Science.gov

Sample records for optimization improved small-molecule

  1. Application of a Small Molecule Radiopharmaceutical Concept to Improve Kinetics.

    PubMed

    Jeong, Jae Min

    2016-06-01

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. PMID:27275356

  2. Small-molecule organic solar cells with improved stability

    NASA Astrophysics Data System (ADS)

    Song, Q. L.; Li, F. Y.; Yang, H.; Wu, H. R.; Wang, X. Z.; Zhou, W.; Zhao, J. M.; Ding, X. M.; Huang, C. H.; Hou, X. Y.

    2005-11-01

    A stable small-molecule organic photovoltaic device with structure of ITO⧹donor⧹acceptor⧹buffer⧹cathode is presented. A thin layer (˜60 Å) of tris-8-hydroxy-quinolinato aluminum (Alq 3) instead of bathocuproine (BCP) is adopted as the buffer of the device, resulting in 150 times longer lifetime. The power conversion efficiency of the device is 2.11% under 75 mW/cm 2 AM1.5G simulated illumination, and no perceptible efficiency degradation is observed for long-term storage of the device in vacuum or nitrogen-filled glove box. More effective blocking of Alq 3 than BCP against diffusion of cathode atoms and permeation of oxygen and/or water molecules is considered as the main reason for the improved performance of the new device.

  3. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  4. Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition.

    PubMed

    Melillo, Bruno; Liang, Shuaiyi; Park, Jongwoo; Schön, Arne; Courter, Joel R; LaLonde, Judith M; Wendler, Daniel J; Princiotto, Amy M; Seaman, Michael S; Freire, Ernesto; Sodroski, Joseph; Madani, Navid; Hendrickson, Wayne A; Smith, Amos B

    2016-03-10

    The optimization, based on computational, thermodynamic, and crystallographic data, of a series of small-molecule ligands of the Phe43 cavity of the envelope glycoprotein gp120 of human immunodeficiency virus (HIV) has been achieved. Importantly, biological evaluation revealed that the small-molecule CD4 mimics (4-7) inhibit HIV-1 entry into target cells with both significantly higher potency and neutralization breadth than previous congeners, while maintaining high selectivity for the target virus. Their binding mode was characterized via thermodynamic and crystallographic studies. PMID:26985324

  5. Dose Finding of Small-Molecule Oncology Drugs: Optimization throughout the Development Life Cycle.

    PubMed

    Jänne, Pasi A; Kim, Geoffrey; Shaw, Alice T; Sridhara, Rajeshwari; Pazdur, Richard; McKee, Amy E

    2016-06-01

    In the current era of rapid marketing approval for promising new products in oncology, dose finding and optimization for small-molecule oncology drugs occurs throughout the development cycle and into the postmarketing setting. Many trials that support a regulatory application have high rates of dose reductions and discontinuations, which may result in postmarketing requirements (PMR) to study alternate doses or dosing schedules. Kinase inhibitors particularly have been susceptible to this problem, and among the 31 approved drugs of this class, the approvals of eight have included such PMRs and/or commitments. Thus, the current paradigm for dose finding and optimization could be improved. Newer strategies for dose finding rather than traditional 3 + 3 designs should be considered where feasible, and dose optimization should be continued after phase I and throughout development. Such strategies will increase the likelihood of a right dose for the right drug at the time of regulatory approval. Clin Cancer Res; 22(11); 2613-7. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "NEW APPROACHES FOR OPTIMIZING DOSING OF ANTICANCER AGENTS". PMID:27250931

  6. Nonclinical Evaluations of Small-Molecule Oncology Drugs: Integration into Clinical Dose Optimization and Toxicity Management.

    PubMed

    Dambach, Donna M; Simpson, Natalie E; Jones, Thomas W; Brennan, Richard J; Pazdur, Richard; Palmby, Todd R

    2016-06-01

    Multidisciplinary approaches that incorporate nonclinical pharmacologic and toxicologic characterization of small-molecule oncology drugs into clinical development programs may facilitate improved benefit-risk profiles and clinical toxicity management in patients. The performance of the current nonclinical safety-testing scheme was discussed, highlighting current strengths and areas for improvement. While current nonclinical testing appears to predict the clinical outcome where the prevalence of specific adverse effects are high, nonclinical testing becomes less reliable for predicting clinical adverse effects that occur infrequently, as with some kinase inhibitors. Although adverse effects associated with kinase inhibitors can often be predicted on the basis of target biology, drugs can be promiscuous and inhibit targets with poorly defined function and associated risks. Improvements in adverse effect databases and better characterization of the biologic activities of drug targets may enable better use of computational modeling approaches in predicting adverse effects with kinase inhibitors. Assessing safety of a lead candidate in parallel with other drug properties enables incorporation of a molecule's best features during chemical design, eliminates the worst molecules early, and permits timely investigation/characterization of toxicity mechanisms for identified liabilities. A safety lead optimization and candidate identification strategy that reduces intrinsic toxicity and metabolic risk and enhances selectivity can deliver selective kinase inhibitors that demonstrate on-target adverse effects identified nonclinically. Integrating clinical and nonclinical data during drug development can facilitate better identification and management of oncology drugs. Follow-up nonclinical studies may be used to better understand the risks in a given patient population and minimize or manage these risks more appropriately. Clin Cancer Res; 22(11); 2618-22. ©2016 AACR SEE ALL

  7. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  8. Enhancements to the Rosetta Energy Function Enable Improved Identification of Small Molecules that Inhibit Protein-Protein Interactions

    PubMed Central

    Karanicolas, John

    2015-01-01

    Protein-protein interactions are among today’s most exciting and promising targets for therapeutic intervention. To date, identifying small-molecules that selectively disrupt these interactions has proven particularly challenging for virtual screening tools, since these have typically been optimized to perform well on more “traditional” drug discovery targets. Here, we test the performance of the Rosetta energy function for identifying compounds that inhibit protein interactions, when these active compounds have been hidden amongst pools of “decoys.” Through this virtual screening benchmark, we gauge the effect of two recent enhancements to the functional form of the Rosetta energy function: the new “Talaris” update and the “pwSHO” solvation model. Finally, we conclude by developing and validating a new weight set that maximizes Rosetta’s ability to pick out the active compounds in this test set. Looking collectively over the course of these enhancements, we find a marked improvement in Rosetta’s ability to identify small-molecule inhibitors of protein-protein interactions. PMID:26484863

  9. Panel docking of small-molecule libraries - Prospects to improve efficiency of lead compound discovery.

    PubMed

    Sarnpitak, Pakornwit; Mujumdar, Prashant; Taylor, Paul; Cross, Megan; Coster, Mark J; Gorse, Alain-Dominique; Krasavin, Mikhail; Hofmann, Andreas

    2015-11-01

    Computational docking as a means to prioritise small molecules in drug discovery projects remains a highly popular in silico screening approach. Contemporary docking approaches without experimental parametrisation can reliably differentiate active and inactive chemotypes in a protein binding site, but the absence of a correlation between the score of a predicted binding pose and the biological activity of the molecule presents a clear limitation. Several novel or improved computational approaches have been developed in the recent past to aid in screening and profiling of small-molecule ligands for drug discovery, but also more broadly in developing conceptual relationships between different protein targets by chemical probing. Among those new methodologies is a strategy known as inverse virtual screening, which involves the docking of a compound into different protein structures. In the present article, we review the different computational screening methodologies that employ docking of atomic models, and, by means of a case study, present an approach that expands the inverse virtual screening concept. By computationally screening a reasonably sized library of 1235 compounds against a panel of 48 mostly human kinases, we have been able to identify five groups of putative lead compounds with substantial diversity when compared to each other. One representative of each of the five groups was synthesised, and tested in kinase inhibition assays, yielding two compounds with micro-molar inhibition in five human kinases. This highly economic and cost-effective methodology holds great promise for drug discovery projects, especially in cases where a group of target proteins share high structural similarity in their binding sites. PMID:26025037

  10. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1

    PubMed Central

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z.; Agoulnik, Irina U.; Southall, Noel; Hu, Xin; Jones, Raisa E.; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I.; Marugan, Juan J.

    2016-01-01

    The anti-fibrotic, vasodilatory, and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodeling capacity of these peptide hormones is difficult to study in chronic settings due to their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin receptor 1 (RXFP1) agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of RXFP1 activation. PMID:23764525

  11. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1.

    PubMed

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z; Agoulnik, Irina U; Southall, Noel; Hu, Xin; Jones, Raisa E; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I; Marugan, Juan J

    2013-01-01

    The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation. PMID:23764525

  12. Discovery and Optimization of Small Molecule Splicing Modifiers of Survival Motor Neuron 2 as a Treatment for Spinal Muscular Atrophy.

    PubMed

    Woll, Matthew G; Qi, Hongyan; Turpoff, Anthony; Zhang, Nanjing; Zhang, Xiaoyan; Chen, Guangming; Li, Chunshi; Huang, Song; Yang, Tianle; Moon, Young-Choon; Lee, Chang-Sun; Choi, Soongyu; Almstead, Neil G; Naryshkin, Nikolai A; Dakka, Amal; Narasimhan, Jana; Gabbeta, Vijayalakshmi; Welch, Ellen; Zhao, Xin; Risher, Nicole; Sheedy, Josephine; Weetall, Marla; Karp, Gary M

    2016-07-14

    The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA. PMID:27299569

  13. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review.

    PubMed

    Sebe, István; Szabó, Péter; Kállai-Szabó, Barnabás; Zelkó, Romána

    2015-10-15

    Over the past several decades, the formulation of novel nanofiber-based drug delivery systems focusing on specific delivery purposes has been investigated worldwide with a continuous level of interest. The unique structure and properties of nanoscale fibrous systems, such as their high specific-area-to-volume ratio and high porosity and the possibility of controlling their crystalline-amorphous phase transitions, make them a desirable formulation pathway to satisfy the needs of recent pharmaceutical development. Fibrous delivery systems can facilitate the accelerated dissolution and increased solubility of small molecules and can also be useful in controlling drug delivery over time (for local or systemic drug administration). In the latter case, the release periods can be tuned over a wide range (from hours to weeks), e.g., by adjusting the fiber diameter and selecting the appropriate polymers. The solubility of the polymer, the fiber diameter and the fiber structure are the primary parameters affecting drug release. In addition to immediate and sustained release, other release profiles, such as biphasic release, can also be achieved. Chemical conjugation and surface functionalization offer further possibilities for the control of drug release. In the case of small molecules, developments focus mostly on overcoming the unfavorable physicochemical nature of the active agents. By contrast, in the preparation of macromolecule-loaded nanofibers, maximizing the biological activity of the macromolecules presents the greatest challenge. The authors' intent is to provide a comprehensive overview of the key parameters of advanced drug delivery systems of this type. PMID:26307263

  14. Structure-guided optimization of small molecules inhibiting human immunodeficiency virus 1 Tat association with the human coactivator p300/CREB binding protein-associated factor.

    PubMed

    Pan, Chongfeng; Mezei, Mihaly; Mujtaba, Shiraz; Muller, Michaela; Zeng, Lei; Li, Jiaming; Wang, Zhiyong; Zhou, Ming-Ming

    2007-05-17

    Human immunodeficiency virus 1 (HIV-1) trans-activator Tat recruits the human transcriptional coactivator PCAF (p300/CREB binding protein-associated factor) to facilitate transcription of the integrated HIV-1 provirus. We report here structure-based lead optimization of small-molecule inhibitors that block selectively Tat and PCAF association in cells. Our lead optimization was guided by grand-canonical ensemble simulation of the receptor/lead complex that leads to definition of chemical modifications with improved lead affinity through displacing weakly bound water molecules at the ligand-receptor interface. PMID:17444627

  15. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    PubMed

    Vinader, Victoria; Ahmet, Djevdet S; Ahmed, Mohaned S; Patterson, Laurence H; Afarinkia, Kamyar

    2013-01-01

    Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds. PMID:24205302

  16. Discovery and Computer Aided Potency Optimization of a Novel Class of Small Molecule CXCR4 Antagonists

    PubMed Central

    Vinader, Victoria; Ahmet, Djevdet S.; Ahmed, Mohaned S.; Patterson, Laurence H.; Afarinkia, Kamyar

    2013-01-01

    Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds. PMID:24205302

  17. Improved small-molecule macroarray platform for the rapid synthesis and discovery of antibacterial chalcones.

    PubMed

    Stringer, Joseph R; Bowman, Matthew D; Weisblum, Bernard; Blackwell, Helen E

    2011-03-14

    Bacterial resistance to current antibiotics is a major global health threat. Consequently, there is an urgent need for the identification of new antibacterial agents. We are applying the small-molecule macroarray platform to rapidly synthesize and screen compounds for activity against methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report the synthesis of a 1,3-diphenyl-2-propen-1-one (chalcone) macroarray using a Rink-amide linker-derivatized cellulose support. The Rink linker allowed for the incorporation of a broader array of library building blocks relative to our previous syntheses because milder reaction conditions could be utilized; significantly higher compound loadings were also achieved (~80% vs ~15%). Analysis of the 174-member chalcone macroarray in off-support antibacterial screening assays revealed three chalcones with minimum inhibitory concentration (MIC) values against MRSA comparable to currently used antibacterial drugs and low hemolytic activities. These results serve to further showcase and extend the utility of the small molecule macroarray for antibacterial discovery. PMID:21210707

  18. Small Molecules Greatly Improve Conversion of Human-Induced Pluripotent Stem Cells to the Neuronal Lineage

    PubMed Central

    Mak, Sally K.; Huang, Y. Anne; Iranmanesh, Shifteh; Vangipuram, Malini; Sundararajan, Ramya; Nguyen, Loan; Langston, J. William; Schüle, Birgitt

    2012-01-01

    Efficient in vitro differentiation into specific cell types is more important than ever after the breakthrough in nuclear reprogramming of somatic cells and its potential for disease modeling and drug screening. Key success factors for neuronal differentiation are the yield of desired neuronal marker expression, reproducibility, length, and cost. Three main neuronal differentiation approaches are stromal-induced neuronal differentiation, embryoid body (EB) differentiation, and direct neuronal differentiation. Here, we describe our neurodifferentiation protocol using small molecules that very efficiently promote neural induction in a 5-stage EB protocol from six induced pluripotent stem cells (iPSC) lines from patients with Parkinson's disease and controls. This protocol generates neural precursors using Dorsomorphin and SB431542 and further maturation into dopaminergic neurons by replacing sonic hedgehog with purmorphamine or smoothened agonist. The advantage of this approach is that all patient-specific iPSC lines tested in this study were successfully and consistently coaxed into the neural lineage. PMID:22567022

  19. Computer assisted optimization of liquid chromatographic separations of small molecules using mixed-mode stationary phases.

    PubMed

    Ordoñez, Edgar Y; Benito Quintana, José; Rodil, Rosario; Cela, Rafael

    2012-05-18

    Mixed-mode stationary phases are gaining adepts in liquid chromatography (LC) as more and more applications are published and new commercial columns appear in the market ought to their ability to retain and separate analytes with multiple functionalities. The increased number of adjustable variables gives these columns an enhanced value for the chromatographer, but, on the other hand, it complicates the process of developing satisfactory separations when complex samples must be analyzed. Thus, the availability of computer assisted methods development (CAMD) tools is highly desirable in this field. Therefore, the first specific tool for the CAMD of LC separations in mixed-mode columns is presented. The tool consists in two processes. The first one develops a retention model for peaks in a predefined experimental domain of pH and buffer concentration. In this domain, the retention as a function of the proportion of organic modifier is modeled using a two-stage re-calibration process departing from isocratic retention data and then, from gradient elutions. With this two-stage approach, reliability is gained. In the second process, the model is finally interpolated and used for the unattended optimization of the different possible elution modes available in these columns. This optimization process is driven by an evolutionary algorithm. The development and application of this new chemometrics tool is demonstrated by the optimization of a mixture of neutral and ionizable compounds. Hence, several different types of gradients were generated, showing a good agreement between simulated and experimental data, with retention time errors lower than 5% in most cases. On the other hand, classical CAMD tools, such as design of experiments, were unable to efficiently deal with mixed-mode optimizations, rendering errors above 30% for several compounds. PMID:22494641

  20. Buffer optimization of thermal melt assays of Plasmodium proteins for detection of small-molecule ligands.

    PubMed

    Crowther, Gregory J; Napuli, Alberto J; Thomas, Andrew P; Chung, Diana J; Kovzun, Kuzma V; Leibly, David J; Castaneda, Lisa J; Bhandari, Janhavi; Damman, Christopher J; Hui, Raymond; Hol, Wim G J; Buckner, Frederick S; Verlinde, Christophe L M J; Zhang, Zhongsheng; Fan, Erkang; van Voorhis, Wesley C

    2009-07-01

    In the past decade, thermal melt/thermal shift assays have become a common tool for identifying ligands and other factors that stabilize specific proteins. Increased stability is indicated by an increase in the protein's melting temperature (Tm). In optimizing the assays for subsequent screening of compound libraries, it is important to minimize the variability of Tm measurements so as to maximize the assay's ability to detect potential ligands. The authors present an investigation of Tm variability in recombinant proteins from Plasmodium parasites. Ligands of Plasmodium proteins are particularly interesting as potential starting points for drugs for malaria, and new drugs are urgently needed. A single standard buffer (100 mM HEPES [pH 7.5], 150 mM NaCl) permitted estimation of Tm for 58 of 61 Plasmodium proteins tested. However, with several proteins, Tm could not be measured with a consistency suitable for high-throughput screening unless alternative protein-specific buffers were employed. The authors conclude that buffer optimization to minimize variability in Tm measurements increases the success of thermal melt screens involving proteins for which a standard buffer is suboptimal. PMID:19470714

  1. Organic soluble and uniform film forming oligoethylene glycol substituted BODIPY small molecules with improved hole mobility.

    PubMed

    Singh, Saumya; Venugopalan, Vijay; Krishnamoorthy, Kothandam

    2014-07-14

    Judiciously chosen side chains of conjugated molecules have a positive impact on charge transport properties when used as the active material in organic electronic devices. Amongst the side chains, oligoethylene glycols (OEGs) have been relatively unexplored due to their hydrophilic nature. OEGs also affect the smooth film formation of conjugated molecules, which preclude device fabrication. However, X-ray diffraction studies have shown that OEGs facilitate intermolecular contact, which is a desirable property for the fabrication of organic electronic devices. Thus the challenge is to design and synthesize organic solvent soluble and uniform film forming conjugated molecules with OEG side chains. We have designed and synthesized conjugated small molecules (CSMs) comprising BODIPY as acceptor and triphenylamine as donor with an OEG side chain. This molecule forms smooth films when processed from organic solvents. In order to understand the impact of the OEG side chain, we have also synthesized alkyl chain analogs. All the molecules exhibit exactly the same HOMO and LUMO energy levels, but the packing in the solid state is different. CSM with methyl side chains exhibit an inter planar distance of 4.15 Å. Contrary to this, the OEG side chain containing CSM showed an inter planar spacing of 4.30 Å, which is 0.2 Å less than the alkyl side chain comprising CSMs. Please note that the length of the hydrophobic and hydrophilic side chains is the same. Interestingly, the OEG side chain comprising CSM showed two orders of higher hole carrier mobilities compared to all the other derivatives. The same molecule also showed an extremely low threshold voltage of -0.27 V indicating the OEG side chains' favourable interaction between substrate as well as between molecules. PMID:24874914

  2. An Enantiomer of an Oral Small-Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties

    PubMed Central

    Neumann, Susanne; Padia, Umesh; Cullen, Mary Jane; Eliseeva, Elena; Nir, Eshel A.; Place, Robert F.; Morgan, Sarah J.; Gershengorn, Marvin C.

    2016-01-01

    We are developing an orally available small-molecule, allosteric TSH receptor (TSHR) agonist for follow-up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870) that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S)-(+) isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was, therefore, predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM) than C2 (EC50 = 46 nM), which was more potent than E1 (EC50 = 217 nM). In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium–iodide symporter mRNA of 20-, 4-, and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5-day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen®). Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer. PMID:27512388

  3. An Enantiomer of an Oral Small-Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties.

    PubMed

    Neumann, Susanne; Padia, Umesh; Cullen, Mary Jane; Eliseeva, Elena; Nir, Eshel A; Place, Robert F; Morgan, Sarah J; Gershengorn, Marvin C

    2016-01-01

    We are developing an orally available small-molecule, allosteric TSH receptor (TSHR) agonist for follow-up diagnostics of patients with thyroid cancer. The agonist C2 (NCGC00161870) that we have studied so far is a racemic mixture containing equal amounts of two enantiomers, E1 and E2. As enantiomers of many drugs exhibit different pharmacologic properties, we assessed the properties of E1 and E2. We separated the two enantiomers by chiral chromatography and determined E2 as the (S)-(+) isomer via crystal structure analysis. E1 and E2 were shown to bind differently to a homology model of the transmembrane domain of TSHR in which E2 was calculated to exhibit lower binding energy than E1 and was, therefore, predicted to be more potent than E1. In HEK293 cells expressing human TSHRs, C2, E1, and E2 were equally efficacious in stimulating cAMP production, but their potencies were different. E2 was more potent (EC50 = 18 nM) than C2 (EC50 = 46 nM), which was more potent than E1 (EC50 = 217 nM). In primary cultures of human thyrocytes, C2, E1, and E2 stimulated increases in thyroperoxidase mRNA of 92-, 55-, and 137-fold and in sodium-iodide symporter mRNA of 20-, 4-, and 121-fold above basal levels, respectively. In mice, C2 stimulated an increase in radioactive iodine uptake of 1.5-fold and E2 of 2.8-fold above basal level, whereas E1 did not have an effect. C2 stimulated an increase in serum T4 of 2.4-fold, E1 of 1.9-fold, and E2 of 5.6-fold above basal levels, and a 5-day oral dosing regimen of E2 increased serum T4 levels comparable to recombinant human TSH (rhTSH, Thyrogen(®)). Thus, E2 is more effective than either C2 or E1 in stimulating thyroid function and as efficacious as rhTSH in vivo. E2 represents the next step toward developing an oral drug for patients with thyroid cancer. PMID:27512388

  4. Adaptive Particle Swarm Optimizer with Varying Acceleration Coefficients for Finding the Most Stable Conformer of Small Molecules.

