CPG Network Optimization for a Biomimetic Robotic Fish via PSO.
Yu, Junzhi; Wu, Zhengxing; Wang, Ming; Tan, Min
2016-09-01
In this brief, we investigate the parameter optimization issue of a central pattern generator (CPG) network governed forward and backward swimming for a fully untethered, multijoint biomimetic robotic fish. Considering that the CPG parameters are tightly linked to the propulsive performance of the robotic fish, we propose a method for determination of relatively optimized control parameters. Within the framework of evolutionary computation, we use a combination of dynamic model and particle swarm optimization (PSO) algorithm to seek the CPG characteristic parameters for an enhanced performance. The PSO-based optimization scheme is validated with extensive experiments conducted on the actual robotic fish. Noticeably, the optimized results are shown to be superior to previously reported forward and backward swimming speeds. PMID:26259223
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
NASA Astrophysics Data System (ADS)
Chandrasekaran, Muthumari; Tamang, Santosh
2016-06-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed (N), feed rate (f) and depth of cut (d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3-5-1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
An approach for reliability analysis of industrial systems using PSO and IFS technique.
Garg, Harish; Rani, Monica
2013-11-01
The main objective of this paper is to present a technique for computing the membership functions of the intuitionistic fuzzy set (IFS) by utilizing imprecise, uncertain and vague data. In literature so far, membership functions of IFS are computed via using fuzzy arithmetic operations within collected data and hence contain a wide range of uncertainties. Thus it is necessary for optimizing these spread by formulating a nonlinear optimization problem through ordinary arithmetic operations instead of fuzzy operations. Particle swarm optimization (PSO) has been used for constructing their membership functions. Sensitivity as well as performance analysis has also been conducted for finding the critical component of the system. Finally the computed results are compared with existing results. The suggested framework has been illustrated with the help of a case. PMID:23867122
PSO-based support vector machine with cuckoo search technique for clinical disease diagnoses.
Liu, Xiaoyong; Fu, Hui
2014-01-01
Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search (CS). The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms. PMID:24971382
A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models.
Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung
2015-01-01
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237
A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models
Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung
2015-01-01
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237
NASA Astrophysics Data System (ADS)
Handayani, D.; Nuraini, N.; Tse, O.; Saragih, R.; Naiborhu, J.
2016-04-01
PSO is a computational optimization method motivated by the social behavior of organisms like bird flocking, fish schooling and human social relations. PSO is one of the most important swarm intelligence algorithms. In this study, we analyze the convergence of PSO when it is applied to with-in host dengue infection treatment model simulation in our early research. We used PSO method to construct the initial adjoin equation and to solve a control problem. Its properties of control input on the continuity of objective function and ability of adapting to the dynamic environment made us have to analyze the convergence of PSO. With the convergence analysis of PSO we will have some parameters that ensure the convergence result of numerical simulations on this model using PSO.
NASA Astrophysics Data System (ADS)
Tian, Shu; Zhao, Min
2013-03-01
To solve the difficult problem that exists in the location of single-phase ground fault for coal mine underground distribution network, a fault location method using RBF network optimized by improved PSO algorithm based on the mapping relationship between wavelet packet transform modulus maxima of specific frequency bands transient state zero sequence current in the fault line and fault point position is presented. The simulation analysis results in the cases of different transition resistances and fault distances show that the RBF network optimized by improved PSO algorithm can obtain accurate and reliable fault location results, and the fault location perfor- mance is better than traditional RBF network.
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929
NASA Astrophysics Data System (ADS)
Rambabu, C.; Obulesu, Y. P.; Saibabu, Ch.
2014-07-01
This work presents particle swarm optimization (PSO) based method to solve the optimal power flow in power systems incorporating flexible AC transmission systems controllers such as thyristor controlled phase shifter, thyristor controlled series compensator and unified power flow controller for security enhancement under single network contingencies. A fuzzy contingency ranking method is used in this paper and observed that it effectively eliminates the masking effect when compared with other methods of contingency ranking. The fuzzy based network composite overall severity index is used as an objective to be minimized to improve the security of the power system. The proposed optimization process with PSO is presented with case study example using IEEE 30-bus test system to demonstrate its applicability. The results are presented to show the feasibility and potential of this new approach.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective. PMID:25152929
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network
Vimalarani, C.; Subramanian, R.; Sivanandam, S. N.
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption. PMID:26881273
Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique
Hassan, Hebatallah; Badr, Amr; Abdelhalim, MB
2015-01-01
O-glycosylation is one of the main types of the mammalian protein glycosylation; it occurs on the particular site of serine (S) or threonine (T). Several O-glycosylation site predictors have been developed. However, a need to get even better prediction tools remains. One challenge in training the classifiers is that the available datasets are highly imbalanced, which makes the classification accuracy for the minority class to become unsatisfactory. In our previous work, we have proposed a new classification approach, which is based on particle swarm optimization (PSO) and random forest (RF); this approach has considered the imbalanced dataset problem. The PSO parameters setting in the training process impacts the classification accuracy. Thus, in this paper, we perform parameters optimization for the PSO algorithm, based on genetic algorithm, in order to increase the classification accuracy. Our proposed genetic algorithm-based approach has shown better performance in terms of area under the receiver operating characteristic curve against existing predictors. In addition, we implemented a glycosylation predictor tool based on that approach, and we demonstrated that this tool could successfully identify candidate glycosylation sites in case study protein. PMID:26244014
Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique.
Hassan, Hebatallah; Badr, Amr; Abdelhalim, M B
2015-01-01
O-glycosylation is one of the main types of the mammalian protein glycosylation; it occurs on the particular site of serine (S) or threonine (T). Several O-glycosylation site predictors have been developed. However, a need to get even better prediction tools remains. One challenge in training the classifiers is that the available datasets are highly imbalanced, which makes the classification accuracy for the minority class to become unsatisfactory. In our previous work, we have proposed a new classification approach, which is based on particle swarm optimization (PSO) and random forest (RF); this approach has considered the imbalanced dataset problem. The PSO parameters setting in the training process impacts the classification accuracy. Thus, in this paper, we perform parameters optimization for the PSO algorithm, based on genetic algorithm, in order to increase the classification accuracy. Our proposed genetic algorithm-based approach has shown better performance in terms of area under the receiver operating characteristic curve against existing predictors. In addition, we implemented a glycosylation predictor tool based on that approach, and we demonstrated that this tool could successfully identify candidate glycosylation sites in case study protein. PMID:26244014
Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2015-07-01
This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Fukuyama, Yoshikazu
This paper compares particle swarm optimization (PSO) techniques for a reactive power allocation planning problem in power systems. The problem can be formulated as a mixed-integer nonlinear optimization problem (MINLP). The PSO based methods determines a reactive power allocation strategy with continuous and discrete state variables such as automatic voltage regulator (AVR) operating values of electric power generators, tap positions of on-load tap changer (OLTC) of transformers, and the number of reactive power compensation equipment. Namely, this paper investigates applicability of PSO techniques to one of the practical MINLPs in power systems. Four variations of PSO: PSO with inertia weight approach (IWA), PSO with constriction factor approach (CFA), hybrid particle swarm optimization (HPSO) with IWA, and HPSO with CFA are compared. The four methods are applied to the standard IEEE14 bus system and a practical 112 bus system.
Optimal placement of active braces by using PSO algorithm in near- and far-field earthquakes
NASA Astrophysics Data System (ADS)
Mastali, M.; Kheyroddin, A.; Samali, B.; Vahdani, R.
2016-03-01
One of the most important issues in tall buildings is lateral resistance of the load-bearing systems against applied loads such as earthquake, wind and blast. Dual systems comprising core wall systems (single or multi-cell core) and moment-resisting frames are used as resistance systems in tall buildings. In addition to adequate stiffness provided by the dual system, most tall buildings may have to rely on various control systems to reduce the level of unwanted motions stemming from severe dynamic loads. One of the main challenges to effectively control the motion of a structure is limitation in distributing the required control along the structure height optimally. In this paper, concrete shear walls are used as secondary resistance system at three different heights as well as actuators installed in the braces. The optimal actuator positions are found by using optimized PSO algorithm as well as arbitrarily. The control performance of buildings that are equipped and controlled using the PSO algorithm method placement is assessed and compared with arbitrary placement of controllers using both near- and far-field ground motions of Kobe and Chi-Chi earthquakes.
Improving Cooperative PSO using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Afsahi, Zahra; Meybodi, Mohammadreza
PSO is a population-based technique for optimization, which simulates the social behaviour of the fish schooling or bird flocking. Two significant weaknesses of this method are: first, falling into local optimum and second, the curse of dimensionality. In this work we present the FCPSO-H to overcome these weaknesses. Our approach was implemented in the cooperative PSO, which employs fuzzy logic to control the acceleration coefficients in velocity equation of each particle. The proposed approach is validated by function optimization problem form the standard literature simulation result indicates that the approach is highly competitive specifically in its better general convergence performance.
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
NASA Astrophysics Data System (ADS)
Zhang, Enlai; Hou, Liang; Shen, Chao; Shi, Yingliang; Zhang, Yaxiang
2016-01-01
To better solve the complex non-linear problem between the subjective sound quality evaluation results and objective psychoacoustics parameters, a method for the prediction of the sound quality is put forward by using a back propagation neural network (BPNN) based on particle swarm optimization (PSO), which is optimizing the initial weights and thresholds of BP network neurons through the PSO. In order to verify the effectiveness and accuracy of this approach, the noise signals of the B-Class vehicles from the idle speed to 120 km h-1 measured by the artificial head, are taken as a target. In addition, this paper describes a subjective evaluation experiment on the sound quality annoyance inside the vehicles through a grade evaluation method, by which the annoyance of each sample is obtained. With the use of Artemis software, the main objective psychoacoustic parameters of each noise sample are calculated. These parameters include loudness, sharpness, roughness, fluctuation, tonality, articulation index (AI) and A-weighted sound pressure level. Furthermore, three evaluation models with the same artificial neural network (ANN) structure are built: the standard BPNN model, the genetic algorithm-back-propagation neural network (GA-BPNN) model and the PSO-back-propagation neural network (PSO-BPNN) model. After the network training and the evaluation prediction on the three models’ network based on experimental data, it proves that the PSO-BPNN method can achieve convergence more quickly and improve the prediction accuracy of sound quality, which can further lay a foundation for the control of the sound quality inside vehicles.
NASA Astrophysics Data System (ADS)
Astuty; Haryono, T.
2016-04-01
Transmission expansion planning (TEP) is one of the issue that have to be faced caused by addition of large scale power generation into the existing power system. Optimization need to be conducted to get optimal solution technically and economically. Several mathematic methods have been applied to provide optimal allocation of new transmission line such us genetic algorithm, particle swarm optimization and tabu search. This paper proposed novel binary particle swarm optimization (NBPSO) to determine which transmission line should be added to the existing power system. There are two scenerios in this simulation. First, considering transmission power losses and the second is regardless transmission power losses. NBPSO method successfully obtain optimal solution in short computation time. Compare to the first scenario, the number of new line in second scenario which regardless power losses is less but produces high power losses that cause the cost becoming extremely expensive.
hydroPSO: A Versatile Particle Swarm Optimisation R Package for Calibration of Environmental Models
NASA Astrophysics Data System (ADS)
Zambrano-Bigiarini, M.; Rojas, R.
2012-04-01
Particle Swarm Optimisation (PSO) is a recent and powerful population-based stochastic optimisation technique inspired by social behaviour of bird flocking, which shares similarities with other evolutionary techniques such as Genetic Algorithms (GA). In PSO, however, each individual of the population, known as particle in PSO terminology, adjusts its flying trajectory on the multi-dimensional search-space according to its own experience (best-known personal position) and the one of its neighbours in the swarm (best-known local position). PSO has recently received a surge of attention given its flexibility, ease of programming, low memory and CPU requirements, and efficiency. Despite these advantages, PSO may still get trapped into sub-optimal solutions, suffer from swarm explosion or premature convergence. Thus, the development of enhancements to the "canonical" PSO is an active area of research. To date, several modifications to the canonical PSO have been proposed in the literature, resulting into a large and dispersed collection of codes and algorithms which might well be used for similar if not identical purposes. In this work we present hydroPSO, a platform-independent R package implementing several enhancements to the canonical PSO that we consider of utmost importance to bring this technique to the attention of a broader community of scientists and practitioners. hydroPSO is model-independent, allowing the user to interface any model code with the calibration engine without having to invest considerable effort in customizing PSO to a new calibration problem. Some of the controlling options to fine-tune hydroPSO are: four alternative topologies, several types of inertia weight, time-variant acceleration coefficients, time-variant maximum velocity, regrouping of particles when premature convergence is detected, different types of boundary conditions and many others. Additionally, hydroPSO implements recent PSO variants such as: Improved Particle Swarm
Particle swarm optimization for complex nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Alexandridis, Alex; Famelis, Ioannis Th.; Tsitouras, Charalambos
2016-06-01
This work presents the application of a technique belonging to evolutionary computation, namely particle swarm optimization (PSO), to complex nonlinear optimization problems. To be more specific, a PSO optimizer is setup and applied to the derivation of Runge-Kutta pairs for the numerical solution of initial value problems. The effect of critical PSO operational parameters on the performance of the proposed scheme is thoroughly investigated.
PSO-based multiobjective optimization with dynamic population size and adaptive local archives.
Leong, Wen-Fung; Yen, Gary G
2008-10-01
Recently, various multiobjective particle swarm optimization (MOPSO) algorithms have been developed to efficiently and effectively solve multiobjective optimization problems. However, the existing MOPSO designs generally adopt a notion to "estimate" a fixed population size sufficiently to explore the search space without incurring excessive computational complexity. To address the issue, this paper proposes the integration of a dynamic population strategy within the multiple-swarm MOPSO. The proposed algorithm is named dynamic population multiple-swarm MOPSO. An additional feature, adaptive local archives, is designed to improve the diversity within each swarm. Performance metrics and benchmark test functions are used to examine the performance of the proposed algorithm compared with that of five selected MOPSOs and two selected multiobjective evolutionary algorithms. In addition, the computational cost of the proposed algorithm is quantified and compared with that of the selected MOPSOs. The proposed algorithm shows competitive results with improved diversity and convergence and demands less computational cost. PMID:18784011
MAGEE,GLEN I.
2000-08-03
Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flight modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Mekhmoukh, Abdenour; Mokrani, Karim
2015-11-01
In this paper, a new image segmentation method based on Particle Swarm Optimization (PSO) and outlier rejection combined with level set is proposed. A traditional approach to the segmentation of Magnetic Resonance (MR) images is the Fuzzy C-Means (FCM) clustering algorithm. The membership function of this conventional algorithm is sensitive to the outlier and does not integrate the spatial information in the image. The algorithm is very sensitive to noise and in-homogeneities in the image, moreover, it depends on cluster centers initialization. To improve the outlier rejection and to reduce the noise sensitivity of conventional FCM clustering algorithm, a novel extended FCM algorithm for image segmentation is presented. In general, in the FCM algorithm the initial cluster centers are chosen randomly, with the help of PSO algorithm the clusters centers are chosen optimally. Our algorithm takes also into consideration the spatial neighborhood information. These a priori are used in the cost function to be optimized. For MR images, the resulting fuzzy clustering is used to set the initial level set contour. The results confirm the effectiveness of the proposed algorithm. PMID:26299609
NASA Astrophysics Data System (ADS)
Izzuan Jaafar, Hazriq; Mohd Ali, Nursabillilah; Mohamed, Z.; Asmiza Selamat, Nur; Faiz Zainal Abidin, Amar; Jamian, J. J.; Kassim, Anuar Mohamed
2013-12-01
This paper presents development of an optimal PID and PD controllers for controlling the nonlinear gantry crane system. The proposed Binary Particle Swarm Optimization (BPSO) algorithm that uses Priority-based Fitness Scheme is adopted in obtaining five optimal controller gains. The optimal gains are tested on a control structure that combines PID and PD controllers to examine system responses including trolley displacement and payload oscillation. The dynamic model of gantry crane system is derived using Lagrange equation. Simulation is conducted within Matlab environment to verify the performance of system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). This proposed technique demonstrates that implementation of Priority-based Fitness Scheme in BPSO is effective and able to move the trolley as fast as possible to the various desired position.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
OPTIMIZING EXPOSURE MEASUREMENT TECHNIQUES
The research reported in this task description addresses one of a series of interrelated NERL tasks with the common goal of optimizing the predictive power of low cost, reliable exposure measurements for the planned Interagency National Children's Study (NCS). Specifically, we w...
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer
NASA Astrophysics Data System (ADS)
Yang, Sen; Li, Chengwei
2016-06-01
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer.
Yang, Sen; Li, Chengwei
2016-06-01
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiation of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods. PMID:27370427
Comparative analysis of PSO algorithms for PID controller tuning
NASA Astrophysics Data System (ADS)
Štimac, Goranka; Braut, Sanjin; Žigulić, Roberto
2014-09-01
The active magnetic bearing(AMB) suspends the rotating shaft and maintains it in levitated position by applying controlled electromagnetic forces on the rotor in radial and axial directions. Although the development of various control methods is rapid, PID control strategy is still the most widely used control strategy in many applications, including AMBs. In order to tune PID controller, a particle swarm optimization(PSO) method is applied. Therefore, a comparative analysis of particle swarm optimization(PSO) algorithms is carried out, where two PSO algorithms, namely (1) PSO with linearly decreasing inertia weight(LDW-PSO), and (2) PSO algorithm with constriction factor approach(CFA-PSO), are independently tested for different PID structures. The computer simulations are carried out with the aim of minimizing the objective function defined as the integral of time multiplied by the absolute value of error(ITAE). In order to validate the performance of the analyzed PSO algorithms, one-axis and two-axis radial rotor/active magnetic bearing systems are examined. The results show that PSO algorithms are effective and easily implemented methods, providing stable convergence and good computational efficiency of different PID structures for the rotor/AMB systems. Moreover, the PSO algorithms prove to be easily used for controller tuning in case of both SISO and MIMO system, which consider the system delay and the interference among the horizontal and vertical rotor axes.
