problems including unwanted number of iterations and reader-induced idle slots, computational complexity in terms of estimation as well as recognition of the number of tags. In this work, dynamic frame adjustment and optimal splitting are employed together in the proposed algorithm. In the dynamic frame adjustment method, the length of frames is based on the quantity of tags to yield optimal efficiency. The optimal splitting method is conceived with smaller duration of idle slots using an optimal value for splitting level M o p t , where (M > 2), to vary slot sizes to get the minimal identification time for the idle slots. The application of the proposed algorithm offers the advantages of not going for the cumbersome estimation of the quantity of tags incurred and the size (number) of tags has no effect on its performance efficiency. Our experiment results show that using the proposed algorithm, the efficiency curve remains constant as the number of tags varies from 50 to 450, resulting in an overall theoretical gain in the efficiency of 0.032 compared to system efficiency of 0.441 and thus outperforming both dynamic binary tree slotted ALOHA (DBTSA) and binary splitting protocols.

  16. Computer Program for Analysis, Design and Optimization of Propulsion, Dynamics, and Kinematics of Multistage Rockets

    NASA Astrophysics Data System (ADS)

    Lali, Mehdi

    2009-03-01

    A comprehensive computer program is designed in MATLAB to analyze, design and optimize the propulsion, dynamics, thermodynamics, and kinematics of any serial multi-staging rocket for a set of given data. The program is quite user-friendly. It comprises two main sections: "analysis and design" and "optimization." Each section has a GUI (Graphical User Interface) in which the rocket's data are entered by the user and by which the program is run. The first section analyzes the performance of the rocket that is previously devised by the user. Numerous plots and subplots are provided to display the performance of the rocket. The second section of the program finds the "optimum trajectory" via billions of iterations and computations which are done through sophisticated algorithms using numerical methods and incremental integrations. Innovative techniques are applied to calculate the optimal parameters for the engine and designing the "optimal pitch program." This computer program is stand-alone in such a way that it calculates almost every design parameter in regards to rocket propulsion and dynamics. It is meant to be used for actual launch operations as well as educational and research purposes.

  17. Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task

    PubMed Central

    Plack, Christopher J.

    2010-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201

  18. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    PubMed

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  19. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan

    2013-02-01

    As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.

  20. Optimal blood glucose control in diabetes mellitus treatment using dynamic programming based on Ackerman’s linear model

    NASA Astrophysics Data System (ADS)

    Pradanti, Paskalia; Hartono

    2018-03-01

    Determination of insulin injection dose in diabetes mellitus treatment can be considered as an optimal control problem. This article is aimed to simulate optimal blood glucose control for patient with diabetes mellitus. The blood glucose regulation of diabetic patient is represented by Ackerman’s Linear Model. This problem is then solved using dynamic programming method. The desired blood glucose level is obtained by minimizing the performance index in Lagrange form. The results show that dynamic programming based on Ackerman’s Linear Model is quite good to solve the problem.

  1. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  2. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  3. Dynamic motion planning of 3D human locomotion using gradient-based optimization.

    PubMed

    Kim, Hyung Joo; Wang, Qian; Rahmatalla, Salam; Swan, Colby C; Arora, Jasbir S; Abdel-Malek, Karim; Assouline, Jose G

    2008-06-01

    Since humans can walk with an infinite variety of postures and limb movements, there is no unique solution to the modeling problem to predict human gait motions. Accordingly, we test herein the hypothesis that the redundancy of human walking mechanisms makes solving for human joint profiles and force time histories an indeterminate problem best solved by inverse dynamics and optimization methods. A new optimization-based human-modeling framework is thus described for predicting three-dimensional human gait motions on level and inclined planes. The basic unknowns in the framework are the joint motion time histories of a 25-degree-of-freedom human model and its six global degrees of freedom. The joint motion histories are calculated by minimizing an objective function such as deviation of the trunk from upright posture that relates to the human model's performance. A variety of important constraints are imposed on the optimization problem, including (1) satisfaction of dynamic equilibrium equations by requiring the model's zero moment point (ZMP) to lie within the instantaneous geometrical base of support, (2) foot collision avoidance, (3) limits on ground-foot friction, and (4) vanishing yawing moment. Analytical forms of objective and constraint functions are presented and discussed for the proposed human-modeling framework in which the resulting optimization problems are solved using gradient-based mathematical programming techniques. When the framework is applied to the modeling of bipedal locomotion on level and inclined planes, acyclic human walking motions that are smooth and realistic as opposed to less natural robotic motions are obtained. The aspects of the modeling framework requiring further investigation and refinement, as well as potential applications of the framework in biomechanics, are discussed.

  4. Visual adaptation enhances action sound discrimination.

    PubMed

    Barraclough, Nick E; Page, Steve A; Keefe, Bruce D

    2017-01-01

    Prolonged exposure, or adaptation, to a stimulus in 1 modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in 1 modality can bias perception in another modality. Here, we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory, or audiovisual hand actions enhanced discrimination between 2 subsequently presented hand action sounds. Discrimination was most enhanced when the visual action "matched" the auditory action. In addition, prior adaptation to a visual, auditory, or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation-induced crossmodal enhancements cannot be explained by postperceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli.

  5. Large-scale hydropower system optimization using dynamic programming and object-oriented programming: the case of the Northeast China Power Grid.

    PubMed

    Li, Ji-Qing; Zhang, Yu-Shan; Ji, Chang-Ming; Wang, Ai-Jing; Lund, Jay R

    2013-01-01

    This paper examines long-term optimal operation using dynamic programming for a large hydropower system of 10 reservoirs in Northeast China. Besides considering flow and hydraulic head, the optimization explicitly includes time-varying electricity market prices to maximize benefit. Two techniques are used to reduce the 'curse of dimensionality' of dynamic programming with many reservoirs. Discrete differential dynamic programming (DDDP) reduces the search space and computer memory needed. Object-oriented programming (OOP) and the ability to dynamically allocate and release memory with the C++ language greatly reduces the cumulative effect of computer memory for solving multi-dimensional dynamic programming models. The case study shows that the model can reduce the 'curse of dimensionality' and achieve satisfactory results.

  6. Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake

    USDA-ARS?s Scientific Manuscript database

    Plants are known to adjust their root systems to adapt to changing subsurface water conditions. However, most current land surface models (LSMs) use a prescribed, static root profile, which cuts off the interactions between soil moisture and root dynamics. In this paper, we implemented an optimality...

  7. Rats behave optimally in a sunk cost task.

    PubMed

    Yáñez, Nataly; Bouzas, Arturo; Orduña, Vladimir

    2017-07-01

    The sunk cost effect has been defined as the tendency to persist in an alternative once an investment of effort, time or money has been made, even if better options are available. The goal of this study was to investigate in rats the relationship between sunk cost and the information about when it is optimal to leave the situation, which was studied by Navarro and Fantino (2005) with pigeons. They developed a procedure in which different fixed-ratio schedules were randomly presented, with the richest one being more likely; subjects could persist in the trial until they obtained the reinforcer, or start a new trial in which the most favorable option would be available with a high probability. The information about the expected number of responses needed to obtain the reinforcer was manipulated through the presence or absence of discriminative stimuli; also, they used different combinations of schedule values and their probabilities of presentation to generate escape-optimal and persistence- optimal conditions. They found optimal behavior in the conditions with presence of discriminative stimuli, but non-optimal behavior when they were absent. Unlike their results, we found optimal behavior in both conditions regardless of the absence of discriminative stimuli; rats seemed to use the number of responses already emitted in the trial as a criterion to escape. In contrast to pigeons, rats behaved optimally and the sunk cost effect was not observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor

    NASA Astrophysics Data System (ADS)

    PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu

    2018-03-01

    In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.

  9. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  10. A computational fluid dynamics simulation framework for ventricular catheter design optimization.

    PubMed

    Weisenberg, Sofy H; TerMaath, Stephanie C; Barbier, Charlotte N; Hill, Judith C; Killeffer, James A

    2017-11-10

    OBJECTIVE Cerebrospinal fluid (CSF) shunts are the primary treatment for patients suffering from hydrocephalus. While proven effective in symptom relief, these shunt systems are plagued by high failure rates and often require repeated revision surgeries to replace malfunctioning components. One of the leading causes of CSF shunt failure is obstruction of the ventricular catheter by aggregations of cells, proteins, blood clots, or fronds of choroid plexus that occlude the catheter's small inlet holes or even the full internal catheter lumen. Such obstructions can disrupt CSF diversion out of the ventricular system or impede it entirely. Previous studies have suggested that altering the catheter's fluid dynamics may help to reduce the likelihood of complete ventricular catheter failure caused by obstruction. However, systematic correlation between a ventricular catheter's design parameters and its performance, specifically its likelihood to become occluded, still remains unknown. Therefore, an automated, open-source computational fluid dynamics (CFD) simulation framework was developed for use in the medical community to determine optimized ventricular catheter designs and to rapidly explore parameter influence for a given flow objective. METHODS The computational framework was developed by coupling a 3D CFD solver and an iterative optimization algorithm and was implemented in a high-performance computing environment. The capabilities of the framework were demonstrated by computing an optimized ventricular catheter design that provides uniform flow rates through the catheter's inlet holes, a common design objective in the literature. The baseline computational model was validated using 3D nuclear imaging to provide flow velocities at the inlet holes and through the catheter. RESULTS The optimized catheter design achieved through use of the automated simulation framework improved significantly on previous attempts to reach a uniform inlet flow rate distribution using

  11. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method.

    PubMed

    Zhang, Huaguang; Cui, Lili; Zhang, Xin; Luo, Yanhong

    2011-12-01

    In this paper, a novel data-driven robust approximate optimal tracking control scheme is proposed for unknown general nonlinear systems by using the adaptive dynamic programming (ADP) method. In the design of the controller, only available input-output data is required instead of known system dynamics. A data-driven model is established by a recurrent neural network (NN) to reconstruct the unknown system dynamics using available input-output data. By adding a novel adjustable term related to the modeling error, the resultant modeling error is first guaranteed to converge to zero. Then, based on the obtained data-driven model, the ADP method is utilized to design the approximate optimal tracking controller, which consists of the steady-state controller and the optimal feedback controller. Further, a robustifying term is developed to compensate for the NN approximation errors introduced by implementing the ADP method. Based on Lyapunov approach, stability analysis of the closed-loop system is performed to show that the proposed controller guarantees the system state asymptotically tracking the desired trajectory. Additionally, the obtained control input is proven to be close to the optimal control input within a small bound. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed control scheme.

  12. Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination

    PubMed Central

    Lepora, Nathan F.; Fox, Charles W.; Evans, Mathew H.; Diamond, Mathew E.; Gurney, Kevin; Prescott, Tony J.

    2012-01-01

    Texture perception is studied here in a physical model of the rat whisker system consisting of a robot equipped with a biomimetic vibrissal sensor. Investigations of whisker motion in rodents have led to several explanations for texture discrimination, such as resonance or stick-slips. Meanwhile, electrophysiological studies of decision-making in monkeys have suggested a neural mechanism of evidence accumulation to threshold for competing percepts, described by a probabilistic model of Bayesian sequential analysis. For our robot whisker data, we find that variable reaction-time decision-making with sequential analysis performs better than the fixed response-time maximum-likelihood estimation. These probabilistic classifiers also use whatever available features of the whisker signals aid the discrimination, giving improved performance over a single-feature strategy, such as matching the peak power spectra of whisker vibrations. These results cast new light on how the various proposals for texture discrimination in rodents depend on the whisker contact mechanics and suggest the possibility of a common account of decision-making across mammalian species. PMID:22279155

  13. Initial state-specific photodissociation dynamics of pyrrole via 1 π σ ∗/ S 0 conical intersection initiated with optimally controlled UV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.

    2017-09-01

    Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S0-1πσ∗(1A2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of πσ∗-photochemistry in recent times.

  14. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    NASA Astrophysics Data System (ADS)

    Zhu, Z. W.; Zhang, W. D.; Xu, J.

    2014-03-01

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  15. Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Peerbhay, Kabir Yunus; Mutanga, Onisimo; Ismail, Riyad

    2013-05-01

    Discriminating commercial tree species using hyperspectral remote sensing techniques is critical in monitoring the spatial distributions and compositions of commercial forests. However, issues related to data dimensionality and multicollinearity limit the successful application of the technology. The aim of this study was to examine the utility of the partial least squares discriminant analysis (PLS-DA) technique in accurately classifying six exotic commercial forest species (Eucalyptus grandis, Eucalyptus nitens, Eucalyptus smithii, Pinus patula, Pinus elliotii and Acacia mearnsii) using airborne AISA Eagle hyperspectral imagery (393-900 nm). Additionally, the variable importance in the projection (VIP) method was used to identify subsets of bands that could successfully discriminate the forest species. Results indicated that the PLS-DA model that used all the AISA Eagle bands (n = 230) produced an overall accuracy of 80.61% and a kappa value of 0.77, with user's and producer's accuracies ranging from 50% to 100%. In comparison, incorporating the optimal subset of VIP selected wavebands (n = 78) in the PLS-DA model resulted in an improved overall accuracy of 88.78% and a kappa value of 0.87, with user's and producer's accuracies ranging from 70% to 100%. Bands located predominantly within the visible region of the electromagnetic spectrum (393-723 nm) showed the most capability in terms of discriminating between the six commercial forest species. Overall, the research has demonstrated the potential of using PLS-DA for reducing the dimensionality of hyperspectral datasets as well as determining the optimal subset of bands to produce the highest classification accuracies.