    PubMed

    Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra

    2015-11-01

    A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. PMID:27491033

  5. A Small Molecule that Targets r(CGG)exp and Improves Defects in Fragile X-Associated Tremor Ataxia Syndrome

    PubMed Central

    Disney, Matthew D.; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L.

    2012-01-01

    The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is a lack of knowledge of the chemical and RNA motif spaces that interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)exp , that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium, binds the 5’CGG/3’GGC motifs in r(CGG)exp and disrupts a toxic r(CGG)exp -protein complex in vitro. Structure-activity relationships (SAR) studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition to r(CGG)exp . Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)exp -protein aggregates. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)exp promotes toxicity. PMID:22948243

  6. A small molecule that targets r(CGG)(exp) and improves defects in fragile X-associated tremor ataxia syndrome.

    PubMed

    Disney, Matthew D; Liu, Biao; Yang, Wang-Yong; Sellier, Chantal; Tran, Tuan; Charlet-Berguerand, Nicolas; Childs-Disney, Jessica L

    2012-10-19

    The development of small molecule chemical probes or therapeutics that target RNA remains a significant challenge despite the great interest in such compounds. The most significant barrier to compound development is defining which chemical and RNA motif spaces interact specifically. Herein, we describe a bioactive small molecule probe that targets expanded r(CGG) repeats, or r(CGG)(exp), that causes Fragile X-associated Tremor Ataxia Syndrome (FXTAS). The compound was identified by using information on the chemotypes and RNA motifs that interact. Specifically, 9-hydroxy-5,11-dimethyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4,3-b]carbazol-2-ium binds the 5'CGG/3'GGC motifs in r(CGG)(exp) and disrupts a toxic r(CGG)(exp)-protein complex in vitro. Structure-activity relationship studies determined that the alkylated pyridyl and phenolic side chains are important chemotypes that drive molecular recognition of r(CGG)(exp). Importantly, the compound is efficacious in FXTAS model cellular systems as evidenced by its ability to improve FXTAS-associated pre-mRNA splicing defects and to reduce the size and number of r(CGG)(exp)-containing nuclear foci. This approach may establish a general strategy to identify lead ligands that target RNA while also providing a chemical probe to dissect the varied mechanisms by which r(CGG)(exp) promotes toxicity. PMID:22948243

  7. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    PubMed Central

    2009-01-01

    Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods. PMID:19912625

  8. Emerging small molecule drugs.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Kuivenhoven, Jan A; Staels, Bart

    2015-01-01

    Dyslipidaemia is a major risk factor for cardiovascular diseases. Pharmacological lowering of LDL-C levels using statins reduces cardiovascular risk. However, a substantial residual risk persists especially in patients with type 2 diabetes mellitus. Because of the inverse association observed in epidemiological studies of HDL-C with the risk for cardiovascular diseases, novel therapeutic strategies to raise HDL-C levels or improve HDL functionality are developed as complementary therapy for cardiovascular diseases. However, until now most therapies targeting HDL-C levels failed in clinical trials because of side effects or absence of clinical benefits. This chapter will highlight the emerging small molecules currently developed and tested in clinical trials to pharmacologically modulate HDL-C and functionality including new CETP inhibitors (anacetrapib, evacetrapib), novel PPAR agonists (K-877, CER-002, DSP-8658, INT131 and GFT505), LXR agonists (ATI-111, LXR-623, XL-652) and RVX-208. PMID:25523004

  9. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.

    PubMed

    Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R

    2015-04-01

    Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. PMID:25678535

  10. Optimal Classes of Chemotherapeutic Agents Sensitized by Specific Small-Molecule Inhibitors of Akt In Vitro and In Vivo

    PubMed Central

    Shi, Yan; Liu, Xuesong; Han, Edward K.; Guan, Ran; Shoemaker, Alexander R.; Oleksijew, Anatol; Woods, Keith W.; Fisher, John P.; Klinghofer, Vered; Lasko, Loren; McGonigal, Thomas; Li, Qun; Rosenberg, Saul H.; Giranda, Vincent L.; Luo, Yan

    2005-01-01

    Abstract Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies. We have developed small-molecule Akt inhibitors that are potent and specific. These Akt inhibitors can inhibit Akt activity and block phosphorylation by Akt on multiple downstream targets in cells. Synergy in apoptosis induction was observed when Akt inhibitors were combined with doxorubicin or camptothecin. Akt inhibitor–induced enhancement of topoisomerase inhibitor cytotoxicity was also evident in long-term cell survival assay. Synergy with paclitaxel in apoptosis induction was evident in cells pretreated with paclitaxel, and enhancement of tumor delay by paclitaxel was demonstrated through cotreatment with Akt inhibitor Compound A (A-443654). Combination with other classes of chemotherapeutic agents did not yield any enhancement of cytotoxicity. These findings provide important guidance in selecting appropriate classes of chemotherapeutic agents for combination with Akt inhibitors in cancer treatment. PMID:16331885

  11. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures

    PubMed Central

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  12. Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL).

    PubMed

    Borkin, Dmitry; Pollock, Jonathan; Kempinska, Katarzyna; Purohit, Trupta; Li, Xiaoqin; Wen, Bo; Zhao, Ting; Miao, Hongzhi; Shukla, Shirish; He, Miao; Sun, Duxin; Cierpicki, Tomasz; Grembecka, Jolanta

    2016-02-11

    Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications. PMID:26744767

  13. Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury

    PubMed Central

    Lee, Se-Yeon; Lee, Seahyoung; Choi, Eunhyun; Ham, Onju; Lee, Chang Youn; Lee, Jiyun; Seo, Hyang-Hee; Cha, Min-Ji; Mun, Bohyun; Lee, Yunmi; Yoon, Cheesoon; Hwang, Ki-Chul

    2016-01-01

    Genetic ablation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), an essential regulator of cardiac cell death, is an effective way to prevent cardiac cell death triggered by pathologic conditions. However, currently there exists no known means, such as inhibitors, to down-regulate BNIP3 in mature heart. Here, we report that a small molecule inducer of microRNA-182 (miR-182) suppressed ischemia/reperfusion (I/R)-induced cardiac cell death by down-regulating BNIP3. We first selected miR-182 as a potent BNIP3-targeting miRNA based on miRNA-target prediction databases and empirical data. The subsequent screening of small molecules for inducing miR-182 expression identified Kenpaullone as a hit compound. Both exogenous miR-182 and Kenpaullone significantly suppressed hypoxia-induced cardiomyocyte death in vitro. To investigate the effect of changing substituents of Kenpaullone on miR-182 expression, we synthesized 9 derivatives of Kenpaullone. Among these derivatives, compound 5 showed significantly improved ability to induce miR-182 expression. The results of the in vivo study showed that compound 5 significantly improved heart function following I/R-injury in rats. Our study provides strong evidence that the small molecule-mediated up-regulation of miRNAs is a viable strategy to down-regulate target proteins with no known chemical inhibitor and that compound 5 may have potential to prevent I/R-inflicted cardiac cell death. PMID:27008992

  14. Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury.

    PubMed

    Lee, Se-Yeon; Lee, Seahyoung; Choi, Eunhyun; Ham, Onju; Lee, Chang Youn; Lee, Jiyun; Seo, Hyang-Hee; Cha, Min-Ji; Mun, Bohyun; Lee, Yunmi; Yoon, Cheesoon; Hwang, Ki-Chul

    2016-01-01

    Genetic ablation of BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), an essential regulator of cardiac cell death, is an effective way to prevent cardiac cell death triggered by pathologic conditions. However, currently there exists no known means, such as inhibitors, to down-regulate BNIP3 in mature heart. Here, we report that a small molecule inducer of microRNA-182 (miR-182) suppressed ischemia/reperfusion (I/R)-induced cardiac cell death by down-regulating BNIP3. We first selected miR-182 as a potent BNIP3-targeting miRNA based on miRNA-target prediction databases and empirical data. The subsequent screening of small molecules for inducing miR-182 expression identified Kenpaullone as a hit compound. Both exogenous miR-182 and Kenpaullone significantly suppressed hypoxia-induced cardiomyocyte death in vitro. To investigate the effect of changing substituents of Kenpaullone on miR-182 expression, we synthesized 9 derivatives of Kenpaullone. Among these derivatives, compound 5 showed significantly improved ability to induce miR-182 expression. The results of the in vivo study showed that compound 5 significantly improved heart function following I/R-injury in rats. Our study provides strong evidence that the small molecule-mediated up-regulation of miRNAs is a viable strategy to down-regulate target proteins with no known chemical inhibitor and that compound 5 may have potential to prevent I/R-inflicted cardiac cell death. PMID:27008992

  15. Small molecule TBTC as a new selective retinoid X receptor α agonist improves behavioral deficit in Alzheimer's disease model mice.

    PubMed

    Sun, Yanyan; Fan, Jun; Zhu, Zhiyuan; Guo, Xiaodan; Zhou, Tingting; Duan, Wenhu; Shen, Xu

    2015-09-01

    Alzheimer's disease (AD) is a neurodegenerative disease, which is characterized by progressive cognitive impairments. The β-amyloid (Aβ)-induced neurodegeneration is determined as the main pathogenesis of AD, and either decrease of Aβ production or increase of Aβ clearance is beneficial in the treatment of AD, while Aβ clearance regulation seems to be more attractive as a promising therapeutic strategy against AD based on the fact that the insufficient clearance of Aβ is tightly associated with the late onset of AD that is represented as the majority of AD cases. Here, we report that the small molecular compound, methyl 2-amino-6-(tert-butyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (TBTC), as a selective agonist of retinoid X receptor α (RXRα) can effectively activate the heterodimerization of RXRα with either liver X receptor α (LXRα) or peroxisome proliferator activated receptor γ (PPARγ), stimulate the expressions of the genes of apoE, ABCA1 and ABCG1, and decrease Aβ content both in cells and animal models. In addition, administration of TBTC (30mg/kg/day) in the transgenic APP-PS1 mice could also reduce the formation of senile plaques and improve the daily living activity of the mice. Therefore, our findings have suggested that TBTC might hold the potential as a drug lead compound for the treatment of AD. PMID:26026644

  16. Sustained functional improvement by hepatocyte growth factor-like small molecule BB3 after focal cerebral ischemia in rats and mice

    PubMed Central

    Chaparro, Rafael E; Izutsu, Miwa; Sasaki, Toshihiro; Sheng, Huaxin; Zheng, Yi; Sadeghian, Homa; Qin, Tao; von Bornstadt, Daniel; Herisson, Fanny; Duan, Bin; Li, Jing-Song; Jiang, Kai; Pearlstein, Molly; Pearlstein, Robert D; Smith, David E; Goldberg, Itzhak D; Ayata, Cenk; Warner, David S

    2015-01-01

    Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood–brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minutes after reperfusion and continued for 14 days improved neurologic function that persisted for 8 weeks in some, but not all measures. Study in animals with comorbidities and those exposed to common stroke drugs are the next steps to complete preclinical assessment. These data, generated in independent, masked, and rigorously controlled settings, are the first to suggest that the HGF pathway can potentially be harnessed by BB3 for neurologic benefit after ischemic stroke. PMID:25712497

  17. Small Molecules in the Treatment of Psoriasis.

    PubMed

    Torres, Tiago; Filipe, Paulo

    2015-08-01

    Preclinical Research Psoriasis is an inflammatory systemic skin disease that affects various parts of the body requiring long-term management due to its chronic nature. Available treatment options include topical, systemic or biological therapies, which have long-term limitations associated to toxicity, tolerability and risk for adverse effects requiring its intermittent use and close monitoring. Small molecules modulate proinflammatory cytokines, selectively inhibit signaling pathways and showing potential to treat inflammatory diseases in patients not responding to conventional treatments. Presently, small molecules available are phosphodiesterase 4 inhibitors or Janus kinase inhibitors. Other small molecules under development for psoriasis include fumaric acid esters, amygdalin analogs, protein kinase C inhibitors, mitogen-activated protein kinase inhibitors, spleen protein kinase inhibitors, other tyrosine kinase inhibitors, sphingosine 1-phosphate receptor agonists, and A3 adenosine receptor agonists. These new treatment options represent important advances in the development of specific drugs to respond to the goals of treatment and improve patient quality of life. PMID:26255795

  18. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    PubMed Central

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P.; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  19. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  20. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions

    PubMed Central

    Guan, Lirui

    2013-01-01

    Won’t let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by ≈2500-fold but also enables cell-wide profiling of its RNA targets. PMID:23913698

  1. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets. PMID:23913698

  2. Development of novel small molecules for imaging and drug release

    NASA Astrophysics Data System (ADS)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  3. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. PMID:25411473

  4. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform.

    PubMed

    Zhou, Liping; Zhu, Anna; Lou, Xuening; Song, Dan; Yang, Rong; Shi, Hanchang; Long, Feng

    2016-01-28

    A universal sandwich-like immunoassay strategy based on quantum-dots immunoprobe (QD-labeled anti-mouse IgG antibody) was developed for rapid and ultrasensitive detection of small molecules. A portable and reusable optofluidic nano-biosensing platform was applied to investigate the sandwich-like immunoassay mechanism and format of small molecules, as well as the binding kinetics between QD immunoprobe and anti-small molecule antibody. A two-step immunoassay method that involves pre-incubation mixture of different concentration of small molecule and anti-small molecule antibody, and subsequent introduction of QD immunoprobe into the optofluidic cell was conducted for small molecule determination. Compared with the one-step immunoassay method, the two-step immunoassay method can obtain higher fluorescence signal and higher sensitivity index, thus improving the nano-biosensing performance. Based on the proposed strategy, two mode targets, namely, microcystin-LR (MC-LR) and Bisphenol A (BPA) were tested with high sensitivity, rapidity, and ease of use. A higher concentration of small molecules in the sample led to less anti-small molecule antibody bound with antigen-carrier protein conjugate immobilized onto the sensor surface, and less QD immunoprobes bound with anti-small molecule antibody. This phenomenon lowered the fluorescence signal detected by nano-biosensing platform. Under optimal operating conditions, MC-LR and BPA exhibited a limit of detection of 0.003 and 0.04 μg/L, respectively. The LODs were better than those of the indirect competitive immunoassay method for small molecules via Cy5.5-labeled anti-small molecule antibody. The proposed QD-based sandwich-like immunoassay strategy was evaluated in spiked water samples, and showed good recovery, precision and accuracy without complicated sample pretreatments. All these results demonstrate that the new detection strategy could be readily applied to the other trace small molecules in real water samples

  5. Structure-Based Optimization of a Small Molecule Antagonist of the Interaction Between WD Repeat-Containing Protein 5 (WDR5) and Mixed-Lineage Leukemia 1 (MLL1).

    PubMed

    Getlik, Matthäus; Smil, David; Zepeda-Velázquez, Carlos; Bolshan, Yuri; Poda, Gennady; Wu, Hong; Dong, Aiping; Kuznetsova, Ekaterina; Marcellus, Richard; Senisterra, Guillermo; Dombrovski, Ludmila; Hajian, Taraneh; Kiyota, Taira; Schapira, Matthieu; Arrowsmith, Cheryl H; Brown, Peter J; Vedadi, Masoud; Al-Awar, Rima

    2016-03-24

    WD repeat-containing protein 5 (WDR5) is an important component of the multiprotein complex essential for activating mixed-lineage leukemia 1 (MLL1). Rearrangement of the MLL1 gene is associated with onset and progression of acute myeloid and lymphoblastic leukemias, and targeting the WDR5-MLL1 interaction may result in new cancer therapeutics. Our previous work showed that binding of small molecule ligands to WDR5 can modulate its interaction with MLL1, suppressing MLL1 methyltransferase activity. Initial structure-activity relationship studies identified N-(2-(4-methylpiperazin-1-yl)-5-substituted-phenyl) benzamides as potent and selective antagonists of this protein-protein interaction. Guided by crystal structure data and supported by in silico library design, we optimized the scaffold by varying the C-1 benzamide and C-5 substituents. This allowed us to develop the first highly potent (Kdisp < 100 nM) small molecule antagonists of the WDR5-MLL1 interaction and demonstrate that N-(4-(4-methylpiperazin-1-yl)-3'-(morpholinomethyl)-[1,1'-biphenyl]-3-yl)-6-oxo-4-(trifluoromethyl)-1,6-dihydropyridine-3-carboxamide 16d (OICR-9429) is a potent and selective chemical probe suitable to help dissect the biological role of WDR5. PMID:26958703

  6. Real time HR-MAS NMR: application in reaction optimization, mechanism elucidation and kinetic analysis for heterogeneous reagent catalyzed small molecule chemistry.

    PubMed

    Roy, Abhijeet Deb; Jayalakshmi, K; Dasgupta, Somnath; Roy, Raja; Mukhopadhyay, Balaram

    2008-12-01

    A novel application of in situ (1)H high-resolution magic angle spinning (HR-MAS) NMR technique for real-time monitoring of H(2)SO(4)-silica promoted formation of 2, 2-disubstituted quinozolin-4(3H)-ones is reported. The detailed NMR spectroscopic data led to elucidation of the mechanism, reaction optimization, kinetics and quantitative analysis of the product accurately and efficiently. The translation of the optimized parameters obtained by (1)H HR-MAS NMR in the wet laboratory provided similar results. It is proposed that (1)H HR-MAS has a potential utility for optimization of various organic transformations in solid supported catalyzed reactions. PMID:18853391

  7. The identification, characterization and optimization of small molecule probes of cysteine proteases: experiences of the Penn Center for Molecular Discovery with cathepsin B and cathepsin L.

    PubMed

    Huryn, Donna M; Smith, Amos B

    2009-01-01

    During the pilot phase of the NIH Molecular Library Screening Network, the Penn Center for Molecular Discovery focused on a series of projects aimed at high throughput screening and the development of probes of a variety of protease targets. This review provides our medicinal chemistry experience with two such targets--cathepsin B and cathepsin L. We describe our approach for hit validation, characterization and triage that led to a critical understanding of the nature of hits from the cathepsin B project. In addition, we detail our experience at hit identification and optimization that led to the development of a novel thiocarbazate probe of cathepsin L. PMID:19807666

  8. Programmable DNA-binding Small Molecules

    PubMed Central

    Blackledge, Meghan S.; Melander, Christian

    2013-01-01

    Aberrant gene expression is responsible for a myriad of human diseases from infectious diseases to cancer. Precise regulation of these genes via specific interactions with the DNA double helix could pave the way for novel therapeutics. Pyrrole-imidazole polyamides are small molecules capable of binding to pre-determined DNA sequences up to 16 base pairs with affinity and specificity comparable to natural transcription factors. In the three decades since their development, great strides have been made relating to synthetic accessibility and improved sequence specificity and binding affinity. This perspective presents a brief history of early seminal developments in the field and highlights recent reports of the utility of polyamides as both genetic modulators and molecular probes. PMID:23665141

  9. Small Molecules in the Cone Snail Arsenal.

    PubMed

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom. PMID:26421741

  10. Small-molecule-dependent split aptamer ligation.

    PubMed

    Sharma, Ashwani K; Heemstra, Jennifer M

    2011-08-17

    Here we describe the first use of small-molecule binding to direct a chemical reaction between two nucleic acid strands. The reported reaction is a ligation between two fragments of a DNA split aptamer using strain-promoted azide-alkyne cycloaddition. Utilizing the split aptamer for cocaine, we demonstrate small-molecule-dependent ligation that is dose-dependent over a wide range of cocaine concentrations and is compatible with complex biological fluids such as human blood serum. Moreover, studies of split aptamer ligation at varying salt concentrations and using structurally similar analogues of cocaine have revealed new insight into the assembly and small-molecule binding properties of the cocaine split aptamer. The ability to translate the presence of a small-molecule target into the output of DNA ligation is anticipated to enable the development of new, broadly applicable small-molecule detection assays. PMID:21761903

  11. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  12. Recent Advances in Developing Small Molecules Targeting Nucleic Acid

    PubMed Central

    Wang, Maolin; Yu, Yuanyuan; Liang, Chao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids. PMID:27248995

  13. Small molecule TSHR agonists and antagonists.

    PubMed

    Neumann, S; Gershengorn, M C

    2011-04-01

    TSH activates the TSH receptor (TSHR) thereby stimulating the function of thyroid follicular cells (thyrocytes) leading to biosynthesis and secretion of thyroid hormones. Because TSHR is involved in several thyroid pathologies, there is a strong rationale for the design of small molecule "drug-like" ligands. Recombinant human TSH (rhTSH, Thyrogen(®)) has been used in the follow-up of patients with thyroid cancer to increase the sensitivity for detection of recurrence or metastasis. rhTSH is difficult to produce and must be administered by injection. A small molecule TSHR agonist could produce the same beneficial effects as rhTSH but with greater ease of oral administration. We developed a small molecule ligand that is a full agonist at TSHR. Importantly for its clinical potential, this agonist elevated serum thyroxine and stimulated thyroidal radioiodide uptake in mice after its absorption from the gastrointestinal tract following oral administration. Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate TSHR. We identified the first small molecule TSHR antagonists that inhibited TSH- and TSAb-stimulated signalling in primary cultures of human thyrocytes. Our results provide proof-of-principle for effectiveness of small molecule agonists and antagonists for TSHR. We suggest that these small molecule ligands are lead compounds for the development of higher potency ligands that can be used as probes of TSHR biology with therapeutic potential. PMID:21511239

  14. A Prospective Method to Guide Small Molecule Drug Design

    ERIC Educational Resources Information Center

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  15. Two-Photon Small Molecule Enzymatic Probes.