Utilization of PSO algorithm in estimation of water level change of Lake Beysehir
NASA Astrophysics Data System (ADS)
Buyukyildiz, Meral; Tezel, Gulay
2015-12-01
In this study, unlike backpropagation algorithm which gets local best solutions, the usefulness of particle swarm optimization (PSO) algorithm, a population-based optimization technique with a global search feature, inspired by the behavior of bird flocks, in determination of parameters of support vector machines (SVM) and adaptive network-based fuzzy inference system (ANFIS) methods was investigated. For this purpose, the performances of hybrid PSO-ɛ support vector regression (PSO-ɛSVR) and PSO-ANFIS models were studied to estimate water level change of Lake Beysehir in Turkey. The change in water level was also estimated using generalized regression neural network (GRNN) method, an iterative training procedure. Root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R 2) were used to compare the obtained results. Efforts were made to estimate water level change (L) using different input combinations of monthly inflow-lost flow (I), precipitation (P), evaporation (E), and outflow (O). According to the obtained results, the other methods except PSO-ANN generally showed significantly similar performances to each other. PSO-ɛSVR method with the values of minMAE = 0.0052 m, maxMAE = 0.04 m, and medianMAE = 0.0198 m; minRMSE = 0.0070 m, maxRMSE = 0.0518 m, and medianRMSE = 0.0241 m; minR 2 = 0.9169, maxR 2 = 0.9995, medianR 2 = 0.9909 for the I-P-E-O combination in testing period became superior in forecasting water level change of Lake Beysehir than the other methods. PSO-ANN models were the least successful models in all combinations.
NASA Astrophysics Data System (ADS)
Yang, Yue; Wen, Jian; Chen, Xiaofei
2015-07-01
In this paper, we apply particle swarm optimization (PSO), an artificial intelligence technique, to velocity calibration in microseismic monitoring. We ran simulations with four 1-D layered velocity models and three different initial model ranges. The results using the basic PSO algorithm were reliable and accurate for simple models, but unsuccessful for complex models. We propose the staged shrinkage strategy (SSS) for the PSO algorithm. The SSS-PSO algorithm produced robust inversion results and had a fast convergence rate. We investigated the effects of PSO's velocity clamping factor in terms of the algorithm reliability and computational efficiency. The velocity clamping factor had little impact on the reliability and efficiency of basic PSO, whereas it had a large effect on the efficiency of SSS-PSO. Reassuringly, SSS-PSO exhibits marginal reliability fluctuations, which suggests that it can be confidently implemented.
NASA Astrophysics Data System (ADS)
Fernández Martínez, Juan L.; García Gonzalo, Esperanza; Fernández Álvarez, José P.; Kuzma, Heidi A.; Menéndez Pérez, César O.
2010-05-01
PSO is an optimization technique inspired by the social behavior of individuals in nature (swarms) that has been successfully used in many different engineering fields. In addition, the PSO algorithm can be physically interpreted as a stochastic damped mass-spring system. This analogy has served to introduce the PSO continuous model and to deduce a whole family of PSO algorithms using different finite-differences schemes. These algorithms are characterized in terms of convergence by their respective first and second order stability regions. The performance of these new algorithms is first checked using synthetic functions showing a degree of ill-posedness similar to that found in many geophysical inverse problems having their global minimum located on a very narrow flat valley or surrounded by multiple local minima. Finally we present the application of these PSO algorithms to the analysis and solution of a VES inverse problem associated with a seawater intrusion in a coastal aquifer in southern Spain. PSO family members are successfully compared to other well known global optimization algorithms (binary genetic algorithms and simulated annealing) in terms of their respective convergence curves and the sea water intrusion depth posterior histograms.
Techniques for shuttle trajectory optimization
NASA Technical Reports Server (NTRS)
Edge, E. R.; Shieh, C. J.; Powers, W. F.
1973-01-01
The application of recently developed function-space Davidon-type techniques to the shuttle ascent trajectory optimization problem is discussed along with an investigation of the recently developed PRAXIS algorithm for parameter optimization. At the outset of this analysis, the major deficiency of the function-space algorithms was their potential storage problems. Since most previous analyses of the methods were with relatively low-dimension problems, no storage problems were encountered. However, in shuttle trajectory optimization, storage is a problem, and this problem was handled efficiently. Topics discussed include: the shuttle ascent model and the development of the particular optimization equations; the function-space algorithms; the operation of the algorithm and typical simulations; variable final-time problem considerations; and a modification of Powell's algorithm.
An effective PSO-based memetic algorithm for flow shop scheduling.
Liu, Bo; Wang, Ling; Jin, Yi-Hui
2007-02-01
This paper proposes an effective particle swarm optimization (PSO)-based memetic algorithm (MA) for the permutation flow shop scheduling problem (PFSSP) with the objective to minimize the maximum completion time, which is a typical non-deterministic polynomial-time (NP) hard combinatorial optimization problem. In the proposed PSO-based MA (PSOMA), both PSO-based searching operators and some special local searching operators are designed to balance the exploration and exploitation abilities. In particular, the PSOMA applies the evolutionary searching mechanism of PSO, which is characterized by individual improvement, population cooperation, and competition to effectively perform exploration. On the other hand, the PSOMA utilizes several adaptive local searches to perform exploitation. First, to make PSO suitable for solving PFSSP, a ranked-order value rule based on random key representation is presented to convert the continuous position values of particles to job permutations. Second, to generate an initial swarm with certain quality and diversity, the famous Nawaz-Enscore-Ham (NEH) heuristic is incorporated into the initialization of population. Third, to balance the exploration and exploitation abilities, after the standard PSO-based searching operation, a new local search technique named NEH_1 insertion is probabilistically applied to some good particles selected by using a roulette wheel mechanism with a specified probability. Fourth, to enrich the searching behaviors and to avoid premature convergence, a simulated annealing (SA)-based local search with multiple different neighborhoods is designed and incorporated into the PSOMA. Meanwhile, an effective adaptive meta-Lamarckian learning strategy is employed to decide which neighborhood to be used in SA-based local search. Finally, to further enhance the exploitation ability, a pairwise-based local search is applied after the SA-based search. Simulation results based on benchmarks demonstrate the effectiveness
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
A Random Time-Varying Particle Swarm Optimization for the Real Time Location Systems
NASA Astrophysics Data System (ADS)
Zhu, Hui; Tanabe, Yuji; Baba, Takaaki
The particle swarm optimizer (PSO) is a stochastic, population-based optimization technique that can be applied to a wide range of applications. This paper presents a random time variable PSO algorithm, called the PSO-RTVIWAC, introducing random time-varying inertia weight and acceleration coefficients to significantly improve the performance of the original algorithms. The PSO-RTVIWAC method originates from the random inertia weight (PSO-RANDIW) and time-varying acceleration coefficients (PSO-TVAC) methods. Through the efficient control of search and convergence to the global optimum solution, the PSO-RTVIWAC method is capable of tracking and optimizing the position evaluate in the highly nonlinear real-time location systems (RTLS). Experimental results are compared with three previous PSO approaches from the literatures, showing that the new optimizer significantly outperforms previous approaches. Simply employing a few particles and iterations, a reasonable good positioning accuracy is obtained with the PSO-RTVIWAC method. This property makes the PSO-RTVIWAC method become more attractive since the computation efficiency is improved considerably, i.e. the computation can be completed in an extremely short time, which is crucial for the RTLS. By implementing a hardware design of PSO-RTVIWAC, the computations can simultaneously be performed using hardware to reduce the processing time. Due to a small number of particles and iterations, the hardware resource is saved and the area cost is reduced in the FPGA implementation. An improvement of positioning accuracy is observed with PSO-RTVIWAC method, compared with Taylor Series Expansion (TSE) and Genetic Algorithm (GA). Our experiments on the PSO-RTVIWAC to track and optimize the position evaluate have demonstrated that it is especially effective in dealing with optimization functions in the nonlinear dynamic environments.
NASA Astrophysics Data System (ADS)
Kar, Subhajit; Sharma, Kaushik Das
2010-10-01
System identification is a ubiquitous necessity for successful applications in various fields. The area of system identification can be characterized by a small number of leading principles, e.g. to look for sustainable descriptions by proper decisions in the triangle of model complexity, information contents in the data, and effective validation. Particle Swarm Optimization (PSO) is a stochastic, population-based optimization algorithm and many variants of PSO have been developed since, including constrained, multi objective, and discrete or combinatorial versions and applications have been developed using PSO in many fields. The basic PSO algorithm implicitly utilizes a fully connected neighborhood topology. However, local neighborhood models have also been proposed for PSO long ago, where each particle has access to the information corresponding to its immediate neighbors, according to a certain swarm topology. In this local neighborhood model of PSO, particles have information only of their own and their nearest neighbors' bests, rather than that of the entire population of the swarm. In the present work basic PSO method and two of its local neighborhood variants are utilized for determining the optimal parameters of a dc motor. The result obtain from the simulation study demonstrate the usefulness of the proposed methodology.
Early Mission Design of Transfers to Halo Orbits via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Abraham, Andrew J.; Spencer, David B.; Hart, Terry J.
2016-03-01
Particle Swarm Optimization (PSO) is used to prune the search space of a low-thrust trajectory transfer from a high-altitude, Earth orbit to a Lagrange point orbit in the Earth-Moon system. Unlike a gradient based approach, this evolutionary PSO algorithm is capable of avoiding undesirable local minima. The PSO method is extended to a "local" version and uses a two dimensional search space that is capable of reducing the computation run-time by an order of magnitude when compared with published work. A technique for choosing appropriate PSO parameters is demonstrated and an example of an optimized trajectory is discussed.
Early Mission Design of Transfers to Halo Orbits via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Abraham, Andrew J.; Spencer, David B.; Hart, Terry J.
2016-06-01
Particle Swarm Optimization (PSO) is used to prune the search space of a low-thrust trajectory transfer from a high-altitude, Earth orbit to a Lagrange point orbit in the Earth-Moon system. Unlike a gradient based approach, this evolutionary PSO algorithm is capable of avoiding undesirable local minima. The PSO method is extended to a "local" version and uses a two dimensional search space that is capable of reducing the computation run-time by an order of magnitude when compared with published work. A technique for choosing appropriate PSO parameters is demonstrated and an example of an optimized trajectory is discussed.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
Optimal multiobjective design of digital filters using spiral optimization technique.
Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid
2013-01-01
The multiobjective design of digital filters using spiral optimization technique is considered in this paper. This new optimization tool is a metaheuristic technique inspired by the dynamics of spirals. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the spiral optimization technique produced filters which fulfill the desired characteristics and are of practical use. PMID:24083108
Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.
Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu
2015-10-01
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms. PMID:26390177
A non-linear UAV altitude PSO-PD control
NASA Astrophysics Data System (ADS)
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
NASA Astrophysics Data System (ADS)
Jain, Narender Kumar; Nangia, Uma; Jain, Aishwary
2016-06-01
In this paper, multiobjective economic load dispatch (MELD) problem considering generation cost and transmission losses has been formulated using priority goal programming (PGP) technique. In this formulation, equality constraint has been considered by inclusion of penalty parameter K. It has been observed that fixing its value to 1,000 keeps the equality constraint within limits. The non-inferior set for IEEE 5, 14 and 30-bus systems has been generated by Particle Swarm Optimization (PSO) technique. The best compromise solution has been chosen as the one which gives equal percentage saving for both the objectives.
Multidisciplinary design optimization using multiobjective formulation techniques
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Pagaldipti, Narayanan S.
1995-01-01
This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.
Evolutional Ant Colony Method Using PSO
NASA Astrophysics Data System (ADS)
Morii, Nobuto; Aiyoshi, Eitarou
The ant colony method is one of heuristic methods capable of solving the traveling salesman problem (TSP), in which a good tour is generated by the artificial ant's probabilistic behavior. However, the generated tour length depends on the parameter describing the ant's behavior, and the best parameters corresponding to the problem to be solved is unknown. In this technical note, the evolutional strategy is presented to find the best parameter of the ant colony by using Particle Swarm Optimization (PSO) in the parameter space. Numerical simulations for benchmarks demonstrate effectiveness of the evolutional ant colony method.
Multiple Sequence Alignment Based on Chaotic PSO
NASA Astrophysics Data System (ADS)
Lei, Xiu-Juan; Sun, Jing-Jing; Ma, Qian-Zhi
This paper introduces a new improved algorithm called chaotic PSO (CPSO) based on the thought of chaos optimization to solve multiple sequence alignment. For one thing, the chaotic variables are generated between 0 and 1 when initializing the population so that the particles are distributed uniformly in the solution space. For another thing, the chaotic sequences are generated using the Logistic mapping function in order to make chaotic search and strengthen the diversity of the population. The simulation results of several benchmark data sets of BAliBase show that the improved algorithm is effective and has good performances for the data sets with different similarity.
Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer.
Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio
2014-08-01
Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration. PMID:25035936
Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer
NASA Astrophysics Data System (ADS)
Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio
2014-08-01
Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.
Chen, Shyi-Ming; Hsin, Wen-Chyuan
2015-07-01
In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. PMID:25204003
A technique for optimizing grid blocks
NASA Technical Reports Server (NTRS)
Dannenhoffer, John F., III
1995-01-01
A new technique for automatically combining grid blocks of a given block-structured grid into logically-rectangular clusters which are 'optimal' is presented. This technique uses the simulated annealing optimization method to reorganize the blocks into an optimum configuration, that is, one which minimizes a user-defined objective function such as the number of clusters or the differential in the sizes of all the clusters. The clusters which result from applying the technique to two different two-dimensional configurations are presented for a variety of objective function definitions. In all cases, the automatically-generated clusters are significantly better than the original clusters. While this new technique can be applied to block-structured grids generated from any source, it is particularly useful for operating on block-structured grids containing many blocks, such as those produced by the emerging automatic block-structured grid generators.
Multiobjective optimization techniques for structural design
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.
PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.
Optimization techniques for integrating spatial data
Herzfeld, U.C.; Merriam, D.F.
1995-01-01
Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.
Software for the grouped optimal aggregation technique
NASA Technical Reports Server (NTRS)
Brown, P. M.; Shaw, G. W. (Principal Investigator)
1982-01-01
The grouped optimal aggregation technique produces minimum variance, unbiased estimates of acreage and production for countries, zones (states), or any designated collection of acreage strata. It uses yield predictions, historical acreage information, and direct acreage estimate from satellite data. The acreage strata are grouped in such a way that the ratio model over historical acreage provides a smaller variance than if the model were applied to each individual stratum. An optimal weighting matrix based on historical acreages, provides the link between incomplete direct acreage estimates and the total, current acreage estimate.
Language abstractions for low level optimization techniques
NASA Astrophysics Data System (ADS)
Dévai, Gergely; Gera, Zoltán; Kelemen, Zoltán
2012-09-01
In case of performance critical applications programmers are often forced to write code at a low abstraction level. This leads to programs that are hard to develop and maintain because the program text is mixed up by low level optimization tricks and is far from the algorithm it implements. Even if compilers are smart nowadays and provide the user with many automatically applied optimizations, practice shows that in some cases it is hopeless to optimize the program automatically without the programmer's knowledge. A complementary approach is to allow the programmer to fine tune the program but provide him with language features that make the optimization easier. These are language abstractions that make optimization techniques explicit without adding too much syntactic noise to the program text. This paper presents such language abstractions for two well-known optimizations: bitvectors and SIMD (Single Instruction Multiple Data). The language features are implemented in the embedded domain specific language Feldspar which is specifically tailored for digital signal processing applications. While we present these language elements as part of Feldspar, the ideas behind them are general enough to be applied in other language definition projects as well.
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2014-04-01
Much effort is devoted nowadays to derive accurate finite element (FE) models to be used for structural health monitoring, damage detection and assessment. However, formation of a FE model representative of the original structure is a difficult task. Model updating is a branch of optimization which calibrates the FE model by comparing the modal properties of the actual structure with these of the FE predictions. As the number of experimental measurements is usually much smaller than the number of uncertain parameters, and, consequently, not all uncertain parameters are selected for model updating, different local minima may exist in the solution space. Experimental noise further exacerbates the problem. The attainment of a global solution in a multi-dimensional search space is a challenging problem. Global optimization algorithms (GOAs) have received interest in the previous decade to solve this problem, but no GOA can ensure the detection of the global minimum either. To counter this problem, a combination of GOA with sequential niche technique (SNT) has been proposed in this research which systematically searches the whole solution space. A dynamically tested full scale pedestrian bridge is taken as a case study. Two different GOAs, namely particle swarm optimization (PSO) and genetic algorithm (GA), are investigated in combination with SNT. The results of these GOA are compared in terms of their efficiency in detecting global minima. The systematic search enables to find different solutions in the search space, thus increasing the confidence of finding the global minimum.