  16. An Optimal Algorithm towards Successive Location Privacy in Sensor Networks with Dynamic Programming

    NASA Astrophysics Data System (ADS)

    Zhao, Baokang; Wang, Dan; Shao, Zili; Cao, Jiannong; Chan, Keith C. C.; Su, Jinshu

    In wireless sensor networks, preserving location privacy under successive inference attacks is extremely critical. Although this problem is NP-complete in general cases, we propose a dynamic programming based algorithm and prove it is optimal in special cases where the correlation only exists between p immediate adjacent observations.

  17. Efficiency optimization of a fast Poisson solver in beam dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei; Pöplau, Gisela; van Rienen, Ursula

    2016-01-01

    Calculating the solution of Poisson's equation relating to space charge force is still the major time consumption in beam dynamics simulations and calls for further improvement. In this paper, we summarize a classical fast Poisson solver in beam dynamics simulations: the integrated Green's function method. We introduce three optimization steps of the classical Poisson solver routine: using the reduced integrated Green's function instead of the integrated Green's function; using the discrete cosine transform instead of discrete Fourier transform for the Green's function; using a novel fast convolution routine instead of an explicitly zero-padded convolution. The new Poisson solver routine preserves the advantages of fast computation and high accuracy. This provides a fast routine for high performance calculation of the space charge effect in accelerators.

  18. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  19. Optimizing Natural Gas Networks through Dynamic Manifold Theory and a Decentralized Algorithm: Belgium Case Study

    NASA Astrophysics Data System (ADS)

    Koch, Caleb; Winfrey, Leigh

    2014-10-01

    Natural Gas is a major energy source in Europe, yet political instabilities have the potential to disrupt access and supply. Energy resilience is an increasingly essential construct and begins with transmission network design. This study proposes a new way of thinking about modelling natural gas flow. Rather than relying on classical economic models, this problem is cast into a time-dependent Hamiltonian dynamics discussion. Traditional Natural Gas constraints, including inelastic demand and maximum/minimum pipe flows, are portrayed as energy functions and built into the dynamics of each pipe flow. Doing so allows the constraints to be built into the dynamics of each pipeline. As time progresses in the model, natural gas flow rates find the minimum energy, thus the optimal gas flow rates. The most important result of this study is using dynamical principles to ensure the output of natural gas at demand nodes remains constant, which is important for country to country natural gas transmission. Another important step in this study is building the dynamics of each flow in a decentralized algorithm format. Decentralized regulation has solved congestion problems for internet data flow, traffic flow, epidemiology, and as demonstrated in this study can solve the problem of Natural Gas congestion. A mathematical description is provided for how decentralized regulation leads to globally optimized network flow. Furthermore, the dynamical principles and decentralized algorithm are applied to a case study of the Fluxys Belgium Natural Gas Network.

  20. Geometry optimization for micro-pressure sensor considering dynamic interference

    NASA Astrophysics Data System (ADS)

    Yu, Zhongliang; Zhao, Yulong; Li, Lili; Tian, Bian; Li, Cun

    2014-09-01

    Presented is the geometry optimization for piezoresistive absolute micro-pressure sensor. A figure of merit called the performance factor (PF) is defined as a quantitative index to describe the comprehensive performances of a sensor including sensitivity, resonant frequency, and acceleration interference. Three geometries are proposed through introducing islands and sensitive beams into typical flat diaphragm. The stress distributions of sensitive elements are analyzed by finite element method. Multivariate fittings based on ANSYS simulation results are performed to establish the equations about surface stress, deflection, and resonant frequency. Optimization by MATLAB is carried out to determine the dimensions of the geometries. Convex corner undercutting is evaluated. Each PF of the three geometries with the determined dimensions is calculated and compared. Silicon bulk micromachining is utilized to fabricate the prototypes of the sensors. The outputs of the sensors under both static and dynamic conditions are tested. Experimental results demonstrate the rationality of the defined performance factor and reveal that the geometry with quad islands presents the highest PF of 210.947 Hz1/4. The favorable overall performances enable the sensor more suitable for altimetry.

  1. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    NASA Astrophysics Data System (ADS)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  2. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  3. Optimal growth entails risky localization in population dynamics

    NASA Astrophysics Data System (ADS)

    Gueudré, Thomas; Martin, David G.

    2018-03-01

    Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.

  4. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination.

    PubMed

    Romo, Ranulfo; Hernández, Adrián; Zainos, Antonio; Salinas, Emilio

    2003-05-22

    During a sensory discrimination task, the responses of multiple sensory neurons must be combined to generate a choice. The optimal combination of responses is determined both by their dependence on the sensory stimulus and by their cofluctuations across trials-that is, the noise correlations. Positively correlated noise is considered deleterious, because it limits the coding accuracy of populations of similarly tuned neurons. However, positively correlated fluctuations between differently tuned neurons actually increase coding accuracy, because they allow the common noise to be subtracted without signal loss. This is demonstrated with data recorded from the secondary somatosensory cortex of monkeys performing a vibrotactile discrimination task. The results indicate that positive correlations are not always harmful and may be exploited by cortical networks to enhance the neural representation of features to be discriminated.

  5. Simulated Annealing-based Optimal Proportional-Integral-Derivative (PID) Controller Design: A Case Study on Nonlinear Quadcopter Dynamics

    NASA Astrophysics Data System (ADS)

    Nemirsky, Kristofer Kevin

    In this thesis, the history and evolution of rotor aircraft with simulated annealing-based PID application were reviewed and quadcopter dynamics are presented. The dynamics of a quadcopter were then modeled, analyzed, and linearized. A cascaded loop architecture with PID controllers was used to stabilize the plant dynamics, which was improved upon through the application of simulated annealing (SA). A Simulink model was developed to test the controllers and verify the functionality of the proposed control system design. In addition, the data that the Simulink model provided were compared with flight data to present the validity of derived dynamics as a proper mathematical model representing the true dynamics of the quadcopter system. Then, the SA-based global optimization procedure was applied to obtain optimized PID parameters. It was observed that the tuned gains through the SA algorithm produced a better performing PID controller than the original manually tuned one. Next, we investigated the uncertain dynamics of the quadcopter setup. After adding uncertainty to the gyroscopic effects associated with pitch-and-roll rate dynamics, the controllers were shown to be robust against the added uncertainty. A discussion follows to summarize SA-based algorithm PID controller design and performance outcomes. Lastly, future work on SA application on multi-input-multi-output (MIMO) systems is briefly discussed.

  6. Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory.

    PubMed

    Wong, W O; Fan, R P; Cheng, F

    2018-02-01

    A viscoelastic dynamic vibration absorber (VDVA) is proposed for suppressing infrasonic vibrations of heavy structures because the traditional dynamic vibration absorber equipped with a viscous damper is not effective in suppressing low frequency vibrations. The proposed VDVA has an elastic spring and a viscoelastic damper with frequency dependent modulus and damping properties. The standard fixed-points theory cannot be applied to derive the optimum design parameters of the VDVA because both its stiffness and damping are frequency dependent. A modified fixed-points theory is therefore proposed to solve this problem. H ∞ design optimization of the proposed VDVA have been derived for the minimization of resonant vibration amplitude of a single degree-of-freedom system excited by harmonic forces or due to ground motions. The stiffness and damping of the proposed VDVA can be decoupled such that both of these two properties of the absorber can be tuned independently to their optimal values by following a specified procedure. The proposed VDVA with optimized design is tested numerically using two real commercial viscoelastic damping materials. It is found that the proposed viscoelastic absorber can provide much stronger vibration reduction effect than the conventional VDVA without the elastic spring.

  7. Aircraft path planning for optimal imaging using dynamic cost functions

    NASA Astrophysics Data System (ADS)

    Christie, Gordon; Chaudhry, Haseeb; Kochersberger, Kevin

    2015-05-01

    Unmanned aircraft development has accelerated with recent technological improvements in sensing and communications, which has resulted in an "applications lag" for how these aircraft can best be utilized. The aircraft are becoming smaller, more maneuverable and have longer endurance to perform sensing and sampling missions, but operating them aggressively to exploit these capabilities has not been a primary focus in unmanned systems development. This paper addresses a means of aerial vehicle path planning to provide a realistic optimal path in acquiring imagery for structure from motion (SfM) reconstructions and performing radiation surveys. This method will allow SfM reconstructions to occur accurately and with minimal flight time so that the reconstructions can be executed efficiently. An assumption is made that we have 3D point cloud data available prior to the flight. A discrete set of scan lines are proposed for the given area that are scored based on visibility of the scene. Our approach finds a time-efficient path and calculates trajectories between scan lines and over obstacles encountered along those scan lines. Aircraft dynamics are incorporated into the path planning algorithm as dynamic cost functions to create optimal imaging paths in minimum time. Simulations of the path planning algorithm are shown for an urban environment. We also present our approach for image-based terrain mapping, which is able to efficiently perform a 3D reconstruction of a large area without the use of GPS data.

  8. An optimal strategy for functional mapping of dynamic trait loci.

    PubMed

    Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling

    2010-02-01

    As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.

  9. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    NASA Astrophysics Data System (ADS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods.

  10. Generalized bipartite quantum state discrimination problems with sequential measurements

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki

    2018-02-01

    We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.

  11. Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks

    NASA Astrophysics Data System (ADS)

    Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin

    Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.

  12. Genetic Discrimination

    MedlinePlus

    ... the News Canadian 41 st Parliament Passes New Law, S-201 "Genetic Non-Discrimination Act" Canadian lawmakers passed ... Title II). Read more Genetic Discrimination and Other Laws Genetic Discrimination and Other Laws includes the Health ...

  13. Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2013-01-01

    This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.

  14. Stochastic optimal control of ultradiffusion processes with application to dynamic portfolio management

    NASA Astrophysics Data System (ADS)

    Marcozzi, Michael D.

    2008-12-01

    We consider theoretical and approximation aspects of the stochastic optimal control of ultradiffusion processes in the context of a prototype model for the selling price of a European call option. Within a continuous-time framework, the dynamic management of a portfolio of assets is effected through continuous or point control, activation costs, and phase delay. The performance index is derived from the unique weak variational solution to the ultraparabolic Hamilton-Jacobi equation; the value function is the optimal realization of the performance index relative to all feasible portfolios. An approximation procedure based upon a temporal box scheme/finite element method is analyzed; numerical examples are presented in order to demonstrate the viability of the approach.

  15. Dynamic context discrimination : psychological evidence for the Sandia Cognitive Framework.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, Ann Elizabeth

    Human behavior is a function of an iterative interaction between the stimulus environment and past experience. It is not simply a matter of the current stimulus environment activating the appropriate experience or rule from memory (e.g., if it is dark and I hear a strange noise outside, then I turn on the outside lights and investigate). Rather, it is a dynamic process that takes into account not only things one would generally do in a given situation, but things that have recently become known (e.g., there have recently been coyotes seen in the area and one is known to bemore » rabid), as well as other immediate environmental characteristics (e.g., it is snowing outside, I know my dog is outside, I know the police are already outside, etc.). All of these factors combine to inform me of the most appropriate behavior for the situation. If it were the case that humans had a rule for every possible contingency, the amount of storage that would be required to enable us to fluidly deal with most situations we encounter would rapidly become biologically untenable. We can all deal with contingencies like the one above with fairly little effort, but if it isn't based on rules, what is it based on? The assertion of the Cognitive Systems program at Sandia for the past 5 years is that at the heart of this ability to effectively navigate the world is an ability to discriminate between different contexts (i.e., Dynamic Context Discrimination, or DCD). While this assertion in and of itself might not seem earthshaking, it is compelling that this ability and its components show up in a wide variety of paradigms across different subdisciplines in psychology. We begin by outlining, at a high functional level, the basic ideas of DCD. We then provide evidence from several different literatures and paradigms that support our assertion that DCD is a core aspect of cognitive functioning. Finally, we discuss DCD and the computational model that we have developed as an instantiation of

  16. The assessment of biases in the acoustic discrimination of individuals

    PubMed Central

    Šálek, Martin

    2017-01-01

    Animal vocalizations contain information about individual identity that could potentially be used for the monitoring of individuals. However, the performance of individual discrimination is subjected to many biases depending on factors such as the amount of identity information, or methods used. These factors need to be taken into account when comparing results of different studies or selecting the most cost-effective solution for a particular species. In this study, we evaluate several biases associated with the discrimination of individuals. On a large sample of little owl male individuals, we assess how discrimination performance changes with methods of call description, an increasing number of individuals, and number of calls per male. Also, we test whether the discrimination performance within the whole population can be reliably estimated from a subsample of individuals in a pre-screening study. Assessment of discrimination performance at the level of the individual and at the level of call led to different conclusions. Hence, studies interested in individual discrimination should optimize methods at the level of individuals. The description of calls by their frequency modulation leads to the best discrimination performance. In agreement with our expectations, discrimination performance decreased with population size. Increasing the number of calls per individual linearly increased the discrimination of individuals (but not the discrimination of calls), likely because it allows distinction between individuals with very similar calls. The available pre-screening index does not allow precise estimation of the population size that could be reliably monitored. Overall, projects applying acoustic monitoring at the individual level in population need to consider limitations regarding the population size that can be reliably monitored and fine-tune their methods according to their needs and limitations. PMID:28486488

  17. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  18. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    DOT National Transportation Integrated Search

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...

  19. MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.

    PubMed

    Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang

    2013-01-01

    Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.