    PubMed

    Qian, Linghui; Li, Lin; Yao, Shao Q

    2016-04-19

    Enzymes are essential for life, especially in the development of disease and on drug effects, but as we cannot yet directly observe the inside interactions and only partially observe biochemical outcomes, tools "translating" these processes into readable information are essential for better understanding of enzymes as well as for developing effective tools to fight against diseases. Therefore, sensitive small molecule probes suitable for direct in vivo monitoring of enzyme activities are ultimately desirable. For fulfilling this desire, two-photon small molecule enzymatic probes (TSMEPs) producing amplified fluorescent signals based on enzymatic conversion with better photophysical properties and deeper penetration in intact tissues and whole animals have been developed and demonstrated to be powerful in addressing the issues described above. Nonetheless, currently available TSMEPs only cover a small portion of enzymes despite the distinct advantages of two-photon fluorescence microscopy. In this Account, we would like to share design principles for TSMEPs as potential indicators of certain pathology-related biomarkers together with their applications in disease models to inspire more elegant work to be done in this area. Highlights will be addressed on how to equip two-photon fluorescent probes with features amenable for direct assessment of enzyme activities in complex pathological environments. We give three recent examples from our laboratory and collaborations in which TSMEPs are applied to visualize the distribution and activity of enzymes at cellular and organism levels. The first example shows that we could distinguish endogenous phosphatase activity in different organelles; the second illustrates that TSMEP is suitable for specific and sensitive detection of a potential Parkinson's disease marker (monoamine oxidase B) in a variety of biological systems from cells to patient samples, and the third identifies that TSMEPs can be applied to other enzyme

  16. Increased Hydrogel Swelling Induced by Absorption of Small Molecules.

    PubMed

    Nam, Changwoo; Zimudzi, Tawanda J; Geise, Geoffrey M; Hickner, Michael A

    2016-06-01

    The water and small molecule uptake behavior of amphiphilic diacrylate terminated poly(dimethylsiloxane) (PDMSDA)/poly(ethylene glycol diacrylate) (PEGDA) cross-linked hydrogels were studied using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. These hydrogel networks absorbed more water as the PEGDA content of the network increased. In contrast to typical osmotic deswelling behavior that occurs when liquid water equilibrated hydrogels are immersed in small molecule solutions with water activities less than unity, water-swollen gels immersed in 2-acrylamido-2-methylpropanesulfonic acid (AMPS-H) solutions rapidly regained their water content within 4 min following an initial deswelling response. In situ ATR-FTIR analysis of the hydrogel film during the dynamic swelling experiment indicated that small molecule absorption into the gel played an important role in inducing gel reswelling in low water activity solutions. This aspect of polymer gel water uptake and interaction with small molecules is important for optimizing hydrogel coatings and hydrophilic polymer applications where there is an interaction between the internal chemical structure of the gel and electrolytes or other molecules in solution. PMID:27159118

  17. Small molecule MALDI MS imaging: Current technologies and future challenges.

    PubMed

    Trim, Paul J; Snel, Marten F

    2016-07-15

    Imaging of specific small molecules is particularly challenging using conventional optical microscopy techniques. This has led to the development of alternative imaging modalities, including mass spectrometry (MS)-based methods. This review aims to provide an overview of the technologies, methods and future directions of laser-based mass spectrometry imaging (MSI) of small molecules. In particular it will focus on matrix-assisted laser desorption/ionization (MALDI) as the ion source, although other laser mass spectrometry methods will also be discussed to provide context, both historical and current. Small molecule MALDI MSI has been performed on a wide variety of instrument platforms: these are reviewed, as are the laser systems that are commonly used in this technique. Instrumentation and methodology cross over in the areas of achieving optimal spatial resolution, a key parameter in obtaining meaningful data. Also discussed is sample preparation, which is pivotal in maintaining sample integrity, providing a true reflection of the distribution of analytes, spatial resolution and sensitivity. Like all developing analytical techniques there are challenges to be overcome. Two of these are dealing with sample complexity and obtaining quantitative information from an imaging experiment. Both of these topics are addressed. Finally, novel experiments including non-MALDI laser ionization techniques are highlighted and a future perspective on the role of MALDI MSI in the small molecule arena is provided. PMID:26804564

  18. Auxin biology revealed by small molecules.

    PubMed

    Ma, Qian; Robert, Stéphanie

    2014-05-01

    The plant hormone auxin regulates virtually every aspect of plant growth and development and unraveling its molecular and cellular modes of action is fundamental for plant biology research. Chemical genomics is the use of small molecules to modify protein functions. This approach currently rises as a powerful technology for basic research. Small compounds with auxin-like activities or affecting auxin-mediated biological processes have been widely used in auxin research. They can serve as a tool complementary to genetic and genomic methods, facilitating the identification of an array of components modulating auxin metabolism, transport and signaling. The employment of high-throughput screening technologies combined with informatics-based chemical design and organic chemical synthesis has since yielded many novel small molecules with more instantaneous, precise and specific functionalities. By applying those small molecules, novel molecular targets can be isolated to further understand and dissect auxin-related pathways and networks that otherwise are too complex to be elucidated only by gene-based methods. Here, we will review examples of recently characterized molecules used in auxin research, highlight the strategies of unraveling the mechanisms of these small molecules and discuss future perspectives of small molecule applications in auxin biology. PMID:24252105

  19. Quantum Monte Carlo studies on small molecules

    NASA Astrophysics Data System (ADS)

    Galek, Peter T. A.; Handy, Nicholas C.; Lester, William A., Jr.

    The Variational Monte Carlo (VMC) and Fixed-Node Diffusion Monte Carlo (FNDMC) methods have been examined, through studies on small molecules. New programs have been written which implement the (by now) standard algorithms for VMC and FNDMC. We have employed and investigated throughout our studies the accuracy of the common Slater-Jastrow trial wave function. Firstly, we have studied a range of sizes of the Jastrow correlation function of the Boys-Handy form, obtained using our optimization program with analytical derivatives of the central moments in the local energy. Secondly, we have studied the effects of Slater-type orbitals (STOs) that display the exact cusp behaviour at nuclei. The orbitals make up the all important trial determinant, which determines the fixed nodal surface. We report all-electron calculations for the ground state energies of Li2, Be2, H2O, NH3, CH4 and H2CO, in all cases but one with accuracy in excess of 95%. Finally, we report an investigation of the ground state energies, dissociation energies and ionization potentials of NH and NH+. Recent focus paid in the literature to these species allow for an extensive comparison with other ab initio methods. We obtain accurate properties for the species and reveal a favourable tendency for fixed-node and other systematic errors to cancel. As a result of our accurate predictions, we are able to obtain a value for the heat of formation of NH, which agrees to within less than 1 kcal mol-1 to other ab initio techniques and 0.2 kcal mol-1 of the experimental value.

  20. Design of small-molecule epigenetic modulators

    PubMed Central

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  1. Small Molecule based Musculoskeletal Regenerative Engineering

    PubMed Central

    Lo, Kevin W.-H.; Jiang, Tao; Gagnon, Keith A.; Nelson, Clarke; Laurencin, Cato T.

    2014-01-01

    Clinicians and scientists working in the field of regenerative engineering are actively investigating a wide range of methods to promote musculoskeletal tissue regeneration. Small molecule-mediated tissue regeneration is emerging as a promising strategy for regenerating various musculoskeletal tissues and a large number of small molecule compounds have been recently discovered as potential bioactive molecules for musculoskeletal tissue repair and regeneration. In this review, we summarize the recent literature encompassing the past four years in the area of small bioactive molecule for promoting repair and regeneration of various musculoskeletal tissues including bone, muscle, cartilage, tendon, and nerve. PMID:24405851

  2. Small Molecule-Mediated Cleavage of RNA in Living Cells

    PubMed Central

    Guan, Lirui

    2013-01-01

    Antisense oligonucleotides and small interfering RNAs (siRNAs) control gene expression by triggering the degradation of a mRNA via recruitment of RNase H or the RNA-induced silencing complex (RISC), respectively.[1] These approaches are hampered, however, by the poor cellular permeability of oligonucleotides. A small molecule approach to cleave RNA targets could obviate uptake issues. Several compounds can induce RNA cleavage in vitro,[2] however, to the best of our knowledge no small molecules have been previously described to cleave RNA in living cells. Herein, we describe the development of a potentially general approach to design small molecules that specifically cleave an RNA in a living cell, affecting biological function. Specifically, a designed, modularly assembled small molecule that binds the RNA that causes myotonic dystrophy type 1 (DM1)[3] was appended with a moiety that generates hydroxyl radicals upon irradiation. Cleavage of the transcript improves DM1-associated defects in cell culture, and compounds are non-toxic at an efficacious dose as determined by a MTT viability assay. This approach may allow for the site-specific cleavage and inactivation of other cellular RNAs.[4] Compounds that bind to and cleave RNA have the potential to serve as chemical genetics probes of function or lead therapeutics with spatial and temporal control. PMID:23280953

  3. Selective functionalization: Shields for small molecules

    NASA Astrophysics Data System (ADS)

    Silverman, Scott K.

    2012-10-01

    Nucleic acid aptamers have been employed to shield small molecules so that one among many similar reactive functional groups can be modified. This provides access to new chemical entities with potentially interesting properties while avoiding the use of covalent protecting groups.

  4. Uranium-mediated activation of small molecules.

    PubMed

    Arnold, Polly L

    2011-08-28

    Molecular complexes of uranium are capable of activating a range of industrially and economically important small molecules such as CO, CO(2), and N(2); new and often unexpected reactions provide insight into an element that needs to be well-understood if future clean-energy solutions are to involve nuclear power. PMID:21614341

  5. Small molecule control of bacterial biofilms

    PubMed Central

    Worthington, Roberta J.; Richards, Justin J.

    2012-01-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: 1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, 2) chemical library screening for compounds with anti-biofilm activity, and 3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  6. Small Molecule Immunosensing Using Surface Plasmon Resonance

    PubMed Central

    Mitchell, John

    2010-01-01

    Surface plasmon resonance (SPR) biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained. PMID:22163605

  7. Pathways for Small Molecule Delivery to the Central Nervous System Across the Blood-Brain Barrier

    PubMed Central

    Mikitsh, John L; Chacko, Ann-Marie

    2014-01-01

    The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches. PMID:24963272

  8. Organic Optoelectronic Devices Employing Small Molecules

    NASA Astrophysics Data System (ADS)

    Fleetham, Tyler Blain

    Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, DeltaE DA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt

  9. Small molecule inhibition of RISC loading.

    PubMed

    Tan, Grace S; Chiu, Chun-Hao; Garchow, Barry G; Metzler, David; Diamond, Scott L; Kiriakidou, Marianthi

    2012-02-17

    Argonaute proteins are the core components of the microRNP/RISC. The biogenesis and function of microRNAs and endo- and exo- siRNAs are regulated by Ago2, an Argonaute protein with RNA binding and nuclease activities. Currently, there are no in vitro assays suitable for large-scale screening of microRNP/RISC loading modulators. We describe a novel in vitro assay that is based on fluorescence polarization of TAMRA-labeled RNAs loaded to human Ago2. Using this assay, we identified potent small-molecule inhibitors of RISC loading, including aurintricarboxylic acid (IC(50) = 0.47 μM), suramin (IC(50) = 0.69 μM), and oxidopamine HCL (IC(50) = 1.61 μM). Small molecules identified by this biochemical screening assay also inhibited siRNA loading to endogenous Ago2 in cultured cells. PMID:22026461

  10. Computational mass spectrometry for small molecules

    PubMed Central

    2013-01-01

    The identification of small molecules from mass spectrometry (MS) data remains a major challenge in the interpretation of MS data. This review covers the computational aspects of identifying small molecules, from the identification of a compound searching a reference spectral library, to the structural elucidation of unknowns. In detail, we describe the basic principles and pitfalls of searching mass spectral reference libraries. Determining the molecular formula of the compound can serve as a basis for subsequent structural elucidation; consequently, we cover different methods for molecular formula identification, focussing on isotope pattern analysis. We then discuss automated methods to deal with mass spectra of compounds that are not present in spectral libraries, and provide an insight into de novo analysis of fragmentation spectra using fragmentation trees. In addition, this review shortly covers the reconstruction of metabolic networks using MS data. Finally, we list available software for different steps of the analysis pipeline. PMID:23453222

  11. Protein Scaffolding for Small Molecule Catalysts

    SciTech Connect

    Baker, David

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  12. Fluorescence Polarization Assays in Small Molecule Screening

    PubMed Central

    Lea, Wendy A.; Simeonov, Anton

    2011-01-01

    Importance of the field Fluorescence polarization (FP) is a homogeneous method that allows rapid and quantitative analysis of diverse molecular interactions and enzyme activities. This technique has been widely utilized in clinical and biomedical settings, including the diagnosis of certain diseases and monitoring therapeutic drug levels in body fluids. Recent developments in the field has been symbolized by the facile adoption of FP in high-throughput screening (HTS) and small molecule drug discovery of an increasing range of target classes. Areas covered in this review The article provides a brief overview on the theoretical foundation of FP, followed by updates on recent advancements in its application for various drug target classes, including G-protein coupled receptors (GPCRs), enzymes and protein-protein interactions (PPIs). The strengths and weaknesses of this method, practical considerations in assay design, novel applications, and future directions are also discussed. What the reader will gain The reader will be informed of the most recent advancements and future directions of FP application to small molecule screening. Take home message In addition to its continued utilization in high-throughput screening, FP has expanded into new disease and target areas and has been marked by increased use of labeled small molecule ligands for receptor binding studies. PMID:22328899

  13. SMPDB: The Small Molecule Pathway Database.

    PubMed

    Frolkis, Alex; Knox, Craig; Lim, Emilia; Jewison, Timothy; Law, Vivian; Hau, David D; Liu, Phillip; Gautam, Bijaya; Ly, Son; Guo, An Chi; Xia, Jianguo; Liang, Yongjie; Shrivastava, Savita; Wishart, David S

    2010-01-01

    The Small Molecule Pathway Database (SMPDB) is an interactive, visual database containing more than 350 small-molecule pathways found in humans. More than 2/3 of these pathways (>280) are not found in any other pathway database. SMPDB is designed specifically to support pathway elucidation and pathway discovery in clinical metabolomics, transcriptomics, proteomics and systems biology. SMPDB provides exquisitely detailed, hyperlinked diagrams of human metabolic pathways, metabolic disease pathways, metabolite signaling pathways and drug-action pathways. All SMPDB pathways include information on the relevant organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to detailed descriptions contained in the Human Metabolome Database (HMDB) or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All SMPDB pathways are accompanied with detailed descriptions, providing an overview of the pathway, condition or processes depicted in each diagram. The database is easily browsed and supports full text searching. Users may query SMPDB with lists of metabolite names, drug names, genes/protein names, SwissProt IDs, GenBank IDs, Affymetrix IDs or Agilent microarray IDs. These queries will produce lists of matching pathways and highlight the matching molecules on each of the pathway diagrams. Gene, metabolite and protein concentration data can also be visualized through SMPDB's mapping interface. All of SMPDB's images, image maps, descriptions and tables are downloadable. SMPDB is available at: http://www.smpdb.ca. PMID:19948758

  14. Chapter 3: Small Molecules and Disease

    PubMed Central

    Wishart, David S.

    2012-01-01

    “Big” molecules such as proteins and genes still continue to capture the imagination of most biologists, biochemists and bioinformaticians. “Small” molecules, on the other hand, are the molecules that most biologists, biochemists and bioinformaticians prefer to ignore. However, it is becoming increasingly apparent that small molecules such as amino acids, lipids and sugars play a far more important role in all aspects of disease etiology and disease treatment than we realized. This particular chapter focuses on an emerging field of bioinformatics called “chemical bioinformatics” – a discipline that has evolved to help address the blended chemical and molecular biological needs of toxicogenomics, pharmacogenomics, metabolomics and systems biology. In the following pages we will cover several topics related to chemical bioinformatics. First, a brief overview of some of the most important or useful chemical bioinformatic resources will be given. Second, a more detailed overview will be given on those particular resources that allow researchers to connect small molecules to diseases. This section will focus on describing a number of recently developed databases or knowledgebases that explicitly relate small molecules – either as the treatment, symptom or cause – to disease. Finally a short discussion will be provided on newly emerging software tools that exploit these databases as a means to discover new biomarkers or even new treatments for disease. PMID:23300405

  15. Discovery of Methyl 4′-Methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1′-biphenyl]-3-carboxylate, an Improved Small-Molecule Inhibitor of c-Myc–Max Dimerization

    PubMed Central

    Yap, Jeremy L.; Sabato, Philip E.; Hu, Angela; Prochownik, Edward V.; Fletcher, Steven

    2014-01-01

    c-Myc is a bHLH-ZIP transcription factor that is responsible for the transcription of a wide range of target genes involved in many cancer-related cellular processes, such as proliferation, differentiation, apoptosis and metabolism. Over-expression of c-Myc has been observed in, and directly contributes to, a variety of human cancers including those of the hematopoietic system, lung, prostate and colon. To become transcriptionally active, c-Myc must first dimerize with Max via its own bHLH-ZIP domain. A proven strategy towards the inhibition of c-Myc oncogenic activity is to interfere with the structural integrity of the c-Myc–Max heterodimer. The small-molecule 10074-G5 is an inhibitor of c-Myc–Max dimerization (IC50 = 146 μM) that operates by binding and stabilizing c-Myc in its monomeric form. Herein, we report on our on-going efforts to optimize the c-Myc–Max inhibitory activity of 10074-G5-related molecules in vitro and in cancer cells that over-express c-Myc. Specifically, we have identified a congener of 10074-G5, termed 3jc48-3, that is about five times as potent (IC50 = 34 μM) at inhibiting c-Myc–Max dimerization as the parent compound. In addition, 3jc48-3 exhibited an approximate two-fold selectivity for c-Myc–Max heterodimers over Max–Max dimers, suggesting that, like its predecessor, its mode of action is through binding c-Myc. 3jc48-3 inhibited the proliferation of c-Myc-over-expressing HL60 and Daudi cells with single-digit micromolar IC50 values by causing growth arrest at the G0/G1 phase. Furthermore, co-immunoprecipitation studies indicated that 3jc48-3 inhibits c-Myc–Max dimerization in cells, which was further substantiated by the specific silencing of a c-Myc-driven luciferase reporter gene. Finally, unlike previously described 10074-G5 analogues, which are rapidly released and/or metabolized by cells following their uptake, 3jc48-3’s intracellular half-life was >17 h. Collectively, these data demonstrate 3jc48-3 to be one of

  16. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury

    PubMed Central

    Lloyd, Eric; Somera-Molina, Kathleen; Van Eldik, Linda J; Watterson, D Martin; Wainwright, Mark S

    2008-01-01

    Background Traumatic brain injury (TBI) with its associated morbidity is a major area of unmet medical need that lacks effective therapies. TBI initiates a neuroinflammatory cascade characterized by activation of astrocytes and microglia, and increased production of immune mediators including proinflammatory cytokines and chemokines. This inflammatory response contributes both to the acute pathologic processes following TBI including cerebral edema, in addition to longer-term neuronal damage and cognitive impairment. However, activated glia also play a neuroprotective and reparative role in recovery from injury. Thus, potential therapeutic strategies targeting the neuroinflammatory cascade must use careful dosing considerations, such as amount of drug and timing of administration post injury, in order not to interfere with the reparative contribution of activated glia. Methods We tested the hypothesis that attenuation of the acute increase in proinflammatory cytokines and chemokines following TBI would decrease neurologic injury and improve functional neurologic outcome. We used the small molecule experimental therapeutic, Minozac (Mzc), to suppress TBI-induced up-regulation of glial activation and proinflammatory cytokines back towards basal levels. Mzc was administered in a clinically relevant time window post-injury in a murine closed-skull, cortical impact model of TBI. Mzc effects on the acute increase in brain cytokine and chemokine levels were measured as well as the effect on neuronal injury and neurobehavioral function. Results Administration of Mzc (5 mg/kg) at 3 h and 9 h post-TBI attenuates the acute increase in proinflammatory cytokine and chemokine levels, reduces astrocyte activation, and the longer term neurologic injury, and neurobehavioral deficits measured by Y maze performance over a 28-day recovery period. Mzc-treated animals also have no significant increase in brain water content (edema), a major cause of the neurologic morbidity associated

  17. Reprogramming with Small Molecules instead of Exogenous Transcription Factors.

    PubMed

    Lin, Tongxiang; Wu, Shouhai

    2015-01-01

    Induced pluripotent stem cells (iPSCs) could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs. PMID:25922608

  18. Combining small molecules for cell reprogramming through an interatomic analysis.

    PubMed

    Feltes, Bruno César; Bonatto, Diego

    2013-11-01

    The knowledge available about the application and generation of induced pluripotent stem cells (iPSC) has grown since their discovery, and new techniques to enhance the reprogramming process have been described. Among the new approaches to induce iPSC that have gained great attention is the use of small molecules for reprogramming. The application of small molecules, unlike genetic manipulation, provides for control of the reprogramming process through the shifting of concentrations and the combination of different molecules. However, different researchers have reported the use of "reprogramming cocktails" with variable results and drug combinations. Thus, the proper combination of small molecules for successful and enhanced reprogramming is a matter for discussion. However, testing all potential drug combinations in different cell lineages is very costly and time-consuming. Therefore, in this article, we discuss the use of already employed molecules for iPSC generation, followed by the application of systems chemo-biology tools to create different data sets of protein-protein (PPI) and chemical-protein (CPI) interaction networks based on the knowledge of already used and new reprogramming cocktail combinations. We further analyzed the biological processes associated with PPI-CPI networks and provided new potential protein targets to be inhibited or expressed for stem cell reprogramming. In addition, we applied a new interference analysis to prospective targets that could negatively affect the classical pluripotency-associated factors (SOX2, NANOG, KLF4 and OCT4) and thus potentially improve reprogramming protocols. PMID:24056910