McDaniel, R D
1999-01-01
The Balanced Budget Act of 1997 established the new Medicare+Choice program which provides a variety of alternatives to traditional Medicare Part A and Part B, including the provider sponsored organization (PSO). Over the next several years, a significant number of organizations will consider becoming a PSO. The decision requires a thorough and detailed review of critical success factors. This articles outlines those factors and defines some components of a successful PSO. PMID:10539339
Machine Learning Techniques in Optimal Design
NASA Technical Reports Server (NTRS)
Cerbone, Giuseppe
1992-01-01
Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution
Cache Energy Optimization Techniques For Modern Processors
Mittal, Sparsh
2013-01-01
and veterans in the field of cache power management. It will help graduate students, CAD tool developers and designers in understanding the need of energy efficiency in modern computing systems. Further, it will be useful for researchers in gaining insights into algorithms and techniques for micro-architectural and system-level energy optimization using dynamic cache reconfiguration. We sincerely believe that the ``food for thought'' presented in this book will inspire the readers to develop even better ideas for designing ``green'' processors of tomorrow.
Global Optimization Techniques for Fluid Flow and Propulsion Devices
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Raj; Tucker, Kevin; Griffin, Lisa; Dorney, Dan; Huber, Frank; Tran, Ken; Turner, James E. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of global optimization techniques for fluid flow and propulsion devices. Details are given on the need, characteristics, and techniques for global optimization. The techniques include response surface methodology (RSM), neural networks and back-propagation neural networks, design of experiments, face centered composite design (FCCD), orthogonal arrays, outlier analysis, and design optimization.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.
Solving initial and boundary value problems using learning automata particle swarm optimization
NASA Astrophysics Data System (ADS)
Nemati, Kourosh; Mariyam Shamsuddin, Siti; Darus, Maslina
2015-05-01
In this article, the particle swarm optimization (PSO) algorithm is modified to use the learning automata (LA) technique for solving initial and boundary value problems. A constrained problem is converted into an unconstrained problem using a penalty method to define an appropriate fitness function, which is optimized using the LA-PSO method. This method analyses a large number of candidate solutions of the unconstrained problem with the LA-PSO algorithm to minimize an error measure, which quantifies how well a candidate solution satisfies the governing ordinary differential equations (ODEs) or partial differential equations (PDEs) and the boundary conditions. This approach is very capable of solving linear and nonlinear ODEs, systems of ordinary differential equations, and linear and nonlinear PDEs. The computational efficiency and accuracy of the PSO algorithm combined with the LA technique for solving initial and boundary value problems were improved. Numerical results demonstrate the high accuracy and efficiency of the proposed method.
An Integrated Method Based on PSO and EDA for the Max-Cut Problem.
Lin, Geng; Guan, Jian
2016-01-01
The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality. PMID:26989404
An Integrated Method Based on PSO and EDA for the Max-Cut Problem
Lin, Geng; Guan, Jian
2016-01-01
The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality. PMID:26989404
Techniques for optimizing inerting in electron processors
NASA Astrophysics Data System (ADS)
Rangwalla, I. J.; Korn, D. J.; Nablo, S. V.
1993-07-01
The design of an "inert gas" distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are <0.1 ppm, good control techniques are required involving either recombination of the O 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. In this case, the competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions can be determined for production quality control purposes. These techniques are described for an ink:coating system on paperboard, where a broad range of process parameters have been studied (D, Ġ, O 2. It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2) nitrogen gas for inerting, in combination with lower purity (2-20, 000 ppm O 2) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators.
A PSO-Based Approach for Pathway Marker Identification From Gene Expression Data.
Mandal, Monalisa; Mondal, Jyotirmay; Mukhopadhyay, Anirban
2015-09-01
In this article, a new and robust pathway activity inference scheme is proposed from gene expression data using Particle Swarm Optimization (PSO). From microarray gene expression data, the corresponding pathway information of the genes are collected from a public database. For identifying the pathway markers, the expression values of each pathway consisting of genes, termed as pathway activity, are summarized. To measure the goodness of a pathway activity vector, t-score is widely used in the existing literature. The weakness of existing techniques for inferring pathway activity is that they intend to consider all the member genes of a pathway. But in reality, all the member genes may not be significant to the corresponding pathway. Therefore, those genes, which are responsible in the corresponding pathway, should be included only. Motivated by this, in the proposed method, using PSO, important genes with respect to each pathway are identified. The objective is to maximize the average t-score. For the pathway activities inferred from different percentage of significant pathways, the average absolute t -scores are plotted. In addition, the top 50% pathway markers are evaluated using 10-fold cross validation and its performance is compared with that of other existing techniques. Biological relevance of the results is also studied. PMID:25935045
Particle swarm optimization for the clustering of wireless sensors
NASA Astrophysics Data System (ADS)
Tillett, Jason C.; Rao, Raghuveer M.; Sahin, Ferat; Rao, T. M.
2003-07-01
Clustering is necessary for data aggregation, hierarchical routing, optimizing sleep patterns, election of extremal sensors, optimizing coverage and resource allocation, reuse of frequency bands and codes, and conserving energy. Optimal clustering is typically an NP-hard problem. Solutions to NP-hard problems involve searches through vast spaces of possible solutions. Evolutionary algorithms have been applied successfully to a variety of NP-hard problems. We explore one such approach, Particle Swarm Optimization (PSO), an evolutionary programming technique where a 'swarm' of test solutions, analogous to a natural swarm of bees, ants or termites, is allowed to interact and cooperate to find the best solution to the given problem. We use the PSO approach to cluster sensors in a sensor network. The energy efficiency of our clustering in a data-aggregation type sensor network deployment is tested using a modified LEACH-C code. The PSO technique with a recursive bisection algorithm is tested against random search and simulated annealing; the PSO technique is shown to be robust. We further investigate developing a distributed version of the PSO algorithm for clustering optimally a wireless sensor network.
Introducing the fractional order robotic Darwinian PSO
NASA Astrophysics Data System (ADS)
Couceiro, Micael S.; Martins, Fernando M. L.; Rocha, Rui P.; Ferreira, Nuno M. F.
2012-11-01
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm using fractional calculus concepts to control the convergence rate, while considering the robot dynamical characteristics. Moreover, to improve the convergence analysis of the RDPSO, an adjustment of the fractional coefficient based on mobile robot constraints is presented and experimentally assessed with 2 real platforms. Afterwards, this novel fractional-order RDPSO is evaluated in 12 physical robots being further explored using a larger population of 100 simulated mobile robots within a larger scenario. Experimental results show that changing the fractional coefficient does not significantly improve the final solution but presents a significant influence in the convergence time because of its inherent memory property.
A PSO-PID quaternion model based trajectory control of a hexarotor UAV
NASA Astrophysics Data System (ADS)
Artale, Valeria; Milazzo, Cristina L. R.; Orlando, Calogero; Ricciardello, Angela
2015-12-01
A quaternion based trajectory controller for a prototype of an Unmanned Aerial Vehicle (UAV) is discussed in this paper. The dynamics of the UAV, a hexarotor in details, is described in terms of quaternion instead of the usual Euler angle parameterization. As UAV flight management concerns, the method here implemented consists of two main steps: trajectory and attitude control via Proportional-Integrative-Derivative (PID) and Proportional-Derivative (PD) technique respectively and the application of Particle Swarm Optimization (PSO) method in order to tune the PID and PD parameters. The optimization is the consequence of the minimization of a objective function related to the error with the respect to a proper trajectory. Numerical simulations support and validate the proposed method.
Optimizing correlation techniques for improved earthquake location
Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.
2004-01-01
Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.
Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method
NASA Astrophysics Data System (ADS)
Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei
2016-04-01
Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
Optimal control techniques for active noise suppression
NASA Technical Reports Server (NTRS)
Banks, H. T.; Keeling, S. L.; Silcox, R. J.
1988-01-01
Active suppression of noise in a bounded enclosure is considered within the framework of optimal control theory. A sinusoidal pressure field due to exterior offending noise sources is assumed to be known in a neighborhood of interior sensors. The pressure field due to interior controlling sources is assumed to be governed by a nonhomogeneous wave equation within the enclosure and by a special boundary condition designed to accommodate frequency-dependent reflection properties of the enclosure boundary. The form of the controlling sources is determined by considering the steady-state behavior of the system, and it is established that the control strategy proposed is stable and asymptotically optimal.
Optimization Techniques for College Financial Aid Managers
ERIC Educational Resources Information Center
Bosshardt, Donald I.; Lichtenstein, Larry; Palumbo, George; Zaporowski, Mark P.
2010-01-01
In the context of a theoretical model of expected profit maximization, this paper shows how historic institutional data can be used to assist enrollment managers in determining the level of financial aid for students with varying demographic and quality characteristics. Optimal tuition pricing in conjunction with empirical estimation of…
Neural network training with global optimization techniques.
Yamazaki, Akio; Ludermir, Teresa B
2003-04-01
This paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity. Generalization has been improved by using the backpropagation algorithm for fine tuning. The combination of simple and traditional search methods has shown to be very suitable for generating compact and efficient networks. PMID:12923920
An RBF-PSO based approach for modeling prostate cancer
NASA Astrophysics Data System (ADS)
Perracchione, Emma; Stura, Ilaria
2016-06-01
Prostate cancer is one of the most common cancers in men; it grows slowly and it could be diagnosed in an early stage by dosing the Prostate Specific Antigen (PSA). However, a relapse after the primary therapy could arise in 25 - 30% of cases and different growth characteristics of the new tumor are observed. In order to get a better understanding of the phenomenon, a two parameters growth model is considered. To estimate the parameters values identifying the disease risk level a novel approach, based on combining Particle Swarm Optimization (PSO) with meshfree interpolation methods, is proposed.
Hashim, Rathiah; Noor Elaiza, Abd Khalid; Irtaza, Aun
2014-01-01
One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF) coupled with support vector machine (SVM) has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO). The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations. PMID:25121136
Optimization of Lamb wave inspection techniques
NASA Astrophysics Data System (ADS)
Alleyne, David N.; Cawley, Peter
Some problems associated with Lamb wave inspection techniques are briefly reviewed, and factors to be considered when selecting a practical Lamb wave inspection regime and ways to minimize possible problems are discussed. Tests on a butt-welded steel plate with simulated weld defects of different depths demonstrate that, operating below the a1 cut-off frequency with judicious selection of the testing technique, the presence of defects with depths around 30 percent of the plate thickness can be detected reliably from changes in the shape of the received waveform, The 2D Fourier transform method makes it possible to determine the amplitudes of the different propagating Lamb modes over the full frequency range of the input, yielding information which can be used for defect sizing.
Optimizing ECM techniques against monopulse acquisition and tracking radars
NASA Astrophysics Data System (ADS)
Kwon, Ki Hoon
1989-09-01
Electronic countermeasure (ECM) techniques against monopulse radars, which are generally employed in the Surface-to-Air Missile targeting system, are presented and analyzed. Particularly, these ECM techniques are classified into five different categories, which are; denial jamming, deception jamming, passive countermeasures, decoys, and destructive countermeasures. The techniques are fully discussed. It was found difficult to quantize the jamming effectiveness of individual techniques, because ECM techniques are involved with several complex parameters and they are usually entangled together. Therefore, the methodological approach for optimizing ECM techniques is based on purely conceptual analysis of the techniques.
The analytical representation of viscoelastic material properties using optimization techniques
NASA Technical Reports Server (NTRS)
Hill, S. A.
1993-01-01
This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.
Optimal and suboptimal control technique for aircraft spin recovery
NASA Technical Reports Server (NTRS)
Young, J. W.
1974-01-01
An analytic investigation has been made of procedures for effecting recovery from equilibrium spin conditions for three assumed aircraft configurations. Three approaches which utilize conventional aerodynamic controls are investigated. Included are a constant control recovery mode, optimal recoveries, and a suboptimal control logic patterned after optimal recovery results. The optimal and suboptimal techniques are shown to yield a significant improvement in recovery performance over that attained by using a constant control recovery procedure.
An investigation of optimization techniques for drawing computer graphics displays
NASA Technical Reports Server (NTRS)
Stocker, F. R.
1979-01-01
Techniques for reducing vector data plotting time are studied. The choice of tolerances in optimization and the application of optimization to plots produced on real time interactive display devices are discussed. All results are developed relative to plotting packages and support hardware so that results are useful in real world situations.
A Hybrid Swarm Algorithm for optimizing glaucoma diagnosis.
Raja, Chandrasekaran; Gangatharan, Narayanan
2015-08-01
Glaucoma is among the most common causes of permanent blindness in human. Because the initial symptoms are not evident, mass screening would assist early diagnosis in the vast population. Such mass screening requires an automated diagnosis technique. Our proposed automation consists of pre-processing, optimal wavelet transformation, feature extraction, and classification modules. The hyper analytic wavelet transformation (HWT) based statistical features are extracted from fundus images. Because HWT preserves phase information, it is appropriate for feature extraction. The features are then classified by a Support Vector Machine (SVM) with a radial basis function (RBF) kernel. The filter coefficients of the wavelet transformation process and the SVM-RB width parameter are simultaneously tailored to best-fit the diagnosis by the hybrid Particle Swarm algorithm. To overcome premature convergence, a Group Search Optimizer (GSO) random searching (ranging) and area scanning behavior (around the optima) are embedded within the Particle Swarm Optimization (PSO) framework. We also embed a novel potential-area scanning as a preventive mechanism against premature convergence, rather than diagnosis and cure. This embedding does not compromise the generality and utility of PSO. In two 10-fold cross-validated test runs, the diagnostic accuracy of the proposed hybrid PSO exceeded that of conventional PSO. Furthermore, the hybrid PSO maintained the ability to explore even at later iterations, ensuring maturity in fitness. PMID:26093787
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
Chang, Wei-Der
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
42 CFR 3.110 - Assessment of PSO compliance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Assessment of PSO compliance. 3.110 Section 3.110... SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO Requirements and Agency Procedures § 3.110 Assessment of PSO compliance. The Secretary may request information or conduct announced or...
Evaluation of stochastic reservoir operation optimization models
NASA Astrophysics Data System (ADS)
Celeste, Alcigeimes B.; Billib, Max
2009-09-01
This paper investigates the performance of seven stochastic models used to define optimal reservoir operating policies. The models are based on implicit (ISO) and explicit stochastic optimization (ESO) as well as on the parameterization-simulation-optimization (PSO) approach. The ISO models include multiple regression, two-dimensional surface modeling and a neuro-fuzzy strategy. The ESO model is the well-known and widely used stochastic dynamic programming (SDP) technique. The PSO models comprise a variant of the standard operating policy (SOP), reservoir zoning, and a two-dimensional hedging rule. The models are applied to the operation of a single reservoir damming an intermittent river in northeastern Brazil. The standard operating policy is also included in the comparison and operational results provided by deterministic optimization based on perfect forecasts are used as a benchmark. In general, the ISO and PSO models performed better than SDP and the SOP. In addition, the proposed ISO-based surface modeling procedure and the PSO-based two-dimensional hedging rule showed superior overall performance as compared with the neuro-fuzzy approach.
IR and visual image registration based on mutual information and PSO-Powell algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Youwen; Gao, Kun; Miu, Xianghu
2014-11-01
Infrared and visual image registration has a wide application in the fields of remote sensing and military. Mutual information (MI) has proved effective and successful in infrared and visual image registration process. To find the most appropriate registration parameters, optimal algorithms, such as Particle Swarm Optimization (PSO) algorithm or Powell search method, are often used. The PSO algorithm has strong global search ability and search speed is fast at the beginning, while the weakness is low search performance in late search stage. In image registration process, it often takes a lot of time to do useless search and solution's precision is low. Powell search method has strong local search ability. However, the search performance and time is more sensitive to initial values. In image registration, it is often obstructed by local maximum and gets wrong results. In this paper, a novel hybrid algorithm, which combined PSO algorithm and Powell search method, is proposed. It combines both advantages that avoiding obstruction caused by local maximum and having higher precision. Firstly, using PSO algorithm gets a registration parameter which is close to global minimum. Based on the result in last stage, the Powell search method is used to find more precision registration parameter. The experimental result shows that the algorithm can effectively correct the scale, rotation and translation additional optimal algorithm. It can be a good solution to register infrared difference of two images and has a greater performance on time and precision than traditional and visible images.
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system. PMID:18179066
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
Robinson, Y Harold; Rajaram, M
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
Process sequence optimization for digital microfluidic integration using EWOD technique
NASA Astrophysics Data System (ADS)
Yadav, Supriya; Joyce, Robin; Sharma, Akash Kumar; Sharma, Himani; Sharma, Niti Nipun; Varghese, Soney; Akhtar, Jamil
2016-04-01
Micro/nano-fluidic MEMS biosensors are the devices that detects the biomolecules. The emerging micro/nano-fluidic devices provide high throughput and high repeatability with very low response time and reduced device cost as compared to traditional devices. This article presents the experimental details for process sequence optimization of digital microfluidics (DMF) using "electrowetting-on-dielectric" (EWOD). Stress free thick film deposition of silicon dioxide using PECVD and subsequent process for EWOD techniques have been optimized in this work.
Application of optimization techniques to vehicle design: A review
NASA Technical Reports Server (NTRS)
Prasad, B.; Magee, C. L.
1984-01-01
The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design.