  20. Learning Robust and Discriminative Subspace With Low-Rank Constraints.

    PubMed

    Li, Sheng; Fu, Yun

    2016-11-01

    In this paper, we aim at learning robust and discriminative subspaces from noisy data. Subspace learning is widely used in extracting discriminative features for classification. However, when data are contaminated with severe noise, the performance of most existing subspace learning methods would be limited. Recent advances in low-rank modeling provide effective solutions for removing noise or outliers contained in sample sets, which motivates us to take advantage of low-rank constraints in order to exploit robust and discriminative subspace for classification. In particular, we present a discriminative subspace learning method called the supervised regularization-based robust subspace (SRRS) approach, by incorporating the low-rank constraint. SRRS seeks low-rank representations from the noisy data, and learns a discriminative subspace from the recovered clean data jointly. A supervised regularization function is designed to make use of the class label information, and therefore to enhance the discriminability of subspace. Our approach is formulated as a constrained rank-minimization problem. We design an inexact augmented Lagrange multiplier optimization algorithm to solve it. Unlike the existing sparse representation and low-rank learning methods, our approach learns a low-dimensional subspace from recovered data, and explicitly incorporates the supervised information. Our approach and some baselines are evaluated on the COIL-100, ALOI, Extended YaleB, FERET, AR, and KinFace databases. The experimental results demonstrate the effectiveness of our approach, especially when the data contain considerable noise or variations.

  1. Effects of perceived weight discrimination on willingness to adopt unhealthy behaviours: influence of genomic information.

    PubMed

    Beekman, Janine B; Ferrer, Rebecca A; Klein, William M P; Persky, Susan

    2016-01-01

    Weight-based discrimination negatively influences health, potentially via increased willingness to engage in unhealthful behaviours. This study examines whether the provision of genomic obesity information in a clinical context can lead to less willingness to engage in unhealthy eating and alcohol consumption through a mediated process including reduced perceptions of blame and discrimination. A total of 201 overweight or obese women aged 20-50 interacted with a virtual physician in a simulated clinical primary care environment, which included physician-delivered information that emphasised either genomic or behavioural underpinnings of weight and weight loss. Perceived blame and weight discrimination from the doctor, and willingness to eat unhealthy foods and consume alcohol. Controlling for BMI and race, participants who received genomic information perceived less blame from the doctor than participants who received behavioural information. In a serial multiple mediation model, reduced perceived blame was associated with less perceived discrimination, and in turn, lower willingness to eat unhealthy foods and drink alcohol. Providing patients with genomic information about weight and weight loss may positively influence interpersonal dynamics between patients and providers by reducing perceived blame and perceived discrimination. These improved dynamics, in turn, positively influence health cognitions.

  2. A Combinatorial Kin Discrimination System in Bacillus subtilis.

    PubMed

    Lyons, Nicholas A; Kraigher, Barbara; Stefanic, Polonca; Mandic-Mulec, Ines; Kolter, Roberto

    2016-03-21

    Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Representation in dynamical agents.

    PubMed

    Ward, Ronnie; Ward, Robert

    2009-04-01

    This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.

  4. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.

    2016-01-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230

  5. A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C

    2015-03-01

    T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.

  6. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    PubMed

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  7. Context-dependent discrimination and the evolution of mimicry.

    PubMed

    Holen, Øistein Haugsten; Johnstone, Rufus A

    2006-03-01

    Many mimetic organisms have evolved a close resemblance to their models, making it difficult to discriminate between them on the basis of appearance alone. However, if mimics and models differ slightly in their activity patterns, behavior, or use of microhabitats, the exact circumstances under which a signaler is encountered may provide additional clues to its identity. We employ an optimality model of mimetic discrimination in which signal receivers obtain information about the relative risk of encountering mimics and models by observing an external background cue and flexibly adjust their response thresholds. Although such flexibility on the part of signal receivers has been predicted by theory and is supported by empirical evidence in a range of biological settings, little is known about the effects it has on signalers. We show that the presence of external cues that partly reveal signaler identity may benefit models and harm mimics, harm both, or even benefit both, depending on ecological circumstances. Moreover, if mimetic traits are costly to express, or mimics are related to their neighbors, context-dependent discrimination can dramatically alter the outcome of mimetic evolution. We discuss context-dependent discrimination among signal receivers in relation to small-scale synchrony in model and mimic activity patterns.

  8. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn; Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin; Zhang, W. D., E-mail: zhangwenditju@126.com

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposedmore » in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.« less

  9. The Dynamic Range Paradox: A Central Auditory Model of Intensity Change Detection

    PubMed Central

    Simpson, Andrew J.R.; Reiss, Joshua D.

    2013-01-01

    In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10−6). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND

  10. Effects of high-color-discrimination capability spectra on color-deficient vision.

    PubMed

    Perales, Esther; Linhares, João Manuel Maciel; Masuda, Osamu; Martínez-Verdú, Francisco M; Nascimento, Sérgio Miguel Cardoso

    2013-09-01

    Light sources with three spectral bands in specific spectral positions are known to have high-color-discrimination capability. W. A. Thornton hypothesized that they may also enhance color discrimination for color-deficient observers. This hypothesis was tested here by comparing the Rösch-MacAdam color volume for color-deficient observers rendered by three of these singular spectra, two reported previously and one derived in this paper by maximization of the Rösch-MacAdam color solid. It was found that all illuminants tested enhance discriminability for deuteranomalous observers, but their impact on other congenital deficiencies was variable. The best illuminant was the one derived here, as it was clearly advantageous for the two red-green anomalies and for tritanopes and almost neutral for red-green dichromats. We conclude that three-band spectra with high-color-discrimination capability for normal observers do not necessarily produce comparable enhancements for color-deficient observers, but suitable spectral optimization clearly enhances the vision of the color deficient.

  11. Cultural Orientation and Coping with Perceived Discrimination among African American Youth.

    ERIC Educational Resources Information Center

    Scott, Lionel D., Jr.

    2003-01-01

    Explored whether the resonance of certain orientations and dimensions purportedly distinctive of black culture (affect, communalism, and spirituality) and mainstream American culture (competition, effort optimism, and individualism) related to African American youths' strategies for coping with perceived discrimination. Surveys of Ohio and Alabama…

  12. Perceived Discrimination and Psychological Well-Being: The Mediating and Moderating Role of Sense of Control

    ERIC Educational Resources Information Center

    Jang, Yuri; Chiriboga, David A.; Small, Brent J.

    2008-01-01

    Being discriminated against is an unpleasant and stressful experience, and its connection to reduced psychological well-being is well-documented. The present study hypothesized that a sense of control would serve as both mediator and moderator in the dynamics of perceived discrimination and psychological well-being. In addition, variations by age,…

  13. Fundamental frequency discrimination and speech perception in noise in cochlear implant simulationsa)

    PubMed Central

    Carroll, Jeff; Zeng, Fan-Gang

    2007-01-01

    Increasing the number of channels at low frequencies improves discrimination of fundamental frequency (F0) in cochlear implants [Geurts and Wouters 2004]. We conducted three experiments to test whether improved F0 discrimination can be translated into increased speech intelligibility in noise in a cochlear implant simulation. The first experiment measured F0 discrimination and speech intelligibility in quiet as a function of channel density over different frequency regions. The results from this experiment showed a tradeoff in performance between F0 discrimination and speech intelligibility with a limited number of channels. The second experiment tested whether improved F0 discrimination and optimizing this tradeoff could improve speech performance with a competing talker. However, improved F0 discrimination did not improve speech intelligibility in noise. The third experiment identified the critical number of channels needed at low frequencies to improve speech intelligibility in noise. The result showed that, while 16 channels below 500 Hz were needed to observe any improvement in speech intelligibility in noise, even 32 channels did not achieve normal performance. Theoretically, these results suggest that without accurate spectral coding, F0 discrimination and speech perception in noise are two independent processes. Practically, the present results illustrate the need to increase the number of independent channels in cochlear implants. PMID:17604581

  14. Self-optimizing charge-transfer energy phenomena in metallosupramolecular complexes by dynamic constitutional self-sorting.

    PubMed

    Legrand, Yves-Marie; van der Lee, Arie; Barboiu, Mihail

    2007-11-12

    In this paper we report an extended series of 2,6-(iminoarene)pyridine-type ZnII complexes [(Lii)2Zn]II, which were surveyed for their ability to self-exchange both their ligands and their aromatic arms and to form different homoduplex and heteroduplex complexes in solution. The self-sorting of heteroduplex complexes is likely to be the result of geometric constraints. Whereas the imine-exchange process occurs quantitatively in 1:1 mixtures of [(Lii)2Zn]II complexes, the octahedral coordination process around the metal ion defines spatial-frustrated exchanges that involve the selective formation of heterocomplexes of two, by two different substituents; the bulkiest ones (pyrene in principle) specifically interact with the pseudoterpyridine core, sterically hindering the least bulky ones, which are intermolecularly stacked with similar ligands of neighboring molecules. Such a self-sorting process defined by the specific self-constitution of the ligands exchanging their aromatic substituents is self-optimized by a specific control over their spatial orientation around a metal center within the complex. They ultimately show an improved charge-transfer energy function by virtue of the dynamic amplification of self-optimized heteroduplex architectures. These systems therefore illustrate the convergence of the combinatorial self-sorting of the dynamic combinatorial libraries (DCLs) strategy and the constitutional self-optimized function.

  15. Experimental evaluation of HJB optimal controllers for the attitude dynamics of a multirotor aerial vehicle.

    PubMed

    Prado, Igor Afonso Acampora; Pereira, Mateus de Freitas Virgílio; de Castro, Davi Ferreira; Dos Santos, Davi Antônio; Balthazar, Jose Manoel

    2018-06-01

    The present paper is concerned with the design and experimental evaluation of optimal control laws for the nonlinear attitude dynamics of a multirotor aerial vehicle. Three design methods based on Hamilton-Jacobi-Bellman equation are taken into account. The first one is a linear control with guarantee of stability for nonlinear systems. The second and third are a nonlinear suboptimal control techniques. These techniques are based on an optimal control design approach that takes into account the nonlinearities present in the vehicle dynamics. The stability Proof of the closed-loop system is presented. The performance of the control system designed is evaluated via simulations and also via an experimental scheme using the Quanser 3-DOF Hover. The experiments show the effectiveness of the linear control method over the nonlinear strategy. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Supervised non-negative tensor factorization for automatic hyperspectral feature extraction and target discrimination

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael

    2017-05-01

    Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.

  17. Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay

    2016-03-01

    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.

  18. Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

    PubMed

    Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie

    2017-09-12

    In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.

  19. Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro-micro manipulator

    NASA Astrophysics Data System (ADS)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Zhao, Xiao-wei

    2017-09-01

    This paper reports the nonlinear dynamic modeling and the optimal trajectory planning for a flexure-based macro-micro manipulator, which is dedicated to the large-scale and high-speed tasks. In particular, a macro- micro manipulator composed of a servo motor, a rigid arm and a compliant microgripper is focused. Moreover, both flexure hinges and flexible beams are considered. By combining the pseudorigid-body-model method, the assumed mode method and the Lagrange equation, the overall dynamic model is derived. Then, the rigid-flexible-coupling characteristics are analyzed by numerical simulations. After that, the microscopic scale vibration excited by the large-scale motion is reduced through the trajectory planning approach. Especially, a fitness function regards the comprehensive excitation torque of the compliant microgripper is proposed. The reference curve and the interpolation curve using the quintic polynomial trajectories are adopted. Afterwards, an improved genetic algorithm is used to identify the optimal trajectory by minimizing the fitness function. Finally, the numerical simulations and experiments validate the feasibility and the effectiveness of the established dynamic model and the trajectory planning approach. The amplitude of the residual vibration reduces approximately 54.9%, and the settling time decreases 57.1%. Therefore, the operation efficiency and manipulation stability are significantly improved.

  20. Salient object detection based on discriminative boundary and multiple cues integration

    NASA Astrophysics Data System (ADS)

    Jiang, Qingzhu; Wu, Zemin; Tian, Chang; Liu, Tao; Zeng, Mingyong; Hu, Lei

    2016-01-01

    In recent years, many saliency models have achieved good performance by taking the image boundary as the background prior. However, if all boundaries of an image are equally and artificially selected as background, misjudgment may happen when the object touches the boundary. We propose an algorithm called weighted contrast optimization based on discriminative boundary (wCODB). First, a background estimation model is reliably constructed through discriminating each boundary via Hausdorff distance. Second, the background-only weighted contrast is improved by fore-background weighted contrast, which is optimized through weight-adjustable optimization framework. Then to objectively estimate the quality of a saliency map, a simple but effective metric called spatial distribution of saliency map and mean saliency in covered window ratio (MSR) is designed. Finally, in order to further promote the detection result using MSR as the weight, we propose a saliency fusion framework to integrate three other cues-uniqueness, distribution, and coherence from three representative methods into our wCODB model. Extensive experiments on six public datasets demonstrate that our wCODB performs favorably against most of the methods based on boundary, and the integrated result outperforms all state-of-the-art methods.

  1. Racial discrimination: a continuum of violence exposure for children of color.

    PubMed

    Sanders-Phillips, Kathy

    2009-06-01

    This article reviews and examines findings on the impact of racial discrimination on the development and functioning of children of color in the US. Based on current definitions of violence and child maltreatment, exposure to racial discrimination should be considered as a form of violence that can significantly impact child outcomes and limit the ability of parents and communities to provide support that promotes resiliency and optimal child development. In this article, a conceptual model of the effects of racial discrimination in children of color is presented. The model posits that exposure to racial discrimination may be a chronic source of trauma in the lives of many children of color that negatively influences mental and physical outcomes as well as parent and community support and functioning. Concurrent exposure to other forms of violence, including domestic, interpersonal and/or community violence, may exacerbate these effects. The impact of a potential continuum of violence exposure for children of color in the US and the need for future research and theoretical models on children's exposure to violence that attend to the impact of racial discrimination on child outcomes are discussed.