  19. Small-molecule inhibitors of ricin and Shiga toxins.

    PubMed

    Wahome, Paul G; Robertus, Jon D; Mantis, Nicholas J

    2012-01-01

    This review summarizes the successes and continuing challenges associated with the identification of small-molecule inhibitors of ricin and Shiga toxins, members of the RNA N-glycosidase family of toxins that irreversibly inactivate eukaryotic ribosomes through the depurination of a conserved adenosine residue within the sarcin-ricin loop (SRL) of 28S rRNA. Virtual screening of chemical libraries has led to the identification of at least three broad classes of small molecules that bind in or near the toxin's active sites and thereby interfere with RNA N-glycosidase activity. Rational design is being used to improve the specific activity and solubility of a number of these compounds. High-throughput cell-based assays have also led to the identification of small molecules that partially, or in some cases, completely protect cells from ricin- and Shiga-toxin-induced death. A number of these recently identified compounds act on cellular proteins associated with intracellular trafficking or pro-inflammatory/cell death pathways, and one was reported to be sufficient to protect mice in a ricin challenge model. PMID:22006183

  20. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    PubMed Central

    Wu, Shouhai

    2015-01-01

    Induced pluripotent stem cells (iPSCs) could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs. PMID:25922608

  1. Prioritizing Cancer Therapeutic Small Molecules by Integrating Multiple OMICS Datasets

    PubMed Central

    Lv, Sali; Xu, Yanjun; Chen, Xin; Li, Yan; Li, Ronghong; Wang, Qianghu

    2012-01-01

    Abstract Drug design is crucial for the effective discovery of anti-cancer drugs. The success or failure of drug design often depends on the leading compounds screened in pre-clinical studies. Many efforts, such as in vivo animal experiments and in vitro drug screening, have improved this process, but these methods are usually expensive and laborious. In the post-genomics era, it is possible to seek leading compounds for large-scale candidate small-molecule screening with multiple OMICS datasets. In the present study, we developed a computational method of prioritizing small molecules as leading compounds by integrating transcriptomics and toxicogenomics data. This method provides priority lists for the selection of leading compounds, thereby reducing the time required for drug design. We found 11 known therapeutic small molecules for breast cancer in the top 100 candidates in our list, 2 of which were in the top 10. Furthermore, another 3 of the top 10 small molecules were recorded as closely related to cancer treatment in the DrugBank database. A comparison of the results of our approach with permutation tests and shared gene methods demonstrated that our OMICS data-based method is quite competitive. In addition, we applied our method to a prostate cancer dataset. The results of this analysis indicated that our method surpasses both the shared gene method and random selection. These analyses suggest that our method may be a valuable tool for directing experimental studies in cancer drug design, and we believe this time- and cost-effective computational strategy will be helpful in future studies in cancer therapy. PMID:22917481

  2. Oncogenic protein interfaces: small molecules, big challenges.

    PubMed

    Nero, Tracy L; Morton, Craig J; Holien, Jessica K; Wielens, Jerome; Parker, Michael W

    2014-04-01

    Historically, targeting protein-protein interactions with small molecules was not thought possible because the corresponding interfaces were considered mostly flat and featureless and therefore 'undruggable'. Instead, such interactions were targeted with larger molecules, such as peptides and antibodies. However, the past decade has seen encouraging breakthroughs through the refinement of existing techniques and the development of new ones, together with the identification and exploitation of unexpected aspects of protein-protein interaction surfaces. In this Review, we describe some of the latest techniques to discover modulators of protein-protein interactions and how current drug discovery approaches have been adapted to successfully target these interfaces. PMID:24622521

  3. Small-Molecule Target Engagement in Cells.

    PubMed

    Schürmann, Marc; Janning, Petra; Ziegler, Slava; Waldmann, Herbert

    2016-04-21

    Monitoring how, when, and where small molecules engage their targets inside living cells is a critical step in chemical biology and pharmacological research, because it enables compound efficacy and confirmation of mode of action to be assessed. In this mini-review we summarize the currently available methodologies to detect and prove direct target engagement in cells and offer a critical view of their key advantages and disadvantages. As the interest of the field shifts toward discovery and validation of high-quality agents, we expect that efforts to develop and refine these types of methodologies will also intensify in the near future. PMID:27049669

  4. Finding small molecules for the 'next Ebola'.

    PubMed

    Ekins, Sean; Southan, Christopher; Coffee, Megan

    2015-01-01

    The current Ebola virus epidemic may provide some suggestions of how we can better prepare for the next pathogen outbreak. We propose several cost effective steps that could be taken that would impact the discovery and use of small molecule therapeutics including: 1. text mine the literature, 2. patent assignees and/or inventors should openly declare their relevant filings, 3. reagents and assays could be commoditized, 4. using manual curation to enhance database links, 5. engage database and curation teams, 6. consider open science approaches, 7. adapt the "box" model for shareable reference compounds, and 8. involve the physician's perspective. PMID:25949804

  5. Anti-Ebola Activity of Diazachrysene Small Molecules.

    PubMed

    Selaković, Života; Soloveva, Veronica; Gharaibeh, Dima N; Wells, Jay; Šegan, Sandra; Panchal, Rekha G; Šolaja, Bogdan A

    2015-06-12

    Herein we report on a diazachrysene class of small molecules that exhibit potent antiviral activity against the Ebola (EBOV) virus. The antiviral compounds are easily synthesized, and the most active compounds have excellent in vitro activity (0.34-0.70 μM) and are significantly less lipophilic than their predecessors. The three most potent diazachrysene antivirals do not exhibit any toxicity in vivo and protected 70-90% of the mice at 10 mg/kg following EBOV challenge. Together, these studies suggest that diazachrysenes are a promising class of compounds for hit to lead optimization and as potential Ebola therapeutics. PMID:27622742

  6. Small molecule phagocytosis inhibitors for immune cytopenias.

    PubMed

    Neschadim, Anton; Kotra, Lakshmi P; Branch, Donald R

    2016-08-01

    Immune cytopenias are conditions characterized by low blood cell counts, such as platelets in immune thrombocytopenia (ITP) and red blood cells in autoimmune hemolytic anemia (AIHA). Chronic ITP affects approximately 4 in 100,000 adults annually while AIHA is much less common. Extravascular phagocytosis and massive destruction of autoantibody-opsonized blood cells by macrophages in the spleen and liver are the hallmark of these conditions. Current treatment modalities for ITP and AIHA include the first-line use of corticosteroids; whereas, IVIg shows efficacy in ITP but not AIHA. One main mechanism of action by which IVIg treatment leads to the reduction in platelet destruction rates in ITP is thought to involve Fcγ receptor (FcγR) blockade, ultimately leading to the inhibition of extravascular platelet phagocytosis. IVIg, which is manufactured from the human plasma of thousands of donors, is a limited resource, and alternative treatments, particularly those based on bioavailable small molecules, are needed. In this review, we overview the pathophysiology of ITP, the role of Fcγ receptors, and the mechanisms of action of IVIg in treating ITP, and outline the efforts and progress towards developing novel, first-in-class inhibitors of phagocytosis as synthetic, small molecule substitutes for IVIg in ITP and other conditions where the pathobiology of the disease involves phagocytosis. PMID:27296447

  7. Methods to enable the design of bioactive small molecules targeting RNA

    PubMed Central

    Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.

    2014-01-01

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  8. Methods to enable the design of bioactive small molecules targeting RNA.

    PubMed

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  9. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void. PMID:22185671

  10. Cellular reprogramming: a small molecule perspective

    PubMed Central

    Nie, Baoming; Wang, Haixia; Laurent, Timothy; Ding, Sheng

    2013-01-01

    The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by the expression of a few transcription factors has attracted enormous interest in biomedical research and the field of regenerative medicine. iPSCs nearly identically resemble embryonic stem cells (ESCs) and can give rise to all cell types in the body, and thus have opened new opportunities for personalized regenerative medicine and new ways of modeling human diseases. Although some studies have raised concerns about genomic stability and epigenetic memory in the resulting cells, better understanding and control of the reprogramming process should enable enhanced efficiency and higher fidelity in reprogramming. Therefore, small molecules regulating reprogramming mechanisms are valuable tools to probe the process of reprogremming and harness cell fate transitions for various applications. PMID:22959962

  11. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  12. Small Molecules from the Human Microbiota

    PubMed Central

    Donia, Mohamed S.; Fischbach, Michael A.

    2015-01-01

    Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of natural products from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future, and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and their biological relevance. PMID:26206939

  13. Activation of small molecules by phosphorus biradicaloids.

    PubMed

    Hinz, Alexander; Kuzora, Rene; Rosenthal, Uwe; Schulz, Axel; Villinger, Alexander

    2014-11-01

    The reactivity of biradicaloid [P(μ-NTer)]2 was employed to activate small molecules bearing single, double, and triple bonds. Addition of chalcogens (O2 , S8 , Sex and Tex ) led to the formation of dichalcogen-bridged P2 N2 heterocycles, except from the reaction with molecular oxygen, which gave a P2 N2 ring featuring a dicoordinated P(III) and a four-coordinated P(V) center. In formal [2πe+2πe] addition reactions, small unsaturated compounds such as ethylene, acetylene, acetone, acetonitrile, tolane, diphenylcarbodiimide, and bis(trimethylsilyl)sulfurdiimide are readily added to the P2 N2 heterocycle of the biradicaloid [P(μ-NTer)]2 , yielding novel heteroatom cage compounds. The synthesis, reactivity, and bonding of the biradicaloid [P(μ-NTer)]2 were studied in detail as well as the synthesis, properties, and structural features of all addition products. PMID:25266101

  14. Designing a small molecule erythropoietin mimetic.

    PubMed

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  15. Recent advances in small molecule OLED-on-silicon microdisplays

    NASA Astrophysics Data System (ADS)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  16. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    DOE PAGESBeta

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is themore » highest mobility from SMDPPEH ever reported.« less

  17. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    SciTech Connect

    Bi, Sheng; He, Zhengran; Chen, Jihua; Li, Dawen

    2015-07-24

    Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs). In this study, we utilize the controlled evaporative self-assembly (CESA) method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl)-3,6-bis(5"-n-hexyl-2,2',5',2"]terthiophen-5-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH), is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10-2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  18. Simulation Studies of Protein and Small Molecule Interactions and Reaction.

    PubMed

    Yang, L; Zhang, J; Che, X; Gao, Y Q

    2016-01-01

    Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented. PMID:27497167

  19. Using small molecules to study big questions in cellular microbiology.

    PubMed

    Ward, Gary E; Carey, Kimberly L; Westwood, Nicholas J

    2002-08-01

    High-throughput screening of small molecules is used extensively in pharmaceutical settings for the purpose of drug discovery. In the case of antimicrobials, this involves the identification of small molecules that are significantly more toxic to the microbe than to the host. Only a small percentage of the small molecules identified in these screens have been studied in sufficient detail to explain the molecular basis of their antimicrobial effect. Rarer still are small molecule screens undertaken with the explicit goal of learning more about the biology of a particular microbe or the mechanism of its interaction with its host. Recent technological advances in small molecule synthesis and high-throughput screening have made such mechanism-directed small molecule approaches a powerful and accessible experimental option. In this article, we provide an overview of the methods and technical requirements and we discuss the potential of small molecule approaches to address important and often otherwise experimentally intractable problems in cellular microbiology. PMID:12174082

  20. Small Molecule Docking from Theoretical Structural Models

    NASA Astrophysics Data System (ADS)

    Novoa, Eva Maria; de Pouplana, Lluis Ribas; Orozco, Modesto

    Structural approaches to rational drug design rely on the basic assumption that pharmacological activity requires, as necessary but not sufficient condition, the binding of a drug to one or several cellular targets, proteins in most cases. The traditional paradigm assumes that drugs that interact only with a single cellular target are specific and accordingly have little secondary effects, while promiscuous molecules are more likely to generate undesirable side effects. However, current examples indicate that often efficient drugs are able to interact with several biological targets [1] and in fact some dirty drugs, such as chlorpromazine, dextromethorphan, and ibogaine exhibit desired pharmacological properties [2]. These considerations highlight the tremendous difficulty of designing small molecules that both have satisfactory ADME properties and the ability of interacting with a limited set of target proteins with a high affinity, avoiding at the same time undesirable interactions with other proteins. In this complex and challenging scenario, computer simulations emerge as the basic tool to guide medicinal chemists during the drug discovery process.

  1. Database of small molecule thermochemistry for combustion.

    PubMed

    Goldsmith, C Franklin; Magoon, Gregory R; Green, William H

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems. PMID:22873426

  2. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinhua; Peng, Ruixiang; Ai, Ling; Zhang, Xingye; Ge, Ziyi

    2015-08-01

    Polymer solar cells have drawn a great deal of attention due to the attractiveness of their use in renewable energy sources that are potentially lightweight and low in cost. Recently, numerous significant research efforts have resulted in polymer solar cells with power conversion efficiencies in excess of 9% (ref. 1). Nevertheless, further improvements in performance are sought for commercial applications. Here, we report polymer solar cells with a power conversion efficiency of 10.02% that employ a non-conjugated small-molecule electrolyte as an interlayer. The material offers good contact for photogenerated charge carrier collection and allows optimum photon harvesting in the device. Furthermore, the enhanced performance is attributed to improved electron mobility, enhanced active-layer absorption and properly active-layer microstructures with optimal horizontal phase separation and vertical phase gradation. Our discovery opens a new avenue for single-junction devices by fully exploiting the potential of various material systems with efficiency over 10%.

  3. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    PubMed

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  4. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    PubMed Central

    Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na+ and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5’CCUG/3’GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  5. Sensors and Biosensors for the Determination of Small Molecule Biological Toxins

    PubMed Central

    Wang, Xiang-Hong; Wang, Shuo

    2008-01-01

    The following review of sensors and biosensors focuses on the determination of commonly studied small molecule biological toxins, including mycotoxins and small molecule neurotoxins. Because of the high toxicity of small molecule toxins, an effective analysis technique for determining their toxicity is indispensable. Sensors and biosensors have emerged as sensitive and rapid techniques for toxicity analysis in the past decade. Several different sensors for the determination of mycotoxins and other small molecule neurotoxins have been reported in the literature, and many of these sensors such as tissue biosensors, enzyme sensors, optical immunosensors, electrochemical sensors, quartz crystal sensors, and surface plasmon resonance biosensors are reviewed in this paper. Sensors are a practical and convenient monitoring tool in the area of routine analysis, and their specificity, sensitivity, reproducibility and analysis stability should all be improved in future work. In addition, accuracy field portable sensing devices and multiplexing analysis devices will be important requirement for the future.

  6. First-in-class small molecule potentiators of cancer virotherapy

    PubMed Central

    Dornan, Mark H.; Krishnan, Ramya; Macklin, Andrew M.; Selman, Mohammed; El Sayes, Nader; Son, Hwan Hee; Davis, Colin; Chen, Andrew; Keillor, Kerkeslin; Le, Penny J.; Moi, Christina; Ou, Paula; Pardin, Christophe; Canez, Carlos R.; Le Boeuf, Fabrice; Bell, John C.; Smith, Jeffrey C.; Diallo, Jean-Simon; Boddy, Christopher N.

    2016-01-01

    The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors. PMID:27226390

  7. First-in-class small molecule potentiators of cancer virotherapy.

    PubMed

    Dornan, Mark H; Krishnan, Ramya; Macklin, Andrew M; Selman, Mohammed; El Sayes, Nader; Son, Hwan Hee; Davis, Colin; Chen, Andrew; Keillor, Kerkeslin; Le, Penny J; Moi, Christina; Ou, Paula; Pardin, Christophe; Canez, Carlos R; Le Boeuf, Fabrice; Bell, John C; Smith, Jeffrey C; Diallo, Jean-Simon; Boddy, Christopher N

    2016-01-01

    The use of engineered viral strains such as gene therapy vectors and oncolytic viruses (OV) to selectively destroy cancer cells is poised to make a major impact in the clinic and revolutionize cancer therapy. In particular, several studies have shown that OV therapy is safe and well tolerated in humans and can infect a broad range of cancers. Yet in clinical studies OV therapy has highly variable response rates. The heterogeneous nature of tumors is widely accepted to be a major obstacle for OV therapeutics and highlights a need for strategies to improve viral replication efficacy. Here, we describe the development of a new class of small molecules for selectively enhancing OV replication in cancer tissue. Medicinal chemistry studies led to the identification of compounds that enhance multiple OVs and gene therapy vectors. Lead compounds increase OV growth up to 2000-fold in vitro and demonstrate remarkable selectivity for cancer cells over normal tissue ex vivo and in vivo. These small molecules also demonstrate enhanced stability with reduced electrophilicity and are highly tolerated in animals. This pharmacoviral approach expands the scope of OVs to include resistant tumors, further potentiating this transformative therapy. It is easily foreseeable that this approach can be applied to therapeutically enhance other attenuated viral vectors. PMID:27226390

  8. A D-π-A1-π-A2 push-pull small molecule donor for solution processed bulk heterojunction organic solar cells.

    PubMed

    Gautam, Prabhat; Misra, Rajneesh; Biswas, Subhayan; Sharma, Ganesh D

    2016-05-18

    Herein, benzothiadiazole (BTD), as an acceptor A1, has been used as a backbone to link triphenylamine (TPA) as donor and naphthalimide (NPI) as acceptor (A2) moieties through ethylene linkers to design a small molecule. The donor-π-acceptor-π-acceptor (D-π-A1-π-A2) type small molecule denoted as was synthesized. In order to use it as an electron donor for solution processed bulk heterojunction small molecule solar cells its photonic and electronic properties were explored. The small molecule organic solar cells based on the optimized blend of with PC71BM processed in chloroform showed a power conversion efficiency (PCE) of 2.21%, which was significantly improved up to 6.67%, when a two-step annealing (TSA) treated blend was used as an active layer. The increase in the PCE was due to the enhancement in both Jsc and FF. The improvement in Jsc was related to the enhancement in the light harvesting efficiency of a TSA treated active layer relative to the as-cast layer, which is reflected in a better IPCE and better charge collection. The TSA treatment also leads to better nanoscale morphology for exciton dissociation into free charge carriers and improved crystallinity for balanced charge transport. PMID:27149659

  9. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs

    NASA Astrophysics Data System (ADS)

    Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong

    2015-11-01

    The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.

  10. An improved cockroach swarm optimization.

    PubMed

    Obagbuwa, I C; Adewumi, A O

    2014-01-01

    Hunger component is introduced to the existing cockroach swarm optimization (CSO) algorithm to improve its searching ability and population diversity. The original CSO was modelled with three components: chase-swarming, dispersion, and ruthless; additional hunger component which is modelled using partial differential equation (PDE) method is included in this paper. An improved cockroach swarm optimization (ICSO) is proposed in this paper. The performance of the proposed algorithm is tested on well known benchmarks and compared with the existing CSO, modified cockroach swarm optimization (MCSO), roach infestation optimization RIO, and hungry roach infestation optimization (HRIO). The comparison results show clearly that the proposed algorithm outperforms the existing algorithms. PMID:24959611

  11. Synthetic Small-Molecule Prohormone Convertase 2 Inhibitors

    PubMed Central

    Kowalska, Dorota; Liu, Jin; Appel, Jon R.; Ozawa, Akihiko; Nefzi, Adel; Mackin, Robert B.; Houghten, Richard A.; Lindberg, Iris

    2009-01-01

    The proprotein convertases are believed to be responsible for the proteolytic maturation of a large number of peptide hormone precursors. Although potent furin inhibitors have been identified, thus far, no small-molecule prohormone convertase 1/3 or prohormone convertase 2 (PC2) inhibitors have been described. After screening 38 small-molecule positional scanning libraries against recombinant mouse PC2, two promising chemical scaffolds were identified: bicyclic guanidines, and pyrrolidine bis-piperazines. A set of individual compounds was designed from each library and tested against PC2. Pyrrolidine bis-piperazines were irreversible, time-dependent inhibitors of PC2, exhibiting noncompetitive inhibition kinetics; the most potent inhibitor exhibited a Ki value for PC2 of 0.54 μM. In contrast, the most potent bicyclic guanidine inhibitor exhibited a Ki value of 3.3 μM. Cross-reactivity with other convertases was limited: pyrrolidine bis-piperazines exhibited Ki values greater than 25 μM for PC1/3 or furin, whereas the Ki values of bicyclic guanidines for these other convertases were more than 15 μM. We conclude that pyrrolidine bis-piperazines and bicyclic guanidines represent promising initial leads for the optimization of therapeutically active PC2 inhibitors. PC2-specific inhibitors may be useful in the pharmacological blockade of PC2-dependent cleavage events, such as glucagon production in the pancreas and ectopic peptide production in small-cell carcinoma, and to study PC2-dependent proteolytic events, such as opioid peptide production. PMID:19074544

  12. Discovery of small molecule cancer drugs: Successes, challenges and opportunities

    PubMed Central

    Hoelder, Swen; Clarke, Paul A.; Workman, Paul

    2012-01-01

    The discovery and development of small molecule cancer drugs has been revolutionised over the last decade. Most notably, we have moved from a one-size-fits-all approach that emphasized cytotoxic chemotherapy to a personalised medicine strategy that focuses on the discovery and development of molecularly targeted drugs that exploit the particular genetic addictions, dependencies and vulnerabilities of cancer cells. These exploitable characteristics are increasingly being revealed by our expanding understanding of the abnormal biology and genetics of cancer cells, accelerated by cancer genome sequencing and other high-throughput genome-wide campaigns, including functional screens using RNA interference. In this review we provide an overview of contemporary approaches to the discovery of small molecule cancer drugs, highlighting successes, current challenges and future opportunities. We focus in particular on four key steps: Target validation and selection; chemical hit and lead generation; lead optimization to identify a clinical drug candidate; and finally hypothesis-driven, biomarker-led clinical trials. Although all of these steps are critical, we view target validation and selection and the conduct of biology-directed clinical trials as especially important areas upon which to focus to speed progress from gene to drug and to reduce the unacceptably high attrition rate during clinical development. Other challenges include expanding the envelope of druggability for less tractable targets, understanding and overcoming drug resistance, and designing intelligent and effective drug combinations. We discuss not only scientific and technical challenges, but also the assessment and mitigation of risks as well as organizational, cultural and funding problems for cancer drug discovery and development, together with solutions to overcome the ‘Valley of Death’ between basic research and approved medicines. We envisage a future in which addressing these challenges will