Enhanced Multiobjective Optimization Technique for Comprehensive Aerospace Design. Part A
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
1997-01-01
A multidisciplinary design optimization procedure which couples formal multiobjectives based techniques and complex analysis procedures (such as computational fluid dynamics (CFD) codes) developed. The procedure has been demonstrated on a specific high speed flow application involving aerodynamics and acoustics (sonic boom minimization). In order to account for multiple design objectives arising from complex performance requirements, multiobjective formulation techniques are used to formulate the optimization problem. Techniques to enhance the existing Kreisselmeier-Steinhauser (K-S) function multiobjective formulation approach have been developed. The K-S function procedure used in the proposed work transforms a constrained multiple objective functions problem into an unconstrained problem which then is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Weight factors are introduced during the transformation process to each objective function. This enhanced procedure will provide the designer the capability to emphasize specific design objectives during the optimization process. The demonstration of the procedure utilizes a computational Fluid dynamics (CFD) code which solves the three-dimensional parabolized Navier-Stokes (PNS) equations for the flow field along with an appropriate sonic boom evaluation procedure thus introducing both aerodynamic performance as well as sonic boom as the design objectives to be optimized simultaneously. Sensitivity analysis is performed using a discrete differentiation approach. An approximation technique has been used within the optimizer to improve the overall computational efficiency of the procedure in order to make it suitable for design applications in an industrial setting.
Stochastic optimization techniques for NDE of bridges using vibration signatures
NASA Astrophysics Data System (ADS)
Yi, Jin-Hak; Feng, Maria Q.
2003-08-01
A baseline model updating is the first step for the model-based non destructive evaluation for civil infrastructures. Many researches have been drawn to obtain a more reliable baseline model. In this study, heuristic optimization techniques (or called as stochastic optimization techniques) including the genetic algorithm, the simulated annealing, and the tabu search, were have been investigated for constructing the reliable baseline model for an instrumented new highway bridge, and also were compared with the result of conventional sensitivity method. The preliminary finite element model of the bridge was successfully updated to a baseline model based on measured vibration data.
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. PMID:24856248
NASA Astrophysics Data System (ADS)
Wu, Li-Li; Zhou, Qihou H.; Chen, Tie-Jun; Liang, J. J.; Wu, Xin
2015-09-01
Simultaneous derivation of multiple ionospheric parameters from the incoherent scatter power spectra in the F1 region is difficult because the spectra have only subtle differences for different combinations of parameters. In this study, we apply a particle swarm optimizer (PSO) to incoherent scatter power spectrum fitting and compare it to the commonly used least squares fitting (LSF) technique. The PSO method is found to outperform the LSF method in practically all scenarios using simulated data. The PSO method offers the advantages of not being sensitive to initial assumptions and allowing physical constraints to be easily built into the model. When simultaneously fitting for molecular ion fraction (fm), ion temperature (Ti), and ratio of ion to electron temperature (γT), γT is largely stable. The uncertainty between fm and Ti can be described as a quadratic relationship. The significance of this result is that Ti can be retroactively corrected for data archived many years ago where the assumption of fm may not be accurate, and the original power spectra are unavailable. In our discussion, we emphasize the fitting for fm, which is a difficult parameter to obtain. PSO method is often successful in obtaining fm, whereas LSF fails. We apply both PSO and LSF to actual observations made by the Arecibo incoherent scatter radar. The results show that PSO method is a viable method to simultaneously determine ion and electron temperatures and molecular ion fraction when the last is greater than 0.3.
Development of Multiobjective Optimization Techniques for Sonic Boom Minimization
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.
1996-01-01
A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously
Techniques for trajectory optimization using a hybrid computer
NASA Technical Reports Server (NTRS)
Neely, P. L.
1975-01-01
The use of a hybrid computer in the solution of trajectory optimization problems is described. The solution technique utilizes the indirect method and requires iterative computation of the initial condition vector of the co-state variables. Convergence of the iteration is assisted by feedback switching and contour modification. A simulation of the method in an on-line updating scheme is presented.
Optimal Pid Tuning for Power System Stabilizers Using Adaptive Particle Swarm Optimization Technique
NASA Astrophysics Data System (ADS)
Oonsivilai, Anant; Marungsri, Boonruang
2008-10-01
An application of the intelligent search technique to find optimal parameters of power system stabilizer (PSS) considering proportional-integral-derivative controller (PID) for a single-machine infinite-bus system is presented. Also, an efficient intelligent search technique, adaptive particle swarm optimization (APSO), is engaged to express usefulness of the intelligent search techniques in tuning of the PID—PSS parameters. Improve damping frequency of system is optimized by minimizing an objective function with adaptive particle swarm optimization. At the same operating point, the PID—PSS parameters are also tuned by the Ziegler-Nichols method. The performance of proposed controller compared to the conventional Ziegler-Nichols PID tuning controller. The results reveal superior effectiveness of the proposed APSO based PID controller.
Satellite tracking by combined optimal estimation and control techniques.
NASA Technical Reports Server (NTRS)
Dressler, R. M.; Tabak, D.
1971-01-01
Combined optimal estimation and control techniques are applied for the first time to satellite tracking systems. Both radio antenna and optical tracking systems of NASA are considered. The optimal estimation is accomplished using an extended Kalman filter resulting in an estimated state of the satellite and of the tracking system. This estimated state constitutes an input to the optimal controller. The optimal controller treats a linearized system with a quadratic performance index. The maximum principle is applied and a steady-state approximation to the resulting Riccati equation is obtained. A computer program, RATS, implementing this algorithm is described. A feasibility study of real-time implementation, tracking simulations, and parameter sensitivity studies are also reported.
A Prototype of Energy Saving System for Office Lighting by Using PSO and WSN
NASA Astrophysics Data System (ADS)
Si, Wa; Ogai, Harutoshi; Hirai, Katsumi; Takahashi, Hidehiro; Ogawa, Masatoshi
The purpose of this study is to develop a wireless networked lighting system for office buildings, which can reduce the energy consumption while meeting users' lighting preferences. By using particle swarm optimization, the system is able to optimize the dimming ratio of luminaires according to the real time natural illumination and occupancy condition. In this paper we make a prototype system and test the feasibility and efficiency of the system. The prototype consists of one wireless control module, three illumination sensors and four fluorescent lamps with dimming capacity. The illumination sensors collect and send the data to the control module. After the process of PSO (Particle Swarm Optimization), the module finally sets the power of the lamps according to the PSO result. After real experiments in a certain designed office, it was proved that the system can successfully control the illuminations, and can save considerable energy.
Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin
2016-01-15
Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. PMID:26592652
A method to objectively optimize coral bleaching prediction techniques
NASA Astrophysics Data System (ADS)
van Hooidonk, R. J.; Huber, M.
2007-12-01
Thermally induced coral bleaching is a global threat to coral reef health. Methodologies, e.g. the Degree Heating Week technique, have been developed to predict bleaching induced by thermal stress by utilizing remotely sensed sea surface temperature (SST) observations. These techniques can be used as a management tool for Marine Protected Areas (MPA). Predictions are valuable to decision makers and stakeholders on weekly to monthly time scales and can be employed to build public awareness and support for mitigation. The bleaching problem is only expected to worsen because global warming poses a major threat to coral reef health. Indeed, predictive bleaching methods combined with climate model output have been used to forecast the global demise of coral reef ecosystems within coming decades due to climate change. Accuracy of these predictive techniques has not been quantitatively characterized despite the critical role they play. Assessments have typically been limited, qualitative or anecdotal, or more frequently they are simply unpublished. Quantitative accuracy assessment, using well established methods and skill scores often used in meteorology and medical sciences, will enable objective optimization of existing predictive techniques. To accomplish this, we will use existing remotely sensed data sets of sea surface temperature (AVHRR and TMI), and predictive values from techniques such as the Degree Heating Week method. We will compare these predictive values with observations of coral reef health and calculate applicable skill scores (Peirce Skill Score, Hit Rate and False Alarm Rate). We will (a) quantitatively evaluate the accuracy of existing coral reef bleaching predictive methods against state-of- the-art reef health databases, and (b) present a technique that will objectively optimize the predictive method for any given location. We will illustrate this optimization technique for reefs located in Puerto Rico and the US Virgin Islands.
Fitting Nonlinear Curves by use of Optimization Techniques
NASA Technical Reports Server (NTRS)
Hill, Scott A.
2005-01-01
MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.
FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.
Abbasi, Elham; Ghatee, Mehdi; Shiri, M E
2013-09-01
In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. PMID:23930812
NASA Astrophysics Data System (ADS)
Ge, Xinmin; Fan, Yiren; Cao, Yingchang; Wang, Yang; Cong, Yunhai; Liu, Lailei
2015-06-01
To allow peak searching and parameter estimation for geological and geophysical data with multi-peak distributions, we explore a hybrid method based on a combination of the particle swarm optimization (PSO) and generalized reduced gradient (GRG) algorithms. After characterizing peaks using the additive Gaussian function, a nonlinear objective function is established, which transforms our task into a search for optimal solutions. In this process, PSO is used to obtain the initial values, aiming for global convergence, while GRG is subsequently implemented for higher stability. Iterations are stopped when the convergence criteria are satisfied. Finally, grayscale histograms of backscattering electron images of sandstone show that the proposed algorithm performs much better than other methods such as PSO, GRG, simulated annealing and differential evolution, achieving a faster convergence speed and minimal variances.
Model reduction using new optimal Routh approximant technique
NASA Technical Reports Server (NTRS)
Hwang, Chyi; Guo, Tong-Yi; Sheih, Leang-San
1992-01-01
An optimal Routh approximant of a single-input single-output dynamic system is a reduced-order transfer function of which the denominator is obtained by the Routh approximation method while the numerator is determined by minimizing a time-response integral-squared-error (ISE) criterion. In this paper, a new elegant approach is presented for obtaining the optimal Routh approximants for linear time-invariant continuous-time systems. The approach is based on the Routh canonical expansion, which is a finite-term orthogonal series of rational basis functions, and minimization of the ISE criterion. A procedure for combining the above approach with the bilinear transformation is also presented in order to obtain the optimal bilinear Routh approximants of linear time-invariant discrete-time systems. The proposed technique is simple in formulation and is amenable to practical implementation.
A technique for noise measurement optimization with spectrum analyzers
NASA Astrophysics Data System (ADS)
Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.
2015-08-01
Measuring low noise of electronic devices with a spectrum analyzer requires particular care as the instrument could add significant contributions. A Low Noise Amplifier, LNA, is therefore necessary to be connected between the source to be measured and the instrument, to mitigate its effect at the LNA input. In the present work we suggest a technique for the implementation of the LNA that allows to optimize both low frequency noise and white noise, obtaining outstanding performance in a very broad frequency range.
Honey Bee Mating Optimization Vector Quantization Scheme in Image Compression
NASA Astrophysics Data System (ADS)
Horng, Ming-Huwi
The vector quantization is a powerful technique in the applications of digital image compression. The traditionally widely used method such as the Linde-Buzo-Gray (LBG) algorithm always generated local optimal codebook. Recently, particle swarm optimization (PSO) is adapted to obtain the near-global optimal codebook of vector quantization. In this paper, we applied a new swarm algorithm, honey bee mating optimization, to construct the codebook of vector quantization. The proposed method is called the honey bee mating optimization based LBG (HBMO-LBG) algorithm. The results were compared with the other two methods that are LBG and PSO-LBG algorithms. Experimental results showed that the proposed HBMO-LBG algorithm is more reliable and the reconstructed images get higher quality than those generated form the other three methods.
Optimization of backward giant circle technique on the asymmetric bars.
Hiley, Michael J; Yeadon, Maurice R
2007-11-01
The release window for a given dismount from the asymmetric bars is the period of time within which release results in a successful dismount. Larger release windows are likely to be associated with more consistent performance because they allow a greater margin for error in timing the release. A computer simulation model was used to investigate optimum technique for maximizing release windows in asymmetric bars dismounts. The model comprised four rigid segments with the elastic properties of the gymnast and bar modeled using damped linear springs. Model parameters were optimized to obtain a close match between simulated and actual performances of three gymnasts in terms of rotation angle (1.5 degrees ), bar displacement (0.014 m), and release velocities (<1%). Three optimizations to maximize the release window were carried out for each gymnast involving no perturbations, 10-ms perturbations, and 20-ms perturbations in the timing of the shoulder and hip joint movements preceding release. It was found that the optimizations robust to 20-ms perturbations produced release windows similar to those of the actual performances whereas the windows for the unperturbed optimizations were up to twice as large. It is concluded that robustness considerations must be included in optimization studies in order to obtain realistic results and that elite performances are likely to be robust to timing perturbations of the order of 20 ms. PMID:18089928
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
NASA Astrophysics Data System (ADS)
Bera, Sasadhar; Mukherjee, Indrajit
2010-10-01
Ensuring quality of a product is rarely based on observations of a single quality characteristic. Generally, it is based on observations of family of properties, so-called `multiple responses'. These multiple responses are often interacting and are measured in variety of units. Due to presence of interaction(s), overall optimal conditions for all the responses rarely result from isolated optimal condition of individual response. Conventional optimization techniques, such as design of experiment, linear and nonlinear programmings are generally recommended for single response optimization problems. Applying any of these techniques for multiple response optimization problem may lead to unnecessary simplification of the real problem with several restrictive model assumptions. In addition, engineering judgements or subjective ways of decision making may play an important role to apply some of these conventional techniques. In this context, a synergistic approach of desirability functions and metaheuristic technique is a viable alternative to handle multiple response optimization problems. Metaheuristics, such as simulated annealing (SA) and particle swarm optimization (PSO), have shown immense success to solve various discrete and continuous single response optimization problems. Instigated by those successful applications, this chapter assesses the potential of a Nelder-Mead simplex-based SA (SIMSA) and PSO to resolve varied multiple response optimization problems. The computational results clearly indicate the superiority of PSO over SIMSA for the selected problems.
An Improved Fuzzy c-Means Clustering Algorithm Based on Shadowed Sets and PSO
Zhang, Jian; Shen, Ling
2014-01-01
To organize the wide variety of data sets automatically and acquire accurate classification, this paper presents a modified fuzzy c-means algorithm (SP-FCM) based on particle swarm optimization (PSO) and shadowed sets to perform feature clustering. SP-FCM introduces the global search property of PSO to deal with the problem of premature convergence of conventional fuzzy clustering, utilizes vagueness balance property of shadowed sets to handle overlapping among clusters, and models uncertainty in class boundaries. This new method uses Xie-Beni index as cluster validity and automatically finds the optimal cluster number within a specific range with cluster partitions that provide compact and well-separated clusters. Experiments show that the proposed approach significantly improves the clustering effect. PMID:25477953
Technique Developed for Optimizing Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.
1999-01-01
A traveling-wave tube (TWT) is an electron beam device that is used to amplify electromagnetic communication waves at radio and microwave frequencies. TWT s are critical components in deep-space probes, geosynchronous communication satellites, and high-power radar systems. Power efficiency is of paramount importance for TWT s employed in deep-space probes and communications satellites. Consequently, increasing the power efficiency of TWT s has been the primary goal of the TWT group at the NASA Lewis Research Center over the last 25 years. An in-house effort produced a technique (ref. 1) to design TWT's for optimized power efficiency. This technique is based on simulated annealing, which has an advantage over conventional optimization techniques in that it enables the best possible solution to be obtained (ref. 2). A simulated annealing algorithm was created and integrated into the NASA TWT computer model (ref. 3). The new technique almost doubled the computed conversion power efficiency of a TWT from 7.1 to 13.5 percent (ref. 1).
Lin, Wei-Qi; Jiang, Jian-Hui; Zhou, Yan-Ping; Wu, Hai-Long; Shen, Guo-Li; Yu, Ru-Qin
2007-01-30
Multilayer feedforward neural networks (MLFNNs) are important modeling techniques widely used in QSAR studies for their ability to represent nonlinear relationships between descriptors and activity. However, the problems of overfitting and premature convergence to local optima still pose great challenges in the practice of MLFNNs. To circumvent these problems, a support vector machine (SVM) based training algorithm for MLFNNs has been developed with the incorporation of particle swarm optimization (PSO). The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem. Moreover, with the implementation of PSO for searching the optimal network weights, the SVM based learning algorithm shows relatively high efficiency in converging to the optima. The proposed algorithm has been evaluated using the Hansch data set. Application to QSAR studies of the activity of COX-2 inhibitors is also demonstrated. The results reveal that this technique provides superior performance to backpropagation (BP) and PSO training neural networks. PMID:17186488
Techniques for developing reliability-oriented optimal microgrid architectures
NASA Astrophysics Data System (ADS)
Patra, Shashi B.
2007-12-01
Alternative generation technologies such as fuel cells, micro-turbines, solar etc. have been the focus of active research in the past decade. These energy sources are small and modular. Because of these advantages, these sources can be deployed effectively at or near locations where they are actually needed, i.e. in the distribution network. This is in contrast to the traditional electricity generation which has been "centralized" in nature. The new technologies can be deployed in a "distributed" manner. Therefore, they are also known as Distributed Energy Resources (DER). It is expected that the use of DER, will grow significantly in the future. Hence, it is prudent to interconnect the energy resources in a meshed or grid-like structure, so as to exploit the reliability and economic benefits of distributed deployment. These grids, which are smaller in scale but similar to the electric transmission grid, are known as "microgrids". This dissertation presents rational methods of building microgrids optimized for cost and subject to system-wide and locational reliability guarantees. The first method is based on dynamic programming and consists of determining the optimal interconnection between microsources and load points, given their locations and the rights of way for possible interconnections. The second method is based on particle swarm optimization. This dissertation describes the formulation of the optimization problem and the solution methods. The applicability of the techniques is demonstrated in two possible situations---design of a microgrid from scratch and expansion of an existing distribution system.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
Optimization Techniques for 3D Graphics Deployment on Mobile Devices
NASA Astrophysics Data System (ADS)
Koskela, Timo; Vatjus-Anttila, Jarkko
2015-03-01
3D Internet technologies are becoming essential enablers in many application areas including games, education, collaboration, navigation and social networking. The use of 3D Internet applications with mobile devices provides location-independent access and richer use context, but also performance issues. Therefore, one of the important challenges facing 3D Internet applications is the deployment of 3D graphics on mobile devices. In this article, we present an extensive survey on optimization techniques for 3D graphics deployment on mobile devices and qualitatively analyze the applicability of each technique from the standpoints of visual quality, performance and energy consumption. The analysis focuses on optimization techniques related to data-driven 3D graphics deployment, because it supports off-line use, multi-user interaction, user-created 3D graphics and creation of arbitrary 3D graphics. The outcome of the analysis facilitates the development and deployment of 3D Internet applications on mobile devices and provides guidelines for future research.