  2. Dynamical modeling and multi-experiment fitting with PottersWheel

    PubMed Central

    Maiwald, Thomas; Timmer, Jens

    2008-01-01

    Motivation: Modelers in Systems Biology need a flexible framework that allows them to easily create new dynamic models, investigate their properties and fit several experimental datasets simultaneously. Multi-experiment-fitting is a powerful approach to estimate parameter values, to check the validity of a given model, and to discriminate competing model hypotheses. It requires high-performance integration of ordinary differential equations and robust optimization. Results: We here present the comprehensive modeling framework Potters-Wheel (PW) including novel functionalities to satisfy these requirements with strong emphasis on the inverse problem, i.e. data-based modeling of partially observed and noisy systems like signal transduction pathways and metabolic networks. PW is designed as a MATLAB toolbox and includes numerous user interfaces. Deterministic and stochastic optimization routines are combined by fitting in logarithmic parameter space allowing for robust parameter calibration. Model investigation includes statistical tests for model-data-compliance, model discrimination, identifiability analysis and calculation of Hessian- and Monte-Carlo-based parameter confidence limits. A rich application programming interface is available for customization within own MATLAB code. Within an extensive performance analysis, we identified and significantly improved an integrator–optimizer pair which decreases the fitting duration for a realistic benchmark model by a factor over 3000 compared to MATLAB with optimization toolbox. Availability: PottersWheel is freely available for academic usage at http://www.PottersWheel.de/. The website contains a detailed documentation and introductory videos. The program has been intensively used since 2005 on Windows, Linux and Macintosh computers and does not require special MATLAB toolboxes. Contact: maiwald@fdm.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18614583

  3. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization.

    PubMed

    Dühring, Sybille; Ewald, Jan; Germerodt, Sebastian; Kaleta, Christoph; Dandekar, Thomas; Schuster, Stefan

    2017-07-01

    The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage- Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host-pathogen interaction of macrophages and C. albicans For this, we study the population dynamics of the macrophage- C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells. © 2017 The Author(s).

  4. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow

    PubMed Central

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705

  5. Dynamic path planning for mobile robot based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.

  6. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  7. Performance monitoring for new phase dynamic optimization of instruction dispatch cluster configuration

    DOEpatents

    Balasubramonian, Rajeev [Sandy, UT; Dwarkadas, Sandhya [Rochester, NY; Albonesi, David [Ithaca, NY

    2012-01-24

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  8. Cargo and Container X-Ray Inspection with Intra-Pulse Multi-Energy Method for Material Discrimination

    NASA Astrophysics Data System (ADS)

    Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin

    The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.

  9. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks

    PubMed Central

    Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Li, Baoqing; Yuan, Xiaobing

    2017-01-01

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum–minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms. PMID:28753962

  10. Dynamic Hierarchical Energy-Efficient Method Based on Combinatorial Optimization for Wireless Sensor Networks.

    PubMed

    Chang, Yuchao; Tang, Hongying; Cheng, Yongbo; Zhao, Qin; Yuan, Baoqing Li andXiaobing

    2017-07-19

    Routing protocols based on topology control are significantly important for improving network longevity in wireless sensor networks (WSNs). Traditionally, some WSN routing protocols distribute uneven network traffic load to sensor nodes, which is not optimal for improving network longevity. Differently to conventional WSN routing protocols, we propose a dynamic hierarchical protocol based on combinatorial optimization (DHCO) to balance energy consumption of sensor nodes and to improve WSN longevity. For each sensor node, the DHCO algorithm obtains the optimal route by establishing a feasible routing set instead of selecting the cluster head or the next hop node. The process of obtaining the optimal route can be formulated as a combinatorial optimization problem. Specifically, the DHCO algorithm is carried out by the following procedures. It employs a hierarchy-based connection mechanism to construct a hierarchical network structure in which each sensor node is assigned to a special hierarchical subset; it utilizes the combinatorial optimization theory to establish the feasible routing set for each sensor node, and takes advantage of the maximum-minimum criterion to obtain their optimal routes to the base station. Various results of simulation experiments show effectiveness and superiority of the DHCO algorithm in comparison with state-of-the-art WSN routing algorithms, including low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), genetic protocol-based self-organizing network clustering (GASONeC), and double cost function-based routing (DCFR) algorithms.

  11. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    NASA Astrophysics Data System (ADS)

    Eliasson, Peder

    2008-05-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.

  12. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  13. Prediction uncertainty and optimal experimental design for learning dynamical systems.

    PubMed

    Letham, Benjamin; Letham, Portia A; Rudin, Cynthia; Browne, Edward P

    2016-06-01

    Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.

  14. Soybean varieties discrimination using non-imaging hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    da Silva Junior, Carlos Antonio; Nanni, Marcos Rafael; Shakir, Muhammad; Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; Cezar, Everson; de Gois, Givanildo; Lima, Mendelson; Wojciechowski, Julio Cesar; Shiratsuchi, Luciano Shozo

    2018-03-01

    Infrared region of electromagnetic spectrum has remarkable applications in crop studies. Infrared along with Red band has been used to develop certain vegetation indices. These indices like NDVI, EVI provide important information on any crop physiological stages. The main objective of this research was to discriminate 4 different soybean varieties (BMX Potência, NA5909, FT Campo Mourão and Don Mario) using non-imaging hyperspectral sensor. The study was conducted in four agricultural areas in the municipality of Deodápolis (MS), Brazil. For spectral analysis, 2400 field samples were taken from soybean leaves by means of FieldSpec 3 JR spectroradiometer in the range from 350 to 2500 nm. The data were evaluated through multivariate analysis with the whole set of spectral curves isolated by blue, green, red and near infrared wavelengths along with the addition of vegetation indices like (Enhanced Vegetation Index - EVI, Normalized Difference Vegetation Index - NDVI, Green Normalized Difference Vegetation Index - GNDVI, Soil-adjusted Vegetation Index - SAVI, Transformed Vegetation Index - TVI and Optimized Soil-Adjusted Vegetation Index - OSAVI). A number of the analysis performed where, discriminant (60 and 80% of the data), simulated discriminant (40 and 20% of data), principal component (PC) and cluster analysis (CA). Discriminant and simulated discriminant analyze presented satisfactory results, with average global hit rates of 99.28 and 98.77%, respectively. The results obtained by PC and CA revealed considerable associations between the evaluated variables and the varieties, which indicated that each variety has a variable that discriminates it more effectively in relation to the others. There was great variation in the sample size (number of leaves) for estimating the mean of variables. However, it was possible to observe that 200 leaves allow to obtain a maximum error of 2% in relation to the mean.

  15. Optimization of matrix tablets controlled drug release using Elman dynamic neural networks and decision trees.

    PubMed

    Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica

    2012-05-30

    The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A system dynamics optimization framework to achieve population desired of average weight target

    NASA Astrophysics Data System (ADS)

    Abidin, Norhaslinda Zainal; Zulkepli, Jafri Haji; Zaibidi, Nerda Zura

    2017-11-01

    Obesity is becoming a serious problem in Malaysia as it has been rated as the highest among Asian countries. The aim of the paper is to propose a system dynamics (SD) optimization framework to achieve population desired weight target based on the changes in physical activity behavior and its association to weight and obesity. The system dynamics approach of stocks and flows diagram was used to quantitatively model the impact of both behavior on the population's weight and obesity trends. This work seems to bring this idea together and highlighting the interdependence of the various aspects of eating and physical activity behavior on the complex of human weight regulation system. The model was used as an experimentation vehicle to investigate the impacts of changes in physical activity on weight and prevalence of obesity implications. This framework paper provides evidence on the usefulness of SD optimization as a strategic decision making approach to assist in decision making related to obesity prevention. SD applied in this research is relatively new in Malaysia and has a high potential to apply to any feedback models that address the behavior cause to obesity.

  17. A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.

    PubMed

    Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan

    2015-06-01

    Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.

  18. Riemannian geometric approach to human arm dynamics, movement optimization, and invariance

    NASA Astrophysics Data System (ADS)

    Biess, Armin; Flash, Tamar; Liebermann, Dario G.

    2011-03-01

    We present a generally covariant formulation of human arm dynamics and optimization principles in Riemannian configuration space. We extend the one-parameter family of mean-squared-derivative (MSD) cost functionals from Euclidean to Riemannian space, and we show that they are mathematically identical to the corresponding dynamic costs when formulated in a Riemannian space equipped with the kinetic energy metric. In particular, we derive the equivalence of the minimum-jerk and minimum-torque change models in this metric space. Solutions of the one-parameter family of MSD variational problems in Riemannian space are given by (reparametrized) geodesic paths, which correspond to movements with least muscular effort. Finally, movement invariants are derived from symmetries of the Riemannian manifold. We argue that the geometrical structure imposed on the arm’s configuration space may provide insights into the emerging properties of the movements generated by the motor system.

  19. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; He, Yong; Hu, Xingyue

    2007-12-01

    An optical system based on visible/near-infrared spectroscopy (Vis/NIRS) for variety discrimination of ginkgo (Ginkgo biloba L.) tablets was developed. This system consisted of a light source, beam splitter system, sample chamber, optical detector (diffuse reflection detector), and data collection. The tablet varieties used in the research include Da na kang, Xin bang, Tian bao ning, Yi kang, Hua na xing, Dou le, Lv yuan, Hai wang, and Ji yao. All samples (n=270) were scanned in the Vis/NIR region between 325 and 1075 nm using a spectrograph. The chemometrics method of principal component artificial neural network (PC-ANN) was used to establish discrimination models of them. In PC-ANN models, the scores of the principal components were chosen as the input nodes for the input layer of ANN, and the best discrimination rate of 91.1% was reached. Principal component analysis was also executed to select several optimal wavelengths based on loading values. Wavelengths at 481, 458, 466, 570, 1000, 662, and 400 nm were then used as the input data of stepwise multiple linear regression, the regression equation of ginkgo tablets was obtained, and the discrimination rate was researched 84.4%. The results indicated that this optical system could be applied to discriminating ginkgo (Ginkgo biloba L.) tablets, and it supplied a new method for fast ginkgo tablet variety discrimination.

  20. Chaotic dynamics in optimal monetary policy

    NASA Astrophysics Data System (ADS)

    Gomes, O.; Mendes, V. M.; Mendes, D. A.; Sousa Ramos, J.

    2007-05-01

    There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King [ NBER Macroeconomics Annual 1997 edited by B. Bernanke and J. Rotemberg (Cambridge, Mass.: MIT Press, 1997), pp. 231 282], Clarida et al. [J. Econ. Lit. 37, 1661 (1999)], Svensson [J. Mon. Econ. 43, 607 (1999)] and Woodford [ Interest and Prices: Foundations of a Theory of Monetary Policy (Princeton, New Jersey, Princeton University Press, 2003)]. In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its

  1. Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection.

    PubMed

    Heinz, M G; Colburn, H S; Carney, L H

    2001-10-01

    The perceptual significance of the cochlear amplifier was evaluated by predicting level-discrimination performance based on stochastic auditory-nerve (AN) activity. Performance was calculated for three models of processing: the optimal all-information processor (based on discharge times), the optimal rate-place processor (based on discharge counts), and a monaural coincidence-based processor that uses a non-optimal combination of rate and temporal information. An analytical AN model included compressive magnitude and level-dependent-phase responses associated with the cochlear amplifier, and high-, medium-, and low-spontaneous-rate (SR) fibers with characteristic frequencies (CFs) spanning the AN population. The relative contributions of nonlinear magnitude and nonlinear phase responses to level encoding were compared by using four versions of the model, which included and excluded the nonlinear gain and phase responses in all possible combinations. Nonlinear basilar-membrane (BM) phase responses are robustly encoded in near-CF AN fibers at low frequencies. Strongly compressive BM responses at high frequencies near CF interact with the high thresholds of low-SR AN fibers to produce large dynamic ranges. Coincidence performance based on a narrow range of AN CFs was robust across a wide dynamic range at both low and high frequencies, and matched human performance levels. Coincidence performance based on all CFs demonstrated the "near-miss" to Weber's law at low frequencies and the high-frequency "mid-level bump." Monaural coincidence detection is a physiologically realistic mechanism that is extremely general in that it can utilize AN information (average-rate, synchrony, and nonlinear-phase cues) from all SR groups.

  2. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Hariharan, Prasanna; Myers, Matthew R; Badano, Aldo

    2011-10-01

    To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml/s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml/s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to improved discrimination of breast cancer lesions.