  13. Identification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays

    PubMed Central

    2015-01-01

    Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target. This approach has enabled the identification of a novel chemotype that selectively targets the HIV transactivation response (TAR) RNA hairpin in a manner not dependent on cationic charge. Thienopyridine 4 binds to and stabilizes the TAR hairpin with a Kd of 2.4 μM. Structure–activity relationships demonstrate that this compound achieves activity through hydrophobic and aromatic substituents on a heterocyclic core, rather than cationic groups typically required. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) analysis was performed on a 365-nucleotide sequence derived from the 5′ untranslated region (UTR) of the HIV-1 genome to determine global structural changes in the presence of the molecule. Importantly, the interaction of compound 4 can be mapped to the TAR hairpin without broadly disrupting any other structured elements of the 5′ UTR. Cell-based anti-HIV assays indicated that 4 inhibits HIV-induced cytopathicity in T lymphocytes with an EC50 of 28 μM, while cytotoxicity was not observed at concentrations approaching 1 mM. PMID:24820959

  14. A general strategy to construct small molecule biosensors in eukaryotes

    DOE PAGESBeta

    Feng, Justin; Jester, Benjamin W.; Tinberg, Christine E.; Mandell, Daniel J.; Antunes, Mauricio S.; Chari, Raj; Morey, Kevin J.; Rios, Xavier; Medford, June I.; Church, George M.; et al

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activatesmore » transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.« less

  15. X-ray characterization of solid small molecule organic materials

    SciTech Connect

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  16. Advancing Biological Understanding and Therapeutics Discovery with Small Molecule Probes

    PubMed Central

    Schreiber, Stuart L.; Kotz, Joanne D.; Li, Min; Aubé, Jeffrey; Austin, Christopher P.; Reed, John C.; Rosen, Hugh; White, E. Lucile; Sklar, Larry A.; Lindsley, Craig W.; Alexander, Benjamin R.; Bittker, Joshua A.; Clemons, Paul A.; de Souza, Andrea; Foley, Michael A.; Palmer, Michelle; Shamji, Alykhan F.; Wawer, Mathias J.; McManus, Owen; Wu, Meng; Zou, Beiyan; Yu, Haibo; Golden, Jennifer E.; Schoenen, Frank J.; Simeonov, Anton; Jadhav, Ajit; Jackson, Michael R.; Pinkerton, Anthony B.; Chung, Thomas D.Y.; Griffin, Patrick R.; Cravatt, Benjamin F.; Hodder, Peter S.; Roush, William R.; Roberts, Edward; Chung, Dong-Hoon; Jonsson, Colleen B.; Noah, James W.; Severson, William E.; Ananthan, Subramaniam; Edwards, Bruce; Oprea, Tudor I.; Conn, P. Jeffrey; Hopkins, Corey R.; Wood, Michael R.; Stauffer, Shaun R.; Emmitte, Kyle A.

    2015-01-01

    Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the U.S. National Institutes of Health launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines, but also highlight the need to innovate the science of therapeutic discovery. PMID:26046436

  17. Small Molecule Chemical Probes of MicroRNA Function

    PubMed Central

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R.; Disney, Matthew D.

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as strides are made to understand small molecule recognition of RNA from a fundamental perspective. PMID:25500006

  18. Small molecule chemical probes of microRNA function.

    PubMed

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. PMID:25500006

  19. In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules.

    PubMed

    Yang, Kyung-Ae; Pei, Renjun; Stojanovic, Milan N

    2016-08-15

    We recently optimized a procedure that directly yields aptameric sensors for small molecules in so-called structure-switching format. The protocol has a high success rate, short time, and is sufficiently simple to be readily implemented in a non-specialist laboratory. We provide a stepwise guide to this selection protocol. PMID:27155227

  20. Recent advances in inorganic materials for LDI-MS analysis of small molecules.

    PubMed

    Shi, C Y; Deng, C H

    2016-05-10

    In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS). Due to its tremendous advantages, such as simplicity, high speed, high throughput, small analyte volumes and tolerance towards salts, LDI-MS has been widely used in various analytes. During the ionization process, a suitable agent is required to assist the ionization, such as an appropriate matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, it is normally difficult to analyze small molecules with the MALDI technique because conventional organic matrices may produce matrix-related peaks in the low molecular-weight region, which limits the detection of small molecules (m/z < 700 Da). Therefore, more and more inorganic materials, including carbon-based materials, silicon-based materials and metal-based materials, have been developed to assist the ionization of small molecules. These inorganic materials can transfer energy and improve the ionization efficiency of analytes. In addition, functionalized inorganic materials can act as both an adsorbent and an agent in the enrichment and ionization of small molecules. In this review, we mainly focus on present advances in inorganic materials for the LDI-MS analysis of small molecules in the last five years, which contains the synthetic protocols of novel inorganic materials and the detailed results achieved by inorganic materials. On the other hand, this review also summarizes the application of inorganic materials as adsorbents in the selective enrichment of small molecules, which provides a new field for the application of inorganic materials. PMID:27050451

  1. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs.

    PubMed

    Disney, Matthew D; Winkelsas, Audrey M; Velagapudi, Sai Pradeep; Southern, Mark; Fallahi, Mohammad; Childs-Disney, Jessica L

    2016-06-17

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified. PMID:27097021

  2. Selection and Biosensor Application of Aptamers for Small Molecules

    PubMed Central

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  3. Challenges and Opportunities for Small Molecule Aptamer Development

    PubMed Central

    McKeague, Maureen; DeRosa, Maria C.

    2012-01-01

    Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology. PMID:23150810

  4. Selection and Biosensor Application of Aptamers for Small Molecules.

    PubMed

    Pfeiffer, Franziska; Mayer, Günter

    2016-01-01

    Small molecules play a major role in the human body and as drugs, toxins, and chemicals. Tools to detect and quantify them are therefore in high demand. This review will give an overview about aptamers interacting with small molecules and their selection. We discuss the current state of the field, including advantages as well as problems associated with their use and possible solutions to tackle these. We then discuss different kinds of small molecule aptamer-based sensors described in literature and their applications, ranging from detecting drinking water contaminations to RNA imaging. PMID:27379229

  5. Solution processable organic polymers and small molecules for bulk-heterojunction solar cells: A review

    SciTech Connect

    Sharma, G. D.

    2011-10-20

    Solution processed bulk heterojunction (BHJ) organic solar cells (OSCs) have gained wide interest in past few years and are established as one of the leading next generation photovoltaic technologies for low cost power production. Power conversion efficiencies up to 6% and 6.5% have been reported in the literature for single layer and tandem solar cells, respectively using conjugated polymers. A recent record efficiency about 8.13% with active area of 1.13 cm{sup 2} has been reported. However Solution processable small molecules have been widely applied for photovoltaic (PV) devices in recent years because they show strong absorption properties, and they can be easily purified and deposited onto flexible substrates at low cost. Introducing different donor and acceptor groups to construct donor--acceptor (D--A) structure small molecules has proved to be an efficient way to improve the properties of organic solar cells (OSCs). The power conversion efficiency about 4.4 % has been reported for OSCs based on the small molecules. This review deals with the recent progress of solution processable D--A structure small molecules and discusses the key factors affecting the properties of OSCs based on D--A structure small molecules: sunlight absorption, charge transport and the energy level of the molecules.

  6. The role of small molecules in musculoskeletal regeneration

    PubMed Central

    Lo, Kevin W-H; Ashe, Keshia M; Kan, Ho Man; Laurencin, Cato T

    2015-01-01

    The uses of bone morphogenetic proteins and parathyroid hormone therapeutics are fraught with several fundamental problems, such as cost, protein stability, immunogenicity, contamination and supraphysiological dosage. These downsides may effectively limit their more universal use. Therefore, there is a clear need for alternative forms of biofactors to obviate the drawbacks of protein-based inductive factors for bone repair and regeneration. Our group has studied small molecules with the capacity to regulate osteoblast differentiation and mineralization because their inherent physical properties minimize limitations observed in protein growth factors. For instance, in general, small molecule inducers are usually more stable, highly soluble, nonimmunogenic, more affordable and require lower dosages. Small molecules with the ability to induce osteoblastic differentiation may represent the next generation of bone regenerative medicine. This review describes efforts to develop small molecule-based biofactors for induction, paying specific attention to their novel roles in bone regeneration. PMID:22817627

  7. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  8. A Personal History of Quadruplex-Small Molecule Targeting.

    PubMed

    Neidle, Stephen

    2015-08-01

    The story behind some of the early studies in the laboratory of Stephen Neidle on quadruplex-binding small molecules and the structural studies on quadruplexes and their complexes is presented and discussed in the context of his earlier work on drug-DNA interactions. More recent studies and future directions in the rational design of small molecules targeting telomeric and gene promoter quadruplexes are also described. PMID:26096791

  9. Biocatalysts and their small molecule products from metagenomic studies

    PubMed Central

    Iqbal, Hala A.; Feng, Zhiyang; Brady, Sean F.

    2012-01-01

    The vast majority of bacteria present in environmental samples have never been cultured and therefore they have not been available to exploit their ability to produce useful biocatalysts or collections of biocatalysts that can biosynthesize interesting small molecules. Metagenomic libraries constructed using DNA extracted directly from natural bacterial communities offer access to the genetic information present in the genomes of these as yet uncultured bacteria. This review highlights recent efforts to recover both discrete enzymes and small molecules from metagenomic libraries. PMID:22455793

  10. Computational evaluation of protein – small molecule binding

    PubMed Central

    Guvench, Olgun; MacKerell, Alexander D.

    2009-01-01

    Determining protein – small molecule binding affinity is a key component of present-day rational drug discovery. To circumvent the time, labor, and materials costs associated with experimental protein – small molecule binding assays, a variety of structure-based computational methods have been developed for determining protein – small molecule binding affinities. These methods can be placed in one of two classes: accurate but slow (Class 1), and fast but approximate (Class 2). Class 1 methods, which explicitly take into account protein flexibility and include an atomic-level description of solvation, are capable of quantitatively reproducing experimental protein – small molecule absolute binding free energies. However, Class 1 computational requirements make screening thousands to millions of small molecules against a protein, as required for rational drug design, infeasible for the foreseeable future. Class 2 methods, on the other hand, are sufficiently fast to perform such inhibitor screening, yet they suffer from limited descriptions of protein flexibility and solvation, which in turn limit their ability to select and rank-order small molecules by computed binding affinities. This review presents an overview of Class 1 and Class 2 methods, avenues of research in Class 2 methods aimed at bringing them closer to Class 1 accuracy, and intermediate approaches that incorporate features of both Class 1 and Class 2 methods. PMID:19162472

  11. Multimodality Plant Imaging of Small Molecules

    SciTech Connect

    DeJesus, Onofre T.

    2015-03-12

    Positron emission tomography (PET) is a non-invasive imaging technique used to diagnose disease and monitor therapy. PET imaging has had tremendous impact in healthcare delivery resulting in improved outcomes and reduced costs. The discovery and development of PET is one of the achievements of the Department of Energy’s (DOE) support of the peaceful uses of the atom. This project is a logical extension of the use of the PET technique to live plant imaging to advance DOE’s biological and environmental initiatives.

  12. Antiobesity Effect of a Small Molecule Repressor of RORγ

    PubMed Central

    Chang, Mi Ra; He, Yuanjun; Khan, Tanya M.; Kuruvilla, Dana S.; Garcia-Ordonez, Ruben; Corzo, Cesar A.; Unger, Thaddeus J.; White, David W.; Khan, Susan; Lin, Li; Cameron, Michael D.; Kamenecka, Theodore M.

    2015-01-01

    The orphan nuclear receptor RORγ is a key regulator for T helper 17 (TH17) cell differentiation, which regulates metabolic and circadian rhythm genes in peripheral tissues. Previously, it was shown that the small molecule inverse agonist of RORγ SR1555 [1-(4-((4′-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-[1,1′-biphenyl]-4-yl)methyl)piperazin-1-yl) ethanone] suppressed TH17 differentiation and stimulated induced T regulatory (iTreg) cells. Here, we show that treatment of cultured pre-adipocyctes with SR1555 represses the expression of RORγ while leading to increased expression of FGF21 and adipoQ. Chronic administration of SR1555 to obese diabetic mice resulted in a modest reduction in food intake accompanied with significant reduction in fat mass, resulting in reduced body weight and improved insulin sensitivity. Analysis ex vivo of treated mice demonstrates that SR1555 induced expression of the thermogenic gene program in fat depots. Further studies in cultured cells showed that SR1555 inhibited activation of hormone-sensitive lipase and increased fatty acid oxidation. Combined, these results suggest that pharmacological repression of RORγ may represent a strategy for treatment of obesity by increasing thermogenesis and fatty acid oxidation, while inhibition of hormone-sensitive lipase activity results in a reduction of serum free fatty acids, leading to improved peripheral insulin sensitivity. PMID:25904554

  13. Targeting Drivers of Melanoma with Synthetic Small Molecules and Phytochemicals

    PubMed Central

    Strickland, Leah Ray; Pal, Harish Chandra; Elmets, Craig A.; Afaq, Farrukh

    2015-01-01

    Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway—the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib—have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies. PMID:25597784

  14. Catalytic in vivo protein knockdown by small-molecule PROTACs.

    PubMed

    Bondeson, Daniel P; Mares, Alina; Smith, Ian E D; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H; Mulholland, Katie E; Routly, Natasha; Buckley, Dennis L; Gustafson, Jeffrey L; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria; Bantscheff, Marcus; Cox, Carly; Gordon, Deborah A; Willard, Ryan R; Flanagan, John J; Casillas, Linda N; Votta, Bartholomew J; den Besten, Willem; Famm, Kristoffer; Kruidenier, Laurens; Carter, Paul S; Harling, John D; Churcher, Ian; Crews, Craig M

    2015-08-01

    The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR. PMID:26075522

  15. Small-molecule PSMA ligands. Current state, SAR and perspectives.

    PubMed

    Machulkin, Alexey E; Ivanenkov, Yan A; Aladinskaya, Anastasia V; Veselov, Mark S; Aladinskiy, Vladimir A; Beloglazkina, Elena K; Koteliansky, Victor E; Shakhbazyan, Artem G; Sandulenko, Yuri B; Majouga, Alexander G

    2016-09-01

    Prostate cancer (PC) is the prevalent malignancy widespread among men in the Western World. Prostate specific membrane antigen (PSMA) is an established PC marker and has been considered as a promising biological target for anti-PC drug delivery and diagnostics. The protein was found to be overexpressed in PC cells, including metastatic, and the neovasculature of solid tumors. These properties make PSMA-based approach quite appropriate for effective PC imaging and specific drug therapy. Through the past decade, a variety of PSMA-targeted agents has been systematically evaluated. Small-molecule compounds have several advantages over other classes, such as improved pharmacokinetics and rapid blood clearance. These low-weight ligands have similar structure and can be divided into three basic categories in accordance with the type of their zinc-binding core-head. Several PSMA binders are currently undergoing clinical trials generally for PC imaging. The main goal of the present review is to describe the recent progress achieved within the title field and structure activity relationships (SAR) disclosed for different PSMA ligands. Recent in vitro and in vivo studies for each type of the compounds described have also been briefly summarized. PMID:26887438

  16. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia.

    PubMed

    Thomas, Ajit G; O'Driscoll, Cliona M; Bressler, Joseph; Kaufmann, Walter; Rojas, Camilo J; Slusher, Barbara S

    2014-01-01

    Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest. PMID:24269238

  17. A New Class of Pluripotent Stem Cell Cytotoxic Small Molecules

    PubMed Central

    Goh, Gwendoline Tze Wei; Seng, Eng Khuan; Guo, Xu Ming; Tan, Cherine Mei Fong; Chan, Woon-Khiong; Lee, Joel Mun Kin

    2014-01-01

    A major concern in Pluripotent Stem Cell (PSC)-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo. PMID:24647085

  18. A new class of pluripotent stem cell cytotoxic small molecules.

    PubMed

    Richards, Mark; Phoon, Chee Wee; Goh, Gwendoline Tze Wei; Seng, Eng Khuan; Guo, Xu Ming; Tan, Cherine Mei Fong; Chan, Woon-Khiong; Lee, Joel Mun Kin

    2014-01-01

    A major concern in Pluripotent Stem Cell (PSC)-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo. PMID:24647085

  19. Catalytic in vivo protein knockdown by small-molecule PROTACs

    PubMed Central

    Bondeson, Daniel P; Mares, Alina; Smith, Ian E D; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H; Mulholland, Katie E; Routly, Natasha; Buckley, Dennis L; Gustafson, Jeffrey L; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria; Bantscheff, Marcus; Cox, Carly; Gordon, Deborah A; Willard, Ryan R; Flanagan, John J; Casillas, Linda N; Votta, Bartholomew J; den Besten, Willem; Famm, Kristoffer; Kruidenier, Laurens; Carter, Paul S; Harling, John D; Churcher, Ian; Crews, Craig M

    2015-01-01

    The current predominant theapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target’s ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR. PMID:26075522

  20. A general strategy to construct small molecule biosensors in eukaryotes

    PubMed Central

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  1. Application of Optical Biosensors in Small-Molecule Screening Activities

    PubMed Central

    Geschwindner, Stefan; Carlsson, Johan F.; Knecht, Wolfgang

    2012-01-01

    The last two decades have seen remarkable progress and improvements in optical biosensor systems such that those are currently seen as an important and value-adding component of modern drug screening activities. In particular the introduction of microplate-based biosensor systems holds the promise to match the required throughput without compromising on data quality thus representing a sought-after complement to traditional fluidic systems. This article aims to highlight the application of the two most prominent optical biosensor technologies, namely surface plasmon resonance (SPR) and optical waveguide grating (OWG), in small-molecule screening and will present, review and discuss the advantages and disadvantages of different assay formats on these platforms. A particular focus will be on the specific advantages of the inhibition in solution assay (ISA) format in contrast to traditional direct binding assays (DBA). Furthermore we will discuss different application areas for both fluidic as well as plate-based biosensor systems by considering the individual strength of the platforms. PMID:22666031

  2. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.

    PubMed

    Harder, Edward; Damm, Wolfgang; Maple, Jon; Wu, Chuanjie; Reboul, Mark; Xiang, Jin Yu; Wang, Lingle; Lupyan, Dmitry; Dahlgren, Markus K; Knight, Jennifer L; Kaus, Joseph W; Cerutti, David S; Krilov, Goran; Jorgensen, William L; Abel, Robert; Friesner, Richard A

    2016-01-12

    The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field. PMID:26584231

  3. Bioorthogonal Cyclization-Mediated In Situ Self-Assembly of Small Molecule Probes for Imaging Caspase Activity in vivo

    PubMed Central

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-01-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and it has been widely used to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employed an optimized first-order bioorthogonal cyclization reaction to control self-assembly of a fluorescent small molecule, and demonstrated its in vivo applicability by imaging of casapae-3/7 activity in human tumor xenograft mouse models of chemotherapy. The in situ assembled fluorescent nanoparticles have been successfully imaged in both apoptotic cells and tumor tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo. PMID:24848238

  4. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo.

    PubMed

    Ye, Deju; Shuhendler, Adam J; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo. PMID:24848238

  5. Understanding the morphology of solution processed fullerene-free small molecule bulk heterojunction blends.

    PubMed

    Namepetra, Andrew; Kitching, Elizabeth; Eftaiha, Ala'a F; Hill, Ian G; Welch, Gregory C

    2016-05-14

    Bulk-heterojunction (BHJ) molecular blends prepared from small molecules based on diketopyrrolopyrrole (DPP) and perylene-diimide (PDI) chromophores have been studied using optical absorption, cyclic voltammetry, photoluminescence quenching, X-ray diffraction, atomic force microscopy, and current-voltage measurements. The results provided useful insights into the use of DPP and PDI based molecules as donor-acceptor composites for organic photovoltaic (OPV) applications. Beside optoelectronic compatibility, the choice of active layer processing conditions is of key importance to improve the performance of BHJ solar cells. In this context, post-production treatments, viz. thermal and solvent vapour annealing, and the use of 1,8-diiodooctane as a solvent additive were employed to optimize the morphology of blend films. X-ray diffraction and atomic force microscopy indicated that the aforementioned processing strategies led to non-optimal composite morphologies with significantly large crystallites in comparison to exciton diffusion lengths. Although the open circuit voltage of the OPV devices was satisfactory (0.78 V), it was anticipated that the bulky domains hamper charge dissociation and transport, which resulted in low photovoltaic performance. PMID:27087259

  6. Membrane Fusion Induced by Small Molecules and Ions

    PubMed Central

    Mondal Roy, Sutapa; Sarkar, Munna

    2011-01-01

    Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306

  7. In Silico Investigation of the Neurotensin Receptor 1 Binding Site: Overlapping Binding Modes for Small Molecule Antagonists and the Endogenous Peptide Agonist.