On combining Laplacian and optimization-based mesh smoothing techniques
Freitag, L.A.
1997-07-01
Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.
42 CFR 3.110 - Assessment of PSO compliance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... subpart and for these purposes will be allowed to inspect the physical or virtual sites maintained or... SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO Requirements and Agency Procedures § 3.110... PSO records may include patient safety work product in accordance with § 3.206(d) of this part....
Machine learning techniques for energy optimization in mobile embedded systems
NASA Astrophysics Data System (ADS)
Donohoo, Brad Kyoshi
Mobile smartphones and other portable battery operated embedded systems (PDAs, tablets) are pervasive computing devices that have emerged in recent years as essential instruments for communication, business, and social interactions. While performance, capabilities, and design are all important considerations when purchasing a mobile device, a long battery lifetime is one of the most desirable attributes. Battery technology and capacity has improved over the years, but it still cannot keep pace with the power consumption demands of today's mobile devices. This key limiter has led to a strong research emphasis on extending battery lifetime by minimizing energy consumption, primarily using software optimizations. This thesis presents two strategies that attempt to optimize mobile device energy consumption with negligible impact on user perception and quality of service (QoS). The first strategy proposes an application and user interaction aware middleware framework that takes advantage of user idle time between interaction events of the foreground application to optimize CPU and screen backlight energy consumption. The framework dynamically classifies mobile device applications based on their received interaction patterns, then invokes a number of different power management algorithms to adjust processor frequency and screen backlight levels accordingly. The second strategy proposes the usage of machine learning techniques to learn a user's mobile device usage pattern pertaining to spatiotemporal and device contexts, and then predict energy-optimal data and location interface configurations. By learning where and when a mobile device user uses certain power-hungry interfaces (3G, WiFi, and GPS), the techniques, which include variants of linear discriminant analysis, linear logistic regression, non-linear logistic regression, and k-nearest neighbor, are able to dynamically turn off unnecessary interfaces at runtime in order to save energy.
Emerging Techniques for Dose Optimization in Abdominal CT
Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit
2014-01-01
Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277
A fuzzy optimal threshold technique for medical images
NASA Astrophysics Data System (ADS)
Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.
2012-01-01
A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.
A fuzzy optimal threshold technique for medical images
NASA Astrophysics Data System (ADS)
Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.
2011-12-01
A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.
A Hybrid PSO-DEFS Based Feature Selection for the Identification of Diabetic Retinopathy.
Balakrishnan, Umarani; Venkatachalapathy, Krishnamurthi; Marimuthu, Girirajkumar S
2015-01-01
Diabetic Retinopathy (DR) is an eye disease, which may cause blindness by the upsurge of insulin in blood. The major cause of visual loss in diabetic patient is macular edema. To diagnose and follow up Diabetic Macular Edema (DME), a powerful Optical Coherence Tomography (OCT) technique is used for the clinical assessment. Many existing methods found out the DME affected patients by estimating the fovea thickness. These methods have the issues of lower accuracy and higher time complexity. In order to overwhelm the above limitations, a hybrid approaches based DR detection is introduced in the proposed work. At first, the input image is preprocessed using green channel extraction and median filter. Subsequently, the features are extracted by gradient-based features like Histogram of Oriented Gradient (HOG) with Complete Local Binary Pattern (CLBP). The texture features are concentrated with various rotations to calculate the edges. We present a hybrid feature selection that combines the Particle Swarm Optimization (PSO) and Differential Evolution Feature Selection (DEFS) for minimizing the time complexity. A binary Support Vector Machine (SVM) classifier categorizes the 13 normal and 75 abnormal images from 60 patients. Finally, the patients affected by DR are further classified by Multi-Layer Perceptron (MLP). The experimental results exhibit better performance of accuracy, sensitivity, and specificity than the existing methods. PMID:25817547
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
Solving constrained optimization problems with hybrid particle swarm optimization
NASA Astrophysics Data System (ADS)
Zahara, Erwie; Hu, Chia-Hsin
2008-11-01
Constrained optimization problems (COPs) are very important in that they frequently appear in the real world. A COP, in which both the function and constraints may be nonlinear, consists of the optimization of a function subject to constraints. Constraint handling is one of the major concerns when solving COPs with particle swarm optimization (PSO) combined with the Nelder-Mead simplex search method (NM-PSO). This article proposes embedded constraint handling methods, which include the gradient repair method and constraint fitness priority-based ranking method, as a special operator in NM-PSO for dealing with constraints. Experiments using 13 benchmark problems are explained and the NM-PSO results are compared with the best known solutions reported in the literature. Comparison with three different meta-heuristics demonstrates that NM-PSO with the embedded constraint operator is extremely effective and efficient at locating optimal solutions.
High-level power analysis and optimization techniques
NASA Astrophysics Data System (ADS)
Raghunathan, Anand
1997-12-01
This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching
Modiri, A; Gu, X; Sawant, A
2014-06-15
Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. These plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.
A Deep-Cutting-Plane Technique for Reverse Convex Optimization.
Moshirvaziri, K; Amouzegar, M A
2011-08-01
A large number of problems in engineering design and in many areas of social and physical sciences and technology lend themselves to particular instances of problems studied in this paper. Cutting-plane methods have traditionally been used as an effective tool in devising exact algorithms for solving convex and large-scale combinatorial optimization problems. Its utilization in nonconvex optimization has been also promising. A cutting plane, essentially a hyperplane defined by a linear inequality, can be used to effectively reduce the computational efforts in search of a global solution. Each cut is generated in order to eliminate a large portion of the search domain. Thus, a deep cut is intuitively superior in which it will exclude a larger set of extraneous points from consideration. This paper is concerned with the development of deep-cutting-plane techniques applied to reverse-convex programs. An upper bound and a lower bound for the optimal value are found, updated, and improved at each iteration. The algorithm terminates when the two bounds collapse or all the generated subdivisions have been fathomed. Finally, computational considerations and numerical results on a set of test problems are discussed. An illustrative example, walking through the steps of the algorithm and explaining the computational process, is presented. PMID:21296710
An optimal merging technique for high-resolution precipitation products
Houser, Paul
2011-01-01
Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.
Optimized evaporation technique for leachate treatment: Small scale implementation.
Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz
2016-04-01
This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. PMID:26826455
Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection
Li, Xiaoli
2016-01-01
Diabetes is a serious threat to human health. Thus, research on noninvasive blood glucose detection has become crucial locally and abroad. Near-infrared transmission spectroscopy has important applications in noninvasive glucose detection. Extracting useful information and selecting appropriate modeling methods can improve the robustness and accuracy of models for predicting blood glucose concentrations. Therefore, an improved signal reconstruction and calibration modeling method is proposed in this study. On the basis of improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and correlative coefficient, the sensitive intrinsic mode functions are selected to reconstruct spectroscopy signals for developing the calibration model using the support vector regression (SVR) method. The radial basis function kernel is selected for SVR, and three parameters, namely, insensitive loss coefficient ε, penalty parameter C, and width coefficient γ, are identified beforehand for the corresponding model. Particle swarm optimization (PSO) is employed to optimize the simultaneous selection of the three parameters. Results of the comparison experiments using PSO-SVR and partial least squares show that the proposed signal reconstitution method is feasible and can eliminate noise in spectroscopy signals. The prediction accuracy of model using PSO-SVR method is also found to be better than that of other methods for near-infrared noninvasive glucose detection.
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. PMID:27136666
Application of multivariable search techniques to structural design optimization
NASA Technical Reports Server (NTRS)
Jones, R. T.; Hague, D. S.
1972-01-01
Multivariable optimization techniques are applied to a particular class of minimum weight structural design problems: the design of an axially loaded, pressurized, stiffened cylinder. Minimum weight designs are obtained by a variety of search algorithms: first- and second-order, elemental perturbation, and randomized techniques. An exterior penalty function approach to constrained minimization is employed. Some comparisons are made with solutions obtained by an interior penalty function procedure. In general, it would appear that an interior penalty function approach may not be as well suited to the class of design problems considered as the exterior penalty function approach. It is also shown that a combination of search algorithms will tend to arrive at an extremal design in a more reliable manner than a single algorithm. The effect of incorporating realistic geometrical constraints on stiffener cross-sections is investigated. A limited comparison is made between minimum weight cylinders designed on the basis of a linear stability analysis and cylinders designed on the basis of empirical buckling data. Finally, a technique for locating more than one extremal is demonstrated.
A technique for integrating engine cycle and aircraft configuration optimization
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.
1994-01-01
A method for conceptual aircraft design that incorporates the optimization of major engine design variables for a variety of cycle types was developed. The methodology should improve the lengthy screening process currently involved in selecting an appropriate engine cycle for a given application or mission. The new capability will allow environmental concerns such as airport noise and emissions to be addressed early in the design process. The ability to rapidly perform optimization and parametric variations using both engine cycle and aircraft design variables, and to see the impact on the aircraft, should provide insight and guidance for more detailed studies. A brief description of the aircraft performance and mission analysis program and the engine cycle analysis program that were used is given. A new method of predicting propulsion system weight and dimensions using thermodynamic cycle data, preliminary design, and semi-empirical techniques is introduced. Propulsion system performance and weights data generated by the program are compared with industry data and data generated using well established codes. The ability of the optimization techniques to locate an optimum is demonstrated and some of the problems that had to be solved to accomplish this are illustrated. Results from the application of the program to the analysis of three supersonic transport concepts installed with mixed flow turbofans are presented. The results from the application to a Mach 2.4, 5000 n.mi. transport indicate that the optimum bypass ratio is near 0.45 with less than 1 percent variation in minimum gross weight for bypass ratios ranging from 0.3 to 0.6. In the final application of the program, a low sonic boom fix a takeoff gross weight concept that would fly at Mach 2.0 overwater and at Mach 1.6 overland is compared with a baseline concept of the same takeoff gross weight that would fly Mach 2.4 overwater and subsonically overland. The results indicate that for the design mission
What is Particle Swarm optimization? Application to hydrogeophysics (Invited)
NASA Astrophysics Data System (ADS)
Fernández Martïnez, J.; García Gonzalo, E.; Mukerji, T.
2009-12-01
Inverse problems are generally ill-posed. This yields lack of uniqueness and/or numerical instabilities. These features cause local optimization methods without prior information to provide unpredictable results, not being able to discriminate among the multiple models consistent with the end criteria. Stochastic approaches to inverse problems consist in shifting attention to the probability of existence of certain interesting subsurface structures instead of "looking for a unique model". Some well-known stochastic methods include genetic algorithms and simulated annealing. A more recent method, Particle Swarm Optimization, is a global optimization technique that has been successfully applied to solve inverse problems in many engineering fields, although its use in geosciences is still limited. Like all stochastic methods, PSO requires reasonably fast forward modeling. The basic idea behind PSO is that each model searches the model space according to its misfit history and the misfit of the other models of the swarm. PSO algorithm can be physically interpreted as a damped spring-mass system. This physical analogy was used to define a whole family of PSO optimizers and to establish criteria, based on the stability of particle swarm trajectories, to tune the PSO parameters: inertia, local and global accelerations. In this contribution we show application to different low-cost hydrogeophysical inverse problems: 1) a salt water intrusion problem using Vertical Electrical Soundings, 2) the inversion of Spontaneous Potential data for groundwater modeling, 3) the identification of Cole-Cole parameters for Induced Polarization data. We show that with this stochastic approach we are able to answer questions related to risk analysis, such as what is the depth of the salt intrusion with a certain probability, or giving probabilistic bounds for the water table depth. Moreover, these measures of uncertainty are obtained with small computational cost and time, allowing us a very
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
On improving storm surge forecasting using an adjoint optimal technique
NASA Astrophysics Data System (ADS)
Li, Yineng; Peng, Shiqiu; Yan, Jing; Xie, Lian
2013-12-01
A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and Cd simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC and Cd to improve storm surge forecasting using an adjoint technique.
Techniques for developing approximate optimal advanced launch system guidance
NASA Technical Reports Server (NTRS)
Feeley, Timothy S.; Speyer, Jason L.
1991-01-01
An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.
Optimal technique for maximal forward rotating vaults in men's gymnastics.
Hiley, Michael J; Jackson, Monique I; Yeadon, Maurice R
2015-08-01
In vaulting a gymnast must generate sufficient linear and angular momentum during the approach and table contact to complete the rotational requirements in the post-flight phase. This study investigated the optimization of table touchdown conditions and table contact technique for the maximization of rotation potential for forwards rotating vaults. A planar seven-segment torque-driven computer simulation model of the contact phase in vaulting was evaluated by varying joint torque activation time histories to match three performances of a handspring double somersault vault by an elite gymnast. The closest matching simulation was used as a starting point to maximize post-flight rotation potential (the product of angular momentum and flight time) for a forwards rotating vault. It was found that the maximized rotation potential was sufficient to produce a handspring double piked somersault vault. The corresponding optimal touchdown configuration exhibited hip flexion in contrast to the hyperextended configuration required for maximal height. Increasing touchdown velocity and angular momentum lead to additional post-flight rotation potential. By increasing the horizontal velocity at table touchdown, within limits obtained from recorded performances, the handspring double somersault tucked with one and a half twists, and the handspring triple somersault tucked became theoretically possible. PMID:26026290
Optimal exposure techniques for iodinated contrast enhanced breast CT
NASA Astrophysics Data System (ADS)
Glick, Stephen J.; Makeev, Andrey
2016-03-01
Screening for breast cancer using mammography has been very successful in the effort to reduce breast cancer mortality, and its use has largely resulted in the 30% reduction in breast cancer mortality observed since 1990 [1]. However, diagnostic mammography remains an area of breast imaging that is in great need for improvement. One imaging modality proposed for improving the accuracy of diagnostic workup is iodinated contrast-enhanced breast CT [2]. In this study, a mathematical framework is used to evaluate optimal exposure techniques for contrast-enhanced breast CT. The ideal observer signal-to-noise ratio (i.e., d') figure-of-merit is used to provide a task performance based assessment of optimal acquisition parameters under the assumptions of a linear, shift-invariant imaging system. A parallel-cascade model was used to estimate signal and noise propagation through the detector, and a realistic lesion model with iodine uptake was embedded into a structured breast background. Ideal observer performance was investigated across kVp settings, filter materials, and filter thickness. Results indicated many kVp spectra/filter combinations can improve performance over currently used x-ray spectra.
Optimal high speed CMOS inverter design using craziness based Particle Swarm Optimization Algorithm
NASA Astrophysics Data System (ADS)
De, Bishnu P.; Kar, Rajib; Mandal, Durbadal; Ghoshal, Sakti P.
2015-07-01
The inverter is the most fundamental logic gate that performs a Boolean operation on a single input variable. In this paper, an optimal design of CMOS inverter using an improved version of particle swarm optimization technique called Craziness based Particle Swarm Optimization (CRPSO) is proposed. CRPSO is very simple in concept, easy to implement and computationally efficient algorithm with two main advantages: it has fast, nearglobal convergence, and it uses nearly robust control parameters. The performance of PSO depends on its control parameters and may be influenced by premature convergence and stagnation problems. To overcome these problems the PSO algorithm has been modiffed to CRPSO in this paper and is used for CMOS inverter design. In birds' flocking or ffsh schooling, a bird or a ffsh often changes direction suddenly. In the proposed technique, the sudden change of velocity is modelled by a direction reversal factor associated with the previous velocity and a "craziness" velocity factor associated with another direction reversal factor. The second condition is introduced depending on a predeffned craziness probability to maintain the diversity of particles. The performance of CRPSO is compared with real code.gnetic algorithm (RGA), and conventional PSO reported in the recent literature. CRPSO based design results are also compared with the PSPICE based results. The simulation results show that the CRPSO is superior to the other algorithms for the examples considered and can be efficiently used for the CMOS inverter design.
Technique to optimize magnetic response of gelatin coated magnetic nanoparticles.
Parikh, Nidhi; Parekh, Kinnari
2015-07-01
The paper describes the results of optimization of magnetic response for highly stable bio-functionalize magnetic nanoparticles dispersion. Concentration of gelatin during in situ co-precipitation synthesis was varied from 8, 23 and 48 mg/mL to optimize magnetic properties. This variation results in a change in crystallite size from 10.3 to 7.8 ± 0.1 nm. TEM measurement of G3 sample shows highly crystalline spherical nanoparticles with a mean diameter of 7.2 ± 0.2 nm and diameter distribution (σ) of 0.27. FTIR spectra shows a shift of 22 cm(-1) at C=O stretching with absence of N-H stretching confirming the chemical binding of gelatin on magnetic nanoparticles. The concept of lone pair electron of the amide group explains the mechanism of binding. TGA shows 32.8-25.2% weight loss at 350 °C temperature substantiating decomposition of chemically bind gelatin. The magnetic response shows that for 8 mg/mL concentration of gelatin, the initial susceptibility and saturation magnetization is the maximum. The cytotoxicity of G3 sample was assessed in Normal Rat Kidney Epithelial Cells (NRK Line) by MTT assay. Results show an increase in viability for all concentrations, the indicative probability of a stimulating action of these particles in the nontoxic range. This shows the potential of this technique for biological applications as the coated particles are (i) superparamagnetic (ii) highly stable in physiological media (iii) possibility of attaching other drug with free functional group of gelatin and (iv) non-toxic. PMID:26152511
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
Optimization technique for problems with an inequality constraint
NASA Technical Reports Server (NTRS)
Russell, K. J.