  3. Development and characterization of a dynamic lesion phantom for the quantitative evaluation of dynamic contrast-enhanced MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Hariharan, Prasanna; R. Myers, Matthew; Badano, Aldo

    2011-01-01

    Purpose: To develop a dynamic lesion phantom that is capable of producing physiological kinetic curves representative of those seen in human dynamic contrast-enhanced MRI (DCE-MRI) data. The objective of this phantom is to provide a platform for the quantitative comparison of DCE-MRI protocols to aid in the standardization and optimization of breast DCE-MRI. Methods: The dynamic lesion consists of a hollow, plastic mold with inlet and outlet tubes to allow flow of a contrast agent solution through the lesion over time. Border shape of the lesion can be controlled using the lesion mold production method. The configuration of the inlet and outlet tubes was determined using fluid transfer simulations. The total fluid flow rate was determined using x-ray images of the lesion for four different flow rates (0.25, 0.5, 1.0, and 1.5 ml∕s) to evaluate the resultant kinetic curve shape and homogeneity of the contrast agent distribution in the dynamic lesion. High spatial and temporal resolution x-ray measurements were used to estimate the true kinetic curve behavior in the dynamic lesion for benign and malignant example curves. DCE-MRI example data were acquired of the dynamic phantom using a clinical protocol. Results: The optimal inlet and outlet tube configuration for the lesion molds was two inlet molds separated by 30° and a single outlet tube directly between the two inlet tubes. X-ray measurements indicated that 1.0 ml∕s was an appropriate total fluid flow rate and provided truth for comparison with MRI data of kinetic curves representative of benign and malignant lesions. DCE-MRI data demonstrated the ability of the phantom to produce realistic kinetic curves. Conclusions: The authors have constructed a dynamic lesion phantom, demonstrated its ability to produce physiological kinetic curves, and provided estimations of its true kinetic curve behavior. This lesion phantom provides a tool for the quantitative evaluation of DCE-MRI protocols, which may lead to

  4. Partial Least Squares for Discrimination in fMRI Data

    PubMed Central

    Andersen, Anders H.; Rayens, William S.; Liu, Yushu; Smith, Charles D.

    2011-01-01

    Multivariate methods for discrimination were used in the comparison of brain activation patterns between groups of cognitively normal women who are at either high or low Alzheimer's disease risk based on family history and apolipoprotein-E4 status. Linear discriminant analysis (LDA) was preceded by dimension reduction using either principal component analysis (PCA), partial least squares (PLS), or a new oriented partial least squares (OrPLS) method. The aim was to identify a spatial pattern of functionally connected brain regions that was differentially expressed by the risk groups and yielded optimal classification accuracy. Multivariate dimension reduction is required prior to LDA when the data contains more feature variables than there are observations on individual subjects. Whereas PCA has been commonly used to identify covariance patterns in neuroimaging data, this approach only identifies gross variability and is not capable of distinguishing among-groups from within-groups variability. PLS and OrPLS provide a more focused dimension reduction by incorporating information on class structure and therefore lead to more parsimonious models for discrimination. Performance was evaluated in terms of the cross-validated misclassification rates. The results support the potential of using fMRI as an imaging biomarker or diagnostic tool to discriminate individuals with disease or high risk. PMID:22227352

  5. Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control

    NASA Astrophysics Data System (ADS)

    Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.

    2016-02-01

    A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.

  6. How to formulate and solve "optimal stand density over time" problems for even-aged stands using dynamic programming.

    Treesearch

    Chung M. Chen; Dietmar W. Rose; Rolfe A. Leary

    1980-01-01

    Describes how dynamic programming can be used to solve optimal stand density problems when yields are given by prior simulation or by a new stand growth equation that is a function of the decision variable. Formulations of the latter type allow use of a calculus-based search procedure; they determine exact optimal residual density at each stage.

  7. Parametrization and Optimization of Gaussian Non-Markovian Unravelings for Open Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Megier, Nina; Strunz, Walter T.; Viviescas, Carlos; Luoma, Kimmo

    2018-04-01

    We derive a family of Gaussian non-Markovian stochastic Schrödinger equations for the dynamics of open quantum systems. The different unravelings correspond to different choices of squeezed coherent states, reflecting different measurement schemes on the environment. Consequently, we are able to give a single shot measurement interpretation for the stochastic states and microscopic expressions for the noise correlations of the Gaussian process. By construction, the reduced dynamics of the open system does not depend on the squeezing parameters. They determine the non-Hermitian Gaussian correlation, a wide range of which are compatible with the Markov limit. We demonstrate the versatility of our results for quantum information tasks in the non-Markovian regime. In particular, by optimizing the squeezing parameters, we can tailor unravelings for improving entanglement bounds or for environment-assisted entanglement protection.

  8. Legitimating Racial Discrimination: Emotions, Not Beliefs, Best Predict Discrimination in a Meta-Analysis

    PubMed Central

    Talaska, Cara A.; Chaiken, Shelly

    2013-01-01

    Investigations of racial bias have emphasized stereotypes and other beliefs as central explanatory mechanisms and as legitimating discrimination. In recent theory and research, emotional prejudices have emerged as another, more direct predictor of discrimination. A new comprehensive meta-analysis of 57 racial attitude-discrimination studies finds a moderate relationship between overall attitudes and discrimination. Emotional prejudices are twices as closely related to racial discrimination as stereotypes and beliefs are. Moreover, emotional prejudices are closely related to both observed and self-reported discrimination, whereas stereotypes and beliefs are related only to self-reported discrimination. Implications for justifying discrimination are discussed. PMID:24052687

  9. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhong, Keyuan; Zheng, Fenli; Xu, Ximeng; Qin, Chao

    2018-06-01

    Different precipitation phases (rain, snow or sleet) differ greatly in their hydrological and erosional processes. Therefore, accurate discrimination of the precipitation phase is highly important when researching hydrologic processes and climate change at high latitudes and mountainous regions. The objective of this study was to identify suitable temperature thresholds for discriminating the precipitation phase in the Songhua River Basin (SRB) based on 20-year daily precipitation collected from 60 meteorological stations located in and around the basin. Two methods, the air temperature method (AT method) and the wet bulb temperature method (WBT method), were used to discriminate the precipitation phase. Thirteen temperature thresholds were used to discriminate snowfall in the SRB. These thresholds included air temperatures from 0 to 5.5 °C at intervals of 0.5 °C and the wet bulb temperature (WBT). Three evaluation indices, the error percentage of discriminated snowfall days (Ep), the relative error of discriminated snowfall (Re) and the determination coefficient (R2), were applied to assess the discrimination accuracy. The results showed that 2.5 °C was the optimum threshold temperature for discriminating snowfall at the scale of the entire basin. Due to differences in the landscape conditions at the different stations, the optimum threshold varied by station. The optimal threshold ranged 1.5-4.0 °C, and 19 stations, 17 stations and 18 stations had optimal thresholds of 2.5 °C, 3.0 °C, and 3.5 °C respectively, occupying 90% of all stations. Compared with using a single suitable temperature threshold to discriminate snowfall throughout the basin, it was more accurate to use the optimum threshold at each station to estimate snowfall in the basin. In addition, snowfall was underestimated when the temperature threshold was the WBT and when the temperature threshold was below 2.5 °C, whereas snowfall was overestimated when the temperature threshold exceeded 4

  10. A global earthquake discrimination scheme to optimize ground-motion prediction equation selection

    USGS Publications Warehouse

    Garcia, Daniel; Wald, David J.; Hearne, Michael

    2012-01-01

    We present a new automatic earthquake discrimination procedure to determine in near-real time the tectonic regime and seismotectonic domain of an earthquake, its most likely source type, and the corresponding ground-motion prediction equation (GMPE) class to be used in the U.S. Geological Survey (USGS) Global ShakeMap system. This method makes use of the Flinn–Engdahl regionalization scheme, seismotectonic information (plate boundaries, global geology, seismicity catalogs, and regional and local studies), and the source parameters available from the USGS National Earthquake Information Center in the minutes following an earthquake to give the best estimation of the setting and mechanism of the event. Depending on the tectonic setting, additional criteria based on hypocentral depth, style of faulting, and regional seismicity may be applied. For subduction zones, these criteria include the use of focal mechanism information and detailed interface models to discriminate among outer-rise, upper-plate, interface, and intraslab seismicity. The scheme is validated against a large database of recent historical earthquakes. Though developed to assess GMPE selection in Global ShakeMap operations, we anticipate a variety of uses for this strategy, from real-time processing systems to any analysis involving tectonic classification of sources from seismic catalogs.

  11. Discrimination and subjective well-being: protective influences of membership in a discriminated category.

    PubMed

    Hnilica, Karel

    2011-03-01

    Research reveals that discrimination has harmful effects on health and quality of life. Among the most frequent types of discrimination pertains gender and age discrimination. Research results show that discriminatory behaviours based on gender afflict predominantly women; age discrimination afflicts mainly older adults. At the same time, it has been found that members of these traditionally discriminated categories often use strategies that mitigate the effects of discrimination. Discrimination will have detrimental effects on subjective well-being. But its effects will be most harmful for persons who are not members of the traditionally discriminated categories. These hypotheses were tested on data from three waves of the European Social Survey that the Czech Republic also participated in. Data were analyzed in a series of multilevel random coefficients regression analyses with respondents nested within states and states nested within years of study. Both perceived gender discrimination and perceived age discrimination have negative effects on subjective well-being. However, gender discrimination had more harmful effects on the subjective well-being of men than women and age discrimination had the most harmful effects on the subjective well-being of people in their middle ages, not the elderly ones. Discrimination does not need to have most harmful effects on the quality of life of members of the categories that are discriminated against most often.

  12. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach

    PubMed Central

    Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.

    2014-01-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856

  13. Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.

    PubMed

    Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A

    2013-02-01

    Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models.

  14. A dynamic programming-based particle swarm optimization algorithm for an inventory management problem under uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao

    2013-07-01

    This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.

  15. Application of optimal control strategies to HIV-malaria co-infection dynamics

    NASA Astrophysics Data System (ADS)

    Fatmawati; Windarto; Hanif, Lathifah

    2018-03-01

    This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.

  16. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.

    2013-09-01

    In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.

  17. Sequential state discrimination and requirement of quantum dissonance

    NASA Astrophysics Data System (ADS)

    Pang, Chao-Qian; Zhang, Fu-Lin; Xu, Li-Fang; Liang, Mai-Lin; Chen, Jing-Ling

    2013-11-01

    We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminated by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bob's auxiliary system. In general, the procedure for both Bob and Charlie to recognize between two nonorthogonal states conclusively relies on the availability of quantum discord which is precisely the quantum dissonance when the entanglement is absent. In Bob's measurement, the left discord is positively correlated with the information extracted by Bob, and the right discord enhances the information left to Charlie. When their product achieves its maximum the probability for both Bob and Charlie to identify the state achieves its optimal value.

  18. Balancing specificity, sensitivity, and speed of ligand discrimination by zero-order ultraspecificity

    NASA Astrophysics Data System (ADS)

    Kajita, Masashi K.; Aihara, Kazuyuki; Kobayashi, Tetsuya J.

    2017-07-01

    Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.

  19. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals

    PubMed Central

    González-Garrido, Andrés A.; Ruiz-Stovel, Vanessa D.; Gómez-Velázquez, Fabiola R.; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A.; Espinoza-Valdez, Aurora; Campos, Luis R.

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5–3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs. PMID:28220063

  20. Vibrotactile Discrimination Training Affects Brain Connectivity in Profoundly Deaf Individuals.

    PubMed

    González-Garrido, Andrés A; Ruiz-Stovel, Vanessa D; Gómez-Velázquez, Fabiola R; Vélez-Pérez, Hugo; Romo-Vázquez, Rebeca; Salido-Ruiz, Ricardo A; Espinoza-Valdez, Aurora; Campos, Luis R

    2017-01-01

    Early auditory deprivation has serious neurodevelopmental and cognitive repercussions largely derived from impoverished and delayed language acquisition. These conditions may be associated with early changes in brain connectivity. Vibrotactile stimulation is a sensory substitution method that allows perception and discrimination of sound, and even speech. To clarify the efficacy of this approach, a vibrotactile oddball task with 700 and 900 Hz pure-tones as stimuli [counterbalanced as target (T: 20% of the total) and non-target (NT: 80%)] with simultaneous EEG recording was performed by 14 profoundly deaf and 14 normal-hearing (NH) subjects, before and after a short training period (five 1-h sessions; in 2.5-3 weeks). A small device worn on the right index finger delivered sound-wave stimuli. The training included discrimination of pure tone frequency and duration, and more complex natural sounds. A significant P300 amplitude increase and behavioral improvement was observed in both deaf and normal subjects, with no between group differences. However, a P3 with larger scalp distribution over parietal cortical areas and lateralized to the right was observed in the profoundly deaf. A graph theory analysis showed that brief training significantly increased fronto-central brain connectivity in deaf subjects, but not in NH subjects. Together, ERP tools and graph methods depicted the different functional brain dynamic in deaf and NH individuals, underlying the temporary engagement of the cognitive resources demanded by the task. Our findings showed that the index-fingertip somatosensory mechanoreceptors can discriminate sounds. Further studies are necessary to clarify brain connectivity dynamics associated with the performance of vibrotactile language-related discrimination tasks and the effect of lengthier training programs.

  1. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    USDA-ARS?s Scientific Manuscript database

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  2. Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.

    PubMed

    Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo

    2011-07-01

    Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.

  3. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    NASA Astrophysics Data System (ADS)

    Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.

    2015-11-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  4. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimal satellite sampling to resolve global-scale dynamics in the I-T system

    NASA Astrophysics Data System (ADS)

    Rowland, D. E.; Zesta, E.; Connor, H. K.; Pfaff, R. F., Jr.

    2016-12-01

    The recent Decadal Survey highlighted the need for multipoint measurements of ion-neutral coupling processes to study the pathways by which solar wind energy drives dynamics in the I-T system. The emphasis in the Decadal Survey is on global-scale dynamics and processes, and in particular, mission concepts making use of multiple identical spacecraft in low earth orbit were considered for the GDC and DYNAMIC missions. This presentation will provide quantitative assessments of the optimal spacecraft sampling needed to significantly advance our knowledge of I-T dynamics on the global scale.We will examine storm time and quiet time conditions as simulated by global circulation models, and determine how well various candidate satellite constellations and satellite schemes can quantify the plasma and neutral convection patterns and global-scale distributions of plasma density, neutral density, and composition, and their response to changes in the IMF. While the global circulation models are data-starved, and do not contain all the physics that we might expect to observe with a global-scale constellation mission, they are nonetheless an excellent "starting point" for discussions of the implementation of such a mission. The result will be of great utility for the design of future missions, such as GDC, to study the global-scale dynamics of the I-T system.