    PubMed

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W; Frimurer, Thomas M

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer. PMID:27491650

  8. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. PMID:24811300

  9. SPLINTS: small-molecule protein ligand interface stabilizers.

    PubMed

    Fischer, Eric S; Park, Eunyoung; Eck, Michael J; Thomä, Nicolas H

    2016-04-01

    Regulatory protein-protein interactions are ubiquitous in biology, and small molecule protein-protein interaction inhibitors are an important focus in drug discovery. Remarkably little attention has been given to the opposite strategy-stabilization of protein-protein interactions, despite the fact that several well-known therapeutics act through this mechanism. From a structural perspective, we consider representative examples of small molecules that induce or stabilize the association of protein domains to inhibit, or alter, signaling for nuclear hormone, GTPase, kinase, phosphatase, and ubiquitin ligase pathways. These SPLINTS (small-molecule protein ligand interface stabilizers) drive interactions that are in some cases physiologically relevant, and in others entirely adventitious. The diverse structural mechanisms employed suggest approaches for a broader and systematic search for such compounds in drug discovery. PMID:26829757

  10. Cancer Immunotherapy: Selected Targets and Small-Molecule Modulators.

    PubMed

    Weinmann, Hilmar

    2016-03-01

    There is a significant amount of excitement in the scientific community around cancer immunotherapy, as this approach has renewed hope for many cancer patients owing to some recent successes in the clinic. Currently available immuno-oncology therapeutics under clinical development and on the market are mostly biologics (antibodies, proteins, engineered cells, and oncolytic viruses). However, modulation of the immune system with small molecules offers several advantages that may be complementary and potentially synergistic to the use of large biologicals. Therefore, the discovery and development of novel small-molecule modulators is a rapidly growing research area for medicinal chemists working in cancer immunotherapy. This review provides a brief introduction into recent trends related to selected targets and pathways for cancer immunotherapy and their small-molecule pharmacological modulators. PMID:26836578

  11. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation

    PubMed Central

    2015-01-01

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online (xcmsonline.scripps.edu). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo

  12. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-01

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo

  13. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice.

    PubMed

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya; Nan, Fa-Jun; Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. PMID:24055643

  14. Novel approaches to map small molecule-target interactions.

    PubMed

    Kapoor, Shobhna; Waldmann, Herbert; Ziegler, Slava

    2016-08-01

    The quest for small molecule perturbators of protein function or a given cellular process lies at the heart of chemical biology and pharmaceutical research. Bioactive compounds need to be extensively characterized in the context of the modulated protein(s) or process(es) in living systems to unravel and confirm their mode of action. A crucial step in this workflow is the identification of the molecular targets for these small molecules, for which a generic methodology is lacking. Herein we summarize recently developed approaches for target identification spurred by advances in omics techniques and chemo- and bioinformatics analysis. PMID:27240466

  15. Small molecules and Alzheimer's disease: misfolding, metabolism and imaging.

    PubMed

    Patel, Viharkumar; Zhang, Xueli; Tautiva, Nicolas A; Nyabera, Akwe N; Owa, Opeyemi O; Baidya, Melvin; Sung, Hee Chang; Taunk, Pardeep S; Abdollahi, Shahrzad; Charles, Stacey; Gonnella, Rachel A; Gadi, Nikhita; Duong, Karen T; Fawver, Janelle N; Ran, Chongzhao; Jalonen, Tuula O; Murray, Ian V J

    2015-01-01

    Small molecule interactions with amyloid proteins have had a huge impact in Alzheimer's disease (AD), especially in three specific areas: amyloid folding, metabolism and brain imaging. Amyloid plaque amelioration or prevention have, until recently, driven drug development, and only a few drugs have been advanced for use in AD. Amyloid proteins undergo misfolding and oligomerization via intermediates, eventually forming protease resistant amyloid fibrils. These fibrils accumulate to form the hallmark amyloid plaques and tangles of AD. Amyloid binding compounds can be grouped into three categories, those that: i) prevent or reverse misfolding, ii) halt misfolding or trap intermediates, and iii) accelerate the formation of stable and inert amyloid fibrils. Such compounds include hydralazine, glycosaminoglycans, curcumin, beta sheet breakers, catecholamines, and ATP. The versatility of amyloid binding compounds suggests that the amyloid structure may serve as a scaffold for the future development of sensors to detect such compounds. Metabolic dysfunction is one of the earliest pathological features of AD. In fact, AD is often referred to as type 3 diabetes due to the presence of insulin resistance in the brain. A recent study indicates that altering metabolism improves cognitive function. While metabolic reprogramming is one therapeutic avenue for AD, it is more widely used in some cancer therapies. FDA approved drugs such as metformin, dichloroacetic acid (DCA), and methylene blue can alter metabolism. These drugs can therefore be potentially applied in alleviating metabolic dysfunction in AD. Brain imaging has made enormous strides over the past decade, offering a new window to the mind. Recently, there has been remarkable development of compounds that have the ability to image both types of pathological amyloids: tau and amyloid beta. We have focused on the low cost, simple to use, near infrared fluorescence (NIRF) imaging probes for amyloid beta (Aβ), with

  16. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    PubMed Central

    Shan, Lingling; Liu, Ming; Wu, Chao; Zhao, Liang; Li, Siwen; Xu, Lisheng; Cao, Wengen; Gao, Guizhen; Gu, Yueqing

    2015-01-01

    In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX) as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6)-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX) and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX), composed of folic acid (FA, target), amino acids (Arg or Glu, linker), and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo) in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. PMID:26366078

  17. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    PubMed

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  18. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10

    PubMed Central

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S.; Disney, Matthew D.

    2016-01-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells. PMID:27248057

  19. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors

    PubMed Central

    Nataraja, Selvaraj G.; Yu, Henry N.; Palmer, Stephen S.

    2015-01-01

    Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models

  20. High performance photovoltaic applications using solution-processed small molecules.

    PubMed

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  1. Caenorhabditis elegans chemical biology: lessons from small molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  2. Small Molecules Take A Big Step Against Clostridium difficile.

    PubMed

    Beilhartz, Greg L; Tam, John; Melnyk, Roman A

    2015-12-01

    Effective treatment of Clostridium difficile infections demands a shift away from antibiotics towards toxin-neutralizing agents. Work by Bender et al., using a drug that attenuates toxin action in vivo without affecting bacterial survival, demonstrates the exciting potential of small molecules as a new modality in the fight against C. difficile. PMID:26547239

  3. Targeting p53 by small molecules in hematological malignancies.

    PubMed

    Saha, Manujendra N; Qiu, Lugui; Chang, Hong

    2013-01-01

    p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their anti-tumor effects in different types of hematological malignancies. Importantly, nutlin and PRIMA-1 have successfully reached the stage of phase I/II clinical trials in at least one type of hematological cancer. Thus, the pharmacological activation of p53 by these small molecules has a major clinical impact on prognostic use and targeted drug design. In the current review, we present the recent achievements in p53 research using small molecules in hematological malignancies. Anticancer activity of different classes of compounds targeting the p53 signaling pathway and their mechanism of action are discussed. In addition, we discuss how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in these diseases. PMID:23531342

  4. Small Molecule Ligands for Bulged RNA Secondary Structures

    PubMed Central

    Meyer, S. Todd; Hergenrother, Paul J.

    2016-01-01

    A class of wedge-shaped small molecules has been designed, synthesized, and shown to bind bulged RNA secondary structures. These minimally cationic ligands exhibit good affinity and selectivity for certain RNA bulges as demonstrated in a fluorescent intercalator displacement assay. PMID:19678613

  5. Design of a small molecule against an oncogenic noncoding RNA.

    PubMed

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm. PMID:27170187

  6. Small molecule annotation for the Protein Data Bank.

    PubMed

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. PMID:25425036

  7. Small-Molecule Anticonvulsant Agents with Potent in vitro Neuroprotection and Favorable Drug-like Properties

    PubMed Central

    Smith, Garry R.; Brenneman, Douglas E.; Zhang, Yan; Du, Yanming; Reitz, Allen B.

    2014-01-01

    Severe seizure activity is associated with reoccurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention with these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. We have optimized a series of small molecules for neuroprotective and anticonvulsant activity as well as altered their physical properties to address potential metabolic liabilities, to improve CNS penetration and to prolong the duration of action in vivo. Utilizing phenotypic screening of hippocampal cultures with nutrient medium depleted of antioxidants as a disease model, cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented. Modifications to our previously reported proof of concept compounds have resulted in a lead which has full neuroprotective action at < 1 nM and antiseizure activity across six animal models, including the kindled rat, and displays excellent pharmacokinetics including high exposure to the brain. These modifications have also eliminated the requirement for a chiral molecule, removing the possibility of racemization and making large scale synthesis more easily accessible. These studies strengthen our earlier findings which indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity which also possesses favorable CNS-active drug properties in vitro and in vivo. PMID:24277343

  8. Enhancement of Small Molecule Delivery by Pulsed High-Intensity Focused Ultrasound: A Parameter Exploration.

    PubMed

    Zhou, Yufeng; Wang, Yak-Nam; Farr, Navid; Zia, Jasmine; Chen, Hong; Ko, Bong Min; Khokhlova, Tatiana; Li, Tong; Hwang, Joo Ha

    2016-04-01

    Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and translation to clinical trials. In this study, the effects of pulsed HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor and pulse repetition frequency) on the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in more than 40 times greater Evans blue content and 3.5 times the penetration depth compared with untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-min exposure to pHIFU. Pulsed HIFU has been found to be an effective modality to enhance both the concentration and penetration depth of small molecules in tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue. PMID:26803389

  9. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    PubMed

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration). PMID:18093927

  10. Comparison of Different Time of Flight-Mass Spectrometry Modes for Small Molecule Quantitative Analysis.

    PubMed

    Chindarkar, Nandkishor S; Park, Hyung-Doo; Stone, Judith A; Fitzgerald, Robert L

    2015-01-01

    Currently, the use of time of flight (TOF)-mass spectrometry (MS) in quantitative analysis of small molecules is rare. Recently, the quantitative performance of TOF mass analyzers has improved due to the advancements in TOF technology. We evaluated a Q-TOF-MS in different modes, i.e., Q-TOF-full scan (Q-TOF-FS), Q-TOF-enhanced-full scan (Q-TOF-En-FS), MS(E), Q-TOF-targeted (Q-TOF-TGT), Q-TOF-enhanced-targeted (Q-TOF-En-TGT), and compared their quantitative performance against a unit resolution LC-MS-MS (tandem quadrupole) platform. The five modes were investigated for sensitivity, linearity, signal-to-noise ratio, recovery and precision using 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) as a model compound in electrospray ionization (ESI) with negative polarity. Preliminary studies indicated that Q-TOF-FS mode was the least linear and precise; hence, it was eliminated from further investigation. Total imprecision in remaining four modes was <10%. The Q-TOF-En-FS and Q-TOF-En-TGT showed better signal intensity than their respective modes without enhancement. Overall, peak signal intensity was the highest in MS(E) mode, whereas the signal-to-noise ratio was the best in the Q-TOF-En-TGT mode. Relatively, MS(E) and Q-TOF-En-TGT modes were the best overall performers compared with the other modes. Both MS(E) and Q-TOF-En-TGT modes showed excellent precision (coefficient of variation <6%), patient correlation (r > 0.99) and linearity (range, 5-455 ng/mL) for THC-COOH analysis when compared with LC-MS-MS. We also investigated the performance of the same four modes using methamphetamine in positive ESI. Quantitative data obtained by Q-TOF-En-TGT and MS(E), using both positive and negative ESI, suggest that these modes performed better than the other modes. While unit resolution LC-MS-MS remains the optimal technique for quantification, our data showed that Q-TOF-MS can also be used to quantify small molecules in complex biological specimens. PMID:26239972

  11. Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    PubMed Central

    Pang, Yuan-Ping; Vummenthala, Anuradha; Mishra, Rajesh K.; Park, Jewn Giew; Wang, Shaohua; Davis, Jon; Millard, Charles B.; Schmidt, James J.

    2009-01-01

    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe) are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a Kiapp value of 3.8±0.8 µM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC50 value of 100 µM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 Å2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750–1,500 Å2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a Ki value of 760±170 nM using synthesis-based computer-aided molecular design (SBCAMD). This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight into structural modification

  12. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  13. Probing small molecule microarrays with tagged proteins in cell lysates

    PubMed Central

    Pop, Marius S.; Wassaf, Dina; Koehler, Angela N.

    2014-01-01

    The technique of small-molecule microarray (SMM) screening is based on the ability of small molecules to bind to various soluble proteins. This type of interaction is easily detected by the presence of a fluorescence signal produced by labeled antibodies that specifically recognize a unique sequence (tag) present on the target protein. The fluorescent signal intensity values are determined based on signal-to-noise ratios (SNR). SMM screening is a high throughput, unbiased method that can rapidly identify novel direct ligands for various protein targets. This binding-based assay format is generally applicable to most proteins, but it is especially useful for protein targets that do not possess an enzymatic activity. SMMs enable screening a protein in a purified form or in the context of a cellular lysate, likely providing a more physiologically relevant screening environment. PMID:25445177

  14. Fluorous photoaffinity labeling to probe protein-small molecule interactions.

    PubMed

    Huang, Weigang; Zhang, Qisheng

    2015-01-01

    Identifying cellular targets of bioactive small molecules is essential for their applications as chemical probes or drug candidates. Of equal importance is to determine their "off-target" interactions, which usually account for unwanted properties including toxicity. Among strategies to profile small molecule-interacting proteins, photoaffinity labeling has been widely used because of its distinct advantages such as sensitivity. When combined with mass spectrometry, this approach can provide additional structural and mechanistic information, such as drug-target stoichiometry and exact interacting amino acid residues. We have described a novel fluorous photoaffinity labeling approach, in which a fluorous tag is incorporated into the photoaffinity labeling reagent to enable the enrichment of the labeled species from complex mixtures for analysis. This new feature likely makes the fluorous photoaffinity labeling approach suitable to identify transient interactions, and low-abundant, low-affinity interacting proteins in a cellular environment. PMID:25618351

  15. Zebrafish small molecule screen in reprogramming/cell fate modulation

    PubMed Central

    Munson, Kathleen M.; Yeh, Jing-Ruey J.

    2010-01-01

    Embryonic zebrafish have long been used for lineage tracing studies. In zebrafish embryos, the cell fate identities can be determined by whole-mount in situ hybridization, or by visualization of live embryos if using fluorescent reporter lines. We use embryonic zebrafish to study the effects of a leukemic oncogene AML1-ETO on modulating hematopoietic cell fate. Induced expression of AML1-ETO is able to efficiently reprogram hematopoietic progenitor cells from erythroid to myeloid cell fate. Using the zebrafish model of AML1-ETO, we performed a chemical screen to identify small molecules that suppress the cell fate switch in the presence of AML1-ETO. The methods discussed herein may be broadly applicable for identifying small molecules that modulate other cell fate decisions. PMID:20336532

  16. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing.

    PubMed

    Boujday, Souhir; de la Chapelle, Marc Lamy; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  17. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs. PMID:23954402

  18. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Chan Eon

    2016-03-01

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not. The improved performance of the DR3TBDTT-based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control.In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not

  19. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  20. Polymer and small molecule based hybrid light source

    DOEpatents

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. Chemical detoxification of small molecules by C. elegans

    PubMed Central

    Stupp, Gregory S.; von Reuss, Stephan H.; Izrayelit, Yevgeniy; Ajredini, Ramadan; Schroeder, Frank C.; Edison, Arthur S.

    2012-01-01

    Caenorhabditis elegans lives in compost and decaying fruit, eats bacteria and is exposed to pathogenic microbes. We show that C. elegans is able to modify diverse microbial small-molecule toxins via both O-and N-glucosylation as well as unusual 3′-O-phosphorylation of the resulting glucosides. The resulting glucosylated derivatives have significantly reduced toxicity to C. elegans, suggesting that these chemical modifications represent a general mechanism for worms to detoxify their environments. PMID:23163740

  2. Disordered Binding of Small Molecules to Aβ(12–28)*

    PubMed Central

    Convertino, Marino; Vitalis, Andreas; Caflisch, Amedeo

    2011-01-01

    In recent years, an increasing number of small molecules and short peptides have been identified that interfere with aggregation and/or oligomerization of the Alzheimer β-amyloid peptide (Aβ). Many of them possess aromatic moieties, suggesting a dominant role for those in interacting with Aβ along various stages of the aggregation process. In this study, we attempt to elucidate whether interactions of such aromatic inhibitors with monomeric Aβ(12–28) point to a common mechanism of action by performing atomistic molecular dynamics simulations at equilibrium. Our results suggest that, independently of the presence of inhibitors, monomeric Aβ(12–28) populates a partially collapsed ensemble that is largely devoid of canonical secondary structure at 300 K and neutral pH. The small molecules have different affinities for Aβ(12–28) that can be partially rationalized by the balance of aromatic and charged moieties constituting the molecules. There are no predominant binding modes, although aggregation inhibitors preferentially interact with the N-terminal portion of the fragment (residues 13–20). Analysis of the free energy landscape of Aβ(12–28) reveals differences highlighted by altered populations of a looplike conformer in the presence of inhibitors. We conclude that intrinsic disorder of Aβ persists at the level of binding small molecules and that inhibitors can significantly alter properties of monomeric Aβ via multiple routes of differing specificity. PMID:21969380

  3. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  4. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  5. Torsional sensing of small-molecule binding using magnetic tweezers.

    PubMed

    Lipfert, Jan; Klijnhout, Sven; Dekker, Nynke H

    2010-11-01

    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3±1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment. PMID:20624816

  6. Computational design of protein-small molecule interfaces.

    PubMed

    Allison, Brittany; Combs, Steven; DeLuca, Sam; Lemmon, Gordon; Mizoue, Laura; Meiler, Jens

    2014-02-01

    The computational design of proteins that bind small molecule ligands is one of the unsolved challenges in protein engineering. It is complicated by the relatively small size of the ligand which limits the number of intermolecular interactions. Furthermore, near-perfect geometries between interacting partners are required to achieve high binding affinities. For apolar, rigid small molecules the interactions are dominated by short-range van der Waals forces. As the number of polar groups in the ligand increases, hydrogen bonds, salt bridges, cation-π, and π-π interactions gain importance. These partial covalent interactions are longer ranged, and additionally, their strength depends on the environment (e.g. solvent exposure). To assess the current state of protein-small molecule interface design, we benchmark the popular computer algorithm Rosetta on a diverse set of 43 protein-ligand complexes. On average, we achieve sequence recoveries in the binding site of 59% when the ligand is allowed limited reorientation, and 48% when the ligand is allowed full reorientation. When simulating the redesign of a protein binding site, sequence recovery among residues that contribute most to binding was 52% when slight ligand reorientation was allowed, and 27% when full ligand reorientation was allowed. As expected, sequence recovery correlates with ligand displacement. PMID:23962892

  7. Small Molecule Approach to Study the Function of Mitotic Kinesins.

    PubMed

    Al-Obaidi, Naowras; Kastl, Johanna; Mayer, Thomas U

    2016-01-01

    Mitotic motor proteins of the kinesin superfamily are critical for the faithful segregation of chromosomes and the formation of the two daughter cells during meiotic and mitotic M-phase. Of the 45 human kinesins, roughly a dozen are involved in the assembly of the bipolar spindle, alignment of chromosomes at the spindle equator, chromosome segregation, and cytokinesis. The functions of kinesins in these processes are highly diverse and include the transport of cargo molecules, sliding and bundling of microtubules, and regulation of microtubule dynamics. In light of this multitude of diverse functions and the complex functional interplay of different kinesins during M-phase, it is not surprising that one of the greatest challenges in cell biology is the functional dissection of individual motor proteins. Reversible and fast acting small molecules are powerful tools to accomplish this challenge. However, the validity of conclusions drawn from small molecule studies strictly depends on compound specificity. In this chapter, we present methods for the identification of small molecule inhibitors of a motor protein of interest. In particular, we focus on a protein-based large throughput screen to identify inhibitors of the ATPase activity of kinesins. Furthermore, we provide protocols and guidelines for secondary screens to validate hits and select for specific inhibitors. PMID:27193856

  8. Small Molecule Proteostasis Regulators for Protein Conformational Diseases

    PubMed Central

    Calamini, Barbara; Silva, Maria Catarina; Madoux, Franck; Hutt, Darren M.; Khanna, Shilpi; Chalfant, Monica A.; Saldanha, Sanjay A.; Hodder, Peter; Tait, Bradley D.; Garza, Dan; Balch, William E.; Morimoto, Richard I.

    2011-01-01

    Protein homeostasis (proteostasis) is essential for cellular and organismal health. Stress, aging, and the chronic expression of misfolded proteins, however, challenge the proteostasis machinery and the vitality of the cell. Enhanced expression of molecular chaperones, regulated by heat shock transcription factor-1 (HSF-1), has been shown to restore proteostasis in a variety of conformational disease models, suggesting a promising therapeutic approach. We describe the results of a ∼900,000 small molecule screen that identified novel classes of small molecule proteostasis regulators (PRs) that induce HSF-1-dependent chaperone expression and restore protein folding in multiple conformational disease models. The beneficial effects to proteome stability are mediated by HSF-1, DAF-16/FOXO, SKN-1/Nrf-2, and the chaperone machinery through mechanisms that are distinct from current known small molecule activators of the HSR. We suggest that modulation of the proteostasis network by PRs represents a promising therapeutic approach for the treatment of a variety of protein conformational diseases. PMID:22198733

  9. Turning ON Caspases with Genetics and Small Molecules

    PubMed Central

    Morgan, Charles W.; Julien, Olivier; Unger, Elizabeth K.; Shah, Nirao M.; Wells, James A.