1972-01-01
General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.
Hybrid optimization methods for Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Datta, D.; Sen, M. K.
2014-12-01
FWI is slowly becoming the mainstream method to estimate velocity models of the subsurface from seismic data. Typically it makes use of a gradient descent approach in which a model update is computed by back propagating the residual seismograms and cross correlating with the forward propagating wavefields at each grid point in the subsurface model. FWI is a local optimization technique, which requires the starting model to be very close to the true model. Because the objective function is multimodal with many local minima, the requirement of good starting model becomes essential. A starting model is generated using travel time tomography. We propose two hybrid FWI algorithms one of which generates a very good starting model for a conventional FWI and the other, which works with a population of models uses gradient information from multiple starting locations in guiding the search. The first approach uses a sparse parameterization of model space using non-oscillatory splines, whose coeffiencts are estimated using an optimization algorithm like very fast simulated annealing (VFSA) by minimizing the misfit between the observed and synthetic data. The estimated velocity model is then used as a starting model for gradient-based FWI. This is done in the shot domain by converting the end-on marine geometry to a split spread geometry using the principle of reciprocity. The second approach is to uses an alternate global optimization algorithm called particle swarm optimization (PSO) where PSO update rules are applied. However, we employ a new gradient guided PSO that exploits the gradient information as well. This approach avoids the local minima and converges faster than a conventional PSO. We demonstrate our methods with application to 2D marine data sets from offshore India. Each line comprises over 1000 shots; our hybrid methods produce geologically meaningful velocity models fairly rapidly on a GPU cluster. We show that starting with the hybrid model gives a much
Shrestha, Roshan; Houser, Paul R.; Anantharaj, Valentine G.
2011-04-01
Precipitation products are currently available from various sources at higher spatial and temporal resolution than any time in the past. Each of the precipitation products has its strengths and weaknesses in availability, accuracy, resolution, retrieval techniques and quality control. By merging the precipitation data obtained from multiple sources, one can improve its information content by minimizing these issues. However, precipitation data merging poses challenges of scale-mismatch, and accurate error and bias assessment. In this paper we present Optimal Merging of Precipitation (OMP), a new method to merge precipitation data from multiple sources that are of different spatial and temporal resolutions and accuracies. This method is a combination of scale conversion and merging weight optimization, involving performance-tracing based on Bayesian statistics and trend-analysis, which yields merging weights for each precipitation data source. The weights are optimized at multiple scales to facilitate multiscale merging and better precipitation downscaling. Precipitation data used in the experiment include products from the 12-km resolution North American Land Data Assimilation (NLDAS) system, the 8-km resolution CMORPH and the 4-km resolution National Stage-IV QPE. The test cases demonstrate that the OMP method is capable of identifying a better data source and allocating a higher priority for them in the merging procedure, dynamically over the region and time period. This method is also effective in filtering out poor quality data introduced into the merging process.
Optimization of fast dissolving etoricoxib tablets prepared by sublimation technique.
Patel, D M; Patel, M M
2008-01-01
The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 3(2) full factorial design was applied to investigate the combined effect of 2 formulation variables: amount of menthol and crospovidone. The results of multiple regression analysis indicated that for obtaining fast dissolving tablets; optimum amount of menthol and higher percentage of crospovidone should be used. A surface response plots are also presented to graphically represent the effect of the independent variables on the percentage friability and disintegration time. The validity of a generated mathematical model was tested by preparing a checkpoint batch. Sublimation of menthol from tablets resulted in rapid disintegration as compared with the tablets prepared from granules that were exposed to vacuum. The optimized tablet formulation was compared with conventional marketed tablets for percentage drug dissolved in 30 min (Q(30)) and dissolution efficiency after 30 min (DE(30)). From the results, it was concluded that fast dissolving tablets with improved etoricoxib dissolution could be prepared by sublimation of tablets containing suitable subliming agent. PMID:20390084
Optimization of Fast Dissolving Etoricoxib Tablets Prepared by Sublimation Technique
Patel, D. M.; Patel, M. M.
2008-01-01
The purpose of this investigation was to develop fast dissolving tablets of etoricoxib. Granules containing etoricoxib, menthol, crospovidone, aspartame and mannitol were prepared by wet granulation technique. Menthol was sublimed from the granules by exposing the granules to vacuum. The porous granules were then compressed in to tablets. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability and disintegration time. A 32 full factorial design was applied to investigate the combined effect of 2 formulation variables: amount of menthol and crospovidone. The results of multiple regression analysis indicated that for obtaining fast dissolving tablets; optimum amount of menthol and higher percentage of crospovidone should be used. A surface response plots are also presented to graphically represent the effect of the independent variables on the percentage friability and disintegration time. The validity of a generated mathematical model was tested by preparing a checkpoint batch. Sublimation of menthol from tablets resulted in rapid disintegration as compared with the tablets prepared from granules that were exposed to vacuum. The optimized tablet formulation was compared with conventional marketed tablets for percentage drug dissolved in 30 min (Q30) and dissolution efficiency after 30 min (DE30). From the results, it was concluded that fast dissolving tablets with improved etoricoxib dissolution could be prepared by sublimation of tablets containing suitable subliming agent. PMID:20390084
Calibration of Semi-analytic Models of Galaxy Formation Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Ruiz, Andrés N.; Cora, Sofía A.; Padilla, Nelson D.; Domínguez, Mariano J.; Vega-Martínez, Cristian A.; Tecce, Tomás E.; Orsi, Álvaro; Yaryura, Yamila; García Lambas, Diego; Gargiulo, Ignacio D.; Muñoz Arancibia, Alejandra M.
2015-03-01
We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observed galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.
Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization
Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee
2014-01-01
Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature. PMID:25285268
Augmented Lagrangian Particle Swarm Optimization in Mechanism Design
NASA Astrophysics Data System (ADS)
Sedlaczek, Kai; Eberhard, Peter
The problem of optimizing nonlinear multibody systems is in general nonlinear and nonconvex. This is especially true for the dimensional synthesis process of rigid body mechanisms, where often only local solutions might be found with gradient-based optimization methods. An attractive alternative for solving such multimodal optimization problems is the Particle Swarm Optimization (PSO) algorithm. This stochastic solution technique allows a derivative-free search for a global solution without the need for any initial design. In this work, we present an extension to the basic PSO algorithm in order to solve the problem of dimensional synthesis with nonlinear equality and inequality constraints. It utilizes the Augmented Lagrange Multiplier Method in combination with an advanced non-stationary penalty function approach that does not rely on excessively large penalty factors for sufficiently accurate solutions. Although the PSO method is even able to solve nonsmooth and discrete problems, this augmented algorithm can additionally calculate accurate Lagrange multiplier estimates for differentiable formulations, which are helpful in the analysis process of the optimization results. We demonstrate this method and show its very promising applicability to the constrained dimensional synthesis process of rigid body mechanisms.
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
NASA Astrophysics Data System (ADS)
Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng
2016-02-01
Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.
Kiranyaz, Serkan; Ince, Turker; Yildirim, Alper; Gabbouj, Moncef
2009-12-01
In this paper, we propose a novel technique for the automatic design of Artificial Neural Networks (ANNs) by evolving to the optimal network configuration(s) within an architecture space. It is entirely based on a multi-dimensional Particle Swarm Optimization (MD PSO) technique, which re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. With the proper encoding of the network configurations and parameters into particles, MD PSO can then seek the positional optimum in the error space and the dimensional optimum in the architecture space. The optimum dimension converged at the end of a MD PSO process corresponds to a unique ANN configuration where the network parameters (connections, weights and biases) can then be resolved from the positional optimum reached on that dimension. In addition to this, the proposed technique generates a ranked list of network configurations, from the best to the worst. This is indeed a crucial piece of information, indicating what potential configurations can be alternatives to the best one, and which configurations should not be used at all for a particular problem. In this study, the architecture space is defined over feed-forward, fully-connected ANNs so as to use the conventional techniques such as back-propagation and some other evolutionary methods in this field. The proposed technique is applied over the most challenging synthetic problems to test its optimality on evolving networks and over the benchmark problems to test its generalization capability as well as to make comparative evaluations with the several competing techniques. The experimental
NASA Astrophysics Data System (ADS)
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto
Optimization techniques in molecular structure and function elucidation.
Sahinidis, Nikolaos V
2009-12-01
This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866
NASA Astrophysics Data System (ADS)
Chang, Yang-Lang; Liu, Jin-Nan; Chen, Yen-Lin; Chang, Wen-Yen; Hsieh, Tung-Ju; Huang, Bormin
2014-01-01
In recent years, satellite imaging technologies have resulted in an increased number of bands acquired by hyperspectral sensors, greatly advancing the field of remote sensing. Accordingly, owing to the increasing number of bands, band selection in hyperspectral imagery for dimension reduction is important. This paper presents a framework for band selection in hyperspectral imagery that uses two techniques, referred to as particle swarm optimization (PSO) band selection and the impurity function band prioritization (IFBP) method. With the PSO band selection algorithm, highly correlated bands of hyperspectral imagery can first be grouped into modules to coarsely reduce high-dimensional datasets. Then, these highly correlated band modules are analyzed with the IFBP method to finely select the most important feature bands from the hyperspectral imagery dataset. However, PSO band selection is a time-consuming procedure when the number of hyperspectral bands is very large. Hence, this paper proposes a parallel computing version of PSO, namely parallel PSO (PPSO), using a modern graphics processing unit (GPU) architecture with NVIDIA's compute unified device architecture technology to improve the computational speed of PSO processes. The natural parallelism of the proposed PPSO lies in the fact that each particle can be regarded as an independent agent. Parallel computation benefits the algorithm by providing each agent with a parallel processor. The intrinsic parallel characteristics embedded in PPSO are, therefore, suitable for parallel computation. The effectiveness of the proposed PPSO is evaluated through the use of airborne visible/infrared imaging spectrometer hyperspectral images. The performance of PPSO is validated using the supervised K-nearest neighbor classifier. The experimental results demonstrate that the proposed PPSO/IFBP band selection method can not only improve computational speed, but also offer a satisfactory classification performance.
New video projection control room is OK with PSO
Buttress, J.
1996-11-01
Public Service Company of Oklahoma (PSO) has 473,000 electricity customers across the state. While power failures are unquestionably an inconvenience to residential customers and a loss of income to the utility, power outages can have serious financial effects on the region`s business community. Oil and natural gas producers, pipelines, aircraft and aerospace companies, farms, ranches and wood product producers rely on PSO to supply them with electricity. Historically, every supplier of electricity experiences and is responsible for correcting power supply failures regardless of circumstances. Therefore, to successfully serve its customers, PSO strives to identify three key pieces of information for each report of trouble it receives: Is the power off? If so, why? Approximately when will it be restored?
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local
Design of high speed proprotors using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Mccarthy, Thomas R.; Chattopadhyay, Aditi
1992-01-01
An integrated, multiobjective optimization procedure is developed for the design of high speed proprotors with the coupling of aerodynamic, dynamic, aeroelastic, and structural criteria. The objectives are to maximize propulsive efficiency in high speed cruise and rotor figure of merit in hover. Constraints are imposed on rotor blade aeroelastic stability in cruise and on total blade weight. Two different multiobjective formulation procedures, the Min summation of beta and the K-S function approaches are used to formulate the two-objective optimization problems.
Optimizing Basic French Skills Utilizing Multiple Teaching Techniques.
ERIC Educational Resources Information Center
Skala, Carol
This action research project examined the impact of foreign language teaching techniques on the language acquisition and retention of 19 secondary level French I students, focusing on student perceptions of the effectiveness and ease of four teaching techniques: total physical response, total physical response storytelling, literature approach,…
Pourjafari, Ebrahim; Mojallali, Hamed
2011-04-01
Voltage stability is one of the most challenging concerns that power utilities are confronted with, and this paper proposes a voltage control scheme based on Model Predictive Control (MPC) to overcome this kind of instability. Voltage instability has a close relation with the adequacy of reactive power and the response of Under Load Tap Changers (ULTCs) to the voltage drop after the occurrence of a contingency. Therefore, the proposed method utilizes reactive power injection and tap changing to avoid voltage collapse. Considering discrete nature of the changes in the tap ratio and also in the reactive power injected by capacitor banks, the search area for the optimizer of MPC will be an integer area; consequently, a modified discrete multi-valued Particle Swarm Optimization (PSO) is considered to perform this optimization. Simulation results of applying the proposed control scheme to a 4-bus system confirm its capability to prevent voltage collapse. PMID:21251650
Towards the Novel Reasoning among Particles in PSO by the Use of RDF and SPARQL
Fister, Iztok; Yang, Xin-She; Ljubič, Karin; Fister, Dušan; Brest, Janez
2014-01-01
The significant development of the Internet has posed some new challenges and many new programming tools have been developed to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the Internet. This paper tries to use the semantic tools such as resource definition framework (RDF) and RDF query language (SPARQL) for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by optimizing ten benchmark functions showed the promising results and thus this method should be investigated further. PMID:24987725
Towards the novel reasoning among particles in PSO by the use of RDF and SPARQL.
Fister, Iztok; Yang, Xin-She; Ljubič, Karin; Fister, Dušan; Brest, Janez; Fister, Iztok
2014-01-01
The significant development of the Internet has posed some new challenges and many new programming tools have been developed to address such challenges. Today, semantic web is a modern paradigm for representing and accessing knowledge data on the Internet. This paper tries to use the semantic tools such as resource definition framework (RDF) and RDF query language (SPARQL) for the optimization purpose. These tools are combined with particle swarm optimization (PSO) and the selection of the best solutions depends on its fitness. Instead of the local best solution, a neighborhood of solutions for each particle can be defined and used for the calculation of the new position, based on the key ideas from semantic web domain. The preliminary results by optimizing ten benchmark functions showed the promising results and thus this method should be investigated further. PMID:24987725
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
Abdulameer, Mohammed Hasan; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Support vector machine based on adaptive acceleration particle swarm optimization.
Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali
2014-01-01
Existing face recognition methods utilize particle swarm optimizer (PSO) and opposition based particle swarm optimizer (OPSO) to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO) technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM). In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented. PMID:24790584
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
Optimization techniques for OpenCL-based linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Fox, Paul; Humphrey, John; Kuller, Aryeh; Kelmelis, Eric; Prather, Dennis W.
2014-06-01
The OpenCL standard for general-purpose parallel programming allows a developer to target highly parallel computations towards graphics processing units (GPUs), CPUs, co-processing devices, and field programmable gate arrays (FPGAs). The computationally intense domains of linear algebra and image processing have shown significant speedups when implemented in the OpenCL environment. A major benefit of OpenCL is that a routine written for one device can be run across many different devices and architectures; however, a kernel optimized for one device may not exhibit high performance when executed on a different device. For this reason kernels must typically be hand-optimized for every target device family. Due to the large number of parameters that can affect performance, hand tuning for every possible device is impractical and often produces suboptimal results. For this work, we focused on optimizing the general matrix multiplication routine. General matrix multiplication is used as a building block for many linear algebra routines and often comprises a large portion of the run-time. Prior work has shown this routine to be a good candidate for high-performance implementation in OpenCL. We selected several candidate algorithms from the literature that are suitable for parameterization. We then developed parameterized kernels implementing these algorithms using only portable OpenCL features. Our implementation queries device information supplied by the OpenCL runtime and utilizes this as well as user input to generate a search space that satisfies device and algorithmic constraints. Preliminary results from our work confirm that optimizations are not portable from one device to the next, and show the benefits of automatic tuning. Using a standard set of tuning parameters seen in the literature for the NVIDIA Fermi architecture achieves a performance of 1.6 TFLOPS on an AMD 7970 device, while automatically tuning achieves a peak of 2.7 TFLOPS
Asynchronous global optimization techniques for medium and large inversion problems
Pereyra, V.; Koshy, M.; Meza, J.C.
1995-04-01
We discuss global optimization procedures adequate for seismic inversion problems. We explain how to save function evaluations (which may involve large scale ray tracing or other expensive operations) by creating a data base of information on what parts of parameter space have already been inspected. It is also shown how a correct parallel implementation using PVM speeds up the process almost linearly with respect to the number of processors, provided that the function evaluations are expensive enough to offset the communication overhead.
Approach to analytically minimize the LCD moiré by image-based particle swarm optimization.