  6. Development of optimal models of porous media by combining static and dynamic data: the permeability and porosity distributions.

    PubMed

    Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad

    2007-05-01

    We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.

  7. Inseparability of Go and Stop in Inhibitory Control: Go Stimulus Discriminability Affects Stopping Behavior.

    PubMed

    Ma, Ning; Yu, Angela J

    2016-01-01

    Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.

  8. Hard and soft age discrimination: the dual nature of workplace discrimination.

    PubMed

    Stypinska, Justyna; Turek, Konrad

    2017-03-01

    The paper concentrates on the problem of age discrimination in the labour market and the way it can be conceptualised and measured in a multi-disciplinary way. The approach proposed here combines two understandings of age discrimination-a sociological and legal one, what allows for a fuller and expanded understanding of ageism in the workplace. At the heart of the study is a survey carried out in Poland with a sample of 1000 men and women aged 45-65 years. The study takes a deeper and innovative look into the issue of age discrimination in employment. Confirmatory factor analysis with WLSMV estimation and logistic regressions were used to test the hypotheses. The study shows that age discrimination in labour market can take on different forms: hard and soft, where the hard type of age discrimination mirrors the legally prohibited types of behaviours and those which relate to the actual decisions of employers which can impact on the employee's career development. The soft discrimination corresponds with those occurrences, which are not inscribed in the legal system per se, are occurring predominantly in the interpersonal sphere, but can nevertheless have negative consequences. Soft discrimination was experienced more often (28.6% of respondents) than hard discrimination (15.7%) with higher occurrences among women, persons in precarious job situation or residents of urban areas. The role of education was not confirmed to influence the levels of perceived age discrimination.

  9. Moving-window dynamic optimization: design of stimulation profiles for walking.

    PubMed

    Dosen, Strahinja; Popović, Dejan B

    2009-05-01

    The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.

  10. Optimal perturbations for nonlinear systems using graph-based optimal transport

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Elamvazhuthi, Karthik

    2018-06-01

    We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.

  11. Algorithm comparison for schedule optimization in MR fingerprinting.

    PubMed

    Cohen, Ouri; Rosen, Matthew S

    2017-09-01

    In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    PubMed

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  13. Social Status Correlates of Reporting Racial Discrimination and Gender Discrimination among Racially Diverse Women

    PubMed Central

    Ro, Annie E.; Choi, Kyung-Hee

    2009-01-01

    The growing body of research on discrimination and health indicates a deleterious effect of discrimination on various health outcomes. However, less is known about the sociodemographic correlates of reporting racial discrimination and gender discrimination among racially diverse women. We examined the associations of social status characteristics with lifetime experiences of racial discrimination and gender discrimination using a racially-diverse sample of 754 women attending family planning clinics in Northern California (11.4% African American, 16.8% Latina, 10.1% Asian and 61.7% Caucasian). A multivariate analysis revealed that race, financial difficulty and marital status were significantly correlated with higher reports of racial discrimination, while race, education, financial difficulty and nativity were significantly correlated with gender discrimination scores. Our findings suggest that the social patterning of perceiving racial discrimination is somewhat different from that of gender discrimination. This has implications in the realm of discrimination research and applied interventions, as different forms of discrimination may have unique covariates that should be accounted for in research analysis or program design. PMID:19485231

  14. Social status correlates of reporting gender discrimination and racial discrimination among racially diverse women.

    PubMed

    Ro, Annie E; Choi, Kyung-Hee

    2009-01-01

    The growing body of research on discrimination and health indicates a deleterious effect of discrimination on various health outcomes. However, less is known about the sociodemographic correlates of reporting racial discrimination and gender discrimination among racially diverse women. We examined the associations of social status characteristics with lifetime experiences of racial discrimination and gender discrimination using a racially-diverse sample of 754 women attending family planning clinics in North California (11.4% African American, 16.8% Latina, 10.1% Asian and 61.7% Caucasian). A multivariate analysis revealed that race, financial difficulty and marital status were significantly correlated with higher reports of racial discrimination, while race, education, financial difficulty and nativity were significantly correlated with gender discrimination scores. Our findings suggest that the social patterning of perceiving racial discrimination is somewhat different from that of gender discrimination. This has implications in the realm of discrimination research and applied interventions, as different forms of discrimination may have unique covariates that should be accounted for in research analysis or program design.

  15. Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.

    PubMed

    Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz

    2016-10-01

    A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  16. The Sociology of Discrimination: Racial Discrimination in Employment, Housing, Credit, and Consumer Markets

    PubMed Central

    Pager, Devah; Shepherd, Hana

    2010-01-01

    Persistent racial inequality in employment, housing, and a wide range of other social domains has renewed interest in the possible role of discrimination. And yet, unlike in the pre–civil rights era, when racial prejudice and discrimination were overt and widespread, today discrimination is less readily identifiable, posing problems for social scientific conceptualization and measurement. This article reviews the relevant literature on discrimination, with an emphasis on racial discrimination in employment, housing, credit markets, and consumer interactions. We begin by defining discrimination and discussing relevant methods of measurement. We then provide an overview of major findings from studies of discrimination in each of the four domains; and, finally, we turn to a discussion of the individual, organizational, and structural mechanisms that may underlie contemporary forms of discrimination. This discussion seeks to orient readers to some of the key debates in the study of discrimination and to provide a roadmap for those interested in building upon this long and important line of research. PMID:20689680

  17. Discrimination and prediction of the origin of Chinese and Korean soybeans using Fourier transform infrared spectrometry (FT-IR) with multivariate statistical analysis

    PubMed Central

    Lee, Byeong-Ju; Zhou, Yaoyao; Lee, Jae Soung; Shin, Byeung Kon; Seo, Jeong-Ah; Lee, Doyup; Kim, Young-Suk

    2018-01-01

    The ability to determine the origin of soybeans is an important issue following the inclusion of this information in the labeling of agricultural food products becoming mandatory in South Korea in 2017. This study was carried out to construct a prediction model for discriminating Chinese and Korean soybeans using Fourier-transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. The optimal prediction models for discriminating soybean samples were obtained by selecting appropriate scaling methods, normalization methods, variable influence on projection (VIP) cutoff values, and wave-number regions. The factors for constructing the optimal partial-least-squares regression (PLSR) prediction model were using second derivatives, vector normalization, unit variance scaling, and the 4000–400 cm–1 region (excluding water vapor and carbon dioxide). The PLSR model for discriminating Chinese and Korean soybean samples had the best predictability when a VIP cutoff value was not applied. When Chinese soybean samples were identified, a PLSR model that has the lowest root-mean-square error of the prediction value was obtained using a VIP cutoff value of 1.5. The optimal PLSR prediction model for discriminating Korean soybean samples was also obtained using a VIP cutoff value of 1.5. This is the first study that has combined FT-IR spectroscopy with normalization methods, VIP cutoff values, and selected wave-number regions for discriminating Chinese and Korean soybeans. PMID:29689113

  18. Perceived discrimination among Latino immigrants in new destinations: The case of Durham, NC1

    PubMed Central

    Flippen, Chenoa A.; Parrado, Emilio A.

    2015-01-01

    This paper draws on original survey data to assess the prevalence of perceived discrimination among Latin American immigrants to Durham, NC, a “new immigrant destinations” in the Southeastern United States. Even though discrimination has a wide-ranging impact on social groups, from blocked opportunities, to adverse health outcomes, to highlighting and reifying inter-group boundaries, research among immigrant Latinos is rare, especially in new destinations. Our theoretical framework and empirical analysis expand social constructivist approaches that view ethnic discrimination as emerging from processes of competition and incorporation. We broaden prior discussions by investigating the specific social forces that give rise to perceived discrimination. In particular, we examine the extent to which perceptions of unequal treatment vary by gender, elaborating on the situational conditions than differentiate discrimination experiences for men and women. We also incorporate dimensions unique to the contemporary Latino immigrant experience, such as legal status, family migration dynamics, and transnationalism. PMID:26848208

  19. Optimization of a pH-shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model.

    PubMed

    Hogiri, Tomoharu; Tamashima, Hiroshi; Nishizawa, Akitoshi; Okamoto, Masahiro

    2018-02-01

    To optimize monoclonal antibody (mAb) production in Chinese hamster ovary cell cultures, culture pH should be temporally controlled with high resolution. In this study, we propose a new pH-dependent dynamic model represented by simultaneous differential equations including a minimum of six system component, depending on pH value. All kinetic parameters in the dynamic model were estimated using an evolutionary numerical optimization (real-coded genetic algorithm) method based on experimental time-course data obtained at different pH values ranging from 6.6 to 7.2. We determined an optimal pH-shift schedule theoretically. We validated this optimal pH-shift schedule experimentally and mAb production increased by approximately 40% with this schedule. Throughout this study, it was suggested that the culture pH-shift optimization strategy using a pH-dependent dynamic model is suitable to optimize any pH-shift schedule for CHO cell lines used in mAb production projects. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Machine learning techniques for energy optimization in mobile embedded systems

    NASA Astrophysics Data System (ADS)

    Donohoo, Brad Kyoshi

    Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.

  1. Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking.

    PubMed

    Martínez, José Mario; Martínez, Leandro

    2003-05-01

    Molecular Dynamics is a powerful methodology for the comprehension at molecular level of many chemical and biochemical systems. The theories and techniques developed for structural and thermodynamic analyses are well established, and many software packages are available. However, designing starting configurations for dynamics can be cumbersome. Easily generated regular lattices can be used when simple liquids or mixtures are studied. However, for complex mixtures, polymer solutions or solid adsorbed liquids (for example) this approach is inefficient, and it turns out to be very hard to obtain an adequate coordinate file. In this article, the problem of obtaining an adequate initial configuration is treated as a "packing" problem and solved by an optimization procedure. The initial configuration is chosen in such a way that the minimum distance between atoms of different molecules is greater than a fixed tolerance. The optimization uses a well-known algorithm for box-constrained minimization. Applications are given for biomolecule solvation, many-component mixtures, and interfaces. This approach can reduce the work of designing starting configurations from days or weeks to few minutes or hours, in an automated fashion. Packing optimization is also shown to be a powerful methodology for space search in docking of small ligands to proteins. This is demonstrated by docking of the thyroid hormone to its nuclear receptor. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 819-825, 2003

  2. Racial discrimination, gender discrimination, and substance abuse among Latina/os nationwide.

    PubMed

    Otiniano Verissimo, Angie Denisse; Gee, Gilbert C; Ford, Chandra L; Iguchi, Martin Y

    2014-01-01

    This study investigates the relationship between discrimination and substance abuse among Latina/os, and further examines whether this relationship differs by gender and type of discrimination. Analyses focus on the Latina/o respondents (n = 1,039 men; n = 1,273 women) from the National Latino and Asian American Study carried out from 2002-2003. Outcomes were alcohol abuse and drug abuse measured using DSM-IV definitions and criteria. Additional covariates included immigrant characteristics and demographics. Analyses were completed using gender-stratified multinomial logistic regression. Men reported more discrimination (39.6% vs. 30.3%) and had higher prevalence of alcohol abuse (16.5% vs. 4.5%) and drug abuse (9.5% vs. 2.3%) than women. Discrimination was significantly associated with increased risk of alcohol abuse for women and increased risk of drug abuse for men. Men and women also varied in the types of discrimination (e.g., racial vs. gender) reported, and in the associations between these types of discrimination and substance abuse. These data indicate that discrimination is associated with different substance abuse outcomes between genders. Future research should consider the mechanisms that explain these differences.

  3. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  4. Aging and the discrimination of 3-D shape from motion and binocular disparity.

    PubMed

    Norman, J Farley; Holmin, Jessica S; Beers, Amanda M; Cheeseman, Jacob R; Ronning, Cecilia; Stethen, Angela G; Frost, Adam L

    2012-10-01

    Two experiments evaluated the ability of younger and older adults to visually discriminate 3-D shape as a function of surface coherence. The coherence was manipulated by embedding the 3-D surfaces in volumetric noise (e.g., for a 55 % coherent surface, 55 % of the stimulus points fell on a 3-D surface, while 45 % of the points occupied random locations within the same volume of space). The 3-D surfaces were defined by static binocular disparity, dynamic binocular disparity, and motion. The results of both experiments demonstrated significant effects of age: Older adults required more coherence (tolerated volumetric noise less) for reliable shape discrimination than did younger adults. Motion-defined and static-binocular-disparity-defined surfaces resulted in similar coherence thresholds. However, performance for dynamic-binocular-disparity-defined surfaces was superior (i.e., the observers' surface coherence thresholds were lowest for these stimuli). The results of both experiments showed that younger and older adults possess considerable tolerance to the disrupting effects of volumetric noise; the observers could reliably discriminate 3-D surface shape even when 45 % of the stimulus points (or more) constituted noise.

  5. Learning the dynamics of objects by optimal functional interpolation.

    PubMed

    Ahn, Jong-Hoon; Kim, In Young

    2012-09-01

    Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.

  6. Buffers of Racial Discrimination: Links with Depression among Rural African American Mothers

    ERIC Educational Resources Information Center

    Odom, Erica C.; Vernon-Feagans, Lynne

    2010-01-01

    The current study examines racial discrimination as a predictor of depression in a sample of 414 rural, low-income African American mothers of young children. The potential moderating role of optimism and church-based social support was also examined. Mothers completed questionnaires when their child was 24 months old. Hierarchical regression…

  7. Introduction to multivariate discrimination

    NASA Astrophysics Data System (ADS)

    Kégl, Balázs

    2013-07-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyperparameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  8. Light collection and pulse-shape discrimination in elongated scintillator cells for the PROSPECT reactor antineutrino experiment

    DOE PAGES

    Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...