    2014-01-01

    Caspases, aspartate-specific cysteine proteases, have fate-determining roles in many cellular processes including apoptosis, differentiation, neuronal remodeling, and inflammation (for review, see Yuan & Kroemer, 2010). There are a dozen caspases in humans alone, yet their individual contributions toward these phenotypes are not well understood. Thus, there has been considerable interest in activating individual caspases or using their activity to drive these processes in cells and animals. We envision that such experimental control of caspase activity can not only afford novel insights into fundamental biological problems but may also enable new models for disease and suggest possible routes to therapeutic intervention. In particular, localized, genetic, and small-molecule-controlled caspase activation has the potential to target the desired cell type in a tissue. Suppression of caspase activation is one of the hallmarks of cancer and thus there has been significant enthusiasm for generating selective small-molecule activators that could bypass upstream mutational events that prevent apoptosis. Here, we provide a practical guide that investigators have devised, using genetics or small molecules, to activate specific caspases in cells or animals. Additionally, we show genetically controlled activation of an executioner caspase to target the function of a defined group of neurons in the adult mammalian brain. PMID:24974291

  10. Captides: Rigid Junctions between Beta Sheets and Small Molecules

    PubMed Central

    Kier, Brandon L.; Andersen, Niels H.

    2014-01-01

    An extensive series of covalently linked small molecule-peptide adducts based on a terminally capped beta hairpin motif is reported. The constructs can be prepared by standard solid-phase fmoc chemistry with 1 to 4 peptide chains linked to small molecule hubs bearing carboxylic acid moieties. The key feature of interest is the precise, buried environment of the small molecule, and its rigid orientation relative to one or more short, but fully structured peptide chain(s). Most of this study employs a minimalist 9 residue “captide”, a capped β-turn, but we illustrate general applicability to peptides which can terminate in a beta strand. The non-peptide portion of these adducts can include nearly any molecule bearing one or more carboxylic acid groups. Fold-dependent rigidity sets this strategy apart from currently available bioconjugation methods, which typically engender significant flexibility between peptide and tag. Applications to catalyst enhancement, drug design, higher-order assembly, and FRET calibration rulers are discussed. PMID:24909552

  11. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery.

    PubMed

    Chen, Kaihang; Ling, Yunzhi; Cao, Cong; Li, Xiaoyun; Chen, Xiao; Wang, Xiaoying

    2016-12-01

    This work reported chitosan derivatives (CSD)/reduced graphene oxide (rGO) blending with alginate to prepare hydrogel beads for small-molecule drug delivery for the first time. At the beginning, graphene oxide (GO) was successfully reduced using diverse CSD as reducing and stabilizing agents via facile heating. Then the obtained CSD/rGO was blended with alginate and crosslinked into hydrogel beads in CaCl2 solution. Finally, the beads were systematically evaluated as novel vehicles for pH-responsive small-molecule drug delivery. The optimal CSD/rGO/alginate beads showed a high drug-loading efficiency of 82.8% on small-molecule fluorescein sodium (FL), outstanding sustainable release of 71.6% upon 150h at a physiological pH and quick-release of 82.4% drug content at 20h in an acidic medium. Additionally, the cytotoxicity assay result suggested that the CSD/rGO/alginate beads showed negligible cytotoxicity to hepatic stellate cell lines, opening up possibilities for safe and efficient drug delivery. PMID:27612820

  12. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction.

    PubMed

    Actis, Marcelo L; Ambaye, Nigus D; Evison, Benjamin J; Shao, Youming; Vanarotti, Murugendra; Inoue, Akira; McDonald, Ezelle T; Kikuchi, Sotaro; Heath, Richard; Hara, Kodai; Hashimoto, Hiroshi; Fujii, Naoaki

    2016-09-15

    DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR. PMID:27448776

  13. Phage Anti-Immune complex Assay (PHAIA): a general strategy for noncompetitive immunodetection of small molecules

    PubMed Central

    González-Techera, A; Vanrell, L; Last, J.; Hammock, B.D; González-Sapienza, G.

    2008-01-01

    Due to their size, small molecules can not be simultaneously bound by two antibodies precluding their detection by noncompetitive two-site immunoassays, which are superior to competitive ones in terms of sensitivity, kinetics, and working range. This has prompted the development of anti-immune complex antibodies, but these are difficult to produce, and often exhibit high cross-reactivity with the unliganded primary antibody. This work demonstrates that anti-immune complex antibodies can be substituted by phage particles isolated from phage display peptide libraries. Phages bearing specific small peptide loops allowed to focus the recognition to changes in the binding area of the immune complex. The concept was tested using environmental and drug analytes; with improved sensitivity and ready adaptation into onsite formats. Peptides specific for different immune complexes can be isolated from different peptide libraries in a simple and systematic fashion allowing the rapid development of noncompetitive assays for small molecules PMID:17845007

  14. Using RosettaLigand for Small Molecule Docking into Comparative Models

    PubMed Central

    Kaufmann, Kristian W.; Meiler, Jens

    2012-01-01

    Computational small molecule docking into comparative models of proteins is widely used to query protein function and in the development of small molecule therapeutics. We benchmark RosettaLigand docking into comparative models for nine proteins built during CASP8 that contain ligands. We supplement the study with 21 additional protein/ligand complexes to cover a wider space of chemotypes. During a full docking run in 21 of the 30 cases, RosettaLigand successfully found a native-like binding mode among the top ten scoring binding modes. From the benchmark cases we find that careful template selection based on ligand occupancy provides the best chance of success while overall sequence identity between template and target do not appear to improve results. We also find that binding energy normalized by atom number is often less than −0.4 in native-like binding modes. PMID:23239984

  15. Getting Across the Cell Membrane: An Overview for Small Molecules, Peptides, and Proteins

    PubMed Central

    Yang, Nicole J.; Hinner, Marlon J.

    2016-01-01

    The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome. PMID:25560066

  16. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.

    PubMed

    Luo, Yiling; Disney, Matthew D

    2014-09-22

    One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. PMID:25115866

  17. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    SciTech Connect

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya Nan, Fa-Jun Li, Jia

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  18. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells.

    PubMed

    Kim, Yu Jin; Park, Chan Eon

    2016-03-31

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as that contain the alkylthio group and that does not. The improved performance of the -based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control. PMID:26987868

  19. Unraveling plant hormone signaling through the use of small molecules

    PubMed Central

    Rigal, Adeline; Ma, Qian; Robert, Stéphanie

    2014-01-01

    Plants have acquired the capacity to grow continuously and adjust their morphology in response to endogenous and external signals, leading to a high architectural plasticity. The dynamic and differential distribution of phytohormones is an essential factor in these developmental changes. Phytohormone perception is a fast but complex process modulating specific developmental reprogramming. In recent years, chemical genomics or the use of small molecules to modulate target protein function has emerged as a powerful strategy to study complex biological processes in plants such as hormone signaling. Small molecules can be applied in a conditional, dose-dependent and reversible manner, with the advantage of circumventing the limitations of lethality and functional redundancy inherent to traditional mutant screens. High-throughput screening of diverse chemical libraries has led to the identification of bioactive molecules able to induce plant hormone-related phenotypes. Characterization of the cognate targets and pathways of those molecules has allowed the identification of novel regulatory components, providing new insights into the molecular mechanisms of plant hormone signaling. An extensive structure-activity relationship (SAR) analysis of the natural phytohormones, their designed synthetic analogs and newly identified bioactive molecules has led to the determination of the structural requirements essential for their bioactivity. In this review, we will summarize the so far identified small molecules and their structural variants targeting specific phytohormone signaling pathways. We will highlight how the SAR analyses have enabled better interrogation of the molecular mechanisms of phytohormone responses. Finally, we will discuss how labeled/tagged hormone analogs can be exploited, as compelling tools to better understand hormone signaling and transport mechanisms. PMID:25126092

  20. Characterizing aptamer small molecule interactions with backscattering interferometry.

    PubMed

    Kammer, Michael N; Olmsted, Ian R; Kussrow, Amanda K; Morris, Mark J; Jackson, George W; Bornhop, Darryl J

    2014-11-21

    Aptamers are segments of single-strand DNA or RNA used in a wide array of applications, including sensors, therapeutics, and cellular process regulators. Aptamers can bind many target species, including proteins, peptides, and small molecules (SM) with high affinity and specificity. They are advantageous because they can be identified in vitro by SELEX, produced rapidly and relatively economically using oligonucleotide synthesis. The use of aptamers as SM probes has experienced a recent rebirth, and because of their unique properties they represent an attractive alternative to antibodies. Current assay methodology for characterizing small molecule-aptamer binding is limited by either mass sensitivity, as in biolayer interferometry (BLI) and surface plasmon resonance (SPR), or the need for using a fluorophore, as in thermophoresis. Here we report that backscattering interferometry (BSI), a label-free and free-solution sensing technique, can be used to effectively characterize SM-aptamer interactions, providing Kd values on microliter sample quantities and at low nanomolar sensitivity. To demonstrate this capability we measured the aptamer affinity for three previously reported small molecules; bisphenol A, tenofovir, and epirubicin showing BSI provided values consistent with those published previously. We then quantified the Kd values for aptamers to ampicillin, tetracycline and norepinephrine. All measurements produced R(2) values >0.95 and an excellent signal to noise ratio at target concentrations that enable true Kd values to be obtained. No immobilization or labeling chemistry was needed, expediting the assay which is also insensitive to the large relative mass difference between the interacting molecules. PMID:25229067

  1. Discovery of small molecule antagonists of TRPV1.

    PubMed

    Rami, Harshad K; Thompson, Mervyn; Wyman, Paul; Jerman, Jeffrey C; Egerton, Julie; Brough, Stephen; Stevens, Alexander J; Randall, Andrew D; Smart, Darren; Gunthorpe, Martin J; Davis, John B

    2004-07-16

    Small molecule antagonists of the vanilloid receptor 1 (TRPV1, also known as VR1) are disclosed. Ureas such as 5 (SB-452533) were used to explore the structure activity relationship with several potent analogues identified. Pharmacological studies using electrophysiological and FLIPR Ca(2+) based assays showed compound 5 was an antagonist versus capsaicin, noxious heat and acid mediated activation of TRPV1. Study of a quaternary salt of 5 supports a mode of action in which compounds from this series cause inhibition via an extracellularly accessible binding site on the TRPV1 receptor. PMID:15203132

  2. A new small molecule inhibitor of soluble guanylate cyclase

    PubMed Central

    Mota, Filipa; Gane, Paul; Hampden-Smith, Kathryn; Allerston, Charles K.; Garthwaite, John; Selwood, David L.

    2015-01-01

    Soluble guanylate cyclase (sGC) is a haem containing enzyme that regulates cardiovascular homeostasis and multiple mechanisms in the central and peripheral nervous system. Commonly used inhibitors of sGC activity act through oxidation of the haem moiety, however they also bind haemoglobin and this limits their bioavailability for in vivo studies. We have discovered a new class of small molecule inhibitors of sGC and have characterised a compound designated D12 (compound 10) which binds to the catalytic domain of the enzyme with a KD of 11 μM in a SPR assay. PMID:26264842

  3. Validating and understanding ring conformations using small molecule crystallographic data.

    PubMed

    Cottrell, Simon J; Olsson, Tjelvar S G; Taylor, Robin; Cole, Jason C; Liebeschuetz, John W

    2012-04-23

    Understanding the conformational preferences of ring structures is fundamental to structure-based drug design. Although the Cambridge Structural Database (CSD) provides information on the preferred conformations of small molecules, analyzing this data can be very time-consuming. In order to overcome this hurdle, tools have been developed for quickly extracting geometrical preferences from the CSD. Here we describe how the program Mogul has been extended to analyze and compare ring conformations, using a library derived from over 900 000 ring fragments in the CSD. We illustrate how these can be used to understand the conformational preferences of molecules in a crystal lattice and bound to proteins. PMID:22372622

  4. Novel Oxindole Sulfonamides and Sulfamides: EPZ031686, the First Orally Bioavailable Small Molecule SMYD3 Inhibitor.

    PubMed

    Mitchell, Lorna H; Boriack-Sjodin, P Ann; Smith, Sherri; Thomenius, Michael; Rioux, Nathalie; Munchhof, Michael; Mills, James E; Klaus, Christine; Totman, Jennifer; Riera, Thomas V; Raimondi, Alejandra; Jacques, Suzanne L; West, Kip; Foley, Megan; Waters, Nigel J; Kuntz, Kevin W; Wigle, Tim J; Scott, Margaret Porter; Copeland, Robert A; Smith, Jesse J; Chesworth, Richard

    2016-02-11

    SMYD3 has been implicated in a range of cancers; however, until now no potent selective small molecule inhibitors have been available for target validation studies. A novel oxindole series of SMYD3 inhibitors was identified through screening of the Epizyme proprietary histone methyltransferase-biased library. Potency optimization afforded two tool compounds, sulfonamide EPZ031686 and sulfamide EPZ030456, with cellular potency at a level sufficient to probe the in vitro biology of SMYD3 inhibition. EPZ031686 shows good bioavailability following oral dosing in mice making it a suitable tool for potential in vivo target validation studies. PMID:26985287

  5. High performance small-molecule organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Kuo, Chung-Chen

    The roadmap of developing microelectronics has a new branch: organic electronics. Organic electronics, which utilizes the electrical properties of organic materials in the active or passive layers, is an emerging technology that has received much attention. In conjunction with today's demands for new materials and devices, many technologies have emerged for developing organic electronics and consolidating applications and markets. An organic thin-film transistor is the essential device in this paradigm in addition to organic photodiodes and organic light emitting diodes. This thesis presents advances made in design and fabrication of organic thin-film transistors (OTFTs) using small-molecule organic semiconductors (pentacene, anthradithiophene, and their derivatives) as the active layer with record device performance. In this work OTFT test structures fabricated on oxidized silicon substrates were utilized to provide a convenient substrate, gate contact, and gate insulator for the processing and characterization of vapor-deposited organic materials and their transistors. By developing a gate dielectric treatment using silane coupling agents the performance and yield of pentacene OTFTs was improved and a field-effect mobility of larger than 2 cm2/V-s was achieved. Such device performance is comparable to a-Si:H TFTs and have the potential for electronic applications. In addition, the first direct photolithographic process for top contacts to pentacene OTFTs on oxidized silicon with an acceptable performance (a field-effect mobility of 0.3 cm2/V-s, an on/off current ratio of 10 7, and a subthreshold slope of 1 V/decade) was developed. The multiple layer photoresist process demonstrated the feasibility of creating source and drain metallic electrodes on vapor-deposited pentacene thin films with a resolution less than 10 mum. Subsequently, solution-processed OTFTs were then investigated and high performance transistors, with field-effect mobilities > 1 cm2/V-s and an

  6. Oral small molecule therapy for lysosomal storage diseases.

    PubMed

    Weinreb, Neal J

    2013-11-01

    For more than 20 years, "enzyme replacement therapy" (ERT) has been the prevalent treatment approach for lysosomal storage disorders (LSDs). Unfortunately, ERT, as currently administered, is ineffective for primary neuronopathic LSDs. For LSDs whose major disease burden is non-neurological, ERT efficacy is limited by uneven tissue distribution and penetration, immunological intolerance, and disturbed intracellular homeostasis associated with persistent mutant enzymes that are not "replaced" by ERT. Many of these limitations might be circumvented by oral, low molecular weight pharmaceuticals that address relevant LSD pathophysiology and distribute widely in steady state concentrations in all cells and body tissues including the CNS. Two oral small molecule drugs (miglustat and cysteamine) are currently approved for clinical use and two (eliglustat and migalastat) are in advanced stage clinical trials. Several others are in early stages of clinical or pre-clinical investigation. This article reviews current knowledge of small molecule treatment for LSDs including approaches such as substrate synthesis inhibition, pharmacological chaperones, and proteostasis modification. PMID:24380126

  7. Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity

    PubMed Central

    Charbonneau, Marie-Eve; Gonzalez-Hernandez, Marta J.; Showalter, Hollis D.; Donato, Nicholas J.; Wobus, Christiane E.; O’Riordan, Mary X. D.

    2014-01-01

    The global spread of anti-microbial resistance requires urgent attention, and diverse alternative strategies have been suggested to address this public health concern. Host-directed immunomodulatory therapies represent one approach that could reduce selection for resistant bacterial strains. Recently, the small molecule deubiquitinase inhibitor WP1130 was reported as a potential anti-infective drug against important human food-borne pathogens, notably Listeria monocytogenes and noroviruses. Utilization of WP1130 itself is limited due to poor solubility, but given the potential of this new compound, we initiated an iterative rational design approach to synthesize new derivatives with increased solubility that retained anti-infective activity. Here, we test a small library of novel synthetic molecules based on the structure of the parent compound, WP1130, for anti-infective activity in vitro. Our studies identify a promising candidate, compound 9, which reduced intracellular growth of L. monocytogenes at concentrations that caused minimal cellular toxicity. Compound 9 itself had no bactericidal activity and only modestly slowed Listeria growth rate in liquid broth culture, suggesting that this drug acts as an anti-infective compound by modulating host-cell function. Moreover, this new compound also showed anti-infective activity against murine norovirus (MNV-1) and human norovirus, using the Norwalk virus replicon system. This small molecule inhibitor may provide a chemical platform for further development of therapeutic deubiquitinase inhibitors with broad-spectrum anti-infective activity. PMID:25093325

  8. Discovery and development of small molecule SHIP phosphatase modulators.

    PubMed

    Viernes, Dennis R; Choi, Lydia B; Kerr, William G; Chisholm, John D

    2014-07-01

    Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds. PMID:24302498

  9. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    PubMed Central

    Ruscito, Annamaria; DeRosa, Maria C.

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  10. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications.

    PubMed

    Ruscito, Annamaria; DeRosa, Maria C

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  11. Structural basis of AMPK regulation by small molecule activators

    NASA Astrophysics Data System (ADS)

    Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.

    2013-12-01

    AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.

  12. Inkjet printing of photopolymerizable small molecules for OLED applications

    NASA Astrophysics Data System (ADS)

    Olivier, Simon; Derue, Lionel; Geffroy, Bernard; Ishow, Eléna; Maindron, Tony

    2015-09-01

    The elaboration of organic light-emitting diodes (OLEDs) via a solution deposition process turns out to be a cheaper alternative to the vacuum evaporation technique. However the most popular spin-coating wet deposition process mainly used in the semiconductor industry is not applicable for large mother glass substrates used in display applications. The inkjet technology addresses this drawback and appears to be a good solution to produce on a large scale wet deposited OLEDs1. This process has been commonly used for polymer deposition and only a few examples2-4 have demonstrated the possibility of depositing small molecules in functional devices. Deposition of small molecules from inkjet printing is supposed to be easier than polymers because monomers do not show polydispersity and consequently the viscosity of the solution containing the monomers, the ink, is easily controllable in production. This work aims at fabricating OLEDs composed of inkjet-printed hole-transporting molecules and a new class of fluorescent molecules that have been further UV-photopolymerized right after deposition.

  13. Biosensor-based small molecule fragment screening with biolayer interferometry.

    PubMed

    Wartchow, Charles A; Podlaski, Frank; Li, Shirley; Rowan, Karen; Zhang, Xiaolei; Mark, David; Huang, Kuo-Sen

    2011-07-01

    Biosensor-based fragment screening is a valuable tool in the drug discovery process. This method is advantageous over many biochemical methods because primary hits can be distinguished from non-specific or non-ideal interactions by examining binding profiles and responses, resulting in reduced false-positive rates. Biolayer interferometry (BLI), a technique that measures changes in an interference pattern generated from visible light reflected from an optical layer and a biolayer containing proteins of interest, is a relatively new method for monitoring small molecule interactions. The BLI format is based on a disposable sensor that is immersed in 96-well or 384-well plates. BLI has been validated for small molecule detection and fragment screening with model systems and well-characterized targets where affinity constants and binding profiles are generally similar to those obtained with surface plasmon resonsance (SPR). Screens with challenging targets involved in protein-protein interactions including BCL-2, JNK1, and eIF4E were performed with a fragment library of 6,500 compounds, and hit rates were compared for these targets. For eIF4E, a protein containing a PPI site and a nucleotide binding site, results from a BLI fragment screen were compared to results obtained in biochemical HTS screens. Overlapping hits were observed for the PPI site, and hits unique to the BLI screen were identified. Hit assessments with SPR and BLI are described. PMID:21660516

  14. Small molecules reveal an alternative mechanism of Bax activation

    PubMed Central

    Brahmbhatt, Hetal; Uehling, David; Al-awar, Rima; Leber, Brian; Andrews, David

    2016-01-01

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  15. A synthetic small molecule that can walk down a track.

    PubMed

    von Delius, Max; Geertsema, Edzard M; Leigh, David A

    2010-02-01

    Although chemists have made small-molecule rotary motors, to date there have been no reports of small-molecule linear motors. Here we describe the synthesis and operation of a 21-atom two-legged molecular unit that is able to walk up and down a four-foothold molecular track. High processivity is conferred by designing the track-binding interactions of the two feet to be labile under different sets of conditions such that each foot can act as a temporarily fixed pivot for the other. The walker randomly and processively takes zero or one step along the track using a 'passing-leg' gait each time the environment is switched between acid and base. Replacing the basic step with a redox-mediated, disulfide-exchange reaction directionally transports the bipedal molecules away from the minimum-energy distribution by a Brownian ratchet mechanism. The ultimate goal of such studies is to produce artificial, linear molecular motors that move directionally along polymeric tracks to transport cargoes and perform tasks in a manner reminiscent of biological motor proteins. PMID:21124398

  16. Small molecules with antiviral activity against the Ebola virus.

    PubMed

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  17. Small-molecule SMAC mimetics as new cancer therapeutics.