Tsai, Yu-Lin; Tien, Chung-Hao
2015-10-01
In this paper, we proposed a methodology to optimize the parametric window of a liquid crystal display (LCD) system, whose visual performance was deteriorated by the pixel moiré arising in between multiple periodic structures. Conventional analysis and minimization of moiré patterns are limited by few parameters. With the proposed image-based particle swarm optimization (PSO), we enable a multivariable optimization at the same time. A series of experiments was conducted to validate the methodology. Due to its versatility, the proposed technique will certainly have a promising impact on the fast optimization in LCD design with more complex configuration. PMID:26479663
An Optimal Cell Detection Technique for Automated Patch Clamping
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth
2004-01-01
While there are several hardware techniques for the automated patch clamping of cells that describe the equipment apparatus used for patch clamping, very few explain the science behind the actual technique of locating the ideal cell for a patch clamping procedure. We present a machine vision approach to patch clamping cell selection by developing an intelligent algorithm technique that gives the user the ability to determine the good cell to patch clamp in an image within one second. This technique will aid the user in determining the best candidates for patch clamping and will ultimately save time, increase efficiency and reduce cost. The ultimate goal is to combine intelligent processing with instrumentation and controls in order to produce a complete turnkey automated patch clamping system capable of accurately and reliably patch clamping cells with a minimum amount of human intervention. We present a unique technique that identifies good patch clamping cell candidates based on feature metrics of a cell's (x, y) position, major axis length, minor axis length, area, elongation, roundness, smoothness, angle of orientation, thinness and whether or not the cell is only particularly in the field of view. A patent is pending for this research.
NASA Astrophysics Data System (ADS)
Izah Anuar, Nurul; Saptari, Adi
2016-02-01
This paper addresses the types of particle representation (encoding) procedures in a population-based stochastic optimization technique in solving scheduling problems known in the job-shop manufacturing environment. It intends to evaluate and compare the performance of different particle representation procedures in Particle Swarm Optimization (PSO) in the case of solving Job-shop Scheduling Problems (JSP). Particle representation procedures refer to the mapping between the particle position in PSO and the scheduling solution in JSP. It is an important step to be carried out so that each particle in PSO can represent a schedule in JSP. Three procedures such as Operation and Particle Position Sequence (OPPS), random keys representation and random-key encoding scheme are used in this study. These procedures have been tested on FT06 and FT10 benchmark problems available in the OR-Library, where the objective function is to minimize the makespan by the use of MATLAB software. Based on the experimental results, it is discovered that OPPS gives the best performance in solving both benchmark problems. The contribution of this paper is the fact that it demonstrates to the practitioners involved in complex scheduling problems that different particle representation procedures can have significant effects on the performance of PSO in solving JSP.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
Application of optimal data assimilation techniques in oceanography
Miller, R.N.
1996-12-31
Application of optimal data assimilation methods in oceanography is, if anything, more important than it is in numerical weather prediction, due to the sparsity of data. Here, a general framework is presented and practical examples taken from the author`s work are described, with the purpose of conveying to the reader some idea of the state of the art of data assimilation in oceanography. While no attempt is made to be exhaustive, references to other lines of research are included. Major challenges to the community include design of statistical error models and handling of strong nonlinearity.
Decomposition technique and optimal trajectories for the aeroassisted flight experiment
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Deaton, A. W.
1990-01-01
An actual geosynchronous Earth orbit-to-low Earth orbit (GEO-to-LEO) transfer is considered with reference to the aeroassisted flight experiment (AFE) spacecraft, and optimal trajectories are determined by minimizing the total characteristic velocity. The optimization is performed with respect to the time history of the controls (angle of attack and angle of bank), the entry path inclination and the flight time being free. Two transfer maneuvers are considered: direct ascent (DA) to LEO and indirect ascent (IA) to LEO via parking Earth orbit (PEO). By taking into account certain assumptions, the complete system can be decoupled into two subsystems: one describing the longitudinal motion and one describing the lateral motion. The angle of attack history, the entry path inclination, and the flight time are determined via the longitudinal motion subsystem. In this subsystem, the difference between the instantaneous bank angle and a constant bank angle is minimized in the least square sense subject to the specified orbital inclination requirement. Both the angles of attack and the angle of bank are shown to be constant. This result has considerable importance in the design of nominal trajectories to be used in the guidance of AFE and aeroassisted orbital transfer (AOT) vehicles.
Optimized distortion correction technique for echo planar imaging.
Chen, N K; Wyrwicz, A M
2001-03-01
A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. PMID:11241714
A technique for optimizing the design of power semiconductor devices
NASA Technical Reports Server (NTRS)
Schlegel, E. S.
1976-01-01
A technique is described that provides a basis for predicting whether any device design change will improve or degrade the unavoidable trade-off that must be made between the conduction loss and the turn-off speed of fast-switching high-power thyristors. The technique makes use of a previously reported method by which, for a given design, this trade-off was determined for a wide range of carrier lifetimes. It is shown that by extending this technique, one can predict how other design variables affect this trade-off. The results show that for relatively slow devices the design can be changed to decrease the current gains to improve the turn-off time without significantly degrading the losses. On the other hand, for devices having fast turn-off times design changes can be made to increase the current gain to decrease the losses without a proportionate increase in the turn-off time. Physical explanations for these results are proposed.
Preliminary research on abnormal brain detection by wavelet-energy and quantum- behaved PSO.
Zhang, Yudong; Ji, Genlin; Yang, Jiquan; Wang, Shuihua; Dong, Zhengchao; Phillips, Preetha; Sun, Ping
2016-04-29
It is important to detect abnormal brains accurately and early. The wavelet-energy (WE) was a successful feature descriptor that achieved excellent performance in various applications; hence, we proposed a WE based new approach for automated abnormal detection, and reported its preliminary results in this study. The kernel support vector machine (KSVM) was used as the classifier, and quantum-behaved particle swarm optimization (QPSO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of the proposed WE + QPSO-KSVM was superior to ``DWT + PCA + BP-NN'', ``DWT + PCA + RBF-NN'', ``DWT + PCA + PSO-KSVM'', ``WE + BPNN'', ``WE +$ KSVM'', and ``DWT $+$ PCA $+$ GA-KSVM'' w.r.t. sensitivity, specificity, and accuracy. The work provides a novel means to detect abnormal brains with excellent performance. PMID:27163327
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
PSO-based methods for medical image registration and change assessment of pigmented skin
NASA Astrophysics Data System (ADS)
Kacenjar, Steve; Zook, Matthew; Balint, Michael
2011-03-01
's back topography. Since the skin is a deformable membrane, this process only provides an initial condition for subsequent refinements in aligning the localized topography of the skin. To achieve a refined enhancement, a Particle Swarm Optimizer (PSO) is used to optimally determine the local camera models associated with a generalized geometric transform. Here the optimization process is driven using the minimization of entropy between the multiple time-separated images. Once the camera models are corrected for local skin deformations, the images are compared using both pixel-based and regional-based methods. Limits on the detectability of change are established by the fidelity to which the algorithm corrects for local skin deformation and background alterations. These limits provide essential information in establishing early-warning thresholds for Melanoma detection. Key to this work is the development of a PSO alignment algorithm to perform the refined alignment in local skin topography between the time sequenced imagery (TSI). Test and validation of this alignment process is achieved using a forward model producing known geometric artifacts in the images and afterwards using a PSO algorithm to demonstrate the ability to identify and correct for these artifacts. Specifically, the forward model introduces local translational, rotational, and magnification changes within the image. These geometric modifiers are expected during TSI acquisition because of logistical issues to precisely align the patient to the image recording geometry and is therefore of paramount importance to any viable image registration system. This paper shows that the PSO alignment algorithm is effective in autonomously determining and mitigating these geometric modifiers. The degree of efficacy is measured by several statistically and morphologically based pre-image filtering operations applied to the TSI imagery before applying the PSO alignment algorithm. These trade studies show that global
An Enhanced Multi-Objective Optimization Technique for Comprehensive Aerospace Design
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Rajadas, John N.
2000-01-01
An enhanced multiobjective formulation technique, capable of emphasizing specific objective functions during the optimization process, has been demonstrated on a complex multidisciplinary design application. The Kreisselmeier-Steinhauser (K-S) function approach, which has been used successfully in a variety of multiobjective optimization problems, has been modified using weight factors which enables the designer to emphasize specific design objectives during the optimization process. The technique has been implemented in two distinctively different problems. The first is a classical three bar truss problem and the second is a high-speed aircraft (a doubly swept wing-body configuration) application in which the multiobjective optimization procedure simultaneously minimizes the sonic boom and the drag-to-lift ratio (C(sub D)/C(sub L)) of the aircraft while maintaining the lift coefficient within prescribed limits. The results are compared with those of an equally weighted K-S multiobjective optimization. Results demonstrate the effectiveness of the enhanced multiobjective optimization procedure.
NASA Technical Reports Server (NTRS)
Sreekanta Murthy, T.
1992-01-01
Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.
Optimal fractional delay-IIR filter design using cuckoo search algorithm.
Kumar, Manjeet; Rawat, Tarun Kumar
2015-11-01
This paper applied a novel global meta-heuristic optimization algorithm, cuckoo search algorithm (CSA) to determine optimal coefficients of a fractional delay-infinite impulse response (FD-IIR) filter and trying to meet the ideal frequency response characteristics. Since fractional delay-IIR filter design is a multi-modal optimization problem, it cannot be computed efficiently using conventional gradient based optimization techniques. A weighted least square (WLS) based fitness function is used to improve the performance to a great extent. FD-IIR filters of different orders have been designed using the CSA. The simulation results of the proposed CSA based approach have been compared to those of well accepted evolutionary algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The performance of the CSA based FD-IIR filter is superior to those obtained by GA and PSO. The simulation and statistical results affirm that the proposed approach using CSA outperforms GA and PSO, not only in the convergence rate but also in optimal performance of the designed FD-IIR filter (i.e., smaller magnitude error, smaller phase error, higher percentage improvement in magnitude and phase error, fast convergence rate). The absolute magnitude and phase error obtained for the designed 5th order FD-IIR filter are as low as 0.0037 and 0.0046, respectively. The percentage improvement in magnitude error for CSA based 5th order FD-IIR design with respect to GA and PSO are 80.93% and 74.83% respectively, and phase error are 76.04% and 71.25%, respectively. PMID:26391486
Optimization of hydrostatic transmissions by means of virtual instrumentation technique
NASA Astrophysics Data System (ADS)
Ion Guta, Dragos Daniel; Popescu, Teodor Costinel; Dumitrescu, Catalin
2010-11-01
Obtaining mathematical models, as close as possible to physical phenomena which are intended to be replicated or improved, help us in deciding how to optimize them. The introduction of computers in monitoring and controlling processes caused changes in technological systems. With support from the methods for identification of processes and from the power of numerical computing equipment, researchers and designers can shorten the period for development of applications in various fields by generating a solution as close as possible to reality, since the design stage [1]. The paper presents a hybrid solution of modeling / simulation of a hydrostatic transmission with mixed adjustment. For simulation and control of the examined process we have used two distinct environments, AMESim and LabVIEW. The proposed solution allows coupling of the system's model to the software control modules developed using virtual instrumentation. Simulation network of the analyzed system was "tuned" and validated by an actual model of the process. This paper highlights some aspects regarding energy and functional advantages of hydraulic transmissions based on adjustable volumetric machines existing in their primary and secondary sectors [2].
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-01-01
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-01-01
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms. PMID:26251910
Calculation of free fall trajectories based on numerical optimization techniques
NASA Technical Reports Server (NTRS)
1972-01-01
The development of a means of computing free-fall (nonthrusting) trajectories from one specified point in the solar system to another specified point in the solar system in a given amount of time was studied. The problem is that of solving a two-point boundary value problem for which the initial slope is unknown. Two standard methods of attack exist for solving two-point boundary value problems. The first method is known as the initial value or shooting method. The second method of attack for two-point boundary value problems is to approximate the nonlinear differential equations by an appropriate linearized set. Parts of both boundary value problem solution techniques described above are used. A complete velocity history is guessed such that the corresponding position history satisfies the given boundary conditions at the appropriate times. An iterative procedure is then followed until the last guessed velocity history and the velocity history obtained from integrating the acceleration history agree to some specified tolerance everywhere along the trajectory.
Optimized digital filtering techniques for radiation detection with HPGe detectors
NASA Astrophysics Data System (ADS)
Salathe, Marco; Kihm, Thomas
2016-02-01
This paper describes state-of-the-art digital filtering techniques that are part of GEANA, an automatic data analysis software used for the GERDA experiment. The discussed filters include a novel, nonlinear correction method for ballistic deficits, which is combined with one of three shaping filters: a pseudo-Gaussian, a modified trapezoidal, or a modified cusp filter. The performance of the filters is demonstrated with a 762 g Broad Energy Germanium (BEGe) detector, produced by Canberra, that measures γ-ray lines from radioactive sources in an energy range between 59.5 and 2614.5 keV. At 1332.5 keV, together with the ballistic deficit correction method, all filters produce a comparable energy resolution of ~1.61 keV FWHM. This value is superior to those measured by the manufacturer and those found in publications with detectors of a similar design and mass. At 59.5 keV, the modified cusp filter without a ballistic deficit correction produced the best result, with an energy resolution of 0.46 keV. It is observed that the loss in resolution by using a constant shaping time over the entire energy range is small when using the ballistic deficit correction method.
Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block.
Kora, Padmavathi; Kalva, Sri Ramakrishna
2015-01-01
Abnormal cardiac beat identification is a key process in the detection of heart diseases. Our present study describes a procedure for the detection of left and right bundle branch block (LBBB and RBBB) Electrocardiogram (ECG) patterns. The electrical impulses that control the cardiac beat face difficulty in moving inside the heart. This problem is termed as bundle branch block (BBB). BBB makes it harder for the heart to pump blood effectively through the heart circulatory system. ECG feature extraction is a key process in detecting heart ailments. Our present study comes up with a hybrid method combining two heuristic optimization methods: Bacterial Forging Optimization (BFO) and Particle Swarm Optimization (PSO) for the feature selection of ECG signals. One of the major controlling forces of BFO algorithm is the chemotactic movement of a bacterium that models a test solution. The chemotaxis process of the BFO depends on random search directions which may lead to a delay in achieving the global optimum solution. The hybrid technique: Bacterial Forging-Particle Swarm Optimization (BFPSO) incorporates the concepts from BFO and PSO and it creates individuals in a new generation. This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator. The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier. PMID:26361582
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-01-01
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160
A technique for locating function roots and for satisfying equality constraints in optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1991-01-01
A new technique for locating simultaneous roots of a set of functions is described. The technique is based on the property of the Kreisselmeier-Steinhauser function which descends to a minimum at each root location. It is shown that the ensuing algorithm may be merged into any nonlinear programming method for solving optimization problems with equality constraints.
A technique for locating function roots and for satisfying equality constraints in optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.
1992-01-01
A new technique for locating simultaneous roots of a set of functions is described. The technique is based on the property of the Kreisselmeier-Steinhauser function which descends to a minimum at each root location. It is shown that the ensuing algorithm may be merged into any nonlinear programming method for solving optimization problems with equality constraints.
Pump-and-treat optimization using analytic element method flow models
NASA Astrophysics Data System (ADS)
Matott, L. Shawn; Rabideau, Alan J.; Craig, James R.
2006-05-01
Plume containment using pump-and-treat (PAT) technology continues to be a popular remediation technique for sites with extensive groundwater contamination. As such, optimization of PAT systems, where cost is minimized subject to various remediation constraints, is the focus of an important and growing body of research. While previous pump-and-treat optimization (PATO) studies have used discretized (finite element or finite difference) flow models, the present study examines the use of analytic element method (AEM) flow models. In a series of numerical experiments, two PATO problems adapted from the literature are optimized using a multi-algorithmic optimization software package coupled with an AEM flow model. The experiments apply several different optimization algorithms and explore the use of various pump-and-treat cost and constraint formulations. The results demonstrate that AEM models can be used to optimize the number, locations and pumping rates of wells in a pump-and-treat containment system. Furthermore, the results illustrate that a total outflux constraint placed along the plume boundary can be used to enforce plume containment. Such constraints are shown to be efficient and reliable alternatives to conventional particle tracking and gradient control techniques. Finally, the particle swarm optimization (PSO) technique is identified as an effective algorithm for solving pump-and-treat optimization problems. A parallel version of the PSO algorithm is shown to have linear speedup, suggesting that the algorithm is suitable for application to problems that are computationally demanding and involve large numbers of wells.
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C₆H₆), toluene (C₇H₈), formaldehyde (CH₂O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms' applications in all E-nose application areas. PMID
NASA Astrophysics Data System (ADS)
Yamaguchi, Hideshi; Soeda, Takeshi
2015-03-01
A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.
A damage identification technique based on embedded sensitivity analysis and optimization processes
NASA Astrophysics Data System (ADS)
Yang, Chulho; Adams, Douglas E.
2014-07-01
A vibration based structural damage identification method, using embedded sensitivity functions and optimization algorithms, is discussed in this work. The embedded sensitivity technique requires only measured or calculated frequency response functions to obtain the sensitivity of system responses to each component parameter. Therefore, this sensitivity analysis technique can be effectively used for the damage identification process. Optimization techniques are used to minimize the difference between the measured frequency response functions of the damaged structure and those calculated from the baseline system using embedded sensitivity functions. The amount of damage can be quantified directly in engineering units as changes in stiffness, damping, or mass. Various factors in the optimization process and structural dynamics are studied to enhance the performance and robustness of the damage identification process. This study shows that the proposed technique can improve the accuracy of damage identification with less than 2 percent error of estimation.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Shabri, Ani; Samsudin, Ruhaidah
2014-01-01
Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666
Fournier, René; Mohareb, Amir
2016-01-14
We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of CumSnn (+) (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each CumSnn (+) species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV. PMID:26772561
NASA Astrophysics Data System (ADS)
Fournier, René; Mohareb, Amir
2016-01-01
We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of Cu m Snn + (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each Cu m S nn + species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV.