    2015-11-06

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  9. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  10. Individual variability in visual discrimination and reversal learning performance in common marmosets.

    PubMed

    Takemoto, Atsushi; Miwa, Miki; Koba, Reiko; Yamaguchi, Chieko; Suzuki, Hiromi; Nakamura, Katsuki

    2015-04-01

    Detailed information about the characteristics of learning behavior in marmosets is useful for future marmoset research. We trained 42 marmosets in visual discrimination and reversal learning. All marmosets could learn visual discrimination, and all but one could complete reversal learning, though some marmosets failed to touch the visual stimuli and were screened out. In 87% of measurements, the final percentage of correct responses was over 95%. We quantified performance with two measures: onset trial and dynamic interval. Onset trial represents the number of trials that elapsed before the marmoset started to learn. Dynamic interval represents the number of trials from the start before reaching the final percentage of correct responses. Both measures decreased drastically as a result of the formation of discrimination learning sets. In reversal learning, both measures worsened, but the effect on onset trial was far greater. The effects of age and sex were not significant as far as we used adolescent or young adult marmosets. Unexpectedly, experimental circumstance (in the colony or isolator) had only a subtle effect on performance. However, we found that marmosets from different families exhibited different learning process characteristics, suggesting some family effect on learning. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Smyth, Gregory; Bamber, Jeffrey C.; Evans, Philip M.; Bedford, James L.

    2013-11-01

    Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR-VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR-VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR-VMAT trajectory, was determined using Dijkstra’s algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.

  12. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  13. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  14. Discrimination and delusional ideation.

    PubMed

    Janssen, I; Hanssen, M; Bak, M; Bijl, R V; de Graaf, R; Vollebergh, W; McKenzie, K; van Os, J

    2003-01-01

    In the UK and The Netherlands, people with high rates of psychosis are chronically exposed to discrimination. To test whether perceived discrimination is associated longitudinally with onset of psychosis. A 3-year prospective study of cohorts with no history of psychosis and differential rates of reported discrimination on the basis of age, gender, disability, appearance, skin colour or ethnicity and sexual orientation was conducted in the Dutch general population (n=4076). The main outcome was onset of psychotic symptoms (delusions and hallucinations). The rate of delusional ideation was 0.5% (n=19) in those who did not report discrimination, 0.9% (n=4) in those who reported discrimination in one domain, and 2.7% (n=3) in those who reported discrimination in more than one domain (exact P=0.027). This association remained after adjustment for possible confounders. No association was found between baseline discrimination and onset of hallucinatory experiences. Perceived discrimination may induce delusional ideation and thus contribute to the high observed rates of psychotic disorder in exposed minority populations.

  15. Dynamic dual-isotope molecular imaging elucidates principles for optimizing intrathecal drug delivery

    PubMed Central

    Wolf, Daniel A.; Hesterman, Jacob Y.; Sullivan, Jenna M.; Orcutt, Kelly D.; Silva, Matthew D.; Lobo, Merryl; Wellman, Tyler; Hoppin, Jack

    2016-01-01

    The intrathecal (IT) dosing route offers a seemingly obvious solution for delivering drugs directly to the central nervous system. However, gaps in understanding drug molecule behavior within the anatomically and kinetically unique environment of the mammalian IT space have impeded the establishment of pharmacokinetic principles for optimizing regional drug exposure along the neuraxis. Here, we have utilized high-resolution single-photon emission tomography with X-ray computed tomography to study the behavior of multiple molecular imaging tracers following an IT bolus injection, with supporting histology, autoradiography, block-face tomography, and MRI. Using simultaneous dual-isotope imaging, we demonstrate that the regional CNS tissue exposure of molecules with varying chemical properties is affected by IT space anatomy, cerebrospinal fluid (CSF) dynamics, CSF clearance routes, and the location and volume of the injected bolus. These imaging approaches can be used across species to optimize the safety and efficacy of IT drug therapy for neurological disorders. PMID:27699254

  16. EMPACT 3D: an advanced EMI discrimination sensor for CONUS and OCONUS applications

    NASA Astrophysics Data System (ADS)

    Keranen, Joe; Miller, Jonathan S.; Schultz, Gregory; Sander-Olhoeft, Morgan; Laudato, Stephen

    2018-04-01

    We recently developed a new, man-portable, electromagnetic induction (EMI) sensor designed to detect and classify small, unexploded sub-munitions and discriminate them from non-hazardous debris. The ability to distinguish innocuous metal clutter from potentially hazardous unexploded ordnance (UXO) and other explosive remnants of war (ERW) before excavation can significantly accelerate land reclamation efforts by eliminating time spent removing harmless scrap metal. The EMI sensor employs a multi-axis transmitter and receiver configuration to produce data sufficient for anomaly discrimination. A real-time data inversion routine produces intrinsic and extrinsic anomaly features describing the polarizability, location, and orientation of the anomaly under test. We discuss data acquisition and post-processing software development, and results from laboratory and field tests demonstrating the discrimination capability of the system. Data acquisition and real-time processing emphasize ease-of-use, quality control (QC), and display of discrimination results. Integration of the QC and discrimination methods into the data acquisition software reduces the time required between sensor data collection and the final anomaly discrimination result. The system supports multiple concepts of operations (CONOPs) including: 1) a non-GPS cued configuration in which detected anomalies are discriminated and excavated immediately following the anomaly survey; 2) GPS integration to survey multiple anomalies to produce a prioritized dig list with global anomaly locations; and 3) a dynamic mapping configuration supporting detection followed by discrimination and excavation of targets of interest.

  17. Perceptions of weight discrimination: prevalence and comparison to race and gender discrimination in America.

    PubMed

    Puhl, R M; Andreyeva, T; Brownell, K D

    2008-06-01

    Limited data are available on the prevalence and patterns of body weight discrimination from representative samples. This study examined experiences of weight/height discrimination in a nationally representative sample of US adults and compared their prevalence and patterns with discrimination experiences based on race and gender. Data were from the National Survey of Midlife Development in the United States, a 1995-1996 community-based survey of English-speaking adults aged 25-74 (N=2290). Reported experiences of weight/height discrimination included a variety of institutional settings and interpersonal relationships. Multivariate regression analyses were used to predict weight/height discrimination controlling for sociodemographic characteristics and body weight status. The prevalence of weight/height discrimination ranged from 5% among men to 10% among women, but these average percentages obscure the much higher risk of weight discrimination among heavier individuals (40% for adults with body mass index (BMI) of 35 and above). Younger individuals with a higher BMI had a particularly high risk of weight/height discrimination regardless of their race, education and weight status. Women were at greater risk for weight/height discrimination than men, especially women with a BMI of 30-35 who were three times more likely to report weight/height discrimination compared to male peers of a similar weight. Weight/height discrimination is prevalent in American society and is relatively close to reported rates of racial discrimination, particularly among women. Both institutional forms of weight/height discrimination (for example, in employment settings) and interpersonal mistreatment due to weight/height (for example, being called names) were common, and in some cases were even more prevalent than discrimination due to gender and race.

  18. MURI: Optimal Quantum Dynamic Discrimination of Chemical and Biological Agents

    DTIC Science & Technology

    2008-06-12

    multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve statistics to laser-based mass...Adaptive reshaping of objects in (multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve...Doctoral Associate Muhannad Zamari, Graduate Student Ilya Greenberg , Computer Consultant Getahun Menkir, Graduate Student Lalinda Palliyaguru, Graduate

  19. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Niu, Guo-Yue; Fang, Yuan-Hao; Wu, Run-Jian; Yu, Jing-Jie; Yuan, Guo-Fu; Pozdniakov, Sergey P.; Scott, Russell L.

    2018-03-01

    Widely distributed in arid and semiarid regions, phreatophytic roots extend into the saturated zone and extract water directly from groundwater. In this paper, we implemented a vegetation optimality model of root dynamics (VOM-ROOT) in the Noah land surface model with multiparameterization options (Noah-MP LSM) to model the extraction of groundwater through phreatophytic roots at a riparian site with a hyperarid climate (with precipitation of 35 mm/yr) in northwestern China. VOM-ROOT numerically describes the natural optimization of the root profile in response to changes in subsurface water conditions. The coupled Noah-MP/VOM-ROOT model substantially improves the simulation of surface energy and water fluxes, particularly during the growing season, compared to the prescribed static root profile in the default Noah-MP. In the coupled model, more roots are required to grow into the saturated zone to meet transpiration demand when the groundwater level declines over the growing season. The modeling results indicate that at the study site, the modeled annual transpiration is 472 mm, accounting for 92.3% of the total evapotranspiration. Direct root water uptake from the capillary fringe and groundwater, which is supplied by lateral groundwater flow, accounts for approximately 84% of the total transpiration. This study demonstrates the importance of implementing a dynamic root scheme in a land surface model for adequately simulating phreatophytic root water uptake and the associated latent heat flux.

  20. Place of birth effects on self-reported discrimination: Variations by type of discrimination

    PubMed Central

    Brondolo, Elizabeth; Rahim, Reanne; Grimaldi, Stephanie; Ashraf, Amina; Bui, Nini; Schwartz, Joseph

    2016-01-01

    Researchers have suggested that perceptions of discrimination may vary depending on place of birth and the length of time spent living in the U.S., variables related to acculturation. However, the existing literature provides a mixed picture, with data suggesting that the effects of acculturation on perceptions of discrimination vary by race and other sociodemographic factors. This study evaluated the role of place of birth (POB: defined as U.S.-born vs. foreign-born), age at immigration, and length of residence in the U.S. on self-reported discrimination in a sample of urban-dwelling Asian and Black adults (n= 1454). Analyses examined POB effects on different types of discrimination including race-related stigmatization, exclusion, threat, and workplace discrimination. Sociodemographic variables (including age, gender, employment status and education level) were tested as potential moderators of the relationship between POB and discrimination. The results revealed a significant main effect for POB on discrimination, with U.S.-born individuals reporting significantly more discrimination than foreign-born individuals, although the effect was reduced when sociodemographic variables were controlled. Across the sample, POB effects were seen only for race-related stigmatization and exclusion, not for threat and workplace discrimination. With the exception of limited effects for gender, sociodemographic variables did not moderate these effects. Younger age at immigration and greater years of residence in the U.S. were also positively associated with higher levels of perceived discrimination. These findings suggest increasing acculturation may shape the experience and perception of racial and ethnic discrimination. PMID:27647943

  1. Place of birth effects on self-reported discrimination: Variations by type of discrimination.

    PubMed

    Brondolo, Elizabeth; Rahim, Reanne; Grimaldi, Stephanie; Ashraf, Amina; Bui, Nini; Schwartz, Joseph

    2015-11-01

    Researchers have suggested that perceptions of discrimination may vary depending on place of birth and the length of time spent living in the U.S., variables related to acculturation. However, the existing literature provides a mixed picture, with data suggesting that the effects of acculturation on perceptions of discrimination vary by race and other sociodemographic factors. This study evaluated the role of place of birth (POB: defined as U.S.-born vs. foreign-born), age at immigration, and length of residence in the U.S. on self-reported discrimination in a sample of urban-dwelling Asian and Black adults (n= 1454). Analyses examined POB effects on different types of discrimination including race-related stigmatization, exclusion, threat, and workplace discrimination. Sociodemographic variables (including age, gender, employment status and education level) were tested as potential moderators of the relationship between POB and discrimination. The results revealed a significant main effect for POB on discrimination, with U.S.-born individuals reporting significantly more discrimination than foreign-born individuals, although the effect was reduced when sociodemographic variables were controlled. Across the sample, POB effects were seen only for race-related stigmatization and exclusion, not for threat and workplace discrimination. With the exception of limited effects for gender, sociodemographic variables did not moderate these effects. Younger age at immigration and greater years of residence in the U.S. were also positively associated with higher levels of perceived discrimination. These findings suggest increasing acculturation may shape the experience and perception of racial and ethnic discrimination.

  2. Optimal foot shape for a passive dynamic biped.

    PubMed

    Kwan, Maxine; Hubbard, Mont

    2007-09-21

    Passive walking dynamics describe the motion of a biped that is able to "walk" down a shallow slope without any actuation or control. Instead, the walker relies on gravitational and inertial effects to propel itself forward, exhibiting a gait quite similar to that of humans. These purely passive models depend on potential energy to overcome the energy lost when the foot impacts the ground. Previous research has demonstrated that energy loss at heel-strike can vary widely for a given speed, depending on the nature of the collision. The point of foot contact with the ground (relative to the hip) can have a significant effect: semi-circular (round) feet soften the impact, resulting in much smaller losses than point-foot walkers. Collisional losses are also lower if a single impulse is broken up into a series of smaller impulses that gradually redirect the velocity of the center of mass rather than a single abrupt impulse. Using this principle, a model was created where foot-strike occurs over two impulses, "heel-strike" and "toe-strike," representative of the initial impact of the heel and the following impact as the ball of the foot strikes the ground. Having two collisions with the flat-foot model did improve efficiency over the point-foot model. Representation of the flat-foot walker as a rimless wheel helped to explain the optimal flat-foot shape, driven by symmetry of the virtual spoke angles. The optimal long period foot shape of the simple passive walking model was not very representative of the human foot shape, although a reasonably anthropometric foot shape was predicted by the short period solution.