    PubMed

    Bai, Longchuan; Smith, David C; Wang, Shaomeng

    2014-10-01

    Apoptosis is a tightly regulated cellular process and faulty regulation of apoptosis is a hallmark of human cancers. Targeting key apoptosis regulators with the goal to restore apoptosis in tumor cells has been pursued as a new cancer therapeutic strategy. XIAP, cIAP1, and cIAP2, members of inhibitor of apoptosis (IAP) proteins, are critical regulators of cell death and survival and are attractive targets for new cancer therapy. The SMAC/DIABLO protein is an endogenous antagonist of XIAP, cIAP1, and cIAP2. In the last decade, intense research efforts have resulted in the design and development of several small-molecule SMAC mimetics now in clinical trials for cancer treatment. In this review, we will discuss the roles of XIAP, cIAP1, and cIAP2 in regulation of cell death and survival, and the design and development of small-molecule SMAC mimetics as novel cancer treatments. PMID:24841289

  18. Small molecules with antiviral activity against the Ebola virus

    PubMed Central

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus. PMID:25713700

  19. Neurobehavioral consequences of small molecule-drug immunosuppression.

    PubMed

    Bösche, Katharina; Weissenborn, Karin; Christians, Uwe; Witzke, Oliver; Engler, Harald; Schedlowski, Manfred; Hadamitzky, Martin

    2015-09-01

    60 years after the first successful kidney transplantation in humans, transplant patients have decent survival rates owing to a broad spectrum of immunosuppressive medication available today. Not only transplant patients, but also patients with inflammatory autoimmune diseases or cancer benefit from these life-saving immunosuppressive and anti-proliferative medications. However, this success is gained with the disadvantage of neuropsychological disturbances and mental health problems such as depression, anxiety and impaired quality of life after long-term treatment with immunosuppressive drugs. So far, surprisingly little is known about unwanted neuropsychological side effects of immunosuppressants and anti-proliferative drugs from the group of so called small molecule-drugs. This is partly due to the fact that it is difficult to disentangle whether and to what extent the observed neuropsychiatric disturbances are a direct result of the patient's medical history or of the immunosuppressive treatment. Thus, here we summarize experimental as well as clinical data of mammalian and human studies, with the focus on selected small-molecule drugs that are frequently employed in solid organ transplantation, autoimmune disorders or cancer therapy and their effects on neuropsychological functions, mood, and behavior. These data reveal the necessity to develop immunosuppressive and anti-proliferative drugs inducing fewer or no unwanted neuropsychological side effects, thereby increasing the quality of life in patients requiring long term immunosuppressive treatment. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. PMID:25529273

  20. Small molecules reveal an alternative mechanism of Bax activation.

    PubMed

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. PMID:26916338

  1. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates.

    PubMed

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-01

    Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs. PMID:26891281

  2. Nanoprobe-Enhanced, Split Aptamer-Based Electrochemical Sandwich Assay for Ultrasensitive Detection of Small Molecules.

    PubMed

    Zhao, Tao; Liu, Ran; Ding, Xiaofan; Zhao, Juncai; Yu, Haixiang; Wang, Lei; Xu, Qing; Wang, Xuan; Lou, Xinhui; He, Miao; Xiao, Yi

    2015-08-01

    It is quite challenging to improve the binding affinity of antismall molecule aptamers. We report that the binding affinity of anticocaine split aptamer pairs improved by up to 66-fold by gold nanoparticles (AuNP)-attached aptamers due to the substantially increased local concentration of aptamers and multiple and simultaneous ligand interactions. The significantly improved binding affinity enables the detection of small molecule targets with unprecedented sensitivity, as demonstrated in nanoprobe-enhanced split aptamer-based electrochemical sandwich assays (NE-SAESA). NE-SAESA replaces the traditional molecular reporter probe with AuNPs conjugated to multiple reporter probes. The increased binding affinity allowed us to use 1,000-fold lower reporter probe concentrations relative to those employed in SAESA. We show that the near-elimination of background in NE-SAESA effectively improves assay sensitivity by ∼1,000-100,000-fold for ATP and cocaine detection, relative to equivalent SAESA. With the ongoing development of new strategies for the selection of aptamers, we anticipate that our sensor platform should offer a generalizable approach for the high-sensitivity detection of diverse targets. More importantly, we believe that NE-SAESA represents a novel strategy to improve the binding affinity between a small molecule and its aptamer and potentially can be extended to other detection platforms. PMID:26171721

  3. UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small molecule natural product libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Generation of natural product libraries containing column fractions, each with only a few small molecules, by a high throughput, automated fractionation system has made it possible to implement an improved dereplication strategy for selection and prioritization of hits in a natural product discovery...

  4. Shape shifting leads to small molecule allosteric drug discovery

    PubMed Central

    Lawrence, Sarah H.; Ramirez, Ursula D.; Tang, Lei; Fazliyev, Farit; Kundrat, Lenka; Markham, George D.; Jaffe, Eileen K.

    2009-01-01

    SUMMARY Enzymes that regulate their activity by modulating an equilibrium of alternate, non-additive, functionally distinct oligomeric assemblies (morpheeins) define a novel mode of allostery (Jaffe, TiBS 30:490-7, 2005). The oligomeric equilibrium for porphobilinogen synthase (PBGS) consists of high-activity octamers, low-activity hexamers, and two dimer conformations. A phylogenetically diverse allosteric site specific to hexamers is proposed as an inhibitor binding site. Inhibitor binding is predicted to draw the oligomeric equilibrium toward the low-activity hexamer. In silico docking enriched a selection from a small molecule library for compounds predicted to bind to this allosteric site. In vitro testing of selected compounds identified one compound whose inhibition mechanism is species-specific conversion of PBGS octamers to hexamers. We propose that this novel strategy for inhibitor discovery can be applied to other proteins that use the morpheein model for allosteric regulation. PMID:18559269

  5. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  6. Small-molecule modulators of PXR and CAR.

    PubMed

    Chai, Sergio C; Cherian, Milu T; Wang, Yue-Ming; Chen, Taosheng

    2016-09-01

    Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26921498

  7. Engineered kinesin motor proteins amenable to small-molecule inhibition.

    PubMed

    Engelke, Martin F; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T Lynne; Soppina, Pushpanjali; Hancock, William O; Gelfand, Vladimir I; Verhey, Kristen J

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  8. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  9. Mass Spectrometry-Based Tissue Imaging of Small Molecules

    PubMed Central

    Ferguson, Carly N.; Fowler, Joseph W.M.; Waxer, Jonathan F.; Gatti, Richard A.; Loo, Joseph A.

    2014-01-01

    Mass spectrometry imaging (MSI) of tissue samples is a promising analytical tool that has quickly become associated with biomedical and pharmacokinetic studies. It eliminates several labor-intensive protocols associated with more classical imaging techniques, and provides accurate, histological data at a rapid pace. Because mass spectrometry is used as the readout, MSI can be applied to almost any molecule, especially those that are biologically relevant. Many examples of its utility in the study of peptides and proteins have been reported; here we discuss its value in the mass range of small molecules. We explore its success and potential in the analysis of lipids, medicinals, and metal-based compounds by featuring representative studies from mass spectrometry imaging laboratories around the globe. PMID:24952187

  10. Probing the Probes: Fitness Factors For Small Molecule Tools

    PubMed Central

    Workman, Paul; Collins, Ian

    2010-01-01

    Chemical probes for interrogating biological processes are of considerable current interest. Cell permeable small molecule tools have a major role in facilitating the functional annotation of the human genome, understanding both physiological and pathological processes, and validating new molecular targets. To be valuable, chemical tools must satisfy necessary criteria and recent publications have suggested objective guidelines for what makes a useful chemical probe. Although recognizing that such guidelines may be valuable, we caution against overly restrictive rules that may stifle innovation in favor of a “fit-for-purpose” approach. Reviewing the literature and providing examples from the cancer field, we recommend a series of “fitness factors” to be considered when assessing chemical probes. We hope this will encourage innovative chemical biology research while minimizing the generation of poor quality and misleading biological data, thus increasing understanding of the particular biological area, to the benefit of basic research and drug discovery. PMID:20609406

  11. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed. PMID:27573182

  12. Identification and characterization of small-molecule inhibitors of hepsin

    PubMed Central

    Chevillet, John R.; Park, Gemma J.; Bedalov, Antonio; Simon, Julian A.; Vasioukhin, Valeri I.

    2009-01-01

    Hepsin is a type-II transmembrane serine protease overexpressed in the majority of human prostate cancers. We recently demonstrated that hepsin promotes prostate cancer progression and metastasis and thus represents a potential therapeutic target. Here we report the identification of novel small-molecule inhibitors of hepsin catalytic activity. We utilized purified human hepsin for high-throughput screening of established drug and chemical diversity libraries and identified sixteen inhibitory compounds with IC50 values against hepsin ranging from 0.23–2.31μM and relative selectivity of up to 86-fold or greater. Two compounds are orally administered drugs established for human use. Four compounds attenuated hepsin-dependent pericellular serine protease activity in a dose dependent manner with limited or no cytotoxicity to a range of cell types. These compounds may be used as leads to develop even more potent and specific inhibitors of hepsin to prevent prostate cancer progression and metastasis. PMID:18852137

  13. Detecting and identifying small molecules in a nanopore flux capacitor

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; McClure, Ethan; Zhang, Guigen

    2016-02-01

    A new method of molecular detection in a metallic-semiconductor nanopore was developed and evaluated with experimental and computational methods. Measurements were made of the charging potential of the electrical double layer (EDL) capacitance as charge-carrying small molecules translocated the nanopore. Signals in the charging potential were found to be correlated to the physical properties of analyte molecules. From the measured signals, we were able to distinguish molecules with different valence charge or similar valence charge but different size. The relative magnitude of the signals from different analytes was consistent over a wide range of experimental conditions, suggesting that the detected signals are likely due to single molecules. Computational modeling of the nanopore system indicated that the double layer potential signal may be described in terms of disruption of the EDL structure due to the size and charge of the analyte molecule, in agreement with Huckel and Debye’s analysis of the electrical atmosphere of electrolyte solutions.

  14. Coalescence during emulsification. 2. Role of small molecule surfactants.

    PubMed

    Lobo, Lloyd; Svereika, Aileen

    2003-05-15

    An oil-soluble hexadecyl pyrene (HDP) probe is used to monitor coalescence of hexadecane oil-in-water emulsions, during emulsification, in stirred systems and in a high-pressure homogenizer (microfluidizer), when small molecule surfactants are used as emulsifiers. The effect of sodium dodecyl sulfate concentration and salt concentration on the amount of coalescence and final drop size is studied. The behavior of oil-soluble surfactants and mixtures of oil-soluble and water-soluble surfactants on emulsification performance is also discussed. For high-pressure homogenizers, the drop sizes obtained are found to depend mostly on the ability of surfactants to stabilize the drops against coalescence, rather than their ability to reduce the interfacial tension. Increasing oil phase fractions increase the coalescence rate, because of the increase in collision frequency, which, in turn, impacts the drop size of the homogenized emulsion. PMID:16256561

  15. Small-Molecule-Based Lineage Reprogramming Creates Functional Astrocytes.

    PubMed

    Tian, E; Sun, Guoqiang; Sun, Guihua; Chao, Jianfei; Ye, Peng; Warden, Charles; Riggs, Arthur D; Shi, Yanhong

    2016-07-19

    Growing evidence indicates important roles for astrocytes in neurodevelopment and diseases. However, astrocytes and their roles in these processes remain poorly understood. Despite recent progress in reprogramming somatic cells into different types of neural cells, reprogramming to astrocytes has lagged. Here, we show that functional astrocytes can be generated from mammalian fibroblasts using only small molecules. Induced mouse astrocytes resemble primary astrocytes in astrocytic gene expression and epigenomic status and exhibit functional properties in promoting neuronal maturation, glutamate uptake, and calcium signaling. Moreover, these cells can recapitulate the Alexander disease phenotype of protein aggregation when expressing Gfap with a disease-causing mutation. The same compounds can also reprogram human fibroblasts into astroglial progenitor cells that can further mature into functional astrocytes. These chemically induced astrocytes may provide cellular models to uncover roles of astrocytes in normal neurodevelopment and pathogenesis of neurological diseases. PMID:27396343

  16. Targeting Gli Transcription Activation by Small Molecule Suppresses Tumor Growth

    PubMed Central

    Bosco-Clément, Geneviève; Zhang, Fang; Chen, Zhao; Zhou, Hai-Meng; Li, Hui; Mikami, Iwao; Hirata, Tomomi; Yagui-Beltran, Adam; Lui, Natalie; Do, Hanh T.; Cheng, Tiffany; Tseng, Hsin-Hui; Choi, Helen; Fang, Li-Tai; Kim, Il-Jin; Yue, Dongsheng; Wang, Changli; Zheng, Qingfeng; Fujii, Naoaki; Mann, Michael; Jablons, David M.; He, Biao

    2014-01-01

    Targeted inhibition of Hedgehog signaling at the cell membrane has been associated with anti-cancer activity in preclinical and early clinical studies. Hedgehog signaling involves activation of Gli transcription factors that can also be induced by alternative pathways. In this study we identified an interaction between Gli proteins and a transcription co-activator TAF9, and validated its functional relevance in regulating Gli transactivation. We also describe a novel, synthetic small molecule, FN1-8, that efficiently interferes with Gli/TAF9 interaction and down-regulate Gli/TAF9 dependent transcriptional activity. More importantly, FN1-8 suppresses cancer cell proliferation in vitro and inhibits tumor growth in vivo. Our results suggest that blocking Gli transactivation, a key control point of multiple oncogenic pathways, may be an effective anti-cancer strategy. PMID:23686308

  17. Detection of small molecules with a flow immunosensor

    NASA Technical Reports Server (NTRS)

    Kusterbeck, Anne W.; Ligler, Frances S.

    1991-01-01

    We describe the development of an easy-to-use sensor with widespread applications for detecting small molecules. The flow immunosensor can analyze discrete samples in under one minute or continuously monitor a flowing stream for the presence of specific analytes. This detection system is extremely specific, and achieves a level of sensitivity which meets or exceeds the detection limits reported for rival assays. Because the system is also compact, transportable, and automated, it has the potential to impact diverse areas. For example, the flow immunosensor has successfully detected drugs of abuse and explosives, and may well address many of the needs of the environmental community with respect to continuous monitoring for pollutants. Efforts are underway to engineer a portable device in the field.

  18. Microbial Modulation of Host Immunity with the Small Molecule Phosphorylcholine

    PubMed Central

    Clark, Sarah E.

    2013-01-01

    All microorganisms dependent on persistence in a host for survival rely on either hiding from or modulating host responses to infection. The small molecule phosphorylcholine, or choline phosphate (ChoP), is used for both of these purposes by a wide array of bacterial and parasitic microbes. While the mechanisms underlying ChoP acquisition and expression are diverse, a unifying theme is the use of ChoP to reduce the immune response to infection, creating an advantage for ChoP-expressing microorganisms. In this minireview, we discuss several benefits of ChoP expression during infection as well as how the immune system fights back against ChoP-expressing pathogens. PMID:23230294

  19. Toward Reprogramming Bacteria with Small Molecules and RNA

    PubMed Central

    Gallivan, Justin P.

    2007-01-01

    Summary A major goal of synthetic biology is to reprogram bacteria to carry out complex tasks, such as synthesizing and delivering drugs, and seeking and destroying environmental pollutants. Advances in molecular biology and bacterial genetics have made it straightforward to modify, insert, or delete genes in many bacterial strains, and advances in gene synthesis have opened the door to replacing entire genomes. However, rewriting the underlying genetic code is only part of the challenge of reprogramming cellular behavior. A remaining challenge is to control how and when the modified genes are expressed. Several recent studies have highlighted how synthetic riboswitches, which are RNA sequences that undergo a ligand-induced conformational change to alter gene expression, can be used to reprogram how bacteria respond to small molecules. PMID:17967431

  20. Virtual screening in small molecule discovery for epigenetic targets.

    PubMed

    Li, Guo-Bo; Yang, Ling-Ling; Yuan, Yiming; Zou, Jun; Cao, Yu; Yang, Sheng-Yong; Xiang, Rong; Xiang, Mingli

    2015-01-01

    Epigenetic modifications are critical mechanisms that regulate many biological processes and establish normal cellular phenotypes. Aberrant epigenetic modifications are frequently linked to the development and maintenance of several diseases including cancer, inflammation and metabolic diseases and so on. The key proteins that mediate epigenetic modifications have been thus recognized as potential therapeutic targets for these diseases. Consequently, discovery of small molecule inhibitors for epigenetic targets has received considerable attention in recent years. Here, virtual screening methods and their applications in the discovery of epigenetic target inhibitors are the focus of this review. Newly emerging approaches or strategies including rescoring methods, docking pose filtering methods, machine learning methods and 3D molecular similarity methods were also underlined. They are expected to be employed for identifying novel inhibitors targeting epigenetic regulation more efficiently. PMID:25462557

  1. Cytoprotective small molecule modulators of endoplasmic reticulum stress.

    PubMed

    Munshi, Soumyabrata; Dahl, Russell

    2016-06-01

    Cellular health depends on the normal function of the endoplasmic reticulum (ER) to fold, assemble, and modify critical proteins to maintain viability. When the ER cannot process proteins effectively, a condition known as ER stress ensues. When this stress is excessive or prolonged, cell death via apoptotic pathways is triggered. Interestingly, most major diseases have been shown to be intimately linked to ER stress, including diabetes, stroke, neurodegeneration, and many cancers. Thus, controlling ER stress presents a significant strategy for drug development for these diseases. The goal of this review is to present various small molecules that alleviate ER stress with the intention that they may serve as useful starting points for therapeutic agent development. PMID:27091069

  2. Toward reprogramming bacteria with small molecules and RNA.

    PubMed

    Gallivan, Justin P

    2007-12-01

    A major goal of synthetic biology is to reprogram bacteria to carry out complex tasks, such as synthesizing and delivering drugs, and seeking and destroying environmental pollutants. Advances in molecular biology and bacterial genetics have made it straightforward to modify, insert, or delete genes in many bacterial strains, and advances in gene synthesis have opened the door to replacing entire genomes. However, rewriting the underlying genetic code is only part of the challenge of reprogramming cellular behavior. A remaining challenge is to control how and when the modified genes are expressed. Several recent studies have highlighted how synthetic riboswitches, which are RNA sequences that undergo a ligand-induced conformational change to alter gene expression, can be used to reprogram how bacteria respond to small molecules. PMID:17967431

  3. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  4. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  5. Development of a Unique Small Molecule Modulator of CXCR4

    PubMed Central

    Yoon, Younghyoun; Lin, Songbai; Sasaki, Maiko; Klapproth, Jan-Michael A.; Yang, Hua; Grossniklaus, Hans E.; Xu, Jianguo; Rojas, Mauricio; Voll, Ronald J.; Goodman, Mark M.; Arrendale, Richard F.; Liu, Jin; Yun, C. Chris; Snyder, James P.; Liotta, Dennis C.; Shim, Hyunsuk

    2012-01-01

    Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for

  6. Advances in structure elucidation of small molecules using mass spectrometry

    PubMed Central

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  7. An autonomous chemically fuelled small-molecule motor.

    PubMed

    Wilson, Miriam R; Solà, Jordi; Carlone, Armando; Goldup, Stephen M; Lebrasseur, Nathalie; Leigh, David A

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology. PMID:27279219

  8. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    PubMed

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies. PMID:27435212

  9. General Bioluminescence Resonance Energy Transfer Homogeneous Immunoassay for Small Molecules Based on Quantum Dots.

    PubMed

    Yu, Xuezhi; Wen, Kai; Wang, Zhanhui; Zhang, Xiya; Li, Chenglong; Zhang, Suxia; Shen, Jianzhong

    2016-04-01

    Here, we describe a general bioluminescence resonance energy transfer (BRET) homogeneous immunoassay based on quantum dots (QDs) as the acceptor and Renilla luciferase (Rluc) as the donor (QD-BRET) for the determination of small molecules. The ratio of the donor-acceptor that could produce energy transfer varied in the presence of different concentrations of free enrofloxacin (ENR), an important small molecule in food safety. The calculated Förster distance (R0) was 7.86 nm. Under optimized conditions, the half-maximal inhibitory concentration (IC50) for ENR was less than 1 ng/mL and the linear range covered 4 orders of magnitude (0.023 to 25.60 ng/mL). The cross-reactivities (CRs) of seven representative fluoroquinolones (FQs) were similar to the data obtained by an enzyme-linked immunosorbent assay (ELISA). The average intra- and interassay recoveries from spiked milk of were 79.8-118.0%, and the relative standard deviations (RSDs) were less than 10%, meeting the requirement of residue detection, which was a satisfactory result. Furthermore, we compared the influence of different luciferase substrates on the performance of the assay. Considering sensitivity and stability, coelenterazine-h was the most appropriate substrate. The results from this study will enable better-informed decisions on the choice of Rluc substrate for QD-BRET systems. For the future, the QD-BRET immunosensor could easily be extended to other small molecules and thus represents a versatile strategy in food safety, the environment, clinical diagnosis, and other fields. PMID:26948147

  10. A Remote Arene-Binding Site on Prostate Specific Membrane Antigen Revealed by Antibody-Recruiting Small Molecules

    SciTech Connect

    Zhang, Andrew X.; Murelli, Ryan P.; Barinka, Cyril; Michel, Julien; Cocleaza, Alexandra; Jorgensen, William L.; Lubkowski, Jacek; Spiegel, David A.

    2010-09-27

    Prostate specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase overexpressed in many forms of prostate cancer. Our laboratory has recently disclosed a class of small molecules, called ARM-Ps (antibody-recruiting molecule targeting prostate cancer) that are capable of enhancing antibody-mediated immune recognition of prostate cancer cells. Interestingly, during the course of these studies, we found ARM-Ps to exhibit extraordinarily high potencies toward PSMA, compared to previously reported inhibitors. Here, we report in-depth biochemical, crystallographic, and computational investigations which elucidate the origin of the observed affinity enhancement. These studies reveal a previously unreported arene-binding site on PSMA, which we believe participates in an aromatic stacking interaction with ARMs. Although this site is composed of only a few amino acid residues, it drastically enhances small molecule binding affinity. These results provide critical insights into the design of PSMA-targeted small molecules for prostate cancer diagnosis and treatment; more broadly, the presence of similar arene-binding sites throughout the proteome could prove widely enabling in the optimization of small molecule-protein interactions.