NASA Astrophysics Data System (ADS)
Agarwal, Reema; Köhl, Armin; Stammer, Detlef
2013-04-01
We present an application of a multivariate parameter optimization technique to a global primitive equation Atmospheric GCM. The technique is based upon the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, in which gradients of the objective function are approximated. This technique has some advantages over other optimization procedures (such as Green's function or the Adjoint methods) like robustness to noise in the objective function and ability to find the actual minimum in case of multiple minima. Another useful feature of the technique is its simplicity and cost effectiveness. The atmospheric GCM used is the coarse resolution PLAnet SIMulator (PLASIM). In order to identify the parameters to be used in the optimization procedure, a series of sensitivity experiments with 12 different parameters was performed and subsequently 5 parameters related to cloud radiation parameterization to which the GCM was highly sensitive were finally selected. The optimization technique is applied and the selected parameters were simultaneously tuned and tested for a period of 1-year GCM integrations. The performance of the technique is judged by the behavior of model's cost function, which includes temperature, precipitation, humidity and flux contributions. The method is found to be useful for reducing the model's cost function against both identical twin data as well as ECMWF ERA-40 reanalysis data.
Cost-Optimal Design of a 3-Phase Core Type Transformer by Gradient Search Technique
NASA Astrophysics Data System (ADS)
Basak, R.; Das, A.; Sensarma, A. K.; Sanyal, A. N.
2014-04-01
3-phase core type transformers are extensively used as power and distribution transformers in power system and their cost is a sizable proportion of the total system cost. Therefore they should be designed cost-optimally. The design methodology for reaching cost-optimality has been discussed in details by authors like Ramamoorty. It has also been discussed in brief in some of the text-books of electrical design. The paper gives a method for optimizing design, in presence of constraints specified by the customer and the regulatory authorities, through gradient search technique. The starting point has been chosen within the allowable parameter space the steepest decent path has been followed for convergence. The step length has been judiciously chosen and the program has been maneuvered to avoid local minimal points. The method appears to be best as its convergence is quickest amongst different optimizing techniques.
Hashim, H A; Abido, M A
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738
Hashim, H. A.; Abido, M. A.
2015-01-01
This paper presents a comparative study of fuzzy controller design for the twin rotor multi-input multioutput (MIMO) system (TRMS) considering most promising evolutionary techniques. These are gravitational search algorithm (GSA), particle swarm optimization (PSO), artificial bee colony (ABC), and differential evolution (DE). In this study, the gains of four fuzzy proportional derivative (PD) controllers for TRMS have been optimized using the considered techniques. The optimization techniques are developed to identify the optimal control parameters for system stability enhancement, to cancel high nonlinearities in the model, to reduce the coupling effect, and to drive TRMS pitch and yaw angles into the desired tracking trajectory efficiently and accurately. The most effective technique in terms of system response due to different disturbances has been investigated. In this work, it is observed that GSA is the most effective technique in terms of solution quality and convergence speed. PMID:25960738
A knowledge-based approach to improving optimization techniques in system planning
NASA Technical Reports Server (NTRS)
Momoh, J. A.; Zhang, Z. Z.
1990-01-01
A knowledge-based (KB) approach to improve mathematical programming techniques used in the system planning environment is presented. The KB system assists in selecting appropriate optimization algorithms, objective functions, constraints and parameters. The scheme is implemented by integrating symbolic computation of rules derived from operator and planner's experience and is used for generalized optimization packages. The KB optimization software package is capable of improving the overall planning process which includes correction of given violations. The method was demonstrated on a large scale power system discussed in the paper.
Application of response surface techniques to helicopter rotor blade optimization procedure
NASA Technical Reports Server (NTRS)
Henderson, Joseph Lynn; Walsh, Joanne L.; Young, Katherine C.
1995-01-01
In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.
Srinivasan, Thenmozhi; Palanisamy, Balasubramanie
2015-01-01
Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM), with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets. PMID:26495413
Srinivasan, Thenmozhi; Palanisamy, Balasubramanie
2015-01-01
Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM), with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets. PMID:26495413
NASA Astrophysics Data System (ADS)
Sato, Yuki; Izui, Kazuhiro; Yamada, Takayuki; Nishiwaki, Shinji
2016-07-01
This paper proposes techniques to improve the diversity of the searching points during the optimization process in an Aggregative Gradient-based Multiobjective Optimization (AGMO) method, so that well-distributed Pareto solutions are obtained. First to be discussed is a distance constraint technique, applied among searching points in the objective space when updating design variables, that maintains a minimum distance between the points. Next, a scheme is introduced that deals with updated points that violate the distance constraint, by deleting the offending points and introducing new points in areas of the objective space where searching points are sparsely distributed. Finally, the proposed method is applied to example problems to illustrate its effectiveness.
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Mukhopadhyay, V.
1983-01-01
A method for designing robust feedback controllers for multiloop systems is presented. Robustness is characterized in terms of the minimum singular value of the system return difference matrix at the plant input. Analytical gradients of the singular values with respect to design variables in the controller are derived. A cumulative measure of the singular values and their gradients with respect to the design variables is used with a numerical optimization technique to increase the system's robustness. Both unconstrained and constrained optimization techniques are evaluated. Numerical results are presented for a two output drone flight control system.
NASA Astrophysics Data System (ADS)
ch, Sudheer; Kumar, Deepak; Prasad, Ram Kailash; Mathur, Shashi
2013-08-01
A methodology based on support vector machine and particle swarm optimization techniques (SVM-PSO) was used in this study to determine an optimal pumping rate and well location to achieve an optimal cost of an in-situ bioremediation system. In the first stage of the two stage methodology suggested for optimal in-situ bioremediation design, the optimal number of wells and their locations was determined from preselected candidate well locations. The pumping rate and well location in the first stage were subsequently optimized in the second stage of the methodology. The highly nonlinear system of equations governing in-situ bioremediation comprises the equations of flow and solute transport coupled with relevant biodegradation kinetics. A finite difference model was developed to simulate the process of in-situ bioremediation using an Alternate-Direction Implicit technique. This developed model (BIOFDM) yields the spatial and temporal distribution of contaminant concentration for predefined initial and boundary conditions. BIOFDM was later validated by comparing the simulated results with those obtained using BIOPLUME III for the case study of Shieh and Peralta (2005). The results were found to be in close agreement. Moreover, since the solution of the highly nonlinear equation otherwise requires significant computational effort, the computational burden in this study was managed within a practical time frame by replacing the BIOFDM model with a trained SVM model. Support Vector Machine which generates fast solutions in real time was considered to be a universal function approximator in the study. Apart from reducing the computational burden, this technique generates a set of near optimal solutions (instead of a single optimal solution) and creates a re-usable data base that could be used to address many other management problems. Besides this, the search for an optimal pumping pattern was directed by a simple PSO technique and a penalty parameter approach was adopted
Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique
NASA Astrophysics Data System (ADS)
Xu, Tiejun; Huang, Shenghong; Xie, Han; Song, Yuntao; Zhan, Ping; Ji, Xiang; Gao, Daming
2011-12-01
Considering utilization of the original chromium-bronze material, two processing techniques including hydraulic expansion and high temperature vacuum welding were proposed for the optimization of heat-sink structure in EAST. The heat transfer performance of heat-sink with or without cooling tube was calculated and different types of connection between tube and heat-sink were compared by conducting a special test. It is shown from numerical analysis that the diameter of heat-sink channel can be reduced from 12 mm to 10 mm. Compared with the original sample, the thermal contact resistance between tube and heat-sink for welding sample can reduce the heat transfer performance by 10%, while by 20% for the hydraulic expansion sample. However, the welding technique is more complicated and expensive than hydraulic expansion technique. Both the processing technique and the heat transfer performance of heat-sink prototype should be further considered for the optimization of heat-sink structure in EAST.
NASA Astrophysics Data System (ADS)
Tabakov, P. Y.; Walker, M.
2007-01-01
Accurate optimal design solutions for most engineering structures present considerable difficulties due to the complexity and multi-modality of the functional design space. The situation is made even more complex when potential manufacturing tolerances must be accounted for in the optimizing process. The present study provides an in-depth analysis of the problem, and then a technique for determining the optimal design of engineering structures, with manufacturing tolerances in the design variables accounted for, is proposed and demonstrated. The examples used to demonstrate the technique involve the design optimization of simple fibre-reinforced laminated composite structures. The technique is simple, easy to implement and, at the same time, very efficient. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus it is a worst-case scenario approach. In addition, the technique is non-probabilistic. A genetic algorithm with fitness sharing, including a micro-genetic algorithm, has been found to be very suitable to use, and implemented in the technique. The numerical examples presented in the article deal with buckling load design optimization of an laminated angle ply plate, and evaluation of the maximum burst pressure in a thick laminated anisotropic pressure vessel. Both examples clearly demonstrate the impact of manufacturing tolerances on the overall performance of a structure and emphasize the importance of accounting for such tolerances in the design optimization phase. This is particularly true of the pressure vessel. The results show that when the example tolerances are accounted for, the maximum design pressure is reduced by 60.2% (in the case of a single layer vessel), and when five layers are specified, if the nominal fibre orientations are implemented and the example tolerances are incurred during fabrication, the actual design pressure could be 64% less than predicted.
Hybrid intelligent optimization methods for engineering problems
NASA Astrophysics Data System (ADS)
Pehlivanoglu, Yasin Volkan
quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.
NASA Astrophysics Data System (ADS)
Hayashi, Yasuhiro; Matsuki, Junya; Kanai, Genshin
Open access to electric power transmission networks has been carried out in order to foster generation competition and customer choice in the worldwide. When several PPSs request to simultaneously supply power to customers based on bilateral contracts, it is expected that transmission network accepts amounts of wheeled power requested by the PPSs as much as possible. It is possible to maximize total requested wheeled power by controlling power flow through transmission lines. It is well known that FACTS device is available to control line flow flexibly. In this paper, in order to maximize total wheeled power simultaneously requested by several PPSs, the authors propose an algorithm to determine the optimal reactance of TCSC (one of FACTS devices). The proposed algorithm is based on Particle Swarm Optimization (PSO), which is one of optimization methods based on swarm intelligence. In the proposed algorithm, PSO is improved to enhance ability of searching global minimum by giving different characteristic to behavior of each agent. In order to check the validity of the proposed method, numerical results are shown for 6 and IEEE 30 bus system models.
Particle Swarm Optimization with Double Learning Patterns.
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747
Particle Swarm Optimization with Double Learning Patterns
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747
A technique optimization protocol and the potential for dose reduction in digital mammography
Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan
2010-01-01
Digital mammography requires revisiting techniques that have been optimized for prior screen∕film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat NovationDR, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23–35 kVp), target∕filter combinations (Mo–Mo and W–Rh), breast-equivalent plastic in various thicknesses (2–8 cm) and densities (100% adipose, 50% adipose∕50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W–Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W–Rh technique compared to standard Mo–Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose∕50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts. PMID:20384232
A technique optimization protocol and the potential for dose reduction in digital mammography
Ranger, Nicole T.; Lo, Joseph Y.; Samei, Ehsan
2010-03-15
Digital mammography requires revisiting techniques that have been optimized for prior screen/film mammography systems. The objective of the study was to determine optimized radiographic technique for a digital mammography system and demonstrate the potential for dose reduction in comparison to the clinically established techniques based on screen- film. An objective figure of merit (FOM) was employed to evaluate a direct-conversion amorphous selenium (a-Se) FFDM system (Siemens Mammomat Novation{sup DR}, Siemens AG Medical Solutions, Erlangen, Germany) and was derived from the quotient of the squared signal-difference-to-noise ratio to mean glandular dose, for various combinations of technique factors and breast phantom configurations including kilovoltage settings (23-35 kVp), target/filter combinations (Mo-Mo and W-Rh), breast-equivalent plastic in various thicknesses (2-8 cm) and densities (100% adipose, 50% adipose/50% glandular, and 100% glandular), and simulated mass and calcification lesions. When using a W-Rh spectrum, the optimized FOM results for the simulated mass and calcification lesions showed highly consistent trends with kVp for each combination of breast density and thickness. The optimized kVp ranged from 26 kVp for 2 cm 100% adipose breasts to 30 kVp for 8 cm 100% glandular breasts. The use of the optimized W-Rh technique compared to standard Mo-Mo techniques provided dose savings ranging from 9% for 2 cm thick, 100% adipose breasts, to 63% for 6 cm thick, 100% glandular breasts, and for breasts with a 50% adipose/50% glandular composition, from 12% for 2 cm thick breasts up to 57% for 8 cm thick breasts.
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
NASA Astrophysics Data System (ADS)
Papila, Nilay Uzgoren
Turbine performance directly affects engine specific impulse, thrust-to-weight ratio, and cost in a rocket propulsion system. This dissertation focuses on methodology and application of employing optimization techniques, with the neural network (NN) and polynomial-based response surface method (RSM), for supersonic turbine optimization. The research is relevant to NASA's reusable launching vehicle initiatives. It is demonstrated that accuracy of the response surface (RS) approximations can be improved with combined utilization of the NN and polynomial techniques, and higher emphases on data in regions of interests. The design of experiment methodology is critical while performing optimization in efficient and effective manners. In physical applications, both preliminary design and detailed shape design optimization are investigated. For preliminary design level, single-, two-, and three-stage turbines are considered with the number of design variables increasing from six to 11 and then to 15, in accordance with the number of stages. A major goal of the preliminary optimization effort is to balance the desire of maximizing aerodynamic performance and minimizing weight. To ascertain required predictive capability of the RSM, a two-level domain refinement approach (windowing) has been adopted. The accuracy of the predicted optimal design points based on this strategy is shown to be satisfactory. The results indicate that the two-stage turbine is the optimum configuration with the higher efficiency corresponding to smaller weights. It is demonstrated that the criteria for selecting the database exhibit significant impact on the efficiency and effectiveness of the construction of the response surface. Based on the optimized preliminary design outcome, shape optimization is performed for vanes and blades of a two-stage supersonic turbine, involving O(10) design variables. It is demonstrated that a major merit of the RS-based optimization approach is that it enables one
Lenhart, S. |; Protopopescu, V.; Yong, J.
1997-12-31
The authors apply optimal control techniques to find approximate solutions to an inverse problem for the acoustic wave equation. The inverse problem (assumed here to have a solution) is to determine the boundary reflection coefficient from partial measurements of the acoustic signal. The sought reflection coefficient is treated as a control and the goal--quantified by an approximate functional--is to drive the model solution close to the experimental data by adjusting this coefficient. The problem is solved by finding the optimal control that minimizes the approximate functional. Then by driving the cost of the control to zero one proves that the corresponding sequence of optimal controls represents a converging sequence of estimates for the solution of the inverse problem. Compared to classical regularization methods (e.g., Tikhonov coupled with optimization schemes), their approach yields: (1) a systematic procedure to solve inverse problems of identification type and (ii) an explicit expression for the approximations of the solution.
NASA Astrophysics Data System (ADS)
Wang, Hu; Li, Enying; Li, G. Y.
2011-03-01
This paper presents a crashworthiness design optimization method based on a metamodeling technique. The crashworthiness optimization is a highly nonlinear and large scale problem, which is composed various nonlinearities, such as geometry, material and contact and needs a large number expensive evaluations. In order to obtain a robust approximation efficiently, a probability-based least square support vector regression is suggested to construct metamodels by considering structure risk minimization. Further, to save the computational cost, an intelligent sampling strategy is applied to generate sample points at the stage of design of experiment (DOE). In this paper, a cylinder, a full vehicle frontal collision is involved. The results demonstrate that the proposed metamodel-based optimization is efficient and effective in solving crashworthiness, design optimization problems.
An Innovative Method of Teaching Electronic System Design with PSoC
ERIC Educational Resources Information Center
Ye, Zhaohui; Hua, Chengying
2012-01-01
Programmable system-on-chip (PSoC), which provides a microprocessor and programmable analog and digital peripheral functions in a single chip, is very convenient for mixed-signal electronic system design. This paper presents the experience of teaching contemporary mixed-signal electronic system design with PSoC in the Department of Automation,…
76 FR 60495 - Patient Safety Organizations: Voluntary Relinquishment From Illinois PSO
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Voluntary... from the Illinois PSO of its status as a Patient Safety Organization (PSO). The Patient Safety and... PSOs, which are entities or component organizations whose mission and primary activity is to...
Fuel optimal low thrust rendezvous with outer planets via gravity assist
NASA Astrophysics Data System (ADS)
Guo, TieDing; Jiang, FangHua; Baoyin, HeXi; LI, JunFeng
2011-04-01
Low thrust propulsion and gravity assist (GA) are among the most promising techniques for deep space explorations. In this paper the two techniques are combined and treated comprehensively, both on modeling and numerical techniques. Fuel optimal orbit rendezvous via multiple GA is first formulated as optimal guidance with multiple interior constraints and then the optimal necessary conditions, various transversality conditions and stationary conditions are derived by Pontryagin's Maximum Principle (PMP). Finally the initial orbit rendezvous problem is transformed into a multiple point boundary value problem (MPBVP). Homotopic technique combined with random searching globally and Particle Swarm Optimization (PSO), is adopted to handle the numerical difficulty in solving the above MPBVP by single shooting method. Two scenarios in the end show the merits of the present approach.
Techniques for optimal crop selection in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Mccormack, Ann; Finn, Cory; Dunsky, Betsy
1993-01-01
A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.