  3. Discrimination of gravitational stimuli

    NASA Technical Reports Server (NTRS)

    Clark, F. C.

    1972-01-01

    The construction and installation of an animal centrifuge and its electronic support system was completed. Experimental procedures for obtaining data on the relationship between the discriminability of g differences and location along the continuum of effective weight were initiated. Data were obtained under two successive discriminations showing discrimination among g levels. In addition, there was some indication that the discriminability of differences between g levels associated with reinforcement was the same at two locations along the g continuum, although there were differences in measures of absolute discrimination at these locations.

  4. Long-distance continuous-variable quantum key distribution using non-Gaussian state-discrimination detection

    NASA Astrophysics Data System (ADS)

    Liao, Qin; Guo, Ying; Huang, Duan; Huang, Peng; Zeng, Guihua

    2018-02-01

    We propose a long-distance continuous-variable quantum key distribution (CVQKD) with a four-state protocol using non-Gaussian state-discrimination detection. A photon subtraction operation, which is deployed at the transmitter, is used for splitting the signal required for generating the non-Gaussian operation to lengthen the maximum transmission distance of the CVQKD. Whereby an improved state-discrimination detector, which can be deemed as an optimized quantum measurement that allows the discrimination of nonorthogonal coherent states beating the standard quantum limit, is applied at the receiver to codetermine the measurement result with the conventional coherent detector. By tactfully exploiting the multiplexing technique, the resulting signals can be simultaneously transmitted through an untrusted quantum channel, and subsequently sent to the state-discrimination detector and coherent detector, respectively. Security analysis shows that the proposed scheme can lengthen the maximum transmission distance up to hundreds of kilometers. Furthermore, by taking the finite-size effect and composable security into account we obtain the tightest bound of the secure distance, which is more practical than that obtained in the asymptotic limit.

  5. Non-resonant dynamic stark control of vibrational motion with optimized laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Esben F.; Henriksen, Niels E.

    2016-06-28

    The term dynamic Stark control (DSC) has been used to describe methods of quantum control related to the dynamic Stark effect, i.e., a time-dependent distortion of energy levels. Here, we employ analytical models that present clear and concise interpretations of the principles behind DSC. Within a linearly forced harmonic oscillator model of vibrational excitation, we show how the vibrational amplitude is related to the pulse envelope, and independent of the carrier frequency of the laser pulse, in the DSC regime. Furthermore, we shed light on the DSC regarding the construction of optimal pulse envelopes — from a time-domain as wellmore » as a frequency-domain perspective. Finally, in a numerical study beyond the linearly forced harmonic oscillator model, we show that a pulse envelope can be constructed such that a vibrational excitation into a specific excited vibrational eigenstate is accomplished. The pulse envelope is constructed such that high intensities are avoided in order to eliminate the process of ionization.« less

  6. The context of employment discrimination: interpreting the findings of a field experiment.

    PubMed

    Midtbøen, Arnfinn H

    2015-03-01

    Although field experiments have documented the contemporary relevance of discrimination in employment, theories developed to explain the dynamics of differential treatment cannot account for differences across organizational and institutional contexts. In this article, I address this shortcoming by presenting the main empirical findings from a multi-method research project, in which a field experiment of ethnic discrimination in the Norwegian labour market was complemented with forty-two in-depth interviews with employers who were observed in the first stage of the study. While the experimental data support earlier findings in documenting that ethnic discrimination indeed takes place, the qualitative material suggests that theorizing in the field experiment literature have been too concerned with individual and intra-psychic explanations. Discriminatory outcomes in employment processes seems to be more dependent on contextual factors such as the number of applications received, whether requirements are specified, and the degree to which recruitment procedures are formalized. I argue that different contexts of employment provide different opportunity structures for discrimination, a finding with important theoretical and methodological implications. © London School of Economics and Political Science 2014.

  7. Multiobjective optimization of temporal processes.

    PubMed

    Song, Zhe; Kusiak, Andrew

    2010-06-01

    This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.

  8. Military Discrimination.

    ERIC Educational Resources Information Center

    Hunter, Richard W.

    1981-01-01

    Argues that while a certain level of fairness is necessary in considering the equity of compulsory military service, the most important issue is that of "winning the war." Also asserts that sex, age, and race discrimination are more important than social class discrimination in military service. (Author/GC)

  9. Racial/Ethnic Workplace Discrimination

    PubMed Central

    Chavez, Laura J.; Ornelas, India J.; Lyles, Courtney R.; Williams, Emily C.

    2014-01-01

    Background Experiences of discrimination are associated with tobacco and alcohol use, and work is a common setting where individuals experience racial/ethnic discrimination. Few studies have evaluated the association between workplace discrimination and these behaviors, and none have described associations across race/ethnicity. Purpose To examine the association between workplace discrimination and tobacco and alcohol use in a large, multistate sample of U.S. adult respondents to the Behavioral Risk Factor Surveillance System survey Reactions to Race Module (2004–2010). Methods Multivariable logistic regression analyses evaluated cross-sectional associations between self-reported workplace discrimination and tobacco (current and daily smoking) and alcohol use (any and heavy use, and binge drinking) among all participants and stratified by race/ethnicity, adjusting for relevant covariates. Data were analyzed in 2013. Results Among respondents, 70,080 completed the workplace discrimination measure. Discrimination was more common among black non-Hispanic (21%), Hispanic (12%), and other race respondents (11%) than white non-Hispanics (4%) (p<0.001). In the total sample, discrimination was associated with current smoking (risk ratio [RR]=1.32, 95% CI=1.19, 1.47), daily smoking (RR=1.41, 95% CI=1.24, 1.61), and heavy drinking (RR=1.11, 95% CI=1.01, 1.22), but not binge or any drinking. Among Hispanics, workplace discrimination was associated with increased heavy and binge drinking, but not any alcohol use or smoking. Workplace discrimination among black non-Hispanics and white Non-Hispanics was associated with increased current and daily smoking, but not alcohol outcomes. Conclusions Workplace discrimination is common, associated with smoking and alcohol use, and merits further policy attention given the impact of these behaviors on morbidity and mortality. PMID:25441232

  10. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis.

    PubMed

    Lee, Byeong-Ju; Kim, Hye-Youn; Lim, Sa Rang; Huang, Linfang; Choi, Hyung-Kyoon

    2017-01-01

    Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values.

  11. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis

    PubMed Central

    Lim, Sa Rang; Huang, Linfang

    2017-01-01

    Panax ginseng C.A. Meyer is a herb used for medicinal purposes, and its discrimination according to cultivation age has been an important and practical issue. This study employed Fourier-transform infrared (FT-IR) spectroscopy with multivariate statistical analysis to obtain a prediction model for discriminating cultivation ages (5 and 6 years) and three different parts (rhizome, tap root, and lateral root) of P. ginseng. The optimal partial-least-squares regression (PLSR) models for discriminating ginseng samples were determined by selecting normalization methods, number of partial-least-squares (PLS) components, and variable influence on projection (VIP) cutoff values. The best prediction model for discriminating 5- and 6-year-old ginseng was developed using tap root, vector normalization applied after the second differentiation, one PLS component, and a VIP cutoff of 1.0 (based on the lowest root-mean-square error of prediction value). In addition, for discriminating among the three parts of P. ginseng, optimized PLSR models were established using data sets obtained from vector normalization, two PLS components, and VIP cutoff values of 1.5 (for 5-year-old ginseng) and 1.3 (for 6-year-old ginseng). To our knowledge, this is the first study to provide a novel strategy for rapidly discriminating the cultivation ages and parts of P. ginseng using FT-IR by selected normalization methods, number of PLS components, and VIP cutoff values. PMID:29049369

  12. A strategy to optimize CT pediatric dose with a visual discrimination model

    NASA Astrophysics Data System (ADS)

    Gutierrez, Daniel; Gudinchet, François; Alamo-Maestre, Leonor T.; Bochud, François O.; Verdun, Francis R.

    2008-03-01

    Technological developments of computed tomography (CT) have led to a drastic increase of its clinical utilization, creating concerns about patient exposure. To better control dose to patients, we propose a methodology to find an objective compromise between dose and image quality by means of a visual discrimination model. A GE LightSpeed-Ultra scanner was used to perform the acquisitions. A QRM 3D low contrast resolution phantom (QRM - Germany) was scanned using CTDI vol values in the range of 1.7 to 103 mGy. Raw data obtained with the highest CTDI vol were afterwards processed to simulate dose reductions by white noise addition. Noise realism of the simulations was verified by comparing normalized noise power spectra aspect and amplitudes (NNPS) and standard deviation measurements. Patient images were acquired using the Diagnostic Reference Levels (DRL) proposed in Switzerland. Noise reduction was then simulated, as for the QRM phantom, to obtain five different CTDI vol levels, down to 3.0 mGy. Image quality of phantom images was assessed with the Sarnoff JNDmetrix visual discrimination model and compared to an assessment made by means of the ROC methodology, taken as a reference. For patient images a similar approach was taken but using as reference the Visual Grading Analysis (VGA) method. A relationship between Sarnoff JNDmetrix and ROC results was established for low contrast detection in phantom images, demonstrating that the Sarnoff JNDmetrix can be used for qualification of images with highly correlated noise. Patient image qualification showed a threshold of conspicuity loss only for children over 35 kg.

  13. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  14. The specter of discrimination: Fear of interpersonal racial discrimination among adolescents in Chicago.

    PubMed

    Herda, Daniel

    2016-01-01

    This analysis examines fear of interpersonal racial discrimination among Black, Hispanic, and White adolescents. The extent and correlates of these concerns are examined using survey data from the Project for Human Development in Chicago Neighborhoods. Borrowing from the fear-of-crime literature, the contact hypothesis, and group threat theory, several hypotheses are developed linking discrimination fear to direct personal experience with discrimination, indirect or vicarious experience, and environmental signals of discrimination. Results show that about half of Blacks and Hispanics have feared discrimination in the past year. Multivariate results indicate that fear is most likely if one has experienced victimization first-hand and when one's parent is affected by discrimination. Further, a larger presence neighborhood outgroups produces greater fear. Overall, discrimination fear constitutes an additional obstacle for minority adolescents as they transition to adulthood. The phenomenon warrants increased scholarly attention and represents a fruitful avenue for future research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.

    PubMed

    Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong

    2017-05-01

    Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.

  16. Optimal investment for enhancing social concern about biodiversity conservation: a dynamic approach.

    PubMed

    Lee, Joung Hun; Iwasa, Yoh

    2012-11-01

    To maintain biodiversity conservation areas, we need to invest in activities, such as monitoring the condition of the ecosystem, preventing illegal exploitation, and removing harmful alien species. These require a constant supply of resources, the level of which is determined by the concern of the society about biodiversity conservation. In this paper, we study the optimal fraction of the resources to invest in activities for enhancing the social concern y(t) by environmental education, museum displays, publications, and media exposure. We search for the strategy that maximizes the time-integral of the quality of the conservation area x(t) with temporal discounting. Analyses based on dynamic programming and Pontryagin's maximum principle show that the optimal control consists of two phases: (1) in the first phase, the social concern level approaches to the final optimal value y(∗), (2) in the second phase, resources are allocated to both activities, and the social concern level is kept constant y(t) = y(∗). If the social concern starts from a low initial level, the optimal path includes a period in which the quality of the conservation area declines temporarily, because all the resources are invested to enhance the social concern. When the support rate increases with the quality of the conservation area itself x(t) as well as with the level of social concern y(t), both variables may increase simultaneously in the second phase. We discuss the implication of the results to good management of biodiversity conservation areas. 2012 Elsevier Inc. All rights reserved

  17. Optimal Hotspots of Dynamic Surfaced-Enhanced Raman Spectroscopy for Drugs Quantitative Detection.

    PubMed

    Yan, Xiunan; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Xiaoyun; Weng, Shizhuang; Yang, Liangbao; Liu, Jinhuai

    2017-05-02

    Surface-enhanced Raman spectroscopy (SERS) as a powerful qualitative analysis method has been widely applied in many fields. However, SERS for quantitative analysis still suffers from several challenges partially because of the absence of stable and credible analytical strategy. Here, we demonstrate that the optimal hotspots created from dynamic surfaced-enhanced Raman spectroscopy (D-SERS) can be used for quantitative SERS measurements. In situ small-angle X-ray scattering was carried out to in situ real-time monitor the formation of the optimal hotspots, where the optimal hotspots with the most efficient hotspots were generated during the monodisperse Au-sol evaporating process. Importantly, the natural evaporation of Au-sol avoids the nanoparticles instability of salt-induced, and formation of ordered three-dimensional hotspots allows SERS detection with excellent reproducibility. Considering SERS signal variability in the D-SERS process, 4-mercaptopyridine (4-mpy) acted as internal standard to validly correct and improve stability as well as reduce fluctuation of signals. The strongest SERS spectra at the optimal hotspots of D-SERS have been extracted to statistics analysis. By using the SERS signal of 4-mpy as a stable internal calibration standard, the relative SERS intensity of target molecules demonstrated a linear response versus the negative logarithm of concentrations at the point of strongest SERS signals, which illustrates the great potential for quantitative analysis. The public drugs 3,4-methylenedioxymethamphetamine and α-methyltryptamine hydrochloride obtained precise analysis with internal standard D-SERS strategy. As a consequence, one has reason to believe our approach is promising to challenge quantitative problems in conventional SERS analysis.

  18. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  19. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning

    PubMed Central

    Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-01-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by synaptic inhibition. PMID:26301325

  20. Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.

    PubMed

    Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan

    2015-10-01

    Